Science.gov

Sample records for ryegrass lolium rigidum

  1. Cross-resistance to herbicides in annual ryegrass (lolium rigidum)

    SciTech Connect

    Christopher, J.T.; Powles, S.B.; Liljegren, D.R.; Holtum, J.A.M. )

    1991-04-01

    Lolium rigidum Gaud. biotype SLR31 is resistant to the herbicide diclofop-methyl and cross-resistant to several sulfonylurea herbicides. Wheat and the cross-resistant ryegrass exhibit similar patterns of resistance to sulfonylurea herbicides, suggesting that the mechanism of resistance may be similar. Cross-resistant ryegrass is also resistant to the wheat-selective imidazolinone herbicide imazamethabenz. The cross-resistant biotype SLR31 metabolized (phenyl-U-{sup 14}C)chlorsulfuron at a faster rate than a biotype which is susceptible to both diclofop-methyl and chlorsulfuron. A third biotype which is resistant to diclofop-methyl but not to chlorsulfuron metabolized chlorsulfuron at the same rate as the susceptible biotype. The increased metabolism of chlorsulfuron observed in the cross-resistant biotype is, therefore, correlated with the patterns of resistance observed in these L. rigidum biotypes. During high performance liquid chromatography analysis the major metabolite of chlorsulfuron in both susceptible and cross-resistant ryegrass coeluted with the major metabolite produced in wheat. The major product is clearly different from the major product in the tolerant dicot species, flax (Linium usitatissimum). The elution pattern of metabolites of chlorsulfuron was the same for both the susceptible and cross-resistant ryegrass but the cross-resistant ryegrass metabolized chlorsulfuron more rapidly. The investigation of the dose response to sulfonylurea herbicides at the whole plant level and the study of the metabolism of chlorsulfuron provide two independent sets of data which both suggest that the resistance to chlorsulfuron in cross-resistant ryegrass biotype SLR31 involves a wheat-like detoxification system.

  2. Cross-Resistance to Herbicides in Annual Ryegrass (Lolium rigidum)

    PubMed Central

    Matthews, John M.; Holtum, Joseph A. M.; Liljegren, David R.; Furness, Barbara; Powles, Stephen B.

    1990-01-01

    Lolium rigidum biotype SR4/84 is resistant to the herbicides diclofop-methyl and chlorsulfuron when grown in the field, in pots, and in hydroponics. Similar extractable activities and affinities for acetyl-coenzyme A of carboxylase (ACCase), an enzyme inhibited by diclofop-methyl, were found for susceptible and resistant L. rigidum. ACCase activity from both biotypes was inhibited by diclofop-methyl, diclofop acid, haloxyfop acid, fluazifop acid, sethoxydim, and tralkoxydim but not by chlorsulfuron or trifluralin. Exposure of plants to diclofop-methyl did not induce any changes in either the extractable activities or the herbicide inhibition kinetics of ACCase. It is concluded that, in contrast to diclofop resistance in L. multiflorum and diclofop tolerance in many dicots, the basis of resistance to diclofop-methyl and to other aryloxyphenoxypropionate and cyclohexanedione herbicides in L. rigidum is not due to the altered inhibition characteristics or expression of the enzyme ACCase. The extractable activities and substrate affinity of acetolactate synthase (ALS), an enzyme inhibited by chlorsulfuron, from susceptible and resistant biotypes of L. rigidum were similar. ALS from susceptible and resistant plants was equally inhibited by chlorsulfuron. Prior exposure of plants to 100 millimolar chlorsulfuron did not affect the inhibition kinetics. It is concluded that resistance to chlorsulfuron is not caused by alterations in either the expression or inhibition characteristics of ALS. PMID:16667814

  3. Pollen Expression of Herbicide Target Site Resistance Genes in Annual Ryegrass (Lolium rigidum).

    PubMed Central

    Richter, J.; Powles, S. B.

    1993-01-01

    Herbicide resistance can occur either through target-site insensitivity or by nontarget site-based mechanisms. Two herbicide-resistant biotypes of Lolium rigidum Gaud., one resistant to acetolactate synthase (ALS)-inhibiting herbicides (biotype WLR1) and the other resistant to acetyl CoA carboxylase (ACCase)-inhibiting herbicides (biotype WLR96) through target-site insensitivity at the whole plant and enzymic levels, were found to express this resistance in the pollen. Pollen produced by resistant biotypes grew uninhibited when challenged with herbicide, whereas that from a susceptible biotype was inhibited. A third biotype, SLR31, resistant to ACCase-inhibiting and certain ALS-inhibiting herbicides at the whole plant level through nontarget site-based mechanisms, did not exhibit this expression in the pollen. The technique described may form the basis for a rapid screen for certain nuclear-encoded, target site-based herbicide-resistance mechanisms. PMID:12231886

  4. Investigating the Mechanism of Glyphosate Resistance in Rigid Ryegrass (Lolium rigidum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is a broad-spectrum herbicide that has been used extensively for more than 20 yr. The first glyphosate-resistant weed biotype appeared in 1996; it involved a rigid ryegrass population from Australia that exhibited an LD50 value approximately 10-fold higher than that of sensitive biotypes....

  5. Pollen-Mediated Movement of Herbicide Resistance Genes in Lolium rigidum

    PubMed Central

    Loureiro, Iñigo; Escorial, María-Concepción; Chueca, María-Cristina

    2016-01-01

    The transfer of herbicide resistance genes by pollen is a major concern in cross-pollinated species such as annual ryegrass (Lolium rigidum). A two-year study was conducted in the greenhouse, under favorable conditions for pollination, to generate information on potential maximum cross-pollination. This maximum cross-pollination rate was 56.1%. A three-year field trial was also conducted to study the cross-pollination rates in terms of distance and orientation to an herbicide-resistant pollen source. Under field conditions, cross-pollination rates varied from 5.5% to 11.6% in plants adjacent to the pollen source and decreased with increasing distances (1.5 to 8.9% at 15 m distance and up to 4.1% at 25 m in the downwind direction). Environmental conditions influenced the cross-pollination both under greenhouse and field conditions. Data were fit to an exponential decay model to predict gene flow at increasing distances. This model predicted an average gene flow of 7.1% when the pollen donor and recipient plants were at 0 m distance from each other. Pollen-mediated gene flow declined by 50% at 16.7 m from the pollen source, yet under downwind conditions gene flow of 5.2% was predicted at 25 m, the farthest distance studied. Knowledge of cross-pollination rates will be useful for assessing the spread of herbicide resistance genes in L. rigidum and in developing appropriate strategies for its mitigation. PMID:27336441

  6. Pollen-Mediated Movement of Herbicide Resistance Genes in Lolium rigidum.

    PubMed

    Loureiro, Iñigo; Escorial, María-Concepción; Chueca, María-Cristina

    2016-01-01

    The transfer of herbicide resistance genes by pollen is a major concern in cross-pollinated species such as annual ryegrass (Lolium rigidum). A two-year study was conducted in the greenhouse, under favorable conditions for pollination, to generate information on potential maximum cross-pollination. This maximum cross-pollination rate was 56.1%. A three-year field trial was also conducted to study the cross-pollination rates in terms of distance and orientation to an herbicide-resistant pollen source. Under field conditions, cross-pollination rates varied from 5.5% to 11.6% in plants adjacent to the pollen source and decreased with increasing distances (1.5 to 8.9% at 15 m distance and up to 4.1% at 25 m in the downwind direction). Environmental conditions influenced the cross-pollination both under greenhouse and field conditions. Data were fit to an exponential decay model to predict gene flow at increasing distances. This model predicted an average gene flow of 7.1% when the pollen donor and recipient plants were at 0 m distance from each other. Pollen-mediated gene flow declined by 50% at 16.7 m from the pollen source, yet under downwind conditions gene flow of 5.2% was predicted at 25 m, the farthest distance studied. Knowledge of cross-pollination rates will be useful for assessing the spread of herbicide resistance genes in L. rigidum and in developing appropriate strategies for its mitigation. PMID:27336441

  7. Selection for low or high primary dormancy in Lolium rigidum Gaud seeds results in constitutive differences in stress protein expression and peroxidase activity

    PubMed Central

    Goggin, Danica E.; Powles, Stephen B.; Steadman, Kathryn J.

    2011-01-01

    Seed dormancy in wild Lolium rigidum Gaud (annual ryegrass) populations is highly variable and not well characterized at the biochemical level. To identify some of the determinants of dormancy level in these seeds, the proteomes of subpopulations selected for low and high levels of primary dormancy were compared by two-dimensional polyacrylamide gel electrophoresis of extracts from mature, dry seeds. High-dormancy seeds showed higher expression of small heat shock proteins, enolase, and glyoxalase I than the low-dormancy seeds. The functional relevance of these differences in protein expression was confirmed by the fact that high-dormancy seeds were more tolerant to high temperatures imposed at imbibition and had consistently higher glyoxalase I activity over 0–42 d dark stratification. Higher expression of a putative glutathione peroxidase in low-dormancy seeds was not accompanied by higher activity, but these seeds had a slightly more oxidized glutathione pool and higher total peroxidase activity. Overall, these biochemical and physiological differences suggest that L. rigidum seeds selected for low dormancy are more prepared for rapid germination via peroxidase-mediated cell wall weakening, whilst seeds selected for high dormancy are constitutively prepared to survive environmental stresses, even in the absence of stress during seed development. PMID:20974739

  8. Evolved polygenic herbicide resistance in Lolium rigidum by low-dose herbicide selection within standing genetic variation

    PubMed Central

    Busi, Roberto; Neve, Paul; Powles, Stephen

    2013-01-01

    The interaction between environment and genetic traits under selection is the basis of evolution. In this study, we have investigated the genetic basis of herbicide resistance in a highly characterized initially herbicide-susceptible Lolium rigidum population recurrently selected with low (below recommended label) doses of the herbicide diclofop-methyl. We report the variability in herbicide resistance levels observed in F1 families and the segregation of resistance observed in F2 and back-cross (BC) families. The selected herbicide resistance phenotypic trait(s) appear to be under complex polygenic control. The estimation of the effective minimum number of genes (NE), depending on the herbicide dose used, reveals at least three resistance genes had been enriched. A joint scaling test indicates that an additive-dominance model best explains gene interactions in parental, F1, F2 and BC families. The Mendelian study of six F2 and two BC segregating families confirmed involvement of more than one resistance gene. Cross-pollinated L. rigidum under selection at low herbicide dose can rapidly evolve polygenic broad-spectrum herbicide resistance by quantitative accumulation of additive genes of small effect. This can be minimized by using herbicides at the recommended dose which causes high mortality acting outside the normal range of phenotypic variation for herbicide susceptibility. PMID:23798973

  9. Vacuolar glyphosate-sequestration correlates with glyphosate resistance in ryegrass (Lolium spp.) from Australia, South America, and Europe: a 31P NMR investigation.

    PubMed

    Ge, Xia; d'Avignon, D André; Ackerman, Joseph J H; Collavo, Alberto; Sattin, Maurizio; Ostrander, Elizabeth L; Hall, Erin L; Sammons, R Douglas; Preston, Christopher

    2012-02-01

    Lolium spp., ryegrass, variants from Australia, Brazil, Chile, and Italy showing differing levels of glyphosate resistance were examined by (31)P NMR. Extents of glyphosate (i) resistance (LD(50)), (ii) inhibition of 5-enopyruvyl-shikimate-3-phosphate synthase (EPSPS) activity (IC(50)), and (iii) translocation were quantified for glyphosate-resistant (GR) and glyphosate-sensitive (GS) Lolium multiflorum Lam. variants from Chile and Brazil. For comparison, LD(50) and IC(50) data for Lolium rigidum Gaudin variants from Italy were also analyzed. All variants showed similar cellular uptake of glyphosate by (31)P NMR. All GR variants showed glyphosate sequestration within the cell vacuole, whereas there was minimal or no vacuole sequestration in the GS variants. The extent of vacuole sequestration correlated qualitatively with the level of resistance. Previous (31)P NMR studies of horseweed ( Conyza canadensis (L.) Cronquist) revealed that glyphosate sequestration imparted glyphosate resistance. Data presented herein suggest that glyphosate vacuolar sequestration is strongly contributing, if not the major contributing, resistance mechanism in ryegrass as well.

  10. Identification of Anguina funesta from annual ryegrass (Lolium multiflorum) seed lots in Oregon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2010, seed galls containing Anguina sp. were isolated from 14 annual ryegrass (Lolium multiflorum) seed lots submitted for phytosanitary testing. To identify the species present, the ITS1 region of the ribosomal DNA of the nematodes from the seed lots was analyzed using a PCR-RFLP method (11). ...

  11. Italian ryegrass (Lolium multiflorum) and corn (Zea mays)competition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Italian ryegrass is an annual/biennial grass that is typically used as a pasture crop or a cover crop along roadsides, rights-of-way, and industrial areas. Glyphosate-resistant (GR) Italian ryegrass populations have been documented around the world, mostly in orchard and vineyard situations. The fir...

  12. A novel P106L mutation in EPSPS and an unknown mechanism(s) act additively to confer resistance to glyphosate in a South African Lolium rigidum population.

    PubMed

    Kaundun, Shiv S; Dale, Richard P; Zelaya, Ian A; Dinelli, Giovanni; Marotti, Ilaria; McIndoe, Eddie; Cairns, Andrew

    2011-04-13

    Glyphosate resistance evolution in weeds is a growing problem in world agriculture. Here, we have investigated the mechanism(s) of glyphosate resistance in a Lolium rigidum population (DAG1) from South Africa. Nucleotide sequencing revealed the existence of at least three EPSPS homologues in the L. rigidum genome and identified a novel proline 106 to leucine substitution (P106L) in 52% DAG1 individuals. This mutation conferred a 1.7-fold resistance increase to glyphosate at the whole plant level. Additionally, a 3.1-fold resistance increase, not linked to metabolism or translocation, was estimated between wild-type P106-DAG1 and P106-STDS sensitive plants. Point accepted mutation analysis suggested that other amino acid substitutions at EPSPS position 106 are likely to be found in nature besides the P106/S/A/T/L point mutations reported to date. This study highlights the importance of minor mechanisms acting additively to confer significant levels of resistance to commercial field rates of glyphosate in weed populations subjected to high selection pressure.

  13. Sulphate fertilization ameliorates long-term aluminum toxicity symptoms in perennial ryegrass (Lolium perenne).

    PubMed

    Wulff-Zottele, Cristian; Hesse, Holger; Fisahn, Joachim; Bromke, Mariusz; Vera-Villalobos, Hernán; Li, Yan; Frenzel, Falko; Giavalisco, Patrick; Ribera-Fonseca, Alejandra; Zunino, Ligia; Caruso, Immcolata; Stohmann, Evelyn; Mora, Maria de la Luz

    2014-10-01

    Effects of the oxanion sulphate on plant aluminum (Al(3+)) detoxification mechanisms are not well understood. Therefore, holistic physiological and biochemical modifications induced by progressively increased doses of sulphate fertilization in the presence of long-term Al(3+) stress were investigated in the aluminum sensitive perennial ryegrass (Lolium perenne L. cvJumbo). Plant growth inhibition induced by Al(3+) was decreased in response to increasing doses of sulphate supply. Aluminum concentrations measured in roots of perennial ryegrass by atomic absorption spectrometry declined significantly with increasing sulphate concentrations. In parallel, we determined a rise of sulphur in shoots and roots of perennial ryegrass. Inclusion of up to 360 μM of sulphate enhanced cysteine and glutathione biosynthesis in Al(3+) (1.07 μM) treated plants. This increase of thiol-containing compounds favored all modifications in the glutathione redox balance, declining lipid peroxidation, decreasing the activity of superoxide dismutase, and modifying the expression of proteins involved in the diminution of Al(3+) toxicity in roots. In particular, proteome analysis by 1D-SDS-PAGE and LC-MS/MS allowed to identify up (e.g. vacuolar proton ATPase, proteosome β subunit, etc) and down (Glyoxilase I, Ascorbate peroxidase, etc.) regulated proteins induced by Al(3+) toxicity symptoms in roots. Although, sulphate supply up to 480 μM caused a reduction in Al(3+) toxicity symptoms, it was not as efficient as compared to 360 μM sulphate fertilization. These results suggest that sulphate fertilization ameliorates Al(3+) toxicity responses in an intracellular specific manner within Lolium perenne.

  14. Toxicity and uptake of cyclic nitramine explosives in ryegrass Lolium perenne.

    PubMed

    Rocheleau, Sylvie; Lachance, Bernard; Kuperman, Roman G; Hawari, Jalal; Thiboutot, Sonia; Ampleman, Guy; Sunahara, Geoffrey I

    2008-11-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) are cyclic nitramines used as explosives. Their ecotoxicities have been characterized incompletely and little is known about their accumulation potential in soil organisms. We assessed the toxicity and uptake of these explosives in perennial ryegrass Lolium perenne L. exposed in a Sassafras sandy loam (SSL) or in a sandy soil (DRDC, CL-20 only) containing contrasting clay contents (11% and 0.3%, respectively). A 21-d exposure to RDX, HMX or CL-20 in either soil had no adverse effects on ryegrass growth. RDX and HMX were translocated to ryegrass shoots, with bioconcentration factors (BCF) of up to 15 and 11, respectively. In contrast, CL-20 was taken up by the roots (BCF up to 19) with no translocation to the shoots. These studies showed that RDX, HMX, and CL-20 can accumulate in plants and may potentially pose a risk of biomagnification across the food chain.

  15. Ecological assessment of soil using a soil elutriate and the perennial ryegrass, Lolium perenne

    SciTech Connect

    Lawrence, C.; Meyers-Shone, L.; Duh, D.

    1995-12-31

    A 28-day plant bioassay using the perennial ryegrass, Lolium perenne, was utilized for an ecological assessment of soil from a hazardous waste site. An elutriate of the test soil was prepared and nutrients added, so that the seedlings would have direct exposure via uptake and to control for poor plant growth due to a lack of nutrients or proper soil profile characteristics. Use of an elutriate as the exposure medium assumes that those contaminants that can become waterborne for uptake by plants in the site conditions is the same as those which can be separated from adsorption to soil particulates during elutriate preparation. The ryegrass seeds were planted in a hydroponic system consisting of an upper chamber with an inert soil for a growth matrix and a lower reservoir with the nutrient and soil elutriate. Polyester cords were used to continuously wick the solution up to the inert soil and the chambers were drenched twice daily with the solution in the reservoir. At the conclusion of the study the plants` shoot length and dry weight (biomass) were measured to assess phytotoxicity of constituents in soil. The results of the test plants parameters were statistically compared to control plants to determine if test soil elutriates caused a measurable effect on ryegrass, The results of this plant bioassay provided additional and useful information for assessment of test soil.

  16. Ergot alkaloid intoxication in perennial ryegrass (Lolium perenne): an emerging animal health concern in Ireland?

    PubMed

    Canty, Mary J; Fogarty, Ursula; Sheridan, Michael K; Ensley, Steve M; Schrunk, Dwayne E; More, Simon J

    2014-01-01

    Four primary mycotoxicosis have been reported in livestock caused by fungal infections of grasses or cereals by members of the Clavicipitaceae family. Ergotism (generally associated with grasses, rye, triticale and other grains) and fescue toxicosis (associated with tall fescue grass, Festuca arundinacea) are both caused by ergot alkaloids, and referred to as 'ergot alkaloid intoxication'. Ryegrass staggers (associated with perennial ryegrass Lolium perenne) is due to intoxication with an indole-diperpene, Lolitrem B, and metabolites. Fescue-associated oedema, recently described in Australia, may be associated with a pyrrolizidine alkaloid, N-acetyl norloline. Ergotism, caused by the fungus Claviceps purpurea, is visible and infects the outside of the plant seed. Fescue toxicosis and ryegrass staggers are caused by Neotyphodium coenophalium and N. lolii, respectively. Fescue-associated oedema has been associated with tall fescue varieties infected with a specific strain of N. coenophialum (AR542, Max P or Max Q). The name Neotyphodium refers to asexual derivatives of Epichloë spp., which have collectively been termed the epichloë fungi. These fungi exist symbiotically within the grass and are invisible to the naked eye. The primary toxicological effect of ergot alkaloid involves vasoconstriction and/or hypoprolactinaemia. Ingestion of ergot alkaloid by livestock can cause a range of effects, including poor weight gain, reduced fertility, hyperthermia, convulsions, gangrene of the extremities, and death. To date there are no published reports, either internationally or nationally, reporting ergot alkaloid intoxication specifically associated with perennial ryegrass endophytes. However, unpublished reports from the Irish Equine Centre have identified a potential emerging problem of ergot alkaloid intoxication with respect to equines and bovines, on primarily perennial ryegrass-based diets. Ergovaline has been isolated in varying concentrations in the herbage of a

  17. Ergot alkaloid intoxication in perennial ryegrass (Lolium perenne): an emerging animal health concern in Ireland?

    PubMed Central

    2014-01-01

    Four primary mycotoxicosis have been reported in livestock caused by fungal infections of grasses or cereals by members of the Clavicipitaceae family. Ergotism (generally associated with grasses, rye, triticale and other grains) and fescue toxicosis (associated with tall fescue grass, Festuca arundinacea) are both caused by ergot alkaloids, and referred to as ‘ergot alkaloid intoxication’. Ryegrass staggers (associated with perennial ryegrass Lolium perenne) is due to intoxication with an indole-diperpene, Lolitrem B, and metabolites. Fescue-associated oedema, recently described in Australia, may be associated with a pyrrolizidine alkaloid, N-acetyl norloline. Ergotism, caused by the fungus Claviceps purpurea, is visible and infects the outside of the plant seed. Fescue toxicosis and ryegrass staggers are caused by Neotyphodium coenophalium and N. lolii, respectively. Fescue-associated oedema has been associated with tall fescue varieties infected with a specific strain of N. coenophialum (AR542, Max P or Max Q). The name Neotyphodium refers to asexual derivatives of Epichloë spp., which have collectively been termed the epichloë fungi. These fungi exist symbiotically within the grass and are invisible to the naked eye. The primary toxicological effect of ergot alkaloid involves vasoconstriction and/or hypoprolactinaemia. Ingestion of ergot alkaloid by livestock can cause a range of effects, including poor weight gain, reduced fertility, hyperthermia, convulsions, gangrene of the extremities, and death. To date there are no published reports, either internationally or nationally, reporting ergot alkaloid intoxication specifically associated with perennial ryegrass endophytes. However, unpublished reports from the Irish Equine Centre have identified a potential emerging problem of ergot alkaloid intoxication with respect to equines and bovines, on primarily perennial ryegrass-based diets. Ergovaline has been isolated in varying concentrations in the herbage of

  18. Ergot alkaloid intoxication in perennial ryegrass (Lolium perenne): an emerging animal health concern in Ireland?

    PubMed

    Canty, Mary J; Fogarty, Ursula; Sheridan, Michael K; Ensley, Steve M; Schrunk, Dwayne E; More, Simon J

    2014-01-01

    Four primary mycotoxicosis have been reported in livestock caused by fungal infections of grasses or cereals by members of the Clavicipitaceae family. Ergotism (generally associated with grasses, rye, triticale and other grains) and fescue toxicosis (associated with tall fescue grass, Festuca arundinacea) are both caused by ergot alkaloids, and referred to as 'ergot alkaloid intoxication'. Ryegrass staggers (associated with perennial ryegrass Lolium perenne) is due to intoxication with an indole-diperpene, Lolitrem B, and metabolites. Fescue-associated oedema, recently described in Australia, may be associated with a pyrrolizidine alkaloid, N-acetyl norloline. Ergotism, caused by the fungus Claviceps purpurea, is visible and infects the outside of the plant seed. Fescue toxicosis and ryegrass staggers are caused by Neotyphodium coenophalium and N. lolii, respectively. Fescue-associated oedema has been associated with tall fescue varieties infected with a specific strain of N. coenophialum (AR542, Max P or Max Q). The name Neotyphodium refers to asexual derivatives of Epichloë spp., which have collectively been termed the epichloë fungi. These fungi exist symbiotically within the grass and are invisible to the naked eye. The primary toxicological effect of ergot alkaloid involves vasoconstriction and/or hypoprolactinaemia. Ingestion of ergot alkaloid by livestock can cause a range of effects, including poor weight gain, reduced fertility, hyperthermia, convulsions, gangrene of the extremities, and death. To date there are no published reports, either internationally or nationally, reporting ergot alkaloid intoxication specifically associated with perennial ryegrass endophytes. However, unpublished reports from the Irish Equine Centre have identified a potential emerging problem of ergot alkaloid intoxication with respect to equines and bovines, on primarily perennial ryegrass-based diets. Ergovaline has been isolated in varying concentrations in the herbage of a

  19. Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum).

    PubMed

    Evans, Barbara R; Bali, Garima; Reeves, David T; O'Neill, Hugh M; Sun, Qining; Shah, Riddhi; Ragauskas, Arthur J

    2014-03-26

    The development of deuterated biomass is essential for effective neutron scattering studies on biomass, which can provide key insights into the complex biomass conversion processes. A method for optimized production of deuterated annual ryegrass (Lolium multiflorum) was developed by growing the plants in 50% D2O in perfused hydroponic chambers. Deuterium incorporation of 36.9% was found in the annual rye grown in 50% D2O. Further, deuterium incorporation of 60% was achieved by germinating the rye seedlings in H2O and growing in 50% D2O inside the perfusion chambers. The characteristics related to enzymatic hydrolysis such as biomass composition, degree of polymerization, and cellulose crystallinity were compared with its control protiated counterpart. The cellulose molecular weight indicated slight variation while hemicellulose molecular weights and cellulose crystallinity remain unaffected with the deuteration.

  20. Localization of beta-glucan synthases on the membranes of cultured Lolium multiflorum (ryegrass) endosperm cells.

    PubMed Central

    Henry, R J; Schibeci, A; Stone, B A

    1983-01-01

    The distribution of beta-glucan synthases between plasma membranes and intracellular membranes of suspension-cultured Italian-ryegrass (Lolium multiflorum Lam.) endosperm cells was examined. Highly purified plasma membranes prepared from protoplasts were only slightly enriched in beta-glucan synthases assayed at 10 microM- and 1 mM-UDP-glucose. Most beta-glucan synthase was associated with intracellular membranes. These membranes were fractionated on a linear sucrose density gradient and were resolved into different membrane fractions containing beta-glucan synthases. Beta-Glucan synthases assayed at 10 microM-UDP-glucose were found in a fraction banding at a density of 1.11 g . cm-3, but most of the beta-glucan synthase assayed at 1 mM-DDP-glucose was at a density of 1.04 g . cm-3. PMID:6223621

  1. Effect of herbicide resistance endowing Ile-1781-Leu and Asp-2078-Gly ACCase gene mutations on ACCase kinetics and growth traits in Lolium rigidum

    PubMed Central

    Vila-Aiub, Martin M.; Yu, Qin; Han, Heping; Powles, Stephen B.

    2015-01-01

    The rate of herbicide resistance evolution in plants depends on fitness traits endowed by alleles in both the presence and absence (resistance cost) of herbicide selection. The effect of two Lolium rigidum spontaneous homozygous target-site resistance-endowing mutations (Ile-1781-Leu, Asp-2078-Gly) on both ACCase activity and various plant growth traits have been investigated here. Relative growth rate (RGR) and components (net assimilation rate, leaf area ratio), resource allocation to different organs, and growth responses in competition with a wheat crop were assessed. Unlike plants carrying the Ile-1781-Leu resistance mutation, plants homozygous for the Asp-2078-Gly mutation exhibited a significantly lower RGR (30%), which translated into lower allocation of biomass to roots, shoots, and leaves, and poor responses to plant competition. Both the negligible and significant growth reductions associated, respectively, with the Ile-1781-Leu and Asp-2078-Gly resistance mutations correlated with their impact on ACCase activity. Whereas the Ile-1781-Leu mutation showed no pleiotropic effects on ACCase kinetics, the Asp-2078-Gly mutation led to a significant reduction in ACCase activity. The impaired growth traits are discussed in the context of resistance costs and the effects of each resistance allele on ACCase activity. Similar effects of these two particular ACCase mutations on the ACCase activity of Alopecurus myosuroides were also confirmed. PMID:26019257

  2. Effect of herbicide resistance endowing Ile-1781-Leu and Asp-2078-Gly ACCase gene mutations on ACCase kinetics and growth traits in Lolium rigidum.

    PubMed

    Vila-Aiub, Martin M; Yu, Qin; Han, Heping; Powles, Stephen B

    2015-08-01

    The rate of herbicide resistance evolution in plants depends on fitness traits endowed by alleles in both the presence and absence (resistance cost) of herbicide selection. The effect of two Lolium rigidum spontaneous homozygous target-site resistance-endowing mutations (Ile-1781-Leu, Asp-2078-Gly) on both ACCase activity and various plant growth traits have been investigated here. Relative growth rate (RGR) and components (net assimilation rate, leaf area ratio), resource allocation to different organs, and growth responses in competition with a wheat crop were assessed. Unlike plants carrying the Ile-1781-Leu resistance mutation, plants homozygous for the Asp-2078-Gly mutation exhibited a significantly lower RGR (30%), which translated into lower allocation of biomass to roots, shoots, and leaves, and poor responses to plant competition. Both the negligible and significant growth reductions associated, respectively, with the Ile-1781-Leu and Asp-2078-Gly resistance mutations correlated with their impact on ACCase activity. Whereas the Ile-1781-Leu mutation showed no pleiotropic effects on ACCase kinetics, the Asp-2078-Gly mutation led to a significant reduction in ACCase activity. The impaired growth traits are discussed in the context of resistance costs and the effects of each resistance allele on ACCase activity. Similar effects of these two particular ACCase mutations on the ACCase activity of Alopecurus myosuroides were also confirmed.

  3. Aploneura lentisci (Homoptera: Aphididae) and Its Interactions with Fungal Endophytes in Perennial Ryegrass (Lolium perenne)

    PubMed Central

    Popay, Alison J.; Cox, Neil R.

    2016-01-01

    Aploneura lentisci Pass. is endemic to the Mediterranean region where it is holocyclic, forming galls on its primary host, Pistacia lentiscus and alternating over a 2-year period between Pistacia and secondary hosts, principally species of Gramineae. This aphid is widely distributed in Australia and New Zealand on the roots of the common forage grasses, ryegrass (Lolium spp.) and tall fescue (Schedonorus phoenix) where it exists as permanent, anholocyclic, parthenogenetic populations. Previous studies have indicated that infestations of A. lentisci significantly reduce plant growth and may account for differences in field performance of Lolium perenne infected with different strains of the fungal endophyte Epichloë festucae var. lolii. These obligate biotrophs protect their host grasses from herbivory via the production of alkaloids. To confirm the hypothesis that growth of L. perenne is associated with the effect of different endophyte strains on aphid populations, herbage and root growth were measured over time in two pot trials that compared three fungal endophyte strains with an endophyte-free control. In both pot trials, aphid numbers were lowest on plants infected with endophyte strain AR37 at all sampling times. In plants infected with a common toxic strain naturalized in New Zealand, aphid numbers overall were lower than on uninfected plants or those infected with strain AR1, but numbers did not always differ significantly from these treatments. Populations on AR1-infected plants were occasionally significantly higher than those on endophyte-free. Cumulative foliar growth was reduced in AR1 and Nil treatments relative to AR37 in association with population differences of A. lentisci in both trials and root dry weight was reduced in one trial. In four Petri dish experiments survival of A. lentisci on plants infected with AR37 declined to low levels after an initial phase of up to 19 days during which time aphids fed and populations were similar to those on

  4. Aploneura lentisci (Homoptera: Aphididae) and Its Interactions with Fungal Endophytes in Perennial Ryegrass (Lolium perenne)

    PubMed Central

    Popay, Alison J.; Cox, Neil R.

    2016-01-01

    Aploneura lentisci Pass. is endemic to the Mediterranean region where it is holocyclic, forming galls on its primary host, Pistacia lentiscus and alternating over a 2-year period between Pistacia and secondary hosts, principally species of Gramineae. This aphid is widely distributed in Australia and New Zealand on the roots of the common forage grasses, ryegrass (Lolium spp.) and tall fescue (Schedonorus phoenix) where it exists as permanent, anholocyclic, parthenogenetic populations. Previous studies have indicated that infestations of A. lentisci significantly reduce plant growth and may account for differences in field performance of Lolium perenne infected with different strains of the fungal endophyte Epichloë festucae var. lolii. These obligate biotrophs protect their host grasses from herbivory via the production of alkaloids. To confirm the hypothesis that growth of L. perenne is associated with the effect of different endophyte strains on aphid populations, herbage and root growth were measured over time in two pot trials that compared three fungal endophyte strains with an endophyte-free control. In both pot trials, aphid numbers were lowest on plants infected with endophyte strain AR37 at all sampling times. In plants infected with a common toxic strain naturalized in New Zealand, aphid numbers overall were lower than on uninfected plants or those infected with strain AR1, but numbers did not always differ significantly from these treatments. Populations on AR1-infected plants were occasionally significantly higher than those on endophyte-free. Cumulative foliar growth was reduced in AR1 and Nil treatments relative to AR37 in association with population differences of A. lentisci in both trials and root dry weight was reduced in one trial. In four Petri dish experiments survival of A. lentisci on plants infected with AR37 declined to low levels after an initial phase of up to 19 days during which time aphids fed and populations were similar to those on

  5. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants.

    PubMed

    Wang, Huanhua; Kou, Xiaoming; Pei, Zhiguo; Xiao, John Q; Shan, Xiaoquan; Xing, Baoshan

    2011-03-01

    To date, knowledge gaps and associated uncertainties remain unaddressed on the effects of nanoparticles (NPs) on plants. This study was focused on revealing some of the physiological effects of magnetite (Fe(3)O(4)) NPs on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta cv. white cushaw) plants under hydroponic conditions. This study for the first time reports that Fe(3)O(4) NPs often induced more oxidative stress than Fe(3)O(4) bulk particles in the ryegrass and pumpkin roots and shoots as indicated by significantly increased: (i) superoxide dismutase and catalase enzyme activities, and (ii) lipid peroxidation. However, tested Fe(3)O(4) NPs appear unable to be translocated in the ryegrass and pumpkin plants. This was supported by the following data: (i) No magnetization was detected in the shoots of either plant treated with 30, 100 and 500 mg l(-1) Fe(3)O(4) NPs; (ii) Fe K-edge X-ray absorption spectroscopic study confirmed that the coordination environment of Fe in these plant shoots was similar to that of Fe-citrate complexes, but not to that of Fe(3)O(4) NPs; and (iii) total Fe content in the ryegrass and pumpkin shoots treated with Fe(3)O(4) NPs was not significantly increased compared to that in the control shoots.

  6. [Effects of ryegrass (Lolium perenne) root exudates dose on pyrene degradation and soil microbes in pyrene-contaminated soil].

    PubMed

    Xie, Xiao-mei; Liao, Min; Yang, Jing

    2011-10-01

    By simulating a gradually decreasing concentration of root exudates with the distance away from root surface in rhizosphere, this paper studied the effects of ryegrass (Lolium perenne) root exudates dose on the pyrene degradation and microbial ecological characteristics in a pyrene-contaminated soil. It was observed that with the increasing dose of ryegrass root exudates, the residual amount of soil pyrene changed nonlinearly, i. e. , increased after an initial decrease. When the root exudates dose was 32.75 mg kg(-1) of total organic carbon, the residual pyrene was the minimum, indicating that the root exudates at this dose stimulated pyrene degradation significantly. In the meantime, soil microbial biomass carbon and microbial quotient had an opposite trend, suggesting the close relationship between pyrene degradation and soil microbes. In the test soil, microbial community was dominated by bacteria, and the bacteria had the same variation trend as the pyrene degradation, which indicated that the pyrene was degraded mainly by bacteria, and the effects of root exudates on pyrene degradation were mainly carried out through the effects on bacterial population. There was a similar variation trend between the activity of soil dehydrogenase, a microbial endoenzyme catalyzing the dehydrogenation of organic matter, and the soil microbes, which further demonstrated that the variations of soil microbes and their biochemical characteristics were the ecological mechanisms affecting the pyrene degradation in the pyrene-contaminated soil when the ryegrass root exudates dose increased. PMID:22263480

  7. Identification of the valid reference genes for quantitative RT-PCR in annual ryegrass (Lolium multiflorum) under salt stress.

    PubMed

    Wang, Xia; Ma, Xiao; Huang, Linkai; Zhang, Xinquan

    2015-01-01

    Annual ryegrass (Lolium multiflorum) is a cool-season annual grass cultivated worldwide for its high yield and quality. With the areas of saline soil increasing, investigation of the molecular mechanisms of annual ryegrass tolerance under salt stress has become a significant topic. qRT-PCR has been a predominant assay for determination of the gene expression, in which selecting a valid internal reference gene is a crucial step. The objective of present study was to evaluate and identify suitable reference genes for qRT-PCR in annual ryegrass under salt stress. The results calculated by RefFinder indicated that eEF1A(s) was the most stable reference gene in leaves, whereas EF1-a was the least stable; meanwhile, TBP-1 was the most optimal in roots and in all samples, and the eIF-5A shouldn't be utilized for normalization of the gene expression. eEF1A(s) is more suitable than TBP-1 as reference gene in leaves when verified with P5CS1 and Cyt-Cu/Zn SOD genes. We should choose optimal reference genes in specific tissues instead of the most stable one selected from different conditions and tissues.

  8. Genotyping by RAD sequencing enables mapping of fatty acid composition traits in perennial ryegrass (Lolium perenne (L.)).

    PubMed

    Hegarty, Matthew; Yadav, Rattan; Lee, Michael; Armstead, Ian; Sanderson, Ruth; Scollan, Nigel; Powell, Wayne; Skøt, Leif

    2013-06-01

    Perennial ryegrass (Lolium perenne L.) is the most important forage crop in temperate livestock agriculture. Its nutritional quality has significant impact on the quality of meat and milk for human consumption. Evidence suggests that higher energy content in forage can assist in reducing greenhouse gas emissions from ruminants. Increasing the fatty acid content (especially α-linolenic acid, an omega-3 fatty acid) may thus contribute to better forage, but little is known about the genetic basis of variation for this trait. To this end, quantitative trait loci (QTLs) were identified associated with major fatty acid content in perennial ryegrass using a population derived from a cross between the heterozygous and outbreeding high-sugar grass variety AberMagic and an older variety, Aurora. A genetic map with 434 restriction-associated DNA (RAD) and SSR markers was generated. Significant QTLs for the content of palmitic (C16:0) on linkage groups (LGs) 2 and 7; stearic (C18:0) on LGs 3, 4 and 7; linoleic (C18:2n-6) on LGs 2 and 5; and α-linolenic acids (C18:3n-3) on LG 1 were identified. Two candidate genes (a lipase and a beta-ketoacyl CoA synthase), both associated with C16:0, and separately with C18:2n-6 and C18:0 contents, were identified. The physical positions of these genes in rice and their genetic positions in perennial ryegrass were consistent with established syntenic relationships between these two species. Validation of these associations is required, but the utility of RAD markers for rapid generation of genetic maps and QTL analysis has been demonstrated for fatty acid composition in a global forage crop. PMID:23331642

  9. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis).

    PubMed

    Wang, Kai; Huang, Huagang; Zhu, Zhiqiang; Li, Tingqiang; He, Zhenli; Yang, Xiaoe; Alva, Ashok

    2013-01-01

    A pot experiment was conducted to investigate the potential for phytoextraction of heavy metals and rhizoremediation of polycyclic aromatic hydrocarbons (PAHs) in co-contaminated soil by co-planting a cadmium/zinc (Cd/Zn) hyperaccumulator and lead (Pb) accumulator Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Co-planting with castor decreased the shoot biomass of S. alfredii as compared to that in monoculture. Cadmium concentration in S. alfredii shoot significantly decreased when grown with ryegrass or castor as compared to that in monoculture. However, no reduction of Zn or Pb concentration in S. alfredii shoot was detected in co-planting treatments. Total removal of either Cd, Zn, or Pb by plants was similar across S. alfredii monoculture or co-planting with ryegrass or castor, except enhanced Pb removal in S. alfredii and ryegrass co-planting treatment. Co-planting of S. alfredii with ryegrass or castor significantly enhanced the pyrene and anthracene dissipation as compared to that in the bare soil or S. alfredii monoculture. This appears to be due to the increased soil microbial population and activities in both co-planting treatments. Co-planting of S. alfredii with ryegrass or castor provides a promising strategy to mitigate both metal and PAH contaminants from co-contaminated soils.

  10. Enhancement of nitrogen and phosphorus removal from eutrophic water by economic plant annual ryegrass (Lolium multiflorum) with ion implantation.

    PubMed

    Li, Miao; Sheng, Guo-ping; Wu, Yue-jin; Yu, Zeng-liang; Bañuelos, Gary S; Yu, Han-qing

    2014-01-01

    Severe eutrophication of surface water has been a major problem of increasing environmental concern worldwide. In the present study, economic plant annual ryegrass (Lolium multiflorum) was grown in floating mats as an economic plant-based treatment system to evaluate its potential after ion implantation for removing nutrients in simulated eutrophic water. The specific weight growth rate of L. multiflorum with ion implantation was significantly greater than that of the control, and the peroxidase, nitrate reductase, and acid phosphatase activities of the irradiated L. multiflorum were found to be greater than those plants without ion implantation. Higher total nitrogen (TN) and total phosphorus (TP) removal efficiencies were obtained for the L. multiflorum irradiated with 25 keV 5.2 × 10(16) N(+) ions/cm(2) and 30 keV 4.16 × 10(16) N(+) ions/cm(2), respectively (p < 0.05). Furthermore, the nitrogen and phosphorus contents in the plant biomass with ion implantation were also greater than those in the control and were positively correlated with TN and TP supplied. L. multiflorum itself was directly responsible for 39-49 and 47-58 % of the overall N and P removal in the experiment, respectively. The research results suggested that ion implantation could become a promising approach for increasing phytoremediation efficiency of nutrients from eutrophic water by L. multiflorum.

  11. Allelopathic Potential of Switchgrass ( Panicum virgatum L.) on Perennial Ryegrass ( Lolium perenne L.) and Alfalfa ( Medicago sativa L.)

    NASA Astrophysics Data System (ADS)

    Shui, Junfeng; An, Yu; Ma, Yongqing; Ichizen, Nobumasa

    2010-10-01

    This study investigated allelopathy and its chemical basis in nine switchgrass ( Panicum virgatum L.) accessions. Perennial ryegrass ( Lolium perenne L.) and alfalfa ( Medicago sativa L.) were used as test species. Undiluted aqueous extracts (5 g plant tissue in 50 ml water) from the shoots and roots of most of the switchgrass accessions inhibited the germination and growth of the test species. However, the allelopathic effect of switchgrass declined when extracts were diluted 5- or 50-fold. Seedling growth was more sensitive than seed germination as an indicator of allelopathic effect. Allelopathic effect was related to switchgrass ecotype but not related to ploidy level. Upland accessions displayed stronger allelopathic potential than lowland accessions. The aqueous extract from one switchgrass accession was separated into phenols, organic acids, neutral chemicals, and alkaloids, and then these fractions were bioassayed to test for allelopathic potential. Alkaloids had the strongest allelopathic effect among the four chemical fractions. In summary, the results indicated that switchgrass has allelopathic potential; however, there is not enough evidence to conclude that allelopathic advantage is the main factor that has contributed to the successful establishment of switchgrass on China’s Loess Plateau.

  12. Characterization of a family of ice-active proteins from the Ryegrass, Lolium perenne.

    PubMed

    Kumble, Krishnanand D; Demmer, Jerome; Fish, Steven; Hall, Claire; Corrales, Sofia; DeAth, Angela; Elton, Clare; Prestidge, Ross; Luxmanan, Selvanesan; Marshall, Craig J; Wharton, David A

    2008-12-01

    Five genes coding for ice-active proteins were identified from an expressed sequence tag database of Lolium perenne cDNA libraries. Each of the five genes were characterized by the presence of an N-terminal signal peptide, a region enriched in hydrophilic amino acids and a leucine-rich region in four of the five genes that is homologous with the receptor domain of receptor-like protein kinases of plants. The C-terminal region of all five genes contains sequence homologous with Lolium and Triticum ice-active proteins. Of the four ice-active proteins (IAP1, IAP2, IAP3 and IAP5) cloned, three could be expressed in Escherichia coli and recovered in a functional form in order to study their ice activity. All three ice-active proteins had recrystallization inhibition activity but showed no detectable antifreeze or ice nucleation activity at the concentration tested. IAP2 and IAP5 formed distinct hexagonal-shaped crystals in the nanolitre osmometer as compared to the weakly hexagonal crystals produced by IAP3. PMID:18835384

  13. Functional Analyses of Caffeic Acid O-Methyltransferase and Cinnamoyl-CoA-Reductase Genes from Perennial Ryegrass (Lolium perenne)[W

    PubMed Central

    Tu, Yi; Rochfort, Simone; Liu, Zhiqian; Ran, Yidong; Griffith, Megan; Badenhorst, Pieter; Louie, Gordon V.; Bowman, Marianne E.; Smith, Kevin F.; Noel, Joseph P.; Mouradov, Aidyn; Spangenberg, German

    2010-01-01

    Cinnamoyl CoA-reductase (CCR) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the biosynthesis of monolignols, which serve as building blocks in the formation of plant lignin. We identified candidate genes encoding these two enzymes in perennial ryegrass (Lolium perenne) and show that the spatio-temporal expression patterns of these genes in planta correlate well with the developmental profile of lignin deposition. Downregulation of CCR1 and caffeic acid O-methyltransferase 1 (OMT1) using an RNA interference–mediated silencing strategy caused dramatic changes in lignin level and composition in transgenic perennial ryegrass plants grown under both glasshouse and field conditions. In CCR1-deficient perennial ryegrass plants, metabolic profiling indicates the redirection of intermediates both within and beyond the core phenylpropanoid pathway. The combined results strongly support a key role for the OMT1 gene product in the biosynthesis of both syringyl- and guaiacyl-lignin subunits in perennial ryegrass. Both field-grown OMT1-deficient and CCR1-deficient perennial ryegrass plants showed enhanced digestibility without obvious detrimental effects on either plant fitness or biomass production. This highlights the potential of metabolic engineering not only to enhance the forage quality of grasses but also to produce optimal feedstock plants for biofuel production. PMID:20952635

  14. Allergenic fragments of ryegrass (Lolium perenne) pollen allergen Lol p IV.

    PubMed

    Jaggi, K S; Ekramoddoullah, A K; Kisil, F T

    1989-01-01

    To facilitate studies on establishing the nature of structure/function relationships of allergens, ryegrass pollen allergen, Lol p IV, was cleaved into smaller fragments by cyanogen bromide (CNBr) and the resulting peptides were further digested with trypsin. The resulting peptides were then fractionated by high performance liquid chromatography (HPLC) on a C-18 reverse phase column. The allergenic activity of the HPLC fractions was evaluated in terms of their ability to inhibit the binding of 125I-Lol p IV to serum IgE antibodies of a grass-allergic patient. Many of these fractions inhibited the binding between the native allergen and IgE antibodies in a dose-dependent manner. The inhibitions were specific, i.e., the fractions did not inhibit the binding between 125I-Lol p I (a group-I ryegrass pollen allergen) and the IgE antibodies present in the allergic human serum. The possibility that the allergenic peptide fractions were contaminated by the native undegraded allergen, which might have accounted for the observed inhibition, was ruled out by the fact that the native allergen could not be detected by SDS-PAGE and the elution profiles of allergenically active peptides did not coincide with that of native allergen. One of the allergenic sites recognized by monoclonal antibody (Mab) 90, i.e., site A, was located in HPLC fractions 90-100 while another allergenic site B (recognized by Mab 12) appeared to be lost following the sequential digestion of Lol p IV with CNBr and trypsin.

  15. Nitrous oxide emission factors for urine and dung from sheep fed either fresh forage rape (Brassica napus L.) or fresh perennial ryegrass (Lolium perenne L.).

    PubMed

    Luo, J; Sun, X Z; Pacheco, D; Ledgard, S F; Lindsey, S B; Hoogendoorn, C J; Wise, B; Watkins, N L

    2015-03-01

    In New Zealand, agriculture is predominantly based on pastoral grazing systems and animal excreta deposited on soil during grazing have been identified as a major source of nitrous oxide (N2O) emissions. Forage brassicas (Brassica spp.) have been increasingly used to improve lamb performance. Compared with conventional forage perennial ryegrass (Lolium perenne L.), a common forage in New Zealand, forage brassicas have faster growth rates, higher dry matter production and higher nutritive value. The aim of this study was to determine the partitioning of dietary nitrogen (N) between urine and dung in the excreta from sheep fed forage brassica rape (B. napus subsp. oleifera L.) or ryegrass, and then to measure N2O emissions when the excreta from the two different feed sources were applied to a pasture soil. A sheep metabolism study was conducted to determine urine and dung-N outputs from sheep fed forage rape or ryegrass, and N partitioning between urine and dung. Urine and dung were collected and then used in a field plot experiment for measuring N2O emissions. The experimental site contained a perennial ryegrass/white clover pasture on a poorly drained silt-loam soil. The treatments included urine from sheep fed forage rape or ryegrass, dung from sheep fed forage rape or ryegrass, and a control without dung or urine applied. N2O emission measurements were carried out using a static chamber technique. For each excreta type, the total N2O emissions and emission factor (EF3; N2O-N emitted during the 3- or 8-month measurement period as a per cent of animal urine or dung-N applied, respectively) were calculated. Our results indicate that, in terms of per unit of N intake, a similar amount of N was excreted in urine from sheep fed either forage rape or ryegrass, but less dung N was excreted from sheep fed forage rape than ryegrass. The EF3 for urine from sheep fed forage rape was lower compared with urine from sheep fed ryegrass. This may have been because of plant

  16. A DArT marker genetic map of perennial ryegrass (Lolium perenne L.) integrated with detailed comparative mapping information; comparison with existing DArT marker genetic maps of Lolium perenne, L. multiflorum and Festuca pratensis

    PubMed Central

    2013-01-01

    Background Ryegrasses and fescues (genera, Lolium and Festuca) are species of forage and turf grasses which are used widely in agricultural and amenity situations. They are classified within the sub-family Pooideae and so are closely related to Brachypodium distachyon, wheat, barley, rye and oats. Recently, a DArT array has been developed which can be used in generating marker and mapping information for ryegrasses and fescues. This represents a potential common marker set for ryegrass and fescue researchers which can be linked through to comparative genomic information for the grasses. Results A F2 perennial ryegrass genetic map was developed consisting of 7 linkage groups defined by 1316 markers and deriving a total map length of 683 cM. The marker set included 866 DArT and 315 gene sequence-based markers. Comparison with previous DArT mapping studies in perennial and Italian ryegrass (L. multiflorum) identified 87 and 105 DArT markers in common, respectively, of which 94% and 87% mapped to homoeologous linkage groups. A similar comparison with meadow fescue (F. pratensis) identified only 28 DArT markers in common, of which c. 50% mapped to non-homoelogous linkage groups. In L. perenne, the genetic distance spanned by the DArT markers encompassed the majority of the regions that could be described in terms of comparative genomic relationships with rice, Brachypodium distachyon, and Sorghum bicolor. Conclusions DArT markers are likely to be a useful common marker resource for ryegrasses and fescues, though the success in aligning different populations through the mapping of common markers will be influenced by degrees of population interrelatedness. The detailed mapping of DArT and gene-based markers in this study potentially allows comparative relationships to be derived in future mapping populations characterised using solely DArT markers. PMID:23819624

  17. Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum)

    SciTech Connect

    Evans, Barbara R; Bali, Garima; Reeves, David T; O'Neill, Hugh Michael; Sun, Qining; Shah, Riddhi S; Ragauskas, Arthur

    2014-01-01

    In present paper, we report the production and detailed structural analysis of deuterium-enriched rye grass (Lolium multiflorum) for neutron scattering experiments. An efficient method to produce deuterated biomass was developed by designing hydroponic perfusion chambers. In preliminary studies, the partial deuterated rye samples were grown in increasing levels of D2O to study the seed germination and the level of deuterium incorporation as a function of D2O concentration. Solution NMR method indicated 36.9 % deuterium incorporation in 50 % D2O grown annual rye samples and further significant increase in the deuterium incorporation level was observed by germinating the rye seedlings in H2O and growing in 50 % D2O inside the perfusion chambers. Moreover, in an effort to compare the substrate characteristics related to enzymatic hydrolysis on deuterated and protiated version of biomass, annual rye grown in 50 % D2O was selected for detailed biomass characterization studies. The compositional analyses, degree of polymerization and cellulose crystallinity were compared with its protiated control. The cellulose molecular weight indicated slight variation with deuteration; however, hemicellulose molecular weights and cellulose crystallinity remain unaffected with the deuteration. Besides the minor differences in biomass components, the development of deuterated biomass for neutron scattering application is essential to understand the complex biomass conversion processes.

  18. Olivine Weathering in Soil, and Its Effects on Growth and Nutrient Uptake in Ryegrass (Lolium perenne L.): A Pot Experiment

    PubMed Central

    ten Berge, Hein F. M.; van der Meer, Hugo G.; Steenhuizen, Johan W.; Goedhart, Paul W.; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO2 on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO2 sequestration (‘enhanced weathering’). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha−1. Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha−1 (14.8% of dose, OLIV1) to 2240 kg ha−1 (1.1%, OLIV4). This corresponds to gross CO2 sequestration of 290 to 2690 kg ha−1 (29 103 to 269 103 kg km−2.) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the ‘enhanced weathering’ concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop. PMID:22912685

  19. Olivine weathering in soil, and its effects on growth and nutrient uptake in Ryegrass (Lolium perenne L.): a pot experiment.

    PubMed

    ten Berge, Hein F M; van der Meer, Hugo G; Steenhuizen, Johan W; Goedhart, Paul W; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO(2) on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO(2) sequestration ('enhanced weathering'). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha(-1). Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha(-1) (14.8% of dose, OLIV1) to 2240 kg ha(-1) (1.1%, OLIV4). This corresponds to gross CO(2) sequestration of 290 to 2690 kg ha(-1) (29 10(3) to 269 10(3) kg km(-2).) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the 'enhanced weathering' concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop.

  20. Exogenous Classic Phytohormones Have Limited Regulatory Effects on Fructan and Primary Carbohydrate Metabolism in Perennial Ryegrass (Lolium perenne L.)

    PubMed Central

    Gasperl, Anna; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; van der Graaff, Eric; Roitsch, Thomas

    2016-01-01

    Fructans are polymers of fructose and one of the main constituents of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates. Fructans are involved in cold and drought resistance, regrowth following defoliation and early spring growth, seed filling, have beneficial effects on human health and are used for industrial processes. Perennial ryegrass (Lolium perenne L.) serves as model species to study fructan metabolism. Fructan metabolism is under the control of both synthesis by fructosyltransferases (FTs) and breakdown through fructan exohydrolases (FEHs). The accumulation of fructans can be triggered by high sucrose levels and abiotic stress conditions such as drought and cold stress. However, detailed studies on the mechanisms involved in the regulation of fructan metabolism are scarce. Since different phytohormones, especially abscisic acid (ABA), are known to play an important role in abiotic stress responses, the possible short term regulation of the enzymes involved in fructan metabolism by the five classical phytohormones was investigated. Therefore, the activities of enzymes involved in fructan synthesis and breakdown, the expression levels for the corresponding genes and levels for water-soluble carbohydrates were determined following pulse treatments with ABA, auxin (AUX), ethylene (ET), gibberellic acid (GA), or kinetin (KIN). The most pronounced fast effects were a transient increase of FT activities by AUX, KIN, ABA, and ET, while minor effects were evident for 1-FEH activity with an increased activity in response to KIN and a decrease by GA. Fructan and sucrose levels were not affected. This observed discrepancy demonstrates the importance of determining enzyme activities to obtain insight into the physiological traits and ultimately the plant phenotype. The comparative analyses of activities for seven key enzymes of primary carbohydrate metabolism revealed no co-regulation between enzymes of the fructan and sucrose pool

  1. Exogenous Classic Phytohormones Have Limited Regulatory Effects on Fructan and Primary Carbohydrate Metabolism in Perennial Ryegrass (Lolium perenne L.).

    PubMed

    Gasperl, Anna; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; van der Graaff, Eric; Roitsch, Thomas

    2015-01-01

    Fructans are polymers of fructose and one of the main constituents of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates. Fructans are involved in cold and drought resistance, regrowth following defoliation and early spring growth, seed filling, have beneficial effects on human health and are used for industrial processes. Perennial ryegrass (Lolium perenne L.) serves as model species to study fructan metabolism. Fructan metabolism is under the control of both synthesis by fructosyltransferases (FTs) and breakdown through fructan exohydrolases (FEHs). The accumulation of fructans can be triggered by high sucrose levels and abiotic stress conditions such as drought and cold stress. However, detailed studies on the mechanisms involved in the regulation of fructan metabolism are scarce. Since different phytohormones, especially abscisic acid (ABA), are known to play an important role in abiotic stress responses, the possible short term regulation of the enzymes involved in fructan metabolism by the five classical phytohormones was investigated. Therefore, the activities of enzymes involved in fructan synthesis and breakdown, the expression levels for the corresponding genes and levels for water-soluble carbohydrates were determined following pulse treatments with ABA, auxin (AUX), ethylene (ET), gibberellic acid (GA), or kinetin (KIN). The most pronounced fast effects were a transient increase of FT activities by AUX, KIN, ABA, and ET, while minor effects were evident for 1-FEH activity with an increased activity in response to KIN and a decrease by GA. Fructan and sucrose levels were not affected. This observed discrepancy demonstrates the importance of determining enzyme activities to obtain insight into the physiological traits and ultimately the plant phenotype. The comparative analyses of activities for seven key enzymes of primary carbohydrate metabolism revealed no co-regulation between enzymes of the fructan and sucrose pool

  2. Exogenous Classic Phytohormones Have Limited Regulatory Effects on Fructan and Primary Carbohydrate Metabolism in Perennial Ryegrass (Lolium perenne L.).

    PubMed

    Gasperl, Anna; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; van der Graaff, Eric; Roitsch, Thomas

    2015-01-01

    Fructans are polymers of fructose and one of the main constituents of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates. Fructans are involved in cold and drought resistance, regrowth following defoliation and early spring growth, seed filling, have beneficial effects on human health and are used for industrial processes. Perennial ryegrass (Lolium perenne L.) serves as model species to study fructan metabolism. Fructan metabolism is under the control of both synthesis by fructosyltransferases (FTs) and breakdown through fructan exohydrolases (FEHs). The accumulation of fructans can be triggered by high sucrose levels and abiotic stress conditions such as drought and cold stress. However, detailed studies on the mechanisms involved in the regulation of fructan metabolism are scarce. Since different phytohormones, especially abscisic acid (ABA), are known to play an important role in abiotic stress responses, the possible short term regulation of the enzymes involved in fructan metabolism by the five classical phytohormones was investigated. Therefore, the activities of enzymes involved in fructan synthesis and breakdown, the expression levels for the corresponding genes and levels for water-soluble carbohydrates were determined following pulse treatments with ABA, auxin (AUX), ethylene (ET), gibberellic acid (GA), or kinetin (KIN). The most pronounced fast effects were a transient increase of FT activities by AUX, KIN, ABA, and ET, while minor effects were evident for 1-FEH activity with an increased activity in response to KIN and a decrease by GA. Fructan and sucrose levels were not affected. This observed discrepancy demonstrates the importance of determining enzyme activities to obtain insight into the physiological traits and ultimately the plant phenotype. The comparative analyses of activities for seven key enzymes of primary carbohydrate metabolism revealed no co-regulation between enzymes of the fructan and sucrose pool.

  3. Immunological cross-reactivity of the major allergen from perennial ryegrass (Lolium perenne), Lol p I, and the cysteine proteinase, bromelain.

    PubMed

    Pike, R N; Bagarozzi, D; Travis, J

    1997-04-01

    Antibodies prepared in rabbits against the major allergen from ryegrass (Lolium perenne), Lol p I, cross-reacted with the cysteine proteinase bromelain from pineapple and vice versa. Deglycosylation of the proteins showed that the cross-reaction was based on recognition of the carbohydrate moiety of the allergen, but for bromelain the cross-reaction was most likely due to a combination of factors. The results indicate that the carbohydrate residues from these allergens play an important role in cross-reactions found between them and possibly those from other species.

  4. Effect of perennial ryegrass (Lolium perenne L.) cultivars on the milk yield of grazing dairy cows.

    PubMed

    Wims, C M; McEvoy, M; Delaby, L; Boland, T M; O'Donovan, M

    2013-03-01

    The objective of this experiment was to investigate the effect of four perennial ryegrass cultivars: Bealey, Astonenergy, Spelga and AberMagic on the milk yield and milk composition of grazing dairy cows. Two 4 × 4 latin square experiments were completed, one during the reproductive and the other during the vegetative growth phase of the cultivars. Thirty-two Holstein-Friesian dairy cows were divided into four groups, with each group assigned 17 days on each cultivar during both experiments. Within each observation period, milk yield and milk composition, sward morphology and pasture chemical composition were measured. During the reproductive growth phase, organic matter digestibility (OMD) was greater for Bealey and Astonenergy (P < 0.001; +1.6%). AberMagic contained a higher stem proportion (P < 0.01; +0.06) and a longer sheath height (P < 0.001; +1.9 cm). Consequently, cows grazing AberMagic recorded a lower milk yield (P < 0.001; -1.5 kg/day) and a lower milk solids yield (P < 0.001; -0.13 kg/day). During the vegetative growth phase, OMD was greater (P < 0.001; +1.1%) for Bealey, whereas the differences between the cultivars in terms of sward structure were smaller and did not appear to influence animal performance. As a result, cows grazing Bealey recorded a higher milk yield (P < 0.001; +0.9 kg/day) and a higher milk solids yield (P < 0.01; +0.08 kg/day). It was concluded that grass cultivar did influence milk yield due to variations in sward structure and chemical composition.

  5. Lambs fed fresh winter forage rape (Brassica napus L.) emit less methane than those fed perennial ryegrass (Lolium perenne L.), and possible mechanisms behind the difference.

    PubMed

    Sun, Xuezhao; Henderson, Gemma; Cox, Faith; Molano, German; Harrison, Scott J; Luo, Dongwen; Janssen, Peter H; Pacheco, David

    2015-01-01

    The objectives of this study were to examine long-term effects of feeding forage rape (Brassica napus L.) on methane yields (g methane per kg of feed dry matter intake), and to propose mechanisms that may be responsible for lower emissions from lambs fed forage rape compared to perennial ryegrass (Lolium perenne L.). The lambs were fed fresh winter forage rape or ryegrass as their sole diet for 15 weeks. Methane yields were measured using open circuit respiration chambers, and were 22-30% smaller from forage rape than from ryegrass (averages of 13.6 g versus 19.5 g after 7 weeks, and 17.8 g versus 22.9 g after 15 weeks). The difference therefore persisted consistently for at least 3 months. The smaller methane yields from forage rape were not related to nitrate or sulfate in the feed, which might act as alternative electron acceptors, or to the levels of the potential inhibitors glucosinolates and S-methyl L-cysteine sulfoxide. Ruminal microbial communities in forage rape-fed lambs were different from those in ryegrass-fed lambs, with greater proportions of potentially propionate-forming bacteria, and were consistent with less hydrogen and hence less methane being produced during fermentation. The molar proportions of ruminal acetate were smaller and those of propionate were greater in forage rape-fed lambs, consistent with the larger propionate-forming populations and less hydrogen production. Forage rape contained more readily fermentable carbohydrates and less structural carbohydrates than ryegrass, and was more rapidly degraded in the rumen, which might favour this fermentation profile. The ruminal pH was lower in forage rape-fed lambs, which might inhibit methanogenic activity, shifting the rumen fermentation to more propionate and less hydrogen and methane. The significance of these two mechanisms remains to be investigated. The results suggest that forage rape is a potential methane mitigation tool in pastoral-based sheep production systems. PMID:25803688

  6. Lambs fed fresh winter forage rape (Brassica napus L.) emit less methane than those fed perennial ryegrass (Lolium perenne L.), and possible mechanisms behind the difference.

    PubMed

    Sun, Xuezhao; Henderson, Gemma; Cox, Faith; Molano, German; Harrison, Scott J; Luo, Dongwen; Janssen, Peter H; Pacheco, David

    2015-01-01

    The objectives of this study were to examine long-term effects of feeding forage rape (Brassica napus L.) on methane yields (g methane per kg of feed dry matter intake), and to propose mechanisms that may be responsible for lower emissions from lambs fed forage rape compared to perennial ryegrass (Lolium perenne L.). The lambs were fed fresh winter forage rape or ryegrass as their sole diet for 15 weeks. Methane yields were measured using open circuit respiration chambers, and were 22-30% smaller from forage rape than from ryegrass (averages of 13.6 g versus 19.5 g after 7 weeks, and 17.8 g versus 22.9 g after 15 weeks). The difference therefore persisted consistently for at least 3 months. The smaller methane yields from forage rape were not related to nitrate or sulfate in the feed, which might act as alternative electron acceptors, or to the levels of the potential inhibitors glucosinolates and S-methyl L-cysteine sulfoxide. Ruminal microbial communities in forage rape-fed lambs were different from those in ryegrass-fed lambs, with greater proportions of potentially propionate-forming bacteria, and were consistent with less hydrogen and hence less methane being produced during fermentation. The molar proportions of ruminal acetate were smaller and those of propionate were greater in forage rape-fed lambs, consistent with the larger propionate-forming populations and less hydrogen production. Forage rape contained more readily fermentable carbohydrates and less structural carbohydrates than ryegrass, and was more rapidly degraded in the rumen, which might favour this fermentation profile. The ruminal pH was lower in forage rape-fed lambs, which might inhibit methanogenic activity, shifting the rumen fermentation to more propionate and less hydrogen and methane. The significance of these two mechanisms remains to be investigated. The results suggest that forage rape is a potential methane mitigation tool in pastoral-based sheep production systems.

  7. Lambs Fed Fresh Winter Forage Rape (Brassica napus L.) Emit Less Methane than Those Fed Perennial Ryegrass (Lolium perenne L.), and Possible Mechanisms behind the Difference

    PubMed Central

    Sun, Xuezhao; Henderson, Gemma; Cox, Faith; Molano, German; Harrison, Scott J.; Luo, Dongwen; Janssen, Peter H.; Pacheco, David

    2015-01-01

    The objectives of this study were to examine long-term effects of feeding forage rape (Brassica napus L.) on methane yields (g methane per kg of feed dry matter intake), and to propose mechanisms that may be responsible for lower emissions from lambs fed forage rape compared to perennial ryegrass (Lolium perenne L.). The lambs were fed fresh winter forage rape or ryegrass as their sole diet for 15 weeks. Methane yields were measured using open circuit respiration chambers, and were 22-30% smaller from forage rape than from ryegrass (averages of 13.6 g versus 19.5 g after 7 weeks, and 17.8 g versus 22.9 g after 15 weeks). The difference therefore persisted consistently for at least 3 months. The smaller methane yields from forage rape were not related to nitrate or sulfate in the feed, which might act as alternative electron acceptors, or to the levels of the potential inhibitors glucosinolates and S-methyl L-cysteine sulfoxide. Ruminal microbial communities in forage rape-fed lambs were different from those in ryegrass-fed lambs, with greater proportions of potentially propionate-forming bacteria, and were consistent with less hydrogen and hence less methane being produced during fermentation. The molar proportions of ruminal acetate were smaller and those of propionate were greater in forage rape-fed lambs, consistent with the larger propionate-forming populations and less hydrogen production. Forage rape contained more readily fermentable carbohydrates and less structural carbohydrates than ryegrass, and was more rapidly degraded in the rumen, which might favour this fermentation profile. The ruminal pH was lower in forage rape-fed lambs, which might inhibit methanogenic activity, shifting the rumen fermentation to more propionate and less hydrogen and methane. The significance of these two mechanisms remains to be investigated. The results suggest that forage rape is a potential methane mitigation tool in pastoral-based sheep production systems. PMID:25803688

  8. Characterization of Proanthocyanidins from Seeds of Perennial Ryegrass (Lolium perenne L.) and Tall Fescue (Festuca arundinacea) by Liquid Chromatography-Mass Spectrometry.

    PubMed

    Fraser, Karl; Collette, Vern; Hancock, Kerry R

    2016-09-01

    Perennial ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea) are forage species of the grass family (Poaceae) that are key components of temperate pasture-based agricultural systems. Proanthocyanidins (PAs) are oligomeric flavonoids that, when provided as part of a farm animal's diet, have been reported to improve animal production and health. Up to now, forage grasses have been deemed not to produce PAs. This paper reports for the first time the detection of polymerized PAs in aqueous methanolic extracts of seed tissue of both perennial ryegrass and tall fescue, using LC-MS/MS. We have determined the structure of the PAs to be trans-flavan-3-ol-based, consisting predominately of afzelechin and catechin and linked primarily by B-type bonds. Investigations into the leaf tissue of both species failed to detect any PAs. This discovery opens the possibility of using genetic engineering tools to achieve tannin accumulation in leaf tissue of perennial ryegrass and tall fescue. PMID:27532250

  9. Effect of ryegrass (Lolium perenne L.) roots inoculation using different arbuscular mycorrhizal fungi (AMF) species on sorption of iron-cyanide (Fe-CN) complexes

    NASA Astrophysics Data System (ADS)

    Sut, Magdalena; Boldt-Burisch, Katja; Raab, Thomas

    2016-04-01

    Soils and groundwater on sites of the former Manufactured Gas Plants (MGPs) are contaminated with various complex iron-cyanides (Fe-CN). Phytoremediation is a promising tool in stabilization and remediation of Fe-CN affected soils, however, it can be a challenging task due to extreme adverse and toxic conditions. Phytoremediation may be enhanced via rhizosphere microbial activity, which can cooperate on the degradation, transformation and uptake of the contaminants. Recently, increasing number of scientist reports improved plants performance in the removal of toxic compounds with the support of arbuscular mycorrhizae fungi (AMF). Series of batch experiments using potassium hexacyanoferrate (II) solutions, in varying concentrations, were used to study the effect of ryegrass roots (Lolium perenne L.) inoculation with Rhizophagus irregularis and a mixture of Rhizophagus irregularis, Funneliformis mosseae, Rhizophagus aggregatus, and Claroideoglomus etunicatum on Fe-CN sorption. Results indicated significantly higher colonization of R. irregularis than for the mixture of AMF species on ryegrass roots. Sorption experiments revealed significantly higher reduction of total CN and free CN content in the mycorrhizal roots, indicating greater cyanide decrease in the treatment inoculated with R. irregularis. Our study indicates contribution of AM fungi in phytoremediation of Fe-CN contaminated soil.

  10. Variations in efficiency of plastidial RNA editing within ndh transcripts of perennial ryegrass (Lolium perenne) are not linked to differences in drought tolerance

    PubMed Central

    Van Den Bekerom, Rob J. M.; Dix, Philip J.; Diekmann, Kerstin; Barth, Susanne

    2013-01-01

    Maintenance of healthy grasslands is essential for efficient livestock production, yet projected climate change is likely to place a heavy drought stress burden on key grassland species, such as perennial ryegrass (Lolium perenne). It is therefore important to gather an in-depth knowledge of the underlying plant response to this stress. The present study is focused on RNA editing (post-transcriptional nucleotide modifications resulting in altered transcripts) within plastidial transcripts of the NADH:ubiquinone oxidoreductase (NDH) complex (NADH dehydrogenase complex) in relation to the drought response of several accessions of perennial ryegrass. Previous studies have shown that the NDH complex is involved in countering oxidative stress during environmental stresses like drought. Owing to the nature of RNA editing within this complex, the RNA editing machinery could play a potential role in regulating the activity of the NDH complex. The investigation revealed dramatic and reproducible differences in RNA editing efficiency between accessions, but efficiency was not influenced by imposition of drought stress, and a direct relationship between editing behaviour and drought response was not detected.

  11. Finishing steers on winter annual ryegrass (Lolium multiflorum Lam.) with varied levels of corn supplementation I: effects on animal performance, carcass traits, and forage quality.

    PubMed

    Roberts, S D; Kerth, C R; Braden, K W; Rankins, D L; Kriese-Anderson, L; Prevatt, J W

    2009-08-01

    Crossbred steers (n = 72) were selected to study forage-based finishing systems using winter annual ryegrass (Lolium multiflorum Lam.) with varying levels of grain supplementation. In December, cattle were allotted to 1 of 6 treatments consisting of ryegrass pasture (1 ha) with whole shell corn supplemented at 0.0% (0.0), 0.5% (0.5), 1.0% (1.0), 1.5% (1.5), and 2.0% (2.0) of BW, or an ad libitum mixed-ration grain diet in a drylot. Steers were randomly assigned to pens of 4 with pen serving as the experimental unit. Cattle were slaughtered by pen when average pen backfat thickness (as measured by real-time ultrasound) reached approximately 0.64 cm. Forage samples and disk meter height were taken from ryegrass paddocks on a monthly basis to determine forage quality and mass. Live animal performance, carcass traits, proximate analysis, Warner-Bratzler shear force, and sensory characteristics from the LM of the rib section were analyzed. Increasing the amount of grain in the diet of finishing cattle resulted in a linear decrease (P < 0.05) in days on feed and a linear increase (P < 0.05) in ADG, preliminary yield grade, final yield grade, flavor intensity, and beef flavor. Forage DM mass increased with each incremental increase in grain added to the grazing diets. Quality of forage was not (P > 0.05) affected by adding grain to the diet. Adding corn to the diet of cattle being finished on forage improved animal performance and decreased forage utilization characteristics in addition to improving the flavor characteristics of beef.

  12. ESPS gene amplification endows resistance to glyphosate in Italian ryegrass (Lolium perene ssp multiflorum) from Arkansas, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to glyphosate in weed species is a major challenge for the sustainability of glyphosate use in crop and non-crop systems, and especially in glyphosate-resistant crops. A glyphosate-resistant Italian ryegrass population has been identified in Arkansas. This research was conducted to elucid...

  13. Seed size effects on early seedling growth and response to applied nitrogen in annual ryegrass (Lolium multiflorum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of individual plants as experimental units may be necessary when resources are limited, but inter-plant variation risks obscuring differences among treatments. Experiments were undertaken to measure the effects of seed size on seedling size and response to applied nitrogen of annual ryegrass (Lo...

  14. EPSPS gene amplification in glyphosate-resistant in Italian ryegrass (Lolium perenne ssp. multiflorum) populations from Arkansas, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate-resistant Italian ryegrass was detected in Arkansas, USA in 2007. In 2014, 45 populations were confirmed resistant in eight counties across the state. The level of resistance and resistance mechanisms in six populations was studied to assess the severity of the problem and identify altern...

  15. Identification of genomic loci associated with crown rust resistance in perennial ryegrass (Lolium perenne L.) divergently selected populations.

    PubMed

    Brazauskas, Gintaras; Xing, Yongzhong; Studer, Bruno; Schejbel, Britt; Frei, Ursula; Berg, Paul Ragnar; Lübberstedt, Thomas

    2013-07-01

    The inheritance of crown rust resistance in perennial ryegrass is complex with both major and minor quantitative trait loci (QTL) being detected on all seven linkage groups. However, QTL mapping populations have only few segregating alleles, limiting the transferability of results to other materials. In this study, a synthetic population was developed from four crown rust resistant and susceptible parents as starting material for a divergent selection experiment of crown rust resistance to be closer to practice in plant breeding programs, and to identify genome regions relevant across a broader range of genotypes. Following three cycles of directional selection, perennial ryegrass populations were produced with a two-fold difference in average rust resistance. Divergently selected populations were genotyped at 7 resistance gene analog-derived expressed sequence tag (RGA-derived EST) as well as 15 simple sequence repeat (SSR) loci. A test for selective neutrality (Waples test), which tests the hypothesis of genetic drift versus selection, identified significant differences in allele frequencies for 7 loci (32%). The selection effect was bidirectional with the same loci showing significant response in both positively and negatively selected populations. A region under selection represented by markers LpSSR006 and EST13 on linkage group (LG) 4 was further confirmed by colocation with two separate QTL for crown rust resistance in a VrnA, a two-way pseudo-testcross mapping population. This suggests suitability of alleles identified for introgression into perennial ryegrass germplasm, where quantitative resistance to crown rust is desired.

  16. Stable isotope tracing: a powerful tool for selenium speciation and metabolic studies in non-hyperaccumulator plants (ryegrass Lolium perenne L.).

    PubMed

    Di Tullo, Pamela; Versini, Antoine; Bueno, Maïté; Le Hécho, Isabelle; Thiry, Yves; Biron, Philippe; Castrec-Rouelle, Maryse; Pannier, Florence

    2015-12-01

    Selenium is both essential and toxic for mammals; the range between the two roles is narrow and not only dose-dependent but also related to the chemical species present in foodstuff. Unraveling the metabolism of Se in plants as a function of Se source may thus lead to ways to increase efficiency of fertilization procedures in selenium deficient regions. In this study, stable-isotope tracing was applied for the first time in plants to simultaneously monitor the bio-incorporation of two inorganic Se species commonly used as foodstuff enrichment sources. Occurrence and speciation of Se coming from different Se sources were investigated in root and leaf extracts of ryegrass (Lolium perenne L.), which had been co-exposed to two labeled Se species ((77)SeIV and (82)SeVI). Although the plant absorbed similar amounts of Se when supplied in the form of selenite or selenate, the results evidenced marked differences in speciation and tissues allocation. Selenite was converted into organic forms incorporated mostly into high molecular weight compounds with limited translocation to leaves, whereas selenate was highly mobile being little assimilated into organic forms. Double-spike isotopic tracer methodology makes it possible to compare the metabolism of two species-specific Se sources simultaneously in a single experiment and to analyze Se behavior in not-hyperaccumulator plants, the ICP-MS sensitivity being improved by the use of enriched isotopes.

  17. Effect of pre-grazing herbage mass on dairy cow performance, grass dry matter production and output from perennial ryegrass (Lolium perenne L.) pastures.

    PubMed

    Wims, C M; Delaby, L; Boland, T M; O'Donovan, M

    2014-01-01

    A grazing study was undertaken to examine the effect of maintaining three levels of pre-grazing herbage mass (HM) on dairy cow performance, grass dry matter (DM) production and output from perennial ryegrass (Lolium perenne L.) pastures. Cows were randomly assigned to one of three pre-grazing HM treatments: 1150 - Low HM (L), 1400 - Medium HM (M) or 2000 kg DM/ha - High HM (H). Herbage accumulation under grazing was lowest (P<0.01) on the L treatment and cows grazing the L pastures required more grass silage supplementation during the grazing season (+73 kg DM/cow) to overcome pasture deficits due to lower pasture growth rates (P<0.05). Treatment did not affect daily milk production or pasture intake, although cows grazing the L pastures had to graze a greater daily area (P<0.01) and increase grazing time (P<0.05) to compensate for a lower pre-grazing HM (P<0.01). The results indicate that, while pre-grazing HM did not influence daily milk yield per cow, adapting the practise of grazing low HM (1150 kg DM/ha) pasture reduces pasture DM production and at a system level may increase the requirement for imported feed.

  18. In-vitro assessment of the probiotic potential of Lactobacillus plantarum KCC-24 isolated from Italian rye-grass (Lolium multiflorum) forage.

    PubMed

    Vijayakumar, Mayakrishnan; Ilavenil, Soundharrajan; Kim, Da Hye; Arasu, Mariadhas Valan; Priya, Kannappan; Choi, Ki Choon

    2015-04-01

    The aim of the present study was to determine the probiotic potential of the lactic acid bacteria Lactobacillus plantarum KCC-24 (L. plantarum KCC-24), that was isolated and characterized from Italian ryegrass (Lolium multiflorum) forage. The following experiments were performed to assess the probiotic characteristics such as antifungal activity, antibiotic susceptibility, resistance to low pH, stimulated gastric juice and bile salts, proteolytic activity, auto-aggregation, cell surface hydrophobicity, and in vitro antioxidant property. The isolated L. plantarum KCC-24 exhibited significant antifungal activity against the various fungal strains of Aspergillus fumigatus (73.43%), Penicillium chrysogenum (59.04%), Penicillium roqueforti (56.67%), Botrytis elliptica (40.23%), Fusarium oxysporum (52.47%) and it was susceptible to numerous antibiotics, survived in low pH, was resistant to stimulated gastric juices and bile salts (0.3% w/v). Moreover, L. plantarum KCC-24 exhibited good proteolytic activity. In addition L. plantarum KCC-24 showed potent antioxidant and hydrogen peroxide resistant property. In conclusion, the isolated L. plantarum KCC-24 exhibited several characteristics to prove it's excellent as a potential probiotic candidate for developing quality food for ruminant animals and human.

  19. Effects of olive mill wastewater physico-chemical treatments on polyphenol abatement and Italian ryegrass (Lolium multiflorum Lam.) germinability.

    PubMed

    Barbera, A C; Maucieri, C; Ioppolo, A; Milani, M; Cavallaro, V

    2014-04-01

    Direct spreading on agricultural lands may represent an environmentally friendly disposal method and a possible use of water and nutrients from olive mill wastewaters (OMWs). However, the agronomic use of OMWs is limited, among others by polyphenols, which exert phytotoxic effects. Activated charcoal (AC) has been recognized as a very effective agent for polyphenol abatement, as it enables an irreversible process of phenol adsorption. Addition of calcium hydroxide (Ca(OH)2) has also been described as a cheap and effective method in polyphenols abatement. However, the effects of Ca(OH)2 addition to OMW on seed germination are unclear. In this paper, the effects of AC and/or Ca(OH)2 on OMW polyphenols abatement, and Lolium multiflorum seed germination have been investigated. The highest polyphenols removal, approximately 95%, was observed when 80 g L(-1) of AC was added to OMWs (the maximum dose in this investigation). The addition of Ca(OH)2 not only improved the effectiveness of the AC treatment but also resulted in a significant rise in Lolium seed germination at the highest AC doses (60 and 80 g L(-1)). Considering the high salinity (7300 μS cm(-1)) of these wastewaters, low quantities of Ca(OH)2 may also exert a protective effect on soil structure counteracting the sodium-induced dispersion through the binding action of calcium cation on clays and organic matter.

  20. Identification of T-cell epitopes of Lol p 9, a major allergen of ryegrass (Lolium perenne) pollen.

    PubMed

    Blaher, B; Suphioglu, C; Knox, R B; Singh, M B; McCluskey, J; Rolland, J M

    1996-07-01

    T-cell recognition of Lol p 9, a major allergen of ryegrass pollen, was investigated by using a T-cell line and T-cell clones generated from the peripheral blood of an atopic donor. The T-cell line reacted with purified Lol p 9, as well as with crude ryegrass pollen extract, but failed to cross-react with Bermuda grass pollen extract. All of six T-cell clones generated from this line proliferated in response to Lol p 9. Epitope mapping was carried out with a panel of 34 overlapping synthetic peptides, which spanned the entire sequence of the Lol p 9 12R isoform. The T-cell line responded to two of the peptides, Lol p 9 (105-116) and Lol p 9 (193-204), whereas reactivity with one or other of these peptides was shown by five T-cell clones. These two peptides contained sequences consistent with motifs previously reported for major histocompatibility complex class II-restricted peptides. HLA antibody blocking studies showed that presentation of peptide Lol p 9 (105-116) to one T-cell clone was HLA-DR-restricted; this clone expressed a T helper cell phenotype (CD3+, CD4+) and the T-cell receptor alpha beta. The identification of immunodominant T-cell epitope(s) on allergens is essential for devising safer and more effective immunotherapy strategies, which can interrupt the chain of events leading to allergic disease.

  1. Nuclear changes induced by the nematodes Xiphinema diversicaudatum and Longidorus elongatus in root-tips of perennial ryegrass, Lolium perenne.

    PubMed

    Griffiths, B S; Robertson, W M; Trudgill, D L

    1982-09-01

    The DNA content and size of individual nuclei from galls of perennial ryegrass root-tips induced by X. diversicaudatum and L. elongatus were measured. Feeding by X. diversicaudatum increased the DNA content of the nuclei by varying amounts. No regular doubling pattern of the DNA content was discernible. The DNA values varied up to between 32-64C. Generally the size of the nuclei was not increased, although some were larger than control nuclei. The modified nuclei probably have an altered metabolic function, which increases the food value of the gall to the nematode. Some bi-nucleate cells were also observed, which probably result from mitosis without cytokinesis. A preliminary examination of nuclei from galls induced by L. elongatus revealed similar nuclear changes, but no bi-nucleate cells were found.

  2. THE PHOTOSYNTHETIC RESPONSE OF THE PERENNIAL RYEGRASS (LOLIUM PERENNE) IN ITS FIFTH YEAR OF FREE-AIR CO{sub 2} ENRICHMENT (FACE) AT ESCHIKON, SWITZERLAND

    SciTech Connect

    ANDERSON,J.P.; LONG,STEPHEN,P.; WILLIAMS,J.

    1998-12-31

    Stands of Ryegrass (Lolium perenne L. cv.Bastion) were grown in the field at ambient or elevated (600 {micro}mol mol{sup {minus}1}) [CO{sub 2}], high (560 kg Ha{sup {minus}1} y{sup {minus}1}) or low (140 kg Ha{sup {minus}1} y{sup {minus}1}) nitrogen addition and were harvested five times a year during the growing season. The plants were sown during 1992, additional plots being sown during 1995. These were in their fifth year and second year of growth respectively. Exposure to elevated [CO{sub 2}] was carried out with a Free-Air CO{sub 2} Enrichment (FACE) system which provides the most realistic system of fumigation currently available. Elevated [CO{sub 2}] increased diurnal CO{sub 2} uptake by between 40 to 83% while reducing stomatal conductance by between 1 and 38% in all of the 1992 grown plants measured at high [CO{sub 2}]. Analysis of the A/c{sub i} response of 1992 grown plants showed no acclimation of the photosynthetic apparatus in response to elevated [CO{sub 2}]--both V{sub c,max} (a measure of the maximum in vivo rate of carboxylation) and J{sub max} (a measure of the maximum capacity for the regeneration of RuBP) showed no significant change during any of the periods of regrowth. In contrast the leaves of 1995 grown plants, appeared to be experiencing an acclimatory change in their photosynthetic apparatus in response to elevated [CO{sub 2}]. However, this negative response seemed to be removed directly after a harvest when the source:sink balance had increased. The apparent lack of an acclimatory response after almost 5 years of growth at elevated [CO{sub 2}], suggests that L. perenne may be close to achieving the appropriate photosynthetic adjustments which would allow it to attain a significantly higher photosynthetic potential.

  3. The photosynthetic response of the perennial ryegrass (Lolium perenne) in its fifth year of free-air CO(sub 2) enrichment (FACE) at Eschikon, Switzerland

    SciTech Connect

    Anderson, J.P.; Long, S.P.; Williams, J.

    1998-12-31

    Stands of Ryegrass (Lolium perenne L. cv.Bastion) were grown in the field at ambient or elevated (600 {micro}mol mol{sup {minus}1}) [CO{sub 2}], high (560 kg Ha{sup {minus}1} y{sup {minus}1}) or low (140 kg Ha{sup {minus}1} y{sup {minus}1}) nitrogen addition and were harvested five times a year during the growing season. The plants were sown during 1992, additional plots being sown during 1995. These were in their fifth year and second year of growth respectively. Exposure to elevated [CO{sub 2}] was carried out with a Free-Air CO{sub 2} Enrichment (FACE) system which provides the most realistic system of fumigation currently available. Elevated [CO{sub 2}] increased diurnal CO{sub 2} uptake by between 40 to 83% while reducing stomatal conductance by between 1 and 38% in all of the 1992 grown plants measured at high [CO{sub 2}]. Analysis of the A/c{sub i} response of 1992 grown plants showed no acclimation of the photosynthetic apparatus in response to elevated [CO{sub 2}] - both V{sub c,max} (a measure of the maximum in vivo rate of carboxylation) and J{sub max} (a measure of the maximum capacity for the regeneration of RuBP) showed no significant change during any of the periods of regrowth. In contrast the leaves of 1995 grown plants, appeared to be experiencing an acclimatory change in their photosynthetic apparatus in response to elevated [CO{sub 2}]. However, this negative response seemed to be removed directly after a harvest when the source:sink balance had increased. The apparent lack of an acclimatory response after almost 5 years of growth at elevated [CO{sub 2}], suggests that L. perenne may be close to achieving the appropriate photosynthetic adjustments which would allow it to attain a significantly higher photosynthetic potential.

  4. EPSPS Gene Amplification in Glyphosate-Resistant Italian Ryegrass (Lolium perenne ssp. multiflorum) Populations from Arkansas (United States).

    PubMed

    Salas, Reiofeli A; Scott, Robert C; Dayan, Franck E; Burgos, Nilda R

    2015-07-01

    Glyphosate-resistant Italian ryegrass was detected in Arkansas (United States) in 2007. In 2014, 45 populations were confirmed resistant in eight counties across the state. The level of resistance and resistance mechanisms in six populations were studied to assess the severity of the problem and identify alternative management approaches. Dose-response bioassays, glyphosate absorption and translocation experiments, herbicide target (EPSPS) gene sequence analysis, and gene amplification assays were conducted. The dose causing 50% growth reduction (GR50) was 7-19 times higher for the resistant population than for the susceptible standard. Uptake and translocation of (14)C-glyphosate were similar in resistant and susceptible plants, and no mutation in the EPSPS gene known to be associated with resistance to glyphosate was detected. Resistant plants contained from 11- to >100-fold more copies of the EPSPS gene than the susceptible plants, whereas the susceptible plants had only one copy of EPSPS. Plants surviving the recommended dose of glyphosate contained at least 10 copies. The EPSPS copy number was positively related to glyphosate resistance level (r = 80). Therefore, resistance to glyphosate in these populations is due to multiplication of the target site. Resistance mechanisms could be location-specific. Suppressing the mechanism for gene amplification may overcome resistance.

  5. Construction of a high-density linkage map of Italian ryegrass (Lolium multiflorum Lam) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers.

    PubMed

    Inoue, Maiko; Gao, Zhensheng; Hirata, Mariko; Fujimori, Masahiro; Cai, Hongwei

    2004-02-01

    To construct a high-density molecular linkage map of Italian ryegrass (Lolium multiflorum Lam), we used a two-way pseudo-testcross F1 population consisting of 82 individuals to analyze three types of markers: restriction fragment length polymorphism markers, which we detected by using genomic probes from Italian ryegrass as well as heterologous anchor probes from other species belonging to the Poaceae family, amplified fragment length polymorphism markers, which we detected by using PstI/MseI primer combinations, and telomeric repeat associated sequence markers. Of the restriction fragment length polymorphism probes that we generated from a PstI genomic library, 74% (239 of 323) of randomly selected probes detected hybridization patterns consistent with single-copy or low-copy genetic locus status in the screening. The 385 (mostly restriction fragment length polymorphism) markers that we selected from the 1226 original markers were grouped into seven linkage groups. The maps cover 1244.4 cM, with an average of 3.7 cM between markers. This information will prove useful for gene targeting, quantitative trait loci mapping, and marker-assisted selection in Italian ryegrass.

  6. Development of a DNA Sequence-Based Multiplex Test for Rapid Differentiation of Ryegrass Growth Types

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annual (Lolium multiflorum Lam.) and perennial (Lolium perenne L.) ryegrasses are two common forage species in temperate regions. Identifying annual ryegrass contamination in perennial ryegrass seed lots has been of major interest in the seed industry for many years. The objective of our work over t...

  7. Evaluating the use of plant hormones and biostimulators in forage pastures to enhance shoot dry biomass production by perennial ryegrass (Lolium perenne L.).

    PubMed

    Zaman, Mohammad; Kurepin, Leonid V; Catto, Warwick; Pharis, Richard P

    2016-02-01

    Fertilisation of established perennial ryegrass forage pastures with nitrogen (N)-based fertilisers is currently the most common practice used on farms to increase pasture forage biomass yield. However, over-fertilisation can lead to undesired environmental impacts, including nitrate leaching into waterways and increased gaseous emissions of ammonia and nitrous oxide to the atmosphere. Additionally, there is growing interest from pastoral farmers to adopt methods for increasing pasture dry matter yield which use 'natural', environmentally safe plant growth stimulators, together with N-based fertilisers. Such plant growth stimulators include plant hormones and plant growth promotive microorganisms such as bacteria and fungi ('biostimulators', which may produce plant growth-inducing hormones), as well as extracts of seaweed (marine algae). This review presents examples and discusses current uses of plant hormones and biostimulators, applied alone or together with N-based fertilisers, to enhance shoot dry matter yield of forage pasture species, with an emphasis on perennial ryegrass.

  8. Comparative Genomics in Perennial Ryegrass (Lolium perenne L.): Identification and Characterisation of an Orthologue for the Rice Plant Architecture-Controlling Gene OsABCG5

    PubMed Central

    Shinozuka, Hiroshi; Cogan, Noel O. I.; Spangenberg, German C.; Forster, John W.

    2011-01-01

    Perennial ryegrass is an important pasture grass in temperate regions. As a forage biomass-generating species, plant architecture-related characters provide key objectives for breeding improvement. In silico comparative genomics analysis predicted colocation between a previously identified QTL for plant type (erect versus prostrate growth) and the ortholocus of the rice OsABCG5 gene (LpABCG5), as well as related QTLs in other Poaceae species. Sequencing of an LpABCG5-containing BAC clone identified presence of a paralogue (LpABCG6) in the vicinity of the LpABCG5 locus, in addition to three other gene-like sequences. Comparative genomics involving five other 5 grass species (rice, Brachypodium, sorghum, maize, and foxtail millet) revealed conserved microsynteny in the ABCG5 ortholocus-flanking region. Gene expression profiling and phylogenetic analysis suggested that the two paralogues are functionally distinct. Fourteen additional ABCG5 gene family members, which may interact with the LpABCG5 gene, were identified through sequencing of transcriptomes from perennial ryegrass leaf, anther, and pistils. A larger-scale phylogenetic analysis of the ABCG gene family suggested conservation between major branches of the Poaceae family. This study identified the LpABCG5 gene as a candidate for the plant type determinant, suggesting that manipulation of gene expression may provide valuable phenotypes for perennial ryegrass breeding. PMID:21941532

  9. Bioaccumulation of metals in ryegrass (Lolium perenne L.) following the application of lime stabilised, thermally dried and anaerobically digested sewage sludge.

    PubMed

    Healy, M G; Ryan, P C; Fenton, O; Peyton, D P; Wall, D P; Morrison, L

    2016-08-01

    The uptake and accumulation of metals in plants is a potential pathway for the transfer of environmental contaminants in the food chain, and poses potential health and environmental risks. In light of increased population growth and urbanisation, the safe disposal of sewage sludge, which can contain significant levels of toxic contaminants, remains an environmental challenge globally. The aims of this experiment were to apply municipal sludge, having undergone treatment by thermal drying, anaerobic digestion, and lime stabilisation, to permanent grassland in order to assess the bioaccumulation of metals (B, Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Nb, Mo, Sb, Ba, W, Pb, Fe, Cd) by perennial ryegrass over a period of up to 18 weeks after application. The legislation currently prohibits use of grassland for fodder or grazing for at least three weeks after application of treated sewage sludge (biosolids). Five treatments were used: thermally dried (TD), anaerobically digested (AD) and lime stabilised (LS) sludge all from one wastewater treatment plant (WWTP), AD sludge from another WWTP, and a study control (grassland only, without application of biosolids). In general, there was no significant difference in metal content of the ryegrass between micro-plots that received treated municipal sludge and the control over the study duration. The metal content of the ryegrass was below the levels at which phytotoxicity occurs and below the maximum levels specified for animal feeds. PMID:27174047

  10. Bioaccumulation of metals in ryegrass (Lolium perenne L.) following the application of lime stabilised, thermally dried and anaerobically digested sewage sludge.

    PubMed

    Healy, M G; Ryan, P C; Fenton, O; Peyton, D P; Wall, D P; Morrison, L

    2016-08-01

    The uptake and accumulation of metals in plants is a potential pathway for the transfer of environmental contaminants in the food chain, and poses potential health and environmental risks. In light of increased population growth and urbanisation, the safe disposal of sewage sludge, which can contain significant levels of toxic contaminants, remains an environmental challenge globally. The aims of this experiment were to apply municipal sludge, having undergone treatment by thermal drying, anaerobic digestion, and lime stabilisation, to permanent grassland in order to assess the bioaccumulation of metals (B, Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Nb, Mo, Sb, Ba, W, Pb, Fe, Cd) by perennial ryegrass over a period of up to 18 weeks after application. The legislation currently prohibits use of grassland for fodder or grazing for at least three weeks after application of treated sewage sludge (biosolids). Five treatments were used: thermally dried (TD), anaerobically digested (AD) and lime stabilised (LS) sludge all from one wastewater treatment plant (WWTP), AD sludge from another WWTP, and a study control (grassland only, without application of biosolids). In general, there was no significant difference in metal content of the ryegrass between micro-plots that received treated municipal sludge and the control over the study duration. The metal content of the ryegrass was below the levels at which phytotoxicity occurs and below the maximum levels specified for animal feeds.

  11. Exogenous Melatonin Suppresses Dark-Induced Leaf Senescence by Activating the Superoxide Dismutase-Catalase Antioxidant Pathway and Down-Regulating Chlorophyll Degradation in Excised Leaves of Perennial Ryegrass (Lolium perenne L.)

    PubMed Central

    Zhang, Jing; Li, Huibin; Xu, Bin; Li, Jing; Huang, Bingru

    2016-01-01

    Leaf senescence is a typical symptom in plants exposed to dark and may be regulated by plant growth regulators. The objective of this study was to determine whether exogenous application of melatonin (N-acetyl-5-methoxytryptamine) suppresses dark-induced leaf senescence and the effects of melatonin on reactive oxygen species (ROS) scavenging system and chlorophyll degradation pathway in perennial grass species. Mature perennial ryegrass (Lolium perenne L. cv. ‘Pinnacle’) leaves were excised and incubated in 3 mM 2-(N-morpholino) ethanesulfonic buffer (pH 5.8) supplemented with melatonin or water (control) and exposed to dark treatment for 8 days. Leaves treated with melatonin maintained significantly higher endogenous melatonin level, chlorophyll content, photochemical efficiency, and cell membrane stability expressed by lower electrolyte leakage and malondialdehyde (MDA) content compared to the control. Exogenous melatonin treatment also reduced the transcript level of chlorophyll degradation-associated genes and senescence marker genes (LpSAG12.1, Lph36, and Lpl69) during the dark treatment. The endogenous O2- production rate and H2O2 content were significantly lower in these excised leaves treated with melatonin compared to the water control. Exogenous melatonin treatment caused increases in enzymatic activity and transcript levels of superoxide dismutase and catalase but had no significant effects on ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monohydroascorbate reductase. The content of non-enzymatic antioxidants, such as ascorbate and dehydroascorbate, were decreased by melatonin treatment, while the content of glutathione and oxidized glutathione was not affected by melatonin. These results suggest that the suppression of dark-induced leaf senescence by exogenous melatonin may be associated with its roles in regulating ROS scavenging through activating the superoxide dismutase-catalase enzymatic antioxidant pathway and

  12. Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo).

    PubMed

    Bonnet, M; Camares, O; Veisseire, P

    2000-05-01

    The effects of zinc on growth, mineral content, chlorophyll a fluorescence, and detoxifying enzyme activity (ascorbate peroxidase (APX), EC 1.11.1.11; superoxide dismutase (SOD), EC 1.15.1.1) of ryegrass infected or not by Acremonium lolii, and treated with nutrient solution containing 0-50 mM ZnSO(4) were studied. The introduction of zinc induces stress with a decrease in growth at 1, 5 and 10 mM ZnSO(4) and a cessation of growth at 50 mM ZnSO(4), in ryegrass plants infected by A. lolii or not. This decrease in growth may be due to an accumulation of zinc in leaves. Nevertheless, symbiotic plants showed higher values in tiller number, an advantage conferred by the fungus. After 24 d of Zn exposure, leaf fresh weights and leaf water content were lower in plants growing with Zn in the culture medium and no advantage was conferred by the fungus to its host. An increase in Zn supply resulted in a decrease of the Ca, K, Mg, and Cu content of the leaves, a reduction in the quantum yield of electron flow throughout photosystem II (DeltaF/F(1)(m))and a lowering of the efficiency of photosynthetic energy conversion (F(v)/F(m)), compared to control plants. To counter this zinc stress, detoxifying enzymes APX and SOD increased (100%) when Zn reached the value of 50 mM in the nutrient solution. At 10 mM ZnSO(4), the presence of the fungus in the plant led to an increase in the threshold toxicity of plants to zinc by a diminution of APX activity.

  13. In Vitro and In Vivo Enhancement of Adipogenesis by Italian Ryegrass (Lolium multiflorum) in 3T3-L1 Cells and Mice

    PubMed Central

    Kim, Da Hye; Gun Roh, Sang; Lee, Jeong-Chae; Choi, Ki Choon

    2014-01-01

    Adipogenesis is very much important in improving the quality of meat in animals. The aim of the present study was to investigate the in vitro and in vivo adipogenesis regulation properties of Lolium multiflorum on 3T3-L1 pre-adipocytes and mice. Chemical composition of petroleum ether extract of L. multiflorum (PET-LM) confirmed the presence of fatty acids, such as α-linolenic acid, docosahexaenoic acid, oleic acid, docosatetraenoic acid, and caprylic acid, as the major compounds. PET-LM treatment increased viability, lipid accumulation, lipolysis, cell cycle progression, and DNA synthesis in the cells. PET-LM treatment also augmented peroxysome proliferator activated receptor (PPAR)-γ2, CCAAT/enhancer binding protein-α, adiponectin, adipocyte binding protein, glucose transporter-4, fatty acid synthase, and sterol regulatory element binding protein-1 expression at mRNA and protein levels in differentiated adipocytes. In addition, mice administered with 200 mg/kg body weight PET-LM for 8 weeks showed greater body weight than control mice. These findings suggest that PET-LM facilitates adipogenesis by stimulating PPARγ-mediated signaling cascades in adipocytes which could be useful for quality meat development in animals. PMID:24454838

  14. Detection of favorable alleles for plant height and crown rust tolerance in three connected populations of perennial ryegrass (Lolium perenne L.).

    PubMed

    Pauly, Laurence; Flajoulot, Sandrine; Garon, Jérôme; Julier, Bernadette; Béguier, Vincent; Barre, Philippe

    2012-04-01

    Plant height, which is an estimator of vegetative yield, and crown rust tolerance are major criteria for perennial ryegrass breeding. Genetic improvement has been achieved through phenotypic selection but it should be speeded up using marker-assisted selection, especially in this heterozygous species suffering from inbreeding depression. Using connected multiparental populations should increase the diversity studied and could substantially increase the power of quantitative trait loci (QTL) detection. The objective of this study was to detect the best alleles for plant height and rust tolerance among three connected populations derived from elite material by comparing an analysis per parent and a multipopulation connected analysis. For the studied traits, 17 QTL were detected with the analysis per parent while the additive and dominance models of the multipopulation connected analysis made it possible to detect 33 and 21 QTL, respectively. Favorable alleles have been detected in all parents. Only a few dominance effects were detected and they generally had lower values than the additive effects. The additive model of the multipopulation connected analysis was the most powerful as it made it possible to detect most of the QTL identified in the other analyses and 11 additional QTL. Using this model, plant growth QTL and rust tolerance QTL explained up to 19 and 38.6% of phenotypic variance, respectively. This example involving three connected populations is promising for an application on polycross progenies, traditionally used in breeding programs. Indeed, polycross progenies actually are a set of several connected populations.

  15. Immunocytochemical localization of water-soluble glycoproteins, including group 1 allergen, in pollen of ryegrass, Lolium perenne, using ferritin-labelled antibody.

    PubMed

    Vithanage, H I; Howlett, B J; Jobson, S; Knox, R B

    1982-11-01

    The cellular sites of the glycoproteins Group 1 allergen (glycoprotein 1) and Antigen A (glycoprotein 2) in mature ryegrass pollen have been investigated by immunoelectron microscopy. Radioimmunoassays confirm previous findings of cross-reactivity between the purified glycoprotein antigens at the high immunoglobulin G (IgG) concentrations used for localization. Freeze-drying of anthers followed by anhydrous processing has been employed because of the water solubility and mobility of the glycoproteins. A double-embedding technique has been developed. This involves, first, embedding anthers in the water-soluble plastic resin JB-4, sectioning and incubating in ferritin-labelled antisera by the indirect method. The sections are then embedded in Spurr's resin for ultra-thin sectioning. Both glycoproteins are found in the following sites: (1) exine and intine wall layers; (2) pollen cytoplasm; (3) the orbicules and anther loculus; and (4) the anther cuticle. In the exine arcades and surface and in the anther loculus, the ferritin label is bound to pollenkitt. The finding that the glycoproteins are in similar sites is predictable in view of the cross-specificity of the antisera. The extent of antibody penetration of the plastic sections has been examined; labelling is confined to cut grains and absent from intact grains.

  16. Fructan synthesis, accumulation and polymer traits. II. Fructan pools in populations of perennial ryegrass (Lolium perenne L.) with variation for water-soluble carbohydrate and candidate genes were not correlated with biosynthetic activity and demonstrated constraints to polymer chain extension

    PubMed Central

    Gallagher, Joe A.; Cairns, Andrew J.; Thomas, David; Timms-Taravella, Emma; Skøt, Kirsten; Charlton, Adam; Williams, Peter; Turner, Lesley B.

    2015-01-01

    Differences have been shown between ryegrass and fescue within the Festulolium subline introgression family for fructan synthesis, metabolism, and polymer-size traits. It is well-established that there is considerable variation for water-soluble carbohydrate and fructan content within perennial ryegrass. However there is much still to be discovered about the fructan polymer pool in this species, especially in regard to its composition and regulation. It is postulated that similar considerable variation for polymer traits may exist, providing useful polymers for biorefining applications. Seasonal effects on fructan content together with fructan synthesis and polymer-size traits have been examined in diverse perennial ryegrass material comprising contrasting plants from a perennial ryegrass F2 mapping family and from populations produced by three rounds of phenotypic selection. Relationships with copy number variation in candidate genes have been investigated. There was little evidence of any variation in fructan metabolism across this diverse germplasm under these conditions that resulted in substantial differences in the complement of fructan polymers present in leaf tissue at high water-soluble carbohydrate concentrations. The importance of fructan synthesis during fructan accumulation was unclear as fructan content and polymer characteristics in intact plants during the growing season did not reflect the capacity for de novo synthesis. However, the retention of fructan in environmental conditions favoring high sink/low source demand may be an important component of the high sugar trait and the roles of breakdown and turnover are discussed. PMID:26528321

  17. Silage from maize (Zea mays), annual ryegrass (Lolium multiflorum) or their mixture in the dry season feeding of grazing dairy cows in small-scale dairy production systems in the highlands of Mexico.

    PubMed

    Anaya-Ortega, J P; Garduño-Castro, G; Espinoza-Ortega, A; Rojo-Rubio, R; Arriaga-Jordán, C M

    2009-04-01

    Small-scale dairy systems based on grazing have dry-season herbage shortages. A repeated 3 x 3 Latin Square experiment evaluated grazing with silage from maize (MS), annual ryegrass (ARG) or a mixture (MIX) with 9 cows with 3 week periods; continuously grazed at 3.6 cows/ha with 3.6 kg DM/day of concentrate. Treatments were 7 kg DM of MS, ARG or a 2 MS:1 ARG mixture. Milk yield (MY), milk composition, live-weight, body condition, silage and concentrate intake were recorded. Herbage DM intake was estimated indirectly. Activity budgets were done for economic analysis. MY on MS (21.5 kg/cow/d) was 0.06 higher than on ARG (P < 0.09) with no differences on MIX. There were no differences for milk fat, milk protein, or body condition score. Live-weight on ARG was higher (P < 0.01) than on MS or MIX. Silage intake was higher (P < 0.01) on ARG and MS than on MIX. Herbage intake was lower (P < 0.05) on MS, compared with MIX and ARG. Total DM intake on ARG was higher than MS (P < 0.01), and MIX in between. MS resulted in 0.12 higher economic returns over ARG which had highest costs. Annual ryegrass may have a place in small-scale systems, but not as silage due to higher costs. PMID:18787970

  18. Silage from maize (Zea mays), annual ryegrass (Lolium multiflorum) or their mixture in the dry season feeding of grazing dairy cows in small-scale dairy production systems in the highlands of Mexico.

    PubMed

    Anaya-Ortega, J P; Garduño-Castro, G; Espinoza-Ortega, A; Rojo-Rubio, R; Arriaga-Jordán, C M

    2009-04-01

    Small-scale dairy systems based on grazing have dry-season herbage shortages. A repeated 3 x 3 Latin Square experiment evaluated grazing with silage from maize (MS), annual ryegrass (ARG) or a mixture (MIX) with 9 cows with 3 week periods; continuously grazed at 3.6 cows/ha with 3.6 kg DM/day of concentrate. Treatments were 7 kg DM of MS, ARG or a 2 MS:1 ARG mixture. Milk yield (MY), milk composition, live-weight, body condition, silage and concentrate intake were recorded. Herbage DM intake was estimated indirectly. Activity budgets were done for economic analysis. MY on MS (21.5 kg/cow/d) was 0.06 higher than on ARG (P < 0.09) with no differences on MIX. There were no differences for milk fat, milk protein, or body condition score. Live-weight on ARG was higher (P < 0.01) than on MS or MIX. Silage intake was higher (P < 0.01) on ARG and MS than on MIX. Herbage intake was lower (P < 0.05) on MS, compared with MIX and ARG. Total DM intake on ARG was higher than MS (P < 0.01), and MIX in between. MS resulted in 0.12 higher economic returns over ARG which had highest costs. Annual ryegrass may have a place in small-scale systems, but not as silage due to higher costs.

  19. Cultivar by environment effects of perennial ryegrass cultivars selected for high water soluble carbohydrates managed under differing precipitation levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historic results of perennial ryegrass (Lolium perenne L.) breeding include improved disease resistance, biomass, and nutritional quality. Yet, lack of tolerance to water stress limits its wise use. Recent efforts to increase water soluble carbohydrate (WSC) content in perennial ryegrass may incre...

  20. Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne).

    PubMed

    Lasseur, Bertrand; Lothier, Jérémy; Wiemken, Andres; Van Laere, André; Morvan-Bertrand, Annette; Van den Ende, Wim; Prud'homme, Marie-Pascale

    2011-03-01

    The main storage compounds in Lolium perenne are fructans with prevailing β(2-6) linkages. A cDNA library of L. perenne was screened using Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length Lp6-SFT clone was isolated as shown by heterologous expression in Pichia pastoris. High levels of Lp6-SFT transcription were found in the growth zone of elongating leaves and in mature leaf sheaths where fructans are synthesized. Upon fructan synthesis induction, Lp6-SFT transcription was high in mature leaf blades but with no concomitant accumulation of fructans. In vitro studies with the recombinant Lp6-SFT protein showed that both 1-kestotriose and 6G-kestotriose acted as fructosyl acceptors, producing 1- and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose, respectively. Interestingly, bifurcose formation ceased and 6G,6-kestotetraose was formed instead, when recombinant fructan:fructan 6G-fructosyltransferase (6G-FFT) of L. perenne was introduced in the enzyme assay with sucrose and 1-kestotriose as substrates. The remarkable absence of bifurcose in L. perenne tissues might be explained by a higher affinity of 6G-FFT, as compared with 6-SFT, for 1-kestotriose, which is the first fructan formed. Surprisingly, recombinant 6-SFT from Hordeum vulgare, a plant devoid of fructans with internal glucosyl residues, also produced 6G,6-kestotetraose from sucrose and 6G-kestotriose. In the presence of recombinant L. perenne 6G-FFT, it produced 6G,6-kestotetraose from 1-kestotriose and sucrose, like L. perenne 6-SFT. Thus, we demonstrate that the two 6-SFTs have close catalytic properties and that the distinct fructans formed in L. perenne and H. vulgare can be explained by the presence of 6G-FFT activity in L. perenne and its absence in H. vulgare.

  1. Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne)

    PubMed Central

    Lasseur, Bertrand; Lothier, Jérémy; Wiemken, Andres; Van Laere, André; Morvan-Bertrand, Annette; den Ende, Wim Van; Prud'homme, Marie-Pascale

    2011-01-01

    The main storage compounds in Lolium perenne are fructans with prevailing β(2–6) linkages. A cDNA library of L. perenne was screened using Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length Lp6-SFT clone was isolated as shown by heterologous expression in Pichia pastoris. High levels of Lp6-SFT transcription were found in the growth zone of elongating leaves and in mature leaf sheaths where fructans are synthesized. Upon fructan synthesis induction, Lp6-SFT transcription was high in mature leaf blades but with no concomitant accumulation of fructans. In vitro studies with the recombinant Lp6-SFT protein showed that both 1-kestotriose and 6G-kestotriose acted as fructosyl acceptors, producing 1- and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose, respectively. Interestingly, bifurcose formation ceased and 6G,6-kestotetraose was formed instead, when recombinant fructan:fructan 6G-fructosyltransferase (6G-FFT) of L. perenne was introduced in the enzyme assay with sucrose and 1-kestotriose as substrates. The remarkable absence of bifurcose in L. perenne tissues might be explained by a higher affinity of 6G-FFT, as compared with 6-SFT, for 1-kestotriose, which is the first fructan formed. Surprisingly, recombinant 6-SFT from Hordeum vulgare, a plant devoid of fructans with internal glucosyl residues, also produced 6G,6-kestotetraose from sucrose and 6G-kestotriose. In the presence of recombinant L. perenne 6G-FFT, it produced 6G,6-kestotetraose from 1-kestotriose and sucrose, like L. perenne 6-SFT. Thus, we demonstrate that the two 6-SFTs have close catalytic properties and that the distinct fructans formed in L. perenne and H. vulgare can be explained by the presence of 6G-FFT activity in L. perenne and its absence in H. vulgare. PMID:21196473

  2. Transferability of cereal EST-SSR markers to ryegrass.

    PubMed

    Sim, Sung-Chur; Yu, Ju-Kyung; Jo, Young-ki; Sorrells, Mark E; Jung, Geunhwa

    2009-05-01

    A large number of expressed sequence tags (ESTs) in public databases have provided an opportunity for the systematic development of simple sequence repeat (SSR) markers. EST-SSRs derived from conserved coding sequences show considerable cross-species transferability in related species. In the present study, we assessed the utility of cereal EST-SSRs in ryegrass (Lolium spp.). A total of 165 cereal EST-SSRs were tested; a high rate of transferability (57%) and polymorphism (67% of functional EST-SSRs) was demonstrated between cereals and ryegrass. A total of 46 segregating loci derived from 37 EST-SSRs were mapped on an existing ryegrass genetic map. The mapped loci were uniformly distributed across all seven linkage groups without significant clustering at the distal regions of linkage groups. Sequences of ryegrass amplicons generated by randomly selected 16 EST-SSRs were aligned with reference sequences of cereal EST-SSRs. The SSR motifs and repeat lengths of the cereal EST-SSR markers were different from the majority of ryegrass amplicons. Furthermore, a majority of EST-SSRs amplified different flanking sequences of SSRs in ryegrass than the original cereal sequences. Our results suggest that the high degree of cereal EST-SSR transferability to ryegrass can be a useful enhancement to the molecular database of PCR-based markers but sequence analysis is essential before transferring genetic information using comparative mapping.

  3. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    PubMed

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  4. Stocker growth on rye and ryegrass pastures affects subsequent feedlot gains and carcass traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stocker calves were stocked on annual rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.) pastures using stocking strategies (STK) to create graded levels of gain to assess subsequent growth rates, feedlot performance, and carcass traits. During two consecutive years, yearling Angus, Here...

  5. Morphological traits associated with weed-suppressive ability of winter wheat against Italian ryegrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed-suppressive wheat (Triticum aestivum L.) cultivars have been suggested as a complement to chemical and cultural methods of weed control. The objectives of this study were to assess the range of weed-suppressive ability against Italian ryegrass [Lolium perenne L. ssp. multiflorum (Lam.) Husnot] ...

  6. Phytoremediation of high phosphorus soil by annual ryegrass and common bermudagrass harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Removal of soil phosphorus (P) in crop harvest is a remediation option for soils high in P. This four-year field-plot study determined P uptake by annual ryegrass (ARG, Lolium multiflorum Lam.) and common bermudagrass (CB, Cynodon dactylon (L.) Pers.) from Ruston soil (fine-loamy, siliceous, thermic...

  7. Spring nitrogen fertilization of ryegrass-bermudagrass for phytoremediation of phosphorus-enriched soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fertilization of forage grasses is critical for optimizing biomass and utilization of manure soil nutrients. Field studies were conducted in 2007-09 to determine the effects of spring N fertilization on amelioration of high soil P when cool-season, annual ryegrass (Lolium multiflorum L.) is...

  8. Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones. The objective of this study was to identify candidate genes significantly associated w...

  9. First report of Fusarium graminearum, F. asiaticum and F. cortaderiae as head blight pathogens of annual ryegrass in Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Members of the Fusarium graminearum species complex (FGSC) cause Fusarium head blight (FHB) of small grains and several grasses, including annual ryegrass (Lolium multiflorum Lam.), an important forage crop, but also a common weed in wheat, rice and maize agroecosystem in southern Brazil. Although i...

  10. Effects of Chicory/Perennial Ryegrass Swards Compared with Perennial Ryegrass Swards on the Performance and Carcass Quality of Grazing Beef Steers

    PubMed Central

    Marley, Christina L.; Fychan, Rhun; Davies, John W.; Scollan, Nigel D.; Richardson, R. Ian; Theobald, Vince J.; Genever, Elizabeth; Forbes, Andy B.; Sanderson, Ruth

    2014-01-01

    An experiment investigated whether the inclusion of chicory (Cichorium intybus) in swards grazed by beef steers altered their performance, carcass characteristics or parasitism when compared to steers grazing perennial ryegrass (Lolium perenne). Triplicate 2-ha plots were established with a chicory/ryegrass mix or ryegrass control. Forty-eight Belgian Blue-cross steers were used in the first grazing season and a core group (n = 36) were retained for finishing in the second grazing season. The experiment comprised of a standardisation and measurement period. During standardisation, steers grazed a ryegrass/white clover pasture as one group. Animals were allocated to treatment on the basis of liveweight, body condition and faecal egg counts (FEC) determined 7 days prior to the measurement period. The measurement period ran from 25 May until 28 September 2010 and 12 April until 11 October 2011in the first and second grazing year. Steers were weighed every 14 days at pasture or 28 days during housing. In the first grazing year, faecal samples were collected for FEC and parasite cultures. At the end of the first grazing year, individual blood samples were taken to determine O. ostertagi antibody and plasma pepsinogen levels. During winter, animals were housed as one group and fed silage. In the second grazing year, steers were slaughtered when deemed to reach fat class 3. Data on steer performance showed no differences in daily live-weight gain which averaged 1.04 kg/day. The conformation, fat grade and killing out proportion of beef steers grazing chicory/ryegrass or ryegrass were not found to differ. No differences in FEC, O. ostertagi antibody or plasma pepsinogen levels of beef steers grazing either chicory/ryegrass or ryegrass were observed. Overall, there were no detrimental effects of including chicory in swards grazed by beef cattle on their performance, carcass characteristics or helminth parasitism, when compared with steers grazing ryegrass. PMID:24489708

  11. Effects of ryegrass on biodegradation of hydrocarbons in soil.

    PubMed

    Günther, T; Dornberger, U; Fritsche, W

    1996-07-01

    The effects of growing ryegrass (Lolium perenne L.) on the biodegradation of hydrocarbons was studied in laboratory scale soil columns. Degradation of hydrocarbons as well as bacterial numbers, soil respiration rates and soil dehydrogenase activities were determined. In the rhizosphere soil system, aliphatic hydrocarbons disappeared faster than in unvegetated columns. Abiotic loss by evaporation was of minor significance. Elimination of pollutants was accompanied by an increase in microbial numbers and activities. The microbial plate counts and soil respiration rates were substantially higher in the rhizosphere than in the bulk soil. The results indicate that biodegradation of hydrocarbons in the rhizosphere is stimulated by plant roots.

  12. Germplasm dynamics: the role of ecotypic diversity in shaping the patterns of genetic variation in Lolium perenne

    PubMed Central

    Blackmore, T.; Thorogood, D.; Skøt, L.; McMahon, R.; Powell, W.; Hegarty, M.

    2016-01-01

    Perennial ryegrass (Lolium perenne) is the most widely grown temperate grass species globally. Intensive plant breeding in ryegrass compared to many other crops species is a relatively recent exercise (last 100 years) and provides an interesting experimental system to trace the extent, impact and trajectory of undomesticated ecotypic variation represented in modern ryegrass cultivars. To explore germplasm dynamics in Lolium perenne, 2199 SNPs were genotyped in 716 ecotypes sampled from 90 European locations together with 249 cultivars representing 33 forage/amenity accessions. In addition three pseudo-cross mapping populations (450 individual recombinants) were genotyped to create a consensus genetic linkage map. Multivariate analyses revealed strong differentiation between cultivars with a small proportion of the ecotypic variation captured in improved cultivars. Ryegrass cultivars generated as part of a recurrent selection programme (RSP) are strongly associated with a small number of geographically localised Italian ecotypes which were among the founders of the RSP. Changes in haplotype frequency revealed signatures of selection in genes putatively involved in water-soluble carbohydrate (WSC) accumulation (a trait selected in the RSP). Retrospective analysis of germplasm in breeding programmes (germplasm dynamics) provides an experimental framework for the identification of candidate genes for novel traits such as WSC accumulation in ryegrass. PMID:26935901

  13. Germplasm dynamics: the role of ecotypic diversity in shaping the patterns of genetic variation in Lolium perenne.

    PubMed

    Blackmore, T; Thorogood, D; Skøt, L; McMahon, R; Powell, W; Hegarty, M

    2016-01-01

    Perennial ryegrass (Lolium perenne) is the most widely grown temperate grass species globally. Intensive plant breeding in ryegrass compared to many other crops species is a relatively recent exercise (last 100 years) and provides an interesting experimental system to trace the extent, impact and trajectory of undomesticated ecotypic variation represented in modern ryegrass cultivars. To explore germplasm dynamics in Lolium perenne, 2199 SNPs were genotyped in 716 ecotypes sampled from 90 European locations together with 249 cultivars representing 33 forage/amenity accessions. In addition three pseudo-cross mapping populations (450 individual recombinants) were genotyped to create a consensus genetic linkage map. Multivariate analyses revealed strong differentiation between cultivars with a small proportion of the ecotypic variation captured in improved cultivars. Ryegrass cultivars generated as part of a recurrent selection programme (RSP) are strongly associated with a small number of geographically localised Italian ecotypes which were among the founders of the RSP. Changes in haplotype frequency revealed signatures of selection in genes putatively involved in water-soluble carbohydrate (WSC) accumulation (a trait selected in the RSP). Retrospective analysis of germplasm in breeding programmes (germplasm dynamics) provides an experimental framework for the identification of candidate genes for novel traits such as WSC accumulation in ryegrass. PMID:26935901

  14. Bale Location Effects on Nutritive Value and Fermentation Characteristics of Annual Ryegrass Bale Stored in In-line Wrapping Silage

    PubMed Central

    Han, K. J.; McCormick, M. E.; Derouen, S. M.; Blouin, D. C.

    2014-01-01

    In southeastern regions of the US, herbage systems are primarily based on grazing or hay feeding with low nutritive value warm-season perennial grasses. Nutritious herbage such as annual ryegrass (Lolium multiflorum Lam.) may be more suitable for preserving as baleage for winter feeding even with more intensive production inputs. Emerging in-line wrapped baleage storage systems featuring rapid wrapping and low polyethylene film requirements need to be tested for consistency of storing nutritive value of a range of annual ryegrass herbage. A ryegrass storage trial was conducted with 24-h wilted ‘Marshall’ annual ryegrass harvested at booting, heading and anthesis stages using three replicated in-line wrapped tubes containing ten round bales per tube. After a six-month storage period, nutritive value changes and fermentation end products differed significantly by harvest stage but not by bale location. Although wilted annual ryegrass exhibited a restricted fermentation across harvest stages characterized by high pH and low fermentation end product concentrations, butyric acid concentrations were less than 1 g/kg dry matter, and lactic acid was the major organic acid in the bales. Mold coverage and bale aroma did not differ substantially with harvest stage or bale location. Booting and heading stage-harvested ryegrass baleage were superior in nutritive value to anthesis stage-harvested herbage. Based on the investigated nutritive value and fermentation characteristics, individual bale location within in-line tubes did not significantly affect preservation quality of ryegrass round bale silages. PMID:25178371

  15. Comparative analysis of multiple disease resistance in ryegrass and cereal crops.

    PubMed

    Jo, Young-Ki; Barker, Reed; Pfender, William; Warnke, Scott; Sim, Sung-Chur; Jung, Geunhwa

    2008-08-01

    Ryegrass (Lolium spp.) is among the most important forage crops in Europe and Australia and is also a popular turfgrass in North America. Previous genetic analysis based on a three-generation interspecific (L. perennexL. multiflorum) ryegrass population identified four quantitative trait loci (QTLs) for resistance to gray leaf spot (Magneporthe grisea) and four QTLs for resistance to crown rust (Puccinia coronata). The current analysis based on the same mapping population detected seven QTLs for resistance to leaf spot (Bipolaris sorokiniana) and one QTL for resistance to stem rust (Puccinia graminis) in ryegrass for the first time. Three QTLs for leaf spot resistance on linkage groups (LGs) 2 and 4 were in regions of conserved synteny to the positions of resistance to net blotch (Drechslera teres) in barley (Hordeum vulgare). One ryegrass genomic region spanning 19 cM on LG 4, which contained three QTLs for resistance to leaf spot, gray leaf spot, and stem rust, had a syntenic relationship with a segment of rice chromosome 3, which contained QTLs for resistance to multiple diseases. However, at the genome-wide comparison based on 72 common RFLP markers between ryegrass and cereals, coincidence of QTLs for disease resistance to similar fungal pathogens was not statistically significant.

  16. Forages and pastures symposium: fungal endophytes of tall fescue and perennial ryegrass: pasture friend or foe?

    PubMed

    Young, C A; Hume, D E; McCulley, R L

    2013-05-01

    Tall fescue [Lolium arundinaceum (Schreb.) Darbysh. syn. Festuca arundinacea Schreb.] and perennial ryegrass (Lolium perenne L.) are important perennial forage grasses utilized throughout the moderate- to high-rainfall temperate zones of the world. These grasses have coevolved with symbiotic fungal endophytes (Epichloë/Neotyphodium spp.) that can impart bioactive properties and environmental stress tolerance to the grass compared with endophyte-free individuals. These endophytes have proven to be very important in pastoral agriculture in the United States, New Zealand, and Australia, where forage grasses are the principal feed for grazing ruminants. In this review, we describe the biology of these grass-endophyte associations and implications for the livestock industries that are dependent on these forages. Endophyte alkaloid production is put in context with endophyte diversity, and we illustrate how this has facilitated utilization of grasses infected with different endophyte strains that reduce livestock toxicity issues. Utilization of tall fescue and use of perennial ryegrass in the United States, New Zealand, and Australia are compared, and management strategies focused predominantly on the success of endophyte-infected perennial ryegrass in New Zealand and Australia are discussed. In addition, we consider the impact of grass-endophyte associations on the sustainability of pasture ecosystems and their likely response to future changes in climate. PMID:23307839

  17. Removal of a combination of endocrine disruptors from aqueous systems by seedlings of radish and ryegrass.

    PubMed

    Gattullo, C Eliana; Cunha, Bruno Barboza; Rosa, André H; Loffredo, Elisabetta

    2013-01-01

    Endocrine disruptors (EDs) are widespread in the environment, especially aquatic systems, and cause dangerous effects on wildlife and humans. This work was aimed to assess the capacity of radish (Raphanus sativus L.) and ryegrass (Lolium perenne L.) seedlings to tolerate and remove two combinations of EDs containing bisphenol A (BPA), 17alpha-ethynilestradiol (EE2), and linuron from four aqueous media: distilled water, a solution of natural organic matter (NOM), a lake water and a river water. Seeds of the two species were germinated in each contaminated medium and, at the end of germination, the seedling growth was evaluated by biometric measurements and residual EDs were quantified by chromatographic analysis. Biometric measurements revealed that the phytotoxicity of the two combinations of EDs depended on the medium used. Radish showed a discrete tolerance in distilled water and lake water but was inhibited in the solution of NOM and river water. Ryegrass was negatively affected mainly in river water. The concentration of each ED appeared significantly reduced in all media in the presence of seedlings of both species, but not in the blanks without plants. In 5 days, radish removed up to 88% of BPA, 100% of EE2 and 42% of linuron, and in 6 days ryegrass removed up to 92% of BPA, 74% of EE2 and 16% of linuron. The considerable removal capacity of radish and ryegrass in all media tested encourages the use of phytoremediation to remove EDs from waters. PMID:24617071

  18. Removal of a combination of endocrine disruptors from aqueous systems by seedlings of radish and ryegrass.

    PubMed

    Gattullo, C Eliana; Cunha, Bruno Barboza; Rosa, André H; Loffredo, Elisabetta

    2013-01-01

    Endocrine disruptors (EDs) are widespread in the environment, especially aquatic systems, and cause dangerous effects on wildlife and humans. This work was aimed to assess the capacity of radish (Raphanus sativus L.) and ryegrass (Lolium perenne L.) seedlings to tolerate and remove two combinations of EDs containing bisphenol A (BPA), 17alpha-ethynilestradiol (EE2), and linuron from four aqueous media: distilled water, a solution of natural organic matter (NOM), a lake water and a river water. Seeds of the two species were germinated in each contaminated medium and, at the end of germination, the seedling growth was evaluated by biometric measurements and residual EDs were quantified by chromatographic analysis. Biometric measurements revealed that the phytotoxicity of the two combinations of EDs depended on the medium used. Radish showed a discrete tolerance in distilled water and lake water but was inhibited in the solution of NOM and river water. Ryegrass was negatively affected mainly in river water. The concentration of each ED appeared significantly reduced in all media in the presence of seedlings of both species, but not in the blanks without plants. In 5 days, radish removed up to 88% of BPA, 100% of EE2 and 42% of linuron, and in 6 days ryegrass removed up to 92% of BPA, 74% of EE2 and 16% of linuron. The considerable removal capacity of radish and ryegrass in all media tested encourages the use of phytoremediation to remove EDs from waters.

  19. Utilization of flow cytometry for festulolium breeding (Lolium multiflorum (2x) × Festuca arundinacea (6x))

    PubMed Central

    Akiyama, Yukio; Ueyama, Yasufumi; Hamada, Seiya; Kubota, Akito; Kato, Daisuke; Yamada-Akiyama, Hitomi; Takahara, Yoshinori; Fujimori, Masahiro

    2016-01-01

    Festulolium is a hybrid between Festuca and Lolium species that has valuable agronomic traits from both grass species. The purpose of our breeding program is to produce hexaploid festulolium that introduces tolerance to summer depression into Italian ryegrass (Lolium multiflorum) by crossing it with tall fescue (Festuca arundinacea). However, we found the DNA ploidy of hexaploids was not stable and was reduced in successive generations. We aimed to find out how to obtain stable high-ploidy festulolium. F1 hybrids of L. multiflorum and F. arundinacea were produced. The F3 generation was produced from putative hexaploid F2 individuals by open pollination. The F4 to F6 generations were obtained by polycrossing. The DNA ploidy levels of F2 to F6 individuals were estimated by flow cytometry. Cytological characteristics of the F5 and F6 individuals were investigated by FISH and GISH. The DNA ploidy level of hexaploid festulolium was reduced and stabilized at almost the same level as a tetraploid. Seed fertility was inversely correlated with an increase in ploidy level. GISH revealed no preferential Lolium transmission. FISH with a telomere probe revealed that counting the exact number of chromosomes in festulolium was difficult. DNA ploidy level was strongly correlated with the number of chromosomes. PMID:27162495

  20. Utilization of flow cytometry for festulolium breeding (Lolium multiflorum (2x) × Festuca arundinacea (6x)).

    PubMed

    Akiyama, Yukio; Ueyama, Yasufumi; Hamada, Seiya; Kubota, Akito; Kato, Daisuke; Yamada-Akiyama, Hitomi; Takahara, Yoshinori; Fujimori, Masahiro

    2016-03-01

    Festulolium is a hybrid between Festuca and Lolium species that has valuable agronomic traits from both grass species. The purpose of our breeding program is to produce hexaploid festulolium that introduces tolerance to summer depression into Italian ryegrass (Lolium multiflorum) by crossing it with tall fescue (Festuca arundinacea). However, we found the DNA ploidy of hexaploids was not stable and was reduced in successive generations. We aimed to find out how to obtain stable high-ploidy festulolium. F1 hybrids of L. multiflorum and F. arundinacea were produced. The F3 generation was produced from putative hexaploid F2 individuals by open pollination. The F4 to F6 generations were obtained by polycrossing. The DNA ploidy levels of F2 to F6 individuals were estimated by flow cytometry. Cytological characteristics of the F5 and F6 individuals were investigated by FISH and GISH. The DNA ploidy level of hexaploid festulolium was reduced and stabilized at almost the same level as a tetraploid. Seed fertility was inversely correlated with an increase in ploidy level. GISH revealed no preferential Lolium transmission. FISH with a telomere probe revealed that counting the exact number of chromosomes in festulolium was difficult. DNA ploidy level was strongly correlated with the number of chromosomes. PMID:27162495

  1. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes.

    PubMed

    Mahmood, Khalid; Mathiassen, Solvejg K; Kristensen, Michael; Kudsk, Per

    2016-01-01

    Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of Lolium multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR) genes were also observed after herbicides exposure in the gene expression databases, indicating them as reliable markers. In order to get an overview of herbicidal resistance status of L. multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS) inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase) inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively, and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O. sativa and A. thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif is known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward toward a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management. PMID:27547209

  2. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes

    PubMed Central

    Mahmood, Khalid; Mathiassen, Solvejg K.; Kristensen, Michael; Kudsk, Per

    2016-01-01

    Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of Lolium multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR) genes were also observed after herbicides exposure in the gene expression databases, indicating them as reliable markers. In order to get an overview of herbicidal resistance status of L. multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS) inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase) inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively, and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O. sativa and A. thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif is known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward toward a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management. PMID:27547209

  3. Assessment of candidate reference genes for the expression studies with brassinosteroids in Lolium perenne and Triticum aestivum.

    PubMed

    Jurczyk, Barbara; Pociecha, Ewa; Janeczko, Anna; Paczyński, Robert; Rapacz, Marcin

    2014-10-15

    Quantitative PCR studies need proper reference genes with expression stability exclusively validated under certain experimental conditions. The expression stability of several genes commonly used as references was tested under 24-epibrassinolide (EBR) and temperature treatment. Different statistical approaches (qBase(PLUS), BestKeeper, NormFinder) were used to prepare rankings of expression stability in two species of an economic importance: common wheat (Triticum aestivum) and perennial ryegrass (Lolium perenne). Candidate reference genes were shown to be regulated differentially in these two plant species. The maximum stability values indicated that the expression stability was higher in T. aestivum. Taking into account of all ranks it seems that TBP-1 and UBI in ryegrass and ACT, ADP and EF1A in wheat should be used as reference genes in the brassinosteroids and temperature involving studies.

  4. Transcriptional Profiles of Drought-Related Genes in Modulating Metabolic Processes and Antioxidant Defenses in Lolium multiflorum

    PubMed Central

    Pan, Ling; Zhang, Xinquan; Wang, Jianping; Ma, Xiao; Zhou, Meiliang; Huang, LinKai; Nie, Gang; Wang, Pengxi; Yang, Zhongfu; Li, Ji

    2016-01-01

    Drought is a major environmental stress that limits growth and development of cool-season annual grasses. Drought transcriptional profiles of resistant and susceptible lines were studied to understand the molecular mechanisms of drought tolerance in annual ryegrass (Lolium multiflorum L.). A total of 4718 genes exhibited significantly differential expression in two L. multiflorum lines. Additionally, up-regulated genes associated with drought response in the resistant lines were compared with susceptible lines. Gene ontology enrichment and pathway analyses revealed that genes partially encoding drought-responsive proteins as key regulators were significantly involved in carbon metabolism, lipid metabolism, and signal transduction. Comparable gene expression was used to identify the genes that contribute to the high drought tolerance in resistant lines of annual ryegrass. Moreover, we proposed the hypothesis that short-term drought have a beneficial effect on oxidation stress, which may be ascribed to a direct effect on the drought tolerance of annual ryegrass. Evidence suggests that some of the genes encoding antioxidants (HPTs, GGT, AP, 6-PGD, and G6PDH) function as antioxidant in lipid metabolism and signal transduction pathways, which have indispensable and promoting roles in drought resistance. This study provides the first transcriptome data on the induction of drought-related gene expression in annual ryegrass, especially via modulation of metabolic homeostasis, signal transduction, and antioxidant defenses to improve drought tolerance response to short-term drought stress. PMID:27200005

  5. From introduced American weed to Cape Verde Islands endemic: the case of Solanum rigidum Lam. (Solanaceae, Solanum subgenus Leptostemonum)

    PubMed Central

    Knapp, Sandra; Vorontsova, Maria S.

    2013-01-01

    Abstract A Solanum species long considered an American introduction to the Cape Verde Islands off the west coast of Africa is identified as Solanum rigidum, a member of the Eggplant clade of Old World spiny solanums (Solanum subgenus Leptostemonum) and is probably endemic to the Cape Verde Islands. Collections of this species from the Caribbean are likely to have been introduced from the Cape Verde Islands on slave ships. We discuss the complex nomenclatural history of this plant and provide a detailed description, illustration and distribution map. The preliminary conservation status of Solanum rigidum is Least Concern, but needs to be reassessed in light of its endemic rather than introduced status. PMID:24198710

  6. From introduced American weed to Cape Verde Islands endemic: the case of Solanum rigidum Lam. (Solanaceae, Solanum subgenus Leptostemonum).

    PubMed

    Knapp, Sandra; Vorontsova, Maria S

    2013-01-01

    A Solanum species long considered an American introduction to the Cape Verde Islands off the west coast of Africa is identified as Solanum rigidum, a member of the Eggplant clade of Old World spiny solanums (Solanum subgenus Leptostemonum) and is probably endemic to the Cape Verde Islands. Collections of this species from the Caribbean are likely to have been introduced from the Cape Verde Islands on slave ships. We discuss the complex nomenclatural history of this plant and provide a detailed description, illustration and distribution map. The preliminary conservation status of Solanum rigidum is Least Concern, but needs to be reassessed in light of its endemic rather than introduced status. PMID:24198710

  7. Population Structure, Genetic Variation, and Linkage Disequilibrium in Perennial Ryegrass Populations Divergently Selected for Freezing Tolerance.

    PubMed

    Kovi, Mallikarjuna Rao; Fjellheim, Siri; Sandve, Simen R; Larsen, Arild; Rudi, Heidi; Asp, Torben; Kent, Matthew Peter; Rognli, Odd Arne

    2015-01-01

    Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L.), and freezing tolerance is a complex trait of major agronomical importance in northern and central Europe. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. The plant material investigated in this study was an experimental synthetic population derived from pair-crosses among five European perennial ryegrass genotypes, representing adaptations to a range of climatic conditions across Europe. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF], and 27 of Unselected [US]) from the second generation of the two divergently selected populations and an unselected (US) control population were genotyped using 278 genome-wide SNPs derived from perennial ryegrass transcriptome sequences. Our studies investigated the genetic diversity among the three experimental populations by analysis of molecular variance and population structure, and determined that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD) decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two F st outlier methods; finite island model (fdist) by LOSITAN and hierarchical structure model using ARLEQUIN, both detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation, and abiotic stress. These six candidate loci under directional selection for freezing tolerance might be potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

  8. Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass.

    PubMed

    Yu, Xiaoqing; Pijut, Paula M; Byrne, Stephen; Asp, Torben; Bai, Guihua; Jiang, Yiwei

    2015-06-01

    Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones. The objective of this study was to identify candidate genes significantly associated with winter survival and spring regrowth in a global collection of 192 perennial ryegrass accessions. Significant differences in winter survival (WS), percentage of canopy green cover (CGC), chlorophyll index (Chl), and normalized difference vegetation index (NDVI) were found among accessions. After controlling population structure, LpLEA3 encoding a late embryogenesis abundant group 3 protein and LpCAT encoding a catalase were associated with CGC and Chl, while LpMnSOD encoding a magnesium superoxide dismutase and LpChl Cu-ZnSOD encoding a chlorophyll copper-zinc superoxide dismutase were associated with NDVI or Chl. Significant association was also discovered between C-repeat binding factor LpCBF1b and WS. Three sequence variations identified in LpCAT, LpMnSOD, and LpChl Cu-ZnSOD were synonymous substitutions, whereas one pair of adjacent single nucleotide polymorphisms (SNPs) in LpLEA3 and one SNP in LpCBF1b resulted in amino acid change. The results demonstrated that allelic variation in LpLEA3 and LpCBF1b was closely related to winter survival and spring regrowth in perennial ryegrass.

  9. Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass.

    PubMed

    Yu, Xiaoqing; Pijut, Paula M; Byrne, Stephen; Asp, Torben; Bai, Guihua; Jiang, Yiwei

    2015-06-01

    Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones. The objective of this study was to identify candidate genes significantly associated with winter survival and spring regrowth in a global collection of 192 perennial ryegrass accessions. Significant differences in winter survival (WS), percentage of canopy green cover (CGC), chlorophyll index (Chl), and normalized difference vegetation index (NDVI) were found among accessions. After controlling population structure, LpLEA3 encoding a late embryogenesis abundant group 3 protein and LpCAT encoding a catalase were associated with CGC and Chl, while LpMnSOD encoding a magnesium superoxide dismutase and LpChl Cu-ZnSOD encoding a chlorophyll copper-zinc superoxide dismutase were associated with NDVI or Chl. Significant association was also discovered between C-repeat binding factor LpCBF1b and WS. Three sequence variations identified in LpCAT, LpMnSOD, and LpChl Cu-ZnSOD were synonymous substitutions, whereas one pair of adjacent single nucleotide polymorphisms (SNPs) in LpLEA3 and one SNP in LpCBF1b resulted in amino acid change. The results demonstrated that allelic variation in LpLEA3 and LpCBF1b was closely related to winter survival and spring regrowth in perennial ryegrass. PMID:25900564

  10. Interrelationships between Acremonium lolii, Peramine, and Lolitrem B in Perennial Ryegrass

    PubMed Central

    Ball, O. J.; Prestidge, R. A.; Sprosen, J. M.

    1995-01-01

    Perennial ryegrass (Lolium perenne L.) is commonly infected with the endophytic fungus Acremonium lolii in a mutualistic relationship. The fungus produces a number of alkaloids, some of which are responsible for causing livestock disorders and/or for conferring insect resistance to the host grass. Little is known about the interrelationship between fungal growth and alkaloid production in the ryegrass plant and how this varies throughout the year. The concentrations of A. lolii and two of its alkaloid metabolites, lolitrem B and peramine, were monitored in basal (mainly leaf sheath) and upper (mainly leaf blade) parts of 17 endophyte-infected ryegrass plants on a monthly basis for 1 year. A. lolii, lolitrem B, and peramine concentrations were lowest in winter. The highest A. lolii concentrations were recorded in early summer, which coincided with the development of plant reproductive structures. Lolitrem B concentrations were highest from summer to early autumn and were consistently highest in the basal part of the plant. Peramine concentrations were generally highest in the upper part of the plant. Individual plants contained different levels of A. lolii, lolitrem B and peramine. These differences were generally maintained throughout the year. Although data for each month were variable, regression analyses showed that yearly mean concentrations of lolitrem B and peramine in individual plants were closely related to, and therefore probably largely determined by, yearly mean concentrations of A. lolii. PMID:16535001

  11. In vitro biological activity of secondary metabolites from Seseli rigidum Waldst. et Kit. (Apiaceae).

    PubMed

    Jakovljević, Dragana; Vasić, Sava; Stanković, Milan; Čomić, Ljiljana; Topuzović, Marina

    2015-12-01

    The antioxidant, antimicrobial activity, total phenolic content and flavonoid concentration of Seseli rigidum Waldst. et Kit. were evaluated. Five different extracts of the aboveground plant parts were obtained by extraction with distilled water, methanol, acetone, ethyl acetate and petroleum ether. Total phenols were determined using the Folin-Ciocalteu's reagent, with the highest values obtained in the acetone extract (102.13 mg GAE/g). The concentration of flavonoids, determined by using a spectrophotometric method with aluminum chloride and expressed in terms of rutin equivalent, was also highest in the acetone extracts (291.58 mg RUE/g). The antioxidant activity was determined in vitro using DPPH reagent. The greatest antioxidant activity was expressed in the aqueous extract (46.15 μg/ml). In vitro antimicrobial activities were determined using a microdilution analysis method; minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) were determined. Methanolic extract had the greatest influence on bacilli (MIC at 0.0391 mg/ml), but the best antimicrobial effect had acetone and ethyl acetate extracts considering their broad impact on bacteria. According to our research, S. rigidum can be regarded as promising candidate for natural plant source with high value of biological compounds.

  12. Protecting effect of recycled urban wastes (sewage sludge and wastewater) on ryegrass against the toxicity of pesticides at high concentrations.

    PubMed

    Peña, Aránzazu; Mingorance, Ma Dolores; Guzmán, Ignacio; Sánchez, Lourdes; Fernández-Espinosa, Antonio J; Valdés, Benito; Rossini-Oliva, Sabina

    2014-09-01

    Degraded landscapes, like those from abandoned mine areas, could be restored by revegetating them with appropriate plant species, after correction for acidity and improvement by adding exogenous organic material. Application of urban wastes to large areas of derelict land helps in the sustainable development of this landscape. However, the development of plant species in these soils could require in the future the management of possible pests or diseases by pesticide applications which could also affect plant yield. Therefore, ryegrass (Lolium perenne L.) was planted in a limed soil from the mining area of Riotinto (SW Spain), using an indoor pot experiment and the effects of amendment with sewage sludge, as well as irrigation with urban wastewater on plant uptake of the insecticide thiacloprid and the fungicide fenarimol were examined. Ryegrass biomass was reduced up to 3-fold by pesticide application. Fenarimol residues were the highest in soil, while those of thiacloprid were lower in soil and higher in ryegrass. Addition of sewage sludge and irrigation with wastewater led to a reduction of pesticide translocation to the aerial plant parts, representing a lower hazard to ryegrass quality grown in this mine soil. PMID:24797639

  13. Coordinated expression of functionally diverse fructosyltransferase genes is associated with fructan accumulation in response to low temperature in perennial ryegrass.

    PubMed

    Hisano, Hiroshi; Kanazawa, Akira; Yoshida, Midori; Humphreys, Mervyn O; Iizuka, Masaru; Kitamura, Keisuke; Yamada, Toshihiko

    2008-01-01

    * Fructan is the major nonstructural carbohydrate reserve in temperate grasses. To understand regulatory mechanisms in fructan synthesis and adaptation to cold environments, the isolation, functional characterization and genetic mapping of fructosyltransferase (FT) genes in perennial ryegrass (Lolium perenne) are described. * Six cDNAs (prft1-prft6) encoding FTs were isolated from cold-treated ryegrass plants, and three were positioned on a perennial ryegrass linkage map. Recombinant proteins were produced in Pichia pastoris and enzymatic activity was characterized. Changes in carbohydrate levels and mRNA levels of FT genes during cold treatment were also analysed. * One gene encodes sucrose-sucrose 1-fructosyltransferase (1-SST), and two gene encode fructan-fructan 6G-fructosyltransferase (6G-FFT). Protein sequences for the other genes (prfts 1, 2 and 6) were similar to sucrose-fructan 6-fructosyltransferase (6-SFT). The 1-SST and prft1 genes were colocalized with an invertase gene on the ryegrass linkage map. The mRNA levels of prft1 and prft2 increased gradually during cold treatment, while those of the 1-SST and 6G-FFT genes first increased, but then decreased before increasing again during a longer period of cold treatment. * Thus at least two different patterns of gene expression have developed during the evolution of functionally diverse FT genes, which are associated in a coordinated way with fructan synthesis in a cold environment.

  14. Protecting effect of recycled urban wastes (sewage sludge and wastewater) on ryegrass against the toxicity of pesticides at high concentrations.

    PubMed

    Peña, Aránzazu; Mingorance, Ma Dolores; Guzmán, Ignacio; Sánchez, Lourdes; Fernández-Espinosa, Antonio J; Valdés, Benito; Rossini-Oliva, Sabina

    2014-09-01

    Degraded landscapes, like those from abandoned mine areas, could be restored by revegetating them with appropriate plant species, after correction for acidity and improvement by adding exogenous organic material. Application of urban wastes to large areas of derelict land helps in the sustainable development of this landscape. However, the development of plant species in these soils could require in the future the management of possible pests or diseases by pesticide applications which could also affect plant yield. Therefore, ryegrass (Lolium perenne L.) was planted in a limed soil from the mining area of Riotinto (SW Spain), using an indoor pot experiment and the effects of amendment with sewage sludge, as well as irrigation with urban wastewater on plant uptake of the insecticide thiacloprid and the fungicide fenarimol were examined. Ryegrass biomass was reduced up to 3-fold by pesticide application. Fenarimol residues were the highest in soil, while those of thiacloprid were lower in soil and higher in ryegrass. Addition of sewage sludge and irrigation with wastewater led to a reduction of pesticide translocation to the aerial plant parts, representing a lower hazard to ryegrass quality grown in this mine soil.

  15. The photosynthetic acclimation of Lolium perenne growing in a free-air CO{sub 2} enrichment (FACE) system

    SciTech Connect

    Bryant, J.B. |

    1994-11-01

    Stands of Ryegrass (Lolium perenne L. cv. Bastion) were grown in the field at ambient or elevated (600{mu}mol/mol) CO{sub 2} concentration, high (560Kg/ha) or low (140Kg/ha) nitrogen addition and with a frequent (every 4 weeks) or infrequent (every 8 weeks) cutting regime. Plants were in the second year of a 3 year experiment. Exposure to elevated CO{sub 2} was carried out with a Free-Air CO{sub 2} Enrichment (FACE) system which provides the most {open_quote}realistic{close_quote} system of CO{sub 2} fumigation currently available. Elevated CO{sub 2} increased diurnal CO{sub 2} assimilation by between 34 and 88% whilst reducing rates of stomatal conductance by between 1 and 42%. However, analysis of the A vs. Ci response showed considerable acclimation of the photosynthetic apparatus in response to elevated CO{sub 2} - Vc{sub max} as an in vivo measure of RubisCO activity, decreased by between 29 and 35% in high CO{sub 2}, whilst J{sub max}, as a measure of the RubP regeneration capacity, showed no significant change. Two out of three additional perennial grassland species studied showed similar acclamatory behavior to Ryegrass. Diurnal assimilation rate, J{sub max} and, in most cases, Vc{sub max}, increased significantly directly after cutting of Ryegrass stands, but nitrogen treatment had little effect on any of these parameters. Neither stomatal density, stomatal index nor stomatal pore length of Ryegrass were significantly altered by growth in elevated CO{sub 2}. The results are discussed in terms of the limitation imposed on maximizing photosynthetic and growth responses of Ryegrass at elevated CO{sub 2}, by the ability of perennial species to increase long-term sink capacity under these conditions.

  16. Windrow burning eliminates Italian Ryegrass (Lolium perenne ssp. multiflorum) seed viability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Burning of crop residues that have been concentrated behind the harvest combine (windrowed) is one of several harvest weed seed control strategies that have been developed and evaluated in Australia to address the widespread evolution of multiple herbicide resistance in annual weeds. Herbicide-resis...

  17. Amendments promote the development of Lolium perenne in soils affected by historical copper smelting operations.

    PubMed

    Goecke, Paul; Ginocchio, Rosanna; Mench, Michel; Neaman, Alexander

    2011-07-01

    The Puchuncaví valley, central Chile, has been exposed to aerial emissions from a copper smelter. Nowadays, soils in the surroundings are sparsely-vegetated, acidic, and metal-contaminated, and their remediation is needed to reduce environmental risks. We assessed effectiveness of lime, fly ash, compost, and iron grit as amendments to immobilize Cu in soils and promote plant growth. Amended soils were cultivated with Lolium perenne for 60 days under controlled conditions. Total dissolved Cu and Cu2+ activity in the soil solution, ryegrass biomass, and Cu accumulation in plant tissues were measured. Addition of lime and fly ash decreased Cu concentrations and Cu2+ activity in the soil solution, increased plant biomass, and reduced shoot Cu concentration below 22 mg kg(-1) (the phytotoxicity threshold for the species). The most effective amendment with respect to the shoot biomass yield was a combination of lime and compost. Water content of the substrate and the K accumulation were positively correlated with the compost application rate. Compost combined with iron grit decreased dissolved Cu concentrations during the period of highest solubility, i.e., during the first 60 days after the compost application. However, iron grit incorporation into soils amended with lime and compost decreased the shoot biomass of ryegrass. PMID:21972502

  18. A synteny-based draft genome sequence of the forage grass Lolium perenne.

    PubMed

    Byrne, Stephen L; Nagy, Istvan; Pfeifer, Matthias; Armstead, Ian; Swain, Suresh; Studer, Bruno; Mayer, Klaus; Campbell, Jacqueline D; Czaban, Adrian; Hentrup, Stephan; Panitz, Frank; Bendixen, Christian; Hedegaard, Jakob; Caccamo, Mario; Asp, Torben

    2015-11-01

    Here we report the draft genome sequence of perennial ryegrass (Lolium perenne), an economically important forage and turf grass species that is widely cultivated in temperate regions worldwide. It is classified along with wheat, barley, oats and Brachypodium distachyon in the Pooideae sub-family of the grass family (Poaceae). Transcriptome data was used to identify 28,455 gene models, and we utilized macro-co-linearity between perennial ryegrass and barley, and synteny within the grass family, to establish a synteny-based linear gene order. The gametophytic self-incompatibility mechanism enables the pistil of a plant to reject self-pollen and therefore promote out-crossing. We have used the sequence assembly to characterize transcriptional changes in the stigma during pollination with both compatible and incompatible pollen. Characterization of the pollen transcriptome identified homologs to pollen allergens from a range of species, many of which were expressed to very high levels in mature pollen grains, and are potentially involved in the self-incompatibility mechanism. The genome sequence provides a valuable resource for future breeding efforts based on genomic prediction, and will accelerate the development of new varieties for more productive grasslands.

  19. Lolium perenne grasslands may function as a sink for atmospheric carbon dioxide

    SciTech Connect

    Ginkel, J.H. van; Whitmore, A.P.; Gorissen, A.

    1999-10-01

    Model calculations and scenario studies suggest the existence of a considerable positive feedback between temperature and CO{sub 2} levels in the atmosphere. Rising temperatures are supposed to increase decomposition of soil organic C leading to increased production of CO{sub 2} and this extra CO{sub 2} induces a positive feedback by raising the temperature still further. Evidence was found that negative feedback mechanisms also exist; more primary production is allocated to roots as atmospheric CO{sub 2} rises and these roots decompose more slowly than roots grown at ambient CO{sub 2} levels. Experimental data partly obtained with {sup 14}C-techniques were applied in a grassland C model. The model results show that at an atmospheric CO{sub 2} concentration of 700 {micro}L L{sup {minus}1} increased below ground C storage will be more than sufficient to balance the increased decomposition of soil organic C in a ryegrass (Lolium perenne L.) grassland soil. Once a doubling of the present atmospheric CO{sub 2} concentration has been reached, C equivalent to 55% of the annual CO{sub 2} increase above 1 ha ryegrass can be withdrawn from the atmosphere. This indicates that grassland soils represent a significant sink for rising atmospheric CO{sub 2}.

  20. Implementation of Genomic Prediction in Lolium perenne (L.) Breeding Populations

    PubMed Central

    Grinberg, Nastasiya F.; Lovatt, Alan; Hegarty, Matt; Lovatt, Andi; Skøt, Kirsten P.; Kelly, Rhys; Blackmore, Tina; Thorogood, Danny; King, Ross D.; Armstead, Ian; Powell, Wayne; Skøt, Leif

    2016-01-01

    Perennial ryegrass (Lolium perenne L.) is one of the most widely grown forage grasses in temperate agriculture. In order to maintain and increase its usage as forage in livestock agriculture, there is a continued need for improvement in biomass yield, quality, disease resistance, and seed yield. Genetic gain for traits such as biomass yield has been relatively modest. This has been attributed to its long breeding cycle, and the necessity to use population based breeding methods. Thanks to recent advances in genotyping techniques there is increasing interest in genomic selection from which genomically estimated breeding values are derived. In this paper we compare the classical RRBLUP model with state-of-the-art machine learning techniques that should yield themselves easily to use in GS and demonstrate their application to predicting quantitative traits in a breeding population of L. perenne. Prediction accuracies varied from 0 to 0.59 depending on trait, prediction model and composition of the training population. The BLUP model produced the highest prediction accuracies for most traits and training populations. Forage quality traits had the highest accuracies compared to yield related traits. There appeared to be no clear pattern to the effect of the training population composition on the prediction accuracies. The heritability of the forage quality traits was generally higher than for the yield related traits, and could partly explain the difference in accuracy. Some population structure was evident in the breeding populations, and probably contributed to the varying effects of training population on the predictions. The average linkage disequilibrium between adjacent markers ranged from 0.121 to 0.215. Higher marker density and larger training population closely related with the test population are likely to improve the prediction accuracy. PMID:26904088

  1. Virus induced gene silencing in Lolium temulentum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lolium temulentum L. is valuable as a model species for studying abiotic stress in closely related forage and turf grasses, many of which are polyploid outcrossing species. As with most monocot species, Agrobacterium-mediated transformation of L. temulentum is still challenging, time consuming and n...

  2. Toxicity of formulated glycol deicers and ethylene and propylene glycol to lactuca sativa, lolium perenne, selenastrum capricornutum, and lemna minor

    PubMed

    Pillard; DuFresne

    1999-07-01

    Laboratory studies were conducted to determine the toxicity of ethylene glycol (EG) and propylene glycol (PG) as well as two formulated glycol aircraft deicing/anti-icing fluids (ADAFs) to lettuce (Lactuca sativa), perennial ryegrass (Lolium perenne), a green alga (Selenastrum capricornutum), and duckweed (Lemna minor). Seedling emergence, root length, and shoot length were measured in lettuce and ryegrass; cell growth of the alga and frond growth, chlorophyll a, and pheophytin a of the duckweed were measured. While both the ADAFs and pure glycols were toxic to the test species, there were substantial differences in how the organisms responded to the test materials. ADAFs affected emergence in ryegrass more than in lettuce. However, when considering the sublethal endpoints of root and shoot length, the ADAFs were significantly more toxic to lettuce. The root length 120-h IC25s for lettuce were 2,710 and 21, 270 mg EG/L for the ADAF and pure EG compound, respectively; the root length 120-h IC25s for ryegrass were 4,150 and 3,620 mg EG/L for the ADAF and pure EG compound, respectively. EG and PG ADAFs were more toxic than pure EG or PG to L. minor. To S. capricornutum, EG ADAF toxicity was similar to EG toxicity, however, PG ADAF was substantially more toxic to the alga than pure PG. The greater toxicity of ADAFs is reflective of other studies using animals and suggests that although glycols no doubt contribute to toxicity in deicer formulations, other compounds in the mixtures also contribute to the toxicity of the deicers. However, differences in responses between the four plant species suggest differences in modes of action and/or how the plants metabolize the compounds.http://link. springer-ny.com/link/service/journals/00244/bibs/37n1p29.html

  3. Allelopathic effect of Bromus spp. and Lolium spp. shoot extracts on some crops.

    PubMed

    Lehoczky, E; Nelima, M Okumu; Szabó, R; Szalai, A; Nagy, P

    2011-01-01

    Allelopathy is an untapped resource for weed control in crops that could give good possibilities for environmentally sound, integrated crop production. Allelopathy is defined as the direct or indirect harmful or beneficial effects of one plant on another through the production of chemical compounds, called allelochemicals, which escape into the environment. Allelochemicals can be produced by weeds and affect crops, and the reverse is also true. Allelopathic interactions include weed-weed, weed-crop, and crop-crop. Allelopathy offers potential for selective biological weed control for instance weed-suppressing crops and the use of plant residues in cropping systems, allelopathic rotational crops, or companion plants with allelopathic potential. Bromus species occur in many habitats in temperate regions of the world, including America, Eurasia, Australia, and Africa. The genus Lolium is one of the most important forage grasses. The weed species usually grow in the same production zones as wheat and are considered weeds since they parasitize wheat fields. Some of the weed species in these two genus have been reported to have allelopathic effect. One of the methods that has been successful in studying allelopathic activity are bioassays. Laboratory experiments were conducted to determine allelopathic effect of watery shoot extracts of four weed species of the Poaceae family, namely Bromus rigidus, Bromus diandrus, Lolium multiflorum and Lolium temulentum on germination and growth of winter wheat (Triticum aestivum L.), spring barley (Hordeum vulgare L.), corn (Zea mays L), perennial ryegrass (Lolium perenne L.), bean (Phaseolus sp.) and sunflower (Helianthus annuus L.) and on each other. The experiment was carried out during the period March 2010 to October 2010. Twenty five seeds were put into one Petri-dish on filter paper, adding 15ml of extract to each in four repeats. The germination took place in a Binder-type thermostat in the dark. The timing of germination was

  4. Allelopathic effect of Bromus spp. and Lolium spp. shoot extracts on some crops.

    PubMed

    Lehoczky, E; Nelima, M Okumu; Szabó, R; Szalai, A; Nagy, P

    2011-01-01

    Allelopathy is an untapped resource for weed control in crops that could give good possibilities for environmentally sound, integrated crop production. Allelopathy is defined as the direct or indirect harmful or beneficial effects of one plant on another through the production of chemical compounds, called allelochemicals, which escape into the environment. Allelochemicals can be produced by weeds and affect crops, and the reverse is also true. Allelopathic interactions include weed-weed, weed-crop, and crop-crop. Allelopathy offers potential for selective biological weed control for instance weed-suppressing crops and the use of plant residues in cropping systems, allelopathic rotational crops, or companion plants with allelopathic potential. Bromus species occur in many habitats in temperate regions of the world, including America, Eurasia, Australia, and Africa. The genus Lolium is one of the most important forage grasses. The weed species usually grow in the same production zones as wheat and are considered weeds since they parasitize wheat fields. Some of the weed species in these two genus have been reported to have allelopathic effect. One of the methods that has been successful in studying allelopathic activity are bioassays. Laboratory experiments were conducted to determine allelopathic effect of watery shoot extracts of four weed species of the Poaceae family, namely Bromus rigidus, Bromus diandrus, Lolium multiflorum and Lolium temulentum on germination and growth of winter wheat (Triticum aestivum L.), spring barley (Hordeum vulgare L.), corn (Zea mays L), perennial ryegrass (Lolium perenne L.), bean (Phaseolus sp.) and sunflower (Helianthus annuus L.) and on each other. The experiment was carried out during the period March 2010 to October 2010. Twenty five seeds were put into one Petri-dish on filter paper, adding 15ml of extract to each in four repeats. The germination took place in a Binder-type thermostat in the dark. The timing of germination was

  5. Global transcriptome changes in perennial ryegrass during early infection by pink snow mould.

    PubMed

    Kovi, Mallikarjuna Rao; Abdelhalim, Mohamed; Kunapareddy, Anil; Ergon, Åshild; Tronsmo, Anne Marte; Brurberg, May Bente; Hofgaard, Ingerd Skow; Asp, Torben; Rognli, Odd Arne

    2016-01-01

    Lack of resistance to pink snow mould (Microdochium nivale) is a major constraint for adaptation of perennial ryegrass (Lolium perenne L.) to continental regions with long-lasting snow cover at higher latitudes. Almost all investigations of genetic variation in resistance have been performed using cold acclimated plants. However, there may be variation in resistance mechanisms that are functioning independently of cold acclimation. In this study our aim was to identify candidate genes involved in such resistance mechanisms. We first characterized variation in resistance to M. nivale among non-acclimated genotypes from the Norwegian cultivar 'Fagerlin' based on relative regrowth and fungal quantification by real-time qPCR. One resistant and one susceptible genotype were selected for transcriptome analysis using paired-end sequencing by Illumina Hiseq 2000. Transcriptome profiles, GO enrichment and KEGG pathway analysis indicate that defense response related genes are differentially expressed between the resistant and the susceptible genotype. A significant up-regulation of defense related genes, as well as genes involved in cell wall cellulose metabolic processes and aryl-alcohol dehydrogenase (NADP+) activity, was observed in the resistant genotype. The candidate genes identified in this study might be potential molecular marker resources for breeding perennial ryegrass cultivars with improved resistance to pink snow mould.

  6. Global transcriptome changes in perennial ryegrass during early infection by pink snow mould

    PubMed Central

    Kovi, Mallikarjuna Rao; Abdelhalim, Mohamed; Kunapareddy, Anil; Ergon, Åshild; Tronsmo, Anne Marte; Brurberg, May Bente; Hofgaard, Ingerd Skow; Asp, Torben; Rognli, Odd Arne

    2016-01-01

    Lack of resistance to pink snow mould (Microdochium nivale) is a major constraint for adaptation of perennial ryegrass (Lolium perenne L.) to continental regions with long-lasting snow cover at higher latitudes. Almost all investigations of genetic variation in resistance have been performed using cold acclimated plants. However, there may be variation in resistance mechanisms that are functioning independently of cold acclimation. In this study our aim was to identify candidate genes involved in such resistance mechanisms. We first characterized variation in resistance to M. nivale among non-acclimated genotypes from the Norwegian cultivar ‘Fagerlin’ based on relative regrowth and fungal quantification by real-time qPCR. One resistant and one susceptible genotype were selected for transcriptome analysis using paired-end sequencing by Illumina Hiseq 2000. Transcriptome profiles, GO enrichment and KEGG pathway analysis indicate that defense response related genes are differentially expressed between the resistant and the susceptible genotype. A significant up-regulation of defense related genes, as well as genes involved in cell wall cellulose metabolic processes and aryl-alcohol dehydrogenase (NADP+) activity, was observed in the resistant genotype. The candidate genes identified in this study might be potential molecular marker resources for breeding perennial ryegrass cultivars with improved resistance to pink snow mould. PMID:27346054

  7. Fructan metabolism and changes in fructan composition during cold acclimation in perennial ryegrass

    PubMed Central

    Abeynayake, Shamila W.; Etzerodt, Thomas P.; Jonavičienė, Kristina; Byrne, Stephen; Asp, Torben; Boelt, Birte

    2015-01-01

    Perennial ryegrass (Lolium perenne L.) produces high levels of fructans as a mixture of oligosaccharides and polysaccharides with different degrees of polymerization (DP). The present study describes the analysis of the compositional changes in the full spectrum of fructans, fructan distribution between above ground biomass (top) and the roots, and the transcription of candidate genes involved in fructan metabolism during cold acclimation in perennial ryegrass variety “Veyo” and ecotype “Falster” from distinct geographical origins. We observed changes in fructan composition and induction of low-DP fructans, especially DP = 4, in both the top and the roots of “Veyo” and “Falster” in response to low-temperature stress. The accumulation of DP > 50 fructans was only apparent in the top tissues where the Lp1-FFT expression is higher compared to the roots in both “Veyo” and “Falster.” Our results also show the accumulation and depolymerization of fructans with different DP, together with the induction of genes encoding fructosyltransferases and fructan exohydrolases in both “Veyo” and “Falster” during cold acclimation, supporting the hypothesis that fructan synthesis and depolymerization occurring simultaneously. The ecotype “Falster,” adapted to cold climates, increased total fructan content and produced more DP > 7 fructans in the roots than the variety “Veyo,” adapted to warmer climates. This indicates that high-DP fructan accumulation in roots may be an adaptive trait for plant recovery after abiotic stresses. PMID:26029229

  8. Global transcriptome changes in perennial ryegrass during early infection by pink snow mould.

    PubMed

    Kovi, Mallikarjuna Rao; Abdelhalim, Mohamed; Kunapareddy, Anil; Ergon, Åshild; Tronsmo, Anne Marte; Brurberg, May Bente; Hofgaard, Ingerd Skow; Asp, Torben; Rognli, Odd Arne

    2016-01-01

    Lack of resistance to pink snow mould (Microdochium nivale) is a major constraint for adaptation of perennial ryegrass (Lolium perenne L.) to continental regions with long-lasting snow cover at higher latitudes. Almost all investigations of genetic variation in resistance have been performed using cold acclimated plants. However, there may be variation in resistance mechanisms that are functioning independently of cold acclimation. In this study our aim was to identify candidate genes involved in such resistance mechanisms. We first characterized variation in resistance to M. nivale among non-acclimated genotypes from the Norwegian cultivar 'Fagerlin' based on relative regrowth and fungal quantification by real-time qPCR. One resistant and one susceptible genotype were selected for transcriptome analysis using paired-end sequencing by Illumina Hiseq 2000. Transcriptome profiles, GO enrichment and KEGG pathway analysis indicate that defense response related genes are differentially expressed between the resistant and the susceptible genotype. A significant up-regulation of defense related genes, as well as genes involved in cell wall cellulose metabolic processes and aryl-alcohol dehydrogenase (NADP+) activity, was observed in the resistant genotype. The candidate genes identified in this study might be potential molecular marker resources for breeding perennial ryegrass cultivars with improved resistance to pink snow mould. PMID:27346054

  9. Interplanting Annual Ryegrass, Wheat, Oat, and Corn to Mitigate Iron Deficiency in Dry Beans

    PubMed Central

    Omondi, Emmanuel Chiwo; Kniss, Andrew R.

    2014-01-01

    This study evaluated whether grass intercropping can be used to alleviate Fe deficiency chlorosis in dry beans (Phaseolus vulgaris L.) grown in high pH, calcareous soils with low organic matter. Field studies were conducted at the University of Wyoming Sustainable Agriculture Research and Extension Center in 2009 and 2010. Black- and navy beans were grown alone or intercropped with annual ryegrass (Lolium multiflorum Lam.), oat (Avena sativa L.), corn (Zea mays L.), or spring wheat (Triticum aestivum L.) in a two-factor factorial strip-plot randomized complete block design. All four grass species increased chlorophyll intensity in dry beans. However, grass species did not increase iron (Fe) concentration in dry bean tissues suggesting inefficient utilization of Fe present in the dry bean tissues. In 2009, nitrate-nitrogen (NO3-N) and manganese (Mn) concentration in bean tissue were greater in bean monoculture than in grass intercropped beans. Bean monoculture also had greater soil NO3-N concentrations than grass intercropped treatments. In 2009, grass intercrops reduced dry bean yield >25% compared to bean monoculture. Annual ryegrass was the least competitive of the four annual grass species. This suggests that competition from grasses for nutrients, water, or light may have outweighed benefits accruing from grass intercropping. Additional studies are required to determine the appropriate grass and dry bean densities, as well as the optimum time of grass removal. PMID:25536084

  10. Interplanting annual ryegrass, wheat, oat, and corn to mitigate iron deficiency in dry beans.

    PubMed

    Omondi, Emmanuel Chiwo; Kniss, Andrew R

    2014-01-01

    This study evaluated whether grass intercropping can be used to alleviate Fe deficiency chlorosis in dry beans (Phaseolus vulgaris L.) grown in high pH, calcareous soils with low organic matter. Field studies were conducted at the University of Wyoming Sustainable Agriculture Research and Extension Center in 2009 and 2010. Black- and navy beans were grown alone or intercropped with annual ryegrass (Lolium multiflorum Lam.), oat (Avena sativa L.), corn (Zea mays L.), or spring wheat (Triticum aestivum L.) in a two-factor factorial strip-plot randomized complete block design. All four grass species increased chlorophyll intensity in dry beans. However, grass species did not increase iron (Fe) concentration in dry bean tissues suggesting inefficient utilization of Fe present in the dry bean tissues. In 2009, nitrate-nitrogen (NO3-N) and manganese (Mn) concentration in bean tissue were greater in bean monoculture than in grass intercropped beans. Bean monoculture also had greater soil NO3-N concentrations than grass intercropped treatments. In 2009, grass intercrops reduced dry bean yield >25% compared to bean monoculture. Annual ryegrass was the least competitive of the four annual grass species. This suggests that competition from grasses for nutrients, water, or light may have outweighed benefits accruing from grass intercropping. Additional studies are required to determine the appropriate grass and dry bean densities, as well as the optimum time of grass removal.

  11. Genetic diversity and relationships in cultivars of Lolium multiflorum Lam. using sequence-related amplified polymorphism markers.

    PubMed

    Huang, L K; Jiang, X Y; Huang, Q T; Xiao, Y F; Chen, Z H; Zhang, X Q; Miao, J M; Yan, H D

    2014-12-04

    Sequence-related amplified polymorphism (SRAP) markers were used to analyze and estimate the genetic variability, level of diversity, and relationships among 20 cultivars and strains of annual ryegrass (Lolium multiflorum Lam.). Eighteen SRAP primer combinations generated 334 amplification bands, of which 298 were polymorphic. The polymorphism information content ranged from 0.4715 (me10 + em1) to 0.5000 (me5 + em7), with an average of 0.4921. The genetic similarity coefficient ranged from 0.4304 to 0.8529, and coefficients between 0.65 and 0.90 accounted for 90.00%. The cluster analysis separated the accessions into five groups partly according to their germplasm resource origins.

  12. Competitive Al3+ Inhibition of Net Mg2+ Uptake by Intact Lolium multiflorum Roots 1

    PubMed Central

    Rengel, Zdenko

    1990-01-01

    Rhizotoxicity of Al is more pronounced in younger plants. Effects of Al on nutrient uptake by plants of different age are poorly understood. The depletion technique was used to monitor net Mg2+ uptake from nutrient solutions by intact 15- and 35-day-old plants of two ryegrass (Lolium multiflorum Lam.) cultivars. Lowering the pH from 6.0 to 4.2 decreased the maximum net ion influx without affecting Km. Aluminum at 6.6 micromolar Al3+ activity increased Km indicating competitive inhibition. The effects of pH and 6.6 micromolar Al3+ on net Mg2+ uptake were much larger in 15- than in 35-day-old plants. Aluminum at 26 micromolar Al3+ activity competitively inhibited net Mg2+ uptake by 35-day-old plants, while causing time- and external Mg2+ activity-dependent net Mg2+ efflux from 15-day-old plants. The equilibrium constant (Ki) of a reversible combination of postulated plasmalemma Mg2+ transporter and Al3+ was calculated to be 2 and 5 micromolar Al3+ activity for 15-day-old plants of Wilo and Gulf ryegrass, respectively, and 21 micromolar Al3+ activity for 35-day-old plants of both cultivars. The Al3+-mediated increase in Km was larger for 15-day-old plants of the Al-sensitive cultivar `Wilo' than of the more Al-tolerant cultivar `Gulf,' while Al3+ affected 35-day-old plants of both cultivars to the same extent. PMID:16667588

  13. Secondary metabolites of Seseli rigidum: Chemical composition plus antioxidant, antimicrobial and cholinesterase inhibition activity.

    PubMed

    Stankov-Jovanović, V P; Ilić, M D; Mitić, V D; Mihajilov-Krstev, T M; Simonović, S R; Nikolić Mandić, S D; Tabet, J C; Cole, R B

    2015-01-01

    Extracts of different polarity obtained from various plant parts (root, leaf, flower and fruit) of Seseli rigidum were studied by different antioxidant assays: DPPH and ABTS radical scavenging activity, by total reducing power method as well as via total content of flavonoids and polyphenols. Essential oils of all plant parts showed weak antioxidant characteristics. The inhibitory concentration range of the tested extracts, against bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, and fungi Candida albicans and Aspergillus niger was 0.01-1.50 mg/mL and of a microbicidal 0.02-3.00 mg/mL. In the interaction with cholinesterase, all essential oils proved effective as inhibitors. The highest percentage of inhibition versus human and horse cholinesterase was shown by root essential oil (38.20% and 48.30%, respectively) among oils, and root hexane extract (40.56% and 50.65% respectively). Essential oils and volatile components of all plant parts were identified by GC, GC-MS and headspace/GC-MS. Statistical analysis of the ensemble of results showed that the root essential oil composition differed significantly from essential oils of other parts of the plant. Taking into account all of the studied activities, the root hexane extract showed the best overall properties. By means of high performance liquid chromatography coupled to high resolution mass spectrometry, the 30 most abundant constituents were identified in extracts of different polarity. The presence of identified constituents was linked to observed specific biological activities, thus designating compounds potentially responsible for each exhibited activity. PMID:25863020

  14. Temperature and Plant Genotype Alter Alkaloid Concentrations in Ryegrass Infected with an Epichloë Endophyte and This Affects an Insect Herbivore

    PubMed Central

    Hennessy, Louise M.; Popay, Alison J.; Finch, Sarah C.; Clearwater, Michael J.; Cave, Vanessa M.

    2016-01-01

    Asexual Epichloë endophytes colonize agricultural forage grasses in a relationship which is mutually beneficial and provides the host plant with protection against herbivorous insects. The endophyte strain AR37 (Epichloë festucae var. lolii) produces epoxy-janthitrem alkaloids and is the only endophyte known to provide ryegrass with resistance against porina larvae (Wiseana cervinata (Walker)), a major pasture pest in cooler areas of New Zealand. This study examined the effect of temperature on concentrations of epoxy-janthitrems in AR37-infected ryegrass and determined how the resulting variations in concentration affected consumption, growth and survival of porina larvae. Twenty replicate pairs of perennial (Lolium perenne L.) and Italian ryegrass (L. multiflorum Lam.) plants with and without endophyte were prepared by cloning, with one of each pair grown at either high (20°C) or low (7°C) temperature. After 10 weeks, herbage on each plant was harvested, divided into leaf and pseudostem, then freeze dried and ground. Leaf and pseudostem material was then incorporated separately into semi-synthetic diets which were fed to porina larvae in a bioassay over 3 weeks. Epoxy-janthitrem concentrations within the plant materials and the semi-synthetic diets were analyzed by high performance liquid chromatography. AR37-infected ryegrass grown at high temperature contained high in planta concentrations of epoxy-janthitrem (30.6 μg/g in leaves and 83.9 μg/g in pseudostems) that had a strong anti-feedant effect on porina larvae when incorporated into their diets, reducing their survival by 25–42% on pseudostems. In comparison, in planta epoxy-janthitrem concentrations in AR37-infected ryegrass grown at low temperature were very low (0.67 μg/g in leaves and 7.4 μg/g in pseudostems) resulting in a small anti-feedant effect in perennial but not in Italian ryegrass. Although alkaloid concentrations were greatly reduced by low temperature this reduction did not occur

  15. Temperature and Plant Genotype Alter Alkaloid Concentrations in Ryegrass Infected with an Epichloë Endophyte and This Affects an Insect Herbivore.

    PubMed

    Hennessy, Louise M; Popay, Alison J; Finch, Sarah C; Clearwater, Michael J; Cave, Vanessa M

    2016-01-01

    Asexual Epichloë endophytes colonize agricultural forage grasses in a relationship which is mutually beneficial and provides the host plant with protection against herbivorous insects. The endophyte strain AR37 (Epichloë festucae var. lolii) produces epoxy-janthitrem alkaloids and is the only endophyte known to provide ryegrass with resistance against porina larvae (Wiseana cervinata (Walker)), a major pasture pest in cooler areas of New Zealand. This study examined the effect of temperature on concentrations of epoxy-janthitrems in AR37-infected ryegrass and determined how the resulting variations in concentration affected consumption, growth and survival of porina larvae. Twenty replicate pairs of perennial (Lolium perenne L.) and Italian ryegrass (L. multiflorum Lam.) plants with and without endophyte were prepared by cloning, with one of each pair grown at either high (20°C) or low (7°C) temperature. After 10 weeks, herbage on each plant was harvested, divided into leaf and pseudostem, then freeze dried and ground. Leaf and pseudostem material was then incorporated separately into semi-synthetic diets which were fed to porina larvae in a bioassay over 3 weeks. Epoxy-janthitrem concentrations within the plant materials and the semi-synthetic diets were analyzed by high performance liquid chromatography. AR37-infected ryegrass grown at high temperature contained high in planta concentrations of epoxy-janthitrem (30.6 μg/g in leaves and 83.9 μg/g in pseudostems) that had a strong anti-feedant effect on porina larvae when incorporated into their diets, reducing their survival by 25-42% on pseudostems. In comparison, in planta epoxy-janthitrem concentrations in AR37-infected ryegrass grown at low temperature were very low (0.67 μg/g in leaves and 7.4 μg/g in pseudostems) resulting in a small anti-feedant effect in perennial but not in Italian ryegrass. Although alkaloid concentrations were greatly reduced by low temperature this reduction did not occur until

  16. Exogenous glycinebetaine alleviates the detrimental effect of Cd stress on perennial ryegrass.

    PubMed

    Lou, Yanhong; Yang, Yong; Hu, Longxing; Liu, Hongmei; Xu, Qingguo

    2015-08-01

    Glycinebetaine (GB) is an important organic osmolyte that accumulates in many plant species in response to abiotic stresses including heavy metals. The objective of this study was to investigate whether exogenous GB would ameliorate the adverse effect of cadmium (Cd) stress on perennial ryegrass (Lolium perenne). Fifty-three days old seedlings were exposed to hydroponic culture for 7 days with six treatments: T1 (control), T2 (0 mM Cd + 20 mM GB), T3 (0 mM Cd + 50 mM GB), T4 (0.5 mM Cd + 0 mM GB), T5 (0.5 mM Cd + 20 mM GB), T6 (0.5 mM Cd + 50 mM GB). Cd stress resulted in a remarkable decrease in turf quality, vertical shoot growth rate (VSGR), normalized relative transpiration (NRT) and Chlorophyll (Chl) content; with significant increases in electric conductivity (EL), malondialdehyde (MDA) content, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) activity, oxalic and tartaric acid content. Exogenous application of GB decreased EL and MDA content in Cd stressed plants, and increased turf quality, VSGR, NRT, Chl content, SOD, CAT, POD activity, oxalic, tartaric acid content, and the gene expression level of SOD and POD when compared with Cd stressed without GB. Perennial ryegrass with 20 mM GB application suppressed the Cd accumulation in both shoots and roots. A lower translocation factor of Cd was found in GB treated plants than non-GB treated plants, and the lowest translocation factor was observed in the 20 mM GB application. These results suggested that GB could alleviate the detrimental effect of Cd on perennial ryegrass and the amelioration was mainly related to the elevation in SOD, CAT, and POD at enzyme and gene expression levels, which reduced Cd content in shoots and improved cell membrane stability by reducing oxidation of membrane lipids. These findings lead us to conclude that application of GB with 20 mM is the best strategy to ameliorate the detrimental impacts of Cd stress on perennial ryegrass. PMID:26135319

  17. Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance.

    PubMed

    Bocian, Aleksandra; Zwierzykowski, Zbigniew; Rapacz, Marcin; Koczyk, Grzegorz; Ciesiołka, Danuta; Kosmala, Arkadiusz

    2015-11-01

    Abiotic stresses, including low temperature, can significantly reduce plant yielding. The knowledge on the molecular basis of stress tolerance could help to improve its level in species of relatively high importance to agriculture. Unfortunately, the complex research performed so far mainly on model species and also, to some extent, on cereals does not fully cover the demands of other agricultural plants of temperate climate, including forage grasses. Two Lolium perenne (perennial ryegrass) genotypes with contrasting levels of frost tolerance, the high frost tolerant (HFT) and the low frost tolerant (LFT) genotypes, were selected for comparative metabolomic research. The work focused on the analysis of leaf metabolite accumulation before and after seven separate time points of cold acclimation. Gas chromatography-mass spectrometry (GC/MS) was used to identify amino acids (alanine, proline, glycine, glutamic and aspartic acid, serine, lysine and asparagine), carbohydrates (fructose, glucose, sucrose, raffinose and trehalose) and their derivatives (mannitol, sorbitol and inositol) accumulated in leaves in low temperature. The observed differences in the level of frost tolerance between the analysed genotypes could be partially due to the time point of cold acclimation at which the accumulation level of crucial metabolite started to increase. In the HFT genotype, earlier accumulation was observed for proline and asparagine. The increased amounts of alanine, glutamic and aspartic acids, and asparagine during cold acclimation could be involved in the regulation of photosynthesis intensity in L. perenne. Among the analysed carbohydrates, only raffinose revealed a significant association with the acclimation process in this species.

  18. Differentiating glyphosate-resistant and glyphosate-sensitive Italian ryegrass using hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Lee, Matthew A.; Huang, Yanbo; Nandula, Vijay K.; Reddy, Krishna N.

    2014-05-01

    Glyphosate based herbicide programs are most preferred in current row crop weed control practices. With the increased use of glyphosate, weeds, including Italian ryegrass (Lolium multiflorum), have developed resistance to glyphosate. The identification of glyphosate resistant weeds in crop fields is critical because they must be controlled before they reduce the crop yield. Conventionally, the method for the identification with whole plant or leaf segment/disc shikimate assays is tedious and labor-intensive. In this research, we investigated the use of high spatial resolution hyperspectral imagery to extract spectral curves derived from the whole plant of Italian ryegrass to determine if the plant is glyphosate resistant (GR) or glyphosate sensitive (GS), which provides a way for rapid, non-contact measurement for differentiation between GR and GS weeds for effective site-specific weed management. The data set consists of 226 greenhouse grown plants (119 GR, 107 GS), which were imaged at three and four weeks after emergence. In image preprocessing, the spectral curves are normalized to remove lighting artifacts caused by height variation in the plants. In image analysis, a subset of hyperspectral bands is chosen using a forward selection algorithm to optimize the area under the receiver operating characteristic (ROC) between GR and GS plants. Then, the dimensionality of selected bands is reduced using linear discriminant analysis (LDA). Finally, the maximum likelihood classification was conducted for plant sample differentiation. The results show that the overall classification accuracy is between 75% and 80% depending on the age of the plants. Further refinement of the described methodology is needed to correlate better with plant age.

  19. Effect of cadmium on microbial activity and a ryegrass crop in two semiarid soils.

    PubMed

    Moreno, José L; Sanchez-Marín, Antonio; Hernández, Teresa; García, Carlos

    2006-05-01

    Soil pollution with Cd is an environmental problem common in the world, and it is necessary to establish what Cd concentrations in soil could be dangerous to its fertility from toxicity effects and the risk of transference of this element to plants and other organisms of the food chain. In this study, we assessed Cd toxicity on soil microorganisms and plants in two semiarid soils (uncultivated and cultivated). Soil ATP content, dehydrogenase activity, and plant growth were measured in the two soils spiked with concentrations ranging from 3 to 8000 mg Cd/kg soil and incubated for 3 h, 20 days, and 60 days. The Cd concentrations that produced 5% 10%, and 50% inhibition of each of the two soil microbiological parameter studied (ecological dose, ED, values) were calculated using two different mathematical models. Also, the effect of Cd concentration on plant growth of ryegrass (Lolium perenne, L.) was studied in the two soils. The Cd ED values calculated for soil dehydrogenase activity and ATP content were higher in the agricultural soils than in the bare soil. For ATP inhibition, higher ED values were calculated than for dehydrogenase activity inhibition. The average yields of ryegrass were reduced from 5.03 to 3.56 g in abandoned soil and from 4.21 to 1.15 g in agricultural soil with increasing concentrations of Cd in the soil. Plant growth was totally inhibited in abandoned and agricultural soils at Cd concentrations above 2000 and 5000 mg/kg soil, respectively. There was a positive correlation between the concentration of Cd in the plants and the total or DTPA-extractable concentrations of Cd in the soil. PMID:16485164

  20. Variation in the expression of ergot alkaloids between individual tillers of perennial ryegrass

    NASA Astrophysics Data System (ADS)

    Mace, Wade; Lunn, Kristy; Lloyd-West, Catherine

    2014-11-01

    Epichloë fungal endophytes of cool season grasses are well known to produce a range of alkaloids of benefit to the host. Some of these compounds are advantageous to agriculture due to qualities that promote pasture persistence (e.g. the loline class of alkaloids confer insect protection) while others are detrimental to the wellbeing of grazing livestock. The ergot alkaloids (e.g. ergovaline), produced in ryegrass and tall fescue associations, causes poor animal health in farming regions in many countries around the world and further study is required to improve our knowledge on this class of compounds. Here we present the application of a quantitative LC-MS/MS (liquid chromatography coupled to mass spectrometry) method measuring eight ergot alkaloids (chanoclavine, agroclavine, elymoclavine, lysergol, lysergic acid, ergine, lysergyl alanine, ergovaline) produced by endophyte infected grasses, to monitor levels in individual tillers from multiple plants of a single cultivar of perennial ryegrass (Lolium perenne cv. ‘Grasslands Samson’) infected with a common toxic endophyte strain (Epichloë festucae var. lolii). Monitoring the expression in individual tillers allows an estimation of the variability within a plant (between tillers) as well as between plants. The study showed that there is significant variation in the concentration of the ergot alkaloids between tillers of a single plant, at or exceeding the level of variation observed between individual plants of a population. This result emphasizes the fundamental importance of robust experimental design and sampling procedures when alkaloid expression assessment is required and these need to be rigorously tailored to the hypothesis being tested.

  1. Isolation of prostrate turfgrass mutants via screening of dwarf phenotype and characterization of a perennial ryegrass prostrate mutant.

    PubMed

    Chen, Junmei; Thammina, Chandra; Li, Wei; Yu, Hao; Yer, Huseyin; El-Tanbouly, Rania; Marron, Manon; Katin-Grazzini, Lorenzo; Chen, Yongqin; Inguagiato, John; McAvoy, Richard J; Guillard, Karl; Zhang, Xian; Li, Yi

    2016-01-01

    Prostrate turf varieties are desirable because of their increased low mowing tolerance, heat resistance, traffic resistance and ground coverage compared with upright varieties. Mutation breeding may provide a powerful tool to create prostrate varieties, but there are no simple, straightforward methods to screen for such mutants. Elucidation of the molecular basis of the major 'green revolution' traits, dwarfism and semi-dwarfism, guided us to design a simple strategy for isolating dwarf mutants of perennial ryegrass (Lolium perenne L.). We have shown that gamma-ray-mediated dominant dwarf mutants can be easily screened for at the three-leaf stage. About 10% of dwarf mutant lines also displayed a prostrate phenotype at mature stages (>10 tillers). One prostrate line, Lowboy I, has been characterized in detail. Lowboy I had significantly shorter canopy, leaf blade and internode lengths compared with wild type. Lowboy I also exhibited greater tolerance to low mowing stress than wild type. Exogenous gibberellic acid (GA) restored Lowboy I to a wild-type phenotype, indicating that the dwarf and prostrate phenotypes were both due to GA deficiency. We further showed that phenotypes of Lowboy I were dominant and stably inherited through sexual reproduction. Prostrate turfgrass mutants are difficult to screen for because the phenotype is not observed at young seedling stages, therefore our method represents a simple strategy for easily isolating prostrate mutants. Furthermore, Lowboy I may provide an outstanding germplasm for breeding novel prostrate perennial ryegrass cultivars. PMID:26955481

  2. Isolation of prostrate turfgrass mutants via screening of dwarf phenotype and characterization of a perennial ryegrass prostrate mutant

    PubMed Central

    Chen, Junmei; Thammina, Chandra; Li, Wei; Yu, Hao; Yer, Huseyin; El-Tanbouly, Rania; Marron, Manon; Katin-Grazzini, Lorenzo; Chen, Yongqin; Inguagiato, John; McAvoy, Richard J.; Guillard, Karl; Zhang, Xian; Li, Yi

    2016-01-01

    Prostrate turf varieties are desirable because of their increased low mowing tolerance, heat resistance, traffic resistance and ground coverage compared with upright varieties. Mutation breeding may provide a powerful tool to create prostrate varieties, but there are no simple, straightforward methods to screen for such mutants. Elucidation of the molecular basis of the major ‘green revolution’ traits, dwarfism and semi-dwarfism, guided us to design a simple strategy for isolating dwarf mutants of perennial ryegrass (Lolium perenne L.). We have shown that gamma-ray-mediated dominant dwarf mutants can be easily screened for at the three-leaf stage. About 10% of dwarf mutant lines also displayed a prostrate phenotype at mature stages (>10 tillers). One prostrate line, Lowboy I, has been characterized in detail. Lowboy I had significantly shorter canopy, leaf blade and internode lengths compared with wild type. Lowboy I also exhibited greater tolerance to low mowing stress than wild type. Exogenous gibberellic acid (GA) restored Lowboy I to a wild-type phenotype, indicating that the dwarf and prostrate phenotypes were both due to GA deficiency. We further showed that phenotypes of Lowboy I were dominant and stably inherited through sexual reproduction. Prostrate turfgrass mutants are difficult to screen for because the phenotype is not observed at young seedling stages, therefore our method represents a simple strategy for easily isolating prostrate mutants. Furthermore, Lowboy I may provide an outstanding germplasm for breeding novel prostrate perennial ryegrass cultivars. PMID:26955481

  3. Natural variation of salinity response, population structure and candidate genes associated with salinity tolerance in perennial ryegrass accessions.

    PubMed

    Tang, Jinchi; Yu, Xiaoqing; Luo, Na; Xiao, Fangming; Camberato, James J; Jiang, Yiwei

    2013-11-01

    Natural variation in salinity response, effects of population structure on growth and physiological traits and gene-trait association were examined in 56 global collections of diverse perennial ryegrass (Lolium perenne L.) accessions. Three population structure groups were identified with 66 simple sequence repeat markers, which on average accounted for 9 and 11% of phenotypic variation for the control and salinity treatment at 300 mm NaCl. Group 1 (10 accessions) had greater plant height, leaf dry weight and water content, chlorophyll index, K(+) concentration and K(+) /Na(+) than group 2 (39 accessions) and group 3 (7 accessions) under salinity stress, while group 3 had higher Na(+) than groups 1 and 2. Eighty-seven single nucleotide polymorphisms were detected from four partial candidate genes encoding aquaporin and Na(+) /H(+) antiporter in both plasma and tonoplast membranes. Overall, rapid decay of linkage disequilibrium was observed within 500 bp. Significant associations were found between the putative LpTIP1 and Na(+) for the control and between the putative LpNHX1 and K(+) /Na(+) under the control and salinity treatments after controlling population structure. These results indicate that population structure influenced phenotypic traits, and allelic variation in LpNHX1 may affect salinity tolerance of perennial ryegrass.

  4. A Gene Encoding a DUF247 Domain Protein Cosegregates with the S Self-Incompatibility Locus in Perennial Ryegrass.

    PubMed

    Manzanares, Chloé; Barth, Susanne; Thorogood, Daniel; Byrne, Stephen L; Yates, Steven; Czaban, Adrian; Asp, Torben; Yang, Bicheng; Studer, Bruno

    2016-04-01

    The grass family (Poaceae), the fourth largest family of flowering plants, encompasses the most economically important cereal, forage, and energy crops, and exhibits a unique gametophytic self-incompatibility (SI) mechanism that is controlled by at least two multiallelic and independent loci, S and Z. Despite intense research efforts over the last six decades, the genes underlying S and Z remain uncharacterized. Here, we report a fine-mapping approach to identify the male component of the S-locus in perennial ryegrass (Lolium perenne L.) and provide multiple evidence that a domain of unknown function 247 (DUF247) gene is involved in its determination. Using a total of 10,177 individuals from seven different mapping populations segregating for S, we narrowed the S-locus to a genomic region containing eight genes, the closest recombinant marker mapping at a distance of 0.016 cM. Of the eight genes cosegregating with the S-locus, a highly polymorphic gene encoding for a protein containing a DUF247 was fully predictive of known S-locus genotypes at the amino acid level in the seven mapping populations. Strikingly, this gene showed a frameshift mutation in self-compatible darnel (Lolium temulentum L.), whereas all of the self-incompatible species of the Festuca-Lolium complex were predicted to encode functional proteins. Our results represent a major step forward toward understanding the gametophytic SI system in one of the most important plant families and will enable the identification of additional components interacting with the S-locus.

  5. Augmented multivariate image analysis applied to quantitative structure-activity relationship modeling of the phytotoxicities of benzoxazinone herbicides and related compounds on problematic weeds.

    PubMed

    Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson

    2013-09-11

    Two of major weeds affecting cereal crops worldwide are Avena fatua L. (wild oat) and Lolium rigidum Gaud. (rigid ryegrass). Thus, development of new herbicides against these weeds is required; in line with this, benzoxazinones, their degradation products, and analogues have been shown to be important allelochemicals and natural herbicides. Despite earlier structure-activity studies demonstrating that hydrophobicity (log P) of aminophenoxazines correlates to phytotoxicity, our findings for a series of benzoxazinone derivatives do not show any relationship between phytotoxicity and log P nor with other two usual molecular descriptors. On the other hand, a quantitative structure-activity relationship (QSAR) analysis based on molecular graphs representing structural shape, atomic sizes, and colors to encode other atomic properties performed very accurately for the prediction of phytotoxicities of these compounds against wild oat and rigid ryegrass. Therefore, these QSAR models can be used to estimate the phytotoxicity of new congeners of benzoxazinone herbicides toward A. fatua L. and L. rigidum Gaud.

  6. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass.

    PubMed

    Karami, Nadia; Clemente, Rafael; Moreno-Jiménez, Eduardo; Lepp, Nicholas W; Beesley, Luke

    2011-07-15

    Green waste compost and biochar amendments were assessed for their assistance in regulating the mobility of copper (Cu) and lead (Pb) and the resultant uptake of these metals into vegetation. The amendments were mixed with a heavily Cu and Pb contaminated soil (600 and 21,000 mg kg(-1), respectively) from a former copper mine in Cheshire (UK), on a volume basis both singly and in combination in greenhouse pot trials. Ryegrass (Lolium perenne L. var. Cadix) was grown for the following 4 months during which biomass, metals in soil pore water and plant uptake were measured in three consecutive harvests. Very high Pb concentrations in pore water from untreated soil (>80 mg l(-1)) were reduced furthest by compost amendment (<5 mg l(-1)) whereas biochar was the more effective treatment at reducing pore water Cu concentrations. Duly, ryegrass shoot Cu levels were reduced and large, significant reductions in shoot Pb levels were observed after biochar and compost amendments, respectively during successive harvests. However, because green waste compost singly and in combination with biochar vividly enhanced biomass yields, harvestable amounts of Pb were only significantly reduced by the compost amendment which had reduced shoot Pb levels furthest. The low biomass of ryegrass with biochar amendment meant that this was the only amendment which did not significantly increase harvestable amounts of Cu. Therefore the two amendments have opposing metal specific suitability for treating this contaminated soil regarding whether it is a maximum reduction in plant tissue metal concentration or a maximum reduction in harvestable amount of metal that is required.

  7. 7 CFR 201.61 - Fluorescence percentages in ryegrasses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Fluorescence percentages in ryegrasses. 201.61 Section... ACT FEDERAL SEED ACT REGULATIONS Tolerances § 201.61 Fluorescence percentages in ryegrasses. Tolerances for 400-seed fluorescence tests shall be those set forth in the following table plus one-half...

  8. The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass

    SciTech Connect

    Kulli, B.; Balmer, M.; Krebs, R.; Lothenbach, B.; Geiger, G.; Schulin, R.

    1999-12-01

    Metal uptake and removal from the soil by plants may be a useful measure to remediate contaminated soils. These processes can be enhanced by adding metal chelators to soil. The authors investigated the effect of nitrolotriacetate (NTA) and urea on the uptake of Cd, Cu, and Zn by lettuce (Lactuca sativa L. ev. Orion) and Italian ryegrass (Lolium perenne L. ev. Bastion) in pot experiments. Nitric acid-extractable heavy metal concentrations in the contaminated soil were 2 mg Cd, 530 mg Cu, and 700 mg Zn/kg. Three NTA treatments were compared with two urea treatments, and a control. Nitrilotriacetate and urea increased the NaNO{sub 3}-extractable soil concentrations of the three metals. At the highest NTA dose, metal concentrations in the aboveground plant biomass was 4 to 24 times greater than in the control plants. While NTA increased plant metal concentrations, it reduced plant matter production. At lower doses, this effect was small. At the highest NTA dose, plant growth was almost completely inhibited. Severe visual symptoms indicated metal toxicity as the likely cause. The urea treatments generally increased the plant matter production. Total metal uptake was in general larger at the lowest or at the intermediate NTA dose than at the highest doses. Little additional total metal uptake was achieved with NTA treatments than with urea. Compared with the controls, neither NTA nor urea enhanced total uptake under the given conditions by more than threefold.

  9. Differential regulation of two sucrose transporters by defoliation and light conditions in perennial ryegrass.

    PubMed

    Furet, Pierre-Maxime; Berthier, Alexandre; Decau, Marie-Laure; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; Noiraud-Romy, Nathalie; Meuriot, Frédéric

    2012-12-01

    Sucrose transport between source and sink tissues is supposed to be a key-step for an efficient regrowth of perennial rye-grass after defoliation and might be altered by light conditions. We assessed the effect of different light regimes (high vs low light applied before or after defoliation) on growth, fructans and sucrose mobilization, as well as on sucrose transporter expression during 14 days of regrowth. Our results reported that defoliation led to a mobilization of C reserves (first sucrose and then fructans), which was parallel to an induction of LpSUT1 sucrose transporter expression in source and sink tissues (i.e. leaf sheaths and elongating leaf bases, respectively) irrespective to light conditions. Light regime (high or low light) had little effects on regrowth and on C reserves mobilization during the first 48 h of regrowth after defoliation. Thereafter, low light conditions, delaying the recovery of photosynthetic capacities, had a negative effect on C reserves re-accumulation (especially sucrose). Surprisingly, high light did not enhance sucrose transporter expression. Indeed, while light conditions had no effect on LpSUT1 expression, LpSUT2 transcripts levels were enhanced for low light grown plants. These results indicate that two sucrose transporter currently identified in Lolium perenne L. are differentially regulated by light and sucrose.

  10. Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures

    NASA Astrophysics Data System (ADS)

    Klumpp, Andreas; Ansel, Wolfgang; Klumpp, Gabriele; Breuer, Jörn; Vergne, Philippe; Sanz, María José; Rasmussen, Stine; Ro-Poulsen, Helge; Ribas Artola, Àngela; Peñuelas, Josep; He, Shang; Garrec, Jean Pierre; Calatayud, Vicent

    Within a European biomonitoring programme, Italian ryegrass ( Lolium multiflorum Lam.) was employed as accumulative bioindicator of airborne trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Sb, V, Zn) in urban agglomerations. Applying a highly standardised method, grass cultures were exposed for consecutive periods of four weeks each to ambient air at up to 100 sites in 11 cities during 2000-2002. Results of the 2001 exposure experiments revealed a clear differentiation of trace element pollution within and among local monitoring networks. Pollution was influenced particularly by traffic emissions. Especially Sb, Pb, Cr, Fe, and Cu exhibited a very uneven distribution within the municipal areas with strong accumulation in plants from traffic-exposed sites in the city centres and close to major roads, and moderate to low levels in plants exposed at suburban or rural sites. Accumulation of Ni and V was influenced by other emission sources. The biomonitoring sites located in Spanish city centres featured a much higher pollution load by trace elements than those in other cities of the network, confirming previously reported findings obtained by chemical analyses of dust deposition and aerosols. At some heavily-trafficked sites, legal thresholds for Cu, Pb, and V contents in foodstuff and animal feed were reached or even surpassed. The study confirmed that the standardised grass exposure is a useful and reliable tool to monitor and to assess environmental levels of potentially toxic compounds of particulate matter.

  11. Nitrate Absorption and Assimilation in Ryegrass as Influenced by Calcium and Magnesium 1

    PubMed Central

    Morgan, M. A.; Jackson, W. A.; Volk, R. J.

    1972-01-01

    The absorption and assimilation patterns of 15NO3− supplied as the Ca2+ and Mg2+ salts to intact ryegrass (Lolium perenne) seedlings were compared. No statistically significant effect of ambient cation on the amounts of 15NO3− absorbed was observed in the initial six hours, but during the subsequent six hours, absorption from Ca(15NO3)2 exceeded that from Mg (15NO3)2. Lower rates of 15NO3− assimilation were found in roots exposed to Mg(15NO3)2 than in those exposed to Ca(15NO3)2. It was proposed that Mg2+ initiated a restriction in 15NO3− reduction in roots, probably as a consequence of a Mg2+-induced physiological Ca2+ deficiency. Lower 15N translocation rates were also observed from Mg(15NO3)2. These effects of Mg2+ in depressing 15NO3− assimilation and translocation occurred prior to an effect on 15NO3− uptake. In shoots, larger amounts of reduced 15N products occurred with Ca(15NO3)2 than with Mg(15NO3)2. It was concluded that this was due to enhanced translocation of 15NO3− (and possibly its reduced products) in presence of Ca2+ rather than to specific cation effects on 15NO3− assimilation in the shoots. PMID:16658201

  12. A Simple and Fast Kinetic Assay for the Determination of Fructan Exohydrolase Activity in Perennial Ryegrass (Lolium perenne L.).

    PubMed

    Gasperl, Anna; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; van der Graaff, Eric; Roitsch, Thomas

    2015-01-01

    Despite the fact that fructans are the main constituent of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates, little knowledge is available on the regulation of the enzymes involved in fructan metabolism. The analysis of enzyme activities involved in this process has been hampered by the low affinity of the fructan enzymes for sucrose and fructans used as fructosyl donor. Further, the analysis of fructan composition and enzyme activities is restricted to specialized labs with access to suited HPLC equipment and appropriate fructan standards. The degradation of fructan polymers with high degree of polymerization (DP) by fructan exohydrolases (FEHs) to fructosyloligomers is important to liberate energy in the form of fructan, but also under conditions where the generation of low DP polymers is required. Based on published protocols employing enzyme coupled endpoint reactions in single cuvettes, we developed a simple and fast kinetic 1-FEH assay. This assay can be performed in multi-well plate format using plate readers to determine the activity of 1-FEH against 1-kestotriose, resulting in a significant time reduction. Kinetic assays allow an optimal and more precise determination of enzyme activities compared to endpoint assays, and enable to check the quality of any reaction with respect to linearity of the assay. The enzyme coupled kinetic 1-FEH assay was validated in a case study showing the expected increase in 1-FEH activity during cold treatment. This assay is cost effective and could be performed by any lab with access to a plate reader suited for kinetic measurements and readings at 340 nm, and is highly suited to assess temporal changes and relative differences in 1-FEH activities. Thus, this enzyme coupled kinetic 1-FEH assay is of high importance both to the field of basic fructan research and plant breeding.

  13. A Simple and Fast Kinetic Assay for the Determination of Fructan Exohydrolase Activity in Perennial Ryegrass (Lolium perenne L.)

    PubMed Central

    Gasperl, Anna; Morvan-Bertrand, Annette; Prud’homme, Marie-Pascale; Roitsch, Thomas

    2015-01-01

    Despite the fact that fructans are the main constituent of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates, little knowledge is available on the regulation of the enzymes involved in fructan metabolism. The analysis of enzyme activities involved in this process has been hampered by the low affinity of the fructan enzymes for sucrose and fructans used as fructosyl donor. Further, the analysis of fructan composition and enzyme activities is restricted to specialized labs with access to suited HPLC equipment and appropriate fructan standards. The degradation of fructan polymers with high degree of polymerization (DP) by fructan exohydrolases (FEHs) to fructosyloligomers is important to liberate energy in the form of fructan, but also under conditions where the generation of low DP polymers is required. Based on published protocols employing enzyme coupled endpoint reactions in single cuvettes, we developed a simple and fast kinetic 1-FEH assay. This assay can be performed in multi-well plate format using plate readers to determine the activity of 1-FEH against 1-kestotriose, resulting in a significant time reduction. Kinetic assays allow an optimal and more precise determination of enzyme activities compared to endpoint assays, and enable to check the quality of any reaction with respect to linearity of the assay. The enzyme coupled kinetic 1-FEH assay was validated in a case study showing the expected increase in 1-FEH activity during cold treatment. This assay is cost effective and could be performed by any lab with access to a plate reader suited for kinetic measurements and readings at 340 nm, and is highly suited to assess temporal changes and relative differences in 1-FEH activities. Thus, this enzyme coupled kinetic 1-FEH assay is of high importance both to the field of basic fructan research and plant breeding. PMID:26734049

  14. Factors Influencing β-Glucan Synthesis by Particulate Enzymes from Suspension-Cultured Lolium multiflorum Endosperm Cells 1

    PubMed Central

    Henry, Robert J.; Stone, Bruce A.

    1982-01-01

    Particulate enzymes from suspension-cultured ryegrass (Lolium multiflorum Lam.) endosperm cells incorporated glucosyl residues from UDP-glucose and GDP-glucose into β-glucans. Three types of β-glucans were produced from UDP-glucose: 1,3-β-glucan; 1,4-β-glucan; and mixed-linkage 1,3;1,4-β-glucan. As in other systems, relatively more 1,4-β-glucan was produced from a low (10 micromolar) UDP-glucose concentration, and relatively more 1,3-β-glucan was produced from a high (1 millimolar) UDP-glucose concentration. However, in ryegrass, 1,3;1,4-β-glucan represented a major proportion of the products at both low and high UDP-glucose concentrations. The arrangement of linkages in the 1,3;1,4-β-glucan was different at the two concentrations; at the low UDP-glucose concentration, more sequences of three consecutive 1,4-linkages were produced. The effects of pH, temperature, and metal ion concentrations on incorporation were dependent on the UDP-glucose concentration. At the low UDP-glucose concentration, incorporation into all three types of β-glucan increased with increasing pH. At the high UDP-glucose concentration, 1,3-β-glucan was the major product at pH 7 and below; 1,4-β-glucan synthesis was optimal at pH 8; and synthesis of 1,3;1,4-β-glucan was greatest above pH 8. With 10 micromolar GDP-glucose as substrate, 1,4-β-glucan, but no 1,3;1,4-β-glucan, was produced. Incorporation from either UDP-glucose or GDP-glucose was not influenced by the presence of the other. PMID:16662263

  15. An Extracellular Siderophore Is Required to Maintain the Mutualistic Interaction of Epichloë festucae with Lolium perenne

    PubMed Central

    Johnson, Linda J.; Koulman, Albert; Christensen, Michael; Lane, Geoffrey A.; Fraser, Karl; Forester, Natasha; Johnson, Richard D.; Bryan, Gregory T.; Rasmussen, Susanne

    2013-01-01

    We have identified from the mutualistic grass endophyte Epichloë festucae a non-ribosomal peptide synthetase gene (sidN) encoding a siderophore synthetase. The enzymatic product of SidN is shown to be a novel extracellular siderophore designated as epichloënin A, related to ferrirubin from the ferrichrome family. Targeted gene disruption of sidN eliminated biosynthesis of epichloënin A in vitro and in planta. During iron-depleted axenic growth, ΔsidN mutants accumulated the pathway intermediate N5-trans-anhydromevalonyl-N5-hydroxyornithine (trans-AMHO), displayed sensitivity to oxidative stress and showed deficiencies in both polarized hyphal growth and sporulation. Infection of Lolium perenne (perennial ryegrass) with ΔsidN mutants resulted in perturbations of the endophyte-grass symbioses. Deviations from the characteristic tightly regulated synchronous growth of the fungus with its plant partner were observed and infected plants were stunted. Analysis of these plants by light and transmission electron microscopy revealed abnormalities in the distribution and localization of ΔsidN mutant hyphae as well as deformities in hyphal ultrastructure. We hypothesize that lack of epichloënin A alters iron homeostasis of the symbiotum, changing it from mutually beneficial to antagonistic. Iron itself or epichloënin A may serve as an important molecular/cellular signal for controlling fungal growth and hence the symbiotic interaction. PMID:23658520

  16. Effect of decabromodiphenyl ether (BDE-209) on a soil-biota system: Role of earthworms and ryegrass.

    PubMed

    Feng, Mingbao; He, Qun; Shi, Jiaqi; Qin, Li; Zhang, Xuesheng; Sun, Ping; Wang, Zunyao

    2016-06-01

    In the present study, the toxic effect of decabromodiphenyl ether (BDE-209), an important brominated fire retardant, on soil was evaluated by amending with different concentrations (0 mg/kg, 1 mg/kg, 10 mg/kg, and 500 mg/kg dry wt) for 40 d. The activities of 3 soil enzymes (urease, catalase, and alkaline phosphatase) were measured as the principal assessment endpoints. Meanwhile, the effects of natural environmental factors, such as light conditions and soil biota, on BDE-209 intoxication were studied. For the latter, 30 earthworms (Metaphire guillelmi) with fully matured clitella or ryegrass (Lolium perenne) with fully matured leaves were exposed in soil amended with BDE-209. The activities of the soil enzymes were adversely affected by BDE-209, especially for the high-concentration treatments, with greater adverse effects in the dark than in the light. The presence of earthworms reduced toxicity to BDE-209, whereas ryegrass did not. The calculated integrated biomarker response index, which provides a general indicator of the health status of test species by combining different biomarker signals, further validated these findings. Moreover, the antioxidant status (oxidant-antioxidant balance) of these 2 biota was assessed. Results indicated that BDE-209 significantly affected the activities of antioxidant enzymes (superoxide dismutase and catalase) and enhanced the levels of malondialdehyde in both species. The present study may facilitate a better understanding of the toxicity of BDE-209 toward the soil environment. Environ Toxicol Chem 2016;35:1349-1357. © 2015 SETAC. PMID:26448514

  17. Effect of decabromodiphenyl ether (BDE-209) on a soil-biota system: Role of earthworms and ryegrass.

    PubMed

    Feng, Mingbao; He, Qun; Shi, Jiaqi; Qin, Li; Zhang, Xuesheng; Sun, Ping; Wang, Zunyao

    2016-06-01

    In the present study, the toxic effect of decabromodiphenyl ether (BDE-209), an important brominated fire retardant, on soil was evaluated by amending with different concentrations (0 mg/kg, 1 mg/kg, 10 mg/kg, and 500 mg/kg dry wt) for 40 d. The activities of 3 soil enzymes (urease, catalase, and alkaline phosphatase) were measured as the principal assessment endpoints. Meanwhile, the effects of natural environmental factors, such as light conditions and soil biota, on BDE-209 intoxication were studied. For the latter, 30 earthworms (Metaphire guillelmi) with fully matured clitella or ryegrass (Lolium perenne) with fully matured leaves were exposed in soil amended with BDE-209. The activities of the soil enzymes were adversely affected by BDE-209, especially for the high-concentration treatments, with greater adverse effects in the dark than in the light. The presence of earthworms reduced toxicity to BDE-209, whereas ryegrass did not. The calculated integrated biomarker response index, which provides a general indicator of the health status of test species by combining different biomarker signals, further validated these findings. Moreover, the antioxidant status (oxidant-antioxidant balance) of these 2 biota was assessed. Results indicated that BDE-209 significantly affected the activities of antioxidant enzymes (superoxide dismutase and catalase) and enhanced the levels of malondialdehyde in both species. The present study may facilitate a better understanding of the toxicity of BDE-209 toward the soil environment. Environ Toxicol Chem 2016;35:1349-1357. © 2015 SETAC.

  18. Structure-Function Analyses of a Caffeic Acid O-Methyltransferase from Perennial Ryegrass Reveal the Molecular Basis for Substrate Preference[W][OA

    PubMed Central

    Louie, Gordon V.; Bowman, Marianne E.; Tu, Yi; Mouradov, Aidyn; Spangenberg, German; Noel, Joseph P.

    2010-01-01

    Lignin forms from the polymerization of phenylpropanoid-derived building blocks (the monolignols), whose modification through hydroxylation and O-methylation modulates the chemical and physical properties of the lignin polymer. The enzyme caffeic acid O-methyltransferase (COMT) is central to lignin biosynthesis. It is often targeted in attempts to engineer the lignin composition of transgenic plants for improved forage digestibility, pulping efficiency, or utility in biofuel production. Despite intensive investigation, the structural determinants of the regiospecificity and substrate selectivity of COMT remain poorly defined. Reported here are x-ray crystallographic structures of perennial ryegrass (Lolium perenne) COMT (Lp OMT1) in open conformational state, apo- and holoenzyme forms and, most significantly, in a closed conformational state complexed with the products S-adenosyl-l-homocysteine and sinapaldehyde. The product-bound complex reveals the post-methyl-transfer organization of COMT’s catalytic groups with reactant molecules and the fully formed phenolic-ligand binding site. The core scaffold of the phenolic ligand forges a hydrogen-bonding network involving the 4-hydroxy group that anchors the aromatic ring and thereby permits only metahydroxyl groups to be positioned for transmethylation. While distal from the site of transmethylation, the propanoid tail substituent governs the kinetic preference of ryegrass COMT for aldehydes over alcohols and acids due to a single hydrogen bond donor for the C9 oxygenated moiety dictating the preference for an aldehyde. PMID:21177481

  19. Impact of No-till Cover Cropping of Italian Ryegrass on Above and Below Ground Faunal Communities Inhabiting a Soybean Field with Emphasis on Soybean Cyst Nematodes.

    PubMed

    Hooks, Cerruti R R; Wang, Koon-Hui; Meyer, Susan L F; Lekveishvili, Mariam; Hinds, Jermaine; Zobel, Emily; Rosario-Lebron, Armando; Lee-Bullock, Mason

    2011-09-01

    Two field trials were conducted between 2008 and 2010 in Maryland to evaluate the ability of an Italian ryegrass (IR) (Lolium multiflorum) cover crop to reduce populations of plant-parasitic nematodes while enhancing beneficial nematodes, soil mites and arthropods in the foliage of a no-till soybean (Glycine max) planting. Preplant treatments were: 1) previous year soybean stubble (SBS); and 2) herbicide-killed IR cover crop + previous year soybean stubble (referred to as IR). Heterodera glycines population densities were very low and no significant difference in population densities of H. glycines or Pratylenchus spp. were observed between IR and SBS. Planting of IR increased abundance of bacterivorous nematodes in 2009. A reverse trend was observed in 2010 where SBS had higher abundance of bacterivorous nematodes and nematode richness at the end of the cover cropping period. Italian ryegrass also did not affect insect pests on soybean foliage. However, greater populations of spiders were found on soybean foliage in IR treatments during both field trials. Potential causes of these findings are discussed.

  20. Ryegrass pasture combined with partial total mixed ration reduces enteric methane emissions and maintains the performance of dairy cows during mid to late lactation.

    PubMed

    Dall-Orsoletta, Aline C; Almeida, João Gabriel R; Carvalho, Paulo C F; Savian, Jean V; Ribeiro-Filho, Henrique M N

    2016-06-01

    The inclusion of grazed pasture in dairy feeding systems based on a total mixed ration (TMR) reduces feed costs, benefits herd health, and reduces environmental impact. The present study aimed to evaluate the effect of ryegrass pasture combined with a partial TMR on enteric methane emissions, dry matter intake (DMI), and performance of dairy cows from mid to late lactation. The experimental treatments included 100% TMR (control), partial TMR + 6h of continuous grazing (0900-1500 h), and partial TMR + 6h of grazing that was divided into 2 periods of 3h each that took place after milking (0900-1200 h; 1530-1830 h). Twelve F1 cows (Holstein × Jersey; 132±44 DIM) were divided into 6 lots and distributed in a 3×3 Latin square design with 3 periods of 21 d (15 d of adaptation and 6 d of evaluation). Ryegrass (Lolium multiflorum Lam.) pasture was used, and the TMR was composed of 80% corn silage, 18% soybean meal, and 2% mineral and vitamin mixture, based on dry matter. The same mixture was used for cows with access to pasture. The total DMI, milk production, and 4% fat-corrected milk were similar for all cows; however, the pasture DMI (7.4 vs. 6.0kg/d) and grazing period (+ 40 min/d) were higher in cows that had access to pasture for 2 periods of 3h compared with those that grazed for a continuous 6-h period. Methane emission was higher (656 vs. 547g/d) in confined cows than in those that received partial TMR + pasture. The inclusion of annual ryegrass pasture in the diet of dairy cows maintained animal performance and reduced enteric methane emissions. The percentage of grazed forage in the cows' diet increased when access to pasture was provided in 2 periods after the morning and afternoon milking. PMID:27016830

  1. The janthitrems: fluorescent tremorgenic toxins produced by Penicillium janthinellum isolates from ryegrass pastures.

    PubMed Central

    Gallagher, R T; Latch, G C; Keogh, R G

    1980-01-01

    New tremorgenic mycotoxins named janthitrem A, B, and C (molecular weights 601, 585, and 569, respectively) were produced by more than half of 21 Penicillium janthinellum isolates obtained from ryegrass pastures involved in ryegrass staggers outbreaks in sheep. PMID:7356319

  2. Molecular basis of IgE-recognition of Lol p 5, a major allergen of rye-grass pollen.

    PubMed

    Suphioglu, C; Blaher, B; Rolland, J M; McCluskey, J; Schäppi, G; Kenrick, J; Singh, M B; Knox, R B

    1998-04-01

    Grass pollen, especially of rye-grass (Lolium perenne). represents an important cause of type I allergy. Identification of IgE-binding (allergenic) epitopes of major grass pollen allergens is essential for understanding the molecular basis of interaction between allergens and human IgE antibodies and therefore facilitates the devising of safer and more effective diagnostic and immunotherapy reagents. The aim of this study was to identify the allergenic epitopes of Lol p 5, a major allergen of rye-grass pollen, immunodissect these epitopes further so that the amino acid residues critical for antibody binding can be determined and investigate the conservation and nature of these epitopes within the context of the natural grass pollen allergens. Peptides, 12-13 amino acid residues long and overlapping each other by 4 amino acid residues, based on the entire deduced amino acid sequence of the coding region of Lol p 5, were synthesised and assayed for IgE-binding. Two strong IgE-binding epitopes (Lol p 5 (49-60) and (265-276), referred to as peptides 7 and 34, respectively) were identified. These epitopes were further resolved by truncated peptides and amino acid replacement studies and the amino acid residues critical for IgE-binding determined (Lol p 5 (49-60) residue Lys57 and (265-276) residue Lys275). Sequences of these epitopes were conserved in related allergens and may form the conserved allergenic domains responsible for the cross-reactivity observed between pollen allergens of taxonomically related grasses. Furthermore, due to its strong IgE-reactivity, synthetic peptide Lol p 5 (265-276) was used to affinity-purify specific IgE antibodies which recognised proteins of other clinically important grass pollens. further indicating presence of allergenic cross-reactivity at the level of allergenic epitope. Moreover, Lol p 5 (265 276) demonstrated a strong capacity to inhibit IgE-binding to natural rye-grass pollen proteins highlighting the antibody accessibility

  3. Bioaccumulation and degradation of atrazine in several Chinese ryegrass genotypes.

    PubMed

    Sui, Ying; Yang, Hong

    2013-12-01

    Soil pollution with herbicides is a global problem. Before phytoremediation technology is developed for the plant-based clean-up of polluted soils, investigation of potential plants that can be used to accumulate and degrade herbicides is a critical step. In this study, three selected genotypes of ryegrass were comprehensively analyzed with regard to the atrazine accumulation, degradation and toxicological response. Under the conditions of soil with 0.8 mg kg(-1) atrazine, the maximum value for atrazine accumulation was 2.70 mg kg(-1) in shoots and 0.58 mg kg(-1) in roots. The residue of atrazine in soil with ryegrass cultivation was much lower than that in soil without ryegrass cultivation. Also, the content of atrazine residues in the rhizosphere was significantly lower than that in the non-rhizosphere soil. Activities of several enzymes (urease, invertase, polyphenol oxidase, acid phosphatase and alkaline phosphatase) in soil were assayed. These enzymes were depressed by atrazine but activated by ryegrass cultivation, even in the presence of atrazine. Finally, comparative studies have been conducted on the ryegrass genotypes in response to atrazine. They showed different capacities of degradation and bioaccumulation of atrazine. One of the grass cultivars Changjiang II (CJ) had better growth and higher levels of chlorophyll, but displayed less oxidative injury than two others, Abode (AB) and Jiewei (JW), under atrazine exposure. PMID:24196985

  4. Using a Candidate Gene-Based Genetic Linkage Map to Identify QTL for Winter Survival in Perennial Ryegrass.

    PubMed

    Paina, Cristiana; Byrne, Stephen L; Studer, Bruno; Rognli, Odd Arne; Asp, Torben

    2016-01-01

    Important agronomical traits in perennial ryegrass (Lolium perenne) breeding programs such as winter survival and heading date, are quantitative traits that are generally controlled by multiple loci. Individually, these loci have relatively small effects. The aim of this study was to develop a candidate gene based Illumina GoldenGate 1,536-plex assay, containing single nucleotide polymorphism markers designed from transcripts involved in response to cold acclimation, vernalization, and induction of flowering. The assay was used to genotype a mapping population that we have also phenotyped for winter survival to complement the heading date trait previously mapped in this population. A positive correlation was observed between strong vernalization requirement and winter survival, and some QTL for winter survival and heading date overlapped on the genetic map. Candidate genes were located in clusters along the genetic map, some of which co-localized with QTL for winter survival and heading date. These clusters of candidate genes may be used in candidate gene based association studies to identify alleles associated with winter survival and heading date.

  5. Using a Candidate Gene-Based Genetic Linkage Map to Identify QTL for Winter Survival in Perennial Ryegrass

    PubMed Central

    Paina, Cristiana; Byrne, Stephen L.; Studer, Bruno; Rognli, Odd Arne; Asp, Torben

    2016-01-01

    Important agronomical traits in perennial ryegrass (Lolium perenne) breeding programs such as winter survival and heading date, are quantitative traits that are generally controlled by multiple loci. Individually, these loci have relatively small effects. The aim of this study was to develop a candidate gene based Illumina GoldenGate 1,536-plex assay, containing single nucleotide polymorphism markers designed from transcripts involved in response to cold acclimation, vernalization, and induction of flowering. The assay was used to genotype a mapping population that we have also phenotyped for winter survival to complement the heading date trait previously mapped in this population. A positive correlation was observed between strong vernalization requirement and winter survival, and some QTL for winter survival and heading date overlapped on the genetic map. Candidate genes were located in clusters along the genetic map, some of which co-localized with QTL for winter survival and heading date. These clusters of candidate genes may be used in candidate gene based association studies to identify alleles associated with winter survival and heading date. PMID:27010567

  6. Control of the gray field slug during annual ryegrass establishment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weather conditions, in particular soil moisture and soil and air temperature, interact with both crop seedling and slug emergence during the early autumn season. Late, or inadequate autumn rainfall in western Oregon occasionally causes the timing of emergence of newly established annual ryegrass see...

  7. Remediation of polychlorinated biphenyl-contaminated soil by using a combination of ryegrass, arbuscular mycorrhizal fungi and earthworms.

    PubMed

    Lu, Yan-Fei; Lu, Mang; Peng, Fang; Wan, Yun; Liao, Min-Hong

    2014-07-01

    In this work, a laboratory experiment was performed to investigate the influences of inoculation with the arbuscular mycorrhizal fungus (AMF) Glomus caledoniun L. and/or epigeic earthworms (Eisenia foetida) on phytoremediation of a PCB-contaminated soil by ryegrass grown for 180d. Planting ryegrass, ryegrass inoculated with earthworms, ryegrass inoculated with AMF, and ryegrass co-inoculated with AMF and earthworms decreased significantly initial soil PCB contents by 58.4%, 62.6%, 74.3%, and 79.5%, respectively. Inoculation with AMF and/or earthworms increased the yield of plants, and the accumulation of PCBs in ryegrass. However, PCB uptake by ryegrass accounted for a negligible portion of soil PCB removal. The number of soil PCB-degrading populations increased when ryegrass was inoculated with AMF and/or earthworms. The data show that fungal inoculation may significantly increase the remedial potential of ryegrass for soil contaminated with PCBs.

  8. Roles of the fructans from leaf sheaths and from the elongating leaf bases in the regrowth following defoliation of Lolium perenne L.

    PubMed

    Morvan-Bertrand, A; Boucaud, J; Le Saos, J; Prud'homme, M P

    2001-05-01

    The study of carbohydrate metabolism in perennial ryegrass (Lolium perenne L. cv. Bravo) during the first 48 h of regrowth showed that fructans from elongating leaf bases were hydrolysed first whereas fructans in mature leaf sheaths were degraded only after a lag of 1.5 h. In elongating leaf bases, the decline in fructan content occurred not only in the differentiation zone (30-60 mm from the leaf base), but also in the growth zone. Unlike other soluble carbohydrates, the net deposition rate of fructose remained positive and even rose during the first day following defoliation. The activity of fructan exohydrolase (FEH; EC 3.2.1.80) was maximal in the differentiation zone before defoliation and increased in all segments, but peaked in the growth zone after defoliation. These data strongly indicate that fructans stored in the leaf growth zone were hydrolysed and recycled in that zone to sustain the refoliation immediately after defoliation. Despite the depletion of carbohydrates, leaves of defoliated plants elongated at a significantly higher rate than those of undefoliated plants, during the first 10 h of regrowth. This can be partly attributed to the transient increase in water and nitrate deposition rate. The results are discussed in relation to defoliation tolerance.

  9. Transforming a Fructan:Fructan 6G-Fructosyltransferase from Perennial Ryegrass into a Sucrose:Sucrose 1-Fructosyltransferase1[C

    PubMed Central

    Lasseur, Bertrand; Schroeven, Lindsey; Lammens, Willem; Le Roy, Katrien; Spangenberg, German; Manduzio, Hélène; Vergauwen, Rudy; Lothier, Jérémy; Prud'homme, Marie-Pascale; Van den Ende, Wim

    2009-01-01

    Fructosyltransferases (FTs) synthesize fructans, fructose polymers accumulating in economically important cool-season grasses and cereals. FTs might be crucial for plant survival under stress conditions in species in which fructans represent the major form of reserve carbohydrate, such as perennial ryegrass (Lolium perenne). Two FT types can be distinguished: those using sucrose (S-type enzymes: sucrose:sucrose 1-fructosyltransferase [1-SST], sucrose:fructan 6-fructosyltransferase) and those using fructans (F-type enzymes: fructan:fructan 1-fructosyltransferase [1-FFT], fructan:fructan 6G-fructosyltransferase [6G-FFT]) as preferential donor substrate. Here, we report, to our knowledge for the first time, the transformation of an F-type enzyme (6G-FFT/1-FFT) into an S-type enzyme (1-SST) using perennial ryegrass 6G-FFT/1-FFT (Lp6G-FFT/1-FFT) and 1-SST (Lp1-SST) as model enzymes. This transformation was accomplished by mutating three amino acids (N340D, W343R, and S415N) in the vicinity of the active site of Lp6G-FFT/1-FFT. In addition, effects of each amino acid mutation alone or in combination have been studied. Our results strongly suggest that the amino acid at position 343 (tryptophan or arginine) can greatly determine the donor substrate characteristics by influencing the position of the amino acid at position 340. Moreover, the presence of arginine-343 negatively affects the formation of neofructan-type linkages. The results are compared with recent findings on donor substrate selectivity within the group of plant cell wall invertases and fructan exohydrolases. Taken together, these insights contribute to our knowledge of structure/function relationships within plant family 32 glycosyl hydrolases and open the way to the production of tailor-made fructans on a larger scale. PMID:18952861

  10. Innate Type-2 Response to Alternaria Extract Enhances Ryegrass-induced Lung Inflammation

    PubMed Central

    Kim, Hee-Kyoo; Lund, Sean; Baum, Rachel; Rosenthal, Peter; Khorram, Naseem; Doherty, Taylor A.

    2014-01-01

    Background Exposure to the fungal allergen Alternaria alternata as well as ryegrass pollen has been implicated in severe asthma symptoms during thunderstorms. We have previously shown that Alternaria extract induces innate type 2 lung inflammation in mice. We hypothesized that the innate eosinophilic response to Alternaria extract may enhance lung inflammation induced by ryegrass. Methods Mice were sensitized to ryegrass allergen and administered a single challenge with Alternaria alternata extract before or after final ryegrass challenges. Levels of BAL eosinophils, neutrophils, Th2 cells, innate lymphoid cells (ILC2), IL-5 and IL-13 as well as inflammation and mucus were assessed. Results Mice receiving ryegrass sensitization and challenge developed an eosinophilic lung response. A single challenge with Alternaria extract given 3 days before or 3 days after ryegrass challenges resulted in increased eosinophils, peribronchial inflammation and mucus production in the airway compared with ryegrass only challenges. Type 2 innate lymphoid cell (ILC2) and Th2 cell recruitment to the airway was increased after Alternaria extract exposure in ryegrass challenged mice. Innate challenges with Alternaria extract induced BAL eosinophilia, Th2 cell recruitment as well as ILC2 expansion and proliferation. Conclusions A single exposure of Alternaria extract in ryegrass sensitized and challenged mice enhances the type-2 lung inflammatory response including airway eosinophilia, peribronchial infiltrate, and mucus production possibly through Th2 cell recruitment and ILC2 expansion. If translated to humans, exposures to both grass pollen and Alternaria may be a potential cause of thunderstorm-related asthma. PMID:24296722

  11. Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass.

    PubMed

    Korade, Deepali L; Fulekar, M H

    2009-12-30

    The potential of ryegrass for rhizosphere bioremediation of chlorpyrifos in mycorrhizal soil was investigated by the green house pot culture experiments. The pot cultured soil amended at initial chlorpyrifos concentration of 10mg/kg was observed to be degraded completely within 7 days where the rest amended concentrations (25-100mg/kg) decreased rapidly under the influence of ryegrass mycorrhizosphere as the incubation progressed till 28 days. This bioremediation of chlorpyrifos in soil is attributed to the microorganisms associated with the roots in the ryegrass rhizosphere, therefore the microorganisms surviving in the rhizospheric soil spiked at highest concentration (100mg/kg) was assessed and used for isolation of chlorpyrifos degrading microorganisms. The potential degrader identified by 16s rDNA analysis using BLAST technique was Pseudomonas nitroreducens PS-2. Further, bioaugmentation for the enhanced chlorpyrifos biodegradation was performed using PS-2 as an inoculum in the experimental set up similar to the earlier. The heterotrophic bacteria and fungi were also enumerated from the inoculated and non-inoculated rhizospheric soils. In bioaugmentation experiments, the percentage dissipation of chlorpyrifos was 100% in the inoculated rhizospheric soil as compared to 76.24, 90.36 and 90.80% in the non-inoculated soil for initial concentrations of 25, 50 and 100mg/kg at the 14th, 21st and 28th day intervals respectively.

  12. Differential responses of CO2 assimilation, carbohydrate allocation and gene expression to NaCl stress in perennial ryegrass with different salt tolerance.

    PubMed

    Hu, Tao; Hu, Longxing; Zhang, Xunzhong; Zhang, Pingping; Zhao, Zhuangjun; Fu, Jinmin

    2013-01-01

    Little is known about the effects of NaCl stress on perennial ryegrass (Lolium perenne L.) photosynthesis and carbohydrate flux. The objective of this study was to understand the carbohydrate metabolism and identify the gene expression affected by salinity stress. Seventy-four days old seedlings of two perennial ryegrass accessions (salt-sensitive 'PI 538976' and salt-tolerant 'Overdrive') were subjected to three levels of salinity stress for 5 days. Turf quality in all tissues (leaves, stems and roots) of both grass accessions negatively and significantly correlated with GFS (Glu+Fru+Suc) content, except for 'Overdrive' stems. Relative growth rate (RGR) in leaves negatively and significantly correlated with GFS content in 'Overdrive' (P<0.01) and 'PI 538976' (P<0.05) under salt stress. 'Overdrive' had higher CO2 assimilation and Fv/Fm than 'PI 538976'. Intercellular CO2 concentration, however, was higher in 'PI 538976' treated with 400 mM NaCl relative to that with 200 mM NaCl. GFS content negatively and significantly correlated with RGR in 'Overdrive' and 'PI 538976' leaves and in 'PI 538976' stems and roots under salt stress. In leaves, carbohydrate allocation negatively and significantly correlated with RGR (r(2) = 0.83, P<0.01) and turf quality (r(2) = 0.88, P<0.01) in salt-tolerant 'Overdrive', however, the opposite trend for salt-sensitive 'PI 538976' (r(2) = 0.71, P<0.05 for RGR; r(2) = 0.62, P>0.05 for turf quality). A greater up-regulation in the expression of SPS, SS, SI, 6-SFT gene was observed in 'Overdrive' than 'PI 538976'. A higher level of SPS and SS expression in leaves was found in 'PI 538976' relative to 'Overdrive'. Accumulation of hexoses in roots, stems and leaves can induce a feedback repression to photosynthesis in salt-stressed perennial ryegrass and the salt tolerance may be changed with the carbohydrate allocation in leaves and stems.

  13. [Effects of organic acids on the toxicity of cadmium during ryegrass growth].

    PubMed

    Liao, Min; Huang, Changyong

    2002-01-01

    Effects of low molecular weight organic acids(oxalic acid, citric acid, and acetic acid) and higher molecular weight organic acid(humic acid) on the toxicity of Cd during ryegrass growth were studied. The results showed that Cd toxicity enhanced gradually with increasing the concentration of low molecular weight organic acids, and led to the decreasing of chlorophyll concentration in ryegrass plant and the biomass of ryegrass. The sequence of this influence was: oxalic acid < acetic acid < citric acid. On the contrary, Cd toxicity was reduced as a result of addition of humic acid, and the concentration of chlorophyll in ryegrass shoots and the biomass of ryegrass increased consequently. The concentration of Cd in roots and shoots of the ryegrass increased with increasing the concentration of low molecular weight organic acids, and the sequence of this influence was: citric acid > acetic acid > oxalic acids. The concentration of Cd decreased gradually as a result of increasing the concentration of humic acid, which means humic acid could reduce the toxicity of Cd on ryegrass. Furthermore, the concentration of Cd was higher in roots than in shoots, which indicated that the roots of ryegrass could prevent transport of Cd from roots to shoots and reduce Cd accumulation in the shoots.

  14. Transpiration flow controls Zn transport in Brassica napus and Lolium multiflorum under toxic levels as evidenced from isotopic fractionation

    NASA Astrophysics Data System (ADS)

    Couder, Eléonore; Mattielli, Nadine; Drouet, Thomas; Smolders, Erik; Delvaux, Bruno; Iserentant, Anne; Meeus, Coralie; Maerschalk, Claude; Opfergelt, Sophie; Houben, David

    2015-11-01

    Stable zinc (Zn) isotope fractionation between soil and plant has been used to suggest the mechanisms affecting Zn uptake under toxic conditions. Here, changes in Zn isotope composition in soil, soil solution, root and shoot were studied for ryegrass (Lolium multiflorum L.) and rape (Brassica napus L.) grown on three distinct metal-contaminated soils collected near Zn smelters (total Zn 0.7-7.5%, pH 4.8-7.3). The Zn concentrations in plants reflected a toxic Zn supply. The Zn isotopic fingerprint of total soil Zn varied from -0.05‰ to +0.26 ± 0.02‰ (δ66Zn values relative to the JMC 3-0749L standard) among soils, but the soil solution Zn was depleted in 66Zn, with a constant Zn isotope fractionation of about -0.1‰ δ66Zn unit compared to the bulk soil. Roots were enriched with 66Zn relative to soil solution (δ66Znroot - δ66Znsoil solution = Δ66Znroot-soil solution = +0.05 to +0.2 ‰) and shoots were strongly depleted in 66Zn relative to roots (Δ66Znshoot-root = -0.40 to -0.04 ‰). The overall δ66Zn values in shoots reflected that of the bulk soil, but were lowered by 0.1-0.3 ‰ units as compared to the latter. The isotope fractionation between root and shoot exhibited a markedly strong negative correlation (R2 = 0.83) with transpiration per unit of plant weight. Thus, the enrichment with light Zn isotopes in shoot progressed with increasing water flux per unit plant biomass dry weight, showing a passive mode of Zn transport by transpiration. Besides, the light isotope enrichment in shoots compared to roots was larger for rape than for rye grass, which may be related to the higher Zn retention in rape roots. This in turn may be related to the higher cation exchange capacity of rape roots. Our finding can be of use to trace the biogeochemical cycles of Zn and evidence the tolerance strategies developed by plants in Zn-excess conditions.

  15. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Main challenge of phytoremediation of co-contaminated soils is developing strategies for efficient and simultaneous removal of multiple pollutants. A pot experiment was conducted to investigate the potential for phytoextraction of heavy metals and rhizoremediaiton of polycyclic aromatic hydrocarbons...

  16. Identification of quantitative trait loci for seed trait and floral morphology in a field-grown Lolium perenne x Lolium multiflorum mapping population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lolium multiflorum Lam. and L. perenne L. differ in the requirements for initiation of flowering, and in other morphological traits. Generally, L. multiflorum spikes are larger than L. perenne spikes, and have more spikelets, more florets per spikelet, larger seeds, and awns. The greater number of s...

  17. [Effects of dissolved organic matter on copper absorption by ryegrass].

    PubMed

    Tang, Chao; Wang, Bin; Liu, Man-Qiang; Hu, Feng; Li, Hui-Xin; Jiao, Jia-Guo

    2012-08-01

    In this study, dissolved organic matter (DOM) was extracted from earthworm casts and from the cattle manure with which the earthworms were fed, and a water culture experiment was conducted to study the effects of the DOM on the copper (Cu2+) absorption by ryegrass in the presence of different concentration Cu2+ (0, 5 and 10 mg x L(-1)). With the increasing concentration of Cu2+ in the medium, there was a gradual decrease in the dry mass of ryegrass shoots and roots and in the root length, surface area, volume, and tip number. In the presence of medium Cu2+, DOM increased the biomass of shoots and roots and the root length, surface area, volume, and tip number significantly. DOM reduced the Cu2+ concentration in roots, promoted the Cu2+ translocation from roots to shoots, and significantly increased the Cu2+ accumulation in shoots. The DOM from earthworm casts had better effects than that from cattle manure, and high concentration DOM had better effects than low concentration DOM. PMID:23189712

  18. Identification of extracellular siderophores and a related peptide from the endophytic fungus Epichloë festucae in culture and endophyte-infected Lolium perenne

    PubMed Central

    Koulman, Albert; Lee, T. Verne; Fraser, Karl; Johnson, Linda; Arcus, Vickery; Lott, J. Shaun; Rasmussen, Susanne; Lane, Geoffrey

    2012-01-01

    A number of genes encoding non-ribosomal peptide synthetases (NRPSs) have been identified in fungi of Epichloë/Neotyphodium species, endophytes of Pooid grasses, including sidN, putatively encoding a ferrichrome siderophore-synthesizing NRPS. Targeted gene replacement and complementation of sidN in Epichloë festucae has established that extracellular siderophore epichloënin A is the major product of the SidN enzyme complex (Johnson et al., 2007a). We report here high resolution mass spectrometric fragmentation experiments and NMR analysis of an isolated fraction establishing that epichloënin A is a siderophore of the ferrichrome family, comprising a cyclic sequence of four glycines, a glutamine and three Nδ-trans-anhydromevalonyl–Nδ-hydroxyornithine (AMHO) moieties. Epichloënin A is unusual among ferrichrome siderophores in comprising an octapeptide rather than hexapeptide sequence, and in incorporating a glutamine residue. During this investigation we have established that desferrichrome siderophores with pendant trans-AMHO groups can be distinguished from those with pendant cis-AMHO groups by the characteristic neutral loss of an hydroxyornithine moiety in the MS/MS spectrum. A minor component, epichloënin B, has been characterized as the triglycine variant by mass spectrometry. A peptide characterized by mass spectrometry as the putative deoxygenation product, epichloëamide has been detected together with ferriepichloënin A in guttation fluid from ryegrass (Lolium perenne) plants infected with wild-type E. festucae, but not in plants infected with the ΔsidN mutant strain, and also detected at trace levels in wild-type E. festucae fungal culture. PMID:22196939

  19. Remodeling of Leaf Cellular Glycerolipid Composition under Drought and Re-hydration Conditions in Grasses from the Lolium-Festuca Complex

    PubMed Central

    Perlikowski, Dawid; Kierszniowska, Sylwia; Sawikowska, Aneta; Krajewski, Paweł; Rapacz, Marcin; Eckhardt, Änne; Kosmala, Arkadiusz

    2016-01-01

    Drought tolerant plant genotypes are able to maintain stability and integrity of cellular membranes in unfavorable conditions, and to regenerate damaged membranes after stress cessation. The profiling of cellular glycerolipids during drought stress performed on model species such as Arabidopsis thaliana does not fully cover the picture of lipidome in monocots, including grasses. Herein, two closely related introgression genotypes of Lolium multiflorum (Italian ryegrass) × Festuca arundinacea (tall fescue) were used as a model for other grass species to describe lipid rearrangements during drought and re-hydration. The genotypes differed in their level of photosynthetic capacity during drought, and in their capacity for membrane regeneration after stress cessation. A total of 120 lipids, comprising the classes of monogalactosyldiacyloglycerol, digalactosyldiacyloglycerol, sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, diacylglicerol, and triacylglicerol, were analyzed. The results clearly showed that water deficit had a significant impact on lipid metabolism in studied forage grasses. It was revealed that structural and metabolic lipid species changed their abundance during drought and re-watering periods and some crucial genotype-dependent differences were also observed. The introgression genotype characterized by an ability to regenerate membranes after re-hydration demonstrated a higher accumulation level of most chloroplast and numerous extra-chloroplast membrane lipid species at the beginning of drought. Furthermore, this genotype also revealed a significant reduction in the accumulation of most chloroplast lipids after re-hydration, compared with the other introgression genotype without the capacity for membrane regeneration. The potential influence of observed lipidomic alterations on a cellular membrane stability and photosynthetic capacity, are discussed

  20. The photosynthetic acclimation of Lolium perenne in response to three years growth in a free-air CO{sub 2} enrichment (FACE) system

    SciTech Connect

    Hymus, G.J. |

    1996-08-01

    Pure stands of Ryegrass were in their third year of growth in the field, exposed to either ambient (355 {mu}mol mol{sup -1}), or elevated (600 {mu}mol mol{sup -1}) atmospheric CO{sub 2} concentration. A Free-Air CO{sub 2} Enrichment (FACE) system was used to maintain the elevated CO{sub 2} concentration whilst limiting experimental constraints on the field conditions. The theoretically predicted increase in the net rates of CO{sub 2} uptake per unit leaf area (A {mu}mol mol{sup -1}) as a consequence, primarily, of the suppression of photorespiration by CO{sub 2} a competitive inhibitor of RubP oxygenation by Rubisco, was observed for the Lolium perenne studied. Also observed was a general decline in leaf evapotranspiration (E) consistent with observations of increased water use efficiency of crops grown in elevated CO{sub 2}. Enhancement of leaf A in the FACE grown L. perenne ranged from 26.5 1 % to 44.95% over the course of a diurnal set of measurements. Whilst reductions in leaf E reached a maximum of 16.61% over the same diurnal course of-measurements. The increase in A was reconciled with an absence of the commonly observed decline in V{sub c}{sub max} as a measure of the maximum in vivo carboxylation capacity of the primary carboxylasing enzyme Rubisco and J{sub max} a measure of the maximum rate of electron transport. The manipulation of the source sink balance of the crop, stage of canopy regrowth or height in the canopy had no effect on the observation of a lack of response. The findings of this study will be interpreted with respect to the long term implications of C{sub 3} crops being able to adapt physiologically to maximize the potential benefits conferred by growth in elevated CO{sub 2}.

  1. Cloning, gene mapping, and functional analysis of a fructan 1-exohydrolase (1-FEH) from Lolium perenne implicated in fructan synthesis rather than in fructan mobilization.

    PubMed

    Lothier, Jérémy; Lasseur, Bertrand; Le Roy, Katrien; Van Laere, André; Prud'homme, Marie-Pascale; Barre, Philippe; Van den Ende, Wim; Morvan-Bertrand, Annette

    2007-01-01

    Fructans, which are beta-(2,1) and/or beta-(2,6) linked polymers of fructose, are important storage carbohydrates in many plants. They are mobilized via fructan exohydrolases (FEHs). The cloning, mapping, and functional analysis of the first 1-FEH (EC 3.2.1.153) from Lolium perenne L. var. Bravo is described here. By screening a perennial ryegrass cDNA library, a 1-FEH cDNA named Lp1-FEHa was cloned. The Lp1-FEHa deduced protein has a low iso-electric point (5.22) and it groups together with plant FEHs and cell-wall type invertases. The deduced amino acid sequence shows 75% identity to wheat 1-FEH w2. The Lp1-FEHa gene was mapped at a distal position on the linkage group 3 (LG3). Functional characterization of the recombinant protein in Pichia pastoris demonstrated that it had high FEH activity towards 1-kestotriose, 1,1-kestotetraose, and inulin, but low activity against 6-kestotriose and levan. Like other fructan-plant FEHs, no hydrolase activity could be detected towards sucrose, convincingly demonstrating that the enzyme is not a classic invertase. The expression pattern analysis of Lp1-FEHa revealed transcript accumulation in leaf tissues accumulating fructans while transcript level was low in the photosynthetic tissues. The high expression level of this 1-FEH in conditions of active fructan synthesis, together with its low expression level when fructan contents are low, suggest that it might play a role as a beta-(2,1) trimming enzyme acting during fructan synthesis in concert with fructan synthesis enzymes.

  2. Remodeling of Leaf Cellular Glycerolipid Composition under Drought and Re-hydration Conditions in Grasses from the Lolium-Festuca Complex.

    PubMed

    Perlikowski, Dawid; Kierszniowska, Sylwia; Sawikowska, Aneta; Krajewski, Paweł; Rapacz, Marcin; Eckhardt, Änne; Kosmala, Arkadiusz

    2016-01-01

    Drought tolerant plant genotypes are able to maintain stability and integrity of cellular membranes in unfavorable conditions, and to regenerate damaged membranes after stress cessation. The profiling of cellular glycerolipids during drought stress performed on model species such as Arabidopsis thaliana does not fully cover the picture of lipidome in monocots, including grasses. Herein, two closely related introgression genotypes of Lolium multiflorum (Italian ryegrass) × Festuca arundinacea (tall fescue) were used as a model for other grass species to describe lipid rearrangements during drought and re-hydration. The genotypes differed in their level of photosynthetic capacity during drought, and in their capacity for membrane regeneration after stress cessation. A total of 120 lipids, comprising the classes of monogalactosyldiacyloglycerol, digalactosyldiacyloglycerol, sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, diacylglicerol, and triacylglicerol, were analyzed. The results clearly showed that water deficit had a significant impact on lipid metabolism in studied forage grasses. It was revealed that structural and metabolic lipid species changed their abundance during drought and re-watering periods and some crucial genotype-dependent differences were also observed. The introgression genotype characterized by an ability to regenerate membranes after re-hydration demonstrated a higher accumulation level of most chloroplast and numerous extra-chloroplast membrane lipid species at the beginning of drought. Furthermore, this genotype also revealed a significant reduction in the accumulation of most chloroplast lipids after re-hydration, compared with the other introgression genotype without the capacity for membrane regeneration. The potential influence of observed lipidomic alterations on a cellular membrane stability and photosynthetic capacity, are discussed

  3. 7 CFR 201.61 - Fluorescence percentages in ryegrasses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Fluorescence percentages in ryegrasses. 201.61 Section... found fluorescence tolerance 100 99 1.0 98 1.6 97 2.0 96 2.3 95 2.6 94 2.9 93 3.2 92 3.4 91 3.6 90 3.8... 6.6 31 6.6 30 6.5 29 6.5 28 6.4 27 6.4 26 6.3 25 6.2 24 6.2 23 6.1 22 6.0 21 5.9 20 5.8 19 5.7 18...

  4. Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen.

    PubMed

    Bhalla, P L; Swoboda, I; Singh, M B

    1999-09-28

    Type 1 allergic reactions, such as hay fever and allergic asthma, triggered by grass pollen allergens are a global health problem that affects approximately 20% of the population in cool, temperate climates. Ryegrass is the dominant source of allergens because of its prodigious production of airborne pollen. Lol p 5 is the major allergenic protein of ryegrass pollen, judging from the fact that almost all of the individuals allergic to grass pollen show presence of serum IgE antibodies against this protein. Moreover, nearly two-thirds of the IgE reactivity of ryegrass pollen has been attributed to this protein. Therefore, it can be expected that down-regulation of Lol p 5 production can significantly reduce the allergic potential of ryegrass pollen. Here, we report down-regulation of Lol p 5 with an antisense construct targeted to the Lol p 5 gene in ryegrass. The expression of antisense RNA was regulated by a pollen-specific promoter. Immunoblot analysis of proteins with allergen-specific antibodies did not detect Lol p 5 in the transgenic pollen. The transgenic pollen showed remarkably reduced allergenicity as reflected by low IgE-binding capacity of pollen extract as compared with that of control pollen. The transgenic ryegrass plants in which Lol p 5 gene expression is perturbed showed normal fertile pollen development, indicating that genetic engineering of hypoallergenic grass plants is possible.

  5. Effect of silage from ryegrass intercropped with winter or common vetch for grazing dairy cows in small-scale dairy systems in Mexico.

    PubMed

    Hernández-Ortega, Martha; Heredia-Nava, Darwin; Espinoza-Ortega, Angelica; Sánchez-Vera, Ernesto; Arriaga-Jordán, Carlos M

    2011-06-01

    The objective was to determine the effect of including silages of annual ryegrass (Lolium multiflorum) intercropped with winter vetch (Vicia villosa) (ARG-VV) or with common vetch (Vicia sativa) (ARG-VS) compared with maize silage (MS) on milk yield and milk composition of dairy cows grazing cultivated perennial ryegrass-white clover pastures with supplemented concentrate during the dry season. Six Holstein dairy cows with a mean yield of 19.0 kg/cow/day at the beginning of the experiment were randomly assigned to a 3 × 3 repeated Latin square. Treatments were: 8 h/day intensive grazing, 3.6 kg of dry matter (DM) per cow per day of concentrate plus MS, and ARG-VV or ARG-VS ad libitum at a stocking rate of 3.0 cows/ha for three experimental periods of 3 weeks each. Milk yield (MY) and milk composition, live weight and body condition score as well as silage and concentrate intakes were recorded during the third week of each experimental period, and pasture intake was estimated indirectly from utilised metabolisable energy. Economic analysis was obtained by preparing partial budgets. There were no statistical differences (P > 0.10) in MY, milk fat or protein content nor for live weight, but there was significant difference (P < 0.10) in body condition score. There were non-statistical differences in silage DM intake (P < 0.11); however, significant differences (P < 0.10) were obtained for estimated grazed herbage intake whilst no differences for total DM intake. Slightly higher economic returns (10%) were obtained with ARG-VS over MS, and this was 7% higher than ARG-VV. It is concluded that ARG-VS could be an option for complementing grazing for small-scale dairy production systems in the dry season as it is comparable to MS in animal performance and slightly better in economic terms.

  6. Transcriptome response in different tissues of Lolium arundinaceum to the fungal endophyte Epichloe coenophiala

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue (Lolium arundinaceum) plants symbiotic with the endophytic fungus, Epichloe coenophiala , (E+), have been shown to have better survivability and persistence than plants lacking the endophyte (E-). To understand more about the grass-endophyte interactions and how endophyte affects the ho...

  7. Transcriptome response of Lolium arundinaceum to the fungal endophyte Epichloe coenophiala

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue (Lolium arundinaceum) is one of the principal cool-season species used as a forage and turf within the USA. A number of benefits associated with the persistence of tall fescue have been attributed to the presence of its seed-transmissible symbiont, the fungal endophyte Epichloë coenophi...

  8. Regulation of levels of serum antibodies to ryegrass pollen allergen Lol pIV by an internal image anti-idiotypic monoclonal antibody.

    PubMed

    Zhou, E M; Kisil, F T

    1995-03-01

    A murine monoclonal anti-idiotypic antibody (anti-Id), designated B1/1, was produced against an idiotope of a murine antibody (mAb91), which recognizes the epitope, site A, of allergen Lol pIV, one of the major groups of allergens in ryegrass (Lolium perenne) pollen. The ability of B1/1 to modulate the antibody responses to Lol pIV was investigated in murine model systems. In the first system, B1/1-keyhole limpet haemocyanin (KLH) conjugate was administered to treat three different strains of mice (C57BL/6, BALB/c and C3H). In the second and third model systems, a solution of B1/1 in phosphate-buffered saline (PBS) was used to treat syngeneic BALB/c mice at various doses and time intervals, respectively. The treatment with either form of B1/1, administered at doses ranging from 100 ng to 100 micrograms mouse, resulted in a reduction of the levels of the antibodies to Lol pIV. In particular, the level of IgE antibodies to Lol pIV was greatly reduced. The administration of a single intravenous (i.v.) injection of a solution of B1/1 8 weeks prior to the challenge with Lol pIV was still effective in reducing the level of antibodies to the allergen. Moreover, the level of antibodies to Lol pIV that expressed the idiotope mAb91 was also markedly decreased. By contrast, it was observed that the level of antibodies to Lol pIV in mice pretreated with B1/1 in PBS at a dose of 10 ng/mouse increased (albeit slightly) compared to that in mice treated with control mAb. These experimental models lend themselves for investigating the mechanism(s) by which an anti-Id modulates antibody responses to a grass pollen allergen.

  9. Growth-Promoting Hormone DA-6 Assists Phytoextraction and Detoxification of Cd by Ryegrass.

    PubMed

    He, Shanying; Wu, Qiuling; He, Zhenli

    2015-01-01

    A pot experiment was carried out to study the effect of growth-promoting hormone diethyl aminoethyl hexanoate (DA-6) on Cd phytoextraction and detoxification in ryegrass. Foliar spray of DA-6 significantly enhanced Cd extraction efficiency (P<0.05), with 1 μM DA-6 the most effective. At the subcellular level, 43-53% of Cd was soluble fraction and 23-46% in cell wall, and 9-25% in organelles. Chemical speciation analysis showed that 52.7-58.5% of Cd was NaCl extractable, 12.1-22.7% ethanol extractable, followed by other fractions. DA-6 alleviated metal toxicity by fixing more Cd in cell wall and decreasing Cd migration in plant. In conclusion, ryegrass tolerates Cd by cell wall compartmentalization along with protein and organic acids combination, and the treatment of 1 μM DA-6 appears to be optimal for enhancing the remediation efficiency of ryegrass for Cd contaminated soil.

  10. Production of tremorgenic toxins by Penicillium janthinellum Biourge: a possible aetiological factor in ryegrass staggers.

    PubMed

    Lanigan, G W; Payne, A L; Cockrum, P A

    1979-02-01

    Topsoil, herbage and faeces collected during an outbreak of ryegrass staggers in sheep were examined for tremorgenic penicillia. No such fungi were recovered from the plant material, but they were found among the predominant fungi in the soil and faecal samples. The commonest species of Penicillium, and almost the only tremorgenic species encountered, was Penicillium janthinellum Biourge. When fed to sheep, the mycelium of this fungus evoked a number of the clinical signs seen in field cases of ryegrass staggers. Two tremorgenic toxins were isolated from the mycelial felts and available evidence indicates that they are verruculogen and fumitremorgin A. P. janthinellum also produced these tremorgens when cultured in moist, autoclaved soil, but not in unheated soil. The results obtained from this study are in accord with the hypothesis that ryegrass staggers is caused by tremorgenic mycotoxins. PMID:475667

  11. Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne.

    PubMed

    Ciannamea, Stefano; Kaufmann, Kerstin; Frau, Marta; Tonaco, Isabella A Nougalli; Petersen, Klaus; Nielsen, Klaus K; Angenent, Gerco C; Immink, Richard G H

    2006-01-01

    Regulation of flowering time is best understood in the dicot model species Arabidopsis thaliana. Molecular analyses revealed that genes belonging to the MADS box transcription factor family play pivotal regulatory roles in both the vernalization- and photoperiod-regulated flowering pathways. Here the analysis of three APETALA1 (AP1)-like MADS box proteins (LpMADS1-3) and a SHORT VEGETATIVE PHASE (SVP)-like MADS box protein (LpMADS10) from the monocot perennial grass species Lolium perenne is reported. Features of these MADS box proteins were studied by yeast two-hybrid assays. Protein-protein interactions among the Lolium proteins and with members of the Arabidopsis MADS box family have been studied. The expression pattern for LpMADS1 and the protein properties suggest that not the Arabidopsis AP1 gene, but the SUPPRESSOR OF CONSTANS1 (SOC1) gene, is the functional equivalent of LpMADS1. To obtain insight into the molecular mechanism underlying the regulation of LpMADS1 gene expression in vernalization-sensitive and -insensitive Lolium accessions, the upstream sequences of this gene from a winter and spring growth habit variety were compared with respect to MADS box protein binding. In both promoter elements, a putative MADS box transcription factor-binding site (CArG-box) is present; however, the putative spring promoter has a short deletion adjacent to this DNA motif. Experiments using yeast one-hybrid and gel retardation assays demonstrated that the promoter element is bound by an LpMADS1-LpMADS10 higher order protein complex and, furthermore, that this complex binds efficiently to the promoter element from the winter variety only. This strongly supports the model that LpMADS1 together with LpMADS10 controls the vernalization-dependent regulation of the LpMADS1 gene, which is part of the vernalization-induced flowering process in Lolium. PMID:17005923

  12. Anaerobic Digestion of Saline Creeping Wild Ryegrass for Biogas Production and Pretreatment of Particleboard Material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to develop an integrated process to produce biogas and high-quality particleboard using saline creeping wild ryegrass (CWR), Leymus triticoides through anaerobic digestion (AD). Besides producing biogas, AD also serves as a pretreatment method to remove the wax la...

  13. Draft Genome Sequence of Pediococcus lolii NGRI 0510QT Isolated from Ryegrass Silage

    PubMed Central

    Mori, Kazuki; Tashiro, Kosuke; Fujino, Yasuhiro; Nagayoshi, Yuko; Hayashi, Yoshiharu; Kuhara, Satoru; Ohshima, Toshihisa

    2013-01-01

    Pediococcus lolii NGRI 0510QT was isolated from ryegrass silage produced on Ishigaki Island, Okinawa Prefecture, Japan. Here we present a draft genome sequence for this strain, consisting of 103 contigs for a total of 2,047,078 bp, 2,154 predicted coding sequences, and a G+C content of 42.1%. PMID:23405350

  14. Effects of the mycoparasite Sphaerellopsis filum on overwintering survival of stem rust in perennial ryegrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sphaerellopsis filum is a mycoparasite of Puccinia graminis subsp. graminicola (Pgg), a rust fungus that causes widespread crop damage on perennial ryegrass grown for seed. In observations taken over the winters of 2000-2003 S. filum was found in 10% of Pgg uredinia on 1st year plantings of perennia...

  15. Silicon induced systemic defense responses in perennial ryegrass against Magnaporthe oryzae infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable integrated disease management for gray leaf spot of perennial ryegrass may involve use of plant defense elicitors with compatible traditional fungicides to reduce disease incidence and severity. Silicon (Si) is a potential inducer or modulator of plant defenses against different pathogen...

  16. The effect of glyphosate, paraquat and paclobutrazol on lolitrem B levels in endophyte-infected perennial ryegrass.

    PubMed

    Prestidge, R A; Sprosen, J M

    1995-08-01

    Two herbicides (glyphosate and paraquat) and a plant growth regulator (paclobutrazol) were applied to endophyteinfected (Acremonium lolii) perennial ryegrass swards. Subsamples of these swards were then chemically analysed at intervals up to 28 days later for lolitrem B, the compound responsible for perennial ryegrass staggers in domestic livestock. Glyphosate and paclobutrazol had no effect on lolitrem B concentrations. Paraquat applications decreased lolitrem B concentrations in the herbage. Because none of the chemicals tested increased the concentration of lolitrem B in the herbage, they are unlikely to be directly implicated in perennial ryegrass staggers in grazing animals.

  17. Silicon-Induced Systemic Defense Responses in Perennial Ryegrass Against Infection by Magnaporthe oryzae.

    PubMed

    Rahman, Alamgir; Wallis, Christopher M; Uddin, Wakar

    2015-06-01

    Sustainable integrated disease management for gray leaf spot of perennial ryegrass may involve use of plant defense elicitors with compatible traditional fungicides to reduce disease incidence and severity. Silicon (Si) has previously been identified as a potential inducer or modulator of plant defenses against different fungal pathogens. To this end, perennial ryegrass was inoculated with the causal agent of gray leaf spot, Magnaporthe oryzae, when grown in soil that was nonamended or amended with three different levels of calcium silicate (1, 5, or 10 metric tons [t]/ha). When applied at a rate of 5 t/ha, calcium silicate was found to significantly suppress gray leaf spot in perennial ryegrass, including a significant reduction of disease incidence (39.5%) and disease severity (47.3%). Additional studies observed nonpenetrated papillae or cell-wall appositions harboring callose, phenolic autofluorogens, and lignin-associated polyphenolic compounds in grass grown in the Si-amended soil. Regarding defense-associated enzyme levels, only following infection did grass grown in Si-amended soil exhibit greater activities of peroxidase and polyphenol oxidase than equivalent inoculated control plants. Also following infection with M. oryzae, grass levels of several phenolic acids, including chlorogenic acid and flavonoids, and relative expression levels of genes encoding phenylalanine ammonia lyase (PALa and PALb) and lipoxygenase (LOXa) significantly increased in Si-amended plants compared with that of nonamended control plants. These results suggest that Si-mediated increase of host defense responses to fungal pathogens in perennial ryegrass has a great potential to be part of an effective integrated disease management strategy against gray leaf spot development. PMID:25738553

  18. Silicon-Induced Systemic Defense Responses in Perennial Ryegrass Against Infection by Magnaporthe oryzae.

    PubMed

    Rahman, Alamgir; Wallis, Christopher M; Uddin, Wakar

    2015-06-01

    Sustainable integrated disease management for gray leaf spot of perennial ryegrass may involve use of plant defense elicitors with compatible traditional fungicides to reduce disease incidence and severity. Silicon (Si) has previously been identified as a potential inducer or modulator of plant defenses against different fungal pathogens. To this end, perennial ryegrass was inoculated with the causal agent of gray leaf spot, Magnaporthe oryzae, when grown in soil that was nonamended or amended with three different levels of calcium silicate (1, 5, or 10 metric tons [t]/ha). When applied at a rate of 5 t/ha, calcium silicate was found to significantly suppress gray leaf spot in perennial ryegrass, including a significant reduction of disease incidence (39.5%) and disease severity (47.3%). Additional studies observed nonpenetrated papillae or cell-wall appositions harboring callose, phenolic autofluorogens, and lignin-associated polyphenolic compounds in grass grown in the Si-amended soil. Regarding defense-associated enzyme levels, only following infection did grass grown in Si-amended soil exhibit greater activities of peroxidase and polyphenol oxidase than equivalent inoculated control plants. Also following infection with M. oryzae, grass levels of several phenolic acids, including chlorogenic acid and flavonoids, and relative expression levels of genes encoding phenylalanine ammonia lyase (PALa and PALb) and lipoxygenase (LOXa) significantly increased in Si-amended plants compared with that of nonamended control plants. These results suggest that Si-mediated increase of host defense responses to fungal pathogens in perennial ryegrass has a great potential to be part of an effective integrated disease management strategy against gray leaf spot development.

  19. The molecular mechanism of "ryegrass staggers," a neurological disorder of K+ channels.

    PubMed

    Imlach, Wendy L; Finch, Sarah C; Dunlop, James; Meredith, Andrea L; Aldrich, Richard W; Dalziel, Julie E

    2008-12-01

    "Ryegrass staggers" is a neurological condition of unknown mechanism that impairs motor function in livestock. It is caused by infection of perennial ryegrass pastures by an endophytic fungus that produces neurotoxins, predominantly the indole-diterpenoid compound lolitrem B. Animals grazing on such pastures develop uncontrollable tremors and become uncoordinated in their movement. Lolitrem B and the structurally related tremor inducer paxilline both act as potent large conductance calcium-activated potassium (BK) channel inhibitors. Using patch clamping, we show that their different apparent affinities correlate with their toxicity in vivo. To investigate whether the motor function deficits produced by lolitrem B and paxilline are due to inhibition of BK ion channels, their ability to induce tremor and ataxia in mice deficient in this ion channel (Kcnma1(-/-)) was examined. Our results show that mice lacking Kcnma1 are unaffected by these neurotoxins. Furthermore, doses of these substances known to be lethal to wild-type mice had no effect on Kcnma1(-/-) mice. These studies reveal the BK channel as the molecular target for the major components of the motor impairments induced by ryegrass neurotoxins. Unexpectedly, when the response to lolitrem B was examined in mice lacking the beta4 BK channel accessory subunit (Kcnmb4(-/-)), only low-level ataxia was observed. Our study therefore reveals a new role for the accessory BK beta4 subunit in motor control. The beta4 subunit could be considered as a potential target for treatment of ataxic conditions in animals and in humans.

  20. Overexpression of ubiquitin-like LpHUB1 gene confers drought tolerance in perennial ryegrass.

    PubMed

    Patel, Minesh; Milla-Lewis, Susana; Zhang, Wanjun; Templeton, Kerry; Reynolds, William C; Richardson, Kim; Biswas, Margaret; Zuleta, Maria C; Dewey, Ralph E; Qu, Rongda; Sathish, Puthigae

    2015-06-01

    HUB1, also known as Ubl5, is a member of the subfamily of ubiquitin-like post-translational modifiers. HUB1 exerts its role by conjugating with protein targets. The function of this protein has not been studied in plants. A HUB1 gene, LpHUB1, was identified from serial analysis of gene expression data and cloned from perennial ryegrass. The expression of this gene was reported previously to be elevated in pastures during the summer and by drought stress in climate-controlled growth chambers. Here, pasture-type and turf-type transgenic perennial ryegrass plants overexpressing LpHUB1 showed improved drought tolerance, as evidenced by improved turf quality, maintenance of turgor and increased growth. Additional analyses revealed that the transgenic plants generally displayed higher relative water content, leaf water potential, and chlorophyll content and increased photosynthetic rate when subjected to drought stress. These results suggest HUB1 may play an important role in the tolerance of perennial ryegrass to abiotic stresses. PMID:25487628

  1. Effects of elevated CO(2) levels on root morphological traits and Cd uptakes of two Lolium species under Cd stress.

    PubMed

    Jia, Yan; Tang, Shi-rong; Ju, Xue-hai; Shu, Li-na; Tu, Shu-xing; Feng, Ren-wei; Giusti, Lorenzino

    2011-04-01

    This study was conducted to investigate the combined effects of elevated CO(2) levels and cadmium (Cd) on the root morphological traits and Cd accumulation in Lolium multiflorum Lam. and Lolium perenne L. exposed to two CO(2) levels (360 and 1 000 μl/L) and three Cd levels (0, 4, and 16 mg/L) under hydroponic conditions. The results show that elevated levels of CO(2) increased shoot biomass more, compared to root biomass, but decreased Cd concentrations in all plant tissues. Cd exposure caused toxicity to both Lolium species, as shown by the restrictions of the root morphological parameters including root length, surface area, volume, and tip numbers. These parameters were significantly higher under elevated levels of CO(2) than under ambient CO(2), especially for the number of fine roots. The increases in magnitudes of those parameters triggered by elevated levels of CO(2) under Cd stress were more than those under non-Cd stress, suggesting an ameliorated Cd stress under elevated levels of CO(2). The total Cd uptake per pot, calculated on the basis of biomass, was significantly greater under elevated levels of CO(2) than under ambient CO(2). Ameliorated Cd toxicity, decreased Cd concentration, and altered root morphological traits in both Lolium species under elevated levels of CO(2) may have implications in food safety and phytoremediation.

  2. Effects of elevated CO2 levels on root morphological traits and Cd uptakes of two Lolium species under Cd stress*

    PubMed Central

    Jia, Yan; Tang, Shi-rong; Ju, Xue-hai; Shu, Li-na; Tu, Shu-xing; Feng, Ren-wei; Giusti, Lorenzino

    2011-01-01

    This study was conducted to investigate the combined effects of elevated CO2 levels and cadmium (Cd) on the root morphological traits and Cd accumulation in Lolium multiflorum Lam. and Lolium perenne L. exposed to two CO2 levels (360 and 1000 μl/L) and three Cd levels (0, 4, and 16 mg/L) under hydroponic conditions. The results show that elevated levels of CO2 increased shoot biomass more, compared to root biomass, but decreased Cd concentrations in all plant tissues. Cd exposure caused toxicity to both Lolium species, as shown by the restrictions of the root morphological parameters including root length, surface area, volume, and tip numbers. These parameters were significantly higher under elevated levels of CO2 than under ambient CO2, especially for the number of fine roots. The increases in magnitudes of those parameters triggered by elevated levels of CO2 under Cd stress were more than those under non-Cd stress, suggesting an ameliorated Cd stress under elevated levels of CO2. The total Cd uptake per pot, calculated on the basis of biomass, was significantly greater under elevated levels of CO2 than under ambient CO2. Ameliorated Cd toxicity, decreased Cd concentration, and altered root morphological traits in both Lolium species under elevated levels of CO2 may have implications in food safety and phytoremediation. PMID:21462388

  3. Acclimation of photosynthesis to elevated CO{sub 2} under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO{sub 2} enrichment

    SciTech Connect

    Rogers, A.; Bryant, J.; Raines, C.A.; Long, S.P.L.; Fischer, B.U.; Frehner, M.; Blum, H.; Long, S.P. |

    1998-10-01

    Acclimation of photosynthesis to elevated CO{sub 2} has previously been shown to be more pronounced when N supply is poor. Is this a direct effect of N or an indirect effect of N by limiting the development of sinks for photoassimilate? This question was tested by growing a perennial ryegrass (Lolium perenne) in the field under elevated (60 Pa) and current (36 Pa) partial pressures of CO{sub 2} (pCO{sub 2}) at low and high levels of N fertilization. Cutting of this herbage crop at 4- to 8-week intervals removed about 80% of the canopy, therefore decreasing the ratio of photosynthetic area to sinks for photoassimilate. Leaf photosynthesis, in vivo carboxylation capacity, carbohydrate, N, ribulose-1,5-biphosphate carboxylase/oxygenase, sedoheptulose-1,7-bisphosphatase, and chloroplastic fructose-1,6-bisphosphatase levels were determined for mature lamina during two consecutive summers, just before the cut, when the canopy was relatively large, growth at elevated pCO{sub 2} and low N resulted in significant decreases in carboxylation capacity and the amount of ribulose-1,5-biphosphate carboxylase/oxygenase protein. In high N there were no significant decreases in carboxylation capacity or proteins, but chloroplastic fructose-1,6-bisphosphatase protein levels increased significantly. Elevated pCO{sub 2} resulted in a marked and significant increase in leaf carbohydrate content at low N, but had no effect at high N. This acclimation at low N was absent after the harvest, when the canopy size was small. These results suggest that acclimation under low N is caused by limitation of sink development rather than being a direct effect of N supply on photosynthesis.

  4. Stability of Chloropyromorphite in Ryegrass Rhizosphere as Affected by Root-Secreted Low Molecular Weight Organic Acids

    PubMed Central

    Wei, Wei; Wang, Yu; Wang, Zheng; Han, Ruiming; Li, Shiyin; Wei, Zhenggui; Zhang, Yong

    2016-01-01

    Understanding the stability of chloropyromorphite (CPY) is of considerable benefit for improving risk assessment and remediation strategies in contaminated water and soil. The stability of CPY in the rhizosphere of phosphorus-deficient ryegrass was evaluated to elucidate the role of root-secreted low molecular weight organic acids (LMWOAs) on the dissolution of CPY. Results showed that CPY treatments significantly reduced the ryegrass biomass and rhizosphere pH. The presence of calcium nitrate extractable lead (Pb) and phosphorus (P) suggested that CPY in the rhizosphere could be bioavailable, because P and Pb uptake by ryegrass potentially provided a significant concentration gradient that would promote CPY dissolution. Pb accumulation and translocation in ryegrass was found to be significantly higher in P-sufficient conditions than in P-deficient conditions. CPY treatments significantly enhanced root exudation of LMWOAs irrigated with P-nutrient solution or P-free nutrient solution. Oxalic acid was the dominant species in root-secreted LMWOAs of ryegrass under P-free nutrient solution treatments, suggesting that root-secreted oxalic acid may be the driving force of root-induced dissolution of CPY. Hence, our work, provides clarifying hints on the role of LMWOAs in controlling the stability of CPY in the rhizosphere. PMID:27494023

  5. Stability of Chloropyromorphite in Ryegrass Rhizosphere as Affected by Root-Secreted Low Molecular Weight Organic Acids.

    PubMed

    Wei, Wei; Wang, Yu; Wang, Zheng; Han, Ruiming; Li, Shiyin; Wei, Zhenggui; Zhang, Yong

    2016-01-01

    Understanding the stability of chloropyromorphite (CPY) is of considerable benefit for improving risk assessment and remediation strategies in contaminated water and soil. The stability of CPY in the rhizosphere of phosphorus-deficient ryegrass was evaluated to elucidate the role of root-secreted low molecular weight organic acids (LMWOAs) on the dissolution of CPY. Results showed that CPY treatments significantly reduced the ryegrass biomass and rhizosphere pH. The presence of calcium nitrate extractable lead (Pb) and phosphorus (P) suggested that CPY in the rhizosphere could be bioavailable, because P and Pb uptake by ryegrass potentially provided a significant concentration gradient that would promote CPY dissolution. Pb accumulation and translocation in ryegrass was found to be significantly higher in P-sufficient conditions than in P-deficient conditions. CPY treatments significantly enhanced root exudation of LMWOAs irrigated with P-nutrient solution or P-free nutrient solution. Oxalic acid was the dominant species in root-secreted LMWOAs of ryegrass under P-free nutrient solution treatments, suggesting that root-secreted oxalic acid may be the driving force of root-induced dissolution of CPY. Hence, our work, provides clarifying hints on the role of LMWOAs in controlling the stability of CPY in the rhizosphere. PMID:27494023

  6. Feasibility of incorporating waste grass clippings (Lolium perenne L.) in particleboard composites.

    PubMed

    Nemli, Gökay; Demirel, Samet; Gümüşkaya, Esat; Aslan, Mustafa; Acar, Cengiz

    2009-03-01

    This study investigated some of the important physical (thickness swelling) and mechanical (modulus of rupture, modulus of elasticity and internal bond) properties of single-layer particleboard panels made from eucalyptus (Eucalyptus camaldulensis Dehn.), waste of grass clippings (Lolium perenne L.) and combinations of the two. The chemical properties (pH, holocelluse and alpha cellulose contents, and water, alcohol-benzene and 1% sodium hydroxide solubilities) of the raw materials were also determined. Panels with a 6:94 ratio of grass-to-eucalyptus particles had the required mechanical properties for interior fitments including furniture and general uses. Boards manufactured with 100% grass clippings exhibited the lowest quality. The overall panel properties improved with a lower percentage of grass clippings added. Based on initial results, it also appears that grass should compose no more than 13% to achieve acceptable panel properties for interior fitments and general uses.

  7. Effect of sewage sludge amendment on heavy metal uptake and yield of ryegrass seedling in a mudflat soil.

    PubMed

    Gu, Chuanhui; Bai, Yanchao; Tao, Tianyun; Chen, Guohua; Shan, Yuhua

    2013-01-01

    Mudflat soil amendment by sewage sludge is a potential way to dispose of solid wastes and increase fertility of mudflat soils for crop growth. The present study aimed to assess the impact of sewage sludge amendment (SSA) on heavy metal accumulation and growth of ryegrass ( L.) in a seedling stage. We investigated the metal availability, plant uptake, and plant yield in response to SSA at rates of 0, 30, 75, 150, and 300 t ha. The SSA increased the metal availability in a mudflat soil and subsequently metal accumulation in ryegrass. The SSA increased the bioavailable fraction of the metals by 4550, 58.8, 898, 189, 35.8, and 84.8% for Zn, Mn, Cu, Ni, Cr, and Cd, respectively, at an SSA rate of 300 t ha as compared to unamended soil. Consequently, the metal concentrations in ryegrass increased by 1130, 12.9, 355, 108, 2230, and 497% in roots and by 431, -4.3, 92.6, 58.3, 890, and 211% in aboveground parts, for Zn, Mn, Cu, Ni, Cr, and Cd, respectively, at the 300 t ha rate as compared to unamended soil. The enhanced metal accumulation, however, did not induce growth inhibition of ryegrass. Fresh weight of aboveground parts and roots of ryegrass at 300 t ha SSA rate increased by 555 and 128%, respectively, as compared to those grown in unamended soil. The study suggests that SSA can promote yield of ryegrass seedlings grown in mudflat soils. None of metal concentrations at all SSA rates was above the Chinese permissible limits. Despite the data at only the seedling stage, our results indicate that SSA in mudflat soils might be a potential way for mudflat soil fertility improvement and sewage sludge disposal. Further study at plants' maturity stage is warranted to fully assess the suitability of sewage sludge amendment on mudflat soils.

  8. Toxicity of endophyte-infected ryegrass hay containing high ergovaline level in lactating ewes.

    PubMed

    Zbib, N; Repussard, C; Tardieu, D; Priymenko, N; Domange, C; Guerre, P

    2015-08-01

    The symbiotic association of var. (formerly named ) with perennial ryegrass () leads to the production of ergovaline (EV) and lolitrem B (LB) that are toxic for livestock. The objectives of this study were to determine the effects of feeding endophyte-infected ryegrass (SE+) hay on 16 lactating ewes (BW 80 ± 10 kg) in comparison with endophyte-free ryegrass (SE-) hay to investigate the putative mechanisms of action of EV and LB and to evaluate their persistence in milk and animal tissues. The mean EV and LB concentrations in SE+ hay were 851 and 884 μg/kg DM, respectively, whereas these alkaloids were below the limit of detection in SE- hay. No effect of SE+ was observed on animal health and skin temperature whereas prolactin decreased and significant differences between hays were observed from d 7 to 28 of the study ( < 0.03) but had no effect on milk production. Hematocrit and biochemical analyses of plasma revealed no significant difference between SE+ and SE-, whereas cortisol concentration differed significantly on d 28 ( = 0.001). Measurement of oxidative damage and antioxidant enzyme activities in plasma, liver, and kidneys revealed a slight increase in some enzyme activities involved in defense against oxidative damage in the SE+ fed ewes. Slight variations in the activities of hepatic and kidney flavin monooxygenase enzymes were observed, whereas in the kidney, glutathione -transferase activity decreased significantly ( = 0.002) in the SE+ fed ewes, whereas uridine diphosphate glucuronosyltransferase activity increased ( = 0.001). After 28 d of exposure of ewes to the SE+ hay, low EV and LB concentrations were measured in tissues. The highest concentration of EV was observed in the liver (0.68 μg/kg) whereas fat contained the highest concentration of LB (2.39 μg/kg). Both toxins were also identified at the trace level in milk. PMID:26440189

  9. The fate of diesel hydrocarbons in soils and their effect on the germination of perennial ryegrass.

    PubMed

    Siddiqui, Samina; Adams, W A

    2002-02-01

    Hydrocarbon contamination in soils may be toxic to plants and soil microorganisms and act as a source of groundwater contamination. The objective of this study was to evaluate the fate of diesel in soils with or without added nutrients. The soils examined either had or had not a previous history of hydrocarbon contamination. Particular aspects examined were soil respiration, changes in microbial population, breakdown of diesel hydrocarbons, and phytotoxicity to the germination of perennial ryegrass. Soil respiration was measured as evolved CO2. Bacterial population was determined as colony forming units in dilution plates and fungal activity was measured as hyphal length. The fate of individual hydrocarbons was determined by gas chromatography-mass spectrometry after extraction with dichloromethane. When diesel was added to soil with no previous history of hydrocarbon contamination at rates up to 50 mg/g, the respiration response showed a lag phase of 6 days and maximum respiration occurred at day 11. The lag phase was 2 days and maximum respiration occurred at day 3 in soil with a previous history of hydrocarbon contamination. After the peak, respiration decreased up to about 20 days in both soils. Thereafter, respiration become more or less constant but substantially greater than the control. N and P addition along with diesel did not reduce the lag phase but increased the respiration over the first 20 days of incubation. Diesel addition with or without N and P increased the bacterial population 10- to 100-fold but fungal hyphal length did not increase. Diesel addition at a rate of 136 mg/g did not increase the microbial population. Removal of inhibition to germination of perennial ryegrass was linked to the decomposition of nC10 and nC11 hydrocarbons and took from 11 to 30 days at diesel additions up to 50 mg/g depending on the soil. Inhibition to germination of perennial ryegrass persisted to more than 24 weeks at the 136 mg/g of diesel addition.

  10. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site.

    PubMed

    Arienzo, M; Adamo, P; Cozzolino, V

    2004-02-01

    A greenhouse study was carried out to determine the possibility of using Lolium perenne for revegetation of soil from a former ferrous metallurgical plant (Naples, South Italy) contaminated by Cu, Pb and Zn at levels above current Italian regulatory limits. Surface soil samples (0-40 cm) from the facility area where raw minerals were disposed (RM1 and RM2), from a nearby unpolluted cultivated soil (C) as control and a 1:3 mixture of the control with the polluted ones (RM1+C and RM2+C) were utilized for the experiment. Revegetation trials were conducted in the greenhouse. At 90 days from seeding, shoot length, chlorophyll content, biomass yield, plant metal uptake and changes of organic carbon content and metal distribution among soil extractable phases defined by sequential extraction were determined. In the mixed substrates (RM1+C and RM2+C) concentrations of Cu, Pb and Zn were still two to three times higher than the Italian regulatory limits. Plants were healthy with 100% survival in all substrates, with no macroscopic symptoms of metal toxicity. The high pH of the soil could be one of the most important parameters responsible for the limited plant availability of the metals. On RM1, RM2 and mixed media, plants experienced retarded growth, reduced shoot length and biomass yield and higher total chlorophyll content compared to those cropped on the control soil, without any evident phytotoxic symptoms. In RM1 and RM2, the plant contents of Cu (19.3 and 12.6 mg kg(-1)), Pb (0.98 and 0.67 mg kg(-1)) and Zn (99 and 88 mg kg(-1)) were higher than that of plants grown on non-contaminated soil (Cu 10.1, Pb < 0.2, Zn 79 mg kg(-1)), but still in the range of physiologically acceptable levels. The distribution of metals in soil was slightly affected by Lolium growth with changes only regarding the organic-bound Cu and Zn pool, with reduction up to 24%. Results indicated that an acceptable healthy vegetative cover can be achieved on the contaminated soil by the proposed

  11. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass

    PubMed Central

    Cen, Huifang; Ye, Wenxing; Liu, Yanrong; Li, Dayong; Wang, Kexin; Zhang, Wanjun

    2016-01-01

    The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement. PMID:27251327

  12. Fragipan horizon fragmentation in slaking experiments with amendment materials and ryegrass root tissue extracts.

    PubMed

    Karathanasis, A D; Murdock, L W; Matocha, C J; Grove, J; Thompson, Y L

    2014-01-01

    Slaking experiments were conducted of fragipan clods immersed in solutions of poultry manure, aerobically digested biosolid waste (ADB), fluidized bed combustion byproduct (FBC), D-H2O, CaCO3, NaF, Na-hexa-metaphosphate, and ryegrass root biomass. The fragipan clods were sampled from the Btx horizon of an Oxyaquic Fragiudalf in Kentucky. Wet sieving aggregate analysis showed significantly better fragmentation in the NaF, Na-hexa-metaphosphate, and ryegrass root solutions with a mean weight diameter range of 15.5-18.8 mm compared to the 44.2-47.9 mm of the poultry manure, ADB, and FBC treatments. Dissolved Si, Al, Fe, and Mn levels released in solution were ambiguous. The poor efficiency of the poultry manure, ADB, and FBC treatments was attributed to their high ionic strength, while the high efficiency of the NaF, Na-hexa-metaphosphate, and rye grass root solutions to their high sodium soluble ratio (SSR). A slaking mechanism is proposed suggesting that aqueous solutions with high SSR penetrate faster into the fragipan capillaries and generate the critical swelling pressure and shearing stress required to rupture the fragipan into several fragments. Additional fragmentation occurs in a followup stage during which potential Si, Al, Fe, and Mn binding agents may be released into solution. Field experiments testing these findings are in progress. PMID:25254233

  13. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass.

    PubMed

    Cen, Huifang; Ye, Wenxing; Liu, Yanrong; Li, Dayong; Wang, Kexin; Zhang, Wanjun

    2016-01-01

    The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement. PMID:27251327

  14. Fragipan Horizon Fragmentation in Slaking Experiments with Amendment Materials and Ryegrass Root Tissue Extracts

    PubMed Central

    Karathanasis, A. D.; Murdock, L. W.; Matocha, C. J.; Grove, J.; Thompson, Y. L.

    2014-01-01

    Slaking experiments were conducted of fragipan clods immersed in solutions of poultry manure, aerobically digested biosolid waste (ADB), fluidized bed combustion byproduct (FBC), D-H2O, CaCO3, NaF, Na-hexa-metaphosphate, and ryegrass root biomass. The fragipan clods were sampled from the Btx horizon of an Oxyaquic Fragiudalf in Kentucky. Wet sieving aggregate analysis showed significantly better fragmentation in the NaF, Na-hexa-metaphosphate, and ryegrass root solutions with a mean weight diameter range of 15.5–18.8 mm compared to the 44.2–47.9 mm of the poultry manure, ADB, and FBC treatments. Dissolved Si, Al, Fe, and Mn levels released in solution were ambiguous. The poor efficiency of the poultry manure, ADB, and FBC treatments was attributed to their high ionic strength, while the high efficiency of the NaF, Na-hexa-metaphosphate, and rye grass root solutions to their high sodium soluble ratio (SSR). A slaking mechanism is proposed suggesting that aqueous solutions with high SSR penetrate faster into the fragipan capillaries and generate the critical swelling pressure and shearing stress required to rupture the fragipan into several fragments. Additional fragmentation occurs in a followup stage during which potential Si, Al, Fe, and Mn binding agents may be released into solution. Field experiments testing these findings are in progress. PMID:25254233

  15. Physical and genetic mapping in the grasses Lolium perenne and Festuca pratensis.

    PubMed Central

    King, J; Armstead, I P; Donnison, I S; Thomas, H M; Jones, R N; Kearsey, M J; Roberts, L A; Thomas, A; Morgan, W G; King, I P

    2002-01-01

    A single chromosome of the grass species Festuca pratensis has been introgressed into Lolium perenne to produce a diploid monosomic substitution line 2n = 2x = 14. In this line recombination occurs throughout the length of the F. pratensis/L. perenne bivalent. The F. pratensis chromosome and recombinants between it and its L. perenne homeologue can be visualized using genomic in situ hybridization (GISH). GISH junctions represent the physical locations of sites of recombination, enabling a range of recombinant chromosomes to be used for physical mapping of the introgressed F. pratensis chromosome. The physical map, in conjunction with a genetic map composed of 104 F. pratensis-specific amplified fragment length polymorphisms (AFLPs), demonstrated: (1) the first large-scale analysis of the physical distribution of AFLPs; (2) variation in the relationship between genetic and physical distance from one part of the F. pratensis chromosome to another (e.g., variation was observed between and within chromosome arms); (3) that nucleolar organizer regions (NORs) and centromeres greatly reduce recombination; (4) that coding sequences are present close to the centromere and NORs in areas of low recombination in plant species with large genomes; and (5) apparent complete synteny between the F. pratensis chromosome and rice chromosome 1. PMID:12019245

  16. Activation of sucrose transport in defoliated Lolium perenne L.: an example of apoplastic phloem loading plasticity.

    PubMed

    Berthier, Alexandre; Desclos, Marie; Amiard, Véronique; Morvan-Bertrand, Annette; Demmig-Adams, Barbara; Adams, William W; Turgeon, Robert; Prud'homme, Marie-Pascale; Noiraud-Romy, Nathalie

    2009-07-01

    The pathway of carbon phloem loading was examined in leaf tissues of the forage grass Lolium perenne. The effect of defoliation (leaf blade removal) on sucrose transport capacity was assessed in leaf sheaths as the major carbon source for regrowth. The pathway of carbon transport was assessed via a combination of electron microscopy, plasmolysis experiments and plasma membrane vesicles (PMVs) purified by aqueous two-phase partitioning from the microsomal fraction. Results support an apoplastic phloem loading mechanism. Imposition of an artificial proton-motive force to PMVs from leaf sheaths energized an active, transient and saturable uptake of sucrose (Suc). The affinity of Suc carriers for Suc was 580 microM in leaf sheaths of undefoliated plants. Defoliation induced a decrease of K(m) followed by an increase of V(max). A transporter was isolated from stubble (including leaf sheaths) cDNA libraries and functionally expressed in yeast. The level of L.perenne SUcrose Transporter 1 (LpSUT1) expression increased in leaf sheaths in response to defoliation. Taken together, the results indicate that Suc transport capacity increased in leaf sheaths of L. perenne in response to leaf blade removal. This increase might imply de novo synthesis of Suc transporters, including LpSUT1, and may represent one of the mechanisms contributing to rapid refoliation. PMID:19520670

  17. Phytochelatin synthesis in response to elevated CO2 under cadmium stress in Lolium perenne L.

    PubMed

    Jia, Yan; Ju, Xuehai; Liao, Shangqiang; Song, Zhengguo; Li, Zhongyang

    2011-10-15

    The increasing atmospheric CO(2) and heavy metal contamination in soil are two of the major environmental problems. Knowledge of the Cd stress coping mechanisms is needed to understand the regulation of the plants' metabolism under the increasing atmospheric CO(2) levels. Lolium perenne L. was grown hydroponically under two concentrations of atmospheric CO(2) (360 and 1000μLL(-1)) and six concentrations of cadmium (0-160μmolL(-1)) to investigate Cd uptake, Cd transportation, and variations in phytochelatin (PC) concentration. Cd concentrations in roots and shoots were decreased, but transport index (Ti) was increased under elevated CO(2) compared to ambient CO(2). Regardless of CO(2) concentrations, Cd and PC concentrations, especially the concentrations of high molecular weight PCs (PC(4), PC(5), PC(6)) were higher with increasing Cd concentration in growth media and longer Cd exposure time. Under the elevated CO(2), more high molecular weight PCs (PC(4), PC(5), PC(6)) in shoots and roots were synthesized compared to ambient CO(2), with higher SH:Cd ratio in roots as well. These results indicate that under elevated CO(2), L. perenne may be better protected against Cd stress with higher biomass, lower Cd concentration and better detoxification by phytochelatins.

  18. Monoclonal antibodies to the major Lolium perenne (rye grass) pollen allergen Lol p I (Rye I).

    PubMed

    Kahn, C R; Marsh, D G

    1986-12-01

    Thirteen monoclonal antibodies (MAbs) were produced against Lol p I (Rye I), the major Lolium perenne (rye grass) pollen allergen. Spleen cells from A/J and SJL mice immunized with highly purified Lol p I (Lol I) were allowed to fuse with cells from the non-secreting Sp2/0-Ag14 myeloma cell line. Each MAb was analyzed for antigenic specificity by radioimmunoassay (RIA) using 125I-Lol I. The epitope specificities of seven of the MAbs were examined by competitive binding against a labelled standard MAb for the Lol I antigen (Ag). The dissociation constant, Kd, of one MAb (No. 3.2) that was studied most extensively was determined by double Ab RIA to be 3.5 X 10(-6) L/M. This MAb recognized the related 27,000-30,000 Group I glycoproteins found in the pollens of nine other species of grass pollens tested, including weak binding to Bermuda grass Group I (Cyn d I), which by conventional analysis using polyclonal anti-Lol I serum shows no detectable binding. Monoclonal antibody No. 3.2 was coupled covalently to Sepharose 4B and used to prepare highly purified Lol I from a partially purified rye pollen extract. Finally, an RIA was developed which permitted the analysis of the Group I components in rye grass and nine other grass pollen species. The latter assay is likely to prove useful in the standardization of grass pollen extracts according to their Group I contents.

  19. Complete amino acid sequence of a Lolium perenne (perennial rye grass) pollen allergen, Lol p II.

    PubMed

    Ansari, A A; Shenbagamurthi, P; Marsh, D G

    1989-07-01

    The complete amino acid sequence of a Lolium perenne (rye grass) pollen allergen, Lol p II was determined by automated Edman degradation of the protein and selected fragments. Cleavage of the protein by enzymatic and chemical techniques established an unambiguous sequence for the protein. Lol p II contains 97 amino acid residues, with a calculated molecular weight of 10,882. The protein lacks cysteine and glutamine and shows no evidence of glycosylation. Theoretical predictions by Fraga's (Fraga, S. (1982) Can. J. Chem. 60, 2606-2610) and Hopp and Woods' (Hopp, T. P., and Woods, K. R. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 3824-3828) methods indicate the presence of four hydrophilic regions, which may contribute to sequential or parts of conformational B-cell epitopes. Analysis of amphipathic regions by Berzofsky's method indicates the presence of a highly amphipathic region, which may contain, or contribute to, an Ia/T-cell epitope. This latter segment of Lol p II was found to be highly homologous with an antibody-binding segment of the major rye allergen Lol p I and may explain why immune responsiveness to both the allergens is associated with HLA-DR3.

  20. Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape, and lettuce.

    PubMed

    Crush, J R; Briggs, L R; Sprosen, J M; Nichols, S N

    2008-04-01

    The effect of irrigation with lake water containing a variety of microcystins on accumulation of toxins, or toxin metabolites, and plant growth in ryegrass, clover, rape, and lettuce, was investigated in a glasshouse experiment. The plants were grown in sand culture and received either three or six applications of lake water, which was applied either directly to the sand surface or to the plant shoots. As determined by LC-MS, each plant received 170 mug of a mixture of 10 different microcystins per application. Microcystins in plant samples were extracted with 70% methanol and analyzed by Adda-specific ELISA. For the shoot application treatment, microcystins were not present at measurable levels in shoots of ryegrass or rape, but were present in lettuce [0.79 mg/kg dry weight (DW)] and clover (0.20 mg/kg DW). Total microcystin concentration in roots did not vary greatly depending on whether treatment water was applied directly to the sand, or reached the roots via run-off from the shoots. Microcystins in roots were highest in clover (1.45 mg/kg DW), intermediate in lettuce (0.68 mg/kg DW) and low in ryegrass (0.20 mg/kg DW), and rape (0.12 mg/kg DW). There was no evidence for root-to-shoot translocation of microcystins. Three applications of microcystins reduced shoot DW of ryegrass, rape and lettuce, and increased root DW of ryegrass and lettuce. Clover DW was not changed by treatment with microcystins. The results show that irrigation with water containing microcystins has the potential to move microcystins into farm animal and human food chains at concentrations that can exceed recommended tolerable limits.

  1. Genetic diversity analysis in Tunisian perennial ryegrass germplasm as estimated by RAPD, ISSR, and morpho-agronomical markers.

    PubMed

    Ghariani, S; Elazreg, H; Chtourou-Ghorbel, N; Chakroun, M; Trifi-Farah, N

    2015-01-01

    Tunisia is rich in diverse forage and pasture species including perennial ryegrass. In order to enhance forage production and improve agronomic performance of this local germplasm, a molecular analysis was undertaken. Random amplified polymorphic DNA (RAPD), inter simple sequence repeats (ISSR) and morpho-agronomical traits markers were used for genetic diversity estimation of ryegrass germplasm after screening 20 spontaneous accessions, including a local and an introduced cultivars. Same mean polymorphism information content values were obtained (0.37) for RAPD and ISSR suggesting that both marker systems were equally effective in determining polymorphisms. The average pairwise genetic distance values were 0.57 (morpho-agronomical traits), 0.68 (RAPD), and 0.51 (ISSR) markers data sets. A higher Shannon diversity index was obtained with ISSR marker (0.57) than for RAPD (0.54) and morpho-agronomical traits (0.36). The Mantel test based on genetic distances of a combination of molecular markers and morpho-agronomical data exhibited a significant correlation between RAPD and ISSR data, suggesting that the use of a combination of molecular techniques was a highly efficient method of estimating genetic variability levels among Tunisian ryegrass germplasm. In summary, results showed that combining molecular and morpho-agronomical markers is an efficient way in assessing the genetic variability among Tunisian ryegrass genotypes. In addition, the combined analysis provided an exhaustive coverage for the analyzed diversity and helped us to identify suitable accessions showed by Beja and Jendouba localities, which present large similarities with cultivated forms and can be exploited for designing breeding programmes, conservation of germplasm and management of ryegrass genetic resources. PMID:26782500

  2. Genetic diversity analysis in Tunisian perennial ryegrass germplasm as estimated by RAPD, ISSR, and morpho-agronomical markers.

    PubMed

    Ghariani, S; Elazreg, H; Chtourou-Ghorbel, N; Chakroun, M; Trifi-Farah, N

    2015-12-28

    Tunisia is rich in diverse forage and pasture species including perennial ryegrass. In order to enhance forage production and improve agronomic performance of this local germplasm, a molecular analysis was undertaken. Random amplified polymorphic DNA (RAPD), inter simple sequence repeats (ISSR) and morpho-agronomical traits markers were used for genetic diversity estimation of ryegrass germplasm after screening 20 spontaneous accessions, including a local and an introduced cultivars. Same mean polymorphism information content values were obtained (0.37) for RAPD and ISSR suggesting that both marker systems were equally effective in determining polymorphisms. The average pairwise genetic distance values were 0.57 (morpho-agronomical traits), 0.68 (RAPD), and 0.51 (ISSR) markers data sets. A higher Shannon diversity index was obtained with ISSR marker (0.57) than for RAPD (0.54) and morpho-agronomical traits (0.36). The Mantel test based on genetic distances of a combination of molecular markers and morpho-agronomical data exhibited a significant correlation between RAPD and ISSR data, suggesting that the use of a combination of molecular techniques was a highly efficient method of estimating genetic variability levels among Tunisian ryegrass germplasm. In summary, results showed that combining molecular and morpho-agronomical markers is an efficient way in assessing the genetic variability among Tunisian ryegrass genotypes. In addition, the combined analysis provided an exhaustive coverage for the analyzed diversity and helped us to identify suitable accessions showed by Beja and Jendouba localities, which present large similarities with cultivated forms and can be exploited for designing breeding programmes, conservation of germplasm and management of ryegrass genetic resources.

  3. Herbicidal activity of cineole derivatives.

    PubMed

    Barton, Allan F M; Dell, Bernard; Knight, Allan R

    2010-09-22

    Essential oils and their constituents have potential as ecologically acceptable pesticides that may also have novel modes of action. In this work hydroxy and ester derivatives of the naturally occurring monoterpenoids 1,8-cineole 3, the main component in most eucalyptus oils, and 1,4-cineole 4 were prepared and their pre-emergence herbicidal activity against annual ryegrass (Lolium rigidum) and radish (Raphanus sativus var. Long Scarlet) investigated in laboratory-based bioassays. 1,8-Cineole, eucalyptus oil and all derivatives showed a dose-dependent herbicidal activity against annual ryegrass and radish with many of the derivatives showing improved herbicidal activity relative to 1,8-cineole and high-cineole eucalyptus oil. Increased activity of cineole ester derivatives compared to their associated hydroxy-cineole and carboxylic acid was not observed. No relationship between lipophilicity of the carboxylic acid portion of cineole ester derivatives and herbicidal activity was observed. The results indicate that these cineole derivatives could be environmentally acceptable herbicides.

  4. A study of the human immune response to Lolium perenne (rye) pollen and its components, Lol p I and Lol p II (Rye I and Rye II). II. Longitudinal variation of antibody levels in relation to symptomatology and pollen exposure and correction of seasonally elevated antibody levels to basal values.

    PubMed

    Freidhoff, L R; Ehrlich-Kautzky, E; Meyers, D A; Marsh, D G

    1987-11-01

    This study used a standardized, dialyzed, Lolium perenne (ryegrass) pollen extract and two of its well-characterized components, Lol p I (Rye I) and Lol p II (Rye II), to characterize the longitudinal variation of both IgE and IgG antibody (Ab) levels, as well as total serum IgE levels, in 20 grass-allergic subjects followed for 13 months. Ab levels declined toward a basal level just before, and increased just after, the grass-pollination season, returning to the same basal level just before the next grass-pollination season. The least complex allergen, Lol II, demonstrated the most uniform pattern of variation in both IgE and IgG Ab levels. Total serum IgE levels demonstrated the least regular pattern of variation. Grass-pollen counts were strongly correlated with symptom-medication scores for these subjects (rs = 0.87). Initial values were correlated with the rise in total IgE and IgE Ab to Lol II across the grass-pollen season. Skin test results were correlated with initial IgE Ab levels for L. perenne pollen extract and Lol II. Finally, a procedure for correcting IgE Ab levels to basal values was proposed and tested. The correction procedure, for each IgE Ab, was based on the average rise during the grass-pollination season (or average decline after the grass-pollination season) observed for all subjects with that IgE Ab.

  5. Geostatistics for spatial genetic structures: study of wild populations of perennial ryegrass.

    PubMed

    Monestiez, P; Goulard, M; Charmet, G

    1994-04-01

    Methods based on geostatistics were applied to quantitative traits of agricultural interest measured on a collection of 547 wild populations of perennial ryegrass in France. The mathematical background of these methods, which resembles spatial autocorrelation analysis, is briefly described. When a single variable is studied, the spatial structure analysis is similar to spatial autocorrelation analysis, and a spatial prediction method, called "kriging", gives a filtered map of the spatial pattern over all the sampled area. When complex interactions of agronomic traits with different evaluation sites define a multivariate structure for the spatial analysis, geostatistical methods allow the spatial variations to be broken down into two main spatial structures with ranges of 120 km and 300 km, respectively. The predicted maps that corresponded to each range were interpreted as a result of the isolation-by-distance model and as a consequence of selection by environmental factors. Practical collecting methodology for breeders may be derived from such spatial structures. PMID:24185879

  6. Characterization of the vernalization response in Lolium perenne by a cDNA microarray approach.

    PubMed

    Ciannamea, Stefano; Busscher-Lange, Jacqueline; de Folter, Stefan; Angenent, Gerco C; Immink, Richard G H

    2006-04-01

    Many plant species including temperate grasses require vernalization in order to flower. Vernalization is the process of promotion of flowering after exposure to prolonged periods of cold. To investigate the vernalization response in monocots, the expression patterns of about 1,500 unique genes of Lolium perenne were analyzed by a cDNA microarray approach, at different time points after transfer of plants to low temperatures. Vernalization of L. perenne takes around 80 d and, therefore, the plants were incubated at low temperatures for at least 12 weeks. A total of 70 cold-responsive genes were identified that are either up- or down-regulated with a minimal 2-fold difference compared with the common reference. The majority of these genes show a very rapid response to the cold treatment, indicating that their expression is affected by the cold stress and, therefore, these genes are not likely to be involved in the flowering process. Based on hierarchical clustering, one gene could be identified that is down-regulated towards the end of the cold period and, in addition, a few genes have been found that are up-regulated in the last weeks of the cold treatment and, hence, are putative candidates for genes involved in the vernalization response. Three of the up-regulated genes are homologous to members of the MADS box, CONSTANS-like and JUMONJI families of transcription factors, respectively. The latter two are novel genes not connected previously to vernalization-induced flowering. Furthermore, members of the JUMONJI family of transcription factors have been shown to be involved in chromatin remodeling, suggesting that this molecular mechanism, as in Arabidopsis, plays a role in the regulation of the vernalization response in monocots. PMID:16449231

  7. Cloning, expression, and immunological characterization of recombinant Lolium perenne allergen Lol p II.

    PubMed

    Sidoli, A; Tamborini, E; Giuntini, I; Levi, S; Volonté, G; Paini, C; De Lalla, C; Siccardi, A G; Baralle, F E; Galliani, S

    1993-10-15

    The molecular cloning of the cDNA encoding for an isoallergenic form of Lol p II, a major rye grass (Lolium perenne) pollen allergen, was performed by polymerase chain reaction amplification on mRNA extracted from pollen. The amino acid sequence derived from the cDNA was truncated by 4 and 5 residues at the NH2- and COOH-terminal ends, respectively, and differed only in one position from that previously reported. This cDNA was expressed in Escherichia coli by fusion to the carboxyl terminus of the human ferritin H-chain. The molecule was produced in high yields as a soluble protein and was easily purified. The protein retains the multimeric quaternary structure of ferritin, and it exposes on the surface the allergenic moiety, which can be recognized in Western blotting and in enzyme-linked immunosorbent assay experiments by specific IgE from allergic patients. The recombinant allergen was used to analyze the sera of 26 patients allergic to L. perenne compared with control sera. The results were in good agreement with the values obtained with the radioallergosorbent test assay. In addition, histamine release experiments in whole blood from an allergic patient and skin prick tests showed that the recombinant allergen retains some of the biological properties of the natural compound. These findings indicate that the availability of homogeneous recombinant allergens may be useful for the development of more specific diagnostic and therapeutic procedures. Moreover, this expression system may be of more general interest for producing large amounts of soluble protein domains in E. coli.

  8. Molecular genetics of human immune responsiveness to Lolium perenne (rye) allergen, Lol p III.

    PubMed

    Ansari, A A; Freidhoff, L R; Marsh, D G

    1989-01-01

    Lol p II and III are each about 11-kD protein allergens from the pollen of Lolium perenne (rye grass). We have found that human immune responses (IgE and IgG antibodies) to both proteins are significantly associated with HLA-DR3. In addition, the two proteins are cross-reactive with the antibodies in many human sera (about 84% human sera showed the cross-reactivity). We have determined greater than 90% of the amino acid sequences of the two proteins and found that they are at least 54% homologous. Berzofsky found that 75% of the 23 known T cell sites in various proteins had an amphipathic structure. Our analysis by the same method showed that both Lol p II and III have a major region of amphipathicity (at residues 61-67, Lol p III numbering) which might contain sites for binding to an Ia molecule and a T cell receptor. This region is identical between Lol p II and III, except for an Arg-Lys substitution, and could account, in part, for the DR3 association with responsiveness to both molecules. An interesting difference between the two proteins is that immune response to Lol p III is associated with DR5 (in addition to DR3), whereas no DR5 association is found in the case of Lol p II. One possibility is that Lol p III has an additional site which binds to the DR5 Ia molecule. Lol p III indeed has a second highly amphiphathic peptide, 24-30 (Lol p III 24 R P G D T L A 30), which is different and not amphipathic in Lol p II.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Immunochemical studies of Lolium perenne (rye grass) pollen allergens, Lol p I, II, and III.

    PubMed

    Ansari, A A; Kihara, T K; Marsh, D G

    1987-12-15

    It was reported earlier that human immune responses to three perennial rye grass (Lolium perenne) pollen allergens, Lol p I, II, and III, are associated with histocompatibility leukocyte antigen (HLA)-DR3. Rye-allergic people are often concordantly sensitive to all three of these allergens. Since earlier studies suggested that these antigens are non-cross-reactive, their immunologic relatedness by double antibody radioimmunoassay (DARIA) was studied in order to understand further the immunochemical basis for the concordant recognition of the three allergens. Direct binding DARIA studies were performed with human sera from 189 allergic subjects. Inhibition DARIA studies were carried out with 17 human sera from grass-allergic patients who were on grass immunotherapy, one goat anti-serum, and six rabbit antisera. None of the sera detected any significant degree of two-way cross-reactivity between Lol p I and II, or between Lol p I and III. However, the degree of two-way cross-reactivity between Lol p II and III exhibited by individual human and animal antisera varied between undetectable and 100%. In general, the degree of cross-reactivity between Lol p II and III was higher among human sera than among animal sera. Taken together with earlier findings that antibody responses to Lol p I, II and III are associated with HLA-HDR3, and that most Lol p II and III responders are also Lol p I responders, but not vice versa, our present results suggest the following: the HLA-DR3-encoded Ia molecule recognizes a similar immunodominant Ia recognition site (agretope) shared between Lol p I and Lol p II and/or III; in addition, Lol p I appears to contain unique Ia recognition site(s) not present in Lol p II and III. However, further epitope analyses are required to investigate these possibilities.

  10. Interannual variation in nitrous oxide emissions from perennial ryegrass/white clover grassland used for dairy production.

    PubMed

    Burchill, William; Li, Dejun; Lanigan, Gary J; Williams, Micheal; Humphreys, James

    2014-10-01

    Nitrous oxide (N2 O) emissions are subject to intra- and interannual variation due to changes in weather and management. This creates significant uncertainties when quantifying estimates of annual N2 O emissions from grazed grasslands. Despite these uncertainties, the majority of studies are short-term in nature (<1 year) and as a consequence, there is a lack of data on interannual variation in N2 O emissions. The objectives of this study were to (i) quantify annual N2 O emissions and (ii) assess the causes of interannual variation in emissions from grazed perennial ryegrass/white clover grassland. Nitrous oxide emissions were measured from fertilized and grazed perennial ryegrass/white clover grassland (WC) and from perennial ryegrass plots that were not grazed and did not receive N input (GB), over 4 years from 2008 to 2012 in Ireland (52°51'N, 08°21'W). The annual N2 O-N emissions (kg ha(-1); mean ± SE) ranged from 4.4 ± 0.2 to 34.4 ± 5.5 from WC and from 1.7 ± 0.8 to 6.3 ± 1.2 from GB. Interannual variation in N2 O emissions was attributed to differences in annual rainfall, monthly (December) soil temperatures and variation in N input. Such substantial interannual variation in N2 O emissions highlights the need for long-term studies of emissions from managed pastoral systems.

  11. [Effect of Ryegrass and Arbuscular Mycorrhizal on Cd Absorption by Varieties of Tomatoes and Cadmium Forms in Soil].

    PubMed

    Chen, Yong-qin; Jiang, Ling; Xu, Wei-hong; Chi, Sun-lin; Chen, Xu-gen; Xie, Wen-wen; Xiong, Shi- juan; Zhang, Jin-zhong; Xiong, Zhi-ting

    2015-12-01

    Field trial was carried out to investigate the effects of ryegrass and arbuscular mycorrhizal single or compound treatment to two varieties of tomato ("Defu mm-8" and "Luobeiqi") on the plant growth, concentrations and accumulations of Cd as well as the impact on microorganisms, enzyme activities, pH and Cd forms in soil when exposed to Cd (5.943 mg · kg⁻¹). The results showed that dry weights of fruit, root, stem, leaf and plant significantly increased by single or compound treatment of ryegrass and arbuscular mycorrhizal by 14.1%-38.4% and 4.2%-18.3%, 20.9%-31.5% and 8.4%-10.3%, 13.0%-16.8% and 3.0%-9.5%, 10.7%- 16.8% and 2.7%-7.6%, 14.3%-36.6% and 4.5%-16.8%, respectively. The amounts of bacteria, fungi, actinomycetes of soil and the activities of urease, invertase, acid phosphatase, catalase in soil were increased by single or compound treatment of ryegrass and arbuscular mycorrhizal, and the soil microorganism amounts and enzyme activities significantly differed between the two varieties of tomato and treatments (P < 0.05). Soil pH was increased by single or compound treatment of ryegrass and arbuscular mycorrhizal, while the concentrations of EXC-Cd, CAB-Cd, Fe-Mn-Cd and total Cd in soil were decreased, and the total Cd content was decreased by 16.9%-27.8%. Cadmium concentrations in fruit, leaf, stem and root of both varieties were significantly decreased by 6.9%-40.9%, 5.7%-40.1%, 4.6%-34.7% and 9.8%-42.4%, respectively. Cadmium accumulations in tomato were in order of leaf > stem > root > fruit. Comparing the two tomato varieties, Cd concentrations and Cd accumulations in fruit and plant were in order of "Luobeiqi" < "Defu mm-8" in the presence or absence of single or compound treatment of ryegrass and arbuscular mycorrhizal.

  12. [Effect of Ryegrass and Arbuscular Mycorrhizal on Cd Absorption by Varieties of Tomatoes and Cadmium Forms in Soil].

    PubMed

    Chen, Yong-qin; Jiang, Ling; Xu, Wei-hong; Chi, Sun-lin; Chen, Xu-gen; Xie, Wen-wen; Xiong, Shi- juan; Zhang, Jin-zhong; Xiong, Zhi-ting

    2015-12-01

    Field trial was carried out to investigate the effects of ryegrass and arbuscular mycorrhizal single or compound treatment to two varieties of tomato ("Defu mm-8" and "Luobeiqi") on the plant growth, concentrations and accumulations of Cd as well as the impact on microorganisms, enzyme activities, pH and Cd forms in soil when exposed to Cd (5.943 mg · kg⁻¹). The results showed that dry weights of fruit, root, stem, leaf and plant significantly increased by single or compound treatment of ryegrass and arbuscular mycorrhizal by 14.1%-38.4% and 4.2%-18.3%, 20.9%-31.5% and 8.4%-10.3%, 13.0%-16.8% and 3.0%-9.5%, 10.7%- 16.8% and 2.7%-7.6%, 14.3%-36.6% and 4.5%-16.8%, respectively. The amounts of bacteria, fungi, actinomycetes of soil and the activities of urease, invertase, acid phosphatase, catalase in soil were increased by single or compound treatment of ryegrass and arbuscular mycorrhizal, and the soil microorganism amounts and enzyme activities significantly differed between the two varieties of tomato and treatments (P < 0.05). Soil pH was increased by single or compound treatment of ryegrass and arbuscular mycorrhizal, while the concentrations of EXC-Cd, CAB-Cd, Fe-Mn-Cd and total Cd in soil were decreased, and the total Cd content was decreased by 16.9%-27.8%. Cadmium concentrations in fruit, leaf, stem and root of both varieties were significantly decreased by 6.9%-40.9%, 5.7%-40.1%, 4.6%-34.7% and 9.8%-42.4%, respectively. Cadmium accumulations in tomato were in order of leaf > stem > root > fruit. Comparing the two tomato varieties, Cd concentrations and Cd accumulations in fruit and plant were in order of "Luobeiqi" < "Defu mm-8" in the presence or absence of single or compound treatment of ryegrass and arbuscular mycorrhizal. PMID:27012004

  13. Simultaneous Influx and Efflux of Nitrate during Uptake by Perennial Ryegrass 1

    PubMed Central

    Morgan, M. A.; Volk, R. J.; Jackson, W. A.

    1973-01-01

    Experiments with intact plants of Lolium perenne previously grown with 14NO3− revealed significant efflux of this isotopic species when the plants were transferred to solutions of highly enriched 15NO3−. The exuded 14NO3− was subsequently reabsorbed when the ambient solutions were not replaced. When they were frequently replaced, continual efflux of the 14NO3− was observed. Influx of 15NO3− was significantly greater than influx of 14NO3− from solutions of identical NO3− concentration. Transferring plants to 14NO3− solutions after a six-hour period in 15NO3− resulted in efflux of the latter. Presence of Mg2+, rather than Ca2+, in the ambient 15NO3− solution resulted in a decidedly increased rate of 14NO3− efflux and a slight but significant increase in 15NO3− influx. Accordingly, net NO3− influx was slightly depressed. A model in accordance with these observations is presented; its essential features include a passive bidirectional pathway, an active uptake mechanism, and a pathway for recycling of endogenous NO3− within unstirred layers from the passive pathway to the active uptake site. PMID:16658313

  14. Fungal endophyte infection of ryegrass reprograms host metabolism and alters development.

    PubMed

    Dupont, Pierre-Yves; Eaton, Carla J; Wargent, Jason J; Fechtner, Susanne; Solomon, Peter; Schmid, Jan; Day, Robert C; Scott, Barry; Cox, Murray P

    2015-12-01

    Beneficial associations between plants and microbes play an important role in both natural and agricultural ecosystems. For example, associations between fungi of the genus Epichloë, and cool-season grasses are known for their ability to increase resistance to insect pests, fungal pathogens and drought. However, little is known about the molecular changes induced by endophyte infection. To study the impact of endophyte infection, we compared the expression profiles, based on RNA sequencing, of perennial ryegrass infected with Epichloë festucae with noninfected plants. We show that infection causes dramatic changes in the expression of over one third of host genes. This is in stark contrast to mycorrhizal associations, where substantially fewer changes in host gene expression are observed, and is more similar to pathogenic interactions. We reveal that endophyte infection triggers reprogramming of host metabolism, favouring secondary metabolism at a cost to primary metabolism. Infection also induces changes in host development, particularly trichome formation and cell wall biogenesis. Importantly, this work sheds light on the mechanisms underlying enhanced resistance to drought and super-infection by fungal pathogens provided by fungal endophyte infection. Finally, our study reveals that not all beneficial plant-microbe associations behave the same in terms of their effects on the host. PMID:26305687

  15. Temporal dynamics of the metabolically active rumen bacteria colonizing fresh perennial ryegrass.

    PubMed

    Huws, Sharon A; Edwards, Joan E; Creevey, Christopher J; Rees Stevens, Pauline; Lin, Wanchang; Girdwood, Susan E; Pachebat, Justin A; Kingston-Smith, Alison H

    2016-01-01

    This study investigated successional colonization of fresh perennial ryegrass (PRG) by the rumen microbiota over time. Fresh PRG was incubated in sacco in the rumens of three Holstein × Friesian cows over a period of 8 h, with samples recovered at various times. The diversity of attached bacteria was assessed using 454 pyrosequencing of 16S rRNA (cDNA). Results showed that plant epiphytic communities either decreased to low relative abundances or disappeared following rumen incubation, and that temporal colonization of the PRG by the rumen bacteria was biphasic with primary (1 and 2 h) and secondary (4-8 h) events evident with the transition period being with 2-4 h. A decrease in sequence reads pertaining to Succinivibrio spp. and increases in Pseudobutyrivibrio, Roseburia and Ruminococcus spp. (the latter all order Clostridiales) were evident during secondary colonization. Irrespective of temporal changes, the continually high abundances of Butyrivibrio, Fibrobacter, Olsenella and Prevotella suggest that they play a major role in the degradation of the plant. It is clear that a temporal understanding of the functional roles of these microbiota within the rumen is now required to unravel the role of these bacteria in the ruminal degradation of fresh PRG.

  16. Temporal dynamics of the metabolically active rumen bacteria colonizing fresh perennial ryegrass.

    PubMed

    Huws, Sharon A; Edwards, Joan E; Creevey, Christopher J; Rees Stevens, Pauline; Lin, Wanchang; Girdwood, Susan E; Pachebat, Justin A; Kingston-Smith, Alison H

    2016-01-01

    This study investigated successional colonization of fresh perennial ryegrass (PRG) by the rumen microbiota over time. Fresh PRG was incubated in sacco in the rumens of three Holstein × Friesian cows over a period of 8 h, with samples recovered at various times. The diversity of attached bacteria was assessed using 454 pyrosequencing of 16S rRNA (cDNA). Results showed that plant epiphytic communities either decreased to low relative abundances or disappeared following rumen incubation, and that temporal colonization of the PRG by the rumen bacteria was biphasic with primary (1 and 2 h) and secondary (4-8 h) events evident with the transition period being with 2-4 h. A decrease in sequence reads pertaining to Succinivibrio spp. and increases in Pseudobutyrivibrio, Roseburia and Ruminococcus spp. (the latter all order Clostridiales) were evident during secondary colonization. Irrespective of temporal changes, the continually high abundances of Butyrivibrio, Fibrobacter, Olsenella and Prevotella suggest that they play a major role in the degradation of the plant. It is clear that a temporal understanding of the functional roles of these microbiota within the rumen is now required to unravel the role of these bacteria in the ruminal degradation of fresh PRG. PMID:26542074

  17. Identification of two distinct allergenic sites on ryegrass-pollen allergen, Lol p IV.

    PubMed

    Jaggi, K S; Ekramoddoullah, A K; Kisil, F T; Dzuba-Fischer, J M; Rector, E S; Sehon, A H

    1989-04-01

    Lol p IV is an important allergen of ryegrass pollen. For the immunochemical identification of antigenic and/or allergenic site(s), murine monoclonal antibodies (MAbs) were prepared against Lol p IV. The hybridoma cell-culture supernatants were screened for anti-Lol p IV antibodies by a combination of ELISA and Western immunoblot analyses. The MAbs were finally purified from ascites on a Mono Q ion-exchange column. In a competitive radioimmunoassay with Lol p IV as the solid phase and 125I-labeled MAbs, it was established that MAbs 90, 91, 92, 93, and 94, although they differed in their relative affinities, recognized in common with one another an epitope designated as antigenic site A, whereas MAb 12 recognized a different epitope referred to as site B. Sites A and B were also demonstrated to constitute allergenic determinants of Lol p IV. Differences in the repertoire of specificities of the human IgE antibodies directed to Lol p IV were also demonstrated. Interestingly, it was found that sera from both allergic as well as from nonatopic individuals had IgG antibodies to sites A and/or B.

  18. Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action.

    PubMed

    Nag, Subir K; Kookana, Rai; Smith, Lester; Krull, Evelyn; Macdonald, Lynne M; Gill, Gurjeet

    2011-09-01

    We evaluated wheat straw biochar produced at 450°C for its ability to influence bioavailability and persistence of two commonly used herbicides (atrazine and trifluralin) with different modes of action (photosynthesis versus root tip mitosis inhibitors) in two contrasting soils. The biochar was added to soils at 0%, 0.5% and 1.0% (w/w) and the herbicides were applied to those soil-biochar mixes at nil, half, full, two times, and four times, the recommended dosage (H(4)). Annual ryegrass (Lolium rigidum) was grown in biochar amended soils for 1 month. Biochar had a positive impact on ryegrass survival rate and above-ground biomass at most of the application rates, and particularly at H(4). Within any given biochar treatment, increasing herbicide application decreased the survival rate and fresh weight of above-ground biomass. Biomass production across the biochar treatment gradient significantly differed (p<0.01) and was more pronounced in the case of atrazine than trifluralin. For example, the dose-response analysis showed that in the presence of 1% biochar in soil, the value of GR(50) (i.e. the dose required to reduce weed biomass by 50%) for atrazine increased by 3.5 times, whereas it increased only by a factor of 1.6 in the case of trifluralin. The combination of the chemical properties and the mode of action governed the extent of biochar-induced reduction in bioavailability of herbicides. The greater biomass of ryegrass in the soil containing the highest biochar (despite having the highest herbicide residues) demonstrates decreased bioavailability of the chemicals caused by the wheat straw biochar. This work clearly demonstrates decreased efficacy of herbicides in biochar amended soils. The role played by herbicide chemistry and mode of action will have major implications in choosing the appropriate application rates for biochar amended soils. PMID:21696801

  19. Enhanced expression of Rubisco activase splicing variants differentially affects Rubisco activity during low temperature treatment in Lolium perenne.

    PubMed

    Jurczyk, Barbara; Pociecha, Ewa; Grzesiak, Maciej; Kalita, Katarzyna; Rapacz, Marcin

    2016-07-01

    Alternative splicing of the Rubisco activase gene was shown to be a point for optimization of photosynthetic carbon assimilation. It can be expected to be a stress-regulated event that depends on plant freezing tolerance. The aim of the study was to examine the relationships among Rubisco activity, the expression of two Rubisco activase splicing variants and photoacclimation to low temperature. The experiment was performed on two Lolium perenne genotypes with contrasting levels of freezing tolerance. The study investigated the effect of pre-hardening (15°C) and cold acclimation (4°C) on net photosynthesis, photosystem II photochemical activity, Rubisco activity and the expression of two splicing variants of the Rubisco activase gene. The results showed an induction of Rubisco activity at both 15°C and 4°C only in a highly freezing-tolerant genotype. The enhanced Rubisco activity after pre-hardening corresponded to increased expression of the splicing variant representing the large isoform, while the increase in Rubisco activity during cold acclimation was due to the activation of both transcript variants. These boosts in Rubisco activity also corresponded to an activation of non-photochemical mechanism of photoacclimation induced at low temperature exclusively in the highly freezing-tolerant genotype. In conclusion, enhanced expression of Rubisco activase splicing variants caused an increase in Rubisco activity during pre-hardening and cold acclimation in the more freezing-tolerant Lolium perenne genotype. The induction of the transcript variant representing the large isoform may be an important element of increasing the carbon assimilation rate supporting the photochemical mechanism of photosynthetic acclimation to cold. PMID:27152456

  20. Milk production and composition of mid-lactation cows consuming perennial ryegrass-and chicory-based diets.

    PubMed

    Muir, S K; Ward, G N; Jacobs, J L

    2014-02-01

    Dry matter intakes (DMI), nutrient selection, and milk production responses of dairy cows grazing 3 herbage-based diets offered at 2 allowances were measured. The 2 allowances were 20 (low) and 30 (high) kg of dry matter (DM)/cow per day and these were applied to 3 herbage types: perennial ryegrass (PRG) and chicory (CHIC+) monocultures and a mixed sward of chicory and perennial ryegrass (MIX). The CHIC+ diet was supplemented with alfalfa hay (approximately 2 kg of DM/cow per day) to maintain dietary neutral detergent fiber (NDF) concentration and all diets were supplemented with energy-based pellets (6 kg of DM/cow per day). Holstein-Friesian dairy cows averaging 136 ± 30 d in milk were allocated to 4 replicates of the 6 treatments using stratified randomization procedures. Cows were adapted to their experimental diets over a 14-d period, with measurements of DMI, milk yield, and composition conducted over the following 10 d. Herbage DMI was lowest (12.8 vs. 14.0 kg of DM/d) for CHIC+ compared with the MIX and PRG, although total forage intake (grazed herbage plus hay) was similar (14.0 to 15.0 kg of DM/d) across the 3 treatments. Milk production, milk protein, and milk fat concentrations were not different between herbage types. Grazed herbage DMI increased with increasing herbage allowance and this was associated with increased milk protein concentration (3.23 to 3.34%) and total casein production (41.7 to 43.6 mg/g). Concentrations of polyunsaturated fatty acids in milk fat, particularly linoleic acid, were increased in milk from cows offered the CHIC+ or the MIX diets, indicating potential benefits of chicory herbage on milk fatty acid concentrations. Although feeding CHIC+ or MIX did not increase milk yield, these herbage types could be used as an alternative to perennial ryegrass pasture in spring. PMID:24290818

  1. Ryegrass cv. Lema and guava cv. Paluma biomonitoring suitability for estimating nutritional contamination risks under seasonal climate in Southeastern Brazil.

    PubMed

    Bulbovas, Patricia; Camargo, Carla Z S; Domingos, Marisa

    2015-08-01

    The risks posed by nutrient deposition due to air pollution on ecosystems and their respective services to human beings can be appropriately estimated by bioindicator plants when they are well acclimated to the study region environmental conditions. This assumption encouraged us to comparatively evaluate the accumulation potential of ryegrass cv. Lema and guava cv. Paluma macro and micronutrients. We also indicated the most appropriate species for biomonitoring nutrient contamination risks in tropical areas of Southeastern Brazil, which are characterized by marked dry and wet seasons and complex mixtures of air pollutants from different sources (industries, vehicle traffic and agriculture). The study was conducted in 14 sites with different neighboring land uses, within the Metropolitan Region of Campinas, central-eastern region of São Paulo State. The exposure experiments with ryegrass and guava were consecutively repeated 40 (28 days each) and 12 (84 days each) times, respectively, from Oct/2010 to Sept/2013. Macro and micronutrients were analyzed and background concentrations and enrichment ratios (ER) were estimated to classify the contamination risk within the study region. Significantly higher ER suggested that ryegrass were the most appropriate accumulator species for N, S, Mg, Fe, Mn, Cu and Zn deposition and guava for K, Ca, P and B deposition. Based on these biomonitoring adjustments, we concluded that the nutrient deposition was spatially homogeneous in the study area, but clear seasonality in the contamination risk by nutritional inputs was evidenced. Significantly higher contamination risk by S, Fe, K and B occurred during the dry season and enhanced contamination risk by Mn, Cu and Zn were highlighted during the wet season. Distinctly high contamination risk was estimated for S, Fe and Mn in several exposure experiments.

  2. A simulation model for epidemics of stem rust in ryegrass seed crops.

    PubMed

    Pfender, W F; Upper, D

    2015-01-01

    A simulation model (STEMRUST_G, named for stem rust of grasses) was created for stem rust (caused by Puccinia graminis subsp. graminicola) in perennial ryegrass grown to maturity as a seed crop. The model has a daily time step and is driven by weather data and an initial input of disease severity from field observation. Key aspects of plant growth are modeled. Disease severity is modeled as rust population growth, where individuals are pathogen colonies (pustules) grouped in cohorts defined by date of initiation and plant part infected. Infections due to either aerial spread or within-plant contact spread are modeled. Pathogen cohorts progress through life stages that are modeled as disease cycle components (colony establishment, latent period, infectious period, and sporulation) affected by daily weather variables, plant growth, and fungicide application. Fungicide effects on disease cycle components are modeled for two commonly used active ingredients, applied preinfection or postinfection. Previously validated submodels for certain disease cycle components formed the framework for integrating additional processes, and the complete model was calibrated with field data from 10 stem rust epidemics. Discrepancies between modeled outcomes and the calibration data (log10[modeled]-log10[observed]) had a mean near zero but considerable variance, with 1 standard deviation=0.5 log10 units (3.2-fold). It appears that a large proportion of the modeling error variance may be due to variability in field observations of disease severity. An action threshold for fungicide application was derived empirically, using a constructed weather input file favorable for disease development. The action threshold is a negative threshold, representing a level of disease (latent plus visible) below which damaging levels of disease are unable to develop before the yield-critical crop stage. The model is in the public domain and available on the Internet.

  3. Oat and ryegrass silage for small-scale dairy systems in the highlands of central Mexico.

    PubMed

    Celis-Alvarez, Maria Danaee; López-González, Felipe; Martínez-García, Carlos Galdino; Estrada-Flores, Julieta Gertrudis; Arriaga-Jordán, Carlos Manuel

    2016-08-01

    This study investigated the effects of the inclusion of oat-ryegrass silage (ORGS) in combination with maize silage (MSLG) in four treatments: T1 = 100 % ORGS, T2 = 67 % ORGS/33 % MSLG, T3 = 67 % ORGS/33 % MSLG, and T4 = 100 % MSLG to milking cows on continuous grazing with 4.7 kg DM of commercial dairy concentrate 18 % CP. Daily milk yield and composition, live weight, body condition score, and chemical composition of feeds were recorded during the last 4 days of the experimental periods. Feeding costs were calculated by partial budgets. Eight Holstein lactating cows were used in a replicated 4 × 4 Latin square, with 14-day periods. There were no statistical differences (P > 0.05) for milk yield (mean 15.5 ± 5.0 kg/day/cow) or composition (mean milk fat 34.6 ± 4.4 g/kg, protein 32.4 ± 3.1 g/kg, lactose 46.9 ± 1.6 g/kg), milk urea nitrogen (11.3 ± 2.1 mg/dl), live weight (434 ± 38 kg), or body condition score (2.4 ± 0.15). The silage cost of ORGS was 2.5 times higher than MSLG, so the feeding cost in T1 was 26 % higher per kilogram of milk than for T4, with T2 and T3 as intermediates. ORGS can be a substitute to maize silage in the proportions studied, although feeding costs were higher.

  4. Biowaste Mixtures Affecting the Growth and Elemental Composition of Italian Ryegrass ().

    PubMed

    Esperschütz, Jürgen; Lense, Obed; Anderson, Craig; Bulman, Simon; Horswell, Jacqui; Dickinson, Nicholas; Robinson, Brett

    2016-05-01

    Biosolids (sewage sludge) can be beneficially applied to degraded lands to improve soil quality. Plants grown on biosolids-amended soils have distinct concentrations of macronutrients and trace elements, which can be beneficial or present a risk to humans and ecosystems. Potentially, biosolids could be blended with other biowastes, such as sawdust, to reduce the risks posed by rebuilding soils using biosolids alone. We sought to determine the effect of mixing biosolids and sawdust on the macronutrient and trace element concentration of ryegrass over a 5-mo period. was grown in a low fertility soil, typical for marginal farm areas, that was amended with biosolids (1250 kg N ha), biosolids + sawdust (0.5:1) and urea (200 kg N ha), as well as a control. Biosolids increased the growth of from 2.93 to 4.14 t ha. This increase was offset by blending the biosolids with sawdust (3.00 t ha). Urea application increased growth to 4.93 t ha. The biowaste treatments increased N, P, Cu, Mn, and Zn relative to the control, which may be beneficial for grazing animals. Although biowaste application caused elevated Cd concentrations (0.15-0.24 mg kg) five- to eightfold higher than control and urea treatments, these were below levels that are likely to result in unacceptable concentrations in animal tissues. Mixing biosolids with sawdust reduced Cd uptake while still resulting in increased micronutrient concentrations (P, S, Mn, Zn, Cu) in plants. There were significant changes in the elemental uptake during the experiment, which was attributed to the decomposition of the sawdust. PMID:27136174

  5. Oat and ryegrass silage for small-scale dairy systems in the highlands of central Mexico.

    PubMed

    Celis-Alvarez, Maria Danaee; López-González, Felipe; Martínez-García, Carlos Galdino; Estrada-Flores, Julieta Gertrudis; Arriaga-Jordán, Carlos Manuel

    2016-08-01

    This study investigated the effects of the inclusion of oat-ryegrass silage (ORGS) in combination with maize silage (MSLG) in four treatments: T1 = 100 % ORGS, T2 = 67 % ORGS/33 % MSLG, T3 = 67 % ORGS/33 % MSLG, and T4 = 100 % MSLG to milking cows on continuous grazing with 4.7 kg DM of commercial dairy concentrate 18 % CP. Daily milk yield and composition, live weight, body condition score, and chemical composition of feeds were recorded during the last 4 days of the experimental periods. Feeding costs were calculated by partial budgets. Eight Holstein lactating cows were used in a replicated 4 × 4 Latin square, with 14-day periods. There were no statistical differences (P > 0.05) for milk yield (mean 15.5 ± 5.0 kg/day/cow) or composition (mean milk fat 34.6 ± 4.4 g/kg, protein 32.4 ± 3.1 g/kg, lactose 46.9 ± 1.6 g/kg), milk urea nitrogen (11.3 ± 2.1 mg/dl), live weight (434 ± 38 kg), or body condition score (2.4 ± 0.15). The silage cost of ORGS was 2.5 times higher than MSLG, so the feeding cost in T1 was 26 % higher per kilogram of milk than for T4, with T2 and T3 as intermediates. ORGS can be a substitute to maize silage in the proportions studied, although feeding costs were higher. PMID:27107750

  6. Fragile sites of 45S rDNA of Lolium multiflorum are not hotspots for chromosomal breakages induced by X-ray.

    PubMed

    Rocha, Laiane Corsini; Mittelmann, Andrea; Houben, Andreas; Techio, Vânia Helena

    2016-07-01

    Sites of 45S rDNA of Lolium are regions denominated fragile sites (FSs), constituting regions slightly stained with DAPI due to increased DNA unpacking in metaphasic chromosomes. Considered to be fragile regions in the genome, the FSs might be more responsive to induced breaks and result in chromosomal fragments and rearrangements, unless repairing mechanisms such as recombination or de novo telomere formation play a role at the break site of the DNA. Thus, this study aimed at investigating if SFs from Lolium are hotspots for the occurrence of breakages induced by X-ray and if they are regions favorable to synthesize new telomeres, using Hordeum vulgare as a comparative model. Lolium multiflorum and H. vulgare seedlings were irradiated with 20 and 50 Gy X-ray and evaluated one day following the irradiation and at 7-days intervals for a 28-days period, using FISH technique with 45S rDNA and Arabidopsis-type telomere probes in order to investigate the presence of chromosomal breakages and new telomere formation. H. vulgare did not survive after a few days of irradiation due to the increased rate of abnormalities. L. multiflorum also exhibited chromosomal abnormalities following the exposure, yet over the 28-days trial it had a decrease in the chromosomal damage rate and formation of de novo telomere has not been detected along this time. Despite being considered to be fragile regions in the genome, the 45S rDNA sites of Lolium are not hotspots to chromosomal breakages after the induction of breakages. PMID:27174104

  7. Applying carbon dioxide, plant growth-promoting rhizobacterium and EDTA can enhance the phytoremediation efficiency of ryegrass in a soil polluted with zinc, arsenic, cadmium and lead.

    PubMed

    Guo, Junkang; Feng, Renwei; Ding, Yongzhen; Wang, Ruigang

    2014-08-01

    This study was conducted to investigate the use of elevated carbon dioxide (CO2), plant growth-promoting rhizobacterium Burkholderia sp. D54 (PGPR) and ethylenediaminetetraacetic acid (EDTA) to enhance the phytoextraction efficiency of ryegrass in response to multiple heavy metal (or metalloid)-polluted soil containing zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb). All of the single or combined CO2, PGPR and EDTA treatments promoted ryegrass growth. The stimulation of ryegrass growth by CO2 and PGPR could primarily be attributed to the regulation of photosynthesis rather than decreased levels of Zn, As and Cd in the shoots. Most treatments seemed to reduce the Zn, As and Cd contents in the shoots, which might be associated with enhanced shoot biomass, thus causing a "dilution effect" regarding their levels. The combined treatments seemed to perform better than single treatments in removing Zn, As, Cd and Pb from soil, judging from the larger biomass and relatively higher total amounts (TAs) of Zn, As, Cd and Pb in both the shoots and roots. Therefore, we suggest that the CO2 plus PGPR treatment will be suitable for removing Zn, As, Cd and Pb from heavy metal (or metalloid)-polluted soils using ryegrass as a phytoremediation material. PMID:24762567

  8. Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex

    PubMed Central

    2010-01-01

    Background The agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum (Schreb.) Darbysh.) is an outbreeding allohexaploid, that may be more accurately described as a species complex consisting of three major (Continental, Mediterranean and rhizomatous) morphotypes. Observation of hybrid infertility in some crossing combinations between morphotypes suggests the possibility of independent origins from different diploid progenitors. This study aims to clarify the evolutionary relationships between each tall fescue morphotype through phylogenetic analysis using two low-copy nuclear genes (encoding plastid acetyl-CoA carboxylase [Acc1] and centroradialis [CEN]), the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) and the chloroplast DNA (cpDNA) genome-located matK gene. Other taxa within the closely related Lolium-Festuca species complex were also included in the study, to increase understanding of evolutionary processes in a taxonomic group characterised by multiple inter-specific hybridisation events. Results Putative homoeologous sequences from both nuclear genes were obtained from each polyploid species and compared to counterparts from 15 diploid taxa. Phylogenetic reconstruction confirmed F. pratensis and F. arundinacea var. glaucescens as probable progenitors to Continental tall fescue, and these species are also likely to be ancestral to the rhizomatous morphotype. However, these two morphotypes are sufficiently distinct to be located in separate clades based on the ITS-derived data set. All four of the generated data sets suggest independent evolution of the Mediterranean and Continental morphotypes, with minimal affinity between cognate sequence haplotypes. No obvious candidate progenitor species for Mediterranean tall fescues were identified, and only two putative sub-genome-specific haplotypes were identified for this morphotype. Conclusions This study describes the first phylogenetic analysis of

  9. Digestion during continuous culture fermentation when replacing perennial ryegrass with barley and steam-flaked corn.

    PubMed

    Wales, W J; Kolver, E S; Egan, A R

    2009-01-01

    The objective of this study was to quantify the optimal inclusion rate of grain required to maximize nutrient digestion of a diet based on highly digestible pasture. It was hypothesized that maximum digestion would occur at a rate of grain inclusion that resulted in a culture pH of 6.0, reflecting the pH below which fiber digestion would be expected to be compromised. Four dual-flow continuous culture fermenters were used to establish the effects on digestion of replacing freeze-dried, highly digestible ryegrass with 0, 15, 30, and 45% of dry matter as 60% barley, 35% steam-flaked corn, and 5% molasses mix. The respective composite diets were fed twice daily to mimic intake patterns observed in dairy cows offered supplements during milking and offered half their daily allowance of pasture after each milking. Digesta samples were collected during the last 3 d of each of four 9-d experimental periods. Average daily culture pH decreased linearly as proportion of cereal grain in the diet increased, with average daily pH ranging from 6.29 to 5.74. Concentrations of neutral detergent fiber and total fatty acids decreased linearly with increasing proportion of cereal grain in the diet. Digestion of organic matter (OM) was maximized at an interpolated value of 24% grain inclusion and culture pH of 6.0, but the difference in the OM digestibility over the range of grain treatments from 0 to 45% was small (3 percentage units) despite pH changes over a range of 6.3 to 5.7. The relatively small change in OM digestibility was explained by reduced fiber and crude protein digestibilities being balanced by an increased digestion of nonstructural carbohydrate. Although different relationships between ruminal pH and digestibility appear to exist when cows are fed pasture alone compared with a total mixed ration, when starch supplements are included in pasture diets, the relationships associated with feeding a total mixed ration may then be more likely to apply. PMID:19109278

  10. Design of an F1 hybrid breeding strategy for ryegrasses based on selection of self-incompatibility locus-specific alleles.

    PubMed

    Pembleton, Luke W; Shinozuka, Hiroshi; Wang, Junping; Spangenberg, German C; Forster, John W; Cogan, Noel O I

    2015-01-01

    Relatively modest levels of genetic gain have been achieved in conventional ryegrass breeding when compared to cereal crops such as maize, current estimates indicating an annual improvement of 0.25-0.6% in dry matter production. This property is partially due to an inability to effectively exploit heterosis through the formation of F1 hybrids. Controlled crossing of ryegrass lines from geographically distant origins has demonstrated the occurrence of heterosis, which can result in increases of dry matter production in the order of 25%. Although capture of hybrid vigor offers obvious advantages for ryegrass cultivar production, to date there have been no effective and commercially suitable methods for obtaining high proportions of F1 hybrid seed. Continued advances in fine-scale genetic and physical mapping of the gametophytic self-incompatibility (SI) loci (S and Z) of ryegrasses are likely in the near future to permit the identification of closely linked genetic markers that define locus-specific haplotypes, allowing prediction of allelic variants and hence compatibility between different plant genotypes. Given the availability of such information, a strategy for efficient generation of ryegrass cultivars with a high proportion of F1 hybrid individuals has been simulated, which is suitable for commercial implementation. Through development of two parental pools with restricted diversity at the SI loci, relative crossing compatibility between pools is increased. Based on simulation of various levels of SI allele diversity restriction, the most effective scheme will generate 83.33% F1 hybrids. Results from the study, including the impact of varying flowering time, are discussed along with a proposed breeding design for commercial application. PMID:26442077

  11. Chemical Composition, In vivo Digestibility and Metabolizable Energy Values of Caramba (Lolium multiflorum cv. caramba) Fresh, Silage and Hay.

    PubMed

    Özelçam, H; Kırkpınar, F; Tan, K

    2015-10-01

    The experiment was conducted to determine nutritive values of caramba (Lolium multiflorum cv. caramba) fresh, silage and hay by in vivo and in vitro methods. There was a statistically significant difference (p<0.01) in crude protein content value between fresh caramba (12.83%) and silage (8.91%) and hay (6.35%). According to results of experiment, the crude fiber, neutral detergent fiber, acid detergent fiber (ADF), acid detergent lignin contents of the three forms of caramba varied between 30.22% to 35.06%, 57.41% to 63.70%, 35.32% to 43.29%, and 5.55% to 8.86% respectively. There were no significant differences between the three forms of caramba in digestibility of nutrients and in vivo metabolizable energy (ME) values (p>0.05). However, the highest MECN (ME was estimated using crude nutrients) and MEADF values were found in fresh caramba (p<0.01). As a result, it could be said that, there were no differences between the three forms of caramba in nutrient composition, digestibility and ME value, besides drying and ensiling did not affect digestibility of hay. Consequently, caramba either as fresh, silage or hay is a good alternative source of forage for ruminants. PMID:26323399

  12. Chemical Composition, In vivo Digestibility and Metabolizable Energy Values of Caramba (Lolium multiflorum cv. caramba) Fresh, Silage and Hay

    PubMed Central

    Özelçam, H.; Kırkpınar, F.; Tan, K.

    2015-01-01

    The experiment was conducted to determine nutritive values of caramba (Lolium multiflorum cv. caramba) fresh, silage and hay by in vivo and in vitro methods. There was a statistically significant difference (p<0.01) in crude protein content value between fresh caramba (12.83%) and silage (8.91%) and hay (6.35%). According to results of experiment, the crude fiber, neutral detergent fiber, acid detergent fiber (ADF), acid detergent lignin contents of the three forms of caramba varied between 30.22% to 35.06%, 57.41% to 63.70%, 35.32% to 43.29%, and 5.55% to 8.86% respectively. There were no significant differences between the three forms of caramba in digestibility of nutrients and in vivo metabolizable energy (ME) values (p>0.05). However, the highest MECN (ME was estimated using crude nutrients) and MEADF values were found in fresh caramba (p<0.01). As a result, it could be said that, there were no differences between the three forms of caramba in nutrient composition, digestibility and ME value, besides drying and ensiling did not affect digestibility of hay. Consequently, caramba either as fresh, silage or hay is a good alternative source of forage for ruminants. PMID:26323399

  13. Exudation of alcohol and aldehyde sugars from roots of defoliated Lolium perenne L. grown under sterile conditions.

    PubMed

    Clayton, Stephen J; Read, Derek B; Murray, Philip J; Gregory, Peter J

    2008-11-01

    Root exudates were collected over a 27 day period from defoliated and non-defoliated Lolium perenne L. plants grown under sterile conditions in microlysimeters. Eleven individual sugars, including both aldehyde and alcohol sugars, were identified and quantified with a gas chromatograph-mass spectrometer (GC-MS). There was no change in the number of sugars present between 7 and 27 days, but the exudation of alcohol sugars decreased rapidly at about day 12. Xylose and glucose were present in the largest amounts. Defoliation initially increased the total amount of sugars in the exudates, but continuous defoliation reduced total sugar exudation by 16% and induced changes in the exudation patterns of individual sugars. Defoliation enhanced exudation of erythritol, threitol, and xylitol, reduced exudation of glucose and arabitol, but had little effect on the amounts of other sugars exuded. The more complex 6 C, 5 OH aldehyde sugars, especially glucose, showed changes earlier and to a greater extent (17 days), than the 5 C, 4 OH (xylose and ribose) and 6 C 4 OH (fucose) aldehyde groups. These findings confirm the general finding that repeated defoliation reduces the quantity of total sugars exuded, but the pattern of release of individual sugars is complex and variable.

  14. Comparative Metabolite Fingerprinting of the Rumen System during Colonisation of Three Forage Grass (Lolium perenne L.) Varieties

    PubMed Central

    Kingston-Smith, Alison H.; Davies, Teri E.; Rees Stevens, Pauline; Mur, Luis A. J.

    2013-01-01

    The rumen microbiota enable ruminants to degrade complex ligno-cellulosic compounds to produce high quality protein for human consumption. However, enteric fermentation by domestic ruminants generates negative by-products: greenhouse gases (methane) and environmental nitrogen pollution. The current lack of cultured isolates representative of the totality of rumen microbial species creates an information gap about the in vivo function of the rumen microbiota and limits our ability to apply predictive biology for improvement of feed for ruminants. In this work we took a whole ecosystem approach to understanding how the metabolism of the microbial population responds to introduction of its substrate. Fourier Transform Infra Red (FTIR) spectroscopy-based metabolite fingerprinting was used to discriminate differences in the plant-microbial interactome of the rumen when using three forage grass varieties (Lolium perenne L. cv AberDart, AberMagic and Premium) as substrates for microbial colonisation and fermentation. Specific examination of spectral regions associated with fatty acids, amides, sugars and alkanes indicated that although the three forages were apparently similar by traditional nutritional analysis, patterns of metabolite flux within the plant-microbial interactome were distinct and plant genotype dependent. Thus, the utilisation pattern of forage nutrients by the rumen microbiota can be influenced by subtleties determined by forage genotypes. These data suggest that our interactomic approach represents an important means to improve forages and ultimately the livestock environment. PMID:24312434

  15. Glyphosate effects on gas exchange and chlorophyll fluorescence responses of two Lolium perenne L. biotypes with differential herbicide sensitivity.

    PubMed

    Yanniccari, Marcos; Tambussi, Eduardo; Istilart, Carolina; Castro, Ana María

    2012-08-01

    Despite the extensive use of glyphosate, how it alters the physiology and metabolism of plants is still unclear. Photosynthesis is not regarded to be a primary inhibitory target of glyphosate, but it has been reported to be affected by this herbicide. The aim of the current research was to determine the effects of glyphosate on the light and dark reactions of photosynthesis by comparing glyphosate-susceptible and glyphosate-resistant Lolium perenne biotypes. After glyphosate treatment, accumulation of reduced carbohydrates occurred before a decrease in gas exchange. Stomatal conductance and CO(2) assimilation were reduced earlier than chlorophyll fluorescence and the amount of chlorophyll in susceptible plants. In the glyphosate-resistant biotype, stomatal conductance was the only parameter slightly affected only 5 days post-application. In susceptible plants, the initial glyphosate effects on gas exchange could be a response to a feedback regulation of photosynthesis. Since the herbicide affects actively growing tissues regardless of the inhibition of photosynthesis, the demand of assimilates decreased and consequently induced an accumulation of carbohydrates in leaves. We concluded that stomatal conductance could be a very sensitive parameter to assess both the susceptibility/resistance to glyphosate before the phytotoxic symptoms become evident.

  16. Target site mutation and reduced translocation are present in a glyphosate-resistant Lolium multiflorum Lam. biotype from Spain.

    PubMed

    González-Torralva, Fidel; Gil-Humanes, Javier; Barro, Francisco; Brants, Ivo; De Prado, Rafael

    2012-09-01

    The resistance mechanism of a glyphosate-resistant Lolium multiflorum Lam. biotype collected in Córdoba (Southern Spain) was examined. Resistance Factor values at three different growth stages ranged between 4.77 and 4.91. At 96 hours after treatment (HAT) the S biotype had accumulated seven times more shikimic acid than the R biotype. There were significant differences in translocation of (14)C-glyphosate between biotypes, i.e. at 96 HAT, the R biotype accumulated in the treated leaf more than 70% of the absorbed herbicide, in comparison with 59.21% of the S biotype; the R biotype translocated only 14.79% of the absorbed (14)C-glyphosate to roots, while in the S population this value was 24.79%. Visualization of (14)C-glyphosate by phosphor imaging showed a reduced distribution in the R biotype compared with the S. Glyphosate metabolism was not involved in the resistance mechanism due to both biotypes showing similar values of glyphosate at 96 HAT. Comparison of the EPSPS gene sequences between biotypes indicated that the R biotype has a proline 182 to serine amino acid substitution. In short, the resistance mechanism of the L. multiflorum Lam. biotype is due to an impaired translocation of the herbicide and an altered target site.

  17. Influence of tea saponin on enhancing accessibility of pyrene and cadmium phytoremediated with Lolium multiflorum in co-contaminated soils.

    PubMed

    Wang, Qian; Liu, Xiaoyan; Zhang, Xinying; Hou, Yunyun; Hu, Xiaoxin; Liang, Xia; Chen, Xueping

    2016-03-01

    Tea saponin (TS), a kind of biodegradable surfactant, was chosen to improve the accessible solubilization of pyrene and cadmium (Cd) in co-contaminated soils cultivated Lolium multiflorum. TS obviously improved the accessibility of pyrene and Cd for L. multiflorum to accelerate the process of accumulation and elimination of the pollutants. The chemical forms of Cd was transformed from Fe-Mn oxides and associated to carbonates fractions into exchangeable fractions by adding TS in single Cd and pyrene-Cd contaminated soils. Moreover, the chemical forms of pyrene were transformed from associated fraction into bioaccessible fraction by adding TS in pyrene and pyrene-Cd contaminated soils. In pyrene-Cd contaminated soil, the exchangeable fraction of Cd was hindered in the existence of pyrene, and bioaccessible fraction of pyrene was promoted by the cadmium. Besides, in the process of the pyrene degradation and Cd accumulation, the effect could be improved by the elongation of roots with adding TS, and the microorganism activity was stimulated by TS to accelerate the removal of pollutions. Therefore, Planting L. multiflorum combined with adding TS would be an effective method on the phytoremediation of organics and heavy metals co-contaminated soils.

  18. Profile of Hanwoo Steer Carcass Characteristics, Meat Quality and Fatty Acid Composition after Feeding Italian Ryegrass Silage

    PubMed Central

    Kang, Suk-Nam; Chu, Gyo-Moon; Kim, Da Hye; Park, Jae-Hong; Oh, Young Kyoon

    2015-01-01

    The objective of this work was to evaluate the growth performance, feed intake, slaughter characteristics, meat quantity and quality characteristics of Hanwoo steers fed with Italian ryegrass (IRG) silage (TRT). IRG silage consisted 11.70% protein, 2.84% ether extract, 53.50% dry matter digestibility and 63.34% total digestible nutrients. The daily weight gain and feed conversion ratio of TRT were significantly (p<0.01) higher than that of control diet (CON; fed rice straw) in the whole periods. However, the slaughter weight, dressing percentage, quantity grade and quantity traits (marbling score, meat color, fat color, and quality grade) of either TRT or CON were similar. Meat fed TRT diet showed higher crude fat and lightness (L*) value and lower moisture content and pH value compared with the CON diet (p<0.05). Overall the carcass yield was 12.5% higher than CON diet. PMID:26761843

  19. Profile of Hanwoo Steer Carcass Characteristics, Meat Quality and Fatty Acid Composition after Feeding Italian Ryegrass Silage.

    PubMed

    Kim, Won Ho; Kang, Suk-Nam; Arasu, Mariadhas Valan; Chu, Gyo-Moon; Kim, Da Hye; Park, Jae-Hong; Oh, Young Kyoon; Choi, Ki Choon

    2015-01-01

    The objective of this work was to evaluate the growth performance, feed intake, slaughter characteristics, meat quantity and quality characteristics of Hanwoo steers fed with Italian ryegrass (IRG) silage (TRT). IRG silage consisted 11.70% protein, 2.84% ether extract, 53.50% dry matter digestibility and 63.34% total digestible nutrients. The daily weight gain and feed conversion ratio of TRT were significantly (p<0.01) higher than that of control diet (CON; fed rice straw) in the whole periods. However, the slaughter weight, dressing percentage, quantity grade and quantity traits (marbling score, meat color, fat color, and quality grade) of either TRT or CON were similar. Meat fed TRT diet showed higher crude fat and lightness (L*) value and lower moisture content and pH value compared with the CON diet (p<0.05). Overall the carcass yield was 12.5% higher than CON diet. PMID:26761843

  20. Cloning and sequencing of Lol pI, the major allergenic protein of rye-grass pollen.

    PubMed

    Griffith, I J; Smith, P M; Pollock, J; Theerakulpisut, P; Avjioglu, A; Davies, S; Hough, T; Singh, M B; Simpson, R J; Ward, L D

    1991-02-25

    We have isolated a full length cDNA clone encoding the major glycoprotein allergen Lol pI. The clone was selected using a combination of immunological screening of a cDNA expression library and PCR amplification of Lol pI-specific transcripts. Lol pI expressed in bacteria as a fusion protein shows recognition by specific IgE antibodies present in sera of grass pollen-allergic subjects. Northern analysis has shown that the Lol pI transcripts are expressed only in pollen of rye-grass. Molecular cloning of Lol pI provides a molecular genetic approach to study the structure-function relationship of allergens.

  1. Germination and Seedling Growth of Perennial Ryegrass in Acid Sulfate Soil Treated by Pyrite Nano-Encapsulation

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, J.; Yi, J.; Kim, T.

    2007-05-01

    The trial pot experiment was conducted to validate the effect of encapsulation in reduction of acid rock drainage. Six different treatments were performed: A = control, four times spraying of distilled water; B = four times of 0.01 M H2O2; C = once-encapsulated and three times spraying of distilled water; D = twice-encapsulated and twice spraying of distilled water; E = three times-encapsulated and once spraying of distilled water and F = four times-encapsulated for the acid sulfate soil with pyrite bearing andesite powder and sand. After the encapsulation treatment, the perennial ryegrass (Loium perenne) was sowed to evaluate germination rate and growth for three months. The leachate was examined for the chemical properties. The leachate from the A pot (control) is characterized as acidic (pH below 3) and high concentrations of SO4-2: 12,022 mg/L, Al: 85.8 mg/L and Mn: 34.1 mg/L which can be toxic effect to the plant growth. However, the leachate from encapsulated pots showed near neutral (pH 6 to 7) and low concentrations of SO4-2 (below 3,000 mg/L), Al (below 45mg/L) and Mn (24 gm/L). The frequency of encapsulation treatment is related to reduction of acidic drainage. It was hard to identify the significant difference of the seed germination rate of ryegrass between the treatments, although root and shoot growth showed three times difference between the control (1.90g/pot) and four times encapsulated treatment (6.33g/pot) after 2 month growth. It is suggested that encapsulation of pyrite in acid sulfate soil causes the reduction of acidic drainage resulting in the higher growth of herbaceous plants.

  2. Fructans, But Not the Sucrosyl-Galactosides, Raffinose and Loliose, Are Affected by Drought Stress in Perennial Ryegrass

    PubMed Central

    Amiard, Véronique; Morvan-Bertrand, Annette; Billard, Jean-Pierre; Huault, Claude; Keller, Felix; Prud'homme, Marie-Pascale

    2003-01-01

    The aim of this study was to evaluate the putative role of the sucrosyl-galactosides, loliose [α-d-Gal (1,3) α-d-Glc (1,2) β-d-Fru] and raffinose [α-d-Gal (1,6) α-d-Glc (1,2) β-d-Fru], in drought tolerance of perennial ryegrass and to compare it with that of fructans. To that end, the loliose biosynthetic pathway was first established and shown to operate by a UDP-Gal: sucrose (Suc) 3-galactosyltransferase, tentatively termed loliose synthase. Drought stress increased neither the concentrations of loliose and raffinose nor the activities of loliose synthase and raffinose synthase (EC 2.4.1.82). Moreover, the concentrations of the raffinose precursors, myoinositol and galactinol, as well as the gene expressions of myoinositol 1-phosphate synthase (EC 5.5.1.4) and galactinol synthase (EC 2.4.1.123) were either decreased or unaffected by drought stress. Taken together, these data are not in favor of an obvious role of sucrosyl-galactosides in drought tolerance of perennial ryegrass at the vegetative stage. By contrast, drought stress caused fructans to accumulate in leaf tissues, mainly in leaf sheaths and elongating leaf bases. This increase was mainly due to the accumulation of long-chain fructans (degree of polymerization > 8) and was not accompanied by a Suc increase. Interestingly, Suc but not fructan concentrations greatly increased in drought-stressed roots. Putative roles of fructans and sucrosyl-galactosides are discussed in relation to the acquisition of stress tolerance. PMID:12913176

  3. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum)

    PubMed Central

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  4. Clade classification of monolignol biosynthesis gene family members reveals target genes to decrease lignin in Lolium perenne.

    PubMed

    van Parijs, F R D; Ruttink, T; Boerjan, W; Haesaert, G; Byrne, S L; Asp, T; Roldán-Ruiz, I; Muylle, H

    2015-07-01

    In monocots, lignin content has a strong impact on the digestibility of the cell wall fraction. Engineering lignin biosynthesis requires a profound knowledge of the role of paralogues in the multigene families that constitute the monolignol biosynthesis pathway. We applied a bioinformatics approach for genome-wide identification of candidate genes in Lolium perenne that are likely to be involved in the biosynthesis of monolignols. More specifically, we performed functional subtyping of phylogenetic clades in four multigene families: 4CL, COMT, CAD and CCR. Essential residues were considered for functional clade delineation within these families. This classification was complemented with previously published experimental evidence on gene expression, gene function and enzymatic activity in closely related crops and model species. This allowed us to assign functions to novel identified L. perenne genes, and to assess functional redundancy among paralogues. We found that two 4CL paralogues, two COMT paralogues, three CCR paralogues and one CAD gene are prime targets for genetic studies to engineer developmentally regulated lignin in this species. Based on the delineation of sequence conservation between paralogues and a first analysis of allelic diversity, we discuss possibilities to further study the roles of these paralogues in lignin biosynthesis, including expression analysis, reverse genetics and forward genetics, such as association mapping. We propose criteria to prioritise paralogues within multigene families and certain SNPs within these genes for developing genotyping assays or increasing power in association mapping studies. Although L. perenne was the target of the analyses presented here, this functional subtyping of phylogenetic clades represents a valuable tool for studies investigating monolignol biosynthesis genes in other monocot species.

  5. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum).

    PubMed

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress.

  6. Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne.

    PubMed

    Pfender, W F; Saha, M C; Johnson, E A; Slabaugh, M B

    2011-05-01

    A mapping population was created to detect quantitative trait loci (QTL) for resistance to stem rust caused by Puccinia graminis subsp. graminicola in Lolium perenne. A susceptible and a resistant plant were crossed to produce a pseudo-testcross population of 193 F(1) individuals. Markers were produced by the restriction-site associated DNA (RAD) process, which uses massively parallel and multiplexed sequencing of reduced-representation libraries. Additional simple sequence repeat (SSR) and sequence-tagged site (STS) markers were combined with the RAD markers to produce maps for the female (738 cM) and male (721 cM) parents. Stem rust phenotypes (number of pustules per plant) were determined in replicated greenhouse trials by inoculation with a field-collected, genetically heterogeneous population of urediniospores. The F(1) progeny displayed continuous distribution of phenotypes and transgressive segregation. We detected three resistance QTL. The most prominent QTL (qLpPg1) is located near 41 cM on linkage group (LG) 7 with a 2-LOD interval of 8 cM, and accounts for 30-38% of the stem rust phenotypic variance. QTL were detected also on LG1 (qLpPg2) and LG6 (qLpPg3), each accounting for approximately 10% of phenotypic variance. Alleles of loci closely linked to these QTL originated from the resistant parent for qLpPg1 and from both parents for qLpPg2 and qLpPg3. Observed quantitative nature of the resistance may be due to partial-resistance effects against all pathogen genotypes, or qualitative effects completely preventing infection by only some genotypes in the genetically mixed inoculum. RAD markers facilitated rapid construction of new genetic maps in this outcrossing species and will enable development of sequence-based markers linked to stem rust resistance in L. perenne. PMID:21344184

  7. Synergetic effects of DA-6/GA₃ with EDTA on plant growth, extraction and detoxification of Cd by Lolium perenne.

    PubMed

    He, Shanying; Wu, Qiuling; He, Zhenli

    2014-12-01

    Research is needed to improve efficiency of phytoextraction of heavy metals from contaminated soils. A pot experiment was carried out to study the effects of plant growth regulators (PGRs) (diethyl aminoethyl hexanoate (C18H33NO8, DA-6) and gibberellic acid 3 (C19H22O6, GA3)) and/or EDTA on Cd extraction, subcellular distribution and chemical forms in Lolium perenne. The addition of EDTA or PGRs significantly enhanced Cd extraction efficiency (P<0.05), with the decreasing order of: 1 μM DA-6>10 μM DA-6>10 μM GA3>2.5 mmol kg(-1) EDTA>other treatments of PGR alone. PGRs+EDTA resulted in a further increase in Cd extraction efficiency, with EDTA+1 μM DA-6 being the most efficient. At the subcellular level, about 44-57% of Cd was soluble fraction, 18-44% in cell walls, and 12-25% in cellular organelles fraction. Chemical speciation analysis showed that 40-54% of Cd was NaCl extractable, 7-23% HAc extractable, followed by other fractions. EDTA increased the proportions of Cd in soluble and cellular organelles fraction, as well as the metal migration in shoot; therefore, the toxicity to plant increased and plant growth was inhibited. Conversely, PGRs fixed more Cd in cell walls and reduced Cd migration in shoot; thus, metal toxicity was reduced. In addition, PGRs promoted plant biomass growth significantly (P<0.05), with 1 μM DA-6 being the most effective. A combination of DA-6/GA3 with EDTA can alleviate the adverse effect of EDTA on plant growth, and the treatment of EDTA+1 μM DA-6 appears to be optimal for improving the remediation efficiency of L. perenne for Cd contaminated soil. PMID:24999226

  8. Latitudinal variation in ambient UV-B radiation is an important determinant of Lolium perenne forage production, quality, and digestibility

    PubMed Central

    Comont, David; Winters, Ana; Gomez, Leonardo D; McQueen-Mason, Simon J; Gwynn-Jones, Dylan

    2013-01-01

    Few studies to date have considered the responses of agriculturally important forage grasses to UV-B radiation. Yet grasses such as Lolium perenne have a wide current distribution, representing exposure to a significant variation in ambient UV-B. The current study investigated the responses of L. perenne (cv. AberDart) to a simulated latitudinal gradient of UV-B exposure, representing biologically effective UV-B doses at simulated 70, 60, 50, 40, and 30° N latitudes. Aspects of growth, soluble compounds, and digestibility were assessed, and results are discussed in relation to UV-B effects on forage properties and the implications for livestock and bio-ethanol production. Aboveground biomass production was reduced by approximately 12.67% with every 1 kJ m–2 day–1 increase in biologically weighted UV-B. As a result, plants grown in the highest UV-B treatment had a total biomass of just 13.7% of controls. Total flavonoids were increased by approximately 76% by all UV-B treatments, while hydroxycinnamic acids increased in proportion to the UV-B dose. Conversely, the digestibility of the aboveground biomass and concentrations of soluble fructans were reduced by UV-B exposure, although soluble sucrose, glucose, and fructose concentrations were unaffected. These results highlight the capacity for UV-B to directly affect forage productivity and chemistry, with negative consequences for digestibility and bioethanol production. Results emphasize the need for future development and distribution of L. perenne varieties to take UV-B irradiance into consideration. PMID:23580749

  9. Synergetic effects of DA-6/GA₃ with EDTA on plant growth, extraction and detoxification of Cd by Lolium perenne.

    PubMed

    He, Shanying; Wu, Qiuling; He, Zhenli

    2014-12-01

    Research is needed to improve efficiency of phytoextraction of heavy metals from contaminated soils. A pot experiment was carried out to study the effects of plant growth regulators (PGRs) (diethyl aminoethyl hexanoate (C18H33NO8, DA-6) and gibberellic acid 3 (C19H22O6, GA3)) and/or EDTA on Cd extraction, subcellular distribution and chemical forms in Lolium perenne. The addition of EDTA or PGRs significantly enhanced Cd extraction efficiency (P<0.05), with the decreasing order of: 1 μM DA-6>10 μM DA-6>10 μM GA3>2.5 mmol kg(-1) EDTA>other treatments of PGR alone. PGRs+EDTA resulted in a further increase in Cd extraction efficiency, with EDTA+1 μM DA-6 being the most efficient. At the subcellular level, about 44-57% of Cd was soluble fraction, 18-44% in cell walls, and 12-25% in cellular organelles fraction. Chemical speciation analysis showed that 40-54% of Cd was NaCl extractable, 7-23% HAc extractable, followed by other fractions. EDTA increased the proportions of Cd in soluble and cellular organelles fraction, as well as the metal migration in shoot; therefore, the toxicity to plant increased and plant growth was inhibited. Conversely, PGRs fixed more Cd in cell walls and reduced Cd migration in shoot; thus, metal toxicity was reduced. In addition, PGRs promoted plant biomass growth significantly (P<0.05), with 1 μM DA-6 being the most effective. A combination of DA-6/GA3 with EDTA can alleviate the adverse effect of EDTA on plant growth, and the treatment of EDTA+1 μM DA-6 appears to be optimal for improving the remediation efficiency of L. perenne for Cd contaminated soil.

  10. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress

    PubMed Central

    Serra, Anne-Antonella; Couée, Ivan; Renault, David; Gouesbet, Gwenola; Sulmon, Cécile

    2015-01-01

    Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing. PMID:25618145

  11. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum).

    PubMed

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  12. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds.

    PubMed

    Cummins, Ian; Wortley, David J; Sabbadin, Federico; He, Zhesi; Coxon, Christopher R; Straker, Hannah E; Sellars, Jonathan D; Knight, Kathryn; Edwards, Lesley; Hughes, David; Kaundun, Shiv Shankhar; Hutchings, Sarah-Jane; Steel, Patrick G; Edwards, Robert

    2013-04-01

    Multiple-herbicide resistance (MHR) in black-grass (Alopecurus myosuroides) and annual rye-grass (Lolium rigidum) is a global problem leading to a loss of chemical weed control in cereal crops. Although poorly understood, in common with multiple-drug resistance (MDR) in tumors, MHR is associated with an enhanced ability to detoxify xenobiotics. In humans, MDR is linked to the overexpression of a pi class glutathione transferase (GSTP1), which has both detoxification and signaling functions in promoting drug resistance. In both annual rye-grass and black-grass, MHR was also associated with the increased expression of an evolutionarily distinct plant phi (F) GSTF1 that had a restricted ability to detoxify herbicides. When the black-grass A. myosuroides (Am) AmGSTF1 was expressed in Arabidopsis thaliana, the transgenic plants acquired resistance to multiple herbicides and showed similar changes in their secondary, xenobiotic, and antioxidant metabolism to those determined in MHR weeds. Transcriptome array experiments showed that these changes in biochemistry were not due to changes in gene expression. Rather, AmGSTF1 exerted a direct regulatory control on metabolism that led to an accumulation of protective flavonoids. Further evidence for a key role for this protein in MHR was obtained by showing that the GSTP1- and MDR-inhibiting pharmacophore 4-chloro-7-nitro-benzoxadiazole was also active toward AmGSTF1 and helped restore herbicide control in MHR black-grass. These studies demonstrate a central role for specific GSTFs in MHR in weeds that has parallels with similar roles for unrelated GSTs in MDR in humans and shows their potential as targets for chemical intervention in resistant weed management.

  13. The effect of applying sodium fertilizer on the rate of digestion of perennial ryegrass and white clover incubated in rumen liquor, with implications for ruminal tympany in cattle.

    PubMed

    Phillips, C J; Tenlep, S Y; Pennell, K; Omed, H; Chiy, P C

    2001-01-01

    A high herbage K:Na ratio increases the risk of ruminal tympany in cattle, which may relate to digestion rate. Experiment 1 examined whether in vitro digestibility of ryegrass was affected by NaCl fertilizer or by Na concentration in artificial saliva. Fertilizer Na increased grass digestibility, but Na in artificial saliva decreased it, probably due to the energy cost of sodium exclusion from bacteria. Increased herbage digestibility with fertilizer Na is therefore not due to additional Na, but may relate to increased water-soluble carbohydrates. Experiment 2 examined whether NaCl fertilizer applied at 35 or 70 kg Na ha(-1)to ryegrass and white clover affected in vitro gas production. Sodium fertilizer increased maximum gas output from grass and rate of production, confirming the increase in grass digestibility recorded previously, but in clover it had the opposite effect, thereby potentially reducing ruminal tympany in cows fed a high legume diet.

  14. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil

    PubMed Central

    Broadhurst, Catherine L.; Chaney, Rufus L.

    2016-01-01

    The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which can achieve 30 g kg−1 Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soil to facilitate uptake. It has been hypothesized that in fields with mixed plant species, mobilization of metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum Ni, Fe, Cu, and Mn uptake. We co-cropped the Ni hyperaccumulator Alyssum murale, non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine soil. All treatments had standard inorganic fertilization required for ryegrass growth and one treatment was compost amended. After 4 months A. murale leaves and stems contained 3600 mg kg−1 Ni which did not differ significantly with co-cropping. Overall Ni and Mn concentrations were significantly higher in A. murale than in A. montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L. perenne accumulated up to 10 mg kg−1. A. montanum could not compete with either A. murale or ryegrass, and neither Alyssum species survived in the compost-amended soil. Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped grass did not occur. Our data do not support increased mobilization of Mn by a phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil to maximize root penetration, adequate inorganic fertilization and appropriate plant densities are more important for developing efficient phytoremediation and

  15. [Effects of ryegrass and arbuscular mycorrhiza on activities of antioxidant enzymes, accumulation and chemical forms of cadmium in different varieties of tomato].

    PubMed

    Jiang, Ling; Yang, Yun; Xu, Wei-Hong; Wang, Chong-Li; Chen, Rong; Xiong, Shi-Juan; Xie, Wen-Wen; Zhang, Jin-Zhong; Xiong, Zhi-Ting; Wang, Zheng-Yin; Xie, De-Ti

    2014-06-01

    Pot experiments were carried out to investigate the effects of ryegrass and arbuscular mycorrhiza on the plant growth, malondialdehyde (MDA), antioxidant enzyme activities of leaf and root, accumulation and chemical forms of cadmium (Cd) in tow varieties of tomato when exposed to Cd (20 mg x kg(-1)). The results showed that dry weights of fruit and plant, and contents of malondialdehyde (MDA) and antioxidant enzyme activities of leaf and root, and concentrations and accumulations of Cd significantly differed between two varieties of tomato. Dry weights of fruit, roots, stem, leaf and plant were increased by single or combined remediation of ryegrass and arbuscular mycorrhiza, while MDA contents and antioxidant enzyme activities of leaf and root reduced. The total extractable Cd, F(E), F(W), F(NaCl), F(HAc), F(HCl), and F(R) in fruit of two varieties of tomato reduced by 19.4% - 52.4%, 31.0% - 75.2%, 19.7% - 59.1%, 3.1% - 48.2%, 20.0% - 65.0%, 40.7% - 100.0% and 15.2% - 50.0%, respectively. Cadmium accumulations in tomato were in the order of leaf > stem > fruit > root. Cadmium concentrations in leaf, stem, root and fruit of both varieties decreased by single or combined remediation of ryegrass and arbuscular mycorrhiza, and Cd accumulations of stem and plant of two varieties also reduced. Cd accumulations in fruit of two varieties decreased by 42.9% and 43.7% in the combined remediation treatments, respectively. Tolerance and resistance of 'LUO BEI QI' on Cd was more than 'De Fu mm-8', and Cd concentrations and Cd accumulations in fruit and plant were in the order of 'LUO BEI QI' < 'De Fu mm-8' in the presence or absence of single or combined remediation of ryegrass and arbuscular mycorrhiza.

  16. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil.

    PubMed

    Broadhurst, Catherine L; Chaney, Rufus L

    2016-01-01

    The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which can achieve 30 g kg(-1) Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soil to facilitate uptake. It has been hypothesized that in fields with mixed plant species, mobilization of metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum Ni, Fe, Cu, and Mn uptake. We co-cropped the Ni hyperaccumulator Alyssum murale, non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine soil. All treatments had standard inorganic fertilization required for ryegrass growth and one treatment was compost amended. After 4 months A. murale leaves and stems contained 3600 mg kg(-1) Ni which did not differ significantly with co-cropping. Overall Ni and Mn concentrations were significantly higher in A. murale than in A. montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L. perenne accumulated up to 10 mg kg(-1). A. montanum could not compete with either A. murale or ryegrass, and neither Alyssum species survived in the compost-amended soil. Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped grass did not occur. Our data do not support increased mobilization of Mn by a phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil to maximize root penetration, adequate inorganic fertilization and appropriate plant densities are more important for developing efficient phytoremediation and

  17. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil.

    PubMed

    Broadhurst, Catherine L; Chaney, Rufus L

    2016-01-01

    The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which can achieve 30 g kg(-1) Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soil to facilitate uptake. It has been hypothesized that in fields with mixed plant species, mobilization of metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum Ni, Fe, Cu, and Mn uptake. We co-cropped the Ni hyperaccumulator Alyssum murale, non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine soil. All treatments had standard inorganic fertilization required for ryegrass growth and one treatment was compost amended. After 4 months A. murale leaves and stems contained 3600 mg kg(-1) Ni which did not differ significantly with co-cropping. Overall Ni and Mn concentrations were significantly higher in A. murale than in A. montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L. perenne accumulated up to 10 mg kg(-1). A. montanum could not compete with either A. murale or ryegrass, and neither Alyssum species survived in the compost-amended soil. Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped grass did not occur. Our data do not support increased mobilization of Mn by a phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil to maximize root penetration, adequate inorganic fertilization and appropriate plant densities are more important for developing efficient phytoremediation and

  18. Effects of the coordination mechanism between roots and leaves induced by root-breaking and exogenous cytokinin spraying on the grazing tolerance of ryegrass.

    PubMed

    Wang, Xiao-Ling; Liu, Dan; Li, Zhen-Qing

    2012-05-01

    The grazing tolerance mechanism of ryegrass was investigated by examining the effects of roots on leaves under frequent defoliation. The study consisted of four treatments: (1) with root breaking and cytokinin spraying, (2) root breaking without cytokinin spraying, (3) cytokinin spraying with no root breaking, and (4) no root breaking and no cytokinin spraying. Results showed that root breaking or frequent defoliation inhibited the ryegrass regrowth, which resulted in low biomass of the newly grown leaves and roots, as well as low soluble carbohydrate content and xylem sap quantity in the roots. Spraying with exogenous cytokinin promoted the increase in newly grown leaf biomass, but decreased root biomass, root soluble carbohydrate content, and root xylem sap quantity. Determination of gibberellic acid, indole-3-acetic acid, abscisic acid, and zeatin riboside (ZR) in roots, newly grown leaves, and stubbles showed that cytokinin is a key factor in ryegrass regrowth under frequent defoliation. Root breaking and frequent defoliation both decreased the ZR content in roots and in newly grown leaves, whereas spraying with exogenous cytokinin increased the ZR content in roots and in newly grown leaves. Therefore, cytokinin enhances the above ground productivity at the cost of root growth under frequent defoliation.

  19. [Enhancement of GA3 and EDTA on Lolium perenne to remediate Pb contaminated soil and its detoxification mechanism].

    PubMed

    Wu, Qiu-Ling; Wang, Wen-Chu; He, Shan-Ying

    2014-10-01

    A pot experiment was conducted to study the effects of plant growth regulator GA3 and metal chelate EDTA on enhancing the remediation of Pb contaminated soil, and the detoxification mechanism of Lolium perenne grown on Pb contaminated soil at 250 and 500 mg · kg(-1). The results showed that cell wall deposition and vacuolar compartmentalization played important roles in the detoxification of Pb in L. perenne shoot. The addition of EDTA alone increased Pb concentration in plants and Pb proportions in soluble fraction and organelles fraction, and enhanced the toxicity of Pb to plant, leading to the significant reduction of the plant biomass (P < 0.05). Foliar spray of lower concentration of GA3 (1 μmol · L(-1) or 10 μmol · L(-1)) alone significantly increased Pb accumulation by L. perenne (P < 0.05), but Pb proportions in soluble and organelles fraction were decreased, which alleviated the adverse effects of Pb on plant, thus improving the growth of plants (P < 0.05), with 1 μmol · L(-1) GA3 being the most effective. In contract, the addition of 100 μmol · L(-1) GA3 decreased Pb concentration in L. perenne, but increased the proportions of Pb in soluble fraction and organelles fraction, resulting in the reduction of plant biomass. Lower concen- tration of GA3 might alleviate the adverse effects of Pb and/or EDTA on plant, since the biomass amounts in the different treatments were in order of GA3 alone of lower concentration > GA3 of lower concentration + EDTA > EDTA alone. The combination application of low concentration of GA3 and EDTA showed a synergistic effect on the Pb accumulation in L. perenne (P < 0.05). Especially, Pb concentration in shoot and Pb extraction efficiency reached 1250.6 mg · kg(-1) and 1.1%, respec- tively, under the treatment of EDTA + 1 μmol L(-1) GA3 on the Pb 500 mg · kg(-1) soil. Therefore, the application of 1 μmol · L(-1) GA3 along with EDTA appeared to be a potential approach for phytoremediation of Pb contaminated soil

  20. [Enhancement of GA3 and EDTA on Lolium perenne to remediate Pb contaminated soil and its detoxification mechanism].

    PubMed

    Wu, Qiu-Ling; Wang, Wen-Chu; He, Shan-Ying

    2014-10-01

    A pot experiment was conducted to study the effects of plant growth regulator GA3 and metal chelate EDTA on enhancing the remediation of Pb contaminated soil, and the detoxification mechanism of Lolium perenne grown on Pb contaminated soil at 250 and 500 mg · kg(-1). The results showed that cell wall deposition and vacuolar compartmentalization played important roles in the detoxification of Pb in L. perenne shoot. The addition of EDTA alone increased Pb concentration in plants and Pb proportions in soluble fraction and organelles fraction, and enhanced the toxicity of Pb to plant, leading to the significant reduction of the plant biomass (P < 0.05). Foliar spray of lower concentration of GA3 (1 μmol · L(-1) or 10 μmol · L(-1)) alone significantly increased Pb accumulation by L. perenne (P < 0.05), but Pb proportions in soluble and organelles fraction were decreased, which alleviated the adverse effects of Pb on plant, thus improving the growth of plants (P < 0.05), with 1 μmol · L(-1) GA3 being the most effective. In contract, the addition of 100 μmol · L(-1) GA3 decreased Pb concentration in L. perenne, but increased the proportions of Pb in soluble fraction and organelles fraction, resulting in the reduction of plant biomass. Lower concen- tration of GA3 might alleviate the adverse effects of Pb and/or EDTA on plant, since the biomass amounts in the different treatments were in order of GA3 alone of lower concentration > GA3 of lower concentration + EDTA > EDTA alone. The combination application of low concentration of GA3 and EDTA showed a synergistic effect on the Pb accumulation in L. perenne (P < 0.05). Especially, Pb concentration in shoot and Pb extraction efficiency reached 1250.6 mg · kg(-1) and 1.1%, respec- tively, under the treatment of EDTA + 1 μmol L(-1) GA3 on the Pb 500 mg · kg(-1) soil. Therefore, the application of 1 μmol · L(-1) GA3 along with EDTA appeared to be a potential approach for phytoremediation of Pb contaminated soil.

  1. Heat Shock Factor Genes of Tall Fescue and Perennial Ryegrass in Response to Temperature Stress by RNA-Seq Analysis

    PubMed Central

    Wang, Yan; Dai, Ya; Tao, Xiang; Wang, Jia-Zhen; Cheng, Hai-Yang; Yang, Hong; Ma, Xin-Rong

    2016-01-01

    Heat shock factors (Hsfs) are important regulators of stress-response in plants. However, our understanding of Hsf genes and their responses to temperature stresses in two Pooideae cool-season grasses, Festuca arundinacea, and Lolium perenne, is limited. Here we conducted comparative transcriptome analyses of plant leaves exposed to heat or cold stress for 10 h. Approximately, 30% and 25% of the genes expressed in the two species showed significant changes under heat and cold stress, respectively, including subsets of Hsfs and their target genes. We uncovered 74 Hsfs in F. arundinacea and 52 Hsfs in L. perenne, and categorized these genes into three subfamilies, HsfA, HsfB, and HsfC based on protein sequence homology to known Hsf members in model organisms. The Hsfs showed a strong response to heat and/or cold stress. The expression of HsfAs was elevated under heat stress, especially in class HsfA2, which exhibited the most dramatic responses. HsfBs were upregulated by the both temperature conditions, and HsfCs mainly showed an increase in expression under cold stress. The target genes of Hsfs, such as heat shock protein (HSP), ascorbate peroxidase (APX), inositol-3-phosphate synthase (IPS), and galactinol synthase (GOLS1), showed strong and unique responses to different stressors. We comprehensively detected Hsfs and their target genes in F. arundinacea and L. perenne, providing a foundation for future gene function studies and genetic engineering to improve stress tolerance in grasses and other crops. PMID:26793208

  2. Exploring the potential of phyllosilicate minerals as potassium fertilizers using sodium tetraphenylboron and intensive cropping with perennial ryegrass

    NASA Astrophysics Data System (ADS)

    Li, Ting; Wang, Huoyan; Wang, Jing; Zhou, Zijun; Zhou, Jianmin

    2015-03-01

    In response to addressing potassium (K) deficiency in soil and decreasing agricultural production costs, the potential of K-bearing phyllosilicate minerals that can be directly used as an alternative K source has been investigated using sodium tetraphenylboron (NaTPB) extraction and an intensive cropping experiment. The results showed that the critical value of K-release rate and leaf K concentration was 3.30 g kg-1 h-1 and 30.64 g (kg dry matter)-1, respectively under the experimental conditions. According to this critical value, the maximum amount of released K that could be utilized by a plant with no K deficiency symptoms was from biotite (27.80 g kg-1) and vermiculite (5.58 g kg-1), followed by illite, smectite and muscovite with 2.76, 0.88 and 0.49 g kg-1, respectively. Ryegrass grown on phlogopite showed K deficiency symptoms during the overall growth period. It is concluded that biotite and vermiculite can be directly applied as a promising and sustainable alternative to the use of classical K fertilizers, illite can be utilized in combination with soluble K fertilizers, whereas muscovite, phlogopite and smectite may not be suitable for plant growth. Further field experiments are needed to assess the use of these phyllosilicate minerals as sources of K fertilizer.

  3. Exploring the potential of phyllosilicate minerals as potassium fertilizers using sodium tetraphenylboron and intensive cropping with perennial ryegrass.

    PubMed

    Li, Ting; Wang, Huoyan; Wang, Jing; Zhou, Zijun; Zhou, Jianmin

    2015-03-18

    In response to addressing potassium (K) deficiency in soil and decreasing agricultural production costs, the potential of K-bearing phyllosilicate minerals that can be directly used as an alternative K source has been investigated using sodium tetraphenylboron (NaTPB) extraction and an intensive cropping experiment. The results showed that the critical value of K-release rate and leaf K concentration was 3.30 g kg(-1) h(-1) and 30.64 g (kg dry matter)(-1), respectively under the experimental conditions. According to this critical value, the maximum amount of released K that could be utilized by a plant with no K deficiency symptoms was from biotite (27.80 g kg(-1)) and vermiculite (5.58 g kg(-1)), followed by illite, smectite and muscovite with 2.76, 0.88 and 0.49 g kg(-1), respectively. Ryegrass grown on phlogopite showed K deficiency symptoms during the overall growth period. It is concluded that biotite and vermiculite can be directly applied as a promising and sustainable alternative to the use of classical K fertilizers, illite can be utilized in combination with soluble K fertilizers, whereas muscovite, phlogopite and smectite may not be suitable for plant growth. Further field experiments are needed to assess the use of these phyllosilicate minerals as sources of K fertilizer.

  4. Purification and Characterization of Acetyl-Coenzyme A Carboxylase from Diclofop-Resistant and -Susceptible Lolium multiflorum.

    PubMed

    Evenson, K. J.; Gronwald, J. W.; Wyse, D. L.

    1994-06-01

    Acetyl-coenzyme A carboxylase (ACCase) was purified >100-fold (specific activity 3.5 units mg-1) from leaf tissue of diclofopresistant and -susceptible biotypes of Lolium multiflorum. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified fractions from both biotypes contained a single 206-kD biotinylated polypeptide. The molecular mass of the native enzyme from both biotypes was approximately 520 kD. In some cases the native dimer from both biotypes dissociated during gel filtration to form a subunit of approximately 224 kD. The inclusion of 5% (w/v) polyethylene glycol 3350 (PEG) in the elution buffer prevented this dissociation. Steady-state substrate kinetics were analyzed in both the presence and absence of 5% PEG. For ACCase from both biotypes, addition of PEG increased the velocity 22% and decreased the apparent Km values for acetyl-coenzyme A (acetyl-CoA), but increased the Km values for bicarbonate and ATP. In the presence of PEG, the Km values for bicarbonate and ATP were approximately 35% higher for the enzyme from the susceptible biotype compared with the resistant enzyme. In the absence of PEG, no differences in apparent Km values were observed for the enzymes from the two biotypes. Inhibition constants (Ki app) were determined for CoA, malonyl-CoA, and diclofop. CoA was an S-hyperbolic (slope replots)-I-hyperbolic (intercept replots) noncompetitive inhibitor with respect to acetyl-CoA, with Ki app values of 711 and 795 [mu]M for enzymes from the resistant and susceptible biotypes, respectively. Malonyl-CoA competitively inhibited both enzymes (versus acetyl-CoA) with Ki app values of 140 and 104 [mu]M for ACCase from resistant and susceptible biotypes, respectively. Diclofop was a linear noncompetitive inhibitor of ACCase from the susceptible biotype and a nonlinear, or S-hyperbolic-I-hyperbolic, noncompetitive inhibitor of ACCase from the resistant biotype. For ACCase from the susceptible biotype the slope (Kis) and

  5. Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio.

    PubMed

    Dai, Xiaohu; Li, Xiaoshuai; Zhang, Dong; Chen, Yinguang; Dai, Lingling

    2016-09-01

    It is necessary to find an appropriate strategy to simultaneously enhance the methane production and methane content in biogas from waste activated sludge (WAS) and grass co-digestion. In this study an efficient strategy, i.e., adjusting the initial pH 12 and C/N ratio 17/1, for simultaneous enhancement of methane production and methane content in biogas from WAS and perennial ryegrass co-digestion was reported. Experimental results indicated that the maximal methane production was 310mL/gVSadd at the optimum conditions after 30-d anaerobic digestion, which was, respectively, about 1.5- and 3.8-fold of the sole WAS and sole perennial ryegrass anaerobic digestion. Meanwhile, the methane content in biogas was about 74%, which was much higher than that of sole WAS (64%) or sole perennial ryegrass (54%) anaerobic digestion.

  6. Evaluation of the Ryegrass Stem Rust Model STEMRUST_G and Its Implementation as a Decision Aid.

    PubMed

    Pfender, W F; Coop, L B; Seguin, S G; Mellbye, M E; Gingrich, G A; Silberstein, T B

    2015-01-01

    STEMRUST_G, a simulation model for epidemics of stem rust in perennial ryegrass grown to maturity as a seed crop, was validated for use as a heuristic tool and as a decision aid for disease management with fungicides. Multistage validation had been used in model creation by incorporating previously validated submodels for infection, latent period duration, sporulation, fungicide effects, and plant growth. Validation of the complete model was by comparison of model output with observed disease severities in 35 epidemics at nine location-years in the Pacific Northwest of the United States. We judge the model acceptable for its purposes, based on several tests. Graphs of modeled disease progress were generally congruent with plotted disease severity observations. There was negligible average bias in the 570 modeled-versus-observed comparisons across all data, although there was large variance in size of the deviances. Modeled severities were accurate in >80% of the comparisons, where accuracy is defined as the modeled value being within twice the 95% confidence interval of the observed value, within ±1 day of the observation date. An interactive website was created to produce disease estimates by running STEMRUST_G with user-supplied disease scouting information and automated daily weather data inputs from field sites. The model and decision aid supplement disease managers' information by estimating the level of latent (invisible) and expressed disease since the last scouting observation, given season-long weather conditions up to the present, and it estimates effects of fungicides on epidemic development. In additional large-plot experiments conducted in grower fields, the decision aid produced disease management outcomes (management cost and seed yield) as good as or better than the growers' standard practice. In future, STEMRUST_G could be modified to create similar models and decision aids for stem rust of wheat and barley, after additional experiments to

  7. Evaluation of the Ryegrass Stem Rust Model STEMRUST_G and Its Implementation as a Decision Aid.

    PubMed

    Pfender, W F; Coop, L B; Seguin, S G; Mellbye, M E; Gingrich, G A; Silberstein, T B

    2015-01-01

    STEMRUST_G, a simulation model for epidemics of stem rust in perennial ryegrass grown to maturity as a seed crop, was validated for use as a heuristic tool and as a decision aid for disease management with fungicides. Multistage validation had been used in model creation by incorporating previously validated submodels for infection, latent period duration, sporulation, fungicide effects, and plant growth. Validation of the complete model was by comparison of model output with observed disease severities in 35 epidemics at nine location-years in the Pacific Northwest of the United States. We judge the model acceptable for its purposes, based on several tests. Graphs of modeled disease progress were generally congruent with plotted disease severity observations. There was negligible average bias in the 570 modeled-versus-observed comparisons across all data, although there was large variance in size of the deviances. Modeled severities were accurate in >80% of the comparisons, where accuracy is defined as the modeled value being within twice the 95% confidence interval of the observed value, within ±1 day of the observation date. An interactive website was created to produce disease estimates by running STEMRUST_G with user-supplied disease scouting information and automated daily weather data inputs from field sites. The model and decision aid supplement disease managers' information by estimating the level of latent (invisible) and expressed disease since the last scouting observation, given season-long weather conditions up to the present, and it estimates effects of fungicides on epidemic development. In additional large-plot experiments conducted in grower fields, the decision aid produced disease management outcomes (management cost and seed yield) as good as or better than the growers' standard practice. In future, STEMRUST_G could be modified to create similar models and decision aids for stem rust of wheat and barley, after additional experiments to

  8. Non-ionic Surfactants and Non-Catalytic Protein Treatment on Enzymatic Hydrolysis of Pretreated Creeping Wild Ryegrass

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Pan, Zhongli; Zhang, Ruihong; Wang, Donghai; Jenkins, Bryan

    Our previous research has shown that saline Creeping Wild Ryegrass (CWR), Leymus triticoides, has a great potential to be used for bioethanol production because of its high fermentable sugar yield, up to 85% cellulose conversion of pretreated CWR. However, the high cost of enzyme is still one of the obstacles making large-scale lignocellulosic bioethanol production economically difficult. It is desirable to use reduced enzyme loading to produce fermentable sugars with high yield and low cost. To reduce the enzyme loading, the effect of addition of non-ionic surfactants and non-catalytic protein on the enzymatic hydrolysis of pretreated CWR was investigated in this study. Tween 20, Tween 80, and bovine serum albumin (BSA) were used as additives to improve the enzymatic hydrolysis of dilute sulfuric-acid-pretreated CWR. Under the loading of 0.1 g additives/g dry solid, Tween 20 was the most effective additive, followed by Tween 80 and BSA. With the addition of Tween 20 mixed with cellulase loading of 15 FPU/g cellulose, the cellulose conversion increased 14% (from 75 to 89%), which was similar to that with cellulase loading of 30 FPU/g cellulose and without additive addition. The results of cellulase and BSA adsorption on the Avicel PH101, pretreated CWR, and lignaceous residue of pretreated CWR support the theory that the primary mechanism behind the additives is prevention of non-productive adsorption of enzymes on lignaceous material of pretreated CWR. The addition of additives could be a promising technology to improve the enzymatic hydrolysis by reducing the enzyme activity loss caused by non-productive adsorption.

  9. Nitrous oxide emissions from in situ deposition of N-labeled ryegrass litter in a pasture soil.

    PubMed

    Pal, Pranoy; Clough, Tim J; Kelliher, Francis M; Sherlock, Robert R

    2013-01-01

    During pasture grazing, freshly harvested herbage (litterfall) is dropped onto soils from the mouths of dairy cattle, potentially inducing nitrous oxide (NO) emissions. Although the Intergovernmental Panel on Climate Change (IPCC) recommends accounting for NO emissions from arable crop residues in national inventories, emissions from the litterfall of grazed pasture systems are not recognized. The objective of this study was to investigate the potential of litterfall to contribute to NO emissions in a field study located on a pasture site in Canterbury, New Zealand (43°38.50' S, 172°27.17' E). We applied N-labeled perennial ryegrass ( L.) to the surface of a pastoral soil (Temuka clay loam) and, for up to 139 d thereafter, quantified the contribution of herbage decomposition to NO production and soil N dynamics. Litterfall contributed to the N enrichment of soil NO-N and NO-N pools. After 49 d, N recovery as NO equated to 0.93% of the surface-applied litter N, with 38 to 75% of the cumulative NO flux occurring within 4 to 10 d of treatment application. Emissions of NO likely resulted from ammonification followed by a coupling of nitrification and denitrification during litter decomposition on the soil surface. The emission factor of the litter deposited in situ was 1.2 ± 0.2%, which is not substantially greater than the IPCC default emission factor value of 1% for crop residues. Further in situ studies using different pasture species and litterfall rates are required to understand the microbial processes responsible for litter-induced NO emissions.

  10. Extraction of hemicellulose from ryegrass straw for the production of glucose isomerase and use of the resulting straw residue for animal feed

    SciTech Connect

    Chen, W.P.; Anderson, A.W.

    1980-03-01

    The hemicellulose fraction of ryegrass straw was extracted with NaOH and used for the production of glucose isomerase by Streptomyces flavogriseus. The level of hemicellulose extracted increased proportionately with increasing NaOH concentration up to about 4%, then the rate of increase slowed down. Hemicellulose extraction was facilitated by the combined application of heat and NaOH. Approximately 15% hemicellulose (12% as pentosan) could be obtained by treating straw with 4% NaOH for either 3 hours at 90/sup 0/C or 24 hour at room temperature. The highest level (3.04 units/ml culture) of intracellular glucose isomerase was obtained when the organism was grown at 30 degrees Centigrade for two days on 2% straw hemicellulose. The organism also produced a high yield of glucose isomerase on xylose or xylan. The NaOH treated straw residue, after removal of hemicellulose, had approximately 75% higher digestibility and 20% higher feed efficiency for weanling meadow voles than untreated straw, but almost the equivalent to that obtained by NaOH treatment without removal of the hemicellulose. Thus, the residue could be used as animal feed. A process for the production of glucose isomerase and animal feed from ryegrass straw was also proposed.

  11. Genome-Wide Transcriptional Profiling and Metabolic Analysis Uncover Multiple Molecular Responses of the Grass Species Lolium perenne Under Low-Intensity Xenobiotic Stress

    PubMed Central

    Serra, Anne-Antonella; Couée, Ivan; Heijnen, David; Michon-Coudouel, Sophie; Sulmon, Cécile; Gouesbet, Gwenola

    2015-01-01

    Lolium perenne, which is a major component of pastures, lawns, and grass strips, can be exposed to xenobiotic stresses due to diffuse and residual contaminations of soil. L. perenne was recently shown to undergo metabolic adjustments in response to sub-toxic levels of xenobiotics. To gain insight in such chemical stress responses, a de novo transcriptome analysis was carried out on leaves from plants subjected at the root level to low levels of xenobiotics, glyphosate, tebuconazole, and a combination of the two, leading to no adverse physiological effect. Chemical treatments influenced significantly the relative proportions of functional categories and of transcripts related to carbohydrate processes, to signaling, to protein-kinase cascades, such as Serine/Threonine-protein kinases, to transcriptional regulations, to responses to abiotic or biotic stimuli and to responses to phytohormones. Transcriptomics-based expressions of genes encoding different types of SNF1 (sucrose non-fermenting 1)-related kinases involved in sugar and stress signaling or encoding key metabolic enzymes were in line with specific qRT-PCR analysis or with the important metabolic and regulatory changes revealed by metabolomic analysis. The effects of pesticide treatments on metabolites and gene expression strongly suggest that pesticides at low levels, as single molecule or as mixture, affect cell signaling and functioning even in the absence of major physiological impact. This global analysis of L. perenne therefore highlighted the interactions between molecular regulation of responses to xenobiotics, and also carbohydrate dynamics, energy dysfunction, phytohormones and calcium signaling. PMID:26734031

  12. Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post-mitotic growth rates.

    PubMed

    Kavanová, Monika; Lattanzi, Fernando Alfredo; Schnyder, Hans

    2008-06-01

    Nitrogen deficiency severely inhibits leaf growth. This response was analysed at the cellular level by growing Lolium perenne L. under 7.5 mM (high) or 1 mM (low) nitrate supply, and performing a kinematic analysis to assess the effect of nitrogen status on cell proliferation and cell growth in the leaf blade epidermis. Low nitrogen supply reduced leaf elongation rate (LER) by 43% through a similar decrease in the cell production rate and final cell length. The former was entirely because of a decreased average cell division rate (0.023 versus 0.032 h(-1)) and thus longer cell cycle duration (30 versus 22 h). Nitrogen status did not affect the number of division cycles of the initial cell's progeny (5.7), and accordingly the meristematic cell number (53). Meristematic cell length was unaffected by nitrogen deficiency, implying that the division and mitotic growth rates were equally impaired. The shorter mature cell length arose from a considerably reduced post-mitotic growth rate (0.033 versus 0.049 h(-1)). But, nitrogen stress did not affect the position where elongation stopped, and increased cell elongation duration. In conclusion, nitrogen deficiency limited leaf growth by increasing the cell cycle duration and decreasing mitotic and post-mitotic elongation rates, delaying cell maturation.

  13. Changes in soil properties and in the growth of Lolium multiflorum in an acid soil amended with a solid waste from wineries.

    PubMed

    Nóvoa-Muñoz, J C; Simal-Gándara, J; Fernández-Calviño, D; López-Periago, E; Arias-Estévez, M

    2008-10-01

    The agronomic utility of a solid waste, waste perlite (WP), from wine companies was assessed. In this sense, the natural characteristics of the waste were measured, followed by the monitoring of its effects on the chemical properties of acid soils and the growth of Lolium multiflorum. Taking into account that heavy metals associated to the waste (such as Cu, Zn and Mn) could cause problems when used as amendment, the changes in their total levels and in their soil fractionation were also studied, together with their total contents in L. multiflorum. The high content in C (214gkg(-1)), N (25gkg(-1)), P (534mgkg(-1)) and K (106gkg(-1)) of WP turned it into an appropriate amendment to increase soil fertility, solving at the same time its disposal. WP contributed to increase soil pH (in 2 pH units) and cation exchange capacity (CEC increased in 3cmolckg(-1)units), but reduced the potential Cu phytotoxicity due to a change in Cu distribution towards less soluble fractions. The growth of L. multiflorum adequately responds to the treatment with WP at addition rates below 2.5gkg(-1), whereas the imbalance between nutrients can justify the reduction in biomass production at higher WP addition rates. The levels of heavy metals analyzed in L. multiflorum biomass (8-85gkg(-1)) do not seem to cause undesirable effects on its growth. PMID:18331789

  14. Fungal inoculation and elevated CO2 mediate growth of Lolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability in metal-contaminated soil: evidence from DGT measurement.

    PubMed

    Song, Ningning; Wang, Fangli; Zhang, Changbo; Tang, Shirong; Guo, Junkang; Ju, Xuehai; Smith, Donald L

    2013-01-01

    Fungal inoculation and elevated CO2 may mediate plant growth and uptake of heavy metals, but little evidence from Diffusive Gradients in Thin-films (DGT) measurement has been obtained to characterize the process. Lolium mutiforum and Phytolacca americana were grown at ambient and elevated CO2 on naturally Cd and Pb contaminated soils inoculated with and without Trichoderma asperellum strain C3 or Penicillium chrysogenum strain D4, to investigate plant growth, metal uptake, and metal bioavailability responses. Fungal inoculation increased plant biomass and shoot/root Cd and Pb concentrations. Elevated CO2 significantly increased plants biomass, but decreased Cd and Pb concentrations in shoot/root to various extents, leading to a metal dilution phenomenon. Total Cd and Pb uptake by plants, and DGT-measured Cd and Pb concentrations in rhizosphere soils, were higher in all fungal inoculation and elevated CO2 treatments than control treatments, with the combined treatments having more influence than either treatment alone. Metal dilution phenomenon occurred because the increase in DGT-measured bioavailable metal pools in plant rhizosphere due to elevated CO2 was unable to match the increase in requirement for plant uptake of metals due to plant biomass increase.

  15. The photosynthetic acclimation response of Lolium perenne to four years growth in a free-air CO{sub 2} enrichment (FACE) facility

    SciTech Connect

    Creasey, R.

    1996-11-01

    In this study, the photosynthetic responses of field grown Lolium perenne to ambient (354 {mu}mol mol{sup -1}) and elevated (600 {mu}mol mol{sup -1}) C{sub a} were measured. The experiment utilized the FACE facility at Eschikon, Switzerland; here the L. Perenne swards had been grown at two nitrogen treatments, with six cuts per year, for 4 years. The study revealed a significant decrease in Rubisco activity (Vcmax) in the low nitrogen FACE plots; this is consistent with the theories of source-sink imbalance resulting in feedback inhibition and down-regulation. Such negative acclimation was not wholly supported by diurnal investigations which revealed an average stimulation of 53.38% and 52.78% in the low and high nitrogen, respectively. However, light response curves and AI investigations also suggested down-regulation, especially in the low nitrogen. SI is expected to decrease in response to elevated C{sub a}, if any change is seen. This was indeed observed in the high nitrogen plots but for the low nitrogen a significant increase was found. Conclusions drawn from this project center around the implications of negative acclimation to future crop productivity. For instance, inter-specific differences in response to elevated C{sub a} may result in ecosystem changes and new management techniques may be necessary. However, real predictions cannot be made from leaf level studies alone as these may not represent the overall changes at the whole plant level.

  16. Human immune responsiveness to Lolium perenne pollen allergen Lol p III (rye III) is associated with HLA-DR3 and DR5.

    PubMed

    Ansari, A A; Freidhoff, L R; Meyers, D A; Bias, W B; Marsh, D G

    1989-05-01

    A well-characterized allergen of Lolium perenne (perennial rye grass) pollen, Lol p III, has been used as a model antigen to study the genetic control of the human immune response. Associations between HLA type and IgE or IgG antibody (Ab) responsiveness to Lol p III were studied in two groups of skin-test-positive Caucasoid adults (N = 135 and 67). We found by nonparametric and parametric analyses that immune responsiveness to Lol p III was significantly associated with HLA-DR3 and DR5. No association was found between any DQ type and immune responsiveness to Lol p III. Geometric mean IgE or IgG Ab levels to Lol p III were not different between B8+, DR3+ subjects and B8-, DR3+ subjects, showing that HLA-B8 had no influence on the association. Lol p III IgG Ab data obtained on subjects after grass antigen immunotherapy showed that 100% of DR3 subjects and 100% of DR5 subjects were Ab+. A comparison of all the available protein sequences of DRB gene products showed that the first hypervariable region of DR3 and DR5 (and DRw6), and no other region, contains the sequence Glu9-Tyr-Ser-Thr-Ser13. Our observations are consistent with the possibility that immune responsiveness to the allergen Lol p III is associated with this amino acid sequence in the first hypervariable region of the DR beta 1 polypeptide chain.

  17. Complete primary structure of a Lolium perenne (perennial rye grass) pollen allergen, Lol p III: comparison with known Lol p I and II sequences.

    PubMed

    Ansari, A A; Shenbagamurthi, P; Marsh, D G

    1989-10-17

    The complete amino acid sequence of a Lolium perenne (rye grass) pollen allergen, Lol p III, determined by the automated Edman degradation of the protein and its selected fragments, is reported in this paper. Cleavage by enzymatic and chemical techniques established unambiguously the sequence for this 97-residue protein (Mr = 10,909), which lacks cysteine and shows no evidence of glycosylation. The sequence of Lol p III is very similar to that of another L. perenne allergen, Lol p II, which was sequenced recently; of the 97 positions in the two proteins, 57 are occupied by identical amino acids (59% identity). In addition, both allergens share a similar structure with an antibody-binding fragment of a third L. perenne allergen, Lol p I. Since human antibody responsiveness to all these three allergens is associated with HLA-DR3, and since the structure common to the three molecules shows high degrees of amphipathicity in Lol p II and III, we speculate that this common segment in the three molecules might contain or contribute to the respectively Ia/T-cell sites.

  18. Wood pellet fly ash and bottom ash as an effective liming agent and nutrient source for rye grass (Lolium perenne L.) and oats (Avena sativa).

    PubMed

    Park, Nathan D; Michael Rutherford, P; Thring, Ronald W; Helle, Steve S

    2012-01-01

    Fly ash (FA) and bottom ash (BA) from a softwood pellet boiler were characterized and evaluated as soil amendments. In a greenhouse study, two plant species (rye grass, Lolium perenne L. and oats, Avena sativa) were grown in three different treatments (1% FA, 1% BA, non-amended control) of a silty loam soil. Total concentrations of plant nutrients Ca, K, Mg, P and Zn in both ashes were elevated compared to conventional wood ash. Concentrations of Cd, Cr, Pb, Se and Zn were found to be elevated in the FA relative to BA and the non-amended soil. At 28 d, oat above-ground biomass was found to be significantly greater in soil amended with FA. Potassium and Mo plant tissue concentrations were significantly increased by addition of either ash, and FA significantly increased Zn tissue concentrations. Cadmium and Hg tissue concentrations were elevated in some cases. As soil amendments, either pellet ash is an effective liming agent and nutrient source, but high concentrations of Cd and Zn in FA may preclude its use as an agricultural soil amendment in some jurisdictions. Lower ash application rates than those used in this study (i.e. <1%) may still provide sufficient nutrients and effective neutralization of soil acidity.

  19. Influence of different acid and alkaline cleaning agents on the effects of irrigation of synthetic dairy factory effluent on soil quality, ryegrass growth and nutrient uptake.

    PubMed

    Liu, Y-Y; Haynes, R J

    2013-01-01

    The aim of this study was to examine the effects of replacement of phosphoric acid with nitric or acetic acid, and replacement of NaOH with KOH, as cleaning agents in dairy factories, on the effects that irrigation of dairy factory effluent (DFE) has on the soil-plant system. A 16-week greenhouse study was carried out in which the effects of addition of synthetic dairy factory effluent containing (a) milk residues alone or milk residues plus (b) H(3)PO(4)/NaOH, (c) H(3)PO(4)/HNO(3)/NaOH or (d) CH(3)COOH/KOH, on soil's chemical, physical and microbial properties and perennial ryegrass growth and nutrient uptake were investigated. The cumulative effect of DFE addition was to increase exchangeable Na, K, Ca, Mg, exchangeable sodium percentage, microbial biomass C and N and basal respiration in the soil. Dry matter yields of ryegrass were increased by additions of DFE other than that containing CH(3)COOH. Plant uptake of P, Ca and Mg was in the same order as their inputs in DFE but for Na; inputs were an order of magnitude greater than plant uptake. Replacement of NaOH by KOH resulted in increased accumulation of exchangeable K. The effects of added NaOH and KOH on promoting breakdown of soil aggregates during wet sieving (and formation of a < 0.25 mm size class) were similar. Replacement of H(2)PO(4) by HNO(3) is a viable but CH(3)COOH appears to have detrimental effects on plant growth. Replacement of NaOH by KOH lowers the likelihood of phytotoxic effects of Na, but K and Na have similar effects on disaggregation. PMID:22707204

  20. Influence of different acid and alkaline cleaning agents on the effects of irrigation of synthetic dairy factory effluent on soil quality, ryegrass growth and nutrient uptake.

    PubMed

    Liu, Y-Y; Haynes, R J

    2013-01-01

    The aim of this study was to examine the effects of replacement of phosphoric acid with nitric or acetic acid, and replacement of NaOH with KOH, as cleaning agents in dairy factories, on the effects that irrigation of dairy factory effluent (DFE) has on the soil-plant system. A 16-week greenhouse study was carried out in which the effects of addition of synthetic dairy factory effluent containing (a) milk residues alone or milk residues plus (b) H(3)PO(4)/NaOH, (c) H(3)PO(4)/HNO(3)/NaOH or (d) CH(3)COOH/KOH, on soil's chemical, physical and microbial properties and perennial ryegrass growth and nutrient uptake were investigated. The cumulative effect of DFE addition was to increase exchangeable Na, K, Ca, Mg, exchangeable sodium percentage, microbial biomass C and N and basal respiration in the soil. Dry matter yields of ryegrass were increased by additions of DFE other than that containing CH(3)COOH. Plant uptake of P, Ca and Mg was in the same order as their inputs in DFE but for Na; inputs were an order of magnitude greater than plant uptake. Replacement of NaOH by KOH resulted in increased accumulation of exchangeable K. The effects of added NaOH and KOH on promoting breakdown of soil aggregates during wet sieving (and formation of a < 0.25 mm size class) were similar. Replacement of H(2)PO(4) by HNO(3) is a viable but CH(3)COOH appears to have detrimental effects on plant growth. Replacement of NaOH by KOH lowers the likelihood of phytotoxic effects of Na, but K and Na have similar effects on disaggregation.

  1. Doppler ultrasonography for evaluating vascular responses to ergopeptine alkaloids in livestock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ergot alkaloids are produced by non-spore producing fungal endophytes that infect certain species of grasses, most notably tall fescue [Lolium arundinaceum (Schreb.) Darbysh.] and perennial ryegrass (Lolium perenne L.), and the spore producing Claviceps spp. that infect seed heads of certain grasses...

  2. Water Deficit Affects Primary Metabolism Differently in Two Lolium multiflorum/Festuca arundinacea Introgression Forms with a Distinct Capacity for Photosynthesis and Membrane Regeneration

    PubMed Central

    Perlikowski, Dawid; Czyżniejewski, Mariusz; Marczak, Łukasz; Augustyniak, Adam; Kosmala, Arkadiusz

    2016-01-01

    Understanding how plants respond to drought at different levels of cell metabolism is an important aspect of research on the mechanisms involved in stress tolerance. Furthermore, a dissection of drought tolerance into its crucial components by the use of plant introgression forms facilitates to analyze this trait more deeply. The important components of plant drought tolerance are the capacity for photosynthesis under drought conditions, and the ability of cellular membrane regeneration after stress cessation. Two closely related introgression forms of Lolium multiflorum/Festuca arundinacea, differing in the level of photosynthetic capacity during stress, and in the ability to regenerate their cellular membranes after stress cessation, were used as forage grass models in a primary metabolome profiling and in an evaluation of chloroplast 1,6-bisphosphate aldolase accumulation level and activity, during 11 days of water deficit, followed by 10 days of rehydration. It was revealed here that the introgression form, characterized by the ability to regenerate membranes after rehydration, contained higher amounts of proline, melibiose, galactaric acid, myo-inositol and myo-inositol-1-phosphate involved in osmoprotection and stress signaling under drought. Moreover, during the rehydration period, this form also maintained elevated accumulation levels of most the primary metabolites, analyzed here. The other introgression form, characterized by the higher capacity for photosynthesis, revealed a higher accumulation level and activity of chloroplast aldolase under drought conditions, and higher accumulation levels of most photosynthetic products during control and drought periods. The potential impact of the observed metabolic alterations on cellular membrane recovery after stress cessation, and on a photosynthetic capacity under drought conditions in grasses, are discussed. PMID:27504113

  3. Does gibberellin biosynthesis play a critical role in the growth of Lolium perenne? Evidence from a transcriptional analysis of gibberellin and carbohydrate metabolic genes after defoliation

    PubMed Central

    Liu, Qianhe; Jones, Chris S.; Parsons, Anthony J.; Xue, Hong; Rasmussen, Susanne

    2015-01-01

    Global meat and milk production depends to a large extent on grazed pastures, with Lolium perenne being the major forage grass in temperate regions. Defoliation and subsequent regrowth of leaf blades is a major and essential event with respect to L. perenne growth and productivity. Following defoliation, carbohydrates (mainly fructans and sucrose) have to be mobilized from heterotrophic tissues to provide energy and carbon for regrowth of photosynthetic tissues. This mobilization of reserve carbohydrates requires a substantial change in the expression of genes coding for enzymes involved in carbohydrate metabolism. Here we tested the hypothesis that gibberellins (GA) are at the core of the processes regulating the expression of these genes. Thus, we examined the transcript profiles of genes involved in carbohydrate and GA metabolic pathways across a time course regrowth experiment. Our results show that following defoliation, the immediate reduction of carbohydrate concentrations in growing tissues is associated with a concomitant increase in the expression of genes encoding carbohydrate mobilizing invertases, and was also associated with a strong decrease in the expression of fructan synthesizing fructosyltransferase genes. We also show that the decrease in fructan levels is preceded by increased expression of the GA activating gene GA3-oxidase and decreased expression of the GA inactivating gene GA2-oxidase in sheaths. GA3-oxidase expression was negatively, while GA2-oxidase positively linked to sucrose concentrations. This study provides indicative evidence that gibberellins might play a role in L. perenne regrowth following defoliation and we hypothesize that there is a link between gibberellin regulation and sugar metabolism in L. perenne. PMID:26579182

  4. Effect of elevated CO₂ and temperature on the oxidative stress response to drought in Lolium perenne L. and Medicago sativa L.

    PubMed

    Farfan-Vignolo, Evelyn Roxana; Asard, Han

    2012-10-01

    Studies addressing the combined impact of multiple climate factors on plant abiotic stress responses are still scarce. We investigated physiological and molecular (antioxidant), responses to water deficit, in grassland-model species, Lolium perenne L. and Medicago lupulina L., under future climate conditions, i.e. elevated CO₂ (+CO₂, +375 ppm) and elevated temperature (+T, +3 °C). Elevated CO₂, but not warming, significantly increased biomass (gDW) in L. perenne, but not in M. lupulina. Photosynthesis (A(sat)) and stomatal conductance (g(s)), were differently affected by climate in each species, L. perenne generally being more sensitive. Elevated CO₂ increased lipid peroxidation levels in M. lupulina, but not in L. perenne, and had no effect on protein oxidation and little effect on antioxidant levels. Drought stress caused severe inhibition in biomass and photosynthesis, most severely in L. perenne, and strongly increased oxidative damage. Elevated CO₂ protected against the drought-induced damage. Decreased activities of APX and POX may indicate lower levels of oxidative challenge (relaxation) at the level of H₂O₂ production. Polyphenols, tocopherols and antioxidant capacity, increased under drought stress, in all climate conditions. Elevated CO₂, increased reduced ascorbate (ASC) and reduced glutathione (GSH), and their redox status, in both species, although to different levels. Changes in activities of key ASC/GSH cycle enzymes, under stress and climate treatments, showed weak correlations with ASC and GSH levels, indicating the complexity of this network. Together this work supports the idea that redox changes are involved in responses to climate changes, in the absence and presence of water-deficit stress.

  5. Water Deficit Affects Primary Metabolism Differently in Two Lolium multiflorum/Festuca arundinacea Introgression Forms with a Distinct Capacity for Photosynthesis and Membrane Regeneration.

    PubMed

    Perlikowski, Dawid; Czyżniejewski, Mariusz; Marczak, Łukasz; Augustyniak, Adam; Kosmala, Arkadiusz

    2016-01-01

    Understanding how plants respond to drought at different levels of cell metabolism is an important aspect of research on the mechanisms involved in stress tolerance. Furthermore, a dissection of drought tolerance into its crucial components by the use of plant introgression forms facilitates to analyze this trait more deeply. The important components of plant drought tolerance are the capacity for photosynthesis under drought conditions, and the ability of cellular membrane regeneration after stress cessation. Two closely related introgression forms of Lolium multiflorum/Festuca arundinacea, differing in the level of photosynthetic capacity during stress, and in the ability to regenerate their cellular membranes after stress cessation, were used as forage grass models in a primary metabolome profiling and in an evaluation of chloroplast 1,6-bisphosphate aldolase accumulation level and activity, during 11 days of water deficit, followed by 10 days of rehydration. It was revealed here that the introgression form, characterized by the ability to regenerate membranes after rehydration, contained higher amounts of proline, melibiose, galactaric acid, myo-inositol and myo-inositol-1-phosphate involved in osmoprotection and stress signaling under drought. Moreover, during the rehydration period, this form also maintained elevated accumulation levels of most the primary metabolites, analyzed here. The other introgression form, characterized by the higher capacity for photosynthesis, revealed a higher accumulation level and activity of chloroplast aldolase under drought conditions, and higher accumulation levels of most photosynthetic products during control and drought periods. The potential impact of the observed metabolic alterations on cellular membrane recovery after stress cessation, and on a photosynthetic capacity under drought conditions in grasses, are discussed. PMID:27504113

  6. Study of the epitope structure of purified Dac G I and Lol p I, the major allergens of Dactylis glomerata and Lolium perenne pollens, using monoclonal antibodies.

    PubMed

    Mourad, W; Mécheri, S; Peltre, G; David, B; Hébert, J

    1988-11-15

    The use of mAb allowed us to further analyze the cross-reactivity between purified Dac g I and Lol p I, the major allergens of Dactylis glomerata (cocksfoot) and Lolium perenne (Rye grass), respectively. It was first shown, using IEF, followed by immunoprinting, that serum IgE antibodies from most grass-sensitive patients recognize both Dac g I and Lol p I. Second, three different anti-Lol p I mAb, 290A-167, 348A-6, and 539A-6, and one anti-Dac g I mAb, P3B2 were all shown to react with Dac g I and Lol p I, indicating that the two molecules share common epitopes. Epitope specificity of the mAb was determined by competitive binding inhibition of a given labeled mAb to solid phase fixed Dac g I or Lol p I by the mAb. The results indicated that the four mAb are directed against four different and non-overlapping epitopes present on both allergens. Using double-binding RIA, our data strongly suggest that the common epitopes are not repetitive on both molecules. In addition to their similar physicochemical characteristics, such as isolectric points and m.w., Dac g I and Lol p I share four identical epitopes. Binding inhibition of human IgE to Lol p I and Dac g I by the mAb was also assessed. The results indicated that each mAb was able to inhibit such reactions to variable degree but no additive inhibition was observed when two mAb of different specificities were used in combination, suggesting that the human IgE binding site is partially shared by each epitope recognized by the four mAb.

  7. Prediction of enteric methane emissions from sheep offered fresh perennial ryegrass () using data measured in indirect open-circuit respiration chambers.

    PubMed

    Zhao, Y G; O'Connell, N E; Yan, T

    2016-06-01

    Development of effective methane (CH) mitigation strategies for grazing sheep requires accurate prediction tools. The present study aimed to identify key parameters influencing enteric CH emissions and develop prediction equations for enteric CH emissions from sheep offered fresh grass. The data used were collected from 82 sheep offered fresh perennial ryegrass () as sole diets in 6 metabolism experiments (data from non-grass-only diets were not used). Sheep were from breeds of Highlander, Texel, Scottish Blackface, and Swaledale at the age of 5 to 18 mo and weighing from 24.5 to 62.7 kg. Grass was harvested daily from 6 swards on contrasting harvest dates (May to December). Before the commencement of each study, the experimental sward was harvested at a residual height of 4 cm and allowed to grow for 2 to 4 wk. The feeding trials commenced when the grass sward was suitable to zero grazing (average grass height = 15 cm), thus offering grass of a quality similar to what grazing animals would receive under routine grazing management. Sheep were housed in individual pens for 14 d and then moved to individual calorimeter chambers for 4 d. Feed intake, fecal and urine outputs, and CH emissions were measured during the final 4 d. Data were analyzed using the REML procedure to develop prediction equations for CH emissions. Linear and multiple prediction equations were developed using BW, DMI, GE intake (GEI), and grass chemical concentrations (DM, OM, water-soluble carbohydrates [WSC], NDF, ADF, nitrogen [N], GE, DE, and ME) as explanatory variables. The mean CH production was 21.1 g/kg DMI or 0.062 MJ/MJ GEI. Dry matter intake and GEI were much more accurate predictors for CH emissions than BW ( < 0.001, = 0.86 and = 0.87 vs. = 0.09, respectively). Adding grass DE and ME concentrations and grass nutrient concentrations (e.g., OM, N, GE, NDF, and WSC) to the relationships between DMI or GEI and CH emissions improved prediction accuracy with values increased to 0

  8. Pythium kandovanense sp. nov., a fungus-like eukaryotic micro-organism (Stramenopila, Pythiales) isolated from snow-covered ryegrass leaves.

    PubMed

    Chenari Bouket, Ali; Arzanlou, Mahdi; Tojo, Motoaki; Babai-Ahari, Asadollah

    2015-08-01

    Pythiumkandovanense sp. nov. (ex-type culture CCTU 1813T = OPU 1626T = CBS 139567T) is a novel oomycete species isolated from Lolium perenne with snow rot symptoms in a natural grassland in East-Azarbaijan province, Iran. Phylogenetic analyses based on sequence data from internal transcribed spacer (ITS)-rDNA, coxI and coxII mitochondrial genes clustered our isolates in Pythium group E as a unique, well supported clade. Pythium kandovanense sp. nov. is phylogenetically and morphologically distinct from the other closely related species in this clade, namely Pythium rostratifingens and Pythium rostratum. Pythium kandovanense sp. nov. can be distinguished from these two species by its cylindrical sporangia and lower temperatures for optimum and maximum growth rate. The development of zoospores released through a shorter discharge tube is an additional morphological feature which can be used to differentiate Pythium kandovanense sp. nov. from Pythium rostratifingens. Laboratory inoculation tests demonstrated the pathogenicity of Pythium kandovanense sp. nov. to L. perenne under wet cold (0-3 °C) conditions.

  9. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance.

    PubMed

    Duhoux, Arnaud; Carrère, Sébastien; Gouzy, Jérôme; Bonin, Ludovic; Délye, Christophe

    2015-03-01

    Non-target-site resistance (NTSR) to herbicides that disrupts agricultural weed control is a worldwide concern for food security. NTSR is considered a polygenic adaptive trait driven by differential gene regulation in resistant plants. Little is known about its genetic determinism, which precludes NTSR diagnosis and evolutionary studies. We used Illumina RNA-sequencing to investigate transcriptomic differences between plants from the global major weed rye-grass sensitive or resistant to the acetolactate-synthase (ALS) inhibiting herbicide pyroxsulam. Plants were collected before and along a time-course after herbicide application. De novo transcriptome assembly yielded a resource (LOLbase) including 92,381 contigs representing potentially active transcripts that were assigned putative annotations. Early effects of ALS inhibition consistent with the literature were observed in resistant and sensitive plants, proving LOLbase data were relevant to study herbicide response. Comparison of resistant and sensitive plants identified 30 candidate NTSR contigs. Further validation using 212 plants resistant or sensitive to pyroxsulam and/or to the ALS inhibitors iodosulfuron + mesosulfuron confirmed four contigs (two cytochromes P450, one glycosyl-transferase and one glutathione-S-transferase) were NTSR markers which combined expression levels could reliably identify resistant plants. This work confirmed that NTSR is driven by differential gene expression and involves different mechanisms. It provided tools and foundation for subsequent NTSR investigations. PMID:25636204

  10. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance.

    PubMed

    Duhoux, Arnaud; Carrère, Sébastien; Gouzy, Jérôme; Bonin, Ludovic; Délye, Christophe

    2015-03-01

    Non-target-site resistance (NTSR) to herbicides that disrupts agricultural weed control is a worldwide concern for food security. NTSR is considered a polygenic adaptive trait driven by differential gene regulation in resistant plants. Little is known about its genetic determinism, which precludes NTSR diagnosis and evolutionary studies. We used Illumina RNA-sequencing to investigate transcriptomic differences between plants from the global major weed rye-grass sensitive or resistant to the acetolactate-synthase (ALS) inhibiting herbicide pyroxsulam. Plants were collected before and along a time-course after herbicide application. De novo transcriptome assembly yielded a resource (LOLbase) including 92,381 contigs representing potentially active transcripts that were assigned putative annotations. Early effects of ALS inhibition consistent with the literature were observed in resistant and sensitive plants, proving LOLbase data were relevant to study herbicide response. Comparison of resistant and sensitive plants identified 30 candidate NTSR contigs. Further validation using 212 plants resistant or sensitive to pyroxsulam and/or to the ALS inhibitors iodosulfuron + mesosulfuron confirmed four contigs (two cytochromes P450, one glycosyl-transferase and one glutathione-S-transferase) were NTSR markers which combined expression levels could reliably identify resistant plants. This work confirmed that NTSR is driven by differential gene expression and involves different mechanisms. It provided tools and foundation for subsequent NTSR investigations.

  11. Mutants of the major ryegrass pollen allergen, Lol p 5, with reduced IgE-binding capacity: candidates for grass pollen-specific immunotherapy.

    PubMed

    Swoboda, Ines; De Weerd, Nicole; Bhalla, Prem L; Niederberger, Verena; Sperr, W R; Valent, Peter; Kahlert, Helga; Fiebig, Helmut; Verdino, Petra; Keller, Walter; Ebner, Christof; Spitzauer, Susanne; Valenta, Rudolf; Singh, Mohan B

    2002-01-01

    More than 400 million individuals are sensitized to grass pollen allergens. Group 5 allergens represent the most potent grass pollen allergens recognized by more than 80 % of grass pollen allergic patients. The aim of our study was to reduce the allergenic activity of group 5 allergens for specific immunotherapy of grass pollen allergy. Based on B- and T-cell epitope mapping studies and on sequence comparison of group 5 allergens from different grasses, point mutations were introduced by site-directed mutagenesis in highly conserved sequence domains of Lol p 5, the group 5 allergen from ryegrass. We obtained Lol p 5 mutants with low IgE-binding capacity and reduced allergenic activity as determined by basophil histamine release and by skin prick testing in allergic patients. Circular dichroism analysis showed that these mutants exhibited an overall structural fold similar to the recombinant Lol p 5 wild-type allergen. In addition, Lol p 5 mutants retained the ability to induce proliferation of group 5 allergen-specific T cell lines and clones. Our results demonstrate that a few point mutations in the Lol p 5 sequence yield mutants with reduced allergenic activity that represent potential vaccine candidates for immunotherapy of grass pollen allergy.

  12. Comparison of specific methane yield of perennial ryegrass prepared by thermal drying versus non-thermal drying in small-scale batch digestion tests.

    PubMed

    Nolan, P; McEniry, J; Doyle, E M; O'Kiely, P

    2014-10-01

    Dried milled biomass samples are frequently utilised in small-scale batch digestion tests. However, herbage chemical composition can be altered by thermal drying, and this may affect specific methane (CH4) yields. Thus, the specific CH4 yield of herbage pre- and post-ensiling, prepared by two preparation methods were compared. Perennial ryegrass samples were either non-thermally dried (i.e. subject to cryogenic conditions, -196 °C) or thermally dried (40 °C), prior to milling. Specific CH4 yield was subsequently determined in a small-scale batch digestion test. Herbage pre-ensiling yielded 204 and 243 L CH4 kg(-1)VS(added) and herbage post-ensiling yielded 212 and 188 L CH4 kg(-1)VS(added) with non-thermal dried and thermal dried sample preparation methods, respectively. Due to opposing effects of thermal drying on CH4 yields of herbage either pre- or post-ensiling, it is not recommended to use thermal drying. Instead, it is recommended that non-thermal dried herbage samples are used in small-scale batch digestion tests.

  13. Comparison of characteristics of lambs fed concentrate or grazed on ryegrass to traditional or heavy slaughter weights. I. Production, carcass, and organoleptic characteristics.

    PubMed

    Borton, R J; Loerch, S C; McClure, K E; Wulf, D M

    2005-03-01

    The objectives of this study were to determine the effects of finishing lambs on concentrate (C) or by grazing ryegrass forage (F) to slaughter end weights of 52 (N) or 77 kg (H) on carcass characteristics and organoleptic properties. This experiment included 64 Targhee x Hampshire lambs (average BW = 24 +/- 1 kg) in a 2 x 2 x 2 factorial arrangement of treatments to compare wethers vs. ewes, C vs. F, and N vs. H slaughter weights. No interactions (P > 0.10) were observed between gender and other main effects. Hot carcass weight and dressing percent were greater (P < 0.001) for C- than for F-fed lambs. Backfat thickness also was greater (P < 0.001) for lambs fed C than for those fed F. Moreover, USDA lean quality score and USDA yield grades were higher (P < 0.001) for C- than for F-fed lambs, as well as for lambs slaughtered at H vs. N market weights. There was a higher (P < 0.005) incidence of off odors and off flavors in cooked muscle from F- vs. C-fed lambs, and also from H vs. N slaughter-weight lambs. The heavy C-fed lambs had juicier (P < 0.001) meat than other treatment combinations. Cooked meat from C-fed lambs received higher (P < 0.001) overall acceptability scores. Concentrate-finished lambs produced fatter carcasses and more palatable meat than forage-finished lambs; however, forage finishing allowed for slaughter at heavier weights without excessive fat deposition.

  14. Developing biosafety risk hypotheses for invertebrates exposed to GM plants using conceptual food webs: a case study with elevated triacylglyceride levels in ryegrass.

    PubMed

    Barratt, Barbara I P; Todd, Jacqui H; Burgess, Elisabeth P J; Malone, Louise A

    2010-01-01

    Regulators are acutely aware of the need for meaningful risk assessments to support decisions on the safety of GM crops to non-target invertebrates in determining their suitability for field release. We describe a process for developing appropriate, testable risk hypotheses for invertebrates in agroecosystems that might be exposed to plants developed by GM and future novel technologies. An existing model (PRONTI) generates a ranked list of invertebrate species for biosafety testing by accessing a database of biological, ecological and food web information about species which occur in cropping environments and their potential interactions with a particular stressor (Eco Invertebase). Our objective in this contribution is to explore and further utilise these resources to assist in the process of problem formulation by identifying potentially significant effects of the stressor on the invertebrate community and the ecosystem services they provide. We propose that for high ranking species, a conceptual food web using information in Eco Invertebase is constructed, and using an accepted regulatory risk analysis framework, the likelihood of risk, and magnitude of impact for each link in the food web is evaluated. Using as filters only those risks evaluated as likely to extremely likely, and the magnitude of an effect being considered as moderate to massive, the most significant potential effects can be identified. A stepwise approach is suggested to develop a sequence of appropriate tests. The GM ryegrass plant used as the "stressor" in this study has been modified to increase triacylglyceride levels in foliage by 100% to increase the metabolisable energy content of forage for grazing animals. The high-ranking "test" species chosen to illustrate the concept are New Zealand native species Wiseana cervinata (Walker) (Lepidoptera: Hepialidae), Persectania aversa (Walker) (Lepidoptera: Noctuidae), and the self-introduced grey field slug, Deroceras reticulatum (Müller).

  15. T cell epitopes of the major fraction of rye grass Lolium perenne (Lol p I) defined using overlapping peptides in vitro and in vivo. I. Isoallergen clone1A.

    PubMed

    Bungy Poor Fard, G A; Latchman, Y; Rodda, S; Geysen, M; Roitt, I; Brostoff, J

    1993-10-01

    One hundred and fifteen overlapping synthetic peptides spanning the entire sequence of the iso-allergen clone1A of Lol p I from rye grass Lolium perenne were synthesized by the multi-pin technique. The peptides were overlapping 12mers, offset by two residues and overlapping by 10 residues. Sets of six adjacent overlapping peptides (except pool-1, 15, 20) were pooled and were used in vitro and in vivo to map the T cell epitopes on Lol p I. Six atopics who were skin test and RAST positive to rye grass showed T cell responses to L. perenne extract (LPE) and its major fraction (Lol p I). Five out of six showed T cell responses in vitro to peptide pool-17, while five non-atopics did not respond to any of the peptide pools. By testing the individual peptides of pool-17, we have located the T cell epitope on Lol p I. Interestingly, when we tested pool-17 and its single peptides in vivo by intradermal skin testing we found in one patient a typical DTH after 24-48 h to pool-17 and its peptides (peptides 3 and 4) which exactly matched the in vitro responses. By defining the T cell epitopes in this way a greater understanding of the allergic response to pollen will be obtained, and a more effective and less dangerous vaccine may be possible for treating patients with hay fever.

  16. Group V allergens in grass pollens: IV. Similarities in amino acid compositions and NH2-terminal sequences of the group V allergens from Lolium perenne, Poa pratensis and Dactylis glomerata.

    PubMed

    Klysner, S; Welinder, K G; Løwenstein, H; Matthiesen, F

    1992-04-01

    Monoclonal antibodies (PpV4) raised against Phleum pratense group V allergen were used for immuno-affinity chromatography of cross-reacting group V allergens from related grass species. Fractions enriched in group V allergen were obtained from Lolium perenne, Poa pratense and Dactylis glomerata extracts. The major components in these fractions were found in the Mwr range 25-28 kD. IgE binding to these components was shown using a pool of grass allergic sera, by SDS-PAGE immunoblotting. These fractions were electroblotted from tricine SDS-PAGE gels onto a polyvinylidene-difluoride membrane and selected group V bands were directly cut out and used for amino acid analysis and NH2-terminal sequencing. Both the amino acid compositions and the NH2-terminal sequences obtained for each group V allergen were almost similar to each other and to the sequence and composition of the previously described allergen Phl p V from Phleum pratense. A common trait of the investigated allergens, is the very high contents of alanine (25-32%) and the presence of the modified amino acid, hydroxyproline.

  17. Application of biosolids in mineral sands mine rehabilitation: use of stockpiled topsoil decreases trace element uptake by plants.

    PubMed

    Rate, Andrew W; Lee, Karen M; French, Peter A

    2004-02-01

    Mineral sands mining involves stripping topsoil to access heavy-mineral bearing deposits, which are then rehabilitated to their original state, commonly pasture in south-west Western Australia. Organic amendments such as biosolids (digested sewage sludge) can contribute organic carbon to the rehabilitating system and improve soil chemical fertility and physical conditions. Use of biosolids also introduces the risk of contamination of the soil-plant system with heavy metals, but may be a useful source of trace elements to plants if the concentrations of these elements are low in unamended soil. We expected that biosolids amendment of areas mined for mineral sands would result in increased concentrations of metals in soils and plants, and that metal uptake would be decreased by adding stockpiled topsoil or by liming. A glasshouse experiment growing a mixed annual ryegrass (Lolium rigidum)-subterranean clover (Trifolium subterraneum) sward was conducted using two soil materials (residue sand/clay and conserved topsoil) from a mineral sands mine amended with different rates of biosolids (0, 10, 20, 50 dry t/ha), and including a liming treatment (2 t/ha). Total concentrations of metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil increased with increasing rate of biosolids application. Metal uptake was generally lower where topsoil was present and was decreased by liming. With increasing biosolids application, plant metal concentrations increased for Cd, Ni and Zn but decreased or were erratic for other elements. In clover, biosolids application removed the Zn deficiency observed where biosolids were not applied. Plant uptake of all elements increased with increasing biosolids application, suggesting dilution by increased plant biomass was responsible for erratic metal concentration results. Despite the observed increases in uptake of metals by plants, metal concentrations in both species were low and below food standard thresholds. It is unlikely that a single

  18. Determination and characterization of cysteine, glutathione and phytochelatins (PC₂₋₆) in Lolium perenne L. exposed to Cd stress under ambient and elevated carbon dioxide using HPLC with fluorescence detection.

    PubMed

    Ju, Xue Hai; Tang, Shirong; Jia, Yan; Guo, Junkang; Ding, Yongzhen; Song, Zhengguo; Zhao, Yujie

    2011-06-15

    Metal-binding thiols, involved in detoxification mechanisms in plant and other organism under heavy metal stress, are receiving more and more attentions, and various methods have been developed to determine related thiols such as cysteine (Cys), glutathione (GSH) and phytochelatins (PCs). In present study, an HPLC method was established for simultaneous determination of Cys GSH and PC(2-6) after treatment with disulfide reductant of tris (2-carboxyethyl) phosphine hydrochloride (TCEP) and thiolyte reagent of monobromobimane (mBBr). The separation of thiol derivatives was performed on an Agilent Zorbax Eclipse XDB-C18 column (4.6 mm × 30 mm, 1.8 μm) with a linear gradient elution of 0.1% (v/v) trifluoroacetic acid (TFA)-acetonitrile (ACN) at 0.8 mL min(-1). The temperature of the column was maintained at 25°C. The excitation and emission wavelengths were set at 380 and 470 nm, respectively. The thiol derivatives were well separated in 19 min, and the total analysis time was 30 min. The established method was proved selective, specific and reproducible, and could be applicable to determine Cys, GSH and PC(2-6) and to evaluate their roles in detoxification mechanisms in Cd-treated Lolium perenne L. under ambient and elevated carbon dioxide (CO(2)). It was found that the total SH contents and proportions of thiols in roots and shoots were dependent on Cd concentration, whereas the total SH contents decreased and the proportions of thiols altered without significance at elevated CO(2) level. PMID:21561813

  19. Determination and characterization of cysteine, glutathione and phytochelatins (PC₂₋₆) in Lolium perenne L. exposed to Cd stress under ambient and elevated carbon dioxide using HPLC with fluorescence detection.

    PubMed

    Ju, Xue Hai; Tang, Shirong; Jia, Yan; Guo, Junkang; Ding, Yongzhen; Song, Zhengguo; Zhao, Yujie

    2011-06-15

    Metal-binding thiols, involved in detoxification mechanisms in plant and other organism under heavy metal stress, are receiving more and more attentions, and various methods have been developed to determine related thiols such as cysteine (Cys), glutathione (GSH) and phytochelatins (PCs). In present study, an HPLC method was established for simultaneous determination of Cys GSH and PC(2-6) after treatment with disulfide reductant of tris (2-carboxyethyl) phosphine hydrochloride (TCEP) and thiolyte reagent of monobromobimane (mBBr). The separation of thiol derivatives was performed on an Agilent Zorbax Eclipse XDB-C18 column (4.6 mm × 30 mm, 1.8 μm) with a linear gradient elution of 0.1% (v/v) trifluoroacetic acid (TFA)-acetonitrile (ACN) at 0.8 mL min(-1). The temperature of the column was maintained at 25°C. The excitation and emission wavelengths were set at 380 and 470 nm, respectively. The thiol derivatives were well separated in 19 min, and the total analysis time was 30 min. The established method was proved selective, specific and reproducible, and could be applicable to determine Cys, GSH and PC(2-6) and to evaluate their roles in detoxification mechanisms in Cd-treated Lolium perenne L. under ambient and elevated carbon dioxide (CO(2)). It was found that the total SH contents and proportions of thiols in roots and shoots were dependent on Cd concentration, whereas the total SH contents decreased and the proportions of thiols altered without significance at elevated CO(2) level.

  20. Mapping of T cell epitopes of the major fraction of rye grass using peripheral blood mononuclear cells from atopics and non-atopics. II. Isoallergen clone 5A of Lolium perenne group I (Lol p I).

    PubMed

    Bungy, G A; Rodda, S; Roitt, I; Brostoff, J

    1994-09-01

    Rye grass is the major cause of hay fever which currently affects 20% of the population. Lolium perenne group I (Lol p I) is a glycoprotein of 240 amino acid residues, representing the main allergen of rye grass. We have used peripheral blood mononuclear cells (PBMC) from controls and subjects allergic to rye grass and cultured them with L. perenne extract (LPE) and Lol p I and measured lymphocyte activation using thymidine incorporation. Patients were further studied against the 115 overlapping peptides of the iso-allergen clone 5A of Lol p I to see whether the 4 amino acid residue differences between clone 1A and clone 5A affect the T cell epitope and thus, lymphocyte activation. There are 24 peptide differences between isoallergen clone 1A and clone 5A occurring in pools 4, 13, 16 and 19 each one of which could be an immunodominant epitope. The PBMC from all allergic patients studied showed a strong proliferative response to LPE and Lol p I. Five immunogenic peptide pools, pool 6, 15, 16, 17 and 19 of the isoallergen clone 5A were also identified. Most of these pools are in the C-terminal region of Lol p I. Out of 20 pools tested in vitro 1 pool (pool-17) induced PBMC proliferation in five out of six patients who were not restricted to an HLA class II DR gene product. However, three out of the six subjects responded to various other peptide pools in addition to the immunodominant pool. In spite of the amino acid differences between the two clones, pool 17 still remains the immunodominant T cell epitope. Control subjects showed only weak responses to LPE and no detectable response to either Lol p I or peptide pools. From within the most active pool we have defined two peptides of the isoallergen clone 5A (identical in sequence with clone 1A) which stimulate lymphocytes from rye grass-sensitive patients in vitro. Previous studies with the two continuous sequences (193WGAVWRIDTPDK204 and 195AVWRIDTPDKLT206) tested in vivo by intradermal skin testing have shown

  1. Performance of low-input turfgrass species as affected by mowing and nitrogen fertilization in Minnesota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Minnesota, most lawns and higher cut turfgrass areas consist primarily of species such as Kentucky bluegrass (Poa pratensis L.) and perennial ryegrass (Lolium perenne L.) that require significant management inputs such as frequent mowing and nitrogen fertility. Several studies have shown that oth...

  2. Mineral accumulation by perennial grasses in a high rainfall environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Straw produced as a co-product of perennial ryegrass (Lolium perenne L.), orchardgrass (Dactylis glomerata), tall fescue (Schedonorus phoenix (Scop.) Holub), and Kentucky bluegrass (Poa pratensis L.) seed production in the high rainfall area of western Oregon as well as clippings from urban and recr...

  3. Cerebellar Disease in an Adult Cow

    PubMed Central

    Oz, H. H.; Nicholson, S. S.; Al-Bagdadi, F. K.; Zeman, D. H.

    1986-01-01

    This is the report of clinical signs and lesions of a cerebellar disorder in an adult four year old Limousin cow grazing perennial ryegrass (Lolium perenne). The most striking histopathological lesion was a marked paucity of Purkinje cells throughout the cerebellum. ImagesFigure 1.Figure 2. PMID:17422607

  4. Uptake and transformation of soil [14C]-trinitrotoluene by cool-season grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the fate and uptake of [14C]-TNT from soil into orchardgrass (Dactylis glomerata), perennial ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea) over a one year period in a greenhouse-controlled environment. Pots (n=4 for each grass, containing 10 mg cold TNT/kg s...

  5. Comparative trends in forage nutritional quality across the growing season in thirteen grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based on recent climate change models, landscapes are likely going to get drier and hotter; thus reducing the available water to support herbage production in species heavily dependent on water for persistence and production such as perennial ryegrass (Lolium perenne L.), orchardgrass (Dactylis glom...

  6. Short communication: Substituting dry distillers grains with solubles and rumen-protected amino acids for soybean meal in late-lactation cows' diets based on corn silage or ryegrass silage.

    PubMed

    Pereira, A B D; Zeringue, L K; Leonardi, C; Jenny, B F; Williams, C C; McCormick, M E; Moreira, V R

    2015-11-01

    Excess protein in dairy cattle diets increases production costs and contributes to environmental pollution. The objective of the present study was to evaluate the effect of feeding dry distillers grains with solubles (DDGS) supplemented with rumen-protected Lys and Met in place of solvent-extracted soybean meal on the performance of late-lactation cows. Two experiments were carried out, with each using 24 late-lactating dairy cows distributed among 4 pens. In trial 1, corn silage was the main forage source. Control (HP1) total mixed ration (TMR) contained 16.3% crude protein (CP) with soybean meal as the main protein source. Treatment TMR (LP1) had 13.7% CP when soybean meal was replaced with DDGS and rumen-protected Lys and Met. Forage in trial 2 was ryegrass silage; control TMR (HP2; 15.4% CP) contained soybean meal and rumen-protected Met, whereas treatment TMR (LP2; 13.8% CP) contained DDGS and rumen-protected Lys and Met. Trials were analyzed as crossover design using the MIXED procedure of SAS (SAS Institute Inc., Cary NC) with cow as sampling unit and pen as the experimental unit. Treatments were similar in dry matter intake (21.0 and 20.4 kg/cow per day for HP1 and LP1, respectively) and milk yield (20.7 and 20.5 kg/cow per day for HP1 and LP1, respectively) during trial 1. Milk composition was similar between treatments, averaging 4.22, 3.73, 4.54, and 9.15, respectively, for fat, protein, lactose, and solids nonfat. Milk urea nitrogen decreased from 17.2 mg/dL for HP1 to 9.93 mg/dL for LP1. In trial 2, no significant differences were observed for dry matter intake (21.4 and 20.9 kg/cow per day for HP2 and LP2, respectively), milk yield (28.1 and 26.6 kg/d for HP2 and LP2, respectively), fat yield (0.99 vs. 0.92 kg/d for HP2 and LP2, respectively), protein yield (0.94 vs. 0.86 kg/d for HP2 and LP2, respectively) and lactose yield (1.37 vs. 1.28 for HP2 and LP2, respectively). Milk urea nitrogen decreased from 9.88 mg/dL with HP2 to 6.39 mg/dL with the LP2

  7. Sensitivity of the Invasive Geophyte Oxalis pes-caprae to Nutrient Availability and Competition

    PubMed Central

    Sala, Anna; Verdaguer, Dolors; Vilà, Montserrat

    2007-01-01

    Background and Aims Invasion by alien plants may be partially related to disturbance-related increases in nutrient availability and decreases of competition with native species, and to superior competitive ability of the invader. Oxalis pes-caprae is an invasive winter geophyte in the Mediterranean Islands that reproduces vegetatively via bulbs. An investigation was made into the relative responses of O. pes-caprae and the native annual grass Lolium rigidum to nutrient availability and to competition with each other in order to understand patterns of invasion in the field. Because Oxalis accumulates oxalic acid in its leaves, which could ameliorate soil phosphorous availability, field observations were made to determine whether the presence of Oxalis alters soil P availability. Methods A full-factorial glasshouse experiment was conducted with nutrient availability (high and low) and competition (Lolium alone, Oxalis alone, and Lolium and Oxalis together). Plant performance was assessed by determining (1) above- and below-ground biomass at the time of Oxalis maximum biomass and (2) reproductive output of Oxalis and Lolium at the end of their respective growth cycles. Measurements were also taken for leaf N and P content. Soil samples were taken in the field from paired Oxalis-invaded and non-invaded plots located in Menorca (Balearic Islands) and available P was determined. Key Results High nutrient availability increased Oxalis and Lolium vegetative biomass and reproductive output to a similar degree. Competition with Lolium had a much stronger negative effect on Oxalis bulb production than reduced nutrients. Lolium was a superior competitor than Oxalis; the latter did not affect Lolium maximum biomass and spike production. Significantly greater soil-P availability in Oxalis-invaded field soils relative to paired non-invaded soils suggest that Oxalis influences soil P cycling. Conclusions Oxalis is a poor competitor. This is consistent with the preferential

  8. Contribution of a phytotoxic compound to the allelopathy of Ginkgo biloba.

    PubMed

    Kato-Noguchi, Hisashi; Takeshita, Sayaka

    2013-11-01

    Ginkgo (Ginkgo biloba L.) has not changed over 121 million years. There may be unknown special strategy for the survival. Gingko litter inhibited the growth of weed species ryegrass (Lolium multiflorum L.). The inhibition was greater with the litter of the close position than that of the far position from the gingko tree. A phytotoxic substance, 2-hydroxy-6-(10-hydroxypentadec-11-enyl)benzoic acid (HHPEBA) was isolated in the litter. HHPEBA concentration was greater in the litter of the close position than that of the far position from the tree. HHPEBA inhibited the ryegrass growth at concentrations greater than 3 μM. HHPEBA was estimated to be able to cause 47-62% of the observed growth inhibition of ryegrass by the gingko litter. Therefore, HHPEBA may contribute to the inhibitory effect caused by ginkgo litter and may provide a competitive advantage for gingko to survive through the growth inhibition of the neighboring plants.

  9. Contribution of a phytotoxic compound to the allelopathy of Ginkgo biloba.

    PubMed

    Kato-Noguchi, Hisashi; Takeshita, Sayaka

    2013-11-01

    Ginkgo (Ginkgo biloba L.) has not changed over 121 million years. There may be unknown special strategy for the survival. Gingko litter inhibited the growth of weed species ryegrass (Lolium multiflorum L.). The inhibition was greater with the litter of the close position than that of the far position from the gingko tree. A phytotoxic substance, 2-hydroxy-6-(10-hydroxypentadec-11-enyl)benzoic acid (HHPEBA) was isolated in the litter. HHPEBA concentration was greater in the litter of the close position than that of the far position from the tree. HHPEBA inhibited the ryegrass growth at concentrations greater than 3 μM. HHPEBA was estimated to be able to cause 47-62% of the observed growth inhibition of ryegrass by the gingko litter. Therefore, HHPEBA may contribute to the inhibitory effect caused by ginkgo litter and may provide a competitive advantage for gingko to survive through the growth inhibition of the neighboring plants. PMID:24300166

  10. A study of the human immune response to Lolium perenne (rye) pollen and its components, Lol p I and Lol p II (rye I and rye II). I. Prevalence of reactivity to the allergens and correlations among skin test, IgE antibody, and IgG antibody data.

    PubMed

    Freidhoff, L R; Ehrlich-Kautzky, E; Grant, J H; Meyers, D A; Marsh, D G

    1986-12-01

    In a stratified random sample of 320 white adults, the prevalence of puncture skin test positivity (ST +) to Lolium perenne (rye grass)-pollen extract (LPE) was 16%. Fifteen percent of all subjects (or 84% of subjects classified LPE IgE antibody positive [Ab +]) was classified IgE Ab + to highly purified Lol p I (Rye I), and 4% of all subjects (or 26% of subjects classified LPE IgE Ab +) was classified IgE Ab + to highly purified Lol p II (Rye II). These data and similar results obtained in an allergy-enriched group of 361 subjects are consistent with previous studies that Lol I is a major allergen and Lol II is a minor allergen of LPE. Whether we studied LPE, Lol I, or Lol II, responder subjects were younger than nonresponder subjects and more male than female subjects were responders. We then investigated the quantitative interrelationships among ST, IgE, and IgG Ab responsiveness to LPE, Lol I, and Lol II in the allergy-enriched group. For each allergen, log-log correlations were strong and significant for ST versus IgE Ab and for IgE Ab versus IgG Ab. All subjects IgE Ab + to Lol I or Lol II were IgG Ab + to that allergen, supporting other evidence for a commonality in the genetic control influencing the production of IgE and IgG Abs to a given allergen. Log-log correlations among ST end points, IgE Ab levels, or IgG Ab levels were strong for LPE versus either Lol I or Lol II but weak between Lol I and Lol II, consistent with the reported lack of cross-reactivity between Lol I and Lol II. Despite these findings, almost all Lol II + subjects were Lol I + by ST (98%), IgE Ab (91%), and IgG Ab (83%), suggesting that the Ia-restricted immune recognition of both these molecules is at least in part under a common genetic control.

  11. The Impact of Using Alternative Forages on the Nutrient Value within Slurry and Its Implications for Forage Productivity in Agricultural Systems

    PubMed Central

    Crotty, Felicity V.; Fychan, Rhun; Theobald, Vince J.; Sanderson, Ruth; Chadwick, David R.; Marley, Christina L.

    2014-01-01

    Alternative forages can be used to provide valuable home-grown feed for ruminant livestock. Utilising these different forages could affect the manure value and the implications of incorporating these forages into farming systems, needs to be better understood. An experiment tested the hypothesis that applying slurries from ruminants, fed ensiled red clover (Trifolium pratense), lucerne (Medicago sativa) or kale (Brassica oleracea) would improve the yield of hybrid ryegrass (Lolium hybridicum), compared with applying slurries from ruminants fed ensiled hybrid ryegrass, or applying inorganic N alone. Slurries from sheep offered one of four silages were applied to ryegrass plots (at 35 t ha−1) with 100 kg N ha−1 inorganic fertiliser; dry matter (DM) yield was compared to plots only receiving ammonium nitrate at rates of 0, 100 and 250 kg N ha−1 year−1. The DM yield of plots treated with 250 kg N, lucerne or red clover slurry was significantly higher than other treatments (P<0.001). The estimated relative fertiliser N equivalence (FNE) (fertiliser-N needed to produce same yield as slurry N), was greatest for lucerne (114 kg) >red clover (81 kg) >kale (44 kg) >ryegrass (26 kg ha−1 yr−1). These FNE values represent relative efficiencies of 22% (ryegrass), 52% (kale), 47% (red clover) and 60% for lucerne slurry, with the ryegrass slurry efficiency being lowest (P = 0.005). Soil magnesium levels in plots treated with legume slurry were higher than other treatments (P<0.001). Overall, slurries from ruminants fed alternative ensiled forages increased soil nutrient status, forage productivity and better N efficiency than slurries from ruminants fed ryegrass silage. The efficiency of fertiliser use is one of the major factors influencing the sustainability of farming systems, these findings highlight the cascade in benefits from feeding ruminants alternative forages, and the need to ensure their value is effectively captured to reduce environmental risks. PMID

  12. The impact of using alternative forages on the nutrient value within slurry and its implications for forage productivity in agricultural systems.

    PubMed

    Crotty, Felicity V; Fychan, Rhun; Theobald, Vince J; Sanderson, Ruth; Chadwick, David R; Marley, Christina L

    2014-01-01

    Alternative forages can be used to provide valuable home-grown feed for ruminant livestock. Utilising these different forages could affect the manure value and the implications of incorporating these forages into farming systems, needs to be better understood. An experiment tested the hypothesis that applying slurries from ruminants, fed ensiled red clover (Trifolium pratense), lucerne (Medicago sativa) or kale (Brassica oleracea) would improve the yield of hybrid ryegrass (Lolium hybridicum), compared with applying slurries from ruminants fed ensiled hybrid ryegrass, or applying inorganic N alone. Slurries from sheep offered one of four silages were applied to ryegrass plots (at 35 t ha⁻¹) with 100 kg N ha⁻¹ inorganic fertiliser; dry matter (DM) yield was compared to plots only receiving ammonium nitrate at rates of 0, 100 and 250 kg N ha⁻¹ year-1. The DM yield of plots treated with 250 kg N, lucerne or red clover slurry was significantly higher than other treatments (P<0.001). The estimated relative fertiliser N equivalence (FNE) (fertiliser-N needed to produce same yield as slurry N), was greatest for lucerne (114 kg) >red clover (81 kg) >kale (44 kg) >ryegrass (26 kg ha⁻¹ yr⁻¹). These FNE values represent relative efficiencies of 22% (ryegrass), 52% (kale), 47% (red clover) and 60% for lucerne slurry, with the ryegrass slurry efficiency being lowest (P = 0.005). Soil magnesium levels in plots treated with legume slurry were higher than other treatments (P<0.001). Overall, slurries from ruminants fed alternative ensiled forages increased soil nutrient status, forage productivity and better N efficiency than slurries from ruminants fed ryegrass silage. The efficiency of fertiliser use is one of the major factors influencing the sustainability of farming systems, these findings highlight the cascade in benefits from feeding ruminants alternative forages, and the need to ensure their value is effectively captured to reduce environmental risks.

  13. Comparative QTL Mapping for Seed Weight Between Ryegrass and Cereals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed weight is one of the most important, complex traits in breeding and domestication process for several major food crops (e.g. rice and wheat). Comparative mapping studies provide insight into the evolution of genome organization within species and the understanding important traits conserved dur...

  14. INDIVIDUAL AND POPULATION RESPONSES TO ABIOTIC STRESSES IN ITALIAN RYEGRASS

    EPA Science Inventory

    Expected changes in environmental factors will alter productivity of agroecosystems and influence the distribution of agricultural pests. In addition to the natural factors that cause stress, humans introduce chemical pesticides into the agricultural environment. Weeds persist in...

  15. 7 CFR 201.61 - Fluorescence percentages in ryegrasses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... found fluorescence tolerance 100 99 1.0 98 1.6 97 2.0 96 2.3 95 2.6 94 2.9 93 3.2 92 3.4 91 3.6 90 3.8 89 4.0 88 4.1 87 4.3 86 4.5 85 4.7 84 4.8 83 4.9 82 5.0 81 5.2 80 5.3 79 5.4 78 5.5 77 5.6 76 5.7 75 5.8 74 5.8 73 5.9 72 6.0 71 6.1 70 6.2 69 6.2 68 6.3 67 6.3 66 6.4 65 6.5 64 6.5 63 6.5 62 6.6 61...

  16. 7 CFR 201.61 - Fluorescence percentages in ryegrasses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... found fluorescence tolerance 100 99 1.0 98 1.6 97 2.0 96 2.3 95 2.6 94 2.9 93 3.2 92 3.4 91 3.6 90 3.8 89 4.0 88 4.1 87 4.3 86 4.5 85 4.7 84 4.8 83 4.9 82 5.0 81 5.2 80 5.3 79 5.4 78 5.5 77 5.6 76 5.7 75 5.8 74 5.8 73 5.9 72 6.0 71 6.1 70 6.2 69 6.2 68 6.3 67 6.3 66 6.4 65 6.5 64 6.5 63 6.5 62 6.6 61...

  17. 7 CFR 201.61 - Fluorescence percentages in ryegrasses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... found fluorescence tolerance 100 99 1.0 98 1.6 97 2.0 96 2.3 95 2.6 94 2.9 93 3.2 92 3.4 91 3.6 90 3.8 89 4.0 88 4.1 87 4.3 86 4.5 85 4.7 84 4.8 83 4.9 82 5.0 81 5.2 80 5.3 79 5.4 78 5.5 77 5.6 76 5.7 75 5.8 74 5.8 73 5.9 72 6.0 71 6.1 70 6.2 69 6.2 68 6.3 67 6.3 66 6.4 65 6.5 64 6.5 63 6.5 62 6.6 61...

  18. The role of the Oregon State University Endophyte Service Laboratory in diagnosing clinical cases of endophyte toxicoses.

    PubMed

    Craig, A Morrie; Blythe, Linda L; Duringer, Jennifer M

    2014-07-30

    The Oregon State University Colleges of Veterinary Medicine and Agricultural Sciences instituted the Endophyte Service Laboratory to aid in diagnosing toxicity problems associated with cool-season grasses in livestock. The endophyte (Neotyphodium coenophalum) present in tall fescue (Festuca arundinacea) produces ergopeptine alkaloids, of which ergovaline is the molecule used to determine exposure and toxicity thresholds for the vasoconstrictive conditions "fescue foot" and "summer slump". Another vasoconstrictive syndrome, "ergotism," is caused by a parasitic fungus, Claviceps purpurea, and its primary toxin, ergotamine. "Ryegrass staggers" is a neurological condition that affects livestock consuming endophyte (Neotyphodium lolii)-infected perennial ryegrass (Lolium perenne) with high levels of lolitrem B. HPLC-fluorescent analytical methods for these mycotoxins are described and were used to determine threshold levels of toxicity for ergovaline and lolitrem B in cattle, sheep, horses, and camels. In addition, six clinical cases in cattle are presented to illustrate diagnosis of these three diseases.

  19. Chemically enhanced phytoextraction of lead-contaminated soils.

    PubMed

    Perry, V Ryan; Krogstad, Eirik J; El-Mayas, Hanan; Greipsson, Sigurdur

    2012-08-01

    The effects of the combined application of soil fungicide (benomyl) and ethylenediaminetetraacetic acid (EDTA) on lead (Pb) phytoextraction by ryegrass (Lolium perenne) were examined. Twenty-five pots of Pb-contaminated soil (200 mg Pb kg(-1)) were seeded with ryegrass and randomly arranged into the following treatments: (1) Control, (2) benomyl, (3) EDTA, (4) benomyl and EDTA (B+E), and (5) benomyl followed by an application of EDTA 14 days later (B .. . E). Chemicals were applied when plants had reached maximum growth. Plants were analyzed for foliage Pb concentration using inductively coupled argon plasma (ICAP) spectrometry. The synergistic effects of the combined benomyl and EDTA application (treatments 4 and 5) were made evident by the significantly (p < 0.05) highest foliage Pb concentrations. However, the foliage dry biomass was significantly lowest for plants in treatments 4 and 5. The bioaccumulation factor (BF) and phytoextraction ratio (PR) were highest for plants in treatment 5 followed by plants in treatment 4.

  20. More milk from forage: Milk production, blood metabolites, and forage intake of dairy cows grazing pasture mixtures and spatially adjacent monocultures.

    PubMed

    Pembleton, Keith G; Hills, James L; Freeman, Mark J; McLaren, David K; French, Marion; Rawnsley, Richard P

    2016-05-01

    There is interest in the reincorporation of legumes and forbs into pasture-based dairy production systems as a means of increasing milk production through addressing the nutritive value limitations of grass pastures. The experiments reported in this paper were undertaken to evaluate milk production, blood metabolite concentrations, and forage intake levels of cows grazing either pasture mixtures or spatially adjacent monocultures containing perennial ryegrass (Lolium perenne), white clover (Trifolium repens), and plantain (Plantago lanceolata) compared with cows grazing monocultures of perennial ryegrass. Four replicate herds, each containing 4 spring-calving, cross-bred dairy cows, grazed 4 different forage treatments over the periods of early, mid, and late lactation. Forage treatments were perennial ryegrass monoculture (PRG), a mixture of white clover and plantain (CPM), a mixture of perennial ryegrass, white clover, and plantain (RCPM), and spatially adjacent monocultures (SAM) of perennial ryegrass, white clover, and plantain. Milk volume, milk composition, blood fatty acids, blood β-hydroxybutyrate, blood urea N concentrations, live weight change, and estimated forage intake were monitored over a 5-d response period occurring after acclimation to each of the forage treatments. The acclimation period for the early, mid, and late lactation experiments were 13, 13, and 10 d, respectively. Milk yield (volume and milk protein) increased for cows grazing the RCPM and SAM in the early lactation experiment compared with cows grazing the PRG, whereas in the mid lactation experiment, milk fat increased for the cows grazing the RCPM and SAM when compared with the PRG treatments. Improvements in milk production from grazing the RCPM and SAM treatments are attributed to improved nutritive value (particularly lower neutral detergent fiber concentrations) and a potential increase in forage intake. Pasture mixtures or SAM containing plantain and white clover could be a

  1. Leaf economics spectrum-productivity relationships in intensively grazed pastures depend on dominant species identity.

    PubMed

    Mason, Norman W H; Orwin, Kate; Lambie, Suzanne; Woodward, Sharon L; McCready, Tiffany; Mudge, Paul

    2016-05-01

    Plant functional traits are thought to drive variation in primary productivity. However, there is a lack of work examining how dominant species identity affects trait-productivity relationships. The productivity of 12 pasture mixtures was determined in a 3-year field experiment. The mixtures were based on either the winter-active ryegrass (Lolium perenne) or winter-dormant tall fescue (Festuca arundinacea). Different mixtures were obtained by adding forb, legume, and grass species that differ in key leaf economics spectrum (LES) traits to the basic two-species dominant grass-white clover (Trifolium repens) mixtures. We tested for correlations between community-weighted mean (CWM) trait values, functional diversity, and productivity across all plots and within those based on either ryegrass or tall fescue. The winter-dormant forb species (chicory and plantain) had leaf traits consistent with high relative growth rates both per unit leaf area (high leaf thickness) and per unit leaf dry weight (low leaf dry matter content). Together, the two forb species achieved reasonable abundance when grown with either base grass (means of 36% and 53% of total biomass, respectively, with ryegrass tall fescue), but they competed much more strongly with tall fescue than with ryegrass. Consequently, they had a net negative impact on productivity when grown with tall fescue, and a net positive effect when grown with ryegrass. Strongly significant relationships between productivity and CWM values for LES traits were observed across ryegrass-based mixtures, but not across tall fescue-based mixtures. Functional diversity did not have a significant positive effect on productivity for any of the traits. The results show dominant species identity can strongly modify trait-productivity relationships in intensively grazed pastures. This was due to differences in the intensity of competition between dominant species and additional species, suggesting that resource-use complementarity is a

  2. Absorption and translocation of 4-(trifluoromethyl)chlorobenzene in soil and crops

    SciTech Connect

    Cacco, G.; Ferrari, G.

    1982-01-01

    Water containing 1 mg/L 4-(trifluoro(/sup 14/C)methyl)chlorobenzene (TFCB) was supplied to pot cultures of three grass (Zea mays L.; Festuca rubra L.; Lolium multiflorum L.) and three legume (Vicia sativa L.; Trifolium perenne L.; Medicago sativa L.) species. The chemical was absorbed by soil and subsequently translocated to plant leaves at increasing amounts for maize to ryegrass, clover, alfalfa, red fescue, and vetch. Legumes showed a high capacity of degradation of the contaminant, suggesting their utilization to reclaim soil and water contaminated by TFCB.

  3. Phytotoxicity and uptake of nitroglycerin in a natural sandy loam soil.

    PubMed

    Rocheleau, Sylvie; Kuperman, Roman G; Dodard, Sabine G; Sarrazin, Manon; Savard, Kathleen; Paquet, Louise; Hawari, Jalal; Checkai, Ronald T; Thiboutot, Sonia; Ampleman, Guy; Sunahara, Geoffrey I

    2011-11-15

    Nitroglycerin (NG) is widely used for the production of explosives and solid propellants, and is a soil contaminant of concern at some military training ranges. NG phytotoxicity data reported in the literature cannot be applied directly to development of ecotoxicological benchmarks for plant exposures in soil because they were determined in studies using hydroponic media, cell cultures, and transgenic plants. Toxicities of NG in the present studies were evaluated for alfalfa (Medicago sativa), barnyard grass (Echinochloa crusgalli), and ryegrass (Lolium perenne) exposed to NG in Sassafras sandy loam soil. Uptake and degradation of NG were also evaluated in ryegrass. The median effective concentration values for shoot growth ranged from 40 to 231 mg kg(-1) in studies with NG freshly amended in soil, and from 23 to 185 mg kg(-1) in studies with NG weathered-and-aged in soil. Weathering-and-aging NG in soil did not significantly affect the toxicity based on 95% confidence intervals for either seedling emergence or plant growth endpoints. Uptake studies revealed that NG was not accumulated in ryegrass but was transformed into dinitroglycerin in the soil and roots, and was subsequently translocated into the ryegrass shoots. The highest bioconcentration factors for dinitroglycerin of 685 and 40 were determined for roots and shoots, respectively. Results of these studies will improve our understanding of toxicity and bioconcentration of NG in terrestrial plants and will contribute to ecological risk assessment of NG-contaminated sites.

  4. Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands.

    PubMed

    Rossmann, Maike; Matos, Antonio Teixeira; Abreu, Edgar Carneiro; Silva, Fabyano Fonseca; Borges, Alisson Carraro

    2013-10-15

    The aim of the present study was to evaluate the influence of aeration and vegetation on the removal of organic matter in coffee processing wastewater (CPW) treated in 4 constructed wetlands (CWs), characterized as follows: (i) ryegrass (Lolium multiflorum) cultivated system operating with an aerated influent; (ii) non-cultivated system operating with an aerated influent, (iii) ryegrass cultivated system operating with a non-aerated influent; and (iv) non-cultivated system operating with a non-aerated influent. The lowest average chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of 87, 84 and 73%, respectively, were obtained in the ryegrass cultivated system operating with a non-aerated influent. However, ryegrass cultivation did not influence the removal efficiency of organic matter. Artificial aeration of the CPW, prior to its injection in the CW, did not improve the removal efficiencies of organic matter. On other hand it did contribute to increase the instantaneous rate at which the maximum COD removal efficiency was reached. Although aeration did not result in greater organic matter removal efficiencies, it is important to consider the benefits of aeration on the removal of the other compounds.

  5. The effect of diet manipulation on nitrous oxide and methane emissions from manure application to incubated grassland soils

    NASA Astrophysics Data System (ADS)

    Cardenas, L. M.; Chadwick, D.; Scholefield, D.; Fychan, R.; Marley, C. L.; Jones, R.; Bol, R.; Well, R.; Vallejo, A.

    Changes to agricultural management, particularly of the nitrogen (N) input to farms, have great potential for mitigating emissions of N containing gases, especially the greenhouse gas nitrous oxide (N 2O). Manipulating diets fed to livestock is a potential method for controlling N excretion and emissions of greenhouse gases (GHG's) to the atmosphere. We selected three slurries derived from sheep that had been fed, either ensiled ryegrass ( Lolium hybridicum), lucerne ( Medicago sativa) or kale ( Brassica oleracea) and applied them to a grassland soil from the UK in a laboratory experiment using a special He/O 2 atmosphere incubation facility. The resulting fluxes of N 2O, CH 4 and N 2 were measured, with the largest total N fluxes generated by the ryegrass slurry treatment (14.23 ryegrass, 10.84 lucerne, 13.88 kale and 4.40 kg N ha -1 from the control). Methane was emitted only from the ryegrass slurry treatment. The isotopomer signatures for N 2O in the control and lucerne slurry treatments indicated that denitrification was the main process responsible for N 2O emissions.

  6. Remediation of lead and cadmium-contaminated soils.

    PubMed

    Salama, Ahmed K; Osman, Khaled A; Gouda, Neama Abdel-Razeek

    2016-01-01

    The research was designated to study the ability of plants to bio-accumulate, translocate and remove the heavy metals, lead and cadmium from contaminated soil. The herbal plant ryegrass, Lolium multiflorum was investigated as a bio-accumulator plant for these metals. The translocation of these heavy metals in the herbal plant was compared considering root to shoot transport and redistribution of metals in the root and shoot system. The trace metal contents from root and shoot parts were determined using atomic absorption spectrometer. The results showed that the percent of lead and cadmium transferred to ryegrass plant were averaged as 51.39, and 74.57%, respectively, while those remained in the soil were averaged as 48.61 and 25.43% following 60 days of treatment. The soil-plant transfer index in root and shoot system of ryegrass was found to be 0.32 and 0.20 for lead, and 0.50 and 0.25 for cadmium. These findings indicated that the herbal plant ryegrass, Lolium multiflorum is a good accumulator for cadmium than lead. The soil-plant transfer factor (the conc. of heavy metal in plant to the conc. in soil) indicated that the mechanism of soil remedy using the investigated plant is phytoextraction where the amounts of heavy metals transferred by plant roots into the above ground portions were higher than that remained in the soil. The method offers green technology solution for the contamination problem since it is effective technology with minimal impact on the environment and can be easily used for soil remedy.

  7. NEWER SDHI FUNGICIDES AND GRASSES: EFFECTS ON SEED YIELD AND DISEASE CONTROL.

    PubMed

    Rijckaert, G; Vanden Nest, T

    2015-01-01

    Grass seed crops (ryegrass), a minor crop in Belgium, should be managed more intensively and in an arable way, comparable with the intensive wheat culture. Even more important than higher seed yields are stable, higher yields over time, Integrated pest management (IPM) forms the framework around this intensification. Two similar seed production field trials--one with perennial ryegrass (Lolium perenne L.) and one with Italian ryegrass (Lolium multiflorum L.)--were conducted in 2014, dealing with 4 SDHI fungicides (bixafen, boscalid, fluxapyroxad and isopyrazam) that were compared with an untreated control and some reference treatments. There were four application times (stages): i.e. early stem elongation--BBCH 33 (T1), ear tips visible--BBCH 51 (T2), full ear, begin of flowering--BBCH 61 (T3) and end of flowering--BBCH 69 (T4). Except for the Italian ryegrass trial, only the last three stages were used. In the Italian ryegrass trial, which had only sporadic incidence of disease, all T3 treatments clearly increased seed yield compared with the untreated control, by 13% on average. For the T2 treatments only Fandango and Adexar clearly out yielded the control. The curative T4 treatment (Tilt + Corbel) tended to increase seed yield, but this was not significant. Seed yield differences could not be explained by variations in thousand seed weight (TSW), leaf withering and NDVI scores (crop reflectance). The disease pressure (crown rust) was very low before flowering, but stem rust developed strongly during the last 2 weeks before harvest of the perennial ryegrass trial. Yield responses were mostly pronounced at the T3 treatment. Except for Fandango and Horizon, all T3 treatments clearly increased yield in comparison with the untreated control, by 18.4% on average. The T4 treatment (Tilt + Corbel) could not repair the crop damage. Further seed yield data are discussed in relation to yield components, TSW, leaf withering and vegetation index (NDVI). An integrated

  8. Root uptake and phytotoxicity of ZnO nanoparticles.

    PubMed

    Lin, Daohui; Xing, Baoshan

    2008-08-01

    Increasing application of nanotechnology highlights the need to clarify nanotoxicity. However, few researches have focused on phytotoxicity of nanomaterials; it is unknown whether plants can uptake and transport nanoparticles. This study was to examine cell internalization and upward translocation of ZnO nanoparticles by Lolium perenne (ryegrass). The dissolution of ZnO nanoparticles and its contribution to the toxicity on ryegrass were also investigated. Zn2+ ions were used to compare and verify the root uptake and phytotoxicity of ZnO nanoparticles in a hydroponic culture system. The root uptake and phytotoxicity were visualized by light scanning electron, and transmission electron microscopies. In the presence of ZnO nanoparticles, ryegrass biomass significantly reduced, root tips shrank, and root epidermal and cortical cells highly vacuolated or collapsed. Zn2+ ion concentrations in bulk nutrient solutions with ZnO nanoparticles were lower than the toxicity threshold of Zn2+ to the ryegrass; shoot Zn contents under ZnO nanoparticle treatments were much lower than that under Zn2+ treatments. Therefore, the phytotoxicity of ZnO nanoparticles was not directly from their limited dissolution in the bulk nutrient solution or rhizosphere. ZnO nanoparticles greatly adhered on to the rootsurface. Individual ZnO nanoparticles were observed present in apoplast and protoplast of the root endodermis and stele. However, translocation factors of Zn from root to shoot remained very low under ZnO nanoparticle treatments, and were much lower than that under Zn2+ treatments, implying that little (if any) ZnO nanoparticles could translocate up in the ryegrass in this study.

  9. Leaching of indaziflam applied at two rates under different rainfall situations in Florida Candler soil.

    PubMed

    Jhala, Amit J; Ramirez, Analiza H M; Singh, Megh

    2012-03-01

    Indaziflam {N-[(1R, 2S)-2,3-dihydro-2,6-dimethyl-1H-inden-1-yl]-6-[(1RS)-1fluoroethyl]-1,3,5-triazine-2,4-diamine} is a new pre-emergence herbicide recently registered for a broad spectrum weed control in Florida citrus. Experiments were conducted to evaluate leaching of indaziflam applied at 73 and 145 g ai ha(-1) in Florida Candler soil under simulated rainfall of 5, 10, and 15 cm ha(-1). Indaziflam leached the least (12.6 ± 0.6 cm) when applied at 73 g ai ha(-1) under 5 cm ha(-1) rainfall. Indaziflam leached furthest (30.2 ± 0.9 cm) when applied at 145 g ai ha(-1) under 15 cm ha(-1) rainfall. The visual control ratings of a bio-indicator species ryegrass (Lolium multiflorum L.) was 97% at 15 cm ha(-1) rainfall when indaziflam applied at 145 g ai ha(-1) in the 26 to 30 cm horizon indicating the maximum movement and activity of indaziflam. A dose response experiment was conducted to determine the sensitivity of ryegrass to various doses of indaziflam that confirmed that application of indaziflam at 29.20 g ai ha(-1) was sufficient to prevent germination of ryegrass. There was no mortality of ryegrass plants beyond the 30 cm and the biomass of ryegrass was comparable with untreated control indicating that indaziflam did not leach beyond this distance even under 15 cm ha(-1) rainfall.

  10. Specific plant DNA adducts as molecular biomarkers of genotoxic atmospheric environments.

    PubMed

    Weber-Lotfi, F; Obrecht-Pflumio, S; Guillemaut, P; Kleinpeter, J; Dietrich, A

    2005-03-01

    The general purpose of this study was to determine whether the formation of DNA addition products ('adducts') in plants could be a valuable biomarker of genotoxic air pollution. Plants from several species were exposed to ambient atmosphere at urban and suburban sites representative of different environmental conditions. The levels of NO2 and of the quantitatively major genotoxic air pollutants benzene, toluene, and xylene were monitored in parallel with plant exposure. DNA adducts were measured in bean (Phaseolus vulgaris), rye-grass (Lolium perenne), and tobacco (Nicotiana tabacum) seedlings by means of the [32P]-postlabeling method. Whereas, no correlation was found between the levels of the major genotoxic air pollutants and the total amounts of DNA adducts, individual analyses revealed site-specific and plant species-specific adduct responses, both at the qualitative and quantitative level. Among these, the amount of a specific rye-grass DNA adduct (rgs1) correlated with benzene/toluene/xylene levels above a threshold. For further characterization, rye-grass seedlings were treated in controlled conditions with benzene, toluene, xylene or their derivatives. On the other hand, in vitro DNA adduct formation assays were developed involving benzene, toluene, xylene, or their derivatives, and plant microsomes or purified peroxidase. Although in some cases, these approaches produced specific adduct responses, they failed to generate the rgs1 DNA adduct, which appeared to be characteristic for on-site test-plant exposure. Our studies have thus identified an interesting candidate for further analysis of environmental biomarkers of genotoxicity.

  11. Landscape effects of a non-native grass facilitate source populations of a native generalist bug, Stenotus rubrovittatus, in a heterogeneous agricultural landscape.

    PubMed

    Yoshioka, A; Takada, M B; Washitani, I

    2014-01-01

    Non-native plant species can provide native generalist insects, including pests, with novel food and habitats. It is hypothesized that local and landscape-level abundances of non-native plants can affect the population size of generalist insects, although generalists are assumed to be less sensitive to habitat connectivity than specialists. In a heterogeneous landscape in Japan, the relationship between the density of a native pest of rice (Stenotus rubrovittatus (Matsumura) (Heteroptera: Miridae)) and the abundance of Italian ryegrass (Lolium multiflorum Lam. (Poales: Poaceae)), a non-native meadow grass known to facilitate S. rubrovittatus, was analyzed. Statistical analyses of data on bug density, vegetation, and the spatial distribution of fallow fields and meadows dominated by Italian ryegrass, obtained by field surveys, demonstrated that local and landscape-level abundances of Italian ryegrass (the unmowed meadow areas within a few hundred meters of a sampling plot) positively affected bug density before its immigration into rice fields. Our findings suggest that a generalist herbivorous insect that prefers non-native plants responds to spatial availability and connectivity of plant species patches at the metapopulation level. Fragmentation by selective mowing that decreases the total area of source populations and increases the isolation among them would be an effective and environmentally-friendly pest management method.

  12. Oxygen respirometry to assess stability and maturity of composted municipal solid waste

    SciTech Connect

    Iannotti, D.A.; Grebus, M.E.; Toth, B.L.; Madden, L.V.; Hoitink, A.J.

    1994-11-01

    The stability and maturity of compost prepared from municipal solid waste (MSW) at a full-scale composting plant was assessed through chemical, physical, and biological assays. Respiration bioassays used to determine stability (O{sub 2} and CO{sub 2} respirometry) were sensitive to process control problems at the composting plant and indicated increasing stability with time. Radish (Raphanus sativus L.) and ryegrass (Lolium perenne L.) growth bioassays revealed that immature compost samples inhibited growth. Growth of ryegrass in potting mix prepared with cured compost not amended with fertilizer was enhanced as compared to a pest control. Garden cress (Lepidium sativum L.) seed germination, used as an indicator of phytotoxicity, revealed inhibition of germination at all compost maturity levels. The phytotoxicity was though to be salt-related. Spearman rank-order correlations demonstrated that O{sub 2} respirometry, water-soluble organic C, and the water extract organic C to organic N ratio, significantly correlated with compost age and best indicated an acceptable level of stability. Oxygen respirometry also best predicted the potential for ryegrass growth, and an acceptable level of compost maturity. 31 refs., 4 figs., 5 tabs.

  13. Landscape Effects of a Non-Native Grass Facilitate Source Populations of a Native Generalist Bug, Stenotus rubrovittatus, in a Heterogeneous Agricultural Landscape

    PubMed Central

    Yoshioka, A.; Takada, M. B.; Washitani, I.

    2014-01-01

    Non-native plant species can provide native generalist insects, including pests, with novel food and habitats. It is hypothesized that local and landscape-level abundances of non-native plants can affect the population size of generalist insects, although generalists are assumed to be less sensitive to habitat connectivity than specialists. In a heterogeneous landscape in Japan, the relationship between the density of a native pest of rice (Stenotus rubrovittatus (Matsumura) (Heteroptera: Miridae)) and the abundance of Italian ryegrass (Lolium multiflorum Lam. (Poales: Poaceae)), a non-native meadow grass known to facilitate S. rubrovittatus, was analyzed. Statistical analyses of data on bug density, vegetation, and the spatial distribution of fallow fields and meadows dominated by Italian ryegrass, obtained by field surveys, demonstrated that local and landscape-level abundances of Italian ryegrass (the unmowed meadow areas within a few hundred meters of a sampling plot) positively affected bug density before its immigration into rice fields. Our findings suggest that a generalist herbivorous insect that prefers non-native plants responds to spatial availability and connectivity of plant species patches at the metapopulation level. Fragmentation by selective mowing that decreases the total area of source populations and increases the isolation among them would be an effective and environmentally-friendly pest management method. PMID:25205015

  14. Levanase from Bacillus subtilis hydrolyses β-2,6 fructosyl bonds in bacterial levans and in grass fructans.

    PubMed

    Jensen, Susanne L; Diemer, Mikkel B; Lundmark, Maria; Larsen, Flemming H; Blennow, Andreas; Mogensen, Helle K; Nielsen, Tom H

    2016-04-01

    A Levanase, LevB, from Bacillus subtilis 168, was expressed as a His6-tagged protein in Escherichia coli. The enzyme was purified and characterised for its activity and substrate specificity. LevB has a pH optimum of 6.0-6.5 and a maximum observed specific activity of 3 U mg(-1) using levan from Erwinia herbicola as substrate. Hydrolysis products were analysed by HPAEC, TLC, and NMR using chicory root inulin, mixed linkage fructans purified from ryegrass (Lolium perenne) and levan from E. herbicola as substrates. This revealed that LevB is an endolevanase that selectively cleaves the (β-2,6) fructosyl bonds and does not hydrolyse inulin. Ryegrass fructans and bacterial levan was hydrolysed partially releasing oligosaccharides, but together with exoinulinase, LevB hydrolysed both ryegrass fructans and bacterial levan to near completion. We suggest that LevB can be used as a tool to achieve more structural information on complex fructans and to achieve complete degradation and quantification of mixed linkage fructans. PMID:26773563

  15. The effect of diesel fuel on common vetch (Vicia sativa L.) plants.

    PubMed

    Adam, Gillian; Duncan, Harry

    2003-03-01

    When petroleum hydrocarbons contaminate soil, the carbon:nitrogen (C:N) ratio of the soil is altered. The added carbon stimulates microbial numbers but causes an imbalance in the C:N ratio which may result in immobilization of soil nitrogen by the microbial biomass, leaving none available for plant growth. As members of Leguminosae fix atmospheric nitrogen to produce their own nitrogen for growth, they may prove more successful at growing on petroleum hydrocarbon contaminated sites. During a wider study on phytoremediation of diesel fuel contaminated soil, particular attention was given to the performance of legumes versus other plant species. During harvesting of pot experiments containing leguminous plants, a recurring difference in the number and formation of root nodules present on control and contaminated Common vetch (Vicia sativa L.) plants was observed. The total number of nodules per plant was significant reduced in contaminated plants compared to control plants but nodules on contaminated plants were more developed than corresponding nodules on control plants. Plant performance of Common vetch and Westerwold's ryegrass (Lolium multiflorum L.) was compared to illustrate any difference between the ability of legumes and grasses to grow on diesel fuel contaminated soil. Common vetch was less affected by diesel fuel and performed better in low levels of diesel fuel contaminated soil than Westerwold's ryegrass. The total amount of diesel fuel remaining after 4 months in Common vetch planted soil was slightly less than in Westerwold's ryegrass planted soil.

  16. Novel Biochar-Plant Tandem Approach for Remediating Hexachlorobenzene Contaminated Soils: Proof-of-Concept and New Insight into the Rhizosphere.

    PubMed

    Song, Yang; Li, Yang; Zhang, Wei; Wang, Fang; Bian, Yongrong; Boughner, Lisa A; Jiang, Xin

    2016-07-13

    Volatilization of semi/volatile persistent organic pollutants (POPs) from soils is a major source of global POPs emission. This proof-of-concept study investigated a novel biochar-plant tandem approach to effectively immobilize and then degrade POPs in soils using hexachlorobenzene (HCB) as a model POP and ryegrass (Lolium perenne L.) as a model plant growing in soils amended with wheat straw biochar. HCB dissipation was significantly enhanced in the rhizosphere and near rhizosphere soils, with the greatest dissipation in the 2 mm near rhizosphere. This enhanced HCB dissipation likely resulted from (i) increased bioavailability of immobilized HCB and (ii) enhanced microbial activities, both of which were induced by ryegrass root exudates. As a major component of ryegrass root exudates, oxalic acid suppressed HCB sorption to biochar and stimulated HCB desorption from biochar and biochar-amended soils, thus increasing the bioavailability of HCB. High-throughput sequencing results revealed that the 2 mm near rhizosphere soil showed the lowest bacterial diversity due to the increased abundance of some genera (e.g., Azohydromonas, Pseudomonas, Fluviicola, and Sporocytophaga). These bacteria were likely responsible for the enhanced degradation of HCB as their abundance was exponentially correlated with HCB dissipation. The results from this study suggest that the biochar-plant tandem approach could be an effective strategy for remediating soils contaminated with semi/volatile organic contaminants. PMID:27327363

  17. Metabolism-Based Herbicide Resistance and Cross-Resistance in Crop Weeds: A Threat to Herbicide Sustainability and Global Crop Production1

    PubMed Central

    Yu, Qin; Powles, Stephen

    2014-01-01

    Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides (metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in Australia (in Lolium rigidum) and the United Kingdom (in Alopecurus myosuroides) and is now increasingly recognized in several crop-weed species as a looming threat to herbicide sustainability and thus world crop production. Metabolic resistance often confers resistance to herbicides of different chemical groups and sites of action and can extend to new herbicide(s). Cytochrome P450 monooxygenase, glycosyl transferase, and glutathione S-transferase are often implicated in herbicide metabolic resistance. However, precise biochemical and molecular genetic elucidation of metabolic resistance had been stalled until recently. Complex cytochrome P450 superfamilies, high genetic diversity in metabolic resistant weedy plant species (especially cross-pollinated species), and the complexity of genetic control of metabolic resistance have all been barriers to advances in understanding metabolic herbicide resistance. However, next-generation sequencing technologies and transcriptome-wide gene expression profiling are now revealing the genes endowing metabolic herbicide resistance in plants. This Update presents an historical review to current understanding of metabolic herbicide resistance evolution in weedy plant species. PMID:25106819

  18. Manure and sorbent fertilisers increase on-going nutrient availability relative to conventional fertilisers.

    PubMed

    Redding, M R; Lewis, R; Kearton, T; Smith, O

    2016-11-01

    The key to better nutrient efficiency is to simultaneously improve uptake and decrease losses. This study sought to achieve this balance using sorbent additions and manure nutrients (spent poultry litter; SL) compared with results obtained using conventional sources (Conv; urea nitrogen, N; and phosphate-phosphorus; P). Two experiments were conducted. Firstly, a phosphorus pot trial involving two soils (sandy and clay) based on a factorial design (Digitaria eriantha/Pennisetum clandestinum). Subsequently, a factorial N and P field trial was conducted on the clay soil (D. eriantha/Lolium rigidum). In the pot trial, sorbent additions (26.2g of hydrotalcite [HT] gP(-1)) to the Conv treatment deferred P availability (both soils) as did SL in the sandy soil. In this soil, P delivery by the Conv treatments declined rapidly, and began to fall behind the HT and SL treatments. Addition of HT increased post-trial Colwell P. In the field trial low HT-rates (3.75 and 7.5g of HTgP(-1)) plus bentonite, allowed dry matter production and nutrient uptake to match that of Conv treatments, and increased residual mineral-N. The SL treatments performed similarly to (or better than) Conv treatments regarding nutrient uptake. With successive application, HT forms may provide better supply profiles than Conv treatments. Our findings, combined with previous studies, suggest it is possible to use manures and ion-exchangers to match conventional N and P source productivity with lower risk of nutrient losses. PMID:27432730

  19. Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production.

    PubMed

    Yu, Qin; Powles, Stephen

    2014-11-01

    Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides (metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in Australia (in Lolium rigidum) and the United Kingdom (in Alopecurus myosuroides) and is now increasingly recognized in several crop-weed species as a looming threat to herbicide sustainability and thus world crop production. Metabolic resistance often confers resistance to herbicides of different chemical groups and sites of action and can extend to new herbicide(s). Cytochrome P450 monooxygenase, glycosyl transferase, and glutathione S-transferase are often implicated in herbicide metabolic resistance. However, precise biochemical and molecular genetic elucidation of metabolic resistance had been stalled until recently. Complex cytochrome P450 superfamilies, high genetic diversity in metabolic resistant weedy plant species (especially cross-pollinated species), and the complexity of genetic control of metabolic resistance have all been barriers to advances in understanding metabolic herbicide resistance. However, next-generation sequencing technologies and transcriptome-wide gene expression profiling are now revealing the genes endowing metabolic herbicide resistance in plants. This Update presents an historical review to current understanding of metabolic herbicide resistance evolution in weedy plant species.

  20. Effect of feeding buckwheat and chicory silages on fatty acid profile and cheese-making properties of milk from dairy cows.

    PubMed

    Kälber, Tasja; Kreuzer, Michael; Leiber, Florian

    2013-02-01

    Fresh buckwheat (Fagopyrum esculentum) and chicory (Cichorium intybus) had been shown to have the potential to improve certain milk quality traits when fed as forages to dairy cows. However, the process of ensiling might alter these properties. In the present study, two silages, prepared from mixtures of buckwheat or chicory and ryegrass, were compared with pure ryegrass silage (Lolium multiflorum) by feeding to 3 × 6 late-lactating cows. The dietary dry matter proportions realised for buckwheat and chicory were 0.46 and 0.34 accounting also for 2 kg/d of concentrate. Data and samples were collected from days 10 to 15 of treatment feeding. Buckwheat silage was richest in condensed tannins. Proportions of polyunsaturated fatty acids (PUFA) and α-linoleic acid in total fatty acids (FA) were highest in the ryegrass silage. Feed intake, milk yield and milk gross composition did not differ among the groups. Feeding buckwheat resulted in the highest milk fat concentrations (g/kg) of linoleic acid (15.7) and total PUFA (40.5; both P < 0.05 compared with ryegrass). The concentration of α-linolenic acid in milk fat was similar across treatments, but its apparent recovery in milk relative to the amounts ingested was highest with buckwheat. The same was true for the occurrence of FA biohydrogenation products in milk relative to α-linolenic acid intake. Recovery of dietary linoleic acid in milk remained unaffected. Feeding buckwheat silage shortened rennet coagulation time by 26% and tended (P < 0.1) to increase curd firmness by 29%. In conclusion, particularly buckwheat silage seems to have a certain potential to modify the transfer of FA from feed to milk and to contribute to improved cheese-making properties.

  1. Increased Uptake of Chelated Copper Ions by Lolium perenne Attributed to Amplified Membrane and Endodermal Damage

    PubMed Central

    Johnson, Anthea; Singhal, Naresh

    2015-01-01

    The contributions of mechanisms by which chelators influence metal translocation to plant shoot tissues are analyzed using a combination of numerical modelling and physical experiments. The model distinguishes between apoplastic and symplastic pathways of water and solute movement. It also includes the barrier effects of the endodermis and plasma membrane. Simulations are used to assess transport pathways for free and chelated metals, identifying mechanisms involved in chelate-enhanced phytoextraction. Hypothesized transport mechanisms and parameters specific to amendment treatments are estimated, with simulated results compared to experimental data. Parameter values for each amendment treatment are estimated based on literature and experimental values, and used for model calibration and simulation of amendment influences on solute transport pathways and mechanisms. Modeling indicates that chelation alters the pathways for Cu transport. For free ions, Cu transport to leaf tissue can be described using purely apoplastic or transcellular pathways. For strong chelators (ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA)), transport by the purely apoplastic pathway is insufficient to represent measured Cu transport to leaf tissue. Consistent with experimental observations, increased membrane permeability is required for simulating translocation in EDTA and DTPA treatments. Increasing the membrane permeability is key to enhancing phytoextraction efficiency. PMID:26512647

  2. Modeling Lolium perenne L. roots in the presence of empirical black holes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant root models are designed for understanding structural or functional aspects of root systems. When a process is not thoroughly understood, a black box object is used. However, when a process exists but empirical data do not indicate its existence, you have a black hole. The object of this re...

  3. Addition of an organic amendment and/or residue mud to bauxite residue sand in order to improve its properties as a growth medium.

    PubMed

    Jones, B E H; Haynes, R J; Phillips, I R

    2012-03-01

    The effects of addition of carbonated residue mud (RMC) or seawater neutralized residue mud (RMS), at two rates, in the presence or absence of added green waste compost, on the chemical, physical and microbial properties of gypsum-treated bauxite residue sand were studied in a laboratory incubation study. The growth of two species commonly used in revegetation of residue sand (Lolium rigidum and Acacia saligna) in the treatments was then studied in a 18-week greenhouse study. Addition of green waste-based compost increased ammonium acetate-extractable (exchangeable) Mg, K and Na. Addition of residue mud at 5 and 10% w/w reduced exchangeable Ca but increased that of Mg and Na (and K for RMS). Concentrations of K, Na, Mg and level of EC in saturation paste extracts were increased by residue mud additions. Concentrations of cations in water extracts were considerably higher than those in saturation paste extracts but trends with treatment were broadly similar. Addition of both compost and residue mud caused a significant decrease in macroporosity with a concomitant increase in mesoporosity and microporosity, available water holding capacity and the quantity of water held at field capacity. Increasing rates of added residue mud reduced the percentage of sample present as discrete sand particles and increased that in aggregated form (particularly in the 1-2 and >10mm diameter ranges). Organic C content, C/N ratio, soluble organic C, microbial biomass C and basal respiration were increased by compost additions. Where compost was added, residue mud additions caused a substantial increase in microbial biomass and basal respiration. L. rigidum grew satisfactorily in all treatments although yields tended to be reduced by additions of mud (especially RMC) particularly in the absence of added compost. Growth of A. saligna was poor in sand alone and mud-amended sand and was greatly promoted by additions of compost. However, in the presence of compost, addition of carbonated

  4. Effects of Temperature on Rate of Feeding of the Plant Parasitic Nematodes Rotylenchus robustus, Xiphinema diversicaudatum, and Hemicycliophora conida.

    PubMed

    Boag, B

    1980-07-01

    Rotylenchus robustus, Xiphinema diversicaudatum, and Hemicycgiophora conida were observed feeding over a range of temperatures on perennial rye-grass (Lolium perenne) seedlings grown on agar plates. R. robustus fed between 0.5 and 42.5 C, X. diversicaudatum between 5.0 and 37.0 C and H. conida between 5.0 and 34.0 C. Between 10 and 25 C there was a direct relationship between temperature and rate of esophageal bulb contractions. Above 25 C the number of esophageal contractions/min did not increase at the same rate and eventually decreased. At the extremes of temperature range, abnormal feeding behaviour was observed. Rates of esophageal bulb contraction did not differ in the different nematode life stages and sexes, or at different feeding sites on the roots.

  5. Identification of a gene involved in the regulation of hyphal growth of Epichloë festucae during symbiosis.

    PubMed

    Bassett, Shalome A; Johnson, Richard D; Simpson, Wayne R; Laugraud, Aurelie; Jordan, T William; Bryan, Gregory T

    2016-10-01

    Secreted proteins, those involved in cell wall biogenesis, are likely to play a role in communication in the symbiotic interaction between the fungal endophyte Epichloë festucae with perennial ryegrass (Lolium perenne), particularly given the close association between fungal hyphae and the plant cell wall. Our hypothesis was that secreted proteins are likely to be responsible for establishing and maintaining a normal symbiotic relationship. We analyzed an endophyte EST database for genes with predicted signal peptide sequences. Here, we report the identification and characterization of rhgA; a gene involved in the regulation of hyphal growth in planta In planta analysis of ΔrhgA mutants showed that disruption of rhgA resulted in extensive unregulated hyphal growth. This phenotype was fully complemented by insertion of the rhgA gene and suggests that rhgA is important for maintaining normal hyphal growth during symbiosis. PMID:27624305

  6. Efficient Phosphorus Cycling in Food Production: Predicting the Phosphorus Fertilization Effect of Sludge from Chemical Wastewater Treatment.

    PubMed

    Falk Øgaard, Anne; Brod, Eva

    2016-06-22

    This study examined the P fertilization effects of 11 sewage sludges obtained from sewage treated with Al and/or Fe salts to remove P by a pot experiment with ryegrass (Lolium multiflorum) and a nutrient-deficient sand-peat mixture. Also it investigated whether fertilization effects could be predicted by chemical sludge characteristics and/or by P extraction. The mineral fertilizer equivalent (MFE) value varied significantly but was low for all sludges. MFE was best predicted by a negative correlation with ox-Al and ox-Fe in sludge, or by a positive correlation with P extracted with 2% citric acid. Ox-Al had a greater negative impact on MFE than ox-Fe, indicating that Fe salts are preferable as a coagulant when aiming to increase the plant availability of P in sludge. The results also indicate that sludge liming after chemical wastewater treatment with Al and/or Fe salts increases the P fertilization effect.

  7. A novel grass hybrid to reduce flood generation in temperate regions

    PubMed Central

    Macleod, Christopher (Kit) J. A.; Humphreys, Mike W.; Whalley, W. Richard; Turner, Lesley; Binley, Andrew; Watts, Chris W.; Skøt, Leif; Joynes, Adrian; Hawkins, Sarah; King, Ian P.; O'Donovan, Sally; Haygarth, Phil M.

    2013-01-01

    We report on the evaluation of a novel grass hybrid that provides efficient forage production and could help mitigate flooding. Perennial ryegrass (Lolium perenne) is the grass species of choice for most farmers, but lacks resilience against extremes of climate. We hybridised L. perenne onto a closely related and more stress-resistant grass species, meadow fescue Festuca pratensis. We demonstrate that the L. perenne × F. pratensis cultivar can reduce runoff during the events by 51% compared to a leading UK nationally recommended L. perenne cultivar and by 43% compared to F. pratensis over a two year field experiment. We present evidence that the reduced runoff from this Festulolium cultivar was due to intense initial root growth followed by rapid senescence, especially at depth. Hybrid grasses of this type show potential for reducing the likelihood of flooding, whilst providing food production under conditions of changing climate. PMID:23619058

  8. Use of pruning waste compost as a component in soilless growing media.

    PubMed

    Benito, Marta; Masaguer, Alberto; De Antonio, Roberto; Moliner, Ana

    2005-03-01

    The objective of this work was to study the use of pruning wastes compost (PWC) as a growing media component for ornamental plants. The main physical, chemical and biological characteristics of PWC were analysed in order to evaluate its suitability for use in soil-less cultivation. Six growth substrates were prepared by mixing PWC with peat (P), ground leaves (GL), sand (S) and spent mushroom compost (SMC) in different proportions. Two different pot experiments were carried out to test its characteristics of production using perennial ryegrass (Lolium perenne L.) and cypress (Cupressus sempervirens L.) as indicators and the different media as treatments. The growth experiments showed that PWC required mixing with a nutrient-richer material to produce higher results. Therefore, substrates containing SMC (PWC+P+SMC and PWC+SMC) seems to be the most adequate growing media. After the statistical analysis, we concluded that the PWC could be used as a growing media component.

  9. Selection of surfactant in remediation of DDT-contaminated soil by comparison of surfactant effectiveness.

    PubMed

    Guo, Ping; Chen, Weiwei; Li, Yueming; Chen, Tao; Li, Linhui; Wang, Guanzhu

    2014-01-01

    With an aim to select the most appropriate surfactant for remediation of DDT-contaminated soil, the performance of nonionic surfactants Tween80, TX-100, and Brij35 and one anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in enhancement of DDT water solubility and desorption of DDT from contaminated soil and their adsorption onto soil and ecotoxicities were investigated in this study. Tween80 had the highest solubilizing and soil-washing ability for DDT among the four experimental surfactants. The adsorption loss of surfactants onto soil followed the order of TX-100 > Tween80 > Brij35 > SDBS. The ecotoxicity of Tween80 to ryegrass (Lolium perenne L.) was lowest. The overall performance considering about the above four aspects suggested that Tween80 should be selected for the remediation of DDT-contaminated soil, because Tween80 had the greatest solubilizing and soil-washing ability for DDT, less adsorption loss onto soil, and the lowest ecotoxicity in this experiment.

  10. Distribution of platinum group elements and other traffic related elements among different plants along some highways in Germany.

    PubMed

    Djingova, Rumiana; Kovacheva, Petya; Wagner, Gerhard; Markert, Bernd

    2003-06-01

    Using ICP-MS and ICP-AES platinum group elements (Pt, Pd, Rh, Ru and Ir) and Ce, La, Nd, Pb and Zr have been determined in street dust, Taraxacum officinale (dandelion), Plantago lanceolata (plantain), Lolium multiflorum (annual ryegrass), Rhytidiadelphus squarrosus (moss) and Vascellum pratense (mushrooms) collected along highways and streets in Germany during 1999. Among the plants Taraxacum officinale (dandelion) reflects most adequately the pollution with the investigated elements matching the results from street dust. A strong positive correlation between all elements determined in the plants is established. Transfer factor for Pt between soil and plants has been determined in an agricultural experiment ranging between 0.004 and 0.008 for two types of soils. PMID:12738216

  11. Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots.

    PubMed

    Gao, Yanzheng; Cheng, Zhaoxia; Ling, Wanting; Huang, Jing

    2010-09-01

    The arbuscular mycorrhizal (AM) hyphae-mediated uptake of polycyclic aromatic hydrocarbons (PAHs) by the roots of ryegrass (Lolium multiflorum Lam.) was investigated using three-compartment systems. Glomus mosseae and Glomus etunicatum were chosen, and fluorene and phenanthrene were used as representative PAHs. When roots were grown in un-spiked soils, AM hyphae extended into PAH-spiked soil and clearly absorbed and transported PAHs to roots, resulting in high concentrations of fluorene and phenanthrene in roots. This was further confirmed by the batch equilibration experiment, which revealed that the partition coefficients (K(d)) of tested PAHs by mycorrhizal hyphae were 270-356% greater than those by roots, suggesting the great potential of hyphae to absorb PAHs. Because of fluorene's lower molecular weight and higher water solubility, its translocation by hyphae was greater than that of phenanthrene. These results provide new perspectives on the AM hyphae-mediated uptake by plants of organic contaminants from soil. PMID:20403686

  12. Zea mI, the maize homolog of the allergen-encoding Lol pI gene of rye grass.

    PubMed

    Broadwater, A H; Rubinstein, A L; Chay, C H; Klapper, D G; Bedinger, P A

    1993-09-15

    Sequence analysis of a pollen-specific cDNA from maize has identified a homolog (Zea mI) of the gene (Lol pI) encoding the major allergen of rye-grass pollen. The protein encoded by the partial cDNA sequence is 59.3% identical and 72.7% similar to the comparable region of the reported amino acid sequence of Lol pIA. Southern analysis indicates that this cDNA represents a member of a small multigene family in maize. Northern analysis shows expression only in pollen, not in vegetative or female floral tissues. The timing of expression is developmentally regulated, occurring at a low level prior to the first pollen mitosis and at a high level after this postmeiotic division. Western analysis detects a protein in maize pollen lysates using polyclonal antiserum and monoclonal antibodies directed against purified Lolium perenne allergen.

  13. Impact of kenaf extracts on germination of green bean, tomato, cucumber, and Italian ryegrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical interaction between plants, referred to as allelopathy, may result in the inhibition of plant growth and development. The objective of this research was to determine the impact of kenaf (Hibiscus cannabinus L.) plant extracts on the seed germination of five plant species. Four concentra...

  14. Distribution and survival of Pseudomonas sp. on Italian ryegrass and Curly dock in Georgia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yellow bud, caused by Pseudomonas sp. is an emerging bacterial disease of onion. Polymerase chain reaction (PCR) assay based on the coronafacate ligase (cfl) and HrpZ genes were used to detect initial suspected bacteria on weeds. Growth on an agar medium, ability to cause a hypersensitive response i...

  15. Variability in nitrogen uptake and utilization among accessions of annual ryegrass and tall fescue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient use of nitrogen (N) applied to grassland is important, both for ensuring economic viability of N use and to minimize the amount of unrecovered N that is susceptible to loss from the agricultural system to the broader environment. Comparison was made of N uptake efficiency and of utilizatio...

  16. The influence of plant species on the plant/air partitioning coefficients of PCBs and chlorinated benzenes

    SciTech Connect

    Koemp, P.; McLachlan, M.S.

    1995-12-31

    The plant/air partitioning coefficients (K{sub PA}) of pentachlorobenzene, hexachlorobenzene and 16 PCB congeners were determined in five different grass and herb species common to Central Europe (Lolium multiflorum, Trifolium repens, Plantago lanceolata, Crepis biennis, Achillea millefolium). The measurements were conducted between 5 C and 35 C using a solid phase fugacity meter. Octanol/air partition coefficients (K{sub OA}) were also measured over a similar temperature range. In all cases an excellent linear relationship between log K{sub PA} and log K{sub OA} was observed (r{sup 2} between 0.80 and 0.99). However, while the slope of this relationship was 1 for Lolium multiflorum (ryegrass), in agreement with previous work, the slopes of the log K{sub PA} vs. log K{sub OA} plot were less than 1 for the other 4 species, lying as low as 0.49 for Achillea millefolium (yarrow). Large differences in the enthalpy of phase change (plant/air) were also observed between the different species, but these differences were not related to the differences in the partition coefficients. These observations demonstrate that the contaminant storage properties of plants are variable, and that the lipophilic compartment in some plants is considerably more polar than octanol. This places constraints on the applicability of current models of plant uptake, almost all of which assume that the lipophilic compartment behaves like octanol, and reinforces the need for more research into the contaminant storage properties of plants.

  17. Herbage intake and milk production of late-lactation dairy cows offered a second-year chicory crop during summer.

    PubMed

    Muir, S K; Ward, G N; Jacobs, J L

    2015-12-01

    Chicory (Cichorum intybus L.) is a summer-active forage herb which has been proposed as an option to increase summer feed supply, increase dry matter intake, nutrient intake, and milk yield from nonirrigated dairy production systems in southern Australia. Dry matter intake, nutrient intake, milk yield, and yield of milk fat and protein of predominantly Holstein-Friesian dairy cows in late lactation consuming 3 herbage-based diets (4 replicates per treatment) were measured. The 3 grazed herbages were second-year chicory (CHIC) and perennial ryegrass (Lolium perenne L.; PRG) monocultures and a mixed sward (~50:50) of chicory and perennial ryegrass (MIX). All diets (CHIC, PRG, and MIX) were supplemented with alfalfa (Medicago sativa L.) hay (5.5kg of DM/cow per day) and an energy-based concentrate pellet (4.0kg of DM/cow per day). There were no significant differences in milk yield (12.0 to 12.6kg/d across the treatments) or the yield of milk fat (539 to 585g/d) and milk protein (433 to 447g/d) between the 3 herbage-based diets. No differences in DMI (17.9 to 19.2kg/d) or estimated metabolizable energy intake (173 to 185MJ/d) were noted between treatments. Estimated metabolizable energy concentrations in the forages on offer were lower in CHIC than PRG (7.6 vs. 8.2MJ/kg of dry matter), but the concentration in consumed herbage was not different (9.1 vs. 9.2MJ/kg of dry matter); as such, potential for increased milk yield in cows offered CHIC was limited. Increased concentration of polyunsaturated fatty acids was observed in chicory herbage compared with perennial ryegrass. This was associated with increased milk conjugated linoleic acid and milk polyunsaturated fatty acids when chicory formed part of the diet (CHIC compared to PRG and MIX). Chicory could be used as an alternative to perennial ryegrass in summer; however, the developmental stage of chicory will influence concentrations of metabolizable energy and neutral detergent fiber and, therefore, intake and milk

  18. Herbage intake and milk production of late-lactation dairy cows offered a second-year chicory crop during summer.

    PubMed

    Muir, S K; Ward, G N; Jacobs, J L

    2015-12-01

    Chicory (Cichorum intybus L.) is a summer-active forage herb which has been proposed as an option to increase summer feed supply, increase dry matter intake, nutrient intake, and milk yield from nonirrigated dairy production systems in southern Australia. Dry matter intake, nutrient intake, milk yield, and yield of milk fat and protein of predominantly Holstein-Friesian dairy cows in late lactation consuming 3 herbage-based diets (4 replicates per treatment) were measured. The 3 grazed herbages were second-year chicory (CHIC) and perennial ryegrass (Lolium perenne L.; PRG) monocultures and a mixed sward (~50:50) of chicory and perennial ryegrass (MIX). All diets (CHIC, PRG, and MIX) were supplemented with alfalfa (Medicago sativa L.) hay (5.5kg of DM/cow per day) and an energy-based concentrate pellet (4.0kg of DM/cow per day). There were no significant differences in milk yield (12.0 to 12.6kg/d across the treatments) or the yield of milk fat (539 to 585g/d) and milk protein (433 to 447g/d) between the 3 herbage-based diets. No differences in DMI (17.9 to 19.2kg/d) or estimated metabolizable energy intake (173 to 185MJ/d) were noted between treatments. Estimated metabolizable energy concentrations in the forages on offer were lower in CHIC than PRG (7.6 vs. 8.2MJ/kg of dry matter), but the concentration in consumed herbage was not different (9.1 vs. 9.2MJ/kg of dry matter); as such, potential for increased milk yield in cows offered CHIC was limited. Increased concentration of polyunsaturated fatty acids was observed in chicory herbage compared with perennial ryegrass. This was associated with increased milk conjugated linoleic acid and milk polyunsaturated fatty acids when chicory formed part of the diet (CHIC compared to PRG and MIX). Chicory could be used as an alternative to perennial ryegrass in summer; however, the developmental stage of chicory will influence concentrations of metabolizable energy and neutral detergent fiber and, therefore, intake and milk

  19. Silages containing buckwheat and chicory: quality, digestibility and nitrogen utilisation by lactating cows.

    PubMed

    Kälber, Tasja; Kreuzer, Michael; Leiber, Florian

    2012-02-01

    The suitability of silages containing buckwheat (Fagopyrum esculentum) and chicory (Cichorium intybus) for the nutrition of dairy cows was determined. Buckwheat and chicory were sown in mixture with ryegrass (Lolium multilorum), and a pure ryegrass culture served as a control forage. Swards were harvested 55 d after sowing and were ensiled after wilting, without additives in small round bales. Finally, buckwheat and chicory made up the dietary dry matter (DM) proportions of 0.46 and 0.34, respectively. Concentrates were restricted to 2 kg/d. Diets were fed to 3 x 6 late-lactating cows for 15 d at ad libitum access. During the collection period (days 10-15) amounts of feed intake and faeces, urine and milk were recorded and samples were taken. Ensilability was good for buckwheat and ryegrass swards, but was so less for the chicory sward, which was rich in total ash. The buckwheat silage was rich in acid detergent fibre (445 g/kg DM) and lignin (75.7 g/kg DM) and contained less crude protein (135 g/kg DM) and ether extract (15.8 g/kg DM) than the other silages. Consistent with that, the apparent digestibility of the organic matter and fibre were lowest when feeding this silage. The potassium concentrations in the chicory and ryegrass silages were high (61 g/ kg) and lower in buckwheat (47 g/kg). No significant treatment effects on intake, body weight, milk yield or milk composition as well as plasma beta-hydroxybutyrate and non-esterified fatty acids occurred. Being lowest in nitrogen (N) content, the buckwheat silage resulted in the lowest urine N losses and the most efficient N utilisation for milk protein synthesis, but this at cost of body N retention. The results show that silages containing buckwheat and chicory may be used as components of the forage part of dairy cows' diets even though they were found to have a lower feeding value than ryegrass silage.

  20. Phytotoxicity of nitroaromatic energetic compounds freshly amended or weathered and aged in sandy loam soil.

    PubMed

    Rocheleau, Sylvie; Kuperman, Roman G; Martel, Majorie; Paquet, Louise; Bardai, Ghalib; Wong, Stephen; Sarrazin, Manon; Dodard, Sabine; Gong, Ping; Hawari, Jalal; Checkai, Ronald T; Sunahara, Geoffrey I

    2006-01-01

    The toxicities of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), 2,4-dinitrotoluene (2,4-DNT), and 2,6-dinitrotoluene (2,6-DNT) to terrestrial plants alfalfa (Medicago sativa L.), Japanese millet (Echinochloa crusgalli L.), and perennial ryegrass (Lolium perenne L.) were determined in Sassafras sandy loam soil using seedling emergence, fresh shoot, and dry mass measurement endpoints. A 13-week weathering and aging of energetic materials in soils, which included wetting and drying cycles, and exposure to sunlight of individual soil treatments, was incorporated into the study design to better reflect the soil exposure conditions in the field than toxicity determinations in freshly amended soils. Definitive toxicity tests showed that dinitrotoluenes were more phytotoxic for all plant species in freshly amended treatments based on EC20 values for dry shoot ranging from 3 to 24mgkg(-1) compared with values for TNB or TNT ranging from 43 to 62mgkg(-1). Weathering and aging of energetic materials (EMs) in soil significantly decreased the toxicity of TNT, TNB or 2,6-DNT to Japanese millet or ryegrass based on seedling emergence, but significantly increased the toxicity of all four EMs to all three plant species based on shoot growth. Exposure of the three plant species to relatively low concentrations of the four compounds initially stimulated plant growth before the onset of inhibition at greater concentrations (hormesis).

  1. Possible evidence for contribution of arbuscular mycorrhizal fungi (AMF) in phytoremediation of iron-cyanide (Fe-CN) complexes.

    PubMed

    Sut, Magdalena; Boldt-Burisch, Katja; Raab, Thomas

    2016-08-01

    Arbuscular mycorrhizal fungi (AMF) are integral functioning parts of plant root systems and are widely recognized for enhancing contaminants uptake and metabolism on severely disturbed sites. However, the patterns of their influence on the phytoremediation of iron-cyanide (Fe-CN) complexes are unknown. Fe-CN complexes are of great common interest, as iron is one of the most abundant element in soil and water. Effect of ryegrass (Lolium perenne L.) roots inoculation, using mycorrhizal fungi (Rhizophagus irregularis and a mixture of R. irregularis, Funneliformis mosseae, Rhizophagus aggregatus, and Claroideoglomus etunicatum), on iron-cyanide sorption was studied. Results indicated significantly higher colonization of R. irregularis than the mixture of AMF species on ryegrass roots. Series of batch experiments using potassium hexacyanoferrate (II) solutions, in varying concentrations revealed significantly higher reduction of total CN and free CN content in the mycorrhizal roots, indicating greater cyanide decrease in the treatment inoculated with R. irregularis. Our study is a first indication of the possible positive contribution of AM fungi on the phytoremediation of iron-cyanide complexes. PMID:27256319

  2. Possible evidence for contribution of arbuscular mycorrhizal fungi (AMF) in phytoremediation of iron-cyanide (Fe-CN) complexes.

    PubMed

    Sut, Magdalena; Boldt-Burisch, Katja; Raab, Thomas

    2016-08-01

    Arbuscular mycorrhizal fungi (AMF) are integral functioning parts of plant root systems and are widely recognized for enhancing contaminants uptake and metabolism on severely disturbed sites. However, the patterns of their influence on the phytoremediation of iron-cyanide (Fe-CN) complexes are unknown. Fe-CN complexes are of great common interest, as iron is one of the most abundant element in soil and water. Effect of ryegrass (Lolium perenne L.) roots inoculation, using mycorrhizal fungi (Rhizophagus irregularis and a mixture of R. irregularis, Funneliformis mosseae, Rhizophagus aggregatus, and Claroideoglomus etunicatum), on iron-cyanide sorption was studied. Results indicated significantly higher colonization of R. irregularis than the mixture of AMF species on ryegrass roots. Series of batch experiments using potassium hexacyanoferrate (II) solutions, in varying concentrations revealed significantly higher reduction of total CN and free CN content in the mycorrhizal roots, indicating greater cyanide decrease in the treatment inoculated with R. irregularis. Our study is a first indication of the possible positive contribution of AM fungi on the phytoremediation of iron-cyanide complexes.

  3. Elimination of ergovaline from a grass–Neotyphodium endophyte symbiosis by genetic modification of the endophyte

    PubMed Central

    Panaccione, Daniel G.; Johnson, Richard D.; Wang, Jinghong; Young, Carolyn A.; Damrongkool, Prapassorn; Scott, Barry; Schardl, Christopher L.

    2001-01-01

    The fungal endophytes Neotyphodium lolii and Neotyphodium sp. Lp1 from perennial ryegrass (Lolium perenne), and related endophytes in other grasses, produce the ergopeptine toxin ergovaline, among other alkaloids, while also increasing plant fitness and resistance to biotic and abiotic stress. In the related fungus, Claviceps purpurea, the biosynthesis of ergopeptines requires the activities of two peptide synthetases, LPS1 and LPS2. A peptide synthetase gene hypothesized to be important for ergopeptine biosynthesis was identified in C. purpurea by its clustering with another ergot alkaloid biosynthetic gene, dmaW. Sequence analysis conducted independently of the research presented here indicates that this gene encodes LPS1 [Tudzynski, P., Holter, K., Correia, T., Arntz, C., Grammel, N. & Keller, U. (1999) Mol. Gen. Genet. 261, 133–141]. We have cloned a similar peptide synthetase gene from Neotyphodium lolii and inactivated it by gene knockout in Neotyphodium sp. Lp1. The resulting strain retained full compatibility with its perennial ryegrass host plant as assessed by immunoblotting of tillers and quantitative PCR. However, grass–endophyte associations containing the knockout strain did not produce detectable quantities of ergovaline as analyzed by HPLC with fluorescence detection. Disruption of this gene provides a means to manipulate the accumulation of ergovaline in endophyte-infected grasses for the purpose of determining the roles of ergovaline in endophyte-associated traits and, potentially, for ameliorating toxicoses in livestock. PMID:11592979

  4. Fate and Uptake of Pharmaceuticals in Soil–Plant Systems

    PubMed Central

    2014-01-01

    Pharmaceuticals have been detected in the soil environment where there is the potential for uptake into crops. This study explored the fate and uptake of pharmaceuticals (carbamazepine, diclofenac, fluoxetine, propranolol, sulfamethazine) and a personal care product (triclosan) in soil–plant systems using radish (Raphanus sativus) and ryegrass (Lolium perenne). Five of the six chemicals were detected in plant tissue. Carbamazepine was taken up to the greatest extent in both the radish (52 μg/g) and ryegrass (33 μg/g), whereas sulfamethazine uptake was below the limit of quantitation (LOQ) (<0.01 μg/g). In the soil, concentrations of diclofenac and sulfamethazine dropped below the LOQ after 7 days. However, all pharmaceuticals were still detectable in the pore water at the end of the experiment. The results demonstrate the ability of plant species to accumulate pharmaceuticals from soils with uptake apparently specific to both plant species and chemical. Results can be partly explained by the hydrophobicity and extent of ionization of each chemical in the soil. PMID:24405013

  5. Chemically enhanced phytoextraction of lead-contaminated soils.

    PubMed

    Perry, V Ryan; Krogstad, Eirik J; El-Mayas, Hanan; Greipsson, Sigurdur

    2012-08-01

    The effects of the combined application of soil fungicide (benomyl) and ethylenediaminetetraacetic acid (EDTA) on lead (Pb) phytoextraction by ryegrass (Lolium perenne) were examined. Twenty-five pots of Pb-contaminated soil (200 mg Pb kg(-1)) were seeded with ryegrass and randomly arranged into the following treatments: (1) Control, (2) benomyl, (3) EDTA, (4) benomyl and EDTA (B+E), and (5) benomyl followed by an application of EDTA 14 days later (B .. . E). Chemicals were applied when plants had reached maximum growth. Plants were analyzed for foliage Pb concentration using inductively coupled argon plasma (ICAP) spectrometry. The synergistic effects of the combined benomyl and EDTA application (treatments 4 and 5) were made evident by the significantly (p < 0.05) highest foliage Pb concentrations. However, the foliage dry biomass was significantly lowest for plants in treatments 4 and 5. The bioaccumulation factor (BF) and phytoextraction ratio (PR) were highest for plants in treatment 5 followed by plants in treatment 4. PMID:22908638

  6. Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Liu, Juan; Gao, Yanzheng; Jin, Li; Gu, Yujun; Wang, Wanqing

    2014-06-01

    This investigation provides a novel method of endophyte-aided removal of polycyclic aromatic hydrocarbons (PAHs) from plant bodies. A phenanthrene-degrading endophytic bacterium Pseudomonas sp. Ph6 was isolated from clover (Trifolium pratense L.) grown in a PAH-contaminated site. After being marked with the GFP gene, the colonization and distribution of strain Ph6-gfp was directly visualized in plant roots, stems, and leaves for the first time. After ryegrass (Lolium multiflorum Lam.) roots inoculation, strain Ph6-gfp actively and internally colonized plant roots and transferred vertically to the shoots. Ph6-gfp had a natural capacity to cope with phenanthrene in vitro and in planta. Ph6-gfp degraded 81.1% of phenanthrene (50 mg.L-1) in a culture solution within 15 days. The inoculation of plants with Ph6-gfp reduced the risks associated with plant phenanthrene contamination based on observations of decreased concentration, accumulation, and translocation factors of phenanthrene in ryegrass. Our results will have important ramifications in the assessment of the environmental risks of PAHs and in finding ways to circumvent plant PAH contamination.

  7. Seasonal Abundance and Phenology of Oebalus pugnax (Hemiptera: Pentatomidae) on Graminaceous Hosts in the Delta Region of Mississippi.

    PubMed

    Awuni, G A; Gore, J; Cook, D; Musser, F; Bond, J

    2015-08-01

    The rice stink bug, Oebalus pugnax (F.), is a graminaceous feeder, and the most injurious insect pest of heading rice, Oryza sativa L., in the United States. Rice growers are aware of the economic importance of host grasses in O. pugnax abundance. However, the need for increased knowledge of host sequence relative to O. pugnax abundance is vital. Densities of O. pugnax on 15 graminaceous hosts were evaluated in the central Mississippi Delta from April through August in 2011 and 2012. Two cultivated and 13 wild host grasses were sampled using a sweep net. Overall, populations of O. pugnax were lower in 2012 than in 2011. Italian ryegrass, Lolium perenne L. ssp. multiflorum (Lambert), was the main host that supported O. pugnax survival and reproduction from overwintering to early summer. Echinochloa spp., Digitaria spp., and Eriochloa spp. maintained greater populations of O. pugnax in the summer. Browntop millet, Urochloa ramosa (L.) Nguyen, and broadleaf signalgrass, U. platyphylla (Munro ex C. Wright) R. D. Webster, were important for populations of O. pugnax populations immediately prior to overwintering. Host switching was also an important factor that contributed to O. pugnax abundance. The evolution of Italian ryegrass resistance to the broad spectrum herbicide glyphosate in the central Mississippi delta has become an important component of O. pugnax population dynamics because of its increased abundance in and around agricultural areas. Cultural control measures on host grasses before flowering could result in less use of insecticides, thereby reducing cost of rice production. PMID:26314038

  8. Phytoextraction for clean-up of low-level uranium contaminated soil evaluated.

    PubMed

    Vandenhove, H; Van Hees, M

    2004-01-01

    Spills in the nuclear fuel cycle have led to soil contamination with uranium. In case of small contamination just above release levels, low-cost yet sufficiently efficient remedial measures are recommended. This study was executed to test if low-level U contaminated sandy soil from a nuclear fuel processing site could be phytoextracted in order to attain the required release limits. Two soils were tested: a control soil (317 Bq 238U kg(-1)) and the same soil washed with bicarbonate (69 Bq 238U kg(-1)). Ryegrass (Lolium perenne cv. Melvina) and Indian mustard (Brassica juncea cv. Vitasso) were used as test plants. The annual removal of soil activity by the biomass was less than 0.1%. The addition of citric acid (25 mmol kg(-1)) 1 week before the harvest increased U uptake up to 500-fold. With a ryegrass and mustard yield of 15,000 and 10,000 kg ha(-1), respectively, up to 3.5% and 4.6% of the soil activity could be removed annually by the biomass. With a desired activity reduction level of 1.5 and 5 for the bicarbonate-washed and control soil, respectively, it would take 10-50 years to attain the release limit. However, citric acid addition resulted in a decreased dry weight production. PMID:15162854

  9. Greenhouse evaluation of struvite and sludges from municipal wastewater treatment works as phosphorus sources for plants.

    PubMed

    Plaza, César; Sanz, Rafael; Clemente, Cristina; Fernández, José M; González, Ricardo; Polo, Alfredo; Colmenarejo, Manuel F

    2007-10-01

    Sewage sludge obtained by a conventional aerobic activated sludge process (CSS), P-rich sewage sludge from an enhanced biological P removal process (PRS), and struvite (MgNH 4PO 4 x 6H 2O) recovered from an anaerobic digester supernatant using a low-grade MgO byproduct from the calcination of natural magnesite as a Mg source (STR) were evaluated as P sources for plant growth. For this purpose, a greenhouse pot experiment was conducted using a P-deficient loamy sand soil and perennial ryegrass ( Lolium perenne L.) as the test crop. The P sources were applied at rates equivalent to 0, 9, 17, 26, 34, and 44 mg/kg P. Single superphosphate (SUP) was used as reference for comparison with the other P sources. The results obtained indicated that STR was as effective as SUP in increasing the dry matter yield and supplying P to ryegrass. Compared to SUP and STR, PRS and especially CSS exhibited less agronomic effectiveness as P sources, which may be attributed, at least partially, to greater soil P fixation because of the larger amount of Fe incorporated with these materials. PMID:17877411

  10. Seasonal Abundance and Phenology of Oebalus pugnax (Hemiptera: Pentatomidae) on Graminaceous Hosts in the Delta Region of Mississippi

    PubMed Central

    Awuni, G. A.; Gore, J.; Cook, D.; Musser, F.; Bond, J.

    2015-01-01

    The rice stink bug, Oebalus pugnax (F.), is a graminaceous feeder, and the most injurious insect pest of heading rice, Oryza sativa L., in the United States. Rice growers are aware of the economic importance of host grasses in O. pugnax abundance. However, the need for increased knowledge of host sequence relative to O. pugnax abundance is vital. Densities of O. pugnax on 15 graminaceous hosts were evaluated in the central Mississippi Delta from April through August in 2011 and 2012. Two cultivated and 13 wild host grasses were sampled using a sweep net. Overall, populations of O. pugnax were lower in 2012 than in 2011. Italian ryegrass, Lolium perenne L. ssp. multiflorum (Lambert), was the main host that supported O. pugnax survival and reproduction from overwintering to early summer. Echinochloa spp., Digitaria spp., and Eriochloa spp. maintained greater populations of O. pugnax in the summer. Browntop millet, Urochloa ramosa (L.) Nguyen, and broadleaf signalgrass, U. platyphylla (Munro ex C. Wright) R. D. Webster, were important for populations of O. pugnax populations immediately prior to overwintering. Host switching was also an important factor that contributed to O. pugnax abundance. The evolution of Italian ryegrass resistance to the broad spectrum herbicide glyphosate in the central Mississippi delta has become an important component of O. pugnax population dynamics because of its increased abundance in and around agricultural areas. Cultural control measures on host grasses before flowering could result in less use of insecticides, thereby reducing cost of rice production. PMID:26314038

  11. Colonization on Root Surface by a Phenanthrene-Degrading Endophytic Bacterium and Its Application for Reducing Plant Phenanthrene Contamination

    PubMed Central

    Liu, Juan; Liu, Shuang; Sun, Kai; Sheng, Yuehui; Gu, Yujun; Gao, Yanzheng

    2014-01-01

    A phenanthrene-degrading endophytic bacterium, Pn2, was isolated from Alopecurus aequalis Sobol grown in soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Based on morphology, physiological characteristics and the 16S rRNA gene sequence, it was identified as Massilia sp. Strain Pn2 could degrade more than 95% of the phenanthrene (150 mg·L−1) in a minimal salts medium (MSM) within 48 hours at an initial pH of 7.0 and a temperature of 30°C. Pn2 could grow well on the MSM plates with a series of other PAHs, including naphthalene, acenaphthene, anthracene and pyrene, and degrade them to different degrees. Pn2 could also colonize the root surface of ryegrass (Lolium multiflorum Lam), invade its internal root tissues and translocate into the plant shoot. When treated with the endophyte Pn2 under hydroponic growth conditions with 2 mg·L−1 of phenanthrene in the Hoagland solution, the phenanthrene concentrations in ryegrass roots and shoots were reduced by 54% and 57%, respectively, compared with the endophyte-free treatment. Strain Pn2 could be a novel and useful bacterial resource for eliminating plant PAH contamination in polluted environments by degrading the PAHs inside plants. Furthermore, we provide new perspectives on the control of the plant uptake of PAHs via endophytic bacteria. PMID:25247301

  12. Plant-bacterial combinations to phytoremediate soil contaminated with high concentrations of 2,4,6-trinitrotoluene

    SciTech Connect

    Siciliano, S.D.; Greer, C.W.

    2000-02-01

    The explosive 2,4,6-trinitrotoluene (TNT) is a contaminant of concern at abandoned manufacturing and military sites because of its mobility and toxicity. Phytoremediation may play a role in natural attenuation scenarios by reducing TNT levels at point sources. The purpose of this study was to develop a phytoremediation system suitable for use in soils contaminated with high TNT levels. Sixteen grasses were screened for their tolerance to 41 g TNT kg{sup 1} soil. Meadow bromegrass (Bromus erectus Huds.), perennial ryegrass (Lolium perenne L.) and sweet vernalgrass (Anthoxanthum odoratum L.) grew in this soil. Inoculating these grasses with Pseudomonas sp. Strain 14, capable of transforming TNT into mono- and di-amino metabolites, increased the growth of meadow bromegrass but was lethal to perennial ryegrass and sweet vernalgrass. Meadow bromegrass inoculated with strain 14 reduced TNT levels by 30% compared with the control soil and had 50% more plant biomass than noninoculated plants. Meadow bromegrass, combined with strain 14, increased the percentage of the culturable soil heterotrophic population containing the genes involved in 2-nitrotoluene (ntdAa) metabolism 3-fold, as well as the population containing the genes involved in 4-nitrotoluene (ntnM) metabolism 14-fold. strain 14 inoculation of meadow bromegrass altered the portion of the rhizosphere community involved in nitroaromatic metabolism and led to a reduction in soil TNT levels.

  13. Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile.

    PubMed

    Verdejo, José; Ginocchio, Rosanna; Sauvé, Sébastien; Salgado, Eduardo; Neaman, Alexander

    2015-12-01

    It has been argued that the identification of the phytotoxic metal thresholds in soil should be based on field-collected soil rather than on artificially-contaminated soils. However, the use of field-collected soils presents several difficulties for interpretation because of mixed contamination and unavoidable covariance of metal contamination with other soil properties that affect plant growth. The objective of this study was to estimate thresholds of copper phytotoxicity in topsoils of 27 agricultural areas historically contaminated by mining activities in Chile. We performed emergence and early growth (21 days) tests (OECD 208 and ISO 11269-2) with perennial ryegrass (Lolium perenne L.). The total Cu content in soils was the best predictor of plant growth and shoot Cu concentrations, while soluble Cu and pCu(2+) did not well correlate with these biological responses. The effects of Pb, Zn, and As on plant responses were not significant, suggesting that Cu is a metal of prime concern for plant growth in soils exposed to copper mining activities in Chile. The effects of soil nutrient availability and shoot nutrient concentrations on ryegrass response were not significant. It was possible to determine EC10, EC25 and EC50 of total Cu in the soil of 327 mg kg(-1), 735 mg kg(-1) and 1144 mg kg(-1), respectively, using the shoot length as a response variable. However, the derived 95% confidence intervals for EC10, EC25 and EC50 values of total soil Cu were wide, and thus not allowing a robust assessment of metal toxicity for agricultural crops, based on total soil Cu concentrations. Thus, plant tests might need to be performed for metal toxicity assessment. This study suggests shoot length of ryegrass as a robust response variable for metal toxicity assessment in contaminated soils with different nutrient availability.

  14. Effect of compost-, sand-, or gypsum-amended waste foundry sands on turfgrass yield and nutrient content.

    PubMed

    de Koff, J P; Lee, B D; Dungan, R S; Santini, J B

    2010-01-01

    To prevent the 7 to 11 million metric tons of waste foundry sand (WFS) produced annually in the USA from entering landfills, current research is focused on the reuse of WFSs as soil amendments. The effects of different WFS-containing amendments on turfgrass growth and nutrient content were tested by planting perennial ryegrass (Lolium perenne L.) and tall fescue (Schedonorus phoenix (Scop.) Holub) in different blends containing WFS. Blends of WFS were created with compost or acid-washed sand (AWS) at varying percent by volume with WFS or by amendment with gypsum (9.6 g gypsum kg(-1) WFS). Measurements of soil strength, shoot and root dry weight, plant surface coverage, and micronutrients (Al, Fe, Mn, Cu, Zn, B, Na) and macronutrients (N, P, K, S, Ca, Mg) were performed for each blend and compared with pure WFS and with a commercial potting media control. Results showed that strength was not a factor for any of the parameters studied, but the K/Na base saturation ratio of WFS:compost mixes was highly correlated with total shoot dry weight for perennial ryegrass (r = 0.995) and tall fescue (r = 0.94). This was further substantiated because total shoot dry weight was also correlated with shoot K/Na concentration of perennial ryegrass (r = 0.99) and tall fescue (r = 0.95). A compost blend containing 40% WFS was determined to be the optimal amendment for the reuse of WFS because it incorporated the greatest possible amount of WFS without major reduction in turfgrass growth. PMID:20048325

  15. Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves.

    PubMed

    Schreck, Eva; Dappe, Vincent; Sarret, Géraldine; Sobanska, Sophie; Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna; Magnin, Valérie; Ranieri, Vincent; Dumat, Camille

    2014-04-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO4, chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO3. In rye-grass, the changes in Pb speciation were even more egregious: Pb-cell wall and Pb-organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to better assess the

  16. Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile.

    PubMed

    Verdejo, José; Ginocchio, Rosanna; Sauvé, Sébastien; Salgado, Eduardo; Neaman, Alexander

    2015-12-01

    It has been argued that the identification of the phytotoxic metal thresholds in soil should be based on field-collected soil rather than on artificially-contaminated soils. However, the use of field-collected soils presents several difficulties for interpretation because of mixed contamination and unavoidable covariance of metal contamination with other soil properties that affect plant growth. The objective of this study was to estimate thresholds of copper phytotoxicity in topsoils of 27 agricultural areas historically contaminated by mining activities in Chile. We performed emergence and early growth (21 days) tests (OECD 208 and ISO 11269-2) with perennial ryegrass (Lolium perenne L.). The total Cu content in soils was the best predictor of plant growth and shoot Cu concentrations, while soluble Cu and pCu(2+) did not well correlate with these biological responses. The effects of Pb, Zn, and As on plant responses were not significant, suggesting that Cu is a metal of prime concern for plant growth in soils exposed to copper mining activities in Chile. The effects of soil nutrient availability and shoot nutrient concentrations on ryegrass response were not significant. It was possible to determine EC10, EC25 and EC50 of total Cu in the soil of 327 mg kg(-1), 735 mg kg(-1) and 1144 mg kg(-1), respectively, using the shoot length as a response variable. However, the derived 95% confidence intervals for EC10, EC25 and EC50 values of total soil Cu were wide, and thus not allowing a robust assessment of metal toxicity for agricultural crops, based on total soil Cu concentrations. Thus, plant tests might need to be performed for metal toxicity assessment. This study suggests shoot length of ryegrass as a robust response variable for metal toxicity assessment in contaminated soils with different nutrient availability. PMID:26233921

  17. Cool-season annual pastures with clovers to supplement wintering beef cows nursing calves.

    PubMed

    Gunter, Stacey A; Whitworth, Whitney A; Montgomery, T Gregory; Beck, Paul A

    2012-07-24

    In December of 3 years, 87 beef cows with nursing calves (594 ± 9.8 kg; calving season, September to November) at side were stratified by body condition score, body weight, cow age, and calf gender and divided randomly into 6 groups assigned to 1 of 6 cool-season annual pastures (0.45 ha/cow) that had been interseeded into a dormant common bermudagrass (Cynodon dactylon [L.] Pers.)/bahiagrass (Paspalum notatum Flugge) sod. Pastures contained 1 of the following 3 seeding mixtures (2 pastures/mixture): 1) wheat (Triticum aestivum L.) and ryegrass (Lolium multiflorum Lam., WRG), 2) wheat and ryegrass plus red clover (Trifolium pretense L., WRR), or 3) wheat and ryegrass plus white (Trifolium repens L.) and crimson clovers (Trifolium incarnatum L., WRW). All groups had ad libitum access to grass hay (12% crude protein; 58% total digestible nutrients). The second week in December, cow estrous cycles were synchronized and artificially inseminated. In late December, a bull was placed with each group for 60-d. Data were analyzed with an analysis of variance using a mixed model containing treatment as the fixed effect and year as the random effect. Body weight and condition scores did not differ (P ≥ 0.27) among cows between February and June. Calf birth weights or average daily gain did not differ (P ≥ 0.17) among treatments; however, calves grazing pastures with clovers did tend (P = 0.06) to weigh more than calves grazing grass only. Weaning weight per cow exposed to a bull was greater (P = 0.02) for WRR and WRW than WRG. Cows grazing winter-annual pastures containing clovers tended to wean more calf body weight per cow exposed to a bull than cows grazing the grass only pastures.

  18. Cool-season annual pastures with clovers to supplement wintering beef cows nursing calves

    PubMed Central

    2012-01-01

    In December of 3 years, 87 beef cows with nursing calves (594 ± 9.8 kg; calving season, September to November) at side were stratified by body condition score, body weight, cow age, and calf gender and divided randomly into 6 groups assigned to 1 of 6 cool-season annual pastures (0.45 ha/cow) that had been interseeded into a dormant common bermudagrass (Cynodon dactylon [L.] Pers.)/bahiagrass (Paspalum notatum Flugge) sod. Pastures contained 1 of the following 3 seeding mixtures (2 pastures/mixture): 1) wheat (Triticum aestivum L.) and ryegrass (Lolium multiflorum Lam., WRG), 2) wheat and ryegrass plus red clover (Trifolium pretense L., WRR), or 3) wheat and ryegrass plus white (Trifolium repens L.) and crimson clovers (Trifolium incarnatum L., WRW). All groups had ad libitum access to grass hay (12% crude protein; 58% total digestible nutrients). The second week in December, cow estrous cycles were synchronized and artificially inseminated. In late December, a bull was placed with each group for 60-d. Data were analyzed with an analysis of variance using a mixed model containing treatment as the fixed effect and year as the random effect. Body weight and condition scores did not differ (P ≥ 0.27) among cows between February and June. Calf birth weights or average daily gain did not differ (P ≥ 0.17) among treatments; however, calves grazing pastures with clovers did tend (P = 0.06) to weigh more than calves grazing grass only. Weaning weight per cow exposed to a bull was greater (P = 0.02) for WRR and WRW than WRG. Cows grazing winter-annual pastures containing clovers tended to wean more calf body weight per cow exposed to a bull than cows grazing the grass only pastures. PMID:22958279

  19. Methane emissions of beef cattle on forages: efficiency of grazing management systems.

    PubMed

    DeRamus, H Alan; Clement, Terry C; Giampola, Dean D; Dickison, Peter C

    2003-01-01

    Fermentation in the rumen of cattle produces methane (CH4). Methane may play a role in global warming scenarios. The linking of grazing management strategies to more efficient beef production while reducing the CH4 emitted by beef cattle is important. The sulfur hexafluoride (SF6) tracer technique was used to determine the effects of best management practices (BMP) grazing compared with continuous grazing on CH4 production in several Louisiana forages during 1996-1998. Cows and heifers (Bos taurus) grazed common bermudagrass [Cynodon dactylon (L.) Pers.], bahiagrass (Paspalum notatum Flugge), and ryegrass (Lolium multiflorum Lam.) pastures and were wintered on bahiagrass hay with supplements of protein molasses blocks (PMB), cottonseed meal and corn (CSMC), urea and corn (URC), or limited ryegrass grazing (LRG). Daily CH4 emissions were between 89 and 180 g d(-1) for young growing heifers and 165 to 294 g d(-1) for mature Simbrah cows. Heifers on "ad lib" ryegrass in March and April produced only one-tenth the CH4 per kg of gain as heifers on LRG of 1 h. Using BMP significantly reduced the emission of CH4 per unit of animal weight gain. Management-intensive grazing (MIG) is a BMP that offers the potential for more efficient utilization of grazed forage crops via controlled rotational grazing and more efficient conversion of forage into meat and milk. Projected CH4 annual emissions in cows reflect a 22% reduction from BMP when compared with continuous grazing in this study. With the BMP application of MIG, less methane was produced per kilogram of beef gain.

  20. Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves.

    PubMed

    Schreck, Eva; Dappe, Vincent; Sarret, Géraldine; Sobanska, Sophie; Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna; Magnin, Valérie; Ranieri, Vincent; Dumat, Camille

    2014-04-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO4, chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO3. In rye-grass, the changes in Pb speciation were even more egregious: Pb-cell wall and Pb-organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to better assess the

  1. Methane emissions of beef cattle on forages: efficiency of grazing management systems.

    PubMed

    DeRamus, H Alan; Clement, Terry C; Giampola, Dean D; Dickison, Peter C

    2003-01-01

    Fermentation in the rumen of cattle produces methane (CH4). Methane may play a role in global warming scenarios. The linking of grazing management strategies to more efficient beef production while reducing the CH4 emitted by beef cattle is important. The sulfur hexafluoride (SF6) tracer technique was used to determine the effects of best management practices (BMP) grazing compared with continuous grazing on CH4 production in several Louisiana forages during 1996-1998. Cows and heifers (Bos taurus) grazed common bermudagrass [Cynodon dactylon (L.) Pers.], bahiagrass (Paspalum notatum Flugge), and ryegrass (Lolium multiflorum Lam.) pastures and were wintered on bahiagrass hay with supplements of protein molasses blocks (PMB), cottonseed meal and corn (CSMC), urea and corn (URC), or limited ryegrass grazing (LRG). Daily CH4 emissions were between 89 and 180 g d(-1) for young growing heifers and 165 to 294 g d(-1) for mature Simbrah cows. Heifers on "ad lib" ryegrass in March and April produced only one-tenth the CH4 per kg of gain as heifers on LRG of 1 h. Using BMP significantly reduced the emission of CH4 per unit of animal weight gain. Management-intensive grazing (MIG) is a BMP that offers the potential for more efficient utilization of grazed forage crops via controlled rotational grazing and more efficient conversion of forage into meat and milk. Projected CH4 annual emissions in cows reflect a 22% reduction from BMP when compared with continuous grazing in this study. With the BMP application of MIG, less methane was produced per kilogram of beef gain. PMID:12549566

  2. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis

    PubMed Central

    Fernández-Moreno, Pablo T.; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E.; Rojano-Delgado, Antonia M.; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha−1 for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of 14C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum. PMID:27570531

  3. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis.

    PubMed

    Fernández-Moreno, Pablo T; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E; Rojano-Delgado, Antonia M; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha(-1) for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of (14)C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum.

  4. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis.

    PubMed

    Fernández-Moreno, Pablo T; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E; Rojano-Delgado, Antonia M; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha(-1) for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of (14)C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum. PMID:27570531

  5. Pasture intake and milk production of dairy cows rotationally grazing on multi-species swards.

    PubMed

    Roca-Fernández, A I; Peyraud, J L; Delaby, L; Delagarde, R

    2016-09-01

    Increasing plant species diversity has been proposed as a means for enhancing annual pasture productivity and decreasing seasonal variability of pasture production facing more frequent drought scenarios due to climate change. Few studies have examined how botanical complexity of sown swards affects cow performance. A 2-year experiment was conducted to determine how sward botanical complexity, from a monoculture of ryegrass to multi-species swards (MSS) (grasses-legumes-forb), affect pasture chemical composition and nutritive value, pasture dry matter (DM) intake, milk production and milk solids production of grazing dairy cows. Five sward species: perennial ryegrass (L as Lolium), white clover and red clover (both referred to as T as Trifolium because they were always sown together), chicory (C as Cichorium) and tall fescue (F as Festuca) were assigned to four grazing treatments by combining one (L), three (LT), four (LTC) or five (LTCF) species. Hereafter, the LT swards are called mixed swards as a single combination of ryegrass and clovers, whereas LTC and LTCF swards are called MSS as a combination of at least four species from three botanical families. The experimental area (8.7 ha) was divided into four block replicates with a mineral nitrogen fertilisation of 75 kg N/ha per year for each treatment. In total, 13 grazing rotations were carried out by applying the same grazing calendar and the same pasture allowance of 19 kg DM/cow per day above 4 cm for all treatments. Clover represented 20% of DM for mixed and MSS swards; chicory represented 30% of DM for MSS and tall fescue represented 10% of DM for LTCF swards. Higher milk production (+1.1 kg/day) and milk solids production (+0.08 kg/day) were observed for mixed swards than for ryegrass swards. Pasture nutritive value and pasture DM intake were unaffected by the inclusion of clover. Pasture DM, organic matter and NDF concentrations were lower for MSS than for mixed swards. Higher milk production (+0.8 kg

  6. Effect of some surface and subsurface attributes on soil water erosion

    NASA Astrophysics Data System (ADS)

    Bertol, Ildegardis; César Ramos, Júlio; Vidal Vázquez, Eva; Mirás Avalos, José Manuel

    2013-04-01

    Soil erosion is a complex phenomenon depending on climate, topography, soil intrinsic characteristics, crop and residue cover, and management and conservation practices that may be accelerated by man activities. Within the above mentioned factors, soil cover and soil management most influence soil erosion. Soil management includes mechanical mobilization and in soil conservationist systems soil residues are mobilized for increasing soil surface roughness. Even if soil roughness is ephemeral, it increases soil water storage and sediment retention in surface microdepressions, which contributes to decrease water erosion. Conservationist soil management systems also maintain the soil surface covered by crop residues, which are more persistent than roughness and contribute to dissipate kinetic energy from raindrops and partly also from runoff. Crop residues are more efficient than soil roughness in controlling water erosion because of its ability to retain detached soil particles. The objective of this study was to assess the efficiency of both soil cover by crop residues and soil surface roughness in controlling water erosion. A field experiments was performed on an Inceptisol in South Brazil under simulated rainfall conditions during 2012. The following treatments were evaluated: 1) residues of Italian ryegrass (Lolium multiflorum), 2) residues of common vetch (Vicia sativa), 3) scarification after cultivation of Italian ryegrass, 4) scarification after cultivation of common vetch, 5) scarified bare soil with high roughness as a control. Treatments #1 and 2 involved no-tilled soil with a rather smooth soil surface, where roots and crop residues of the previous crop were maintained. Treatments # 3 and 4 involved a rather high roughness, absence of previous crop residues and maintenance of antecedent roots. Experimental plots were 11 m long and 3.5 m wide with an area of 38.5 m2. Six successive simulated rainfall tests were applied using a rotating-boom rain simulator

  7. An investigation into the potential use and sustainability of surfactant coated turfgrass seed for the green industry

    NASA Astrophysics Data System (ADS)

    Fidanza, Michael; McMillan, Mica; Kostka, Stan; Madsen, Matthew D.

    2014-05-01

    Turfgrass seed germination and emergence is influenced mostly by water and oxygen availability, temperature, nutrition and biological activity in the rootzone. In many areas globally, seed germination and subsequent turfgrass establishment is greatly diminished due to inadequate irrigation water amount and quality, and the problem is further compound due to water repellent soils. Successful turfgrass seed germination is critical when attempting to establish a more sustainable turfgrass species in place of an existing, high-input required turf stand. Greenhouse research investigations were conducted in 2013 in Pennsylvania (USA), to evaluate surfactant coated perennial ryegrass (Lolium perenne) and Kentucky bluegrass (Poa pratensis) seed for germination and emergence, seedling vigor and overall turfgrass quality. Both turfgrasses tested are cool-season or C3 grasses, and perennial ryegrass has a bunch-type growth habit while Kentucky bluegrass is rhizomatous. Perennial ryegrass is used world-wide as a principal component in sports turf mixes and in overseeding programs, and typically germinates rapidly in 3 to 10 days after seeding. Kentucky bluegrass also is used world-wide for sports turf as well as lawns and landscapes, and germinates slowly in 7 to 28 days. Research results indicate that surfactant coated seed of both species germinated one to three days faster compared to uncoated seed, and that seedling vigor and overall turfgrass quality was better with surfactant coated seed compared to uncoated seed. In a study with only perennial ryegrass, surfactant-coated seed without fertilizer (i.e., N and Ca) applied at time of sowing resulted in seedling vigor and quality considered to be similar or better than uncoated seed with fertilizer applied at time of sowing. Therefore, the potential benefits with seed germination and emergence, and seedling vigor and turfgrass quality also may be attributed to the surfactant coating and not only a fertilizer response. The

  8. Relative contributions of allelopathy and competitive traits to the weed suppressive ability of winter wheat lines against Italian ryegrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Allelopathy and competitive ability have been identified as independent factors contributing to the weed suppressive ability of crop cultivars; however, it is not clear whether these factors have equal influence on weed suppression outcomes of winter wheat (Triticum aestivum L.) lines in the field. ...

  9. Enhancement of nitrogen and phosphorus removal from eutrophic water by annual ryegrass bombarded with low energy ions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water eutrophication and subsequent growth of harmful algal blooms is often the result of the influx of point and non-point sources of excessive nutrients into water bodies. Excessive growth of algae can slowly remove the oxygen from the water and destroy the biological viability of the water source...

  10. Root characteristics of cover crops and their erosion-reducing potential during concentrated runoff

    NASA Astrophysics Data System (ADS)

    de Baets, S.; Poesen, J.

    2009-04-01

    In the loam region in central Belgium, a lot of research has been conducted on the effects of cover crops for preventing splash and interrill erosion and on their nutrient pumping effectiveness. As this is a very effective erosion and environment conservation technique, planting cover crops during the winter season is widely applied in the loess belt. Most of these cover crops freeze at the beginning of the winter period. Consequently, the above-ground biomass becomes less effective in protecting the soil from water erosion. Apart from the effects of the above-ground biomass in protecting the soil against raindrop impacts and reducing flow velocities by the retarding effects of their stems, plant roots also play an important role in improving soil strength. Previous research showed that roots contribute to a large extent to the resistance of topsoils against concentrated flow erosion. Unfortunately, information on root properties of common cover crops (e.g. Sinapis alba, Phacelia tanacetifoli, Lolium perenne, Avena sativa, Secale cereale, Raphanus sativus subsp. oleiferus) is very scarce. Therefore, root density distribution with depth and their erosion-reducing effects during concentrated flow erosion were assessed by conducting root auger measurements and concentrated flow experiments at the end of the growth period (December). The preliminary results indicate that the studied cover crops are not equally effective in preventing soil loss by concentrated flow erosion at the end of the growing season. Cover crops with thick roots, such as Sinapis alba and Raphanus sativus subsp. oleiferus are less effective than cover crops with fine-branched roots such as Phacelia tanacetifoli, Lolium perenne (Ryegrass), Avena sativa (Oats) and Secale cereale (Rye) in preventing soil losses by concentrated flow erosion. These results enable soil managers to select the most suitable crops and maximize soil protection.

  11. Quantum dot transport in soil, plants, and insects.

    PubMed

    Al-Salim, Najeh; Barraclough, Emma; Burgess, Elisabeth; Clothier, Brent; Deurer, Markus; Green, Steve; Malone, Louise; Weir, Graham

    2011-08-01

    Environmental risk assessment of nanomaterials requires information not only on their toxicity to non-target organisms, but also on their potential exposure pathways. Here we report on the transport and fate of quantum dots (QDs) in the total environment: from soils, through their uptake into plants, to their passage through insects following ingestion. Our QDs are nanoparticles with an average particle size of 6.5 nm. Breakthrough curves obtained with CdTe/mercaptopropionic acid QDs applied to columns of top soil from a New Zealand organic apple orchard, a Hastings silt loam, showed there to be preferential flow through the soil's macropores. Yet the effluent recovery of QDs was just 60%, even after several pore volumes, indicating that about 40% of the influent QDs were filtered and retained by the soil column via some unknown exchange/adsorption/sequestration mechanism. Glycine-, mercaptosuccinic acid-, cysteine-, and amine-conjugated CdSe/ZnS QDs were visibly transported to a limited extent in the vasculature of ryegrass (Lolium perenne), onion (Allium cepa) and chrysanthemum (Chrysanthemum sp.) plants when cut stems were placed in aqueous QD solutions. However, they were not seen to be taken up at all by rooted whole plants of ryegrass, onion, or Arabidopsis thaliana placed in these solutions. Leafroller (Lepidoptera: Tortricidae) larvae fed with these QDs for two or four days, showed fluorescence along the entire gut, in their frass (larval feces), and, at a lower intensity, in their haemolymph. Fluorescent QDs were also observed and elevated cadmium levels detected inside the bodies of adult moths that had been fed QDs as larvae. These results suggest that exposure scenarios for QDs in the total environment could be quite complex and variable in each environmental domain. PMID:21632093

  12. A Novel Two-Step Method for Screening Shade Tolerant Mutant Plants via Dwarfism

    PubMed Central

    Li, Wei; Katin-Grazzini, Lorenzo; Krishnan, Sanalkumar; Thammina, Chandra; El-Tanbouly, Rania; Yer, Huseyin; Merewitz, Emily; Guillard, Karl; Inguagiato, John; McAvoy, Richard J.; Liu, Zongrang; Li, Yi

    2016-01-01

    When subjected to shade, plants undergo rapid shoot elongation, which often makes them more prone to disease and mechanical damage. Shade-tolerant plants can be difficult to breed; however, they offer a substantial benefit over other varieties in low-light areas. Although perennial ryegrass (Lolium perenne L.) is a popular species of turf grasses because of their good appearance and fast establishment, the plant normally does not perform well under shade conditions. It has been reported that, in turfgrass, induced dwarfism can enhance shade tolerance. Here we describe a two-step procedure for isolating shade tolerant mutants of perennial ryegrass by first screening for dominant dwarf mutants, and then screening dwarf plants for shade tolerance. The two-step screening process to isolate shade tolerant mutants can be done efficiently with limited space at early seedling stages, which enables quick and efficient isolation of shade tolerant mutants, and thus facilitates development of shade tolerant new cultivars of turfgrasses. Using the method, we isolated 136 dwarf mutants from 300,000 mutagenized seeds, with 65 being shade tolerant (0.022%). When screened directly for shade tolerance, we recovered only four mutants from a population of 150,000 (0.003%) mutagenized seeds. One shade tolerant mutant, shadow-1, was characterized in detail. In addition to dwarfism, shadow-1 and its sexual progeny displayed high degrees of tolerance to both natural and artificial shade. We showed that endogenous gibberellin (GA) content in shadow-1 was higher than wild-type controls, and shadow-1 was also partially GA insensitive. Our novel, simple and effective two-step screening method should be applicable to breeding shade tolerant cultivars of turfgrasses, ground covers, and other economically important crop plants that can be used under canopies of existing vegetation to increase productivity per unit area of land. PMID:27752260

  13. Carbon mineralisation and plant growth in soil amended with compost samples at different degrees of maturity.

    PubMed

    García-Gómez, Antonio; Bernal, María Pilar; Roig, Asunción

    2003-04-01

    The carbon and nitrogen mineralisation of a composting mixture of brewing yeast and lemon tree prunings was studied, at different degrees of stabilisation of this matrix, within an incubation experiment in soil. Meanwhile, a growth test in pots with ryegrass (Lolium perenne L.) was carried out using the selected soil and equal amounts of the composting mixture taken at different maturation steps, in order to evaluate the additions of these organic amendments in terms of fertilising value. Samples of the composting mixture, when poorly transformed through the biostabilisation process, showed high CO2-C releases in the soil, due to the microbial attack on easily degradable organic fractions still present in the mixture, with 24.7% mineralisation of the initial total organic carbon (TOC) after a 70 day incubation. On the other hand, mature compost was the most stable matrix, with only 5.4% of TOC mineralised after 70 days. Furthermore, amendments with the initial composting mixture led to negative net N-mineralisation during 56 days of incubation with soil. Only slight negative values of the net N-mineralisation were detected with fully stabilised compost. Nevertheless, pot experiments with ryegrass revealed that mature compost may promote N mineralisation to certain extents. Moreover, mature compost did not produce any phytotoxic effect, behaving as a slow-action organic fertiliser with N made available through a progressive mineralisation. Thus, the results gained through this study are a confirmation that the fertilising quality of a compost destined for agricultural uses is heavily affected by the complete exhaustion of the maturation reactions.

  14. Allelopathy is involved in the formation of pure colonies of the fern Gleichenia japonica.

    PubMed

    Kato-Noguchi, Hisashi; Saito, Yoshihumi; Ohno, Osamu; Suenaga, Kiyotake

    2013-04-15

    The fern Gleichenia japonica is one of the most widely distributed fern and occurs throughout East to South Asia. The species often dominates plant communities by forming large monospecific colonies. However, the potential mechanism for this domination has not yet been described. The objective of this study was to test the hypothesis that allelochemicals are involved in the formation of G. japonica colonies. An aqueous methanol extract of G. japonica inhibited the growth of seedlings of garden cress (Lepidium sativum), lettuce (Lactuca sativa), ryegrass (Lolium multiflorum) and timothy (Phleum pratense). Increasing extract concentration increased the inhibition. These results suggest that G. japonica contain allelopathic substances. The extract was then purified by several chromatographies with monitoring the inhibitory activity and two growth inhibitory substances causing the allelopathic effect were isolated. The chemical structures of the two substances were determined by spectral data to be a novel compound 3-O-β-allopyranosyl-13-O-β-fucopyranosyl-3β-hydroxymanool (1) and 18-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl-13-epitorreferol (2). These compounds inhibited the shoot and root growth of garden cress, lettuce, alfalfa (Medicago sativa), timothy, ryegrass and barnyardgrass (Echinochloa crus-galli) at concentrations greater than 0.1-1.0mM. The concentrations required for 50% growth inhibition of root and shoot growth of these test plants ranged from 0.72 to 3.49mM and 0.79 to 3.51mM for compounds 1 and 2, respectively. Concentration of compounds 1 and 2 in soil under the pure colony of G. japonica was 4.9 and 5.7mM, respectively, indicating concentrations over those required for 50% growth inhibition are potentially available under monocultural stands of these ferns. Therefore, these compounds may contribute to the allelopathic effects caused by presence of G. japonica and may thus contribute to the establishment of monocultural stands by this

  15. Bioassay and use in irrigation of untreated and treated wastewaters from phosphate fertilizer industry.

    PubMed

    Gouider, Mbarka; Feki, Mongi; Sayadi, Sami

    2010-07-01

    Wastewater from phosphate fertilizer industry that contains essentially a significant amount of both fluoride and phosphate was treated by separative precipitation of fluoride ions with hydrated lime. Thus, a phosphate-rich effluent with low content of fluoride was obtained. The microtoxicity of the treated wastewater was then monitored by LUMIStox and its phytotoxicity was investigated on tomato (Lycopersicon esculentum), wheat (Triticum aestivum), maize (Zea mays), ryegrass (Lolium perenne), and alfalfa (Medicago sativa) seed germination and plant growth. The cress (Lepidium sativum) was used as a standard species for the germination index and phytotoxicity evaluation. Seedlings of four species (namely wheat, maize, ryegrass, and alfalfa) were grown in pots, which were irrigated with untreated wastewater, treated wastewater, aqueous solution of triple superphosphate fertilizer (TSP) or with tap water as control. LUMIStox tests showed that lime treatment allowed a significant toxicity removal. The treated water displayed beneficial fertilizing effect on plants. An increase in the germination index from 100% to 119% was observed. However, the untreated wastewater inhibited the species germination even when diluted 10 times. Neither plants mortality nor growth inhibition was observed after 90 days of treated wastewater application. Moreover, an improvement in plant growth, leaf number and a root development were noticed in these plants when compared with those irrigated with tap water or with fertilizer. In contrast, leaf necrosis and growth inhibition were observed in plants amended with raw wastewater. The irrigation with treated wastewater also improved soil labile P content. Indeed, soils amended with treated wastewater had more a double labile P concentration (38.15 mg kg(-1)) in comparison with control soil (15.53 mg kg(-1)). PMID:20061024

  16. The Influence of Ambient Temperature on Green Roof R-values

    NASA Astrophysics Data System (ADS)

    Cox, Bryce Kevin

    Green roofs can be an effective and appealing way to increase the energy efficiency of buildings by providing active insulation. As plants in the green roof transpire, there is a reduction in heat flux that is conducted through the green roof. The R-value, or thermal resistance, of a green roof is an effective measurement of thermal performance because it can be easily included in building energy calculations applicable to many different buildings and situations. The purpose of this study was to determine if an increase in ambient temperature would cause an increase in the R-value of green roofs. Test trays containing green roof materials were tested in a low speed wind tunnel equipped to determine the R-value of the trays. Three different plant species were tested in this study, ryegrass (Lolium perenne), sedum (Sedum hispanicum), and vinca (Vinca minor ). For each test in this study the relative humidity was maintained at 45% and the soil was saturated with water. The trays were tested at four different ambient temperatures, ranging from room temperature to 120ºF. The resulting R-values for sedum ranged from 1.37 to 3.28 ft2hºF/BTU, for ryegrass the R-values ranged from 2.15 to 3.62 ft2hºF/BTU, and for vinca the R-values ranged from 3.15 to 5.19 ft2hºF/BTU. The average R-value for all the tests in this study was 3.20 ft2hºF/BTU. The results showed an increase in R-value with increasing temperature. Applying an ANOVA analysis to the data, the relationship between temperature and R-value for all three plant species was found to be statistically significant.

  17. Concentrations of PM₂.₅₋₁₀ and PM₂.₅ and metallic elements around the Schmidt Stream area, in the Sinos River Basin, southern Brazil.

    PubMed

    Alves, D D; Osório, D M M; Rodrigues, M A S; Illi, J C; Bianchin, L; Benvenuti, T

    2015-12-01

    This research aimed to evaluate the air quality, by determining the concentrations of PM2.5-10, PM2.5 and the metallic elements Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn and Hg in the leaf part of ryegrass (Lolium multiflorum) in an area close to Schmidt Stream, at the lower section of Sinos River Basin (SRB), in a research campaign of six months, from October 2013 to March 2014. The particles collected in the PM sampling were analyzed by Scanning Electron Microscopy (SEM) combined with Energy Dispersive X-ray Spectrometry (EDS), in order to study their morphology and chemical composition. The mean concentration of PM2.5-10 was 9.1 µg m(-3), with a range of 2.2 µg m(-3) to 15.4 µg m(-3) and the mean concentration of PM2.5 was 4.7 µg m(-3), with a range of 1.9 µg m(-3) to 8.2 µg m(-3). Concentrations of metallic elements, especially Pb, Cr and Zn, were classified as Class 4 (very high pollution levels), according to the classification proposed by Klumpp et al. (2004). Chemical and morphological analysis of PM revealed the presence of particles of biological origin, soot (Cr, Fe, Ni, Zn, Cd, Hg and Pb), salts (KCl) and soil resuspension (Al and Si). The integrated study methodology, employing environmental variables, such as PM and ryegrass, can be of help in the preparation of wide-ranging environmental diagnoses, in addition providing information needed to develop precautionary measures designed to minimize the effects of atmospheric pollution that takes into consideration the environment's supportive capacity and environmental quality. PMID:26628233

  18. Plant-assisted rhizoremediation of decabromodiphenyl ether for e-waste recycling area soil of Taizhou, China.

    PubMed

    He, Yan; Li, Xinfeng; Shen, Xinquan; Jiang, Qin; Chen, Jian; Shi, Jiachun; Tang, Xianjin; Xu, Jianming

    2015-07-01

    To develop an effective phytoremediation approach to purify soils polluted by decabromodiphenyl ether (BDE-209) in e-waste recycling area, pot experiments were conducted through greenhouse growth of seven plant species in BDE-209-polluted soils. The hygrocolous rice (Oryza sativa L.) cultivars (XiuS and HuangHZ) and the xerophyte ryegrass (Lolium perenne L.) were found to be as the most effective functional plants for facilitating BDE-209 dissipation, with the removal of 52.9, 41.9, and 38.7% in field-contaminated soils (collected directly from field, with an average pollution concentration of 394.6 μg BDE-209 kg(-1) soil), as well as 21.7, 27.6, and 28.1% in freshly spiked soils (an average pollution concentration of 4413.57 μg BDE-209 kg(-1) soil, with additional BDE-209 added to field-contaminated soils), respectively. Changes in soil phospholipid fatty acid (PLFA) profiles revealed that different selective enrichments of functional microbial groups (e.g., arbuscular mycorrhizal fungi and gram-positive bacteria) were induced due to plant growth under contrasting water management (flooded-drained sequentially, flooded only, and drained only, respectively). The abundance of available electron donors and acceptors and the activities of soil oxido-reductases were also correspondingly modified, with the activity of catalase, and the content of NO3(-) and Fe(3+) increased generally toward most of the xerophyte treatments, while the activity of dehydrogenase and the content of dissolved organic carbon (DOC) and NH4(+) increased toward the hygrophyte treatments. This differentiated dissipation of BDE-209 in soils as function of plant species, pollution doses and time, and water-dependent redox condition. This study illustrates a possibility of phytoremediation for BDE-209-polluted soils by successive cultivation of rice followed by ryegrass coupling with suitable water management, possibly through dissipation pathway of microbial reductive debromination and subsequent

  19. Cysteine-β-cyclodextrin enhanced phytoremediation of soil co-contaminated with phenanthrene and lead.

    PubMed

    Wang, Guanghui; Wang, Yin; Hu, Suhang; Deng, Nansheng; Wu, Feng

    2015-07-01

    It is necessary to find an effective soil remediation technology for the simultaneous removal of hydrophobic organic contaminants and heavy metals from contaminated soils. In this work, a novel cysteine-β-cyclodextrin (CCD) was synthesized by the reaction of β-cyclodextrin with cysteine, and the structure of CCD was confirmed by (1)H-NMR, (13)C-NMR, FT-IR spectroscopy and elemental analysis. Pot-culture experiments were conducted to investigate the effects of CCD on the phytoremediation of soil co-contaminated with phenanthrene and lead. The results showed that CCD can enhance the phytoremediation of soil co-contaminated with phenanthrene and lead. When CCD was added to the co-contaminated soil, the concentrations of phenanthrene and Pb in roots and shoots of ryegrass (Lolium perenne L.) significantly increased, the presence of CCD is beneficial to the accumulation of phenanthrene and Pb in ryegrass, and the residual concentrations of phenanthrene and Pb in soils significantly decreased. Under the co-contamination of 500 mg Pb kg(-1) and 50 mg PHE kg(-1), the bioconcentration factor of phenanthrene and Pb in the presence of CCD was increased by 1.43-fold and 4.47-fold, respectively. After CCD was added to the contaminated soils, the residual concentration of phenanthrene and Pb in unplanted soil was decreased by 18 and 25%, respectively. However, for the planted soil, the residual concentration of phenanthrene and Pb was decreased by 48 and 56%, respectively. CCD may improve the bioavailability of phenanthrene and Pb in co-contaminated soil; CCD enhanced phytoremediation technology may be a good alternative for the removal of hydrophobic organic contaminants and heavy metals from contaminated soils.

  20. Apparent Acquired Resistance by a Weevil to Its Parasitoid Is Influenced by Host Plant

    PubMed Central

    Goldson, Stephen L.; Tomasetto, Federico

    2016-01-01

    Field parasitism rates of the Argentine stem weevil Listronotus bonariensis (Kuschel; Coleoptera: Curculionidae) by Microctonus hyperodae Loan (Hymenoptera: Braconidae) are known to vary according to different host Lolium species that also differ in ploidy. To further investigate this, a laboratory study was conducted to examine parasitism rates on tetraploid Italian Lolium multiflorum, diploid Lolium perenne and diploid hybrid L. perenne ×L. multiflorum; none of which were infected by Epichloë endophyte. At the same time, the opportunity was taken to compare the results of this study with observations made during extensive laboratory-based research and parasitoid-rearing in the 1990s using the same host plant species. This made it possible to determine whether there has been any change in weevil susceptibility to the parasitoid over a 20 year period when in the presence of the tetraploid Italian, diploid perennial and hybrid host grasses that were commonly in use in the 1990’s. The incidence of parasitism in cages, in the presence of these three grasses mirrored what has recently been observed in the field. When caged, weevil parasitism rates in the presence of a tetraploid Italian ryegrass host were significantly higher (75%) than rates that occurred in the presence of either the diploid perennial (46%) or the diploid hybrid (52%) grass, which were not significantly different from each other. This is very different to laboratory parasitism rates in the 1990s when in the presence of both of the latter grasses high rates of parasitism (c. 75%) were recorded. These high rates are typical of those still found in weevils in the presence of both field and caged tetraploid Italian grasses. In contrast, the abrupt decline in weevil parasitism rates points to the possibility of evolved resistance by the weevil to the parasitoid in the diploid and hybrid grasses, but not so in the tetraploid. The orientation of plants in the laboratory cages had no significant effect

  1. Apparent Acquired Resistance by a Weevil to Its Parasitoid Is Influenced by Host Plant.

    PubMed

    Goldson, Stephen L; Tomasetto, Federico

    2016-01-01

    Field parasitism rates of the Argentine stem weevil Listronotus bonariensis (Kuschel; Coleoptera: Curculionidae) by Microctonus hyperodae Loan (Hymenoptera: Braconidae) are known to vary according to different host Lolium species that also differ in ploidy. To further investigate this, a laboratory study was conducted to examine parasitism rates on tetraploid Italian Lolium multiflorum, diploid Lolium perenne and diploid hybrid L. perenne ×L. multiflorum; none of which were infected by Epichloë endophyte. At the same time, the opportunity was taken to compare the results of this study with observations made during extensive laboratory-based research and parasitoid-rearing in the 1990s using the same host plant species. This made it possible to determine whether there has been any change in weevil susceptibility to the parasitoid over a 20 year period when in the presence of the tetraploid Italian, diploid perennial and hybrid host grasses that were commonly in use in the 1990's. The incidence of parasitism in cages, in the presence of these three grasses mirrored what has recently been observed in the field. When caged, weevil parasitism rates in the presence of a tetraploid Italian ryegrass host were significantly higher (75%) than rates that occurred in the presence of either the diploid perennial (46%) or the diploid hybrid (52%) grass, which were not significantly different from each other. This is very different to laboratory parasitism rates in the 1990s when in the presence of both of the latter grasses high rates of parasitism (c. 75%) were recorded. These high rates are typical of those still found in weevils in the presence of both field and caged tetraploid Italian grasses. In contrast, the abrupt decline in weevil parasitism rates points to the possibility of evolved resistance by the weevil to the parasitoid in the diploid and hybrid grasses, but not so in the tetraploid. The orientation of plants in the laboratory cages had no significant effect on

  2. Can biochar enhance the immobilisation of heavy metals in historically contaminated soils?

    NASA Astrophysics Data System (ADS)

    Karer, Jasmin; Zehetner, Franz; Dunst, Gerald; Wagner, Mario; Puschenreiter, Markus; Friesl-Hanl, Wolfgang; Soja, Gerhard

    2014-05-01

    The location of Arnoldstein in Carinthia, Austria, is an industrial heritage site with mining and smelting activities since about 600 years. Lead and zinc ores were processed for centuries - with impacts on the surrounding soil, being polluted with heavy metals such as Cd, Pb and Zn. Up to now, the concentrations of NH4NO3-extractable heavy metals are far above the trigger values for soils (derived for feed quality according Prüeß, 1994). Cu and Ni concentrations are low and do not contribute to the heavy metal contamination of the soils. The aim of our study was to investigate the effects of various biochar mixtures on immobilisation of heavy metals in this contaminated soil. If biochar successfully immobilises heavy metals, quality of biomass production could be improved. We conducted a pot experiment with ryegrass (Lolium multiflorum) consisting of three different biochar (BC) treatments mixed with compost, a gravel sludge combined with siderite bearing material as well as a lime treatment and an untreated control (n=5). In the analysed treatments, lime significantly lowered the NH4NO3-extractable heavy metal concentrations in the soil compared to the control, except for Cu. Similarly, throughout the study, a combination of gravel sludge and siderite bearing material led to an immobilisation of the heavy metals in the soil. On the contrary, the Miscanthus biochar mixed with compost had no effect on the immobilisation; however, Cu concentration was significantly lower than in all other treatments. The immobilisation of the heavy metals in the soil was generally not reflected in the plants (Lolium multiflorum), except for Zn, showing a significant decrease after lime, poplar BC and gravel sludge with siderite bearing material. However, Zn as well as Cd and Pb remained above the phytotoxicity level of 200 mg kg-1; lime treatment reduced the Zn concentration in Lolium multiflorum to 513 mg kg-1, gravel sludge to 531 mg kg-1 and poplar BC to 560 mg kg-1 while in

  3. Apparent Acquired Resistance by a Weevil to Its Parasitoid Is Influenced by Host Plant

    PubMed Central

    Goldson, Stephen L.; Tomasetto, Federico

    2016-01-01

    Field parasitism rates of the Argentine stem weevil Listronotus bonariensis (Kuschel; Coleoptera: Curculionidae) by Microctonus hyperodae Loan (Hymenoptera: Braconidae) are known to vary according to different host Lolium species that also differ in ploidy. To further investigate this, a laboratory study was conducted to examine parasitism rates on tetraploid Italian Lolium multiflorum, diploid Lolium perenne and diploid hybrid L. perenne ×L. multiflorum; none of which were infected by Epichloë endophyte. At the same time, the opportunity was taken to compare the results of this study with observations made during extensive laboratory-based research and parasitoid-rearing in the 1990s using the same host plant species. This made it possible to determine whether there has been any change in weevil susceptibility to the parasitoid over a 20 year period when in the presence of the tetraploid Italian, diploid perennial and hybrid host grasses that were commonly in use in the 1990’s. The incidence of parasitism in cages, in the presence of these three grasses mirrored what has recently been observed in the field. When caged, weevil parasitism rates in the presence of a tetraploid Italian ryegrass host were significantly higher (75%) than rates that occurred in the presence of either the diploid perennial (46%) or the diploid hybrid (52%) grass, which were not significantly different from each other. This is very different to laboratory parasitism rates in the 1990s when in the presence of both of the latter grasses high rates of parasitism (c. 75%) were recorded. These high rates are typical of those still found in weevils in the presence of both field and caged tetraploid Italian grasses. In contrast, the abrupt decline in weevil parasitism rates points to the possibility of evolved resistance by the weevil to the parasitoid in the diploid and hybrid grasses, but not so in the tetraploid. The orientation of plants in the laboratory cages had no significant effect

  4. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils.

    PubMed

    Manolikaki, Ioanna I; Mangolis, Argirios; Diamadopoulos, Evan

    2016-10-01

    Biochars have a high variability in chemical composition, which is influenced by pyrolysis conditions and type of biomass. Essential macronutrient P retained in biochar could be released and made available to plants, enhancing plant growth. This study was conducted in order to evaluate whether biochar, produced from agricultural residues, could release P in water, as well as study its potential effect on plant growth and P uptake. Biochar samples were prepared from rice husks, grape pomace and olive tree prunings by pyrolysis at 300 °C and 500 °C. These samples were used for P batch successive leaching experiments in order to determine P release in water. Subsequently, rice husk and grape pomace biochars, produced by pyrolysis at 300 °C, were applied to two temperate soils with highly different pH. A three-month cultivation period of ryegrass (Lolium perenne L.) was studied in threefold replication, while three harvests were accomplished. Treatments comprised control soils (without amendment) and soils amended only with biochar. Results of P leaching tests showed a continuous release of P from all biochars as compared to raw biomass samples, for which the highest P concentrations were detected during the first extraction. Grape pomace and rice husk biochars pyrolyzed at 500 °C showed higher levels of water-extractable P, as compared to their corresponding raw biomass. Biochars, at 500 °C, leached more P in all four extractions, compared to biochars at 300 °C, apart from olive tree prunings biochars, where both pyrolysis temperatures presented a similar trend. Concerning plant yield of ryegrass, rice husk and grape pomace biochars showed positive statistically significant effects on plant yield only in slightly acidic soil in second and third harvests. In terms of P uptake of ryegrass, grape pomace biochars depicted positive significant differences (P < 0.05) in third harvest, in slightly acidic soil, while in first and second harvests positive

  5. Effect of soil surface conditions on runoff velocity and sediment mean aggregate diameter

    NASA Astrophysics Data System (ADS)

    César Ramos, Júlio; Bertol, Ildegardis; Paz González, Antonio; de Souza Werner, Romeu; Marioti, Juliana; Henrique Bandeira, Douglas; Andrighetti Leolatto, Lidiane

    2013-04-01

    Soil cover and soil management are the factors that most influence soil erosion by water, because they directly affect soil surface roughness and surface cover. The main effect of soil cover by crop residues consists in dissipation of kinetic energy of raindrops and also partly kinetic energy of runoff, so that the soil disaggregation is considerably reduced but, in addition, soil cover captures detached soil particles, retains water on its surface and decreases runoff volume and velocity. In turn, soil surface roughness, influences soil surface water storage and infiltration and also runoff volume and velocity, sediment retention and subsequently water and sediment losses. Based on the above rationale, we performed a field experiment to assess the influence of soil cover and soil surface roughness on decay of runoff velocity as well as on mean diameter of transported sediments (D50 index). The following treatments were evaluated: SRR) residues of Italian ryegrass (Lolium multiflorum) on a smooth soil surfcace, SRV) residues of common vetch (Vicia sativa) on a smooth soil surface, SSR) scarification after cultivation of Italian ryegrass resulting in a rough surface, SSV) scarification after cultivation of common vetch resulting in a rough surface, and SBS) scarified bare soil with high roughness as a control. The field experiments was performed on an Inceptisol in South Brazil under simulated rainfall conditions during 2012. Experimental plots were 11 m long and 3.5 m wide with an area of 38.5 m2. Six successive simulated rainfall tests were applied using a rotating-boom rain simulator. During each test, rain intensity was 60 mmhr-1, whereas rain duration was 90 minutes. Runoff velocity showed no significant differences between cultivated treatments. However, when compared to bare soil treatment, SBS (0.178 m s-1) and irrespective of the presence of surface crop residues or scarification operations, cultivated soil treatments significantly reduced runoff velocity

  6. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils.

    PubMed

    Manolikaki, Ioanna I; Mangolis, Argirios; Diamadopoulos, Evan

    2016-10-01

    Biochars have a high variability in chemical composition, which is influenced by pyrolysis conditions and type of biomass. Essential macronutrient P retained in biochar could be released and made available to plants, enhancing plant growth. This study was conducted in order to evaluate whether biochar, produced from agricultural residues, could release P in water, as well as study its potential effect on plant growth and P uptake. Biochar samples were prepared from rice husks, grape pomace and olive tree prunings by pyrolysis at 300 °C and 500 °C. These samples were used for P batch successive leaching experiments in order to determine P release in water. Subsequently, rice husk and grape pomace biochars, produced by pyrolysis at 300 °C, were applied to two temperate soils with highly different pH. A three-month cultivation period of ryegrass (Lolium perenne L.) was studied in threefold replication, while three harvests were accomplished. Treatments comprised control soils (without amendment) and soils amended only with biochar. Results of P leaching tests showed a continuous release of P from all biochars as compared to raw biomass samples, for which the highest P concentrations were detected during the first extraction. Grape pomace and rice husk biochars pyrolyzed at 500 °C showed higher levels of water-extractable P, as compared to their corresponding raw biomass. Biochars, at 500 °C, leached more P in all four extractions, compared to biochars at 300 °C, apart from olive tree prunings biochars, where both pyrolysis temperatures presented a similar trend. Concerning plant yield of ryegrass, rice husk and grape pomace biochars showed positive statistically significant effects on plant yield only in slightly acidic soil in second and third harvests. In terms of P uptake of ryegrass, grape pomace biochars depicted positive significant differences (P < 0.05) in third harvest, in slightly acidic soil, while in first and second harvests positive

  7. Effect of winter cover crops on soil nitrogen availability, corn yield, and nitrate leaching.

    PubMed

    Kuo, S; Huang, B; Bembenek, R

    2001-10-25

    Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha(-1), referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N 0, N 2, and N 3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency's drinking water standard of 10 mg N l(-1) even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during

  8. Leaf Length Tracker: a novel approach to analyse leaf elongation close to the thermal limit of growth in the field

    PubMed Central

    Kirchgessner, Norbert; Yates, Steven; Hiltpold, Maya; Walter, Achim

    2016-01-01

    Leaf growth in monocot crops such as wheat and barley largely follows the daily temperature course, particularly under cold but humid springtime field conditions. Knowledge of the temperature response of leaf extension, particularly variations close to the thermal limit of growth, helps define physiological growth constraints and breeding-related genotypic differences among cultivars. Here, we present a novel method, called ‘Leaf Length Tracker’ (LLT), suitable for measuring leaf elongation rates (LERs) of cereals and other grasses with high precision and high temporal resolution under field conditions. The method is based on image sequence analysis, using a marker tracking approach to calculate LERs. We applied the LLT to several varieties of winter wheat (Triticum aestivum), summer barley (Hordeum vulgare), and ryegrass (Lolium perenne), grown in the field and in growth cabinets under controlled conditions. LLT is easy to use and we demonstrate its reliability and precision under changing weather conditions that include temperature, wind, and rain. We found that leaf growth stopped at a base temperature of 0°C for all studied species and we detected significant genotype-specific differences in LER with rising temperature. The data obtained were statistically robust and were reproducible in the tested environments. Using LLT, we were able to detect subtle differences (sub-millimeter) in leaf growth patterns. This method will allow the collection of leaf growth data in a wide range of future field experiments on different graminoid species or varieties under varying environmental or treatment conditions. PMID:26818912

  9. Preliminary ecotoxicological characterization of a new energetic substance, CL-20.

    PubMed

    Gong, Ping; Sunahara, Geoffrey I; Rocheleau, Sylvie; Dodard, Sabine G; Robidoux, Pierre Yves; Hawari, Jalal

    2004-08-01

    A new energetic substance hexanitrohexaazaisowurtzitane (or CL-20) was tested for its toxicities to various ecological receptors. CL-20 (epsilon-polymorph) was amended to soil or deionized water to construct concentration gradients. Results of Microtox (15-min contact) and 96-h algae growth inhibition tests indicate that CL-20 showed no adverse effects on the bioluminescence of marine bacteria Vibrio fischeri and the cell density of freshwater green algae Selenastrum capricornutum respectively, up to its water solubility (ca. 3.6 mg l(-1)). CL-20 and its possible biotransformation products did not inhibit seed germination and early seedling (16-19 d) growth of alfalfa (Medicago sativa) and perennial ryegrass (Lolium perenne) up to 10,000 mg kg(-1) in a Sassafras sandy loam soil (SSL). Indigenous soil microorganisms in SSL and a garden soil were exposed to CL-20 for one or two weeks before dehydrogenase activity (DHA) or potential nitrification activity (PNA) were assayed. Results indicate that up to 10,000 mg kg(-1) soil of CL-20 had no statistically significant effects on microbial communities measured as DHA or on the ammonium oxidizing bacteria determined as PNA in both soils. Data indicates that CL-20 was not acutely toxic to the species or microbial communities tested and that further studies are required to address the potential long-term environmental impact of CL-20 and its possible degradation products.

  10. Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertilizer.

    PubMed

    Kahiluoto, H; Kuisma, M; Ketoja, E; Salo, T; Heikkinen, J

    2015-02-17

    Phosphorus (P) flow from deposits through agriculture to waterways leads to eutrophication and depletion of P reserves. Therefore, P must be recycled. Low and unpredictable plant availability of P in residues is considered to be a limiting factor for recycling. We identified the determinants for the plant-availability of P in agrifood residues. We quantified P in Italian ryegrass (Lolium multiflorum) and in field soil fractions with different plant availabilities of P as a response to manure and sewage sludge with a range of P capture and hygienization treatments. P was more available in manure and in sludge, when it was captured biologically or with a moderate iron (Fe)/P (1.6), than in NPK. Increasing rate of sludge impaired P recovery and high Fe/P (9.8) prevented it. Anaerobic digestion (AD) reduced plant-availability at relevant rates. The recovery of P was increased in AD manure via composting and in AD sludge via combined acid and oxidizer. P was not available to plants in the sludge hygienized with a high calcium/P. Contrary to assumed knowledge, the recyclability of P in appropriately treated residues can be better than in NPK. The prevention of P sorption in soil by organic substances in fertilizers critically enhances the recyclability of P. PMID:25569114

  11. Host plant recognition by the root feeding clover weevil, Sitona lepidus (Coleoptera: Curculionidae).

    PubMed

    Johnson, S N; Gregory, P J; Murray, P J; Zhang, X; Young, I M

    2004-10-01

    This study investigated the ability of neonatal larvae of the root-feeding weevil, Sitona lepidus Gyllenhal, to locate white clover Trifolium repens L. (Fabaceae) roots growing in soil and to distinguish them from the roots of other species of clover and a co-occurring grass species. Choice experiments used a combination of invasive techniques and the novel technique of high resolution X-ray microtomography to non-invasively track larval movement in the soil towards plant roots. Burrowing distances towards roots of different plant species were also examined. Newly hatched S. lepidus recognized T. repens roots and moved preferentially towards them when given a choice of roots of subterranean clover, Trifolium subterraneum L. (Fabaceae), strawberry clover Trifolium fragiferum L. (Fabaceae), or perennial ryegrass Lolium perenneL. (Poaceae). Larvae recognized T. repens roots, whether released in groups of five or singly, when released 25 mm (meso-scale recognition) or 60 mm (macro-scale recognition) away from plant roots. There was no statistically significant difference in movement rates of larvae.

  12. [Physical and chemical methods for eliminating propagules of indigenous mycorrhizal fungi from soil samples].

    PubMed

    Covacevich, Fernanda; Castellari, Claudia C; Echeverría, Hernán E

    2014-01-01

    The objective of this work was to evaluate methods to eliminate or reduce the number of indigenous arbuscular mycorrhizal fungi (AMF) from soil samples without affecting their edaphic or microbiological properties. At an early trial we evaluated moist heat (autoclaving), dry heat (oven), sodium hypochlorite (NaClO) and formaldehyde at a range of 100.0-3.3μl/g and 16.7-3.3μl/g respectively. There was no germination in plants of ryegrass (Lolium multiflorum Lam.) sown on substrates receiving NaClO (100.0-33.3μl/g), whereas autoclaving significantly increased the available soil phosphorous content. Both treatments failed to eradicate AMF colonization at 9 weeks; therefore, they were discarded. In a second trial, oven and formaldehyde (10.0μl/g) treatments were analyzed to assess the effects of seed decontamination and AMF reinoculation. Both procedures were effective in reducing or eliminating indigenous AMF at a range of soil P availability of 12-29mg/kg. However, the time between soil treatment and AMF multiplication and safety requirements were greater in the case of formaldehyde application.

  13. Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils

    PubMed Central

    Khan, Muhammad U.; Sessitsch, Angela; Harris, Muhammad; Fatima, Kaneez; Imran, Asma; Arslan, Muhammad; Shabir, Ghulam; Khan, Qaiser M.; Afzal, Muhammad

    2015-01-01

    Prosopis juliflora is characterized by distinct and profuse growth even in nutritionally poor soil and environmentally stressed conditions and is believed to harbor some novel heavy metal-resistant bacteria in the rhizosphere and endosphere. This study was performed to isolate and characterize Cr-resistant bacteria from the rhizosphere and endosphere of P. juliflora growing on the tannery effluent contaminated soil. A total of 5 and 21 bacterial strains were isolated from the rhizosphere and endosphere, respectively, and were shown to tolerate Cr up to 3000 mg l−1. These isolates also exhibited tolerance to other toxic heavy metals such as, Cd, Cu, Pb, and Zn, and high concentration (174 g l−1) of NaCl. Moreover, most of the isolated bacterial strains showed one or more plant growth-promoting activities. The phylogenetic analysis of the 16S rRNA gene showed that the predominant species included Bacillus, Staphylococcus and Aerococcus. As far as we know, this is the first report analyzing rhizo- and endophytic bacterial communities associated with P. juliflora growing on the tannery effluent contaminated soil. The inoculation of three isolates to ryegrass (Lolium multiflorum L.) improved plant growth and heavy metal removal from the tannery effluent contaminated soil suggesting that these bacteria could enhance the establishment of the plant in contaminated soil and also improve the efficiency of phytoremediation of heavy metal-degraded soils. PMID:25610444

  14. Plants growing on contaminated and brownfield sites appropriate for use in Organisation for Economic Co-operation and Development terrestrial plant growth test.

    PubMed

    Sinnett, Danielle E; Lawrence, Victoria K; Hutchings, Tony R; Hodson, Mark E

    2011-01-01

    The Organisation for Economic Co-operation and Development (OECD) terrestrial plant test is often used for the ecological risk assessment of contaminated land. However, its origins in plant protection product testing mean that the species recommended in the OECD guidelines are unlikely to occur on contaminated land. Six alternative species were tested on contaminated soils from a former Zn smelter and a metal fragmentizer with elevated concentrations of Cd, Cu, Pb, and Zn. The response of the alternative species was compared with that of two species recommended by the OECD: Lolium perenne (perennial ryegrass) and Trifolium pratense (red clover). Urtica dioica (stinging nettle) and Poa annua (annual meadowgrass) had low emergence rates in the control soil and so may be considered unsuitable. Festuca rubra (Chewings fescue), Holcus lanatus (Yorkshire fog), Senecio vulgaris (common groundsel), and Verbascum thapsus (great mullein) offer good alternatives to the OECD species. In particular, H. lanatus and S. vulgaris were more sensitive to the soils with moderate concentrations of Cd, Cu, Pb, and Zn than the OECD species. PMID:20853450

  15. A phytotoxic active substance in the decomposing litter of the fern Gleichenia japonica.

    PubMed

    Kato-Noguchi, Hisashi; Saito, Yoshihumi; Ohno, Osamu; Suenaga, Kiyotake

    2015-03-15

    The fern Gleichenia japonica often dominates plant communities by forming large monospecific stands throughout the temperate to tropical Asia. The objective of this study was the investigation of allelopathic property and substances of the decomposing litter of the fern to evaluate the possible involvement of its allelopathy in the domination. An aqueous methanol extract of G. japonica litter inhibited the growth of garden cress (Lepidium sativum), lettuce (Lactuca sativa), barnyard grass (Echinochloa crus-galli), and ryegrass (Lolium multiflorum). This result suggests that G. japonica litter contains growth inhibitory substances. The extract was purified by chromatography while monitoring the inhibitory activity, and a growth inhibitory substance was isolated. The chemical structure of the substance was determined by spectral data to be a novel compound, 13-O-β-fucopyranosyl-3β-hydroxymanool. This compound inhibited root and shoot growth of garden cress and barnyard grass at concentrations ranging from 89.7 to 271 μM for 50% inhibition. In addition, the compound had potent growth inhibitory activity with the soil taken from near the colony. The concentration of the compound in soil under a pure colony of G. japonica was 790 μM, suggesting that the compound may contribute to the establishment of monocultural stands by this fern.

  16. A novel substance with allelopathic activity in Ginkgo biloba.

    PubMed

    Kato-Noguchi, Hisashi; Takeshita, Sayaka; Kimura, Fukiko; Ohno, Osamu; Suenaga, Kiyotake

    2013-12-15

    Ginkgo (Ginkgo biloba) is one of the oldest living tree species and has been widely used in traditional medicine. Leaf extracts of ginkgo, such as the standardized extract EGb761, have become one of the best-selling herbal products. However, no bioactive compound directed at plants has been reported in this species. Therefore, we investigated possible allelopathic activity and searched for allelopathically active substances in ginkgo leaves. An aqueous methanol leaf extract inhibited the growth of roots and shoots of garden cress (Lepidium sativum), lettuce (Lactuca sativa), timothy (Phleum pratense) and ryegrass (Lolium multiflorum) seedlings. The extract was purified by several chromatographic runs and an allelopathically active substance was isolated and identified by spectral analysis to be the novel compound 2-hydroxy-6-(10-hydroxypentadec-11-enyl)benzoic acid. The compound inhibited root and shoot growth of garden cress and timothy at concentrations greater than 3 μM. The activity of the compound was 10- to 52-fold that of nonanoic acid. These results suggest that 2-hydroxy-6-(10-hydroxypentadec-11-enyl)benzoic acid may contribute to the allelopathic effect caused by ginkgo leaf extract. The compound may also have potential as a template for the development of new plant control substances.

  17. Spatial Competition: Roughening of an Experimental Interface.

    PubMed

    Allstadt, Andrew J; Newman, Jonathan A; Walter, Jonathan A; Korniss, G; Caraco, Thomas

    2016-01-01

    Limited dispersal distance generates spatial aggregation. Intraspecific interactions are then concentrated within clusters, and between-species interactions occur near cluster boundaries. Spread of a locally dispersing invader can become motion of an interface between the invading and resident species, and spatial competition will produce variation in the extent of invasive advance along the interface. Kinetic roughening theory offers a framework for quantifying the development of these fluctuations, which may structure the interface as a self-affine fractal, and so induce a series of temporal and spatial scaling relationships. For most clonal plants, advance should become spatially correlated along the interface, and width of the interface (where invader and resident compete directly) should increase as a power function of time. Once roughening equilibrates, interface width and the relative location of the most advanced invader should each scale with interface length. We tested these predictions by letting white clover (Trifolium repens) invade ryegrass (Lolium perenne). The spatial correlation of clover growth developed as anticipated by kinetic roughening theory, and both interface width and the most advanced invader's lead scaled with front length. However, the scaling exponents differed from those predicted by recent simulation studies, likely due to clover's growth morphology. PMID:27465518

  18. [Physical and chemical methods for eliminating propagules of indigenous mycorrhizal fungi from soil samples].

    PubMed

    Covacevich, Fernanda; Castellari, Claudia C; Echeverría, Hernán E

    2014-01-01

    The objective of this work was to evaluate methods to eliminate or reduce the number of indigenous arbuscular mycorrhizal fungi (AMF) from soil samples without affecting their edaphic or microbiological properties. At an early trial we evaluated moist heat (autoclaving), dry heat (oven), sodium hypochlorite (NaClO) and formaldehyde at a range of 100.0-3.3μl/g and 16.7-3.3μl/g respectively. There was no germination in plants of ryegrass (Lolium multiflorum Lam.) sown on substrates receiving NaClO (100.0-33.3μl/g), whereas autoclaving significantly increased the available soil phosphorous content. Both treatments failed to eradicate AMF colonization at 9 weeks; therefore, they were discarded. In a second trial, oven and formaldehyde (10.0μl/g) treatments were analyzed to assess the effects of seed decontamination and AMF reinoculation. Both procedures were effective in reducing or eliminating indigenous AMF at a range of soil P availability of 12-29mg/kg. However, the time between soil treatment and AMF multiplication and safety requirements were greater in the case of formaldehyde application. PMID:25444132

  19. Mapping nano-scale mechanical heterogeneity of primary plant cell walls.

    PubMed

    Yakubov, Gleb E; Bonilla, Mauricio R; Chen, Huaying; Doblin, Monika S; Bacic, Antony; Gidley, Michael J; Stokes, Jason R

    2016-04-01

    Nanoindentation experiments are performed using an atomic force microscope (AFM) to quantify the spatial distribution of mechanical properties of plant cell walls at nanometre length scales. At any specific location on the cell wall, a complex (non-linear) force-indentation response occurs that can be deconvoluted using a unique multiregime analysis (MRA). This allows an unambiguous evaluation of the local transverse elastic modulus of the wall. Nanomechanical measurements on suspension-cultured cells (SCCs), derived from Italian ryegrass (Lolium multiflorum) starchy endosperm, show three characteristic modes of deformation and a spatial distribution of elastic moduli across the surface. 'Soft' and 'hard' domains are found across length scales between 0.1 µm and 3 µm, which is well above a typical pore size of the polysaccharide mesh. The generality and wider applicability of this mechanical heterogeneity is verified through in planta characterization on leaf epidermal cells of Arabidopsis thaliana and L. multiflorum The outcomes of this research provide a basis for uncovering and quantifying the relationships between local wall composition, architecture, cell growth, and/or morphogenesis.

  20. Accumulation of polycyclic aromatic hydrocarbons from creosote-contaminated soil in selected plants and the oligochaete worm Enchytraeus crypticus

    SciTech Connect

    Ann-Sofie Allard; Marianne Malmberg; Alasdair H. Neilson; Mikael Remberger

    2005-07-01

    The accumulation of PAHs from a creosote-contaminated soil was examined in laboratory experiments using English ryegrass (Lolium perenne), white clover (Trifolium repens) and radish (Raphanus sativus), and the oligochaete worm Enchytraeus crypticus. Toxicity to the plants and the worms was assessed, and a soil sample mixed with calcined sand was used for accumulation experiments to avoid interference from toxicity in the soil. Accumulation of potentially carcinogenic PAHs varied among the plants, and there was a linear relation between concentrations of PAHs in the soil and in the plants. Correlations between values of the biota-soil accumulation factors and octanol-water partition coefficients, or water solubility varied among the plants and were rather weak, so that lipophilic character or water solubility of the PAHs alone cannot explain PAH accumulation. Accumulation of carcinogenic PAHs from the soil, in the presence of the other PAHs was greatest for Trifolium repens. PAHs were accumulated in the oligochaete worm (Enchytraeus crypticus), and biota-soil accumulation factors exceeded those for the plants. It is suggested that site-specific evaluation of contaminated sites should include not only chemical analysis and evaluation of toxicity but also accumulation of contaminants into biota such as plants and worms.

  1. Bioactivities of volatile components from Nepalese Artemisia species.

    PubMed

    Satyal, Prabodh; Paudel, Prajwal; Kafle, Ananad; Pokharel, Suraj K; Lamichhane, Bimala; Dosoky, Noura S; Moriarity, Debra M; Setzer, William N

    2012-12-01

    The essential oils from the leaves of Artemisia dubia, A. indica, and A. vulgaris growing wild in Nepal were obtained by hydrodistillation and analyzed by GC-MS. The major components in A. dubia oil were chrysanthenone (29.0%), coumarin (18.3%), and camphor (16.4%). A. indica oil was dominated by ascaridole (15.4%), isoascaridole (9.9%), trans-p-mentha-2,8-dien-1-ol (9.7%), and trans-verbenol (8.4%). The essential oil of Nepalese A. vulgaris was rich in alpha-thujone (30.5%), 1,8-cineole (12.4%), and camphor (10.3%). The essential oils were screened for phytotoxic activity against Lactuca sativa (lettuce) and Lolium perenne (perennial ryegrass) using both seed germination and seedling growth, and all three Artemisia oils exhibited notable allelopathic activity. A. dubia oil showed in-vitro cytotoxic activity on MCF-7 cells (100% kill at 100 microg/mL) and was also marginally antifungal against Aspergillus niger (MIC = 313 microg/mL). DFT calculations (B3LYP/6-31G*) revealed thermal decomposition of ascaridole to be energetically accessible at hydrodistillation and GC conditions, but these are spin-forbidden processes. If decomposition does occur, it likely proceeds by way of homolytic peroxide bond cleavage rather than retro-Diels-Alder elimination of molecular oxygen. PMID:23413575

  2. Effect of Supplementary Irrigation Water Quality on Some Soil Chemical Properties

    NASA Astrophysics Data System (ADS)

    Costa, José Luis; Aparicio, Virginia

    2014-05-01

    The aim of this study was to evaluate the incidence of different combinations of irrigation water (demineralized and artificially salinized on the laboratory) on the electrical conductivity (EC), sodium adsorption ratio (SAR), pH, exchangeable sodium percentage (ESP), and percent base saturation of two petrocalcic paleudols of Argentina. An experiment was conducted in a greenhouse, using soil columns of 30 cm long, which were seeded with perennial ryegrass (Lolium perenne). Five water treatments were established: W2 (50% water of low SAR and 50 % distilled water), W0 ( 100 % distilled water), W1 (30% water with low RAS and 70 % distilled water), W3 (30% water of high RAS and 70 % distilled water), and W4 ( 50% water with high RAS and 50 % distilled water). As artificially salinized water proportion was greater than the demineralized water, the EC and ESP values increased principally at surface level (10cm). The artificial water SAR=12.5 produced a significant increase in ESP=19.8 compared with the control treatment. Considering the dilution effect of rain,it was possible to establish an equation to estimate the value of soil ESP for a given quality of irrigation water value.

  3. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.

    PubMed

    Tomalty, Heather E; Walker, Virginia K

    2014-09-26

    Certain plant-associating bacteria produce ice nucleation proteins (INPs) which allow the crystallization of water at high subzero temperatures. Many of these microbes are considered plant pathogens since the formed ice can damage tissues, allowing access to nutrients. Intriguingly, certain plants that host these bacteria synthesize antifreeze proteins (AFPs). Once freezing has occurred, plant AFPs likely function to inhibit the growth of large damaging ice crystals. However, we postulated that such AFPs might also serve as defensive mechanisms against bacterial-mediated ice nucleation. Recombinant AFP derived from the perennial ryegrass Lolium perenne (LpAFP) was combined with INP preparations originating from the grass epiphyte, Pseudomonas syringae. The presence of INPs had no effect on AFP activity, including thermal hysteresis and ice recrystallization inhibition. Strikingly, the ice nucleation point of the INP was depressed up to 1.9°C in the presence of LpAFP, but a recombinant fish AFP did not lower the INP-imposed freezing point. Assays with mutant LpAFPs and the visualization of bacterially-displayed fluorescent plant AFP suggest that INP and LpAFP can interact. Thus, we postulate that in addition to controlling ice growth, plant AFPs may also function as a defensive strategy against the damaging effects of ice-nucleating bacteria.

  4. Pollensomes as Natural Vehicles for Pollen Allergens.

    PubMed

    Prado, Noela; De Linares, Concepción; Sanz, María L; Gamboa, Pedro; Villalba, Mayte; Rodríguez, Rosalía; Batanero, Eva

    2015-07-15

    Olive (Olea europaea) pollen constitutes one of the most important allergen sources in the Mediterranean countries and some areas of the United States, South Africa, and Australia. Recently, we provided evidence that olive pollen releases nanovesicles of respirable size, named generically pollensomes, during in vitro germination. Olive pollensomes contain allergens, such as Ole e 1, Ole e 11, and Ole e 12, suggesting a possible role in allergy. The aim of this study was to assess the contribution of pollensomes to the allergic reaction. We show that pollensomes exhibit allergenic activity in terms of patients' IgE-binding capacity, human basophil activation, and positive skin reaction in sensitized patients. Furthermore, allergen-containing pollensomes have been isolated from three clinically relevant nonphylogenetically related species: birch (Betula verrucosa), pine (Pinus sylvestris), and ryegrass (Lolium perenne). Most interesting, pollensomes were isolated from aerobiological samples collected with an eight-stage cascade impactor collector, indicating that pollensomes secretion is a naturally occurring phenomenon. Our findings indicate that pollensomes may represent widespread vehicles for pollen allergens, with potential implications in the allergic reaction.

  5. Biochar as possible long-term soil amendment for phytostabilisation of TE-contaminated soils.

    PubMed

    Bopp, Charlotte; Christl, Iso; Schulin, Rainer; Evangelou, Michael W H

    2016-09-01

    Soils contaminated by trace elements (TEs) pose a high risk to their surrounding areas as TEs can spread by wind and water erosion or leaching. A possible option to reduce TE transfer from these sites is phytostabilisation. It is a long-term and cost-effective rehabilitation strategy which aims at immobilising TEs within the soil by vegetation cover and amendment application. One possible amendment is biochar. It is charred organic matter which has been shown to immobilise metals due to its high surface area and alkaline pH. Doubts have been expressed about the longevity of this immobilising effect as it could dissipate once the carbonates in the biochar have dissolved. Therefore, in a pot experiment, we determined plant metal uptake by ryegrass (Lolium perenne) from three TE-contaminated soils treated with two biochars, which differed only in their pH (acidic, 2.80; alkaline, 9.33) and carbonate (0.17 and 7.3 %) content. Root biomass was increased by the application of the alkaline biochar due to the decrease in TE toxicity. Zinc and Cu bioavailability and plant uptake were equally reduced by both biochars, showing that surface area plays an important role in metal immobilisation. Biochar could serve as a long-term amendment for TE immobilisation even after its alkalinity effect has dissipated. PMID:27230149

  6. Polymer Coated Urea in Turfgrass Maintains Vigor and Mitigates Nitrogen's Environmental Impacts

    PubMed Central

    LeMonte, Joshua J.; Jolley, Von D.; Summerhays, Jeffrey S.; Terry, Richard E.; Hopkins, Bryan G.

    2016-01-01

    Polymer coated urea (PCU) is a N fertilizer which, when added to moist soil, uses temperature-controlled diffusion to regulate N release in matching plant demand and mitigate environmental losses. Uncoated urea and PCU were compared for their effects on gaseous (N2O and NH3) and aqueous (NO3-) N environmental losses in cool season turfgrass over the entire PCU N-release period. Field studies were conducted on established turfgrass sites with mixtures of Kentucky bluegrass (Poa pratensis L.) and perennial ryegrass (Lolium perenne L.) in sand and loam soils. Each study compared 0 kg N ha-1 (control) to 200 kg N ha-1 applied as either urea or PCU (Duration 45CR®). Application of urea resulted in 127–476% more evolution of measured N2O into the atmosphere, whereas PCU was similar to background emission levels from the control. Compared to urea, PCU reduced NH3 emissions by 41–49% and N2O emissions by 45–73%, while improving growth and verdure compared to the control. Differences in leachate NO3- among urea, PCU and control were inconclusive. This improvement in N management to ameliorate atmospheric losses of N using PCU will contribute to conserving natural resources and mitigating environmental impacts of N fertilization in turfgrass. PMID:26764908

  7. Biochar as possible long-term soil amendment for phytostabilisation of TE-contaminated soils.

    PubMed

    Bopp, Charlotte; Christl, Iso; Schulin, Rainer; Evangelou, Michael W H

    2016-09-01

    Soils contaminated by trace elements (TEs) pose a high risk to their surrounding areas as TEs can spread by wind and water erosion or leaching. A possible option to reduce TE transfer from these sites is phytostabilisation. It is a long-term and cost-effective rehabilitation strategy which aims at immobilising TEs within the soil by vegetation cover and amendment application. One possible amendment is biochar. It is charred organic matter which has been shown to immobilise metals due to its high surface area and alkaline pH. Doubts have been expressed about the longevity of this immobilising effect as it could dissipate once the carbonates in the biochar have dissolved. Therefore, in a pot experiment, we determined plant metal uptake by ryegrass (Lolium perenne) from three TE-contaminated soils treated with two biochars, which differed only in their pH (acidic, 2.80; alkaline, 9.33) and carbonate (0.17 and 7.3 %) content. Root biomass was increased by the application of the alkaline biochar due to the decrease in TE toxicity. Zinc and Cu bioavailability and plant uptake were equally reduced by both biochars, showing that surface area plays an important role in metal immobilisation. Biochar could serve as a long-term amendment for TE immobilisation even after its alkalinity effect has dissipated.

  8. Polymer Coated Urea in Turfgrass Maintains Vigor and Mitigates Nitrogen's Environmental Impacts.

    PubMed

    LeMonte, Joshua J; Jolley, Von D; Summerhays, Jeffrey S; Terry, Richard E; Hopkins, Bryan G

    2016-01-01

    Polymer coated urea (PCU) is a N fertilizer which, when added to moist soil, uses temperature-controlled diffusion to regulate N release in matching plant demand and mitigate environmental losses. Uncoated urea and PCU were compared for their effects on gaseous (N2O and NH3) and aqueous (NO3(-)) N environmental losses in cool season turfgrass over the entire PCU N-release period. Field studies were conducted on established turfgrass sites with mixtures of Kentucky bluegrass (Poa pratensis L.) and perennial ryegrass (Lolium perenne L.) in sand and loam soils. Each study compared 0 kg N ha(-1) (control) to 200 kg N ha(-1) applied as either urea or PCU (Duration 45CR®). Application of urea resulted in 127-476% more evolution of measured N2O into the atmosphere, whereas PCU was similar to background emission levels from the control. Compared to urea, PCU reduced NH3 emissions by 41-49% and N2O emissions by 45-73%, while improving growth and verdure compared to the control. Differences in leachate NO3(-) among urea, PCU and control were inconclusive. This improvement in N management to ameliorate atmospheric losses of N using PCU will contribute to conserving natural resources and mitigating environmental impacts of N fertilization in turfgrass. PMID:26764908

  9. Host preference of the chinch bug, Blissus occiduus

    PubMed Central

    Eickhoff, Thomas E.; Baxendale, Frederick P.; Heng-Moss, Tiffany M.

    2006-01-01

    The chinch bug, Blissus occiduus Barber (Hemiptera: Blissidae), is an important pest of buffalograss, Buchloë dactyloides (Nutall) Engelmann and potentially other turfgrass, crop, and non-crop hosts. Choice studies documented the number of B. occiduus present on selected turfgrasses, crops and weeds, and provided important insights into the host preferences of this chinch bug. Grasses with the most chinch bugs present included the warm-season turfgrasses B. dactyloides, zoysiagrass, Zoysia japonica Steudel, bermudagrass, Cynodon dactylon (L.) Pers., and St. Augustinegrass, Stenotaphrum secundatum (Walt.) Kuntze. The other grasses tested, green foxtail, Setaria viridis (L.) Beauv, Kentucky bluegrass, Poa pratensis L., perennial ryegrass, Lolium perenne L., rye, Secale cereale L., sorghum, Sorghum bicolor (L.) Moench, tall fescue, Festuca arundinacea Schreb. and wheat Tritium aestivum L. had significantly fewer chinch bugs. Buffalograss and zoysiagrass had the highest numbers of chinch bugs among the warm-season grasses and the buffalograss cultivars ‘86–120’ and ‘PX-3-5-1’ had more chinch bugs than the zoysiagrass cultivars ‘Meyers’ and ‘El Toro’ after the two hour evaluation time. PMID:19537992

  10. Can live weight be used as a proxy for enteric methane emissions from pasture-fed sheep?

    PubMed Central

    Moorby, J. M.; Fleming, H. R.; Theobald, V. J.; Fraser, M. D.

    2015-01-01

    To test the hypothesis that sheep live weight (LW) could be used to improve enteric methane (CH4) emission calculations, mature ewes of 4 different breeds representative of the UK sheep industry were studied: Welsh Mountain, Scottish Blackface, Welsh Mule and Texel (n = 8 per breed). The ewes were housed and offered ad libitum access to fresh cut pasture of three different types, varying in digestibility: (a) a relatively high digestibility monoculture of perennial ryegrass (Lolium perenne), (b) a medium digestibility permanent pasture comprising a range of grass species, and (c) a relatively low digestibility native grassland pasture comprising mainly Molinia caerulea. Individual LW, feed dry matter intake (DMI), and CH4 emissions in chambers were measured. The linear functional relationship between DMI and CH4 emissions was positive (r = 0.77) with little breed effect. The relationships between LW and DMI, and LW and CH4 emissions were also positive but weaker, regardless of pasture type. It is concluded that change to LW was a poor indicator of DMI and has limited value in the prediction of enteric CH4 emissions from mature ewes. PMID:26647754

  11. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.

    PubMed

    Tomalty, Heather E; Walker, Virginia K

    2014-09-26

    Certain plant-associating bacteria produce ice nucleation proteins (INPs) which allow the crystallization of water at high subzero temperatures. Many of these microbes are considered plant pathogens since the formed ice can damage tissues, allowing access to nutrients. Intriguingly, certain plants that host these bacteria synthesize antifreeze proteins (AFPs). Once freezing has occurred, plant AFPs likely function to inhibit the growth of large damaging ice crystals. However, we postulated that such AFPs might also serve as defensive mechanisms against bacterial-mediated ice nucleation. Recombinant AFP derived from the perennial ryegrass Lolium perenne (LpAFP) was combined with INP preparations originating from the grass epiphyte, Pseudomonas syringae. The presence of INPs had no effect on AFP activity, including thermal hysteresis and ice recrystallization inhibition. Strikingly, the ice nucleation point of the INP was depressed up to 1.9°C in the presence of LpAFP, but a recombinant fish AFP did not lower the INP-imposed freezing point. Assays with mutant LpAFPs and the visualization of bacterially-displayed fluorescent plant AFP suggest that INP and LpAFP can interact. Thus, we postulate that in addition to controlling ice growth, plant AFPs may also function as a defensive strategy against the damaging effects of ice-nucleating bacteria. PMID:25193694

  12. A Potent Phytotoxic Substance in Aglaia odorata Lour.

    PubMed

    Kato-Noguchi, Hisashi; Suzuki, Masahiko; Noguchi, Kazutaka; Ohno, Osamu; Suenaga, Kiyotake; Laosinwattana, Chamroon

    2016-05-01

    Aglaia odorata Lour. (Meliaceae) was found to have very strong allelopathic activity and a bioherbicide PORGANIC(™) was developed from its leaf extracts. However, the phytotoxic substances causing the strong allelopathic activity of the plants have not yet been determined. Therefore, we investigated allelopathic properties and phytotoxic substances in A. odorata. Aqueous EtOH extracts of A. odorata leaves inhibited root and shoot growth of garden cress (Lepidum sativum), lettuce (Lactuca sativa), alfalfa (Medicago sativa), timothy (Phleum pratense), ryegrass (Lolium multiflorum), and Echinochloa crus-galli with the extract concentration-dependent manner. The extracts were then purified and a major phytotoxic substance with allelopathic activity was isolated and identified by spectral data as rocaglaol. Rocaglaol inhibited the growth of garden cress and E. crus-galli at concentrations > 0.3 and 0.03 μm, respectively. The concentrations required for 50% inhibition ranged from 0.09 to 2.5 μm. The inhibitory activity of rocaglaol on the weed species, E. crus-galli, was much greater than that of abscisic acid. These results suggest that rocaglaol may be a major contributor to the allelopathic effect of A. odorata and bioherbicide PORGANIC(™) . PMID:27088639

  13. A phytotoxic active substance in the decomposing litter of the fern Gleichenia japonica.

    PubMed

    Kato-Noguchi, Hisashi; Saito, Yoshihumi; Ohno, Osamu; Suenaga, Kiyotake

    2015-03-15

    The fern Gleichenia japonica often dominates plant communities by forming large monospecific stands throughout the temperate to tropical Asia. The objective of this study was the investigation of allelopathic property and substances of the decomposing litter of the fern to evaluate the possible involvement of its allelopathy in the domination. An aqueous methanol extract of G. japonica litter inhibited the growth of garden cress (Lepidium sativum), lettuce (Lactuca sativa), barnyard grass (Echinochloa crus-galli), and ryegrass (Lolium multiflorum). This result suggests that G. japonica litter contains growth inhibitory substances. The extract was purified by chromatography while monitoring the inhibitory activity, and a growth inhibitory substance was isolated. The chemical structure of the substance was determined by spectral data to be a novel compound, 13-O-β-fucopyranosyl-3β-hydroxymanool. This compound inhibited root and shoot growth of garden cress and barnyard grass at concentrations ranging from 89.7 to 271 μM for 50% inhibition. In addition, the compound had potent growth inhibitory activity with the soil taken from near the colony. The concentration of the compound in soil under a pure colony of G. japonica was 790 μM, suggesting that the compound may contribute to the establishment of monocultural stands by this fern. PMID:25569852

  14. A novel substance with allelopathic activity in Ginkgo biloba.

    PubMed

    Kato-Noguchi, Hisashi; Takeshita, Sayaka; Kimura, Fukiko; Ohno, Osamu; Suenaga, Kiyotake

    2013-12-15

    Ginkgo (Ginkgo biloba) is one of the oldest living tree species and has been widely used in traditional medicine. Leaf extracts of ginkgo, such as the standardized extract EGb761, have become one of the best-selling herbal products. However, no bioactive compound directed at plants has been reported in this species. Therefore, we investigated possible allelopathic activity and searched for allelopathically active substances in ginkgo leaves. An aqueous methanol leaf extract inhibited the growth of roots and shoots of garden cress (Lepidium sativum), lettuce (Lactuca sativa), timothy (Phleum pratense) and ryegrass (Lolium multiflorum) seedlings. The extract was purified by several chromatographic runs and an allelopathically active substance was isolated and identified by spectral analysis to be the novel compound 2-hydroxy-6-(10-hydroxypentadec-11-enyl)benzoic acid. The compound inhibited root and shoot growth of garden cress and timothy at concentrations greater than 3 μM. The activity of the compound was 10- to 52-fold that of nonanoic acid. These results suggest that 2-hydroxy-6-(10-hydroxypentadec-11-enyl)benzoic acid may contribute to the allelopathic effect caused by ginkgo leaf extract. The compound may also have potential as a template for the development of new plant control substances. PMID:23932539

  15. Phytotoxic substance with allelopathic activity in Brachiaria decumbens.

    PubMed

    Kobayashi, Ai; Kato-Noguchi, Hisashi

    2015-05-01

    The grass Brachiaria decumbens becomes naturalized and quickly dominant in non-native areas. It was hypothesized that phytotoxic substances of plants may contribute to the domination and invasion of the plants. However, no potent phytotoxic substance has been reported in B. decumbens. Therefore, we searched for phytotoxic substances with allelopathic activity in this species. An aqueous methanol extract of B. decumbens inhibited the growth of roots and shoots of cress (Lepidium sativum), lettuce (Lactuca sativa), timothy (Phleum pratense) and ryegrass (Lolium multiflorum) seedlings. The extract was then purified using chromatographic methods and a phytotoxic substance with allelopathic activity was isolated and identified by spectral analysis as (6R,9S)-3-oxo-α-ionol. These results suggest that this compound may contribute to the allelopathic effect caused by the B. decumbens extract and may be in part responsible for the invasion and domination of B. decumbens. Two other Brachiaria species, B. brizantha and a Brachiaria hybrid were also confirmed to contain (6R,9S)-3-oxo-α-ionol. Therefore, this compound may play an important role in the phytotoxicity of the Brachiaria species. PMID:26058152

  16. Preliminary ecotoxicological characterization of a new energetic substance, CL-20.

    PubMed

    Gong, Ping; Sunahara, Geoffrey I; Rocheleau, Sylvie; Dodard, Sabine G; Robidoux, Pierre Yves; Hawari, Jalal

    2004-08-01

    A new energetic substance hexanitrohexaazaisowurtzitane (or CL-20) was tested for its toxicities to various ecological receptors. CL-20 (epsilon-polymorph) was amended to soil or deionized water to construct concentration gradients. Results of Microtox (15-min contact) and 96-h algae growth inhibition tests indicate that CL-20 showed no adverse effects on the bioluminescence of marine bacteria Vibrio fischeri and the cell density of freshwater green algae Selenastrum capricornutum respectively, up to its water solubility (ca. 3.6 mg l(-1)). CL-20 and its possible biotransformation products did not inhibit seed germination and early seedling (16-19 d) growth of alfalfa (Medicago sativa) and perennial ryegrass (Lolium perenne) up to 10,000 mg kg(-1) in a Sassafras sandy loam soil (SSL). Indigenous soil microorganisms in SSL and a garden soil were exposed to CL-20 for one or two weeks before dehydrogenase activity (DHA) or potential nitrification activity (PNA) were assayed. Results indicate that up to 10,000 mg kg(-1) soil of CL-20 had no statistically significant effects on microbial communities measured as DHA or on the ammonium oxidizing bacteria determined as PNA in both soils. Data indicates that CL-20 was not acutely toxic to the species or microbial communities tested and that further studies are required to address the potential long-term environmental impact of CL-20 and its possible degradation products. PMID:15234161

  17. Fluoride accumulation by plants grown in acid soils amended with flue gas desulphurisation gypsum.

    PubMed

    Álvarez-Ayuso, E; Giménez, A; Ballesteros, J C

    2011-09-15

    The application of flue gas desulphurisation (FGD) gypsum as an acid soil ameliorant was studied in order to establish the possible detrimental effects on plants and animals feeding on them caused by the high fluoride content in this by-product. A greenhouse experiment was conducted under controlled conditions to determine the F accumulation by two plant species (alfalfa (Medicago sativa L.) and ryegrass (Lolium perenne L.)) grown in acid soils amended with different FGD gypsum doses (0-10%). The F concentrations in plant aerial parts were comprised in the range 22-65 mg kg(-1), and those in plant roots varied from 49 to 135 mg kg(-1). The F contents in the above-ground plant tissues showed to decrease with the FGD gypsum application rate, whereas an inverse trend was manifested by plant roots. The increase in the soil content of soluble Ca as a result of the FGD gypsum addition seemed to play an important role in limiting the translocation of F to plant aerial parts.

  18. Using non-targeted direct analysis in real time-mass spectrometry (DART-MS) to discriminate seeds based on endogenous or exogenous chemicals.

    PubMed

    Subbaraj, Arvind K; Barrett, Brent A; Wakelin, Steve A; Fraser, Karl

    2015-10-01

    Forage seeds are a highly traded agricultural commodity, and therefore, quality control and assurance is high priority. In this study, we have used direct analysis in real time-mass spectrometry (DART-MS) as a tool to discriminate forage seeds based on their non-targeted chemical profiles. In the first experiment, two lots of perennial ryegrass (Lolium perenne L.) seed were discriminated based on exogenous residues of N-(3, 4-dichlorophenyl)-N,N-dimethylurea (Diuron(TM)), a herbicide. In a separate experiment, washed and unwashed seeds of the forage legumes white clover (Trifolium repens L.) and alfalfa (Medicago sativa L.) were discriminated based on the presence or absence of oxylipins, a class of endogenous antimicrobial compounds. Unwashed seeds confer toxicity towards symbiotic, nitrogen-fixing rhizobia which are routinely coated on legume seeds before planting, resulting in reduced rhizobial count. This is the first report of automatic introduction of intact seeds in the DART ion source and detecting oxylipins using DART-MS. Apart from providing scope to investigate legume-rhizobia symbiosis further in the context of oxylipins, the results presented here will enable future studies aimed at classification of seeds based on chemicals bound to the seed coat, thereby offering an efficient screening device for industry.

  19. Ecotoxicological assessment of a high energetic and insensitive munitions compound: 2,4-dinitroanisole (DNAN).

    PubMed

    Dodard, Sabine G; Sarrazin, Manon; Hawari, Jalal; Paquet, Louise; Ampleman, Guy; Thiboutot, Sonia; Sunahara, Geoffrey I

    2013-11-15

    The high explosive nitroaromatic 2,4-dinitroanisole (DNAN) is less shock sensitive than 2,4,6-trinitrotoluene (TNT), and is proposed as a TNT replacement for melt-cast formulations. Before using DNAN in munitions and potentially leading to environmental impact, the present study examines the ecotoxicity of DNAN using selected organisms. In water, DNAN decreased green algae Pseudokirchneriella subcapitata growth (EC50 = 4.0mg/L), and bacteria Vibrio fischeri bioluminescence (Microtox, EC50 = 60.3mg/L). In soil, DNAN decreased perennial ryegrass Lolium perenne growth (EC50 =7 mg/kg), and is lethal to earthworms Eisenia andrei (LC50 = 47 mg/kg). At sub-lethal concentrations, DNAN caused an avoidance response (EC50 = 31 mg/kg) by earthworms. The presence of DNAN and 2-amino-4-nitroanisole in earthworms and plants suggested a role of these compounds in DNAN toxicity. Toxicity of DNAN was compared to TNT, tested under the same experimental conditions. These analyses showed that DNAN was equally, or even less deleterious to organism health than TNT, depending on the species and toxicity test. The present studies provide baseline toxicity data to increase the understanding of the environmental impact of DNAN, and assist science-based decision makers for improved management of potential DNAN contaminated sites.

  20. Polymer Coated Urea in Turfgrass Maintains Vigor and Mitigates Nitrogen's Environmental Impacts.

    PubMed

    LeMonte, Joshua J; Jolley, Von D; Summerhays, Jeffrey S; Terry, Richard E; Hopkins, Bryan G

    2016-01-01

    Polymer coated urea (PCU) is a N fertilizer which, when added to moist soil, uses temperature-controlled diffusion to regulate N release in matching plant demand and mitigate environmental losses. Uncoated urea and PCU were compared for their effects on gaseous (N2O and NH3) and aqueous (NO3(-)) N environmental losses in cool season turfgrass over the entire PCU N-release period. Field studies were conducted on established turfgrass sites with mixtures of Kentucky bluegrass (Poa pratensis L.) and perennial ryegrass (Lolium perenne L.) in sand and loam soils. Each study compared 0 kg N ha(-1) (control) to 200 kg N ha(-1) applied as either urea or PCU (Duration 45CR®). Application of urea resulted in 127-476% more evolution of measured N2O into the atmosphere, whereas PCU was similar to background emission levels from the control. Compared to urea, PCU reduced NH3 emissions by 41-49% and N2O emissions by 45-73%, while improving growth and verdure compared to the control. Differences in leachate NO3(-) among urea, PCU and control were inconclusive. This improvement in N management to ameliorate atmospheric losses of N using PCU will contribute to conserving natural resources and mitigating environmental impacts of N fertilization in turfgrass.

  1. Plants growing on contaminated and brownfield sites appropriate for use in Organisation for Economic Co-operation and Development terrestrial plant growth test.

    PubMed

    Sinnett, Danielle E; Lawrence, Victoria K; Hutchings, Tony R; Hodson, Mark E

    2011-01-01

    The Organisation for Economic Co-operation and Development (OECD) terrestrial plant test is often used for the ecological risk assessment of contaminated land. However, its origins in plant protection product testing mean that the species recommended in the OECD guidelines are unlikely to occur on contaminated land. Six alternative species were tested on contaminated soils from a former Zn smelter and a metal fragmentizer with elevated concentrations of Cd, Cu, Pb, and Zn. The response of the alternative species was compared with that of two species recommended by the OECD: Lolium perenne (perennial ryegrass) and Trifolium pratense (red clover). Urtica dioica (stinging nettle) and Poa annua (annual meadowgrass) had low emergence rates in the control soil and so may be considered unsuitable. Festuca rubra (Chewings fescue), Holcus lanatus (Yorkshire fog), Senecio vulgaris (common groundsel), and Verbascum thapsus (great mullein) offer good alternatives to the OECD species. In particular, H. lanatus and S. vulgaris were more sensitive to the soils with moderate concentrations of Cd, Cu, Pb, and Zn than the OECD species.

  2. Seasonal infestations of two stem borers (Lepidoptera: Crambidae) in noncrop grasses of Gulf Coast rice agroecosystems.

    PubMed

    Beuzelin, J M; Mészáros, A; Reagan, T E; Wilson, L T; Way, M O; Blouin, D C; Showler, A T

    2011-10-01

    Infestations of two stem borers, Eoreuma loftini (Dyar) and Diatraea saccharalis (F.) (Lepidoptera: Crambidae), were compared in noncrop grasses adjacent to rice (Oryza sativa L.) fields. Three farms in the Texas rice Gulf Coast production area were surveyed every 6-8 wk between 2007 and 2009 using quadrat sampling along transects. Although D. saccharalis densities were relatively low, E. loftini average densities ranged from 0.3 to 5.7 immatures per m(2) throughout the 2-yr period. Early annual grasses including ryegrass, Lolium spp., and brome, Bromus spp., were infested during the spring, whereas the perennial johnsongrass, Sorghum halepense (L.) Pers., and Vasey's grass, Paspalum urvillei Steud., were infested throughout the year. Johnsongrass was the most prevalent host (41-78% relative abundance), but Vasey's grass (13-40% relative abundance) harbored as much as 62% of the recovered E. loftini immatures (during the winter). Young rice in newly planted fields did not host stem borers before June. April sampling in fallow rice fields showed that any available live grass material, volunteer rice or weed, can serve as a host during the spring. Our study suggests that noncrop grasses are year-round sources of E. loftini in Texas rice agroecosystems and may increase pest populations.

  3. Interrelations between herbage yield, α-tocopherol, β-carotene, lutein, protein, and fiber in non-leguminous forbs, forage legumes, and a grass-clover mixture as affected by harvest date.

    PubMed

    Elgersma, Anjo; Søegaard, Karen; Jensen, Søren Krogh

    2015-01-21

    Pastures with diverse botanical composition may enhance animal-derived product quality. A recent study demonstrated high vitamin concentrations and yields in some forb species. The objectives of the present study were to investigate interrelations between herbage yields, vitamin concentrations, protein and fiber contents and analyze the effect of harvest date. We hypothesized that interrelations would be similar across investigated forage species. Four nonleguminous forbs: salad burnet (Sanguisorba minor), caraway (Carum carvi), chicory (Cichorium intybus), and ribwort plantain (Plantago lanceolata), three legumes: yellow sweet clover (Melilotus officinalis), lucerne (Medicago sativa), and birdsfoot trefoil (Lotus corniculatus) and a perennial ryegrass (Lolium perenne)-white clover (Trifolium repens) mixture were sown in a field trial with two replicated and randomized blocks. Forage in 1.5 m × 9 m plots was grown in two consecutive years and cut four times per year (May-October). Analyses of variance were performed. In most herbages, α-tocopherol and β-carotene were positively correlated as were β-carotene and lutein; all vitamins were negatively correlated with fiber content and herbage yield. β-Carotene was positively correlated with protein content. α-Tocopherol and β-carotene contents were generally highest in October and lowest in July. Our results showed similar interrelationships in most investigated species, and we suggest that these species may be mixed when designing novel biodiverse mixtures for particular product quality characteristics. PMID:25573460

  4. Freeze-thaw effects on phosphorus loss in runoff from manured and catch-cropped soils.

    PubMed

    Bechmann, Marianne E; Kleinman, Peter J A; Sharpley, Andrew N; Saporito, Lou S

    2005-01-01

    Concern over nonpoint source P losses from agricultural lands to surface waters in frigid climates has focused attention on the role of freezing and thawing on P loss from catch crops (cover crops). This study evaluated the effect of freezing and thawing on the fate of P in bare soils, soils mixed with dairy manure, and soils with an established catch crop of annual ryegrass (Lolium multiflorum L.). Experiments were conducted to evaluate changes in P runoff from packed soil boxes (100 by 20 by 5 cm) and P leaching from intact soil columns (30 cm deep). Before freezing and thawing, total P (TP) in runoff from catch-cropped soils was lower than from manured and bare soils due to lower erosion. Repeated freezing and thawing significantly increased water-extractable P (WEP) from catch crop biomass and resulted in significantly elevated concentrations of dissolved P in runoff (9.7 mg L(-1)) compared with manured (0.18 mg L(-1)) and bare soils (0.14 mg L(-1)). Catch crop WEP was strongly correlated with the number of freeze-thaw cycles. Freezing and thawing did not change the WEP of soils mixed with manures, nor were differences observed in subsurface losses of P between catch-cropped and bare soils before or after manure application. This study illustrates the trade-offs of establishing catch crops in frigid climates, which can enhance P uptake by biomass and reduce erosion potential but increase dissolved P runoff.

  5. Recommendations for increasing alkaline comet assay reliability in plants.

    PubMed

    Pourrut, Bertrand; Pinelli, Eric; Celiz Mendiola, Vanessa; Silvestre, Jérôme; Douay, Francis

    2015-01-01

    In plants, an increasing interest for the comet assay was shown in the last decade. This versatile technique appears to be promising to detect the genotoxic effect of pollutants and to monitor the environment. However, the lack of a standardised protocol and the low throughput of the assay limit its use in plants. The aims of this paper are to identify key factors affecting comet assay performance and to improve its reliability and reproducibility. We examined the effect of varying several parameters on four different plant species: broad bean (Vicia faba), white clover (Trifolium repens), English ryegrass (Lolium perenne) and miscanthus (Miscanthus x giganteus). The influence of both internal (different nucleus isolation methods, presence or absence of filtration and lysis steps) and external (room temperature, light intensity) parameters were evaluated. Results clearly indicate that short chopping is more efficient to isolate nuclei than the standard slicing method. Filtration and lysis steps were shown to be unnecessary and thus should be skipped. Data also demonstrate that high room temperatures and light could induce DNA damage in isolated nuclei. Calibration tests with H2O2 or ethyl methanesulfonate revealed that a special attention should be paid to plant growing stage, leaf position and exposure duration.

  6. Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils.

    PubMed

    Khan, Muhammad U; Sessitsch, Angela; Harris, Muhammad; Fatima, Kaneez; Imran, Asma; Arslan, Muhammad; Shabir, Ghulam; Khan, Qaiser M; Afzal, Muhammad

    2014-01-01

    Prosopis juliflora is characterized by distinct and profuse growth even in nutritionally poor soil and environmentally stressed conditions and is believed to harbor some novel heavy metal-resistant bacteria in the rhizosphere and endosphere. This study was performed to isolate and characterize Cr-resistant bacteria from the rhizosphere and endosphere of P. juliflora growing on the tannery effluent contaminated soil. A total of 5 and 21 bacterial strains were isolated from the rhizosphere and endosphere, respectively, and were shown to tolerate Cr up to 3000 mg l(-1). These isolates also exhibited tolerance to other toxic heavy metals such as, Cd, Cu, Pb, and Zn, and high concentration (174 g l(-1)) of NaCl. Moreover, most of the isolated bacterial strains showed one or more plant growth-promoting activities. The phylogenetic analysis of the 16S rRNA gene showed that the predominant species included Bacillus, Staphylococcus and Aerococcus. As far as we know, this is the first report analyzing rhizo- and endophytic bacterial communities associated with P. juliflora growing on the tannery effluent contaminated soil. The inoculation of three isolates to ryegrass (Lolium multiflorum L.) improved plant growth and heavy metal removal from the tannery effluent contaminated soil suggesting that these bacteria could enhance the establishment of the plant in contaminated soil and also improve the efficiency of phytoremediation of heavy metal-degraded soils.

  7. Impact of Brassica and Lucerne Finishing Feeds and Intramuscular Fat on Lamb Eating Quality and Flavor. A Cross-Cultural Study Using Chinese and Non-Chinese Australian Consumers.

    PubMed

    Frank, Damian; Watkins, Peter; Ball, Alex; Krishnamurthy, Raju; Piyasiri, Udayasika; Sewell, James; Ortuño, Jordi; Stark, Janet; Warner, Robyn

    2016-09-14

    Use of forage brassicas (Brassica napus) and lucerne (alfalfa; Medicago sativa) as ruminant feeds has been linked to unacceptable flavors in sheepmeat. Lambs from low and high intramuscular fat sires were allocated to one of four finishing feeds-perennial ryegrass (Lolium perenne), lucerne, and two brassica forages-for a 6 week period. Grilled loins (Longissimus thoracis et lumborum) were subjected to chemical and sensory analysis by a trained panel and also evaluated by non-Chinese and Chinese background Australian consumers. Consumer liking was similar for both groups, and liking was highest for the brassica- and lucerne-finished lamb, especially from high intramuscular fat sires. No evidence of a distinctive lucerne- or brassica-induced flavor taint was measured by the trained panel or gas chromatography-mass spectrometry-olfactometry. The diets influenced the composition of lipids and branched-chain fatty acids in the subcutaneous fat, and the concentration of total branched-chain fatty acids was positively correlated with flavor and overall liking. Significantly higher levels of key aroma volatiles were measured in the higher fat samples. PMID:27523884

  8. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses.

    PubMed

    Zhang, Wan-Jun; Dewey, Ralph E; Boss, Wendy; Phillippy, Brian Q; Qu, Rongda

    2013-02-01

    Plant defense responses can lead to altered metabolism and even cell death at the sites of Agrobacterium infection, and thus lower transformation frequencies. In this report, we demonstrate that the utilization of culture conditions associated with an attenuation of defense responses in monocot plant cells led to highly improved Agrobacterium-mediated transformation efficiencies in perennial ryegrass (Lolium perenne L.). The removal of myo-inositol from the callus culture media in combination with a cold shock pretreatment and the addition of L-Gln prior to and during Agrobacterium-infection resulted in about 84 % of the treated calluses being stably transformed. The omission of myo-inositol from the callus culture media was associated with the failure of certain pathogenesis related genes to be induced after Agrobacterium infection. The addition of a cold shock and supplemental Gln appeared to have synergistic effects on infection and transformation efficiencies. Nearly 60 % of the stably transformed calluses regenerated into green plantlets. Calluses cultured on media lacking myo-inositol also displayed profound physiological and biochemical changes compared to ones cultured on standard growth media, such as reduced lignin within the cell walls, increased starch and inositol hexaphosphate accumulation, enhanced Agrobacterium binding to the cell surface, and less H(2)O(2) production after Agrobacterium infection. Furthermore, the cold treatment greatly reduced callus browning after infection. The simple modifications described in this report may have broad application for improving genetic transformation of recalcitrant monocot species.

  9. Plant uptake of explosives from contaminated soil at the Joliet Army Ammunition Plant

    SciTech Connect

    Zellmer, S.D.; Schneider, J.F.; Tomczyk, N.A.; Banwart, W.L.; Chen, D.

    1995-04-01

    Explosives and their degradation products may enter the animal and human food chains through plants grown on soils contaminated with explosives. Soil and plant samples were collected from the Group 61 area at the Joliet Army Ammunition Plant and analyzed to determine the extent to which 2,4,6-trinitrotoluene (TNT) and its degradation products are taken up by existing vegetation and crops growing on contaminated soils. Neither TNT nor its degradation products was detected in any of the aboveground plant organs of existing vegetation. Oat (Avena sativa L.) and perennial ryegrass (Lolium perenne L.) were planted on TNT-contaminated soils amended with three levels of chopped grass hay. Extractable TNT concentrations in hay-amended soils were monitored for almost 1 year. Crop establishment and growth improved with increased levels of hay amendment, but TNT uptake was not affected or detected in any aboveground crop organs. Evidence was found to indicate that soil manipulation and hay addition may reduce extractable TNT concentration in soils, but the wide variations in TNT concentrations in these soils prevented development of conclusive evidence regarding reduction of extractable TNT concentrations. Results from this study suggest that vegetation grown on TNT-contaminated soils is not a major health concern because TNT and its degradation products were not detected in aboveground plant organs. However, low concentrations of TNT, 4-amino-2,6-dinitrotoluene, and 2-amino-4,6-dinitrotoluene were detected in or on some existing vegetation and crop roots. 21 refs., 10 figs., 26 tabs.

  10. Mapping nano-scale mechanical heterogeneity of primary plant cell walls

    PubMed Central

    Yakubov, Gleb E.; Bonilla, Mauricio R.; Chen, Huaying; Doblin, Monika S.; Bacic, Antony; Gidley, Michael J.; Stokes, Jason R.

    2016-01-01

    Nanoindentation experiments are performed using an atomic force microscope (AFM) to quantify the spatial distribution of mechanical properties of plant cell walls at nanometre length scales. At any specific location on the cell wall, a complex (non-linear) force–indentation response occurs that can be deconvoluted using a unique multiregime analysis (MRA). This allows an unambiguous evaluation of the local transverse elastic modulus of the wall. Nanomechanical measurements on suspension-cultured cells (SCCs), derived from Italian ryegrass (Lolium multiflorum) starchy endosperm, show three characteristic modes of deformation and a spatial distribution of elastic moduli across the surface. ‘Soft’ and ‘hard’ domains are found across length scales between 0.1 µm and 3 µm, which is well above a typical pore size of the polysaccharide mesh. The generality and wider applicability of this mechanical heterogeneity is verified through in planta characterization on leaf epidermal cells of Arabidopsis thaliana and L. multiflorum. The outcomes of this research provide a basis for uncovering and quantifying the relationships between local wall composition, architecture, cell growth, and/or morphogenesis. PMID:26988718

  11. Soil application of biochar produced from biomass grown on trace element contaminated land.

    PubMed

    Evangelou, Michael W H; Brem, Anette; Ugolini, Fabio; Abiven, Samuel; Schulin, Rainer

    2014-12-15

    Trace element (TE) contamination of soils is a worldwide problem. However, although not considered safe anymore for food production without clean-up, many of these soils may still be used to produce biomass for non-food purposes such as biochar. Exploring the suitability of such biochar for the amendment of low-fertility soil, we investigated growth and metal accumulation of ryegrass (Lolium perenne, var. Calibra) as well as soil microbial abundance on a non-contaminated soil after amendment with biochar from birch (Betula pendula) wood produced on TE contaminated soil in comparison to a treatment with birch wood biochar originating from non-contaminated soil. Biochars were produced from both feedstocks by pyrolysis at two temperatures: 450 and 700 °C. During the pyrolysis, in contrast to Cu, Fe, Mg, K, Mn and P, the elements Cd, Pb, S and Na volatilized. The root biomass of the biochar treated plants was lower than that of the non-amended plants, while that of the shoot was higher. Plant shoot K and Zn concentrations were increased significantly by up to 7- and 3.3-fold respectively. For P, Mg, Mn, Fe and Cu no significant increase in shoot concentration could be detected. Neither the TE-contaminated biochar, nor the non-contaminated biochar had adverse effect on the bacterial community of the soil.

  12. Response of Thematic Mapper bands to plant water stress

    NASA Technical Reports Server (NTRS)

    Cibula, W. G.; Zetka, E. F.; Rickman, D. L.

    1992-01-01

    Changes in leaf reflectance as water content decreases have been hypothesized to occur in the 1.55-1.75 and 2.08-2.35 micron wavelength regions. To evaluate this hypothesis, studies were conducted on ryegrass (Lolium multiflorum Lam.) and oats (Avena sativa L.), which were grown in a controlled, outdoor situation. Both fully-watered control beds and water-stressed beds were periodically examined with a spectroradiometer calibrated against a reflectance reference of polytetrafluoroethylene. The observed changes correspond to those predicted by stochastic leaf models employed by other investigators (leaf reflection increases in the 1.55-1.75 micron region as leaf water content decreases). Although the percentage changes in TM bands 1-3 are nearly as great as those found in TM bands 5 and 7, the absolute values of reflectance change are much lower. It is believed that these patterns are probably characteristic of a broad range of vegetation types. In terms of phenomena detection, these patterns should be considered in any practical remote sensing sensor scenario.

  13. Spatial Competition: Roughening of an Experimental Interface

    PubMed Central

    Allstadt, Andrew J.; Newman, Jonathan A.; Walter, Jonathan A.; Korniss, G.; Caraco, Thomas

    2016-01-01

    Limited dispersal distance generates spatial aggregation. Intraspecific interactions are then concentrated within clusters, and between-species interactions occur near cluster boundaries. Spread of a locally dispersing invader can become motion of an interface between the invading and resident species, and spatial competition will produce variation in the extent of invasive advance along the interface. Kinetic roughening theory offers a framework for quantifying the development of these fluctuations, which may structure the interface as a self-affine fractal, and so induce a series of temporal and spatial scaling relationships. For most clonal plants, advance should become spatially correlated along the interface, and width of the interface (where invader and resident compete directly) should increase as a power function of time. Once roughening equilibrates, interface width and the relative location of the most advanced invader should each scale with interface length. We tested these predictions by letting white clover (Trifolium repens) invade ryegrass (Lolium perenne). The spatial correlation of clover growth developed as anticipated by kinetic roughening theory, and both interface width and the most advanced invader’s lead scaled with front length. However, the scaling exponents differed from those predicted by recent simulation studies, likely due to clover’s growth morphology. PMID:27465518

  14. Nitrate losses, nutrients and heavy metal accumulation from substrates assembled for urban soils reconstruction.

    PubMed

    Civeira, G; Lavado, R S

    2008-09-01

    Urban soils may suffer mild to severe degradation as a result of physical and chemical alterations. To reconstruct these soils, a new upper horizon must be created, usually through the application of organic matter, one source of which is biosolids. Different soil mixtures were evaluated with regard to loss of nitrates in percolates and the uptake and incorporation of nutrients and heavy metals into plant tissues. The experiment was conducted in trays; treatments were mixtures of biosolids and a coarse material (e.g., sand or pine wood sawdust), combined in different proportions. Randomized trays were seeded with a mix of tall fescue (Festuca arundinacea L.) and perennial ryegrass (Lolium perenne L.). Plant biomass was quantified. Nitrates in percolates were measured, as were nutrients and heavy metals in mixtures and plant tissues. Plants accumulated substantially more N, and biomass was 40% higher, in the treatments with higher levels of biosolids. The same treatments released more nitrogen and resulted in higher percolate nitrate levels. Plants had normal concentrations of all nutrients, except nitrogen, which was low. Heavy metal concentrations were not significantly different among treatments. Based on the analysis of these data, the proportion of biosolids appears to be the most important factor affecting the quality of reconstructed soil and the rate of improvement. The type of coarse material used did not significantly affect the outcome.

  15. Phytoremediation of pyrene in a Cecil soil under field conditions.

    PubMed

    Lalande, T L; Skipper, H D; Wolf, D C; Reynolds, C M; Freedman, D L; Pinkerton, B W; Hartel, P G; Grimes, L W

    2003-01-01

    We evaluated the effects of annual ryegrass (Lolium multiflorum Lam.) and phosphorus (P) availability on the dissipation of pyrene added at a concentration of approximately 600 mg kg-1 dry soil in the top 7.5 cm of a Cecil loamy sand (fine, kaolinitic, thermic Typic Kanhapludults) in a 10-month experiment under field conditions in Clemson, South Carolina. Plastic canopies were installed to prevent flooding of plots and raindrop dispersion of pyrene. Treatment factors were pyrene, vegetation, and available P levels. Each of the eight treatments had four replicates. The soil was adjusted to low and high P concentrations (an average of 41 and 66 kg extractable P ha-1, respectively). After a 175-d lag period for all treatments, the rate of pyrene removal followed first-order kinetics. The first-order rate constant was significantly higher in nonvegetated (0.098 d-1) than vegetated treatments (0.034 d-1). These data suggest that the presence of easily biodegradable organic matter from plant roots slowed the removal rate of pyrene. The levels of available P did not affect the rate of pyrene dissipation. Pyrene decreased below the detection limit of 6.25 mg kg-1 dry soil in all treatments after 301 d.

  16. New report of Lolium multiflorum and Rumex crispus as weed hosts of epiphytic populations of Psuedomonas sp., causal agent of yellow bud in onion in Geogia, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yellow bud, an emerging bacterial disease of onion (Allium cepa L.), has been spreading throughout the Vidalia onion-growing region in Georgia since 2007. Symptoms of yellow bud include intense chlorosis in emerging leaves and severe blight i