Sample records for s-1 cm-2 flux

  1. Undoped polythiophene field-effect transistors with mobility of 1 cm2 V-1 s-1

    NASA Astrophysics Data System (ADS)

    Hamadani, B. H.; Gundlach, D. J.; McCulloch, I.; Heeney, M.

    2007-12-01

    We report on charge transport in organic field-effect transistors based on poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) as the active polymer layer with saturation field-effect mobilities as large as 1cm2V-1s-1. This is achieved by employing Pt instead of the commonly used Au as the contacting electrode and allows for a significant reduction in the metal/polymer contact resistance. The mobility increases as a function of decreasing channel length, consistent with a Poole-Frenkel model of charge transport, and reaches record mobilities of 1cm2V-1s-1 or more at channel lengths on the order of few microns in an undoped solution-processed polymer cast on an oxide gate dielectric.

  2. Single-Crystal Growth of Cl-Doped n-Type SnS Using SnCl2 Self-Flux.

    PubMed

    Iguchi, Yuki; Inoue, Kazutoshi; Sugiyama, Taiki; Yanagi, Hiroshi

    2018-06-05

    SnS is a promising photovoltaic semiconductor owing to its suitable band gap energy and high optical absorption coefficient for highly efficient thin film solar cells. The most significant carnage is demonstration of n-type SnS. In this study, Cl-doped n-type single crystals were grown using SnCl 2 self-flux method. The obtained crystal was lamellar, with length and width of a few millimeters and thickness ranging between 28 and 39 μm. X-ray diffraction measurements revealed the single crystals had an orthorhombic unit cell. Since the ionic radii of S 2- and Cl - are similar, Cl doping did not result in substantial change in lattice parameter. All the elements were homogeneously distributed on a cleaved surface; the Sn/(S + Cl) ratio was 1.00. The crystal was an n-type degenerate semiconductor with a carrier concentration of ∼3 × 10 17 cm -3 . Hall mobility at 300 K was 252 cm 2 V -1 s -1 and reached 363 cm 2 V -1 s -1 at 142 K.

  3. Detection of Thermal 2 cm and 1 cm Formaldehyde Emission in NGC 7538

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; Araya, E. D.; Hofner, P.; Kurtz, S.; Pihlstrom, Y.

    2011-05-01

    Formaldehyde is a tracer of high density gas in massive star forming regions. The K-doublet lines from the three lowest rotational energy levels of ortho-formaldehyde correspond to wavelengths of 6, 2 and 1 cm. Thermal emission of these transitions is rare, and maser emission has only been detected in the 6 cm line. NGC 7538 is an active site of massive star formation in the Galaxy, and one of only a few regions known to harbor 6 cm formaldehyde (H2CO) masers. Using the NRAO 100 m Green Bank Telescope (GBT), we detected 2 cm H2CO emission toward NGC 7538 IRS1. The velocity of the 2 cm H2CO line is very similar to the velocity of one of the 6 cm H2CO masers but the linewidth is greater. To investigate the nature of the 2 cm emission, we conducted observations of the 1 cm H2CO transition, and obtained a cross-scan map of the 2 cm line. We detected 1 cm emission and found that the 2 cm emission is extended (greater than 30"), which implies brightness temperatures of ˜0.2 K. Assuming optically thin emission, LTE, and that the 1 cm and 2 cm lines originate from the same volume of gas, both these detections are consistent with thermal emission of gas at ˜30 K. We conclude that the 1 cm and 2 cm H2CO lines detected with the GBT are thermal, which implies molecular densities above ˜105 cm-3. LY acknowledges support from WIU. PH acknowledges partial support from NSF grant AST-0908901.

  4. Preliminary validation of computational model for neutron flux prediction of Thai Research Reactor (TRR-1/M1)

    NASA Astrophysics Data System (ADS)

    Sabaibang, S.; Lekchaum, S.; Tipayakul, C.

    2015-05-01

    This study is a part of an on-going work to develop a computational model of Thai Research Reactor (TRR-1/M1) which is capable of accurately predicting the neutron flux level and spectrum. The computational model was created by MCNPX program and the CT (Central Thimble) in-core irradiation facility was selected as the location for validation. The comparison was performed with the typical flux measurement method routinely practiced at TRR-1/M1, that is, the foil activation technique. In this technique, gold foil is irradiated for a certain period of time and the activity of the irradiated target is measured to derive the thermal neutron flux. Additionally, the flux measurement with SPND (self-powered neutron detector) was also performed for comparison. The thermal neutron flux from the MCNPX simulation was found to be 1.79×1013 neutron/cm2s while that from the foil activation measurement was 4.68×1013 neutron/cm2s. On the other hand, the thermal neutron flux from the measurement using SPND was 2.47×1013 neutron/cm2s. An assessment of the differences among the three methods was done. The difference of the MCNPX with the foil activation technique was found to be 67.8% and the difference of the MCNPX with the SPND was found to be 27.8%.

  5. 2,7-Diphenyl[1]benzothieno[3,2-b]benzothiophene, a new organic semiconductor for air-stable organic field-effect transistors with mobilities up to 2.0 cm2 V(-1) s(-1).

    PubMed

    Takimiya, Kazuo; Ebata, Hideaki; Sakamoto, Katsuhiro; Izawa, Takafumi; Otsubo, Tetsuo; Kunugi, Yoshihito

    2006-10-04

    Vapor-deposited thin films of a newly developed sulfur-containing heteroarene, 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT), were used as an active layer of OFETs, which showed excellent FET characteristics in ambient conditions with mobilities of approximately 2.0 cm2 V-1 s-1 and Ion/Ioff of 107.

  6. Radon flux at King George Island, Antarctic Peninsula.

    PubMed

    Evangelista, H; Pereira, E B

    2002-01-01

    Fluxes of 222Rn from the ice-free terrain to the atmosphere were measured directly, for the first time, at the Brazilian Antarctic Station Ferraz during the summer field campaign of 1998/99. Average value for the flux was 7.7 +/- 4.8 x 10(-2) atoms cm(-2) s(-1) and it ranged between 0.21 x 10(-2) atoms cm(-2) s(-1) and 28 x l0(-2) atoms cm(-2) s(-1). The average flux of 220Rn was estimated to be 23 atoms cm(-2) s(-1), using a combination of two techniques: nuclear track detection and alpha spectrometry of radon daughters. It was found that the production of radon by uranium (41.54 + /-7.17 Bq kg(-1)) and thorium (57.97 +/- 12.14 Bq kg(-1)) equivalent soil contents, and a diffusion coefficient derived from experimental data for the local terrain could account for this average flux. Nevertheless, the large surges of 222Rn in the atmosphere frequently observed for that area could not be explained by this flux only.

  7. AmeriFlux US-Tw1 Twitchell Wetland West Pond

    DOE Data Explorer

    Baldocchi, Dennis [University of California, Berkeley

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Tw1 Twitchell Wetland West Pond. Site Description - The Twitchell Wetland site is a 7.4-acre restored wetland on Twitchell Island, that is managed by the California Department of Water Resources (DWR) and the U.S. Geological Survey (USGS). In the fall of 1997, the site was permanently flooded to a depth of approximately 25 cm. The wetland was almost completely covered by cattails and tules by the third growing season. A flux tower equipped to analyze energy, H2O, CO2, and CH4 fluxes was installed on May 17, 2012.

  8. CM chondrites exhibit the complete petrologic range from type 2 to 1. [Abstract only

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Browning, L. B.

    1994-01-01

    Recognition and characterization of the different CM lithologies as components in all meteorites could reveal details of the nature and chronology of alteration and brecciation events on hydrous asteroids. The CM chondrites are of particular interest, as they are the most common carbonaceous chondrites and are found as clasts within other types of meteorites, which suggests that the CM parent asteroids are (or were) widespread in the sections of the asteroid belt providing samples to Earth. Some CM2s, including EET 90047, ALH 83100, and Y 82042, are more 'extensively' altered, and are distinguished by a high proportion of Mg-rich phyllosilicates and Ca-Mg carbonates, frequently in rounded aggregates, and near absence of olivine or pyroxene. 'Completely' altered CMs, called CM1s, essentially lack olivine or pyroxene; these include EET 83334, ALH 88045, and the CM1 clasts in Kaidun. Cold Bokkeveld and EET 84034, both highly brecciated CMs, consist of both extensively and completely altered lithologies. We describe how these lithologies further cosntrain physicochemical conditions on hydrous asteroids. We conclude that CM chondrites exhibit the petrologic range 2 through 1, and that progressive alteration on the parent hydrous asteroid(s) was accompanied by significant increases in temperature (to a peak of approximately 450 C), fO2, water-rock ratio, and (locally) degree of chemical leaching, all well beyond the conditions recorded by CM2s.

  9. Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm-2 niobium fabrication process

    NASA Astrophysics Data System (ADS)

    Takeuchi, Naoki; Nagasawa, Shuichi; China, Fumihiro; Ando, Takumi; Hidaka, Mutsuo; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-03-01

    Adiabatic quantum-flux-parametron (AQFP) logic is an energy-efficient superconductor logic with zero static power consumption and very small switching energy. In this paper, we report a new AQFP cell library designed using the AIST 10 kA cm-2 Nb high-speed standard process (HSTP), which is a high-critical-current-density version of the AIST 2.5 kA cm-2 Nb standard process (STP2). Since the intrinsic damping of the Josephson junction (JJ) of HSTP is relatively strong, shunt resistors for JJs were removed and the energy efficiency improved significantly. Also, excitation transformers in the new cells were redesigned so that the cells can operate in a four-phase excitation mode. We described the detail of HSTP and the AQFP cell library designed using HSTP, and showed experimental results of cell test circuits.

  10. Intercalated hybrid of kaolinite with KH2PO4 showing high ionic conductivity (∼10-4 S cm-1) at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Shao-Xian; Xue, Chen; Yang, Hao; Huang, Xiao-Qing; Zou, Yang; Ding, Yan-Ni; Li, Li; Ren, Xiao-Ming

    2017-12-01

    In this paper, we present the study of preparation and ionic conductance for an intercalated hybrid of kaolinite with potassium dihydrogen. The intercalation efficiency is high up to ca. 90%. The intercalated hybrid has been characterized by powder X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis. The ionic conductivity (σ) of the hybrid material is strongly dependent on the moisture in the environment, with σ = 8.4 × 10-10 S cm-1 at 293 K and gradually increases to 7.16 × 10-9 S cm-1 under N2 atmosphere (anhydrous environment) at 353 K as well as an activation energy of Ea = 0.618 e V, whereas σ = 2.19 × 10-4 S cm-1 at 100% relative humidity and 293 K with Ea = 0.44 eV. The mechanism that the moisture affects the ionic conductance of the intercalated hybrid is further discussed.

  11. SPRUCE S1 Bog Sphagnum CO2 Flux Measurements and Partitioning into Re and GPP

    DOE Data Explorer

    Walker, A. P. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Carter, K. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Nettles, W. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Philips, J. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Sebestyen, S. D. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Weston, D. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2015-06-01

    This data set provides (1) the results of in-situ Sphagnum-peat hourly net ecosystem exchange (NEE) measured using a LICOR 8100 gas exchange system and (2) the component fluxes -- gross primary production (GPP) and ecosystem respiration (Re), derived using empirical regressions.NEE measurements were made from 6 June to 6 November 2014 and 20 March to 10 May 2015. Three 8100 chambers per dominant species (S. magellanicum or S. fallax) were placed in the S1 Bog in relatively open ground where there was no obvious hummock-hollow microtopography. The 8100 chambers were not located in the SPRUCE experimental enclosures.

  12. Flux Enhancements of > 30 keV Electrons at Low Drift Shells L < 1.2 During Last Solar Cycles

    NASA Astrophysics Data System (ADS)

    Suvorova, A. V.

    2017-12-01

    We present results of statistical analysis of enhancements of >30 keV electrons observed by the NOAA/POES satellites during solar cycles 23 and 24 (1998-2016) at low drift shells L < 1.2, so-called forbidden zone. We collected 1,750 days ( 25% of the total time) when fluxes of the forbidden energetic electrons (FEE) exceeded 103 (cm2 s sr)-1. We found 530 days, when FEE fluxes reached high intensity from 104 up to 107 (cm2 s sr)-1. It was found that the FEE enhancements were observed mostly often at the declining phases and solar minimum. More than 85% of the events occurred under fast solar wind (V > 450 km/s), high substorm activity (AL >150 nT), and enhanced interplanetary electric field perturbations (VδB > 1.5 mV/m). The FEE occurrence rate peaks around the local midnight. We have also found a quite unexpected annual variation of the FEE occurrence rate with a pronounced maximum from May to September, a minor peak in December-January, and minima at the equinoxes. The May-September peak, persisting at different solar cycle phases, was assumed to originate from high conductivity in the auroral ionosphere, which is controlled by the dipole tilt angle and provides better conditions for penetration of electric field perturbations into the inner magnetosphere. This allows explanation of the shape and amplitude of annual variation in the FEE occurrence rate from the convolution of the solar wind driver with the penetration conditions.

  13. Martian CH(4): sources, flux, and detection.

    PubMed

    Onstott, T C; McGown, D; Kessler, J; Lollar, B Sherwood; Lehmann, K K; Clifford, S M

    2006-04-01

    Recent observations have detected trace amounts of CH(4) heterogeneously distributed in the martian atmosphere, which indicated a subsurface CH(4) flux of ~2 x 10(5) to 2 x 10(9) cm(2) s(1). Four different origins for this CH(4) were considered: (1) volcanogenic; (2) sublimation of hydrate- rich ice; (3) diffusive transport through hydrate-saturated cryosphere; and (4) microbial CH(4) generation above the cryosphere. A diffusive flux model of the martian crust for He, H(2), and CH(4) was developed based upon measurements of deep fracture water samples from South Africa. This model distinguishes between abiogenic and microbial CH(4) sources based upon their isotopic composition, and couples microbial CH(4) production to H(2) generation by H(2)O radiolysis. For a He flux of approximately 10(5) cm(2) s(1) this model yields an abiogenic CH(4) flux and a microbial CH(4) flux of approximately 10(6) and approximately 10(9) cm(2) s(1), respectively. This flux will only reach the martian surface if CH(4) hydrate is saturated in the cryosphere; otherwise it will be captured within the cryosphere. The sublimation of a hydrate-rich cryosphere could generate the observed CH(4) flux, whereas microbial CH(4) production in a hypersaline environment above the hydrate stability zone only seems capable of supplying approximately 10(5) cm(2) s(1) of CH(4). The model predicts that He/H(2)/CH(4)/C(2)H(6) abundances and the C and H isotopic values of CH(4) and the C isotopic composition of C(2)H(6) could reveal the different sources. Cavity ring-down spectrometers represent the instrument type that would be most capable of performing the C and H measurements of CH(4) on near future rover missions and pinpointing the cause and source of the CH(4) emissions.

  14. Monte Carlo simulation of thermal neutron flux of americium-beryllium source used in neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Didi, Abdessamad; Dadouch, Ahmed; Bencheikh, Mohamed; Jai, Otman

    2017-09-01

    The neutron activation analysis is a method of exclusively elemental analysis. Its implementation of irradiates the sample which can be analyzed by a high neutron flux, this method is widely used in developed countries with nuclear reactors or accelerators of particle. The purpose of this study is to develop a prototype to increase the neutron flux such as americium-beryllium and have the opportunity to produce radioisotopes. Americium-beryllium is a mobile source of neutron activity of 20 curie, and gives a thermal neutron flux of (1.8 ± 0.0007) × 106 n/cm2 s when using water as moderator, when using the paraffin, the thermal neutron flux increases to (2.2 ± 0.0008) × 106 n/cm2 s, in the case of adding two solid beryllium barriers, the distance between them is 24 cm, parallel and symmetrical about the source, the thermal flux is increased to (2.5 ± 0.0008) × 106 n/cm2 s and in the case of multi-source (6 sources), with-out barriers, increases to (1.17 ± 0.0008) × 107 n/cm2 s with a rate of increase equal to 4.3 and with the both barriers flux increased to (1.37 ± 0.0008) × 107 n/cm2 s.

  15. Extreme relativistic electron fluxes at geosynchronous orbit: Analysis of GOES E > 2 MeV electrons

    NASA Astrophysics Data System (ADS)

    Meredith, Nigel P.; Horne, Richard B.; Isles, John D.; Rodriguez, Juan V.

    2015-03-01

    Relativistic electrons (E > 1 MeV) cause internal charging on satellites and are an important space weather hazard. A key requirement in space weather research concerns extreme events and knowledge of the largest flux expected to be encountered over the lifetime of a satellite mission. This is interesting both from scientific and practical points of view since satellite operators, engineers, and the insurance industry need this information to better evaluate the effects of extreme events on their spacecraft. Here we conduct an extreme value analysis of daily averaged E > 2 MeV electron fluxes from the Geostationary Operational Environmental Satellites (GOES) during the 19.5 year period from 1 January 1995 to 30 June 2014. We find that the daily averaged flux measured at GOES West is typically a factor of about 2.5 higher than that measured at GOES East, and we conduct independent analyses for these two locations. The 1 in 10, 1 in 50, and 1 in 100 year daily averaged E > 2 MeV electron fluxes at GOES West are 1.84 ×105, 5.00 ×105, and 7.68 ×105 cm-2 s-1 sr-1, respectively. The corresponding fluxes at GOES East are 6.53 ×104, 1.98 ×105, and 3.25 ×105 cm-2 s-1 sr-1, respectively. The largest fluxes seen during the 19.5 year period on 29 July 2004 were particularly extreme and were seen by satellites at GOES West and GOES East. The extreme value analysis suggests that this event was a 1 in 50 year event.

  16. Effects of electron irradiation and temperature on 1 ohm-cm and 10 ohm-cm silicon solar cells

    NASA Technical Reports Server (NTRS)

    Nicoletta, C. A.

    1973-01-01

    One OHM-cm and 10 OHM-cm silicon solar cells were exposed to 1.0 MeV electrons at a fixed flux of 10 to the 11th power e/sq cm/sec and fluences of 10 to the 13th power, 10 to the 14th power and 10 to the 15th power e/sq.cm. 1-V curves of the cells were made at room temperature, - 63 C and + or - 143 C after each irradiation. A value of 139.5 mw/sq cm was used as AMO incident energy rate per unit area. The 10 OHM-cm cells appear more efficient than 1 OHM-cm cells after exposure to a fluence greater than 10 to the 14th power e/sq cm. The 1.0 MeV electron damage coefficients for both 1 OHM-cm and 10 OHM-cm cells are somewhat less than those for previously irradiated cells at room temperature. The values of the damage coefficients increase as the cell temperatures decrease. Efficiencies pertaining to maximum power output are about the same as those of n on p silicon cells evaluated previously.

  17. Vibrational mode frequencies of H2S and H2O adsorbed on Ge(0 0 1)-(2 × 1) surfaces

    NASA Astrophysics Data System (ADS)

    Hartnett, M.; Fahy, S.

    2015-02-01

    The equilibrium geometry and vibrational modes of H2S and H2O-terminated Ge(0 0 1)-(2 × 1) surfaces are calculated in a supercell approach using first-principles density functional theory in the local density (LDA), generalized gradient (GGA) approximations and van der Waals (vdW) interactions. Mode frequencies are found using the frozen phonon method. For the H2S-passivated surface, the calculated frequencies in LDA (GGA) are 2429 cm-1 (2490) for the Hsbnd S stretch mode, 712 cm-1 (706) for the Hsbnd S bond bending mode, 377 cm-1 (36) for the Gesbnd S stretch mode and 328 cm-1 (337) for Hsbnd S wag mode. Frequencies for the H2O passivated surface are 3590 cm-1 (3600) for the Hsbnd O stretch mode, 921 cm-1 (947) for the bending mode, 609 cm-1 (559) for the Gesbnd O stretch, 1995 cm-1 (1991) for the Gesbnd H stretch mode, 498 cm-1 (478) for the Gesbnd H bending mode and 342 cm-1 (336) for the Hsbnd O wag mode. The differences between the functionals including vdW terms and the LDA or GGA are less than the differences between LDA and GGA for the vibrational mode frequencies.

  18. Highly Accurate Potential Energy Surface, Dipole Moment Surface, Rovibrational Energy Levels, and Infrared Line List for (32)S(16)O2 up to 8000 cm(exp -1)

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2014-01-01

    A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (RMS) error for all J=0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(exp -1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296K and covers up to 8,000 cm(exp -1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(exp -1) with 0.01-0.03 cm(exp -1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The Ka-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations.

  19. Study of variation of materials patients room's door related of neutron flux iradiation

    NASA Astrophysics Data System (ADS)

    Nirmalasari, Yuliana Dian; Suparmi, A.; Sardjono, Y.

    2017-08-01

    The treatment chamber of patients has been simulating with MCNPX Code. Optimation of simulation design of Irradiation chamber is corresponding to ISO standards for 30 MeV cyclotron generator. The simulation has used the variation of door's materials that was applied at treatment room's door. The variation of materials was Stainless Steel 202 and Pb, the thickness Pb and stainless steel 202 with the thickness were 2 cm, respectively. Neutron flux that was radiated to stainless steel 202 in the sequence was 3.34195 × 105 n . Cm-2 s-1 and 8.41568 × 104 n . Cm-2 s-1, while for Pb was 4.01349 × 105 n . Cm-2 s-1 and 2.58058 × 104 n . Cm-2 s-1. The further, neutron flux that was radiated to Pb and stainless steel 202 with the thickness were 4 cm in sequence was 4.00601 × 105 n . Cm-2 s-1 and 1.71713 × 104 n . Cm-2 s-1 for Pb, while for SS 202 was 3.09925 × 105 n . Cm-2 s-1. From this ratio we concluded that material Pb absorbed higher neutron flux than material Stainless Steel 202. On the other hand, the cost of Pb was more expensive than Stainless Steel 202. In addition, the material Stainless Steel 202 was obtaine more easily than the material Pb. There fore to overcome the economics problem, can try to build the door with stainless still 202 sheet and Pb sheet together. The further, the neutron dose with 2 cm of thickness was 7.69603 × 10-2 Gy and 2.10623 × 10-2 Gy for SS 202, while for Pb was 4.19444 × 10-2 Gy and 1.50581 × 10-2 Gy. While the neutron dose with 4 cm of thickness for SS 202 was 9.39602 × 10-2 Gy and for Pb was 4.46541 × 10-2 Gy and 1.50502 × 10-2 Gy. We recommend that this simulation should be further optimized.

  20. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).

    PubMed

    Li, Chih-Hao; Benedick, Andrew J; Fendel, Peter; Glenday, Alexander G; Kärtner, Franz X; Phillips, David F; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L

    2008-04-03

    Searches for extrasolar planets using the periodic Doppler shift of stellar spectral lines have recently achieved a precision of 60 cm s(-1) (ref. 1), which is sufficient to find a 5-Earth-mass planet in a Mercury-like orbit around a Sun-like star. To find a 1-Earth-mass planet in an Earth-like orbit, a precision of approximately 5 cm s(-1) is necessary. The combination of a laser frequency comb with a Fabry-Pérot filtering cavity has been suggested as a promising approach to achieve such Doppler shift resolution via improved spectrograph wavelength calibration, with recent encouraging results. Here we report the fabrication of such a filtered laser comb with up to 40-GHz (approximately 1-A) line spacing, generated from a 1-GHz repetition-rate source, without compromising long-term stability, reproducibility or spectral resolution. This wide-line-spacing comb, or 'astro-comb', is well matched to the resolving power of high-resolution astrophysical spectrographs. The astro-comb should allow a precision as high as 1 cm s(-1) in astronomical radial velocity measurements.

  1. Microsatellite-based fine mapping of the Van der Woude syndrome locus to an interval of 4.1 cM between D1S245 and D1S414

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sander, A.; Schmelzle, R.; Murray, J.C.

    1995-01-01

    Van der Woude syndrome (VWS) is an autosomal dominant craniofacial disorder characterized by lip pits, clefting of the primary or secondary palate, and hypodontia. The gene has been localized, by RFLP-based linkage studies, to region 1q32-41 between D1S65-REN and D1S65-TGFB2. In this study we report the linkage analysis of 15 VWS families, using 18 microsatellite markers. Multipoint linkage analysis places the gene, with significant odds of 2,344:1, in a 4.1-cM interval flanked by D1S245 and D1S414. Two-point linkage analysis demonstrates close linkage of VWS with D1S205 (lod score [Z] = 24.41 at {theta} = .00) and with D1S491 (Z =more » 21.23 at {theta} = .00). The results revise the previous assignment of the VWS locus and show in an integrated map of the region 1q32-42 that the VWS gene resides more distally than previously suggested. When information about heterozygosity of the closely linked marker D1S491 in the affected members of the VWS family with a microdeletion is taken into account, the VWS critical region can be further narrowed, to the 3.6-cM interval between D1S491 and D1S414. 38 refs., 3 figs., 2 tabs.« less

  2. TeV γ-ray observations of the young synchrotron-dominated SNRs G1.9+0.3 and G330.2+1.0 with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; Wilhelmi, E. de Oña; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; Reyes, R. de los; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zabalza, V.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2014-06-01

    The non-thermal nature of the X-ray emission from the shell-type supernova remnants (SNRs) G1.9+0.3 and G330.2+1.0 is an indication of intense particle acceleration in the shock fronts of both objects. This suggests that the SNRs are prime candidates for very-high-energy (VHE; E > 0.1 TeV) γ-ray observations. G1.9+0.3, recently established as the youngest known SNR in the Galaxy, also offers a unique opportunity to study the earliest stages of SNR evolution in the VHE domain. The purpose of this work is to probe the level of VHE γ-ray emission from both SNRs and use this to constrain their physical properties. Observations were conducted with the H.E.S.S. (High Energy Stereoscopic System) Cherenkov Telescope Array over a more than six-year period spanning 2004-2010. The obtained data have effective livetimes of 67 h for G1.9+0.3 and 16 h for G330.2+1.0. The data are analysed in the context of the multiwavelength observations currently available and in the framework of both leptonic and hadronic particle acceleration scenarios. No significant γ-ray signal from G1.9+0.3 or G330.2+1.0 was detected. Upper limits (99 per cent confidence level) to the TeV flux from G1.9+0.3 and G330.2+1.0 for the assumed spectral index Γ = 2.5 were set at 5.6 × 10-13 cm-2 s-1 above 0.26 TeV and 3.2 × 10-12 cm-2 s-1 above 0.38 TeV, respectively. In a one-zone leptonic scenario, these upper limits imply lower limits on the interior magnetic field to BG1.9 ≳ 12 μG for G1.9+0.3 and to BG330 ≳ 8 μG for G330.2+1.0. In a hadronic scenario, the low ambient densities and the large distances to the SNRs result in very low predicted fluxes, for which the H.E.S.S. upper limits are not constraining.

  3. A digital wide range neutron flux measuring system for HL-2A

    NASA Astrophysics Data System (ADS)

    Yuan, Chen; Wu, Jun; Yin, Zejie

    2017-08-01

    To achieve wide-range, high-integration, and real-time performance on the neutron flux measurement on the HL-2A tokamak, a digital neutron flux measuring (DNFM) system based on the peripheral component interconnection (PCI) eXtension for Instrumentation express (PXIe) bus was designed. This system comprises a charge-sensitive preamplifier and a field programmable gate array (FPGA)-based main electronics plug-in. The DNFM totally covers source-range and intermediate-range neutron flux measurements, and increases system integration by a large margin through joining the pulse-counting mode and Campbell mode. Meanwhile, the neutron flux estimation method based on pulse piling proportions is able to choose and switch measuring modes in accordance with current flux, and this ensures the accuracy of measurements when the neutron flux changes suddenly. It has been demonstrated by simulated signals that the DNFM enhances the full-scale measuring range up to 1.9 × 108 cm-2 s-1, with relative error below 6.1%. The DNFM has been verified to provide a high temporal sensitivity at 10 ms time intervals on a single fission chamber on HL-2A. Contributed paper, published as part of the Proceedings of the 3rd Domestic Electromagnetic Plasma Diagnostics Workshop, September 2016, Hefei, China.

  4. Discovery of soft X-ray flux from 2A 1102+384 = Markarian 421

    NASA Technical Reports Server (NTRS)

    Hearn, D. R.; Marshall, F. J.; Jernigan, J. G.

    1979-01-01

    During April 1976 a soft X-ray flux was detected with SAS 3 from the vicinity of 2A 1102+384. The average flux densities were 4.3 x 10 to the -11th and 14 x 10 to the -11th erg/sq cm per sec in the energy bands 0.1-0.28 keV and 1-6 keV, respectively. There is an indication of variability over about 0.5 day in the lowest energy band. An upper limit of 3 x 10 to the 20th H atoms per sq cm is found for the gas column density to the X-ray source. In May 1978, observations with the modulation collimators of SAS 3 yielded an accurate (40 arcsec error radius) position for the X-ray source (2-6 keV) at right ascension 11 h 1 m 39.7 s, declination + 38 deg 28 min 51 sec (equinox 1950). The earlier tentative identification by Ricketts et al. (1976) with the BL Lacertae object B2 1101+38 = Markarian 421 is thus confirmed.

  5. A Burst and Simultaneous Short-term Pulsed Flux Enhancement fom the Magnetar Candidate 1E 1048.1-5937

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Kaspi, Victoria M.; Woods, Peter M.; Lyutikov, Maxim

    2005-01-01

    We report on the latest X-ray burst detected from the direction of the Anomalous X-ray Pulsar (AXP) 1E 1048.1-5937 using the Rossi X-ray Timing Explorer (RXTE). Following the burst the AXP was observed further with RXTE, XMM-Newton and Chandra. We find a simultaneous increase of approx. 3.7 times the quiescent value (approx. 5 sigma) in the pulsed component of the pulsar's flux during the tail of the burst which identifies the AXP as the burst's origin. The burst was overall very similar to the two others reported from this source in 2001. The unambiguous identification of 1E 1048.1-5937 as the burster here suggests it was in 2001 as well. Pre- and post-burst observations revealed no change in the total flux or spectrum of the quiescent emission. Comparing all three bursts detected thus far from this source we find that this event was the most fluent (170+/-42 x 10(exp -10) erg cm-2), had the highest peak flux (71+/-16 x 10(exp -10) erg/s/sq cm), the longest duration (approx. 411 s). The epoch of the burst peak was consistent with the arrival time of 1E 1048.1-5937's pulse peak. The burst exhibited significant spectral evolution with the trend going from hard to soft. Although the average spectrum of the burst was comparable in hardness (Gamma approx. 1) to those of the 2001 bursts, the peak of this burst was much harder (Gamma approx. 0.5).

  6. Characterisation of Redlen high-flux CdZnTe

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Veale, M. C.; Wilson, M. D.; Seller, P.; Schneider, A.; Iniewski, K.

    2017-12-01

    CdZnTe is a promising material for the current generation of free electron laser light sources and future laser-driven γ-ray sources which require detectors capable of high flux imaging at X-ray and γ-ray energies (> 10 keV) . However, at high fluxes CdZnTe has been shown to polarise due to hole trapping, leading to poor performance. Novel Redlen CdZnTe material with improved hole transport properties has been designed for high flux applications. Small pixel CdZnTe detectors were fabricated by Redlen Technologies and flip-chip bonded to PIXIE ASICs. An XIA Digital Gamma Finder PIXIE-16 system was used to digitise each of the nine analogue signals with a timing resolution of 10 ns. Pulse shape analysis was used to extract the rise times and amplitude of signals. These were measured as a function of applied bias voltage and used to calculate the mobility (μ) and mobility-lifetime (μτ) of electrons and holes in the material for three identical detectors. The measured values of the transport properties of electrons in the high-flux-capable material was lower than previously reported for Redlen CdZnTe material (μeτe ~ 1 × 10-3 cm2V-1 and μe ~ 1000 cm2V-1s-1) while the hole transport properties were found to have improved (μhτh ~ 3 × 10-4 cm2V-1 and μh ~ 100 cm2V-1s-1).

  7. Quinoline-Flanked Diketopyrrolopyrrole Copolymers Breaking through Electron Mobility over 6 cm2 V-1 s-1 in Flexible Thin Film Devices.

    PubMed

    Ni, Zhenjie; Dong, Huanli; Wang, Hanlin; Ding, Shang; Zou, Ye; Zhao, Qiang; Zhen, Yonggang; Liu, Feng; Jiang, Lang; Hu, Wenping

    2018-03-01

    Herein, the design and synthesis of novel π-extended quinoline-flanked diketopyrrolopyrrole (DPP) [abbreviated as QDPP] motifs and corresponding copolymers named PQDPP-T and PQDPP-2FT for high performing n-type organic field-effect transistors (OFETs) in flexible organic thin film devices are reported. Serving as DPP-flankers in backbones, quinoline is found to effectively tune copolymer optoelectric properties. Compared with TDPP and pyridine-flanked DPP (PyDPP) analogs, widened bandgaps and strengthened electron deficiency are achieved. Moreover, both hole and electron mobility are improved two orders of magnitude compared to those of PyDPP analogs (PPyDPP-T and PPyDPP-2FT). Notably, featuring an all-acceptor-incorporated backbone, PQDPP-2FT exhibits electron mobility of 6.04 cm 2 V -1 s -1 , among the highest value in OFETs fabricated on flexible substrates to date. Moreover, due to the widened bandgap and strengthened electron deficiency of PQDPP, n-channel on/off ratio over 10 5 with suppressed hole transport is first realized in the ambipolar DPP-based copolymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Geothermal flux through palagonitized tephra, Surtsey, Iceland - The Surtsey temperature-data-relay experiment via Landsat-1

    NASA Technical Reports Server (NTRS)

    Friedman, J. D.; Preble, D. M.; Jakobsson, S.

    1976-01-01

    The net geothermal flux through palagonitized basaltic tephra rims of the Surtur I and Surtur II craters at Surtsey, Iceland, in 1972, is estimated at 780 plus or minus 325 microcal/sq cm/s, indicating a decline since 1969 when a flux of 1500 microcal/sq cm/s was estimated. Heat flux in this range characterizes the postvolcanic environment on Surtsey in which the subaerial polagonitization of basaltic tephra is associated with mass transfer of hydrothermal vapor, either of meteoric or sea-water origin, only a few years after cessation of eruptive activity. The flux estimation is the result of the Surtsey data-relay experiment via Landsat-1 which was carried out in several phases. Temperature data were transmitted for a 38-day period in November and December 1972. A near-surface vertical gradient of 69.4 C/m was obtained, suggesting a mixed mechanism of heat transfer, partitioned between conduction and convection.

  9. Ionization potential for the 1s{sup 2}2s{sup 2} of berylliumlike systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, K.T.; Zhu, X.W.; Wang, Z.W.

    1993-05-01

    The 1s{sup 2}2s{sup 2}, ground state energies of beryllium- like systems are calculated with a full-core plus correlation method. A partial saturation of basis functions method is used to extrapolated a better nonrelativistic energy. The 1s{sup 2}2s{sup 2} ionization potentials are calculated by including the relativistic corrections, mass polarization and QED effects. These results are compared with the existing theoretical and experimental data in the literature. The predicted BeI, CIII, NIV, and OV ionization potentials are within the quoted experimental error. Our result for FVI, 1267606.7 cm{sup -1}, supports the recent experiment of Engstrom, 1267606(2) cm{sup -1}, over the datummore » in the existing data tables. The predicted specific mass polarization contribution to the ionization potential for BeI, 0.00688 a.u., agrees with the 0.00674(100) a.u. from the experiment of Wen. Using the calculated results of Z=4-10, 15, and 20, we extrapolated the results for other Z systems up to Z=25 for which the ionization potentials are not explicitly computed.« less

  10. A Burst and Simultaneous Short-Term Pulsed Flux Enhancement From The Magnetar Candidate 1E 1048.1-5937

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Kaspi, Victoria M.; Woods, Peter M.

    2006-01-01

    We report on the 2004 June 29 X-ray burst detected from the direction of the AXP 1E 1048.1-5937 using the RXTE. We find a simultaneous increase of approx. 3.5 times the quiescent value in the 2-10 keV pulsed flux of 1E 1048.1-5937 during the tail of the burst, which identifies the AXP as the burst s origin. The burst was overall very similar to the two others reported from the direction of this source in 2001. The unambiguous identification of 1E 1048.1-5937 as the burster here confirms that it was the origin of the 2001 bursts as well. The epoch of the burst peak was very close to the arrival time of 1E 1048.1-5937 s pulse peak. The burst exhibited significant spectral evolution, with the trend going from hard to soft. Although the average spectrum of the burst was comparable in hardness (Lambda approx. 1.6) to those,of the 2001 bursts, the peak of this burst was much harder (Lambda approx. 0.3). During the 11 days following the burst, the AXP was observed further with RXTE, XMM-Newton, and Chandra. Pre- and post-burst observations revealed no change in the total flux or spectrum of the quiescent emission. Comparing all three bursts detected thus far from this source, we find that this event was the most fluent (>3.3 x 10(exp-8 ergs/sq cm) in the 2-20 keV band), had the highest peak flux (59+/-9 x 10(exp -10)ergs/s/sq cm) in the 2-20 keV band), and had the longest duration (>699 s). The long duration of the burst difFerentiates it from SGR bursts, which have typical durations of approx.0.1 s. Bursts that occur preferentially at pulse maximum, have fast rises, and long X-tails containing the majority of the total burst energy have been seen uniquely from AXPs. The marked differences between AXP and SGRs bursts may provide new clues to help understand the physical differences between these objects.

  11. Wide bandgap BaSnO 3 films with room temperature conductivity exceeding 10 4 S cm -1

    DOE PAGES

    Prakash, Abhinav; Xu, Peng; Faghaninia, Alireza; ...

    2017-05-05

    Wide bandgap perovskite oxides with high room temperature conductivities and structural compatibility with a diverse family of organic/inorganic perovskite materials are of sign ificant interest as transparent conductors and as active components in power electronics. Such materials must also possess high room temperature mobility to minimize power consumption and to enable high-frequency applications. Here, we report n-type BaSnO 3 films grown using hybrid molecular beam epitaxy with room temperature conductivity exceeding 10 4 S cm -1 . Significantly, these films show room temperature mobilities up to 120 cm 2 V -1 s -1 even at carrier concentrations abovemore » 3 × 10 20 cm -3 together with a wide bandgap (3 eV). We examine the mobility-limiting scattering mechanisms by calculating temperature-dependent mobility, and Seebeck coefficient using the Boltzmann transport framework and ab-initio calculations. These results place perovskite oxide semiconductors for the first time on par with the highly successful III-N system, thereby bringing all-transparent, high-power oxide electronics operating at room temperature a step closer to reality.« less

  12. Three diverse target preparations: 14C (12 mg/cm 2), 71Ga 24Mg (12 mg/cm 271Ga, 3 mg/cm 224Mg), and 66,67Zn (1.8-14.9 mg/cm 2)

    NASA Astrophysics Data System (ADS)

    Lozowski, W. R.

    1989-10-01

    A natural-carbon analog of fluffy, intractable 14C powder was produced. With it, a method was developed to produce a pressed disk of 14C of 12.7-mg/cm 2 thickness and 1.27-cm diameter, bound with 2.1 wt.% of adhesive. Aluminized Mylar cover foils and a fritted-disc filter were used to contain the target for ( overlinep, p') experiments. Reduction of 71Ga 2O 3 to the metal was accomplished with an efficiency of 94.3% in a small electroplating cell. Magnesium was chosen as the companion element because 50 at.% could be tolerated in the (p, n) experiment, and GaMg has a melting point of 646 K. A 1.27-cm diameter target, supported at the edge by a Mg foil, was produced in several simple steps. Directly rollable 66,67Zn foils were obtained from an electroplating cell with a Pt screen anode and a highly polished tungsten-carbide cathode. Plating times of 3 h provided metal-recovery efficiencies ranging from 94.2 to 96.5%. The as-deposited foils had many holes but were hole-free and shiny after reduction of 25% by pack rolling.

  13. Towards the 1-cm SARAL orbit

    NASA Astrophysics Data System (ADS)

    Zelensky, Nikita P.; Lemoine, Frank G.; Chinn, Douglas S.; Beckley, Brian D.; Bordyugov, Oleg; Yang, Xu; Wimert, Jesse; Pavlis, Despina

    2016-12-01

    We have investigated the quality of precise orbits for the SARAL altimeter satellite using Satellite Laser Ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) data from March 14, 2013 to August 10, 2014. We have identified a 4.31 ± 0.14 cm error in the Z (cross-track) direction that defines the center-of-mass of the SARAL satellite in the spacecraft coordinate system, and we have tuned the SLR and DORIS tracking point offsets. After these changes, we reduce the average RMS of the SLR residuals for seven-day arcs from 1.85 to 1.38 cm. We tuned the non-conservative force model for SARAL, reducing the amplitude of the daily adjusted empirical accelerations by eight percent. We find that the best dynamic orbits show altimeter crossover residuals of 5.524 cm over cycles 7-15. Our analysis offers a unique illustration that high-elevation SLR residuals will not necessarily provide an accurate estimate of radial error at the 1-cm level, and that other supporting orbit tests are necessary for a better estimate. Through the application of improved models for handling time-variable gravity, the use of reduced-dynamic orbits, and through an arc-by-arc estimation of the C22 and S22 coefficients, we find from analysis of independent SLR residuals and other tests that we achieve 1.1-1.2 cm radial orbit accuracies for SARAL. The limiting errors stem from the inadequacy of the DPOD2008 and SLRF2008 station complements, and inadequacies in radiation force modeling, especially with respect to spacecraft self-shadowing and modeling of thermal variations due to eclipses.

  14. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for {sup 32}S{sup 16}O{sub 2} up to 8000 cm{sup −1}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xinchuan, E-mail: Xinchuan.Huang-1@nasa.gov, E-mail: Timothy.J.Lee@nasa.gov; Schwenke, David W., E-mail: David.W.Schwenke@nasa.gov; Lee, Timothy J., E-mail: Xinchuan.Huang-1@nasa.gov, E-mail: Timothy.J.Lee@nasa.gov

    2014-03-21

    A purely ab initio potential energy surface (PES) was refined with selected {sup 32}S{sup 16}O{sub 2} HITRAN data. Compared to HITRAN, the root-mean-squares error (σ{sub RMS}) for all J = 0–80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm{sup −1}. Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296 K and covers up to 8000 cm{sup −1}. Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85%–90%. Our predictions for {sup 34}S{sup 16}O{sub 2} band origins,more » higher energy {sup 32}S{sup 16}O{sub 2} band origins and missing {sup 32}S{sup 16}O{sub 2} IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict {sup 32/34}S{sup 16}O{sub 2} band origins below 5500 cm{sup −1} with 0.01–0.03 cm{sup −1} uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The K{sub a}-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO{sub 2} IR spectral experimental analysis, as well as elimination of SO{sub 2} lines in high-resolution astronomical observations.« less

  15. Intial orbit determination results for Jason-1: towards a 1-cm orbit

    NASA Technical Reports Server (NTRS)

    Haines, B. J.; Haines, B.; Bertiger, W.; Desai, S.; Kuang, D.; Munson, T.; Reichert, A.; Young, L.; Willis, P.

    2002-01-01

    The U.S/France Jason-1 oceanographic mission is carrying state-of-the-art radiometric tracking systems (GPS and Doris) to support precise orbit determination (POD) requirements. The performance of the systems is strongly reflected in the early POD results. Results of both internal and external (e.g., satellite laser ranging) comparisons support that the 2.5 cm radial Rh4S requirement is being readily met, and provide reasons for optimism that 1 cm can be achieved. We discuss the POD strategy underlying these orbits, as well as the challenging issues that bear on the understanding and characterization of an orbit solution at the l-cm level. We also describe a system for producing science quality orbits in near real time in order to support emerging applications in operational oceanography.

  16. Benthic fluxes of cadmium, lead, copper and nitrogen species in the northern Adriatic Sea in front of the River Po outflow, Italy.

    PubMed

    Zago, C; Capodaglio, G; Ceradini, S; Ciceri, G; Abelmoschi, L; Soggia, F; Cescon, P; Scarponi, G

    2000-02-10

    Trace heavy metal (Cd, Pb and Cu) and nitrogen species (N-NO3, N-NO2 and N-NH4) fluxes between sediment and water were examined for approximately 4 days, in a coastal marine station located in the northern Adriatic Sea in front of the River Po outflow. An in situ benthic chamber, equipped with electronic devices for monitoring and adjustment of oxygen and pH and with a temperature detector, was used. The benthic chamber experiment enabled study of the temporal trend of metals and nutrients when oxygen concentration varied in a controlled environment. Although particular care was devoted to chamber deposition and parameter control, sediment resuspension occurred at the beginning of the experiment and O2 fluctuations were observed during the course of the experiment. Pb concentration was affected by both resuspension and oxic conditions in bottom water, which prevented determination of any reasonable Pb flux value. Cd and Cu, not influenced by oxygen fluctuations, reached an equilibrium phase in a short period with initial positive fluxes from sediment of 0.68 (S.D. = 0.07) and 6.9 (S.D. = 5.6) pmol cm(-2) h(-1), respectively. With regard to nitrogen species, the highest positive flux was that of N-NH4 (10.5, S.D. = 2.4, nmol cm(-2) h(-1)) whose concentration increased in the chamber, while nitrate concentration (initial flux of -5.7, S.D. = 1.5, nmol cm(-2) h(-1)) immediately decreased after the beginning of the experiment. Nitrite concentration was almost constant throughout the experiment and its flux was generally low (initial flux 0.1, S.D. = 0.9, nmol cm(-2) h(-1)).

  17. GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics

    USGS Publications Warehouse

    Delworth, T.L.; Broccoli, A.J.; Rosati, A.; Stouffer, R.J.; Balaji, V.; Beesley, J.A.; Cooke, W.F.; Dixon, K.W.; Dunne, J.; Dunne, K.A.; Durachta, J.W.; Findell, K.L.; Ginoux, P.; Gnanadesikan, A.; Gordon, C.T.; Griffies, S.M.; Gudgel, R.; Harrison, M.J.; Held, I.M.; Hemler, R.S.; Horowitz, L.W.; Klein, S.A.; Knutson, T.R.; Kushner, P.J.; Langenhorst, A.R.; Lee, H.-C.; Lin, S.-J.; Lu, J.; Malyshev, S.L.; Milly, P.C.D.; Ramaswamy, V.; Russell, J.; Schwarzkopf, M.D.; Shevliakova, E.; Sirutis, J.J.; Spelman, M.J.; Stern, W.F.; Winton, M.; Wittenberg, A.T.; Wyman, B.; Zeng, F.; Zhang, R.

    2006-01-01

    The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved. Tw o versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2?? latitude ?? 2.5?? longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1?? in latitude and longitude, with meridional resolution equatorward of 30?? becoming progressively finer, such that the meridional resolution is 1/3?? at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments. The co ntrol simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and

  18. The 590 cm-1 B_1g feature in underdoped Bi_2Sr_2CaCu_2O_8+δ

    NASA Astrophysics Data System (ADS)

    Hewitt, Kevin C.; Wang, N. L.; Irwin, J. C.; Pooke, D. M.; Pantoja, A. E.; Trodahl, H. J.

    1999-05-01

    Raman scattering studies have been performed on underdoped Bi_2Sr_2CaCu_2O_8+δ. In single crystals underdoped by oxygen removal, a 590 cm-1 peak is observed in the B_1g spectrum. The feature is observed to soften in frequency by 3.8% with isotopic exchange of ^16O by ^18O. In contrast, the 590 cm-1 peak is not observed in crystals underdoped by Y substitution which suggests that it corresponds to a disorder induced vibrational mode. We have also found that underdoping leads to a depletion of low energy spectral weight from regions of the Fermi surface located near the Brillouin zone axes.

  19. Increased TeV gamma-ray activity from Mrk 421 on January 1-4

    NASA Astrophysics Data System (ADS)

    Wood, J.; Martinez, I.; Lauer, R.

    2017-01-01

    The HAWC Observatory measured increased gamma-ray fluxes from the direction of BL Lac Markarian 421 (z=0.031) over four successive nights starting on January 1, 2017: Transit Starting 07:40:55 UTC on Jan 1, 2017 (MJD 57754.32): Flux = (4.8 +/- 1.1) x10^-11 photons/cm2/s [2.5 Crab Units] Transit Starting 07:36:59 UTC on Jan 2, 2017 (MJD 57755.32): Flux = (3.6 +/- 1.0) x10^-11 photons/cm2/s [1.9 Crab Units] Transit Starting 07:33:04 UTC on Jan 3, 2017 (MJD 57756.31): Flux = (4.0 +/- 1.0) x10^-11 photons/cm2/s [2.1 Crab Units] Transit Starting 07:29:08 UTC on Jan 4, 2017 (MJD 57757.31): Flux = (4.1 +/- 1.0) x10^-11 photons/cm2/s [2.2 Crab Units] All fluxes reported here are the integral flux above 1 TeV averaged over the 6 hour source transit obtained from a maximum likelihood fit under the assumption of a fixed spectral shape with power law index of 2.2 and exponential cut-off at 5 TeV. This shape is the current best fit for HAWC data from Markarian 421. The highest flux occurred on Jan 1, 2017.

  20. Do plant species influence soil CO2 and N2O fluxes in a diverse tropical forest?

    Treesearch

    J.L.M. van Haren; R.C. de Oliveira; N. Restrepo-Coupe; L. Hutyra; P. B. de Camargo; Michael Keller; S.R. Saleska

    2010-01-01

    [1] To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO2 and N2O fluxes close to 300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay‐rich forest sites in central Amazonia. We found that soil CO2 fluxes were 38% higher near large trees than at control sites >10...

  1. A flux-gradient system for simultaneous measurement of the CH4, CO2, and H2O fluxes at a lake-air interface.

    PubMed

    Xiao, Wei; Liu, Shoudong; Li, Hanchao; Xiao, Qitao; Wang, Wei; Hu, Zhenghua; Hu, Cheng; Gao, Yunqiu; Shen, Jing; Zhao, Xiaoyan; Zhang, Mi; Lee, Xuhui

    2014-12-16

    Inland lakes play important roles in water and greenhouse gas cycling in the environment. This study aims to test the performance of a flux-gradient system for simultaneous measurement of the fluxes of water vapor, CO2, and CH4 at a lake-air interface. The concentration gradients over the water surface were measured with an analyzer based on the wavelength-scanned cavity ring-down spectroscopy technology, and the eddy diffusivity was measured with a sonic anemometer. Results of a zero-gradient test indicate a flux measurement precision of 4.8 W m(-2) for water vapor, 0.010 mg m(-2) s(-1) for CO2, and 0.029 μg m(-2) s(-1) for CH4. During the 620 day measurement period, 97%, 69%, and 67% of H2O, CO2, and CH4 hourly fluxes were higher in magnitude than the measurement precision, which confirms that the flux-gradient system had adequate precision for the measurement of the lake-air exchanges. This study illustrates four strengths of the flux-gradient method: (1) the ability to simultaneously measure the flux of H2O, CO2, and CH4; (2) negligibly small density corrections; (3) the ability to resolve small CH4 gradient and flux; and (4) continuous and noninvasive operation. The annual mean CH4 flux (1.8 g CH4 m(-2) year(-1)) at this hypereutrophic lake was close to the median value for inland lakes in the world (1.6 g CH4 m(-2) year(-1)). The system has adequate precision for CH4 flux for broad applications but requires further improvement to resolve small CO2 flux in many lakes.

  2. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  3. 11.72-sq cm Active-Area Wafer Interconnected PiN Diode Pulsed at 64 kA Dissipates 382 J and Exhibits an Action of 1.7 MA(sup 2)-s

    DTIC Science & Technology

    2012-01-30

    calculated action exceeded 1.7 MA2 -s. Preliminary efforts on high voltage diode interconnection have produced quarter wafer interconnected PiN...was packaged in a “hockey-puck” configuration and pulsed to 64 kA, dissipating 382 J with a calculated action exceeding 1.7 MA2 -s. II. FULL...epitaxial layers are utilized. 11.72-cm2 Active-area Wafer Interconnected PiN Diode pulsed at 64 kA dissipates 382 J and exhibits an action of 1.7 MA2 -s

  4. High-flux beam source of fast neutral helium.

    PubMed

    Fahey, D W; Schearer, L D; Parks, W F

    1978-04-01

    A high-flux beam source of fast neutral helium has been constructed by extending the designs of previous authors. The source is a dc or pulsed electric discharge in an expanding gas nozzle. The beam produced has a flux on the order of 10(15) atoms/s sr and a mean velocity on the order of 10(7) cm/s. The composition of the beam has been determined by the use of particle detectors and by the observation of the excitation of certain target gases. An upper bound of 3.7 x 10(-5) has been estimated for the He(2(3)S(1))/He((1)S(0))beam density ratio and a value of 0.2 found for the He(+)/He(1(1)S(0)) beam density ratio.

  5. First analysis of the 2ν1 + 3ν3 band of NO2 at 7192.159 cm-1

    NASA Astrophysics Data System (ADS)

    Raghunandan, R.; Perrin, A.; Ruth, A. A.; Orphal, J.

    2014-03-01

    The first investigation of the very weak 2ν1 + 3ν3 absorption band of nitrogen dioxide, 14N16O2, located at 7192.1587(1) cm-1 was performed using Fourier-transform incoherent broadband cavity-enhanced absorption spectroscopy (FT-IBBCEAS) in the 7080-7210 cm-1 spectral range. The assigned 2ν1 + 3ν3 lines involve energy levels of the (2 0 3) vibrational state with rotational quantum numbers up to Ka = 7 and N = 47. Furthermore, due to local resonances involving energy levels from the (2,2,2)⇔(2,0,3) and (5,1,0)⇔(2,0,3) states, several transitions were also observed for the 2ν1 + 2ν2 + 2ν3 and 5ν1 + ν3 dark bands, respectively. The energy levels were satisfactorily reproduced within their experimental uncertainty using a theoretical model which takes explicitly into account the Coriolis interactions between the levels of the (2, 0, 3) vibrational state and those of (2, 2, 2) and of (5, 1, 0). As a consequence, precise vibrational energies, rotational, and coupling constants were achieved for the triad {(5, 0, 1), (2, 2, 2), (2, 0, 3)} of interacting states of 14N16O2. This theoretical model also accounts for the electron spin-rotation resonances within the (2, 0, 3), (2, 2, 2) and (5, 1, 0) vibrational states. However, owing to the limited experimental resolution (˜0.075 cm-1), it was not possible to observe the spin-rotation doublet structure. As a consequence, the spin-rotation constants in the {(2, 2, 2), (2, 0, 3), (5, 1, 0)} excited states were maintained fixed to their ground state values in this study. Using these parameters a comprehensive list of line positions and line intensities was generated for the 2ν1 + 3ν3 band of NO2.

  6. Rubidium-traced white-light etalon calibrator for radial velocity measurements at the cm s-1 level

    NASA Astrophysics Data System (ADS)

    Stürmer, Julian; Seifahrt, Andreas; Schwab, Christian; Bean, Jacob L.

    2017-04-01

    We report on the construction and testing of a vacuum-gap Fabry-Pérot etalon calibrator for high precision radial velocity spectrographs. Our etalon is traced against a rubidium frequency standard to provide a cost effective, yet ultra precise wavelength reference. We describe here a turn-key system working at 500 to 900 nm, ready to be installed at any current and next-generation radial velocity spectrograph that requires calibration over a wide spectral bandpass. Where appropriate, we have used off-the-shelf, commercial components with demonstrated long-term performance to accelerate the development timescale of this instrument. Our system combines for the first time the advantages of passively stabilized etalons for optical and near-infrared wavelengths with the laser-locking technique demonstrated for single-mode fiber etalons. We realize uncertainties in the position of one etalon line at the 10 cm s-1 level in individual measurements taken at 4 Hz. When binning the data over 10 s, we are able to trace the etalon line with a precision of better than 3 cm s-1. We present data obtained during a week of continuous operation where we detect (and correct for) the predicted, but previously unobserved shrinking of the etalon Zerodur spacer corresponding to a shift of 13 cm s-1 per day.

  7. AmeriFlux US-Ha2 Harvard Forest Hemlock Site

    DOE Data Explorer

    Munger, William [Harvard University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ha2 Harvard Forest Hemlock Site. Site Description - The forest surrounding the Hemlock site has remained pristine with two exceptions. In the early to mid-1700s, European settlers cleared the majority of the forest for agricultural purposes. Selective harvesting of hemlock and chestnut trees occurred up until the early 1900s, when the chestnut blight killed all of the chestnut trees. In the current forest, about 83% of the total basal area of trees is hemlock. The remainder is equally divided between eastern white pine (Pinus strobus L.) and deciduous species, including red maple (Acer rubrum), red oak (Quercus rubra) and black birch (Betula lenta). A very thick organic layer (10-20 cm or more) covers the soil surface, and highly decayed coarse woody debris is abundant.

  8. Hyperfine interaction constants of 14NO2 in 14 500-16 800 cm-1 energy region

    NASA Astrophysics Data System (ADS)

    Tada, Kohei; Hirata, Michihiro; Kasahara, Shunji

    2017-10-01

    We observed hyperfine-resolved high-resolution fluorescence excitation spectra of k = 0, N = 1 ← 0 transitions in 82 vibronic bands of the à 2B2 ← X ˜ 2A1 system of 14NO2 in the 14 500-16 800 cm-1 region by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. We determined hyperfine interaction constants of the lower and upper states for all the observed vibronic bands based on the analysis of the hyperfine structures of k = 0, N = 1 ← 0 transitions. Most of the determined Fermi contact interaction constants were found to be distributed in 0.0013-0.0038 cm-1, which are intermediate in magnitude between those in lower and higher energy region reported by other groups. A sharp decreasing of the Fermi contact interaction constant was found in 16 200-16 600 cm-1, and it may be caused by the interaction with the dark C ˜ 2A2 state. The hyperfine interaction constants are powerful clues to obtain reliable vibronic assignment. We tentatively assigned vibronic bands located at 14 836 cm-1, 15 586 cm-1, and 16 322 cm-1 as the transitions to the intrinsic (0,7,0), (0,8,0), and (0,9,0) vibrational levels of the à 2B2 state, respectively.

  9. CT differentiation of 1-2-cm gallbladder polyps: benign vs malignant.

    PubMed

    Song, E Rang; Chung, Woo-Suk; Jang, Hye Young; Yoon, Minjae; Cha, Eun Jung

    2014-04-01

    To evaluate MDCT findings of 1-2-cm sized gallbladder (GB) polyps for differentiation between benign and malignant polyps. Institutional review board approval was obtained, and informed consent was waived. Portal venous phase CT scans of 1-2-cm sized GB polyps caused by various pathologic conditions were retrospectively reviewed by two blinded observers. Among the 36 patients identified, 21 had benign polyps with the remaining 15 having malignant polyps. Size, margin, and shape of GB polyps were evaluated. Attenuation values of the polyps, including mean attenuation, maximum attenuation, and standard deviation, were recorded. As determined by visual inspection, the degree of polyp enhancement was evaluated. Using these CT findings, each of the two radiologists assessed and recorded individual diagnostic confidence for differentiating benign versus malignant polyps on a 5-point scale. The diagnostic performance of CT was evaluated using a receiver operating characteristic curve analysis. There was no significant difference in size between benign and malignant GB polyps. Ill-defined margin and sessile morphology were significantly associated with malignant polyp. There was a significant difference in mean and maximum attenuation values between benign and malignant GB polyps. Mean standard deviation value of malignant polyps was significantly higher than that of benign polyps. All malignant polyps showed either hyperenhancement or marked hyperenhancement. A z value for the diagnosis of malignant GB polyps was 0.905. Margin, shape, and enhancement degree are helpful in differentiating between benign and malignant polyps of 1-2-cm sizes.

  10. Blade motion and nutrient flux to the kelp, Eisenia arborea.

    PubMed

    Denny, Mark; Roberson, Loretta

    2002-08-01

    Marine algae rely on currents and waves to replenish the nutrients required for photosynthesis. The interaction of algal blades with flow often involves dynamic reorientations of the blade surface (pitching and flapping) that may in turn affect nutrient flux. As a first step toward understanding the consequences of blade motion, we explore the effect of oscillatory pitching on the flux to a flat plate and to two morphologies of the kelp Eisenia arborea. In slow flow (equivalent to a water velocity of 2.7 cm s(-1)), pitching increases the time-averaged flux to both kelp morphologies, but not to the plate. In fast flow (equivalent to 20 cm s(-1) in water), pitching has negligible effect on flux regardless of shape. For many aspects of flux, the flat plate is a reliable model for the flow-protected algal blade, but predictions made from the plate would substantially underestimate the flux to the flow-exposed blade. These measurements highlight the complexities of flow-related nutrient transport and the need to understand better the dynamic interactions among nutrient flux, blade motion, blade morphology, and water flow.

  11. The elusive S{sub 2} state, the S{sub 1}/S{sub 2} splitting, and the excimer states of the benzene dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balmer, Franziska A.; Trachsel, Maria A.; Leutwyler, Samuel

    We observe the weak S{sub 0} → S{sub 2} transitions of the T-shaped benzene dimers (Bz){sub 2} and (Bz-d{sub 6}){sub 2} about 250 cm{sup −1} and 220 cm{sup −1} above their respective S{sub 0} → S{sub 1} electronic origins using two-color resonant two-photon ionization spectroscopy. Spin-component scaled (SCS) second-order approximate coupled-cluster (CC2) calculations predict that for the tipped T-shaped geometry, the S{sub 0} → S{sub 2} electronic oscillator strength f{sub el}(S{sub 2}) is ∼10 times smaller than f{sub el}(S{sub 1}) and the S{sub 2} state lies ∼240 cm{sup −1} above S{sub 1}, in excellent agreement with experiment. The S{sub 0}more » → S{sub 1} (ππ{sup ∗}) transition is mainly localized on the “stem” benzene, with a minor stem → cap charge-transfer contribution; the S{sub 0} → S{sub 2} transition is mainly localized on the “cap” benzene. The orbitals, electronic oscillator strengths f{sub el}(S{sub 1}) and f{sub el}(S{sub 2}), and transition frequencies depend strongly on the tipping angle ω between the two Bz moieties. The SCS-CC2 calculated S{sub 1} and S{sub 2} excitation energies at different T-shaped, stacked-parallel and parallel-displaced stationary points of the (Bz){sub 2} ground-state surface allow to construct approximate S{sub 1} and S{sub 2} potential energy surfaces and reveal their relation to the “excimer” states at the stacked-parallel geometry. The f{sub el}(S{sub 1}) and f{sub el}(S{sub 2}) transition dipole moments at the C{sub 2v}-symmetric T-shape, parallel-displaced and stacked-parallel geometries are either zero or ∼10 times smaller than at the tipped T-shaped geometry. This unusual property of the S{sub 0} → S{sub 1} and S{sub 0} → S{sub 2} transition-dipole moment surfaces of (Bz){sub 2} restricts its observation by electronic spectroscopy to the tipped and tilted T-shaped geometries; the other ground-state geometries are impossible or extremely difficult to observe. The S

  12. Decline of the 2-10 keV Emission from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Liburd, Jamar; Corcoran, Michael F.; Hamaguchi, Kenji; Gull, Theodore R.; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony; Richardson, Noel; Russell, Chris; Pollock, Andrew; hide

    2014-01-01

    Analysis of Eta Car's X-ray spectrum in the 2-10 keV band using processed data from the X-ray Telescope on Swift reveals a peak flux on July 16, 2014 of 0.046 photons s(exp -1) cm(exp -2) (3.37+/-0.15×10(exp -10) ergs s(exp -1) cm(exp -2). This flux is similar to the previous maximum flux seen by the XRT, 3.53+/-0.13×10(exp -10) ergs s(exp -1) cm(exp -2) (0.049 photons s(exp -1) cm(exp -2), ATEL #6298). Since this peak on July 16, the most recent Swift XRT quicklook data show a drop in flux. On July 20, 2014 the XRT flux as seen in the quicklook data was 0.011 photons s(exp -1) cm(exp -2) (8.3+/-0.5×10(exp -11) ergs s(exp -1) cm(exp -2)). This most likely indicates that the 2-10 keV flux is in its declining phase as Eta Car approaches its deep X-ray minimum stage (Hamaguchi et al., 2014, ApJ, 784, 125) associated with periastron passage of the 2024-day binary orbit. The column density derived from analysis of the July 20 XRT quicklook data is 7.2×10(exp 22) cm(exp -2). This is consistent with the column density seen near the same orbital phase in 2003 (7.7×10(exp 22) cm(exp -2), Hamaguchi et al., 2007, ApJ, 663, 522). Eta Car's deep X-ray minimum phase is expected to begin on July 30, 2014. Weekly Swift/XRT observations of Eta Car in the 2-10 keV band are planned throughout the X-ray minimum.

  13. The Jovian atmospheric window at 2.7 microns: A search for H2S

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Davis, D. S.; Hofmann, R.; Bjoraker, G. L.

    1984-01-01

    The atmospheric transmission window at 2.7 microns in Jupiter's atmosphere was observed at a spectral resolution of 0.1/cm from the Kuiiper Airborne Observatory. From an analysis of the CH4 abundance (80 m-am) and the H2O abundance ( 0.0125 cm-am) it was determined that the penetration depth of solar flux at 2.7 microns is near the base of the NH3 cloud layer. The upper limit to H2O at 2.7 microns and other results suggest that photolytic reactions in Jupiter's lower troposphere may not be as significant as was previously thought. A search for H2S in Jupiter's atmosphere yielded an upper limit of 0.1 cm-am. The corresponding limit to the element abundance ratio S/H was approx. 1.7x10(-8), about 10(-3) times the solar value. Upon modeling the abundance and distribution of H2S in Jupiter's atmosphere it was concluded that, contrary to expectations, sulfur-bearing chromophores are not present in significant amounts in Jupiter's visible clouds. Rather, it appears that most of Jupiter's sulfur is locked up as NH4SH in a lower cloud layer. Alternatively, the global abundance of sulfur in Jupiter may be significantly depleted.

  14. Intramolecular Vibrational Energy Redistribution (ivr) in Selected S_{1} Levels above 1000 cm^{-1} in Para-Fluorotoluene

    NASA Astrophysics Data System (ADS)

    Whalley, Laura E.; Gardner, Adrian M.; Tuttle, William Duncan; Davies, Julia A.; Reid, Katharine L.; Wright, Timothy G.

    2017-06-01

    With increasing vibrational wavenumber, the density of states of a molecule is expected to rise dramatically, especially so when low wavenumber torsions (internal rotations) are present, as in the case of para-fluorotoluene (pFT). This in turn is expected to lead to more opportunities for coupling between vibrational modes, which is the driving force for intramolecular vibrational energy redistribution (IVR). Previous studies at higher energies have focussed on the two close lying vibrational levels at 1200 cm^{-1} in the S_{1} electronic state of pFT which were assigned to two zero-order bright states (ZOBSs), whose characters predominantly involve C-CH_{3} and C-F stretching modes. A surprising result of these studies was that the photoelectron spectra showed evidence that IVR is more extensive following excitation of the C-F mode than it is following excitation of the C-CH_{3} mode, despite these levels being separated by only 35 cm^{-1}. This observation provides evidence that the IVR dynamics are mode-specific, which in turn may be a consequence of the IVR route being dependent on couplings to nearby states that are only available to the C-F mode. In this work, in order to further investigate this behaviour, we have employed resonance-enhanced multiphoton ionisation (REMPI) spectroscopy and zero-kinetic-energy (ZEKE) spectroscopy to probe S_{1} levels above 1000 cm^{-1} in pFT. Such ZEKE spectra have been recorded via a number of S_{1} intermediate levels allowing the character and coupling between vibrations to be unravelled; the consequence of this coupling will be discussed with a view to understanding any IVR dynamics seen. C. J. Hammond, V. L. Ayles, D. E. Bergeron, K. L. Reid and T. G. Wright, J. Chem. Phys., 125, 124308 (2006) J. A. Davies, A. M. Green, A. M. Gardner, C. D. Withers, T. G. Wright and K. L. Reid, Phys. Chem. Chem. Phys., 16, 430 (2014)

  15. High resolution quantum cascade laser spectroscopy of the simplest Criegee intermediate, CH2OO, between 1273 cm-1 and 1290 cm-1.

    PubMed

    Chang, Yuan-Pin; Merer, Anthony J; Chang, Hsun-Hui; Jhang, Li-Ji; Chao, Wen; Lin, Jim Jr-Min

    2017-06-28

    The region 1273-1290 cm -1 of the ν 4 fundamental of the simplest Criegee intermediate, CH 2 OO, has been measured using a quantum cascade laser transient absorption spectrometer, which offers greater sensitivity and spectral resolution (<0.004 cm -1 ) than previous works based on thermal light sources. Gas phase CH 2 OO was generated from the reaction of CH 2 I + O 2 at 298 K and 4 Torr. The analysis of the absorption spectrum has provided precise values for the vibrational frequency and the rotational constants, with fitting errors of a few MHz. The determined ratios of the rotational constants, A'/A″ = 0.9986, B'/B″ = 0.9974, and C'/C″ = 1.0010, and the relative intensities of the a- and b-type transitions, 90:10, are in good agreement with literature values from a theoretical calculation using the MULTIMODE approach, based on a high-level ab initio potential energy surface. The low-K (=K a ) lines can be fitted extremely well, but rotational perturbations by other vibrational modes disrupt the structure for K = 4 and K ≥ 6. Not only the spectral resolution but also the detection sensitivity of CH 2 OO IR transitions has been greatly improved in this work, allowing for unambiguous monitoring of CH 2 OO in kinetic studies at low concentrations.

  16. Resolving LDEF's flux distribution: Orbital (debris?) and natural meteoroid populations

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.

    1993-01-01

    A consistent methodology for the collation of data from both penetration and perforation experiments and from data in the Meteoroid and Debris Special Investigator Group (M-D SIG) data-base has led to the derivation of the average impact flux over LDEF's exposure history 1984-1990. Data are first presented for LDEF's N,S,E,W and Space faces ('offset' by 8 deg and 'tilted' by 1 deg respectively). A model fit is derived for ballistic limits of penetration from 1 micron to 1mm of aluminium target, corresponding to impactor masses from 10(exp -18) kg (for rho sub p = 2g/cu cm) to 10(exp -10) kg (for rho sub p = 1g/cu cm). A second order harmonic function is fitted to the N,S,E, and W fluxes to establish the angular distribution at regular size intervals; this fit is then used to provide 'corrected' data corresponding to fluxes applicable to true N,S,E,W and Space directions for a LEO 28.5 degree inclination orbit at a mean altitude of 465 km.

  17. The spinocerebellar ataxia 2 locus is located within a 3-cm interval on chromosome 12q23-24.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allotey, R.; Twells, R.; Cemal, C.

    1995-07-01

    The autosomal dominant cerebellar ataxias (ADCA) are a clinically heterogeneous group of neurodegenerative disorders characterized by a predominantly cerebellar syndrome of onset with gait ataxia, dysarthria, dysmetria, and dysdiadochokinesia. Pathologically, the disorders are characterized by premature neuronal loss in the cerebellar cortex and the inferior olivary and pontine nuclei, with degeneration of the spinal cord. We have previously assigned the spinocerebellar ataxia 2 locus to chromosome 12q23-24.1, within a 31-cM interval flanked by the loci D12S58 and PLA2. Linkage to SCA2 has been demonstrated in pedigrees from Europe, Japan, and North America, the latter serving to refine the candidate regionmore » to a 16-cM interval. We report here genetic analysis undertaken between SCA2 and nine microsatellite loci known to span 8 cM within this interval. 12 refs., 2 figs., 1 tab.« less

  18. Vacuum ultraviolet photoabsorption spectroscopy of CH2Cl2 and CD2Cl2 in the energy region 50,000-95,000 cm-1

    NASA Astrophysics Data System (ADS)

    Mandal, Anuvab; Singh, Param Jeet; Shastri, Aparna; Jagatap, B. N.

    2014-12-01

    A consolidated study of the VUV absorption spectra of CH2Cl2 and CD2Cl2 in the 50,000-95,000 cm-1 region using synchrotron radiation is presented. Rydberg series and vibronic analysis are carried out and supported by quantum chemical calculations. The broad absorption band of CH2Cl2 in the region 50,000-60,000 cm-1 is attributed to the valence states 11B2, 11B1 and 11A1. Most of the bands in the 60,000-95,000 cm-1 region are fitted to Rydberg series of ns, np and nd type converging to the first four ionization potentials 11.320, 11.357, 12.152 and 12.271 eV of CH2Cl2 arising from excitation of an electron from one of the four outermost Cl non-bonding orbitals (2b1, 3b2, 1a2 and 4a1). Vertical excited states of CH2Cl2 calculated using TDDFT are correlated with experimentally observed electronic states based on the symmetries of the initial and final MOs involved in a transition. A few Rydberg transitions viz. 2b1→5s, 4p, 5p, 6p; 3b2→4p, 5p; 1a2→4p are accompanied by vibronic features. Observed vibronic bands are assigned mainly to the CCl symmetric stretch (ν3‧) mode with smaller contributions from the CH symmetric stretch (ν1‧), CH2 bend (ν2‧) and CH2 wag (ν8‧) modes. Assignments are corroborated by comparison with the VUV absorption spectrum of the deuterated isotopologue CD2Cl2, reported here for the first time. The high underlying intensities seen in several sub-regions are explained by valence or valence-Rydberg mixed type transitions predicted with high oscillator strengths by the TDDFT calculations.

  19. Hubble Space Telescope CALSPEC Flux Standards: Sirius (and Vega)

    NASA Astrophysics Data System (ADS)

    Bohlin, R. C.

    2014-06-01

    The Space Telescope Imaging Spectrograph (STIS) has measured the flux for Sirius from 0.17 to 1.01 μm on the Hubble Space Telescope (HST) White Dwarf scale. Because of the cool debris disk around Vega, Sirius is commonly recommended as the primary IR flux standard. The measured STIS flux agrees well with predictions of a special Kurucz model atmosphere, adding confidence to the modeled IR flux predictions. The IR flux agrees to 2%-3% with respect to the standard template of Cohen and to 2% with the Midcourse Space Experiment absolute flux measurements in the mid-IR. A weighted average of the independent visible and mid-IR absolute flux measures implies that the monochromatic flux at 5557.5 Å (5556 Å in air) for Sirius and Vega, respectively, is 1.35 × 10-8 and 3.44 × 10-9 erg cm-2 s-1 Å-1 with formal uncertainties of 0.5%. Contrary to previously published conclusions, the Hipparcos photometry offers no support for the variability of Vega. Pulse pileup severely affects the Hp photometry for the brightest stars.

  20. Considerations for applying VARSKIN mod 2 to skin dose calculations averaged over 10 cm2.

    PubMed

    Durham, James S

    2004-02-01

    VARSKIN Mod 2 is a DOS-based computer program that calculates the dose to skin from beta and gamma contamination either directly on skin or on material in contact with skin. The default area for calculating the dose is 1 cm2. Recently, the U.S. Nuclear Regulatory Commission issued new guidelines for calculating shallow dose equivalent from skin contamination that requires the dose be averaged over 10 cm2. VARSKIN Mod 2 was not filly designed to calculate beta or gamma dose estimates averaged over 10 cm2, even though the program allows the user to calculate doses averaged over 10 cm2. This article explains why VARSKIN Mod 2 overestimates the beta dose when applied to 10 cm2 areas, describes a manual method for correcting the overestimate, and explains how to perform reasonable gamma dose calculations averaged over 10 cm2. The article also describes upgrades underway in Varskin 3.

  1. CO2 flux from Javanese mud volcanism.

    PubMed

    Queißer, M; Burton, M R; Arzilli, F; Chiarugi, A; Marliyani, G I; Anggara, F; Harijoko, A

    2017-06-01

    Studying the quantity and origin of CO 2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO 2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO 2 with a volume fraction of at least 16 vol %. A lower limit CO 2 flux of 1.4 kg s -1 (117 t d -1 ) was determined, in line with the CO 2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO 2 flux of 3 kt d -1 , comparable with the expected back-arc efflux of magmatic CO 2 . After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO 2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO 2 , with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO 2 fluxes.

  2. CO2 flux from Javanese mud volcanism

    NASA Astrophysics Data System (ADS)

    Queißer, M.; Burton, M. R.; Arzilli, F.; Chiarugi, A.; Marliyani, G. I.; Anggara, F.; Harijoko, A.

    2017-06-01

    Studying the quantity and origin of CO2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s-1 (117 t d-1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d-1, comparable with the expected back-arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO2 fluxes.

  3. Experimental study of H2O spectroscopic parameters in the near-IR (6940 7440 cm-1) for gas sensing applications at elevated temperature

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Zhou, Xin; Jeffries, Jay B.; Hanson, Ronald K.

    2007-02-01

    Tunable diode laser (TDL) absorption sensors of water vapor are attractive for temperature, gas composition, velocity, pressure, and mass flux measurements in a variety of practical applications including hydrocarbon-fueled combustion systems. Optimized design of these sensors requires a complete catalog of the assigned transitions with accurate spectroscopic data; our particular interest has been in the 2ν1, 2ν3, and ν1+ν3 bands in the near-IR where telecommunications diode lasers are available. In support of this need, fully resolved absorption spectra of H2O vapor in the spectral range of 6940 7440 cm-1 (1344 1441 nm) have been measured as a function of temperature (296 1000 K) and pressure (1 800 Torr), and quantitative spectroscopic parameters inferred from these spectra compared to published data from Toth, HITRAN 2000 and HITRAN 2004. The peak absorbances were measured for more than 100 strong transitions at 296 and 828 K, and linestrengths determined for 47 strong lines in this region. In addition to reference linestrengths S(296 K), the air-broadening coefficients γair(296 K) and temperature exponents n were inferred for strong transitions in five narrow regions, near 7185.60, 7203.89, 7405.11, 7426.14 and 7435.62 cm-1 that had been targeted as attractive for future diagnostics applications. Most of the measured results, determined within an accuracy of 5%, are found to be in better agreement with HITRAN 2004 than with earlier editions of this database. Large discrepancies (>10%) between measurements and HITRAN 2004 database are identified for some of the probed transitions. These new spectroscopic data for H2O provide a useful test of the sensor design capabilities of HITRAN 2004 for combustion and other applications at elevated temperatures.

  4. Fourier Transform Spectroscopy of Carbonyl Sulfide from 4800 to 8000 cm -1and New Global Analysis of 16O 12C 32S

    NASA Astrophysics Data System (ADS)

    Rbaihi, E.; Belafhal, A.; Vander Auwera, J.; Naı̈m, S.; Fayt, A.

    1998-09-01

    We have measured the FT spectrum of natural OCS from 4800 to 8000 cm-1with a near Doppler resolution and a line-position accuracy between 2 and 8 × 10-4cm-1. For the normal isotopic species16O12C32S, 37 vibrational transitions have been analyzed for both frequencies and intensities. We also report six bands of16O12C34S, five bands of16O13C32S, two bands of16O12C33S, and two bands of18O12C32S. Important effective Herman-Wallis terms are explained by the anharmonic resonances between closely spaced states. As those results complete the study of the Fourier transform spectra of natural carbonyl sulfide from 1800 to 8000 cm-1, a new global rovibrational analysis of16O12C32S has been performed. We have determined a set of 148 molecular parameters, and a statistical agreement is obtained with all the available experimental data.

  5. Quantum oscillations in a topological insulator Bi2Te2Se with large bulk resistivity (6 Ω cm)

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Petersen, A. C.; Qu, Dongxia; Hor, Y. S.; Cava, R. J.; Ong, N. P.

    2012-02-01

    We report the observation of prominent Shubnikov-de Haas oscillations in a Topological Insulator, Bi2Te2Se, with large bulk resistivity (6 Ω cm at 4 K). By fitting the SdH oscillations, we infer a large metallicity parameter kFℓ=41, with a surface mobility (μs∼2800 cm2/V s) much larger than the bulk mobility (μb∼50 cm2/V s). The plot of the index fields Bν vs. filling factor ν shows a {1}/{2}-shift, consistent with massless, Dirac states.

  6. Air-sea CO2 flux pattern along the southern Bay of Bengal waters

    NASA Astrophysics Data System (ADS)

    Shanthi, R.; Poornima, D.; Naveen, M.; Thangaradjou, T.; Choudhury, S. B.; Rao, K. H.; Dadhwal, V. K.

    2016-12-01

    Physico-chemical observations made from January 2013 to March 2015 in coastal waters of the southwest Bay of Bengal show pronounced seasonal variation in physico-chemical parameters including total alkalinity (TA: 1927.390-4088.642 μmol kg-1), chlorophyll (0.13-19.41 μg l-1) and also calculated dissolved inorganic carbon (DIC: 1574.219-3790.954 μmol kg-1), partial pressure of carbon dioxide (pCO2: 155.520-1488.607 μatm) and air-sea CO2 flux (FCO2: -4.808 to 11.255 mmol Cm-2 d-1). Most of the physical parameters are at their maximum during summer due to the increased solar radiation at cloud free conditions, less or no riverine inputs, and lack of vertical mixing of water column which leads to the lowest nutrients concentration, dissolved oxygen (DO), biological production, pCO2 and negative flux of CO2 to the atmosphere. Chlorophyll and DO concentrations enhanced due to increased nutrients during premonsoon and monsoon season due to the vertical mixing of water column driven by the strong winds and external inputs at respective seasons. The constant positive loading of nutrients, TA, DIC, chlorophyll, pCO2 and FCO2 against atmospheric temperature (AT), lux, sea surface temperature (SST), pH and salinity observed in principal component analysis (PCA) suggested that physical and biological parameters play vital role in the seasonal distribution of pCO2 along the southwest Bay of Bengal. The annual variability of CO2 flux clearly depicted that the southwest Bay of Bengal switch from sink (2013) to source status in the recent years (2014 and 2015) and it act as significant source of CO2 to the atmosphere with a mean flux of 0.204 ± 1.449 mmol Cm-2 d-1.

  7. Simultaneous 13 cm/3 cm Single-pulse Observations of PSR B0329+54

    NASA Astrophysics Data System (ADS)

    Yan, Zhen; Shen, Zhi-Qiang; Manchester, R. N.; Ng, C.-Y.; Weltevrede, P.; Wang, Hong-Guang; Wu, Xin-Ji; Yuan, Jian-Ping; Wu, Ya-Jun; Zhao, Rong-Bing; Liu, Qing-Hui; Zhao, Ru-Shuang; Liu, Jie

    2018-03-01

    We have investigated the mode changing properties of PSR B0329+54 using 31 epochs of simultaneous 13 cm/3 cm single-pulse observations obtained with the Shanghai Tian Ma 65 m telescope. The pulsar was found in the abnormal emission mode 17 times, accounting for ∼13% of the 41.6 hr total observation time. Single-pulse analyses indicate that mode changes took place simultaneously at 13 cm/3 cm within a few rotational periods. We detected occasional bright and narrow pulses whose peak flux densities were 10 times higher than that of the integrated profile in both bands. At 3 cm, about 0.66% and 0.27% of single pulses were bright in the normal mode and abnormal mode, respectively, but at 13 cm the occurrence rate was only about 0.007%. We divided the pulsar radiation window into three components (C1, C2, and C3) corresponding to the main peaks of the integrated profile. The bright pulses preferentially occurred at pulse phases corresponding to the peaks of C2 and C3. Fluctuation spectra showed that C2 had excess red noise in the normal mode, but broad quasi-periodic features with central frequencies around 0.12 cycles/period in the abnormal mode. At 3 cm, C3 had a stronger quasi-periodic modulation centered around 0.06 cycles/period in the abnormal mode. Although there were some asymmetries in the two-dimensional fluctuation spectra, we found no clear evidence for systematic subpulse drifting. Consistent with previous low-frequency observations, we found a very low nulling probability for B0329+54, with upper limits of 0.13% and 1.68% at 13 cm/3 cm, respectively.

  8. Particle Fluxes Over a Ponderosa Pine Plantation

    NASA Astrophysics Data System (ADS)

    Baker, B.; Goldstein, A.

    2006-12-01

    Atmospheric aerosols can affect visibility, climate, and health. Particle fluxes were measured continuously over a 15 year-old ponderosa pine plantation in the foothills of the Sierra Nevada from mid July to the end of September in the year 2005. Air at this field site is affected by both biogenic emissions from the dense forests of the surrounding area and by urban pollution transported from the Sacramento valley. It is believed that fluxes of very reactive hydrocarbons from plants to the atmosphere have an impact on the production and growth of atmospheric particles at this site. Two condensation particle counters (CPCs) were located near the top of a 12 m measurement tower, several meters above the top of the tree canopy. Particle count data was collected at 10 Hz and particle fluxes were determined using the eddy covariance method. A set of diffusion screens was added to the inlet of one of the CPCs such that the lower particle size limit for detection was increased to a diameter of approximately 40 nm. The other CPC counted particles with minimum diameters of 3 nm. Particle concentrations showed a distinct diurnal pattern with minimum daily average concentrations of 2000 particles cm-3 occurring at dawn, and average daily maximum concentrations of 5700 particles cm-3 occurring at dusk. The evening increase of particle number corresponded to the arrival of polluted air from the Sacramento region. During the day, deposition of particles to the forest canopy (daytime average of 5.8x106 particles m-2 s-1 was generally observed. Concentrations and fluxes of particles under 40 nm could be examined by subtracting the data of one CPC from the other. On average, the fraction of particles under 40 nm increased from less than 20% at dawn to more than 50% at dusk; indicating that air coming from the Sacramento region was enriched in smaller, newly formed aerosol. Daily average deposition fluxes of particles under 40 nm were 1.0x107 particles m-2 s-1. Much of this flux was

  9. Quantum theory of atoms in molecules charge-charge flux-dipole flux models for the infrared intensities of X(2)CY (X = H, F, Cl; Y = O, S) molecules.

    PubMed

    Faria, Sergio H D M; da Silva, João Viçozo; Haiduke, Roberto L A; Vidal, Luciano N; Vazquez, Pedro A M; Bruns, Roy E

    2007-08-16

    The molecular dipole moments, their derivatives, and the fundamental IR intensities of the X2CY (X = H, F, Cl; Y = O, S) molecules are determined from QTAIM atomic charges and dipoles and their fluxes at the MP2/6-311++G(3d,3p) level. Root-mean-square errors of +/-0.03 D and +/-1.4 km mol(-1) are found for the molecular dipole moments and fundamental IR intensities calculated using quantum theory of atoms in molecules (QTAIM) parameters when compared with those obtained directly from the MP2/6-311++G(3d,3p) calculations and +/-0.05 D and 51.2 km mol(-1) when compared with the experimental values. Charge (C), charge flux (CF), and dipole flux (DF) contributions are reported for all the normal vibrations of these molecules. A large negative correlation coefficient of -0.83 is calculated between the charge flux and dipole flux contributions and indicates that electronic charge transfer from one side of the molecule to the other during vibrations is accompanied by a relaxation effect with electron density polarization in the opposite direction. The characteristic substituent effect that has been observed for experimental infrared intensity parameters and core electron ionization energies has been applied to the CCFDF/QTAIM parameters of F2CO, Cl2CO, F2CS, and Cl2CS. The individual atomic charge, atomic charge flux, and atomic dipole flux contributions are seen to obey the characteristic substituent effect equation just as accurately as the total dipole moment derivative. The CH, CF, and CCl stretching normal modes of these molecules are shown to have characteristic sets of charge, charge flux, and dipole flux contributions.

  10. Verification of MCNP simulation of neutron flux parameters at TRIGA MK II reactor of Malaysia.

    PubMed

    Yavar, A R; Khalafi, H; Kasesaz, Y; Sarmani, S; Yahaya, R; Wood, A K; Khoo, K S

    2012-10-01

    A 3-D model for 1 MW TRIGA Mark II research reactor was simulated. Neutron flux parameters were calculated using MCNP-4C code and were compared with experimental results obtained by k(0)-INAA and absolute method. The average values of φ(th),φ(epi), and φ(fast) by MCNP code were (2.19±0.03)×10(12) cm(-2)s(-1), (1.26±0.02)×10(11) cm(-2)s(-1) and (3.33±0.02)×10(10) cm(-2)s(-1), respectively. These average values were consistent with the experimental results obtained by k(0)-INAA. The findings show a good agreement between MCNP code results and experimental results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Soil CO2 flux in alley-cropping systems composed of black locust and poplar trees, Germany

    NASA Astrophysics Data System (ADS)

    Medinski, Tetiana; Freese, Dirk; Boehm, Christian

    2013-04-01

    The understanding of soil carbon dynamics after establishment of alley-cropping systems is crucial for mitigation of greenhouse CO2 gas. This study investigates soil CO2 fluxes in alley-cropping systems composed of strips of black locust (Robinia pseudoacacia L.) and poplar (Max 1) trees and adjacent to them crop strips (Lupinus). Soil CO2 flux was measured monthly over a period from March to November 2012, using a LI-COR LI-8100A automated device. Concurrently with CO2 flux measurements, soil and air temperature and soil moisture were recorded within 10 cm of each collar. Soil samples were collected nearby each soil collar for microbial C and hot water-extractable C analyses. At each study plot, root biomass was measured to a depth of 15 cm. In all vegetation types, soil CO2 flux increased from May to August, showing a significant positive correlation with air and soil temperature, which can be a reflection of increase in photosynthesis over the warm summer months. CO2 flux was the highest in poplar followed by black locust and lupines. The relationships between CO2 flux, microbial biomass and hot water-extractable carbon were not straightforward. Among the measured parameters, root density was found to be the main factor to explain the higher CO2 flux in tree strips.

  12. Seasonal measurements of organic acid fluxes over a ponderosa pine forest

    NASA Astrophysics Data System (ADS)

    Fulgham, S. R.; Brophy, P.; Link, M.; Ortega, J. V.; Farmer, D.

    2016-12-01

    The biosphere acts as both a source and a sink of oxidized organic compounds. Ignoring dry deposition leads to overestimation of secondary organic aerosols by aerosol models, while ignoring emission sources underestimates the budget of organic acids. Developing parameterizations for oxidized organic dry deposition and emission requires observational constraints. Although biosphere parameters are impacted by seasonal variability, most reactive, trace-gas exchange measurements are made for only short periods of time in the main growing season. Here we make fast (5 - 10 Hz) and sensitive (e.g. 0.73 ppt mean limit of detection for formic acid with 10 s averaging) eddy covariance measurements of gas-phase organic acids and other oxidized organic species with a high resolution Time-of-Flight Chemical Ionization Mass Spectrometer with acetate and iodide reagent ions. Measurements were made in 4 - 6 week campaigns over five seasons from summer 2015 to fall 2016 as part of the Seasonal Particles in Forests Flux studY (SPIFFY) at the Manitou Experimental Forest Observatory near Woodland Park, Colorado. Permeation tubes were used for online calibration of carboxylic acids including formic (C1), propionic (C3), butyric (C4), methacrylic (CH2C(CH3)COOH), valeric (C5), and heptanoic (C7) acids. Average daytime mixing ratios for formic acid were 100 ± 100 ppt in winter and 1500 ± 1000 ppt in summer 2016. Upward fluxes of formic acid were observed throughout the experiment, daytime averages and standard deviations ranging from 1900 ± 1000 ppt cm s-1 in winter to 170 ± 130 ppt cm s-1 in spring. Propionic (22 ± 22 ppt cm s-1), butyric (17 ± 16 ppt cm s-1), and methacrylic (3.5 ± 6.1 ppt cm s-1) acids exhibit a mix of upward, near-zero, and downward fluxes. Fluxes were exponentially correlated to temperature, suggesting an ecosystem-scale source of these acids. We also measure exchange velocities of a broad suite of other oxidized organic compounds (31.99 m/z to 311.523 m/z in

  13. Measurements of the CO2 line parameters in the 10000-10300 cm-1 region

    NASA Astrophysics Data System (ADS)

    Solodov, A. M.; Petrova, T. M.; Solodov, A. A.; Borkov, Yu. G.; Tashkun, S. A.; Perevalov, V. I.

    2017-12-01

    The absorption spectra of carbon dioxide have been recorded in the near infrared region from 10,000 to 10,300 cm-1, using the Bruker IFS 125 HR Fourier transform spectrometer and a 30 m multipass cell with the White type optical system. The spectra were recorded at a spectral resolution of 0.03 cm-1, room temperature, a path length of 953.6 m and at two pressures of 294 and 523 mbar. The achieved sensitivity (noise equivalent absorption) at the level of kν=1.38×10-10 cm-1 allowed detection of a number of new transitions with the intensity values down to 10-29 cm/molecule at 296 K. Two bands 60014-00001 and 60015-00001 of 12C16O2 were detected for the first time. The line positions and intensities of these bands were determined using the Voigt profile as a line shape. The uncertainty of the line position determination was estimated to be about 0.003 cm-1 for the unblended lines with a high value of the signal-to-noise ratio. The uncertainty of the line intensity determination varies from 4% to 40% depending on the strength of the line and the extent of the line overlapping. The measured line intensities of the 60014-00001 and 60015-00001 bands together with those published earlier for the ΔP=15 series of transitions were used to fit the effective dipole moment parameters of this series. Here P=2V1+V2+3V3 is the polyad number (Vi (i=1,2,3) are the harmonic oscillators quantum numbers). The fitted parameters reproduce the measured line intensities within their experimental uncertainties. Using the effective Hamiltonian parameters published earlier and the fitted effective dipole moment parameters the line positions and intensities of the 6001i-00001 (i=1,2,3,4,5,6,7) bands have been calculated. A comparison of the measured line positions and intensities to those contained in the new version (huang.seti.org) AMES line list as well as in the High-T line list are given.

  14. Balanced sediment fluxes in southern California’s Mediterranean-climate zone salt marshes

    USGS Publications Warehouse

    Rosencranz, Jordan A.; Ganju, Neil K.; Ambrose, Richard F.; Brosnahan, Sandra M.; Dickhudt, Patrick J.; Guntenspergen, Glenn R.; MacDonald, Glen M.; Takekawa, John Y.; Thorne, Karen M.

    2016-01-01

    Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 12 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.

  15. Field measurements of the atmospheric dry deposition fluxes and velocities of polycyclic aromatic hydrocarbons to the global oceans.

    PubMed

    González-Gaya, Belén; Zúñiga-Rival, Javier; Ojeda, María-José; Jiménez, Begoña; Dachs, Jordi

    2014-05-20

    The atmospheric dry deposition fluxes of 16 polycyclic aromatic hydrocarbons (PAHs) have been measured, for the first time, in the tropical and subtropical Atlantic, Pacific, and Indian Oceans. Depositional fluxes for fine (0.7-2.7 μm) and coarse (>2.7 μm) aerosol fractions were simultaneously determined with the suspended aerosol phase concentrations, allowing the determination of PAH deposition velocities (vD). PAH dry deposition fluxes (FDD) bound to coarse aerosols were higher than those of fine aerosols for 83% of the measurements. Average FDD for total (fine + coarse) Σ16PAHs (sum of 16 individual PAHs) ranged from 8.33 ng m(-2)d(-1) to 52.38 ng m(-2)d(-1). Mean FDD for coarse aerosol's individual PAHs ranged between 0.13 ng m(-2)d(-1) (Perylene) and 1.96 ng m(-2)d(-1) (Methyl Pyrene), and for the fine aerosol fraction these ranged between 0.06 ng m(-2)d(-1) (Dimethyl Pyrene) and 1.25 ng m(-2)d(-1) (Methyl Chrysene). The estimated deposition velocities went from the highest mean vD for Methyl Chrysene (0.17-13.30 cm s(-1)), followed by Dibenzo(ah)Anthracene (0.29-1.38 cm s(-1)), and other high MW PAHs to minimum values of vD for Dimethyl Pyrene (<0.04 cm s(-1)) and Pyrene (<0.06 cm s(-1)). Dry depositional processes depend on the concentration of PAHs in the suspended aerosol, but also on physicochemical properties and environmental variables (vapor pressure, wind speed, and on the affinity of aerosols for depositing to the sea surface). Empirical parametrizations are proposed to predict the dry depositional velocities of semivolatile organic compounds to the global oceans.

  16. The 12 micron band of ethane: A spectral catalog from 765 cm(-1) to 900 cm(-1)

    NASA Technical Reports Server (NTRS)

    Atakan, A. K.; Blass, W. E.; Brault, J. W.; Daunt, S. J.; Halsey, G. W.; Jennings, D. E.; Reuter, D. C.; Susskind, J.

    1983-01-01

    The high resolution laboratory absorption spectrum of the 12 micro band of ethane gas is studied. The data were obtained using the McMath Solar Telescope 1 meter Fourier Transform interferometer at Kitt Peak National Observatory and tunable diode laser spectrometers at the University of Tennessee and NASA/Goddard Space Flight Center. Over 200 individual vibration rotation transitions were analyzed taking into account many higher order effects including torsional splitting. Line positions were reproduced to better than 0.001/cm. Both ground and upper state molecular constants were determined in the analysis. The experimental details, the analysis procedures and the results are addressed. A list of ethane transitions occurring near (14)CO2 laser lines needed for heterodyne searches for C2H6 in extraterrestrial sources is also included. A spectral catalog of the ethane nu sub g fundamental from 765/cm to 900/cm is provided. A high dispersion (1/cm 12 in.) plot of both the Kitt Peak interferometric data and a simulated spectrum with Doppler limited resolution, a table of over 8500 calculated transitions listed quantum number assignments, frequencies and intensities are provided.

  17. Measurement of the radiative decay and energy of the metastable $${(2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{(J=0)}$$ level in Fe XVII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiersdorfer, P.; Lopez-Urrutia, J. R. Crespo; Trabert, E.

    Measurements at the Livermore electron beam ion trap have been performed in order to infer the energy and the radiative lifetime of themore » $${(1{s}^{2}2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=0}$$ level in the Fe xvii spectrum. This is the longest-lived level in the neonlike iron ion, and its radiative decay produces the Fe xvii line at 1153 Å, feeding the population of the $${(1{s}^{2}2{s}^{2}2{p}_{3/2}^{5}3{s}_{1/2})}_{J=1}$$ upper level of one of the most prominent lines in the Fe xvii L-shell X-ray spectrum, commonly dubbed $3G$. In the presence of a strong ($$\\geqslant $$ few kG) magnetic field, the $${(1{s}^{2}2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=0}$$ level has a finite probability to decay directly to the $${(1{s}^{2}2{s}^{2}2{p}^{6})}_{J=0}$$ neonlike ground level via the emission of an L-shell X-ray. Our measurements allow us to observe this X-ray line in the Fe xvii L-shell spectrum and from it to infer the radiative rate for the magnetic dipole decay of the $${(1{s}^{2}2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=0}$$ level to the $${(1{s}^{2}2{s}^{2}2{p}_{3/2}^{5}3{s}_{1/2})}_{J=1}$$. Our result of $$(1.45\\pm 0.15)\\times {10}^{4}$$ s-1 is in agreement with predictions. We have also measured the wavelength of the associated X-ray line to be 16.804 ± 0.002 Å, which means that the line is displaced 1.20 ± 0.05 eV from the neighboring $${(2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=1}\\to {(2{s}^{2}2{p}^{6})}_{J=0}$$ transition, commonly labeled $3F$. Furthermore, from our measurement, we infer 5950570 ± 710 cm-1 for the energy of the $${(1{s}^{2}2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=0}$$ level.« less

  18. Measurement of the radiative decay and energy of the metastable $${(2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{(J=0)}$$ level in Fe XVII

    DOE PAGES

    Beiersdorfer, P.; Lopez-Urrutia, J. R. Crespo; Trabert, E.

    2016-01-20

    Measurements at the Livermore electron beam ion trap have been performed in order to infer the energy and the radiative lifetime of themore » $${(1{s}^{2}2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=0}$$ level in the Fe xvii spectrum. This is the longest-lived level in the neonlike iron ion, and its radiative decay produces the Fe xvii line at 1153 Å, feeding the population of the $${(1{s}^{2}2{s}^{2}2{p}_{3/2}^{5}3{s}_{1/2})}_{J=1}$$ upper level of one of the most prominent lines in the Fe xvii L-shell X-ray spectrum, commonly dubbed $3G$. In the presence of a strong ($$\\geqslant $$ few kG) magnetic field, the $${(1{s}^{2}2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=0}$$ level has a finite probability to decay directly to the $${(1{s}^{2}2{s}^{2}2{p}^{6})}_{J=0}$$ neonlike ground level via the emission of an L-shell X-ray. Our measurements allow us to observe this X-ray line in the Fe xvii L-shell spectrum and from it to infer the radiative rate for the magnetic dipole decay of the $${(1{s}^{2}2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=0}$$ level to the $${(1{s}^{2}2{s}^{2}2{p}_{3/2}^{5}3{s}_{1/2})}_{J=1}$$. Our result of $$(1.45\\pm 0.15)\\times {10}^{4}$$ s-1 is in agreement with predictions. We have also measured the wavelength of the associated X-ray line to be 16.804 ± 0.002 Å, which means that the line is displaced 1.20 ± 0.05 eV from the neighboring $${(2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=1}\\to {(2{s}^{2}2{p}^{6})}_{J=0}$$ transition, commonly labeled $3F$. Furthermore, from our measurement, we infer 5950570 ± 710 cm-1 for the energy of the $${(1{s}^{2}2{s}^{2}2{p}_{1/2}^{5}3{s}_{1/2})}_{J=0}$$ level.« less

  19. Measurements of NO(x) and NO(y) concentrations and fluxes over Arctic tundra

    NASA Technical Reports Server (NTRS)

    Bakwin, Peter S.; Wofsy, Steven C.; Fan, Song-Miao; Fitzjarrald, David R.

    1992-01-01

    Measurements of the atmospheric concentrations of NO, NO2, total NO(y), and O3 were made during the NASA Arctic Boundary Layer Expedition (ABLE 3A) at a remote location in a tundra bog ecosystem in southeastern Alaska during the growing season (July-August 1988). Concentrations of NO(x) and NO(y) were found to be very low compared to other remote continental sites, indicating that anthropogenic influences were small at this site during this time of year. The NO(y) emission rate from the soil were 0.13 +/- 0.05 x 10 exp 9 molecules/sq cm/s. Direct measurements of the flux of total NO(y) were made for the first time, indicating downward flux of NO(y) at all times of day, with maximum deposition of 2.5 +/- 0.9 x 10 exp 9 molecules/sq cm/s in the afternoon. Deposition of HNO3 appears to dominate the atmosphere/surface exchange of NO(y). The mean dry deposition rate of NO(y) to the tundra was 1.8 +/- 1.0 x 10 exp 9 molecules/sq cm/s.

  20. Energy flux and characteristic energy of an elemental auroral structure

    NASA Technical Reports Server (NTRS)

    Lanchester, B. S.; Palmer, J. R.; Rees, M. H.; Lummerzheim, D.; Kaila, K.; Turunen, T.

    1994-01-01

    Electron density profiles acquired with the EISCAT radar at 0.2 s time resolution, together with TV images and photometric intensities, were used to study the characteristics of thin (less than 1 km) auroral arc structures that drifted through the field of view of the instruments. It is demonstrated that both high time and space resolution are essential for deriving the input parameters of the electron flux responsible for the elemental auroral structures. One such structure required a 400 mW/sq m (erg/sq cm s) downward energy flux carried by an 8 keV monochromatic electron flux equivalent to a current density of 50 micro Angstrom/sq m.

  1. Ureteroscopic treatment of larger renal calculi (>2 cm)

    PubMed Central

    Bagley, Demetrius H.; Healy, Kelly A.; Kleinmann, Nir

    2012-01-01

    Objectives To evaluate the current status of ureteroscopic lithotripsy (UL) for treating renal calculi of >2 cm, as advances in flexible ureteroscope design, accessory instrumentation and lithotrites have revolutionised the treatment of urinary calculi. While previously reserved for ureteric and small renal calculi, UL has gained an increasing role in the selective management of larger renal stone burdens. Methods We searched the available databases, including PubMed, Google Scholar, and Scopus, for relevant reports in English, and the article bibliographies to identify additional relevant articles. Keywords included ureteroscopy, lithotripsy, renal calculi, and calculi >2 cm. Retrieved articles were reviewed to consider the number of patients, mean stone size, success rates, indications and complications. Results In all, nine studies (417 patients) were eligible for inclusion. After one, two or three procedures the mean (range) success rates were 68.2 (23–84)%, 87.1 (79–91)% and 94.4 (90.1–96.7)%, respectively. Overall, the success rate was >90% with a mean of 1.22.3 procedures per patient. The overall complication rate was 10.3%, including six (1.4%) intraoperative and 37 (8.9%) postoperative complications, most of which were minor. The most common indications for UL were a failed previous treatment (46%), comorbidities (18.2%), and technical and anatomical factors (12.3%). Conclusions UL is safe and effective for treating large renal calculi. While several procedures might be required for total stone clearance, UL should be considered a standard approach in the urologist’s options treating renal calculi of >2 cm. PMID:26558040

  2. The Global Mode-1 S2 Internal Tide

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongxiang

    2017-11-01

    The global mode-1 S2 internal tide is observed using sea surface height (SSH) measurements from four satellite altimeters: TOPEX/Poseidon, Jason-1, Jason-2, and Geosat Follow-On. Plane wave analysis is employed to extract three mode-1 S2 internal tidal waves in any given 250 km by 250 km window, which are temporally coherent over a 20 year period from 1992 to 2012. Depth-integrated energy and flux of the S2 internal tide are calculated from the SSH amplitude and a conversion function built from climatological hydrographic profiles in the World Ocean Atlas 2013. The results show that the S2 and M2 internal tides have similar spatial patterns. Both S2 and M2 internal tides originate at major topographic features and propagate over long distances. The S2 internal tidal beams are generally shorter, likely because the relatively weaker S2 internal tide is easily overwhelmed by nontidal noise. The northbound S2 and M2 internal tides from the Hawaiian Ridge are observed to travel over 3500 km across the Northeast Pacific. The globally integrated energy of the mode-1 S2 internal tide is 7.8 PJ (1 PJ = 1015 J), about 20% that of M2 (36.4 PJ). The histogram of S2 to M2 SSH ratios peaks at 0.4, consistent with the square root of their energy ratio. In terms of SSH, S2 is greater than M2 in ≈10% of the global ocean and ≥50% of M2 in about half of the global ocean.

  3. Transport of H2S and HS− across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl−/HS− exchange

    PubMed Central

    2013-01-01

    The rates of H2S and HS− transport across the human erythrocyte membrane were estimated by measuring rates of dissipation of pH gradients in media containing 250 μM H2S/HS−. Net acid efflux is caused by H2S/HS− acting analogously to CO2/HCO3− in the Jacobs-Stewart cycle. The steps are as follows: 1) H2S efflux through the lipid bilayer and/or a gas channel, 2) extracellular H2S deprotonation, 3) HS− influx in exchange for Cl−, catalyzed by the anion exchange protein AE1, and 4) intracellular HS− protonation. Net acid transport by the Cl−/HS−/H2S cycle is more efficient than by the Cl−/HCO3−/CO2 cycle because of the rapid H2S-HS− interconversion in cells and medium. The rates of acid transport were analyzed by solving the mass flow equations for the cycle to produce estimates of the HS− and H2S transport rates. The data indicate that HS− is a very good substrate for AE1; the Cl−/HS− exchange rate is about one-third as rapid as Cl−/HCO3− exchange. The H2S permeability coefficient must also be high (>10−2 cm/s, half time <0.003 s) to account for the pH equilibration data. The results imply that H2S and HS− enter erythrocytes very rapidly in the microcirculation of H2S-producing tissues, thereby acting as a sink for H2S and lowering the local extracellular concentration, and the fact that HS− is a substrate for a Cl−/HCO3− exchanger indicates that some effects of exogenous H2S/HS− may not result from a regulatory role of H2S but, rather, from net acid flux by H2S and HS− transport in a Jacobs-Stewart cycle. PMID:23864610

  4. Transport of H2S and HS(-) across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl(-)/HS(-) exchange.

    PubMed

    Jennings, Michael L

    2013-11-01

    The rates of H2S and HS(-) transport across the human erythrocyte membrane were estimated by measuring rates of dissipation of pH gradients in media containing 250 μM H2S/HS(-). Net acid efflux is caused by H2S/HS(-) acting analogously to CO2/HCO3(-) in the Jacobs-Stewart cycle. The steps are as follows: 1) H2S efflux through the lipid bilayer and/or a gas channel, 2) extracellular H2S deprotonation, 3) HS(-) influx in exchange for Cl(-), catalyzed by the anion exchange protein AE1, and 4) intracellular HS(-) protonation. Net acid transport by the Cl(-)/HS(-)/H2S cycle is more efficient than by the Cl(-)/HCO3(-)/CO2 cycle because of the rapid H2S-HS(-) interconversion in cells and medium. The rates of acid transport were analyzed by solving the mass flow equations for the cycle to produce estimates of the HS(-) and H2S transport rates. The data indicate that HS(-) is a very good substrate for AE1; the Cl(-)/HS(-) exchange rate is about one-third as rapid as Cl(-)/HCO3(-) exchange. The H2S permeability coefficient must also be high (>10(-2) cm/s, half time <0.003 s) to account for the pH equilibration data. The results imply that H2S and HS(-) enter erythrocytes very rapidly in the microcirculation of H2S-producing tissues, thereby acting as a sink for H2S and lowering the local extracellular concentration, and the fact that HS(-) is a substrate for a Cl(-)/HCO3(-) exchanger indicates that some effects of exogenous H2S/HS(-) may not result from a regulatory role of H2S but, rather, from net acid flux by H2S and HS(-) transport in a Jacobs-Stewart cycle.

  5. Carma 1 CM Line Survey of Orion-Kl

    NASA Astrophysics Data System (ADS)

    Friedel, Douglas; Looney, Leslie; Corby, Joanna F.; Remijan, Anthony

    2015-06-01

    We have conducted the first 1 cm (27-35 GHz) line survey of the Orion-KL region by an array. With a primary beam of ˜4.5 arcminutes, the survey looks at a region ˜166,000 AU (0.56 pc) across. The data have a resolution of ˜6 arcseconds on the sky and 97.6 kHz(1.07-0.84 km/s) in frequency. This region of frequency space is much less crowded than at 3mm or 1mm frequencies and contains the fundamental transitions of several complex molecular species, allowing us to probe the largest extent of the molecular emission. We present the initial results, and comparison to 3mm results, from several species including, dimethyl ether [(CH_3)_2O], ethyl cyanide [C_2H_5CN], acetone [(CH_3)_2CO], SO, and SO_2.

  6. N2O eddy covariance fluxes: From field measurements to flux calculation

    NASA Astrophysics Data System (ADS)

    Lognoul, Margaux; Debacq, Alain; Heinesch, Bernard; Aubinet, Marc

    2017-04-01

    From March to October 2016, we performed eddy covariance measurements in a sugar beet crop at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site) in Belgium. N2O and H2O atmospheric concentrations were measured at 10 Hz using a quantum-cascade laser spectrometer (Aerodyne Research, Inc.) and combined to wind speed 3D components measured with a sonic anemometer (Gill HS-50). Flux computation was carried out using the EddyPro Software (LI-COR) with a focus on adaptations needed for tracers like N2O. Data filtering and quality control were performed according to Vickers and Mahrt (1997) and Mauder and Foken (2004). The flags were adapted to N2O time series. In this presentation, different computation steps will be presented. More specifically: 1) Considering that a large proportion of N2O fluxes are small (within ± 0.5 nmol m-2 s-1), the classical stationarity test might lead to excessive data filtering and in such case, some searchers have chosen to use the running mean (RM) as a detrend method over block averaging (BA) and to filter data otherwise. For our dataset, BA mean fluxes combined to the stationarity test did not significantly differ from RM fluxes when the averaging window was 300s or larger, but were significantly larger otherwise, suggesting that significant eddies occurred at the 5-min timescale and that they were not accounted for with a shorter averaging window. 2) The determination of time-lag in the case of N2O fluxes can become tricky for two reasons : (1) the signal amplitude can differ from one time period to the next, making it difficult to use the method of covariance maximization and (2) an additional clock drift can appear if the spectrometer is not logging on the same computer than the anemometer. In our case, the N2O signal was strong enough to solve both problems and to perform time-lag compensation according to the covariance maximization, with a default value equal to the mode of the lag distribution. The automatic time

  7. Recommended acetylene line list in the 20-240 cm-1 and 400-630 cm-1 regions: New measurements and global modeling

    NASA Astrophysics Data System (ADS)

    Jacquemart, David; Lyulin, Oleg; Perevalov, Valery I.

    2017-12-01

    A new recommended 12C2H2 line list for the 13-248 cm-1 and 390-634 cm-1 regions is presented. It is based on the results of the global modeling of the line positions and intensities performed in Tomsk within the framework of the method of effective operators. To validate the Tomsk calculations new measurements of both line positions and intensities were performed using acetylene spectra recorded between 25 and 680 cm-1 with the AILES-A beamline of SOLEIL synchrotron. Line positions and intensities of 627 transitions belonging to 9 bands have been measured for the first time in this region. Using the results of these new measurements and the published results of the measurements in the 13-248 cm-1 and 390-634 cm-1 regions performed with the same facilities new fittings of the line intensities for the ΔP=0 and ΔP=1 series of transitions have been performed. Here P=5v1+3v2+5v3+v4+v5 is a polyad number, where v1, v2, v3, v4, and v5 are the principal quantum numbers of the acetylene harmonic oscillators. These new sets of the effective dipole moment parameters were used to generate the line list which contains the line positions and intensities of 39 and 29 bands, respectively for the ΔP=0 and ΔP=1 series of transitions. None of these bands is present in the HITRAN 2012 [8] and GEISA 2015 [9] databases. This paper presents the first part of a global work on the validation of Tomsk calculations.

  8. The CU mobile Solar Occultation Flux instrument: structure functions and emission rates of NH3, NO2 and C2H6

    NASA Astrophysics Data System (ADS)

    Kille, Natalie; Baidar, Sunil; Handley, Philip; Ortega, Ivan; Sinreich, Roman; Cooper, Owen R.; Hase, Frank; Hannigan, James W.; Pfister, Gabriele; Volkamer, Rainer

    2017-02-01

    We describe the University of Colorado mobile Solar Occultation Flux instrument (CU mobile SOF). The instrument consists of a digital mobile solar tracker that is coupled to a Fourier transform spectrometer (FTS) of 0.5 cm-1 resolution and a UV-visible spectrometer (UV-vis) of 0.55 nm resolution. The instrument is used to simultaneously measure the absorption of ammonia (NH3), ethane (C2H6) and nitrogen dioxide (NO2) along the direct solar beam from a moving laboratory. These direct-sun observations provide high photon flux and enable measurements of vertical column densities (VCDs) with geometric air mass factors, high temporal resolution of 2 s and spatial resolution of 5-19 m. It is shown that the instrument line shape (ILS) of the FTS is independent of the azimuth and elevation angle pointing of the solar tracker. Further, collocated measurements next to a high-resolution FTS at the National Center for Atmospheric Research (HR-NCAR-FTS) show that the CU mobile SOF measurements of NH3 and C2H6 are precise and accurate; the VCD error at high signal to noise ratio is 2-7 %. During the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) from 21 July to 3 September 2014 in Colorado, the CU mobile SOF instrument measured median (minimum, maximum) VCDs of 4.3 (0.5, 45) × 1016 molecules cm-2 NH3, 0.30 (0.06, 2.23) × 1016 molecules cm-2 NO2 and 3.5 (1.5, 7.7) × 1016 molecules cm-2 C2H6. All gases were detected in larger 95 % of the spectra recorded in urban, semi-polluted rural and remote rural areas of the Colorado Front Range. We calculate structure functions based on VCDs, which describe the variability of a gas column over distance, and find the largest variability for NH3. The structure functions suggest that currently available satellites resolve about 10 % of the observed NH3 and NO2 VCD variability in the study area. We further quantify the trace gas emission fluxes of NH3 and C2H6 and production rates of NO2 from concentrated animal feeding

  9. Measurement of the nue and Total 8B Solar Neutrino Fluxes with theSudbury Neutrino Observatory Phase I Data Set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharmim, B.; Ahmad, Q.R.; Ahmed, S.N.

    2007-02-01

    This article provides the complete description of resultsfrom the Phase I data set of the Sudbury Neutrino Observatory (SNO). ThePhase I data set is based on a 0.65 kt-year exposure of heavy water tothe solar 8B neutrino flux. Included here are details of the SNO physicsand detector model, evaluations of systematic uncertainties, andestimates of backgrounds. Also discussed are SNO's approach tostatistical extraction of the signals from the three neutrino reactions(charged current, neutral current, and elastic scattering) and theresults of a search for a day-night asymmetry in the ?e flux. Under theassumption that the 8B spectrum is undistorted, the measurements fromthismore » phase yield a solar ?e flux of ?(?e) =1.76+0.05?0.05(stat.)+0.09?0.09 (syst.) x 106 cm?2 s?1, and a non-?ecomponent ?(? mu) = 3.41+0.45?0.45(stat.)+0.48?0.45 (syst.) x 106 cm?2s?1. The sum of these components provides a total flux in excellentagreement with the predictions of Standard Solar Models. The day-nightasymmetry in the ?e flux is found to be Ae = 7.0 +- 4.9 (stat.)+1.3?1.2percent (sys.), when the asymmetry in the total flux is constrained to bezero.« less

  10. High flux heat exchanger

    NASA Astrophysics Data System (ADS)

    Flynn, Edward M.; Mackowski, Michael J.

    1993-01-01

    This interim report documents the results of the first two phases of a four-phase program to develop a high flux heat exchanger for cooling future high performance aircraft electronics. Phase 1 defines future needs for high flux heat removal in advanced military electronics systems. The results are sorted by broad application categories: (1) commercial digital systems, (2) military data processors, (3) power processors, and (4) radar and optical systems. For applications expected to be fielded in five to ten years, the outlook is for steady state flux levels of 30-50 W/sq cm for digital processors and several hundred W/sq cm for power control applications. In Phase 1, a trade study was conducted on emerging cooling technologies which could remove a steady state chip heat flux of 100 W/sq cm while holding chip junction temperature to 90 C. Constraints imposed on heat exchanger design, in order to reflect operation in a fighter aircraft environment, included a practical lower limit on coolant supply temperature, the preference for a nontoxic, nonflammable, and nonfreezing coolant, the need to minimize weight and volume, and operation in an accelerating environment. The trade study recommended the Compact High Intensity Cooler (CHIC) for design, fabrication, and test in the final two phases of this program.

  11. Methane Flux of Amazonian Peatland Ecosystems: Large Ecosystem Fluxes with Substantial Contribution from Palm (maritia Flexuosa) STEM Emissions

    NASA Astrophysics Data System (ADS)

    Van Haren, J. L. M.; Cadillo-Quiroz, H.

    2015-12-01

    Methane (CH4) emissions through plants have long been known in wetlands. However, most measurements have focused on stem tops and leaves. Recently, measurements at the lower parts of stems have shown that stem emissions can exceed soil CH4 emissions in Asian peatlands (Pangala et al. 2013). The addition of stem fluxes to soil fluxes for total ecosystem fluxes has the potential to bridge the discrepancy between modeled to measured and bottom-up to top-down flux estimates. Our measurements in peatlands of Peru show that especially Mauritia flexuosa, a palm species, can emit very large quantities of CH4, although most trees emitted at least some CH4. We used flexible stem chambers to adapt to stems of any size above 5cm in diameter. The chambers were sampled in closed loop with a Gasmet DX4015 for flux measurements, which lasted ~5 minutes after flushing with ambient air. We found that M. flexuosa stem fluxes decrease with height along the stem and were positively correlated with soil fluxes. Most likely CH4 is transported up the stem with the xylem water. Measured M. flexuosa stem fluxes below 1.5m averaged 11.2±1.5 mg-C m-2 h-1 (±95% CI) with a maximum of 123±3.5 mg-C m-2 h-1 (±SE), whereas soil fluxes averaged 6.7±1.7 mg-C m-2 h-1 (±95% CI) with a maximum of 31.6±0.4 mg-C m-2 h-1 (±SE). Significant CH4 fluxes were measured up to 5 m height along the stems. Combined with the high density of ~150 M. flexuosa individuals per hectare in these peatlands and the consistent diameter of ~30cm, the high flux rates add ~20% to the soil flux. With anywhere between 1 and 5 billion M. flexuosa stems across Amazon basin wetlands, stem fluxes from this palm species could represent a major addition to the overall Amazon basin CH4 flux.

  12. Nitrous oxide fluxes from cultivated areas and rangeland: U.S. High Plains

    USGS Publications Warehouse

    Weeks, Edwin P.; McMahon, Peter B.

    2007-01-01

    Concentration profiles of N2O, a greenhouse gas, and the conservative trace gases SF6 and the chlorofluorocarbons CFC-11, CFC-12, CFC-113, and were measured periodically through thick vadose zones at nine sites in the U.S. High Plains. The CFC and SF6 measurements were used to calibrate a one-dimensional gas diffusion model, using the parameter identification program UCODE. The calibrated model was used with N2O measurements to estimate average annual N2O flux from both the root zone and the deep vadose zone to the atmosphere. Estimates of root-zone N 2O fluxes from three rangeland sites ranged from near 0 to about 0.2 kg N2O-N ha-1 yr-1, values near the low end of the ranges determined for native grass from other studies. Estimates of root-zone N2O fluxes from two fields planted to corn (Zea mays L.) of about 2 to 6 kg N2O-N ha-1 yr-1 are similar to those determined for corn in other studies. Estimates of N2O flux from Conservation Reserve grassland converted from irrigated corn indicate that production of N2O is substantially reduced following conversion from cropland. Small N2O fluxes from the water table or from deep in the vadose zone occurred at three sites, ranging from 0.004 to 0.02 kg N 2O-N ha-1 yr-1. Our estimates of N2O flux represent space- and time-averaged values that should be useful to more fully evaluate the significance of instantaneous point flux measurements. ?? Soil Science Society of America.

  13. Absorption spectrum and absorption cross sections of the 2ν1 band of HO2 between 20 and 760 Torr air in the range 6636 and 6639 cm-1

    NASA Astrophysics Data System (ADS)

    Assaf, Emmanuel; Liu, Lu; Schoemaecker, Coralie; Fittschen, Christa

    2018-05-01

    The absorption spectrum of HO2 radicals has been measured in the range 6636-6639 cm-1 at several pressures between 20 and 760 Torr of air. Absolute absorption cross sections of the strongest line at around 6638.2 cm-1 have been determined from kinetic measurements, taking advantage of the well known rate constant of the self-reaction. Peak absorption cross sections of 22.6, 19.5, 14.4, 7.88, 5.12 and 3.23 × 10-20 cm2 were obtained at 20, 50, 100, 200, 400 and 760 Torr, respectively. By fitting these data, an empirical expression has been obtained for the absorption cross section of HO2 in the range 20-760 Torr air: σ6638.2cm-1 = 1.18 × 10-20 + (2.64 × 10-19 × (1-exp (-63.1/p (Torr))) cm2.

  14. Actinic defect counting statistics over 1-cm2 area of EUVL mask blank

    NASA Astrophysics Data System (ADS)

    Jeong, Seongtae; Lai, Chih-wei; Rekawa, Senajith; Walton, Christopher C.; Bokor, Jeffrey

    2000-07-01

    As a continuation of comparison experiments between EUV inspection and visible inspection of defects on EUVL mask blanks, we report on the result of an experiment where the EUV defect inspection tool is used to perform at-wavelength defect counting over 1 cm2 of EUVL mask blank. Initial EUV inspection found five defects over the scanned area and the subsequent optical scattering inspection was able to detect all of the five defects. Therefore, if there are any defects that are only detectable by EUV inspection, the density is lower than the order of unity per cm2. An upgrade path to substantially increase the overall throughput of the EUV inspection system is also identified in the manuscript.

  15. Eddy covariance N2O flux measurements at low flux rates: results from the InGOS campaign in a Danish willow field.

    NASA Astrophysics Data System (ADS)

    Ibrom, Andreas; Brümmer, Christian; Hensen, Arjan; van Asperen, Hella; Carter, Mette S.; Gasche, Rainer; Famulari, Daniela; Kutsch, Werner; Pilegaard, Kim; Ambus, Per

    2014-05-01

    rates. All three EC systems showed 30 min. flux values varying around zero nmol m-2 s-1. This noise was considerably lower in the EC systems that used QCL analysers. The maximum daily averages of the uncorrected fluxes from two of the EC systems reached 0.26 (ICOS/HS50) and 0.28 (QCL/R3) nmol m-2 s-1.Spectral correction increased the flux estimates up to, e.g., 180% equivalent to 0.54 nmol m-2 s-1. The flux estimates from the soil chambers were with one exception higher than the flux estimates obtained from the EC systems with highest daily averages ranging from 0.1 up to 2 nmol m-2 s-1. These large differences were unexpected, because at least two of the EC systems were shown to accurately measure fluxes at such higher levels at another InGOS campaign in a fertilised Scottish grazed meadow. We use spectral analysis to examine the raw data for the effects of sensor noise on the flux estimates and discuss strategies on how to correct or account for it. Furthermore possible causes for the observed differences between the observed EC and chamber flux estimates will be discussed.

  16. Characterization of neutron flux spectra in the irradiation sites of a 37 GBq 241Am-Be isotopic source

    NASA Astrophysics Data System (ADS)

    Yücel, Haluk; Budak, Mustafa Guray; Karadag, Mustafa; Yüksel, Alptuğ Özer

    2014-11-01

    For the applicability of instrumental neutron activation analysis (NAA) technique, an irradiation unit with a 37 GBq 241Am-Be neutron source was installed at Institute of Nuclear Sciences of Ankara University. Design and configuration properties of the irradiation unit are described. It has two different sample irradiation positions, one is called site #1 having a pneumatic sample transfer system and the other is site #2 having a location for manual use. In order to characterize neutron flux spectra in the irradiation sites, the measurement results were obtained for thermal (Vth) and epithermal neutron fluxes (Vepi), thermal to epithermal flux ratio (f) and epithermal spectrum shaping factors (α) by employing cadmium ratios of gold (Au) and molybdenum (Mo) monitors. The activities produced in these foils were measured by using a p-type, 44.8% relative efficiency HPGe well detector. For the measured γ-rays, self-absorption and true coincidence summing effects were taken into account. Additionally, thermal neutron self-shielding and resonance neutron self-shielding effects were taken into account in the measured results. For characterization of site #1, the required parameters were found to be Vth = (2.11 ± 0.05) × 103 n cm-2 s-1, Vepi = (3.32 ± 0.17) × 101 n cm-2 s-1, f = 63.6 ± 1.5, α = 0.045 ± 0.009, respectively. Similarly, those parameters were measured in site #2 as Vth = (1.49 ± 0.04) × 103 n cm-2 s-1, Vepi = (2.93 ± 0.15) × 101 n cm-2 s-1, f = 50.9 ± 1.3 and α = 0.038 ± 0.008. The results for f-values indicate that good thermalization of fast neutrons on the order of 98% was achieved in both sample irradiation sites. This is because an optimum combination of water and paraffin moderator is used in the present configuration. In addition, the shielding requirements are met by using natural boron oxide powder (5.5 cm) and boron loaded paraffin layers against neutrons, and a 15 cm thick lead bricks against gamma-rays from source and its

  17. Structure and magnetic properties of flux grown single crystals of Co3-xFexSn2S2 shandites

    NASA Astrophysics Data System (ADS)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2016-01-01

    We report a successful single crystal growth of the shandite-type half-metallic ferromagnet Co3Sn2S2, and its Fe-substituted compounds, Co3-xFexSn2S2, by employing the flux method. Although Fe3Sn2S2 is unstable phase, we found that using the self Sn flux enables us to obtain single phase crystals up to x=0.53. The chemical composition of the grown plate-shaped single crystals was examined using wavelength-dispersive X-ray spectroscopy. The shandite structure with R 3 ̅m symmetry was confirmed by powder X-ray diffraction and the crystal structure parameters were refined using the Rietveld method. Magnetization measurements show suppression of the ferromagnetic order upon Fe-substitution , as well as in other substituted systems such as In- and Ni-substituted Co3Sn2S2. The almost identical magnetic phase diagrams of the Fe- and In-substituted compounds indicate that the electron number is dominantly significant to the magnetism in the Co-based shandite.

  18. Analysis of ν2 of D 2S

    NASA Astrophysics Data System (ADS)

    Gillis, James R.; Blatherwick, Ronald D.; Bonomo, Francis S.

    1985-11-01

    The infrared spectrum of ν2 of D 2S was recorded from 740 to 1100 cm -1 on the University of Denver 50-cm FTIR spectrometer system. We have assigned 655 transitions from D 232S and 129 from D 234S, and have analyzed them using Watson's A-reduced Hamiltonian evaluated in the I r representation. We used the recently published D 232S and D 234S ground state Hamiltonian constants [C. Camy-Peyret, J. M. Flaud, L. Lechuga-Fossat and J. W. C. Johns, J. Mol. Spectrosc.109, 300-333 (1985)]. Upper state Hamiltonian constants were obtained from a fit of the ν2 transitions, keeping the ground state constants fixed while varying the upper state constants. The standard deviation of the D 232S ν2 fit is 0.0025 cm -1. The standard deviation of the D 234S ν2 fit is 0.0041 cm -1.

  19. Upper limit on magnetic monopole flux from Baksan experiment

    NASA Technical Reports Server (NTRS)

    Alexeyev, E. N.; Boliev, M. M.; Chudakov, A. E.; Mikheyev, S. P.

    1985-01-01

    No indication of slowly moving penetrating particles in cosmic radiation underground was found during two years observation. Particle velocity and pulse shape are main criteria for search. Probability of the imitation of slow particles (Beta 0.1) by atmospheric muons is negligible. Our upper limit on superheavy magnetic monopole flux is now 1.86 x 10 to the minus 15th power cm(-2) sr(-1) s(-1) (90% c.l.) for velocity range 2 x 0.0001 beta 0.1.

  20. VizieR Online Data Catalog: The North 20cm Survey (White+ 1992)

    NASA Astrophysics Data System (ADS)

    White, R. L.; Becker, R. H.

    1995-08-01

    This catalog contains a list of 30239 radio sources at 1.4GHz over the declination range of -5 to +82 degrees. This catalog is based on the Green Bank 1.4GHz Northern Sky Survey (Condon and Broderick, 1986, Cat. VIII/6) which was generated using the Green Bank 300 foot (91m) telescope. The threshold for identifying a 1.4GHz radio source was set at 100mJy. The catalog data include the source name, a confusion flag, right ascension (1950), declination (1950), 1.4GHz flux, a flag to indicate if the source is extended at 20cm, 4.85GHz flux (from Becker et al., 1991, Cat. VIII/13), a flag to indicate if the source is extended at 6cm, 365MHz flux (from the Texas Survey, Douglas et al. 1980; see Cat. VIII/42)), spectral index between 6 and 20 cm, and spectral index between 20 and 80 cm. Where possible, the source name is derived from the 6cm catalog of Becker et al. 1991 (Cat. VIII/13). (1 data file).

  1. IS VOYAGER 1 INSIDE AN INTERSTELLAR FLUX TRANSFER EVENT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwadron, N. A.; McComas, D. J., E-mail: n.schwadron@unh.edu

    Plasma wave observations from Voyager 1 have recently shown large increases in plasma density, to about 0.1 cm{sup –3}, consistent with the density of the local interstellar medium. However, corresponding magnetic field observations continue to show the spiral magnetic field direction observed throughout the inner heliosheath. These apparently contradictory observations may be reconciled if Voyager 1 is inside an interstellar flux transfer event—similar to flux transfer events routinely seen at the Earth's magnetopause. If this were the case, Voyager 1 remains inside the heliopause and based on the Voyager 1 observations we can determine the polarity of the interstellar magnetic field for the first time.

  2. Export fluxes in a naturally iron-fertilized area of the Southern Ocean - Part 1: Seasonal dynamics of particulate organic carbon export from a moored sediment trap

    NASA Astrophysics Data System (ADS)

    Rembauville, M.; Salter, I.; Leblond, N.; Gueneugues, A.; Blain, S.

    2015-06-01

    A sediment trap moored in the naturally iron-fertilized Kerguelen Plateau in the Southern Ocean provided an annual record of particulate organic carbon and nitrogen fluxes at 289 m. At the trap deployment depth, current speeds were typically low (~ 10 cm s-1) and primarily tidal-driven (M2 tidal component). Although advection was weak, the sediment trap may have been subject to hydrodynamical and biological (swimmer feeding on trap funnel) biases. Particulate organic carbon (POC) flux was generally low (< 0.5 mmol m-2 d-1), although two episodic export events (< 14 days) of 1.5 mmol m-2 d-1 were recorded. These increases in flux occurred with a 1-month time lag from peaks in surface chlorophyll and together accounted for approximately 40% of the annual flux budget. The annual POC flux of 98.2 ± 4.4 mmol m-2 yr-1 was low considering the shallow deployment depth but comparable to independent estimates made at similar depths (~ 300 m) over the plateau, and to deep-ocean (> 2 km) fluxes measured from similarly productive iron-fertilized blooms. Although undertrapping cannot be excluded in shallow moored sediment trap deployment, we hypothesize that grazing pressure, including mesozooplankton and mesopelagic fishes, may be responsible for the low POC flux beneath the base of the winter mixed layer. The importance of plankton community structure in controlling the temporal variability of export fluxes is addressed in a companion paper.

  3. Fluid geochemistry and soil gas fluxes (CO2-CH4-H2S) at a promissory Hot Dry Rock Geothermal System: The Acoculco caldera, Mexico

    NASA Astrophysics Data System (ADS)

    Peiffer, L.; Bernard-Romero, R.; Mazot, A.; Taran, Y. A.; Guevara, M.; Santoyo, E.

    2014-09-01

    The Acoculco caldera has been recognized by the Mexican Federal Electricity Company (CFE) as a Hot Dry Rock Geothermal System (HDR) and could be a potential candidate for developing an Enhanced Geothermal System (EGS). Apart from hydrothermally altered rocks, geothermal manifestations within the Acoculco caldera are scarce. Close to ambient temperature bubbling springs and soil degassing are reported inside the caldera while a few springs discharge warm water on the periphery of the caldera. In this study, we infer the origin of fluids and we characterize for the first time the soil degassing dynamic. Chemical and isotopic (δ18O-δD) analyses of spring waters indicate a meteoric origin and the dissolution of CO2 and H2S gases, while gas chemical and isotopic compositions (N2/He, 3He/4He, 13C, 15N) reveal a magmatic contribution with both MORB- and arc-type signatures which could be explained by an extension regime created by local and regional fault systems. Gas geothermometry results are in agreement with temperature measured during well drilling (260 °C-300 °C). Absence of well-developed water reservoir at depth impedes re-equilibration of gases upon surface. A multi-gas flux survey including CO2, CH4 and H2S measurements was performed within the caldera. Using the graphical statistical analysis (GSA) approach, CO2 flux measurements were classified in two populations. Population A, representing 95% of measured fluxes is characterized by low values (mean: 18 g m- 2 day- 1) while the remaining 5% fluxes belonging to Population B are much higher (mean: 5543 g m- 2 day- 1). This low degassing rate probably reflects the low permeability of the system, a consequence of the intense hydrothermal alteration observed in the upper 800 m of volcanic rocks. An attempt to interpret the origin and transport mechanism of these fluxes is proposed by means of flux ratios as well as by numerical modeling. Measurements with CO2/CH4 and CO2/H2S flux ratios similar to mass ratios

  4. AMR on the CM-2

    NASA Technical Reports Server (NTRS)

    Berger, Marsha J.; Saltzman, Jeff S.

    1992-01-01

    We describe the development of a structured adaptive mesh algorithm (AMR) for the Connection Machine-2 (CM-2). We develop a data layout scheme that preserves locality even for communication between fine and coarse grids. On 8K of a 32K machine we achieve performance slightly less than 1 CPU of the Cray Y-MP. We apply our algorithm to an inviscid compressible flow problem.

  5. Oscillation of Branching Ratios Between the D(2s)+D(1s) and the D(2p)+D(1s) Channels in Direct Photodissociation of D_{2}.

    PubMed

    Wang, Jie; Meng, Qingnan; Mo, Yuxiang

    2017-08-04

    The direct photodissociation of D_{2} at excitation energies above 14.76 eV occurs via two channels, D(2s)+D(1s) and D(2p)+D(1s). The branching ratios between the two have been measured from the dissociation threshold to 3200 cm^{-1} above it, and it is found that they show cosine oscillations as a function of the fragment wave vector magnitudes. The oscillation is due to an interference effect and can be simulated using the phase difference between the wave functions of the two channels, analogous to Young's double-slit experiment. By fitting the measured branching ratios, we have determined the depths and widths of the effective spherical potential wells related to the two channels, which are in agreement with the effective depths and widths of the ab initio interaction potentials. The results of this Letter illustrate the importance of the relative phase between the fragments in controlling the branching ratios of the photodissociation channels.

  6. Oscillation of Branching Ratios Between the D (2 s )+D (1 s ) and the D (2 p )+D (1 s ) Channels in Direct Photodissociation of D2

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Meng, Qingnan; Mo, Yuxiang

    2017-08-01

    The direct photodissociation of D2 at excitation energies above 14.76 eV occurs via two channels, D (2 s )+D (1 s ) and D (2 p )+D (1 s ) . The branching ratios between the two have been measured from the dissociation threshold to 3200 cm-1 above it, and it is found that they show cosine oscillations as a function of the fragment wave vector magnitudes. The oscillation is due to an interference effect and can be simulated using the phase difference between the wave functions of the two channels, analogous to Young's double-slit experiment. By fitting the measured branching ratios, we have determined the depths and widths of the effective spherical potential wells related to the two channels, which are in agreement with the effective depths and widths of the ab initio interaction potentials. The results of this Letter illustrate the importance of the relative phase between the fragments in controlling the branching ratios of the photodissociation channels.

  7. Failure pressures after repairs of 2-cm × 2.5-cm rhinologic dural defects in a porcine ex vivo model.

    PubMed

    Lin, Ryan P; Weitzel, Erik Kent; Chen, Philip G; McMains, Kevin Christopher; Chang, Daniel R; Braxton, Ernest E; Majors, Jacob; Bunegin, Leon

    2016-10-01

    The objective of this study was to determine failure pressures of 6 rhinologic repair techniques of large skull base/dural defects in a controlled, ex vivo model. Failure pressures of 6 dural repairs in a porcine model were studied using a closed testing apparatus; 24-mm × 19-mm dural defects were created; 40-mm × 34-mm grafts composed of porcine Duragen (Integra), fascia lata, and Biodesign (Cook) were used either with or without Tisseel (Baxter International Inc.) to create 6 repairs: Duragen/no glue (D/NG), Duragen/Tisseel (D/T), fascia lata/no glue (FL/NG), fascia lata/Tisseel (FL/T), Biodesign/no glue (B/NG), and Biodesign/Tisseel (B/T). Saline was infused at 30 mL/hour, applying even force to the underside of the graft until repair failure. Five trials were performed per repair type for a total of 30 repairs. Mean failure pressures were as follows: D/NG 1.361 ± 0.169 cmH 2 O; D/T 9.127 ± 1.805 cmH 2 O; FL/NG 0.200 ± 0.109 cmH 2 O; FL/T 7.833 ± 2.657 cmH 2 O; B/NG 0.299 ± 0.109 cmH 2 O; and B/T 2.67 ± 0.619 cmH 2 O. There were statistically significant differences between glued (Tisseel) and non-glued repairs for each repair category (p < 0.05). All glued repairs performed better than non-glued repairs. Both D/T and FL/T repairs performed better than B/T repairs. No repair tolerated pressures throughout the full range of adult supine intracranial pressure. © 2016 ARS-AAOA, LLC.

  8. Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes.

    PubMed

    Wang, Qingyang; Chen, Renkun

    2018-05-09

    Phase change heat transfer is fundamentally important for thermal energy conversion and management, such as in electronics with power density over 1 kW/cm 2 . The critical heat flux (CHF) of phase change heat transfer, either evaporation or boiling, is limited by vapor flux from the liquid-vapor interface, known as the upper limit of heat flux. This limit could in theory be greater than 1 kW/cm 2 on a planar surface, but its experimental realization has remained elusive. Here, we utilized nanoporous membranes to realize a new "thin film boiling" regime that resulted in an unprecedentedly high CHF of over 1.2 kW/cm 2 on a planar surface, which is within a factor of 4 of the theoretical limit, and can be increased to a higher value if mechanical strength of the membranes can be improved (demonstrated with 1.85 kW/cm 2 CHF in this work). The liquid supply is achieved through a simple nanoporous membrane that supports the liquid film where its thickness automatically decreases as heat flux increases. The thin film configuration reduces the conductive thermal resistance, leads to high frequency bubble departure, and provides separate liquid-vapor pathways, therefore significantly enhances the heat transfer. Our work provides a new nanostructuring approach to achieve ultrahigh heat flux in phase change heat transfer and will benefit both theoretical understanding and application in thermal management of high power devices of boiling heat transfer.

  9. Isotope shift of the 590-cm-1 Raman feature in underdoped Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Hewitt, K. C.; Wang, N. L.; Irwin, J. C.; Pooke, D. M.; Pantoja, A. E.; Trodahl, H. J.

    1999-10-01

    Raman-scattering studies have been performed on underdoped Bi2Sr2CaCu2O8+δ. In single crystals underdoped by oxygen removal, a 590-cm-1 peak is observed in the B1g spectrum. The feature is observed to soften in frequency by 3.8% with isotopic exchange of 16O by 18O. In contrast, the 590-cm-1 peak is not observed in crystals underdoped by Y substitution which suggests that it is a vibrational mode activated by oxygen deficency. We have also found that underdoping leads to a depletion of low-energy spectral weight from regions of the Fermi surface located near the Brillouin-zone axes.

  10. Ga2O3 Schottky rectifiers with 1 ampere forward current, 650 V reverse breakdown and 26.5 MW.cm-2 figure-of-merit

    NASA Astrophysics Data System (ADS)

    Yang, Jiancheng; Ren, F.; Tadjer, Marko; Pearton, S. J.; Kuramata, A.

    2018-05-01

    A key goal for Ga2O3 rectifiers is to achieve high forward currents and high reverse breakdown voltages. Field-plated β-Ga2O3 Schottky rectifiers with area 0.01 cm2, fabricated on 10 μm thick, lightly-doped drift regions (1.33 x 1016 cm-3) on heavily-doped (3.6 x 1018 cm-3) substrates, exhibited forward current density of 100A.cm-2 at 2.1 V, with absolute current of 1 A at this voltage and a reverse breakdown voltage (VB) of 650V. The on-resistance (RON) was 1.58 x 10-2 Ω.cm2, producing a figure of merit (VB2/RON) of 26.5 MW.cm-2. The Schottky barrier height of the Ni was 1.04 eV, with an ideality factor of 1.02. The on/off ratio was in the range 3.3 x 106 - 5.7 x 109 for reverse biases between 5 and 100V. The reverse recovery time was ˜30 ns for switching from +2V to -5V. The results show the capability of β-Ga2O3 rectifiers to achieve exceptional performance in both forward and reverse bias conditions.

  11. Diurnal Change of Soil Carbon Flux of Binhai New District

    NASA Astrophysics Data System (ADS)

    Wang, T. F.; Mao, T. Y.; Ye, W.

    2018-05-01

    In order to investigate the factors influencing diurnal change of soil carbon flux of Binhai New District. Field observation experiments were carried out by using LC pro-SD photosynthetic apparatus. The diurnal changes of soil carbon flux and its environmental factors such as atmosphere temperature and soil temperature were analysed. The results indicated that soil carbon flux appeared single diurnal pattern. The diurnal average of soil carbon flux ranked from 0.2761 to 2.3367μmo1/m2/s. Soil carbon flux varied significantly among different land use regimes(P<0.001). Significant relationships were found between soil respiration rate and atmosphere temperature, which could he best described by exponential equations (P<0.05). The Q10 value was based on the exponential correlations. Its value of Tian Keyuan, ECO-city, Dagu-Outlet and Yongding-River was 8.331, 6.049, 2.651 and 1.391, respectively. There were quadratic correlations between soil carbon flux and soil temperature (10cm). And soil temperature could account for more than 32.27% of the soil carbon flux changes (P<0.05, R2=0.3227-0.7465).

  12. Collisional relaxation of O2(a1Δ, υ = 1, 2, 3) by CO2

    NASA Astrophysics Data System (ADS)

    Torbin, A. P.; Pershin, A. A.; Mebel, A. M.; Zagidullin, M. V.; Heaven, M. C.; Azyazov, V. N.

    2018-01-01

    Rate coefficients for the vibrational relaxation of O2(a1Δ, υ) by CO2 have been determined from the decay of fluorescence of the a1Δg → X3 Σg- (υ-υ‧) transitions with υ = υ‧ = 1, 2 and 3. O2(a1Δ, υ) molecules were produced by pulsed laser photolysis of ozone at a wavelength of 266 nm. The rate coefficients were measured to be (1.9 ± 0.2) × 10-14 cm3/s, (2.4 ± 0.2) × 10-14 cm3/s and (2.7 ± 0.3) × 10-14 cm3/s for υ = 1, 2 and 3 respectively.

  13. Structure and properties of Li 2S-P 2S 5-P 2S 3 glass and glass-ceramic electrolytes

    NASA Astrophysics Data System (ADS)

    Minami, Keiichi; Hayashi, Akitoshi; Ujiie, Satoshi; Tatsumisago, Masahiro

    High lithium ion conducting 70Li 2S·(30 - x)P 2S 5· xP 2S 3 (mol%) glasses and glass-ceramics were prepared by the mechanical milling method. Glasses were obtained in the composition range of 0 ≦ x ≦ 10. The substitution of P 2S 3 for P 2S 5 promoted the formation of the P 2S 6 4- units in the glasses. The conductivity of the glass increased with an increase in P 2S 3 contents up to 5 mol% and the glass with 5 mol% of P 2S 3 showed the conductivity of 1 × 10 -4 S cm -1 at room temperature. In the case of glass-ceramics, the conductivity increased with an increase in P 2S 3 contents up to 1 mol%, and the superionic conducting Li 7P 3S 11 crystal was precipitated in the glass-ceramic. The glass-ceramic with 1 mol% of P 2S 3 showed the highest conductivity of 3.9 × 10 -3 S cm -1 at room temperature.

  14. Carbon Dioxide and Water Vapor Concentrations, Co-spectra and Fluxes from Latest Standardized Automated CO2/H2O Flux Systems versus Established Analyzer Models

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Kathilankal, J. C.; Begashaw, I.; Franzen, D.; Welles, J.; McDermitt, D. K.

    2017-12-01

    Spatial and temporal flux data coverage have improved significantly in recent years, due to standardization, automation and management of data collection, and better handling of the generated data. With more stations and networks, larger data streams from each station, and smaller operating budgets, modern tools are required to effectively and efficiently handle the entire process.These tools should produce standardized verifiable datasets, and provide a way to cross-share the standardized data with external collaborators to leverage available funding, and promote data analyses and publications. In 2015, new open-path and enclosed flux measurement systems1 were developed, based on established gas analyzer models2,3, with the goal of improving stability in the presence of contamination, refining temperature control and compensation, and providing more accurate gas concentration measurements. In 2017, the new open-path system was further refined to simplify hardware configuration, and to reduce power consumption and cost. Additionally, all new systems incorporate complete automated on-site flux calculations using EddyPro® Software4 run by a weatherized remotely-accessible microcomputer to provide standardized traceable data sets for fluxes and supporting variables. This presentation will describe details and results from the field tests of the new flux systems, in comparison to older models and reference instruments. References:1 Burba G., W. Miller, I. Begashaw, G. Fratini, F. Griessbaum, J. Kathilankal, L. Xu, D. Franz, E. Joseph, E. Larmanou, S. Miller, D. Papale, S. Sabbatini, T. Sachs, R. Sakai, D. McDermitt, 2017. Comparison of CO2 Concentrations, Co-spectra and Flux Measurements between Latest Standardized Automated CO2/H2O Flux Systems and Older Gas Analysers. 10th ICDC Conference, Switzerland: 21-25/08 2 Metzger, S., G. Burba, S. Burns, P. Blanken, J. Li, H. Luo, R. Zulueta, 2016. Optimization of an enclosed gas analyzer sampling system for measuring eddy

  15. Eddy covariance fluxes of the NO-NO2-O3 triad above a spruce forest canopy in south-eastern Germany.

    NASA Astrophysics Data System (ADS)

    Tsokankunku, A.; Zhu, Z.; Meixner, F. X.; Foken, T.; Andreae, M. O.

    2009-04-01

    We investigated the diel variability of the eddy covariance fluxes of the NO-NO2-O3 triad above a spruce forest canopy at the "Weidenbrunnen" research site (Fichtelgebirge, Germany). Measurements were part of the EGER project (ExchanGE processes in mountainous Regions), which focuses on the role of process interactions among the different scales of soil, in-canopy and atmospheric exchange processes of reactive and non-reactive trace gases and energy. The eddy covariance platform was at the top of a 32 m high tower (50˚ 08'31" N, 11˚ 52'1"E, elevation 755 m.a.s.l). The eddy covariance system consisted of a CSAT3 sonic anemometer and a high speed, high resolution NO-NO2two channel chemiluminescence analyzer (Ecophysics CLD 790 SR2). A solid-state blue-light photolytic converter was connected to the NO2 channel of the analyzer just behind the sample inlet. Ambient NO and NO2 mixing ratios were sampled via 52 m long tubes with the instrument itself located in a temperature-controlled container at the ground. The NO-NO2 analyzer was operated at 5 Hz. Additionally we measured eddy covariance fluxes of CO2 and H2O. An infrared absorption-based analyzer (LI-7000) was used to sample CO2 and H2O mixing ratios, and a fast solid-phase chemiluminescence ozone analyzer (GFAS) was deployed to measure O3 mixing ratios. All trace gas inlets were situated at 32.5 m, 20 cm below the path of the sonic anemometer. The 32m inlet of an independent NO, NO2, and O3 concentration profile measuring system was used as the calibration source for the fast ozone analyzer and the two channel NO-NO2chemiluminescence analyzer. Preliminary results show that NO and NO2advection plays a big role in the magnitude and direction of the fluxes at the site. The main source of the advection is a busy country road situated about 2 km west of the site. CO2 fluxes were also influenced by advection. Extended periods of stationarity usually occurred on Sundays when the amount of traffic was significantly

  16. An S-Type Anion Channel SLAC1 Is Involved in Cryptogein-Induced Ion Fluxes and Modulates Hypersensitive Responses in Tobacco BY-2 Cells

    PubMed Central

    Horikoshi, Sonoko; Hanamata, Shigeru; Negi, Juntaro; Yagi, Chikako; Kitahata, Nobutaka; Iba, Koh; Kuchitsu, Kazuyuki

    2013-01-01

    Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl− and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl− efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl− efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network. PMID:23950973

  17. An S-type anion channel SLAC1 is involved in cryptogein-induced ion fluxes and modulates hypersensitive responses in tobacco BY-2 cells.

    PubMed

    Kurusu, Takamitsu; Saito, Katsunori; Horikoshi, Sonoko; Hanamata, Shigeru; Negi, Juntaro; Yagi, Chikako; Kitahata, Nobutaka; Iba, Koh; Kuchitsu, Kazuyuki

    2013-01-01

    Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl(-) and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl(-) efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl(-) efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network.

  18. Suppression of turbulent particle flux during biased rotation in LAPD

    NASA Astrophysics Data System (ADS)

    Carter, T. A.

    2005-10-01

    The edge plasma in LAPD is rotated through the application of a bias voltage (typically 100V-200V) between the plasma source cathode and the vacuum vessel wall. Without bias, cross-field turbulent particle transport causes the density profile to extend well past the cathode edge, with a fairly gentle gradient (Ln˜10 cm). As the bias voltage is applied and increased past a threshold value, the measured density profile steepens dramatically (Ln˜2 cm) at a radius near the peak of the flow shear. Turbulent transport flux measurements in this region show that the flux is reduced and then suppressed completely as the threshold is approached. As the bias voltage is increased further, the measured turbulent transport flux reverses direction. The amplitude of the density and azimuthal electric field fluctuations is observed to decrease during biased rotation, the product of the amplitudes decreasing by a factor of 5. However the dominant change appears in the cross-phase, which is altered dramatically, leading to the observed suppression and reversal of the turbulent flux. Detailed two-dimensional turbulent correlation measurements have been performed using the high repetition rate (1 Hz) and high reproducibility of LAPD plasmas. In unbiased plasmas, the correlation is localized to around 5 cm radially and a slightly smaller distance azimuthally (ρs˜0.5-1 cm). During biased rotation, a dramatic increase in the azimuthal correlation is observed, however there is little change in the radial correlation length.

  19. N2 pressure - broadened O3 line widths and strengths near 1129.4 cm-1

    NASA Technical Reports Server (NTRS)

    Copeland, G. E.; Majorana, L. N.; Harward, C. N.; Steinkamp, R. J.

    1982-01-01

    A Beer's Law experiment was performed with a tunable diode laser to find the N2 pressure broadening characteristics of a single 03 absorption line at 1129.426 cm for N2 pressures from 10 to 100 torr (O3 pressure = 3.16 torr). SO2 line positions were used for wavelength calibration. Line shapes were interatively fitted to a Lorentz function. Results were delta (HWHM in MHz) = 47.44 (+ or - 5.34) MHz + 1.730 (+ or - 0.088) MHz/torr *p(torr) with sigma = 0.9897. This intercept compares well with the Doppler O3 - O3 broadened (at 3.16 torr) width of 44.52 Hz. This result in a HWHM line width of 0.44 cm atm at 760 torr and 285 K. The line strengths integrated over delta nu = 0.55 cm were found to be N2 pressure dependent.

  20. Infrared spectroscopy of the NO3 radical from 2000 to 3000 cm-1

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kentarou; Fujimori, Ryuji; Tang, Jian; Ishiwata, Takashi

    2018-02-01

    The present paper reports high-resolution spectroscopic study of the 14NO3 radical in the 2000-3000 cm-1 region, where eight E‧-A2‧ bands from the ground state are observed. Three bands at 2206, 2246, and 2377 cm-1 are analyzed for the first time, and assigned to the ν1 + 3ν4, 2ν2 + 2ν4, and ν3 + 3ν4 bands, respectively. Bands at 2024, 2155, 2518, and 2585 cm-1 are reassigned to the ν1 + ν3, 2ν3, ν1 + ν3 + ν4, and 2ν3 + ν4 bands, respectively, by adopting the new ν3 vibrational frequency of 1055 cm-1 lower than the previous ν3 = 1492 cm-1. The band at 2902 cm-1 is observed for the first time and assigned to the ν1 + ν3 + 2ν4 band which is the ν1 combined band with the 1927 cm-1 band. Band intensities observed in the 2000-3000 cm-1 region are attributed to the intensity borrowing from the B˜2E‧ -X˜2 A2‧ electronic transition through the vibronic interaction. Although the ν3 fundamental band has not been observed due to the cancelation of vibrational intensity and borrowed intensity, the 2ν3 band becomes stronger than ν3 by a factor of more than 50. Perturbation effects are recognized for the bands observed except for the 2206 cm-1 and 2377 cm-1 bands, and are analyzed by taking into account the Coriolis interaction in the most cases. However, the 2024 cm-1 band is free from the Coriolis interaction, and the v1-v3 interaction is incorporated in the analysis, leading to the 2ν1 frequency of 2008.8 cm-1, which is close to the energy value of 2010 cm-1 observed by a laser induced fluorescence study.

  1. An empirical spectroscopic database for acetylene in the regions of 5850-6341 cm-1 and 7000-9415 cm-1

    NASA Astrophysics Data System (ADS)

    Lyulin, O. M.; Campargue, A.

    2017-12-01

    Six studies have been recently devoted to a systematic analysis of the high-resolution near infrared absorption spectrum of acetylene recorded by Cavity Ring Down spectroscopy (CRDS) in Grenoble and by Fourier-transform spectroscopy (FTS) in Brussels and Hefei. On the basis of these works, in the present contribution, we construct an empirical database for acetylene in the 5850-9415 cm-1 region excluding the 6341-7000 cm-1 interval corresponding to the very strong ν1+ν3 manifold. Our database gathers and extends information included in our CRDS and FTS studies. In particular, the intensities of about 1700 lines measured by CRDS in the 7244-7920 cm-1 region are reported for the first time together with those of several bands of 12C13CH2 present in natural isotopic abundance in the acetylene sample. The Herman-Wallis coefficients of most of the bands are derived from a fit of the measured intensity values. A recommended line list is provided with positions calculated using empirical spectroscopic parameters of the lower and upper energy vibrational levels and intensities calculated using the derived Herman-Wallis coefficients. This approach allows completing the experimental list by adding missing lines and improving poorly determined positions and intensities. As a result the constructed line list includes a total of 11113 transitions belonging to 150 bands of 12C2H2 and 29 bands of 12C13CH2. For comparison the HITRAN database in the same region includes 869 transitions of 14 bands, all belonging to 12C2H2. Our weakest lines have an intensity on the order of 10-29 cm/molecule, about three orders of magnitude smaller than the HITRAN intensity cut off. Line profile parameters are added to the line list which is provided in HITRAN format. The comparison of the acetylene database to the HITRAN2012 line list or to results obtained using the global effective operator approach is discussed in terms of completeness and accuracy.

  2. Fourier Transform Spectroscopy of 18O-Enriched Carbonyl Sulfide from 1825 to 2700 cm -1

    NASA Astrophysics Data System (ADS)

    Strugariu, T.; Naı̈m, S.; Fayt, A.; Bredohl, H.; Blavier, J.-F.; Dubois, I.

    1998-06-01

    We have measured the Fourier transform spectrum of carbonyl sulfide from 1825 to 2700 cm-1, using a sample enriched in both18O (94.0%) and17O (1.54%). A careful calibration yields a line-position accuracy between 1.5 and 3.0 10-5cm-1. We have observed and analyzed 118 infrared bands of which 93 are measured for the first time: 55 for18O12C32S, 20 for18O12C34S, 11 for18O12C33S, 1 for18O12C36S, 12 for17O12C32S, 4 for17O12C34S, 2 for17O12C33S, and 13 for18O13C32S. Intensities are also reported and analyzed for all those bands. The intensity accuracy is better than 10%, and the precision of approximately 1% allows us to determine some Herman-Wallis coefficients.

  3. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400-1400 cm-1

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Farrar, L. W.; Di Cecca, S.; Jeys, T. H.

    2016-02-01

    Raman spectra of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint region 400-1400 cm-1. A relatively compact (<2'x2'x2'), sensitive, 532 nm 10 W CW Raman system with double-pass laser and double-sided collection was used for these measurements. Two Raman modes are observed at 934 and 967 cm-1 in NH3. Three Raman modes are observed in Cl2 at 554, 547, and 539 cm-1, which are due to the 35/35 35/37, and 37/37 Cl isotopes, respectively. Raman modes are observed at 870, 570, and 1151 cm-1 in H2S, COCl2, and SO2, respectively. Values of 3.68 ± 0.26x10-32 cm2/sr (3.68 ± 0.26x10-36 m2/sr), 1.37 ± 0.10x10-30 cm2/sr (1.37 ± 0.10x10-34 m2/sr), 3.25 ± 0.23x10-31 cm2/sr (3.25 ± 0.23x10-35 m2/sr), 1.63 ± 0.14x10-30 cm2/sr (1.63 ± 0.14x10-34 m2/sr), and 3.08 ± 0.22x10-30 cm2/sr (and 3.08 ± 0.22x10-34 m2/sr) were determined for the differential Raman cross section of the 967 cm-1 mode of NH3, sum of the 554, 547, and 539 cm-1 modes of Cl2, 870 cm-1 mode of H2S, 570 cm-1 mode of COCl2, and 1151 cm-1 mode of SO2, respectively, using the differential Raman cross section of 3.56 ± 0.14x10-31 cm2/sr (3.56 ± 0.14x10-35 m2/sr) for the 1285 cm-1 mode of CO2 as the reference.

  4. A search for very high-energy flares from the microquasars GRS 1915+105, Circinus X-1, and V4641 Sgr using contemporaneous H.E.S.S. and RXTE observations

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Chadwick, P. M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Context. Microquasars are potential γ-ray emitters. Indications of transient episodes of γ-ray emission were recently reported in at least two systems: Cyg X-1 and Cyg X-3. The identification of additional γ-ray-emitting microquasars is required to better understand how γ-ray emission can be produced in these systems. Aim. Theoretical models have predicted very high-energy (VHE) γ-ray emission from microquasars during periods of transient outburst. Observations reported herein were undertaken with the objective of observing a broadband flaring event in the γ-ray and X-ray bands. Methods: Contemporaneous observations of three microquasars, GRS 1915+105, Circinus X-1, and V4641 Sgr, were obtained using the High Energy Spectroscopic System (H.E.S.S.) telescope array and the Rossi X-ray Timing Explorer (RXTE) satellite. X-ray analyses for each microquasar were performed and VHE γ-ray upper limits from contemporaneous H.E.S.S. observations were derived. Results: No significant γ-ray signal has been detected in any of the three systems. The integral γ-ray photon flux at the observational epochs is constrained to be I(>560 GeV) < 7.3 × 10-13 cm-2 s-1, I(>560 GeV ) < 1.2 × 10-12 cm-2 s-1, and I(>240 GeV) < 4.5 × 10-12 cm-2 s-1 for GRS 1915+105, Circinus X-1, and V4641 Sgr, respectively. Conclusions: The γ-ray upper limits obtained using H.E.S.S. are examined in the context of previous Cherenkov telescope observations of microquasars. The effect of intrinsic absorption is modelled for each target and found to have negligible impact on the flux of escaping γ-rays. When combined with the X-ray behaviour observed using RXTE, the derived results indicate that if detectable VHE γ-ray emission from microquasars is commonplace, then it is likely to be highly transient.

  5. Photofraction of a 5 cm x 2 cm BGO scintillator. [bismuth germanate crystal for use in cosmic gamma ray detector

    NASA Technical Reports Server (NTRS)

    Dunphy, P. P.; Forrest, D. J.

    1985-01-01

    The photofraction of a 5.1 cm x 2.0 cm bismuth germanate (BGO) scintillator was measured over a gamma-ray energy range of 0.2 to 6.1 MeV. Several methods, used to minimize the effect of room scattering on the measurement, are discussed. These include a gamma-gamma coincidence technique, a beta-gamma coincidence technique, and the use of sources calibrated with a standard 7.6 cm x 7.6 cm sodium iodide scintillator.

  6. AmeriFlux US-Ho2 Howland Forest (west tower)

    DOE Data Explorer

    Hollinger, David [USDA Forest Service; Hollinger, David [USDA Forest Service

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ho2 Howland Forest (west tower). Site Description - Closed conifer forest, minimal disturbance. References: Fernandez et al. (1993), Canadian Journal of Soil Science 73 317-328. Hollinger et al. (1999), Global Change Biology 5: 891-902. Savage KE, Davidson EA (2001), Global Biogeochemical Cycles 15 337-350. Scott et al. (2004), Environmental Management, Vol. 33, Supplement 1, pp. S9-S22. Hollinger et al. (2004), Global Change Biology 10: 1689-1706.

  7. Variability of the Degassing Flux of 4He as an impact of 4He -Dating of Groundwaters

    NASA Astrophysics Data System (ADS)

    Torgersen, T.

    2009-12-01

    4He dating of groundwater is often confounded by an external flux of 4He as the result of a crustal degassing. Estimates of this external flux have been made but what is the impact on estimates of the 4He groundwater age? The existing measures of the 4He flux across the Earth’s solid surface have been evaluated collectively. The time-and-area weighted arithmetic mean (standard deviation) of n=33 4He degassing fluxes is 3.32(±0.45) x 1010 4He atoms m-2s-1. The log normal mean of 271 measures of the flux into Precambrian shield lakes of Canada is 4.57 x 1010atoms 4He m-2s-1 with a variance of */3.9x. The log normal mean of measurements (n=33) of the crustal flux is 3.63 x 1010 4He m-2s-1 with a best estimate one sigma log normal error of */36x based on an assumption of symmetric error bars. (For comparison, the log normal mean heat flow is 62.2 mW m-2 with a log normal variance of */1.8x; the best estimate mean is 65±1.6 Wm-2, Polach et al., 1993). The variance of the continental flux is shown to increase with decreasing time scales (*/ ~106x at 0.5yr) and decreasing space scales (*/ ~106x at 1km) suggesting that the mechanisms of crustal helium transport and degassing contain a high degree of spatial and temporal variability. This best estimate of the mean and variance in the flux of 4He from continents remains approximately equivalent to the radiogenic production rate of 4He in the whole crust. The small degree of variance in the Canadian lake data (n=271), Precambrian terrain, suggests that it may represent a best approximation of “steady state” crustal degassing. Large scale vertical mass transport in continental crust is estimated as scaled values to be of the order 10-5 cm2s-1 for helium (over 2Byr and 40km vertically) vs. 10-2 cm2s-1 for heat. The mass transport rate requires not only release of 4He from the solid phase via fracturing or comminution but also an enhanced rate of mass transport facilitated by some degree of fluid advection (as has been

  8. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China.

    PubMed

    Cui, Qian; Song, Changchun; Wang, Xianwei; Shi, Fuxi; Yu, Xueyang; Tan, Wenwen

    2018-03-01

    Climate warming is expected to increasingly influence boreal peatlands and alter their greenhouse gases emissions. However, the effects of warming on N 2 O fluxes and the N 2 O budgets were ignored in boreal peatlands. Therefore, in a boreal peatland of permafrost zone in Northeast China, a simulated warming experiment was conducted to investigate the effects of warming on N 2 O fluxes in Betula. Fruticosa community (B. Fruticosa) and Ledum. palustre community (L. palustre) during the growing seasons from 2013 to 2015. Results showed that warming treatment increased air temperature at 1.5m aboveground and soil temperature at 5cm depth by 0.6°C and 2°C, respectively. The average seasonal N 2 O fluxes ranged from 6.62 to 9.34μgm -2 h -1 in the warming plot and ranged from 0.41 to 4.55μgm -2 h -1 in the control plots. Warming treatment increased N 2 O fluxes by 147% and transformed the boreal peatlands from a N 2 O sink to a source. The primary driving factors for N 2 O fluxes were soil temperature and active layer depth, whereas soil moisture showed a weak correlation with N 2 O fluxes. The results indicated that warming promoted N 2 O fluxes by increasing soil temperature and active layer depth in a boreal peatland of permafrost zone in Northeast China. Moreover, elevated N 2 O fluxes persisted in this region will potentially drive a noncarbon feedback to ongoing climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Jovian electron spectrum and synchrotron radiation at 375 cm

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.

    1975-01-01

    The synchrotron radiation expected at Earth from the region L=2.9-5 R sub J of Jupiter's magnetosphere is calculated using the Pioneer 10 electron model. The result is approximately 21 flux units (f.u.). This value is to be compared with 6.0 + or - 0.7 f.u., the flux density of synchrotron radiation measured from Jupiter's entire magnetosphere in ground-based radio observations. Most of the radiation at 375 cm is emitted by electrons in the 1 to 10 MeV range. If the electron model used for calculations is cut off below 10 MeV, the calculated flux is reduced to approximately 4 f.u., a level compatible with the radio observations.

  10. Measuring metallic elements of total suspended particulates (TSPs), dry deposition flux, and dry deposition velocity for seasonal variation in central Taiwan

    NASA Astrophysics Data System (ADS)

    Fang, Guor-Cheng; Chang, Shyh-Chyi; Chen, Yu-Cheng; Zhuang, Yuan-Jie

    2014-06-01

    The purposes of this study were to investigate and characterize ambient air particulate concentrations and dry deposition fluxes and those metallic elements associated with them in central Taiwan during 2009-2010. At the Bei-Shi (suburban/coastal) sampling site, the average TSP concentrations, flux, and deposition velocity were 92.3 (μg m- 3), 165.92 (μg m- 2 min- 1), and 3 (cm s- 1), respectively. In addition, at the Quan-Xin (industrial) sampling site, the highest average TSP concentrations of As, ambient air particulate bound mercury (Hg(p)), Mn, Fe, Zn, Cr, Cu and Pb were 3.56, 0.07, 82.21, 2769.82, 109.33, 31.93, 109.76 and 39.15 ng m- 3, respectively. The highest average dry deposition flux of elements As, Hg(p), Mn, Fe, Zn, Cr, Cu and Pb were 2.36, 0.15, 18.11, 303.8, 35.59, 18.66, 45.47 and 42.6 (ng m- 2 min- 1), respectively in Quan-Xin (industrial). The median deposition velocity (Vd) of metallic elements was present at the five characteristic sampling sites, respectively. However, the median dry deposition velocity (Vd) of Hg(p) was 2.73-4.78 cm s- 1, higher than all other elements in the five characteristic sampling sites during 2009-2010. The median dry deposition velocity (Vd) of Fe was 0.17-0.27 cm s- 1, lower than all other elements in the five characteristic sampling sites during 2009-2010.

  11. Self-broadened widths and shifts of 12C 16O 2: 4750-7000 cm -1

    NASA Astrophysics Data System (ADS)

    Toth, R. A.; Brown, L. R.; Miller, C. E.; Devi, V. Malathy; Benner, D. Chris

    2006-10-01

    In the previous paper, we report line strength measurements for 58 bands of 12CO 2 between 4550 and 7000 cm -1 [R.A. Toth, L.R. Brown, C.E. Miller, V. Malathy Devi, D. Chris Benner, J. Mol. Spectrosc., this issue, doi:10.1016/j.jms.2006.008.001.]. In the present study, self-broadenedwidth and self-induced pressure shift coefficients are determined in two intervals: (a) between 4750 and 5400 cm -1for bands of the Fermi triad (20011 ← 00001, 20012 ← 00001, 20013 ← 00001), three corresponding hot bands (21111 ← 01101, 21112 ← 01101, 21113 ← 01101) and the 01121← 00001 combination band; (b) between 6100 and 7000 cm -1 for the Fermi tetrad (30014 ← 00001, 30013 ← 00001, 30012 ← 00001, 30011 ← 00001), two associated hot bands (31113 ← 01101, 31112 ← 01101), as well as 00031 ← 00001 and its hot band 01131 ← 01101. Least-squares fits of the experimental width and pressure shift coefficients are modeled using empirical expressions: b0=exp∑ia(i)x(i) for widths where x(1)=1, x(2)=m, x(3)=m2, x(4)=m, x(5)=m4, x(6)={1}/{m}, and d0=∑ia(i)x(i) for pressure shifts where x(1)=1, x(2)={1}/{m}, x(3)=m, x(4)=m2, x(5)={1}/{m2}, x(6)={1}/{m3},x(7)=m3, x(8)={m}/{m} The modeled width coefficients generally agree with the experimental values with standard deviations of less than 1%, while the standard deviations of the modeled values for the pressure-induced shift coefficients range between 2.3% and 6.7%. The largest percentage error is associated with the system of the three hot bands: 21111 ← 01101, 21112 ← 01101, and 21113 ← 01101. It is observed that transitions with the same rotational quantum numbers have slightly different widths in some of the bands. As expected, pressure-induced-shift coefficients vary as a function of the band center, but there are also subtle differences from band to band for transitions with the same rotational quanta.

  12. The Chandra Source Catalog 2.0: Estimating Source Fluxes

    NASA Astrophysics Data System (ADS)

    Primini, Francis Anthony; Allen, Christopher E.; Miller, Joseph; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    The Second Chandra Source Catalog (CSC2.0) will provide information on approximately 316,000 point or compact extended x-ray sources, derived from over 10,000 ACIS and HRC-I imaging observations available in the public archive at the end of 2014. As in the previous catalog release (CSC1.1), fluxes for these sources will be determined separately from source detection, using a Bayesian formalism that accounts for background, spatial resolution effects, and contamination from nearby sources. However, the CSC2.0 procedure differs from that used in CSC1.1 in three important aspects. First, for sources in crowded regions in which photometric apertures overlap, fluxes are determined jointly, using an extension of the CSC1.1 algorithm, as discussed in Primini & Kashyap (2014ApJ...796…24P). Second, an MCMC procedure is used to estimate marginalized posterior probability distributions for source fluxes. Finally, for sources observed in multiple observations, a Bayesian Blocks algorithm (Scargle, et al. 2013ApJ...764..167S) is used to group observations into blocks of constant source flux.In this poster we present details of the CSC2.0 photometry algorithms and illustrate their performance in actual CSC2.0 datasets.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  13. A new estimate of micrometeoritic flux at Mercury

    NASA Astrophysics Data System (ADS)

    Borin, P.; Cremonese, G.; Marzari, F.; Bruno, M.; Marchi, S.

    2009-04-01

    Meteoroid impacts are an important source of neutral atoms in the exosphere of Mercury. Recent papers attribute to impacting particles smaller than 1 cm the major contribution to exospheric gases. However, fluxes and impact velocities for different sizes are based on old extrapolations of similar quantities at the Earth. In this work, in order to determine the meteoritic flux at the heliocentric distance of Mercury we utilize the dynamical evolution model of dust particles of Marzari and Vanzani (1994) that numerically solves a (N+1)+M body problem (Sun + N planets + M body with zero mass) with the high-precision integrator RA15 (Everhart 1985). The solar radiation pressure and Poynting-Robertson drag, together with the gravitational interactions of the planets, are taken as major perturbing forces affecting the orbital evolution of the dust particles. From our numerical simulations we extrapolate the flux of particles hitting Mercury's surface and the corresponding distribution of impact velocities. A precise calibration of the particle flux on Mercury has been performed by comparing the predictions of our model concerning the dust infall on the Earth with experimental data. The model provide the flux of different size particles impacting Mercury and their collisional velocity distribution. We compare our results with previous estimates, in particular we take into account the work of Cintala (1992), and we find lower velocities but significantly higher fluxes. Our results show that the number of impacts given by Cintala, measured in N/years, is 80.2 times higher, but the flux measured in g• cm2s, is 409.4 times lower. We can conclude that our model predicts a number of impacts smaller than Cintala, but a much higher mass contribution.

  14. Variations of the TeV energy spectrum at different flux levels of Mkn 421 observed with the HEGRA system of Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Aharonian, F.; Akhperjanian, A.; Beilicke, M.; Bernlöhr, K.; Börst, H.; Bojahr, H.; Bolz, O.; Coarasa, T.; Contreras, J.; Cortina, J.; Costamante, L.; Denninghoff, S.; Fonseca, V.; Girma, M.; Götting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Mang, O.; Meyer, H.; Mirzoyan, R.; Milite, M.; Moralejo, A.; Ona, E.; Panter, M.; Plyasheshnikov, A.; Pühlhofer, G.; Rauterberg, G.; Reyes, R.; Rhode, W.; Ripken, J.; Rowell, G.; Sahakian, V.; Samorski, M.; Schilling, M.; Siems, M.; Sobzynska, D.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiedner, C. A.; Wittek, W.; Remillard, R. A.

    2002-10-01

    The nearby BL Lacertae (BL Lac) object Markarian 421 (Mkn 421) at a red shift z=0.031 was observed to undergo strong TeV gamma -ray outbursts in the observational periods from December 1999 until May 2001. The time averaged flux level F(E>1 TeV) in the 1999/2000 season was (1.43+/-0.04) x 10-11 ph cm-2 s-1, whereas in the 2000/2001 season the average integral flux increased to (4.19+/-0.04) x 10-11 ph cm-2 s-1. Both energy spectra are curved and well fit by a power law with an exponential cut-off energy at 3.6(+0.4-0.3)_stat(+0.9-0.8)_sys TeV. The respective energy spectra averaged over each of the two time periods indicate a spectral hardening for the 2000/2001 spectrum. The photon index changes from 2.39+/-0.09_stat for 1999/2000 to 2.19+/-0.02_stat in 2000/2001. The energy spectra derived for different average flux levels ranging from 0.5 to 10 x 10-11 ph cm-2 s-1 follow a clear correlation of photon index and flux level. Generally, the energy spectra are harder for high flux levels. From January to April 2001 Mkn 421 showed rapid variability (doubling time as short as 20 min), accompanied with a spectral hardening with increasing flux level within individual nights. For two successive nights (MJD 51989-51991, March 21-23, 2001), this correlation of spectral hardness and change in flux has been observed within a few hours. The cut-off energy for the Mkn 421 TeV spectrum remains within the errors constant for the different flux levels and differs by Delta E=2.6+/-0.6_stat+/-0.6_sys TeV from the value determined for Mkn 501. This indicates that the observed exponential cut-off in the energy spectrum of Mkn 421 is not solely caused by absorption of multi-TeV photons by pair-production processes with photons of the extragalactic near/mid infrared background radiation.

  15. Autumn at Titan's South Pole: The 220 cm-1 Cloud

    NASA Astrophysics Data System (ADS)

    Jennings, D. E.; Cottini, V.; Achterberg, R. K.; Anderson, C. M.; Flasar, F. M.; de Kok, R. J.; Teanby, N. A.; Coustenis, A.; Vinatier, S.

    2015-10-01

    Beginning in 2012 an atmospheric cloud known by its far-infrared emission has formed rapidly at Tit an's South Pole [1, 2]. The build-up of this condensate is a result of deepening temperatures and a gathering of gases as Winter approaches. Emission from the cloud in the south has been doubling each year since 2012, in contrast to the north where it has halved every 3.8 years since 2004. The morphology of the cloud in the south is quite different from that in the north. In the north, the cloud has extended over the whole polar region beyond 55 N, whereas in the south the cloud has been confined to within about 10 degrees of the pole. The cloud in the north has had the form of a uniform hood, whereas the southern cloud has been much more complex. A map from December 2014,recorded by the Composite Infrared Spectrometer (CIRS) on Cassini, showed the 220 cm-1 emission coming from a distinct ring with a maximum at about 80 S. In contrast, emissions from the gases HC3N, C4H2 and C6H6 peaked near the pole and had a ring at 70 S. The 220 cm-1 ring at 80 S coincided with the minimum in the gas emission pattern. The80 S condensate ring encompassed the vortex cloud seen by the Cassini Imaging Science Subsystem (ISS) and Visible and Infrared Mapping Spectrometer (VIMS)[3, 4]. Both the 220 cm-1 ring and the gas "bull's-eye" pattern were centered on a point that was shifted from the geographic South Pole by 4 degrees in the direction of the Sun. This corresponds to the overall tilt of Titan's atmosphere discovered from temperature maps early in the Cassini mission by Achterberg et al. [5]. The tilt may be reinforced by the presumably twice-yearly (north and south) spin-up of the atmosphere at the autumnal pole. The bull's-eye pattern of the gas emissions can be explained by the retrieved abundance distributions, which are maximum near the pole and decrease sharply toward lower latitudes, together with temperatures that are minimum at the pole and increase toward lower latitudes

  16. Sources of variation in nitrous oxide flux from Amazonian ecosystems

    NASA Technical Reports Server (NTRS)

    Matson, P. A.; Vitousek, P. M.; Livingston, G. P.; Swanberg, N. A.

    1990-01-01

    Nitrous oxide flux and soil nutrient characteristics were measured in three undisturbed tropical ecosystem types, in cleared and burned areas, and in areas of forest converted to pasture near Manaus, Brazil. Nitrogen mineralization, nitrification, and soil nitrogen pools were high in upland forests on clay soils (terra firme) and low in the sand-type and floodplain (varzea) soils. Nitrous oxide flux followed the same pattern, with an average flux of 1.9 ng/sq cm per hr in terra firme, 0.3 in sand types, and 0.1 in varzea. Flux from recently cleared and burned areas did not differ from terra firme forest, but pastures had significantly elevated fluxes (10.3 ng/sq cm per hr). These data were combined with satellite data-based areal estimates of land cover classes to estimate total N2O-N flux from the intensive study area used by the Amazon Boundary Layer Experiment. Total N2O-N flux from the area was 22.9 kg/h; pastures covered 11 percent of the area but accounted for over 40 percent of the flux.

  17. O2 and CO2 glow-discharge-assisted oxygen transport through Ag

    NASA Astrophysics Data System (ADS)

    Outlaw, R. A.

    1990-08-01

    The permeation of oxygen through Ag normally occurs by a sequence of steps which include the initial dissociative adsorption of molecular oxygen at the upstream surface, the dissolution of the atoms into the bulk, and the subsequent migration of the atoms between octahedral sites of the lattice until they arrive at the vacuum interface downstream. The dissociative adsorption step, however, proceeds slowly, as indicated by the low sticking coefficient of O2 on Ag(10-6-10-3). The application of a dc field in 0.5 Torr of O2 (E/n˜10-14 V cm2) on the upstream side of a Ag membrane generated gas phase atomic oxygen that substantially enhanced the transport. The transport flux was observed to increase from a value of 4.4×1013 cm-2 s-1 to a glow discharge value of 2.83×1014 cm-2 s-1 at a membrane temperature of 650 °C. This suggests that the dissociative adsorption step limits the supply of oxygen atoms to the upstream side of the membrane. When the upstream O2 was replaced by an equal pressure of CO2, only a small permeation signal was observed, but the application of the glow discharge substantially increased the transport flux from 3.25×1012 cm-2 s-1 to 1.74×1014 cm-2 s-1. This method of separating O2 from a CO2 environment may be a possible mechanism for providing a supply of oxygen for astronauts in a manned mission to Mars.

  18. Outburst of the 2 s Anomalous X-ray Pulsar 1E 1547.0-5408

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Gotthelf, E. V.; Camilo, F.; Reynolds, J.; Ransom, S. M.

    2008-01-01

    Following our discovery of radio pulsations from the newly recognized anomalous X-ray pulsar (AXP) 1E 1547.0-5408, we initiated X-ray monitoring with the Swift X-ray telescope and obtained a single target-of-opportunity observation with the Newton X-ray Multi-Mirror Mission (XMM-Newton). In comparison with its historic minimum flux of 3 x 10(exp -l3)ergs/sq cm/s, the source was found to be in a record high state, f(sub x)(1-8 keV) = 5 x 10(exp -12)ergs/sq cm/s, or L(sub x) = 1.7 x 10(exp 35)(d/9 kpc )(sup 2)ergs/s, and declining by 25% in 1 month. Extrapolating the decay, we bound the total energy in this outburst to 1042 ergs < E < ergs. The spectra (fitted with a Comptonized blackbody) show that an increase in the temperature and area of a hot region, to 0.5 keV and -16% of the surface area of the neutron star, respectively, are primarily responsible for its increase in luminosity. The energy, spectrum, and timescale of decay are consistent with a deep crustal heating event, similar to an interpretation of the X-ray turn-on of the transient AXP XTE J18 10- 197. Simultaneous with the 4.6 hr ATdA4-Newton observation, we observed at 6.4 GHz with the Parkes telescope, measuring the phase relationship of the radio and X-ray pulse. The X-ray pulsed fraction of 1E 1547.0-5408 is only approx. 7 %, while its radio pulse is relatively broad for such a slow pulsar, which may indicate a nearly aligned rotator. As also inferred from the transient behavior of XTE J18 10-197, the only other AXP known to emit in the radio, the magnetic field rearrangement responsible for this X-ray outburst of 1E 1547.0-5408 is probably the cause of its radio turn-on.

  19. X-ray flux of the Narrow-Line Seyfert 1 galaxy WPVS 007 during a high UV flux state

    NASA Astrophysics Data System (ADS)

    Grupe, Dirk

    2016-09-01

    We request a short, 10ks, observation with Chandra ACIS-S of the highly X-ray variable Narrow Line Seyfert 1 Galaxy WPVS 007 quasi-simultaneously with HST between March 13 and 26. WPVS 007 is one of the most unusual AGN showing strong variabilty in broad absorption lines - a feature that is only seen in high-luminous quasars. We have monitored WPVS 007 since October 2005 with Swift, but we can typically not detect it in X-rays. Our last observation of WPVS 007 by Chandra in March 2015 when it was fount to be in an extremely low UV flux state (Leighgly et al. 2015) found it at a level of 8e-4 counts/s in ACIS-s corresponding to a flux in the 0.3-10 keV band of 1e-17 W/m2. Merging all Swift observaton since then (66ks) results in an 3sigma ul of 1.4e-17 W/m2. Obtaining a Chandra observation close to the HST observation will provide us with a crucial flux measurement that will allow us to determine the intrinsic luminosity of the AGN. Note, WPVS007 is currently at a bright UV state.

  20. Fourier transform infrared spectroscopy of D212CO in the 2500-4500 cm-1 region and the first rovibrational analysis of its v2 = 2 state

    NASA Astrophysics Data System (ADS)

    A'dawiah, Rabia'tul; Tan, T. L.; Ng, L. L.

    2018-03-01

    A low-resolution (0.5 cm-1) Fourier transform infrared (FTIR) spectrum of formaldehyde-d2 (D212CO) in the 2500-4500 cm-1 region was recorded to study the combination bands in this region. The bands ν2 +ν4,ν2 +ν6 , ν2 +ν3 , ν12 , ν2 +ν5 , 3ν3 , 2ν2 and 2ν5 were identified and their band centers (with an uncertainty of ± 0.1 cm-1) and band types were determined. Furthermore, the high-resolution FTIR spectrum of the 2ν2 overtone band (3315-3440 cm-1) of D212CO was recorded at an unapodized resolution of 0.0063 cm-1 and its infrared lines were analyzed. A total of 970 rovibrational transitions have been assigned and fitted up to J‧ = 35 and Ka‧ = 14 using the Watson's A-reduced Hamiltonian in the Ir representation. Upper state (v2 = 2) rovibrational constants inclusive of three rotational and five quartic centrifugal distortion constants were accurately determined for the first time. The band center of the 2ν2 band was determined as 3385.200666 ± 0.000035 cm-1. The rms deviation of the rovibrational fit was 0.00093 cm-1. From the fitting of 451 ground state combination differences (GSCDs) of D212CO which were derived from the infrared transitions of the 2ν2 band of this work, together with 360 microwave frequencies from a previous study, new and accurate ground state constants of D212CO up to three octic terms were obtained. The combination and overtone bands and the newly assigned high-resolution infrared lines of the 2ν2 band in the 2500-4500 cm-1 region can be used to detect D212CO in this infrared region. In addition, the results derived from this study give information on the rovibrational molecular structure of D212CO.

  1. The CNRM-CM5.1 global climate model: description and basic evaluation

    NASA Astrophysics Data System (ADS)

    Voldoire, A.; Sanchez-Gomez, E.; Salas y Mélia, D.; Decharme, B.; Cassou, C.; Sénési, S.; Valcke, S.; Beau, I.; Alias, A.; Chevallier, M.; Déqué, M.; Deshayes, J.; Douville, H.; Fernandez, E.; Madec, G.; Maisonnave, E.; Moine, M.-P.; Planton, S.; Saint-Martin, D.; Szopa, S.; Tyteca, S.; Alkama, R.; Belamari, S.; Braun, A.; Coquart, L.; Chauvin, F.

    2013-05-01

    A new version of the general circulation model CNRM-CM has been developed jointly by CNRM-GAME (Centre National de Recherches Météorologiques—Groupe d'études de l'Atmosphère Météorologique) and Cerfacs (Centre Européen de Recherche et de Formation Avancée) in order to contribute to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The purpose of the study is to describe its main features and to provide a preliminary assessment of its mean climatology. CNRM-CM5.1 includes the atmospheric model ARPEGE-Climat (v5.2), the ocean model NEMO (v3.2), the land surface scheme ISBA and the sea ice model GELATO (v5) coupled through the OASIS (v3) system. The main improvements since CMIP3 are the following. Horizontal resolution has been increased both in the atmosphere (from 2.8° to 1.4°) and in the ocean (from 2° to 1°). The dynamical core of the atmospheric component has been revised. A new radiation scheme has been introduced and the treatments of tropospheric and stratospheric aerosols have been improved. Particular care has been devoted to ensure mass/water conservation in the atmospheric component. The land surface scheme ISBA has been externalised from the atmospheric model through the SURFEX platform and includes new developments such as a parameterization of sub-grid hydrology, a new freezing scheme and a new bulk parameterisation for ocean surface fluxes. The ocean model is based on the state-of-the-art version of NEMO, which has greatly progressed since the OPA8.0 version used in the CMIP3 version of CNRM-CM. Finally, the coupling between the different components through OASIS has also received a particular attention to avoid energy loss and spurious drifts. These developments generally lead to a more realistic representation of the mean recent climate and to a reduction of drifts in a preindustrial integration. The large-scale dynamics is generally improved both in the atmosphere and in the ocean, and the bias in mean surface temperature

  2. Soil Greenhouse Gas Fluxes in a Pacific Northwest Douglas-Fir Forest: Results from a Soil Fertilization and Biochar Addition Experiment

    NASA Astrophysics Data System (ADS)

    Hawthorne, I.; Johnson, M. S.; Jassal, R. S.; Black, T. A.

    2013-12-01

    Rising atmospheric concentrations of greenhouse gases (GHGs), carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), linked to current climate change has stimulated a scientific response to provide robust accounting of sources and sinks of these gases. There is an urgent need to increase awareness of land management impacts on GHG flux dynamics to facilitate the development of management strategies that minimize GHG emissions. Biochar (pyrolyzed organic matter) has been identified as a strategy to reduce net GHG fluxes from soils. This is due to its potential to sequester large amounts of carbon for significant time periods, as well as its modification of biotic and abiotic soil conditions, which in turn can alter the GHG balance. This study describes the effect of biochar and urea-N application on soil surface CO2, CH4 and N2O fluxes in a Pacific Northwest Douglas-fir forest on Vancouver Island, BC, Canada (49o 52' N, 125o 20' W). We used a randomized complete-block design with four replicates of the following treatments: i) control, ii) 5 Mg ha-1 biochar surface application, iii) 200 kg N ha-1 urea pellets surface application, and iv) 5 Mg ha-1 biochar plus 200 kg N ha-1 urea. Soil GHG flux measurements were made biweekly for two years beginning in September 2011 using a non-steady-state non-flow through chamber technique. Biochar was added in February 2012, with urea applied in March 2013. A collar made from 21-cm diameter x 11-cm long PVC piping was installed in each of the 16 plots between two large trees on the forest floor, penetrating the organic layer to the mineral soil at the 5-8 cm depth. A clear Plexiglas lid, equipped with a 10-cm long vent tube and 9-V fan, was placed on each collar when making measurements, with 20-mL samples of chamber headspace air collected at 0, 3, 6, 9 and 12 min using a medical syringe with 21-gauge needle inserted through a rubber septum in the chamber lid. Samples were injected into and transported in previously

  3. Impurity identifications, concentrations and particle fluxes from spectral measurements of the EXTRAP T2R plasma

    NASA Astrophysics Data System (ADS)

    Menmuir, S.; Kuldkepp, M.; Rachlew, E.

    2006-10-01

    An absolute intensity calibrated 0.5 m spectrometer with optical multi-channel analyser detector was used to observe the visible-UV radiation from the plasma in the EXTRAP T2R reversed field pinch experiment. Spectral lines were identified indicating the presence of oxygen, chromium, iron and molybdenum impurities in the hydrogen plasma. Certain regions of interest were examined in more detail and at different times in the plasma discharge. Impurity concentration calculations were made using the absolute intensities of lines of OIV and OV measured at 1-2 ms into the discharge generating estimates of the order of 0.2% of ne in the central region rising to 0.7% of ne at greater radii for OIV and 0.3% rising to 0.6% for OV. Edge electron temperatures of 0.5-5 eV at electron densities of 5-10×1011 cm-3 were calculated from the measured relative intensities of hydrogen Balmer lines. The absolute intensities of hydrogen lines and of multiplets of neutral chromium and molybdenum were used to determine particle fluxes (at 4-5 ms into the plasma) of the order 1×1016, 7×1013 and 3×1013 particles cm-2 s-1, respectively.

  4. High-resolution synchrotron infrared spectroscopy of thiophosgene: The ν2 and ν4 fundamental bands near 500 cm -1

    NASA Astrophysics Data System (ADS)

    McKellar, A. R. W.; Billinghurst, B. E.

    2010-03-01

    Thiophosgene (Cl 2CS) is a favorite model system for studies of photophysics, vibrational dynamics, and intersystem interaction effects. But there are no previous rotationally-resolved infrared studies because the spectra are very congested due to hot bands and multiple isotopic species. This paper reports a detailed study of the ν2 (˜504 cm -1) and ν4 (˜471 cm -1) fundamental bands for the two most abundant isotopomers, 35Cl 2CS and 35Cl 37ClCS, based on spectra with observed line widths of ˜0.0008 cm -1 obtained at the Canadian Light Source far-infrared beamline using synchrotron radiation and a Bruker IFS125 Fourier transform spectrometer.

  5. Methane, Carbon Dioxide and Nitrous Oxide Fluxes in Soil Profile under a Winter Wheat-Summer Maize Rotation in the North China Plain

    PubMed Central

    Wang, Yuying; Hu, Chunsheng; Ming, Hua; Oenema, Oene; Schaefer, Douglas A.; Dong, Wenxu; Zhang, Yuming; Li, Xiaoxin

    2014-01-01

    The production and consumption of the greenhouse gases (GHGs) methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0–30, 30–60, 60–90, 90–150, 150–200, 200–250 and 250–300 cm) in a long-term field experiment with a winter wheat-summer maize rotation system, and four N application rates (0; 200; 400 and 600 kg N ha−1 year−1) in the North China Plain. The gas samples were taken twice a week and analyzed by gas chromatography. GHG production and consumption in soil layers were inferred using Fick’s law. Results showed nitrogen application significantly increased N2O fluxes in soil down to 90 cm but did not affect CH4 and CO2 fluxes. Soil moisture played an important role in soil profile GHG fluxes; both CH4 consumption and CO2 fluxes in and from soil tended to decrease with increasing soil water filled pore space (WFPS). The top 0–60 cm of soil was a sink of atmospheric CH4, and a source of both CO2 and N2O, more than 90% of the annual cumulative GHG fluxes originated at depths shallower than 90 cm; the subsoil (>90 cm) was not a major source or sink of GHG, rather it acted as a ‘reservoir’. This study provides quantitative evidence for the production and consumption of CH4, CO2 and N2O in the soil profile. PMID:24892931

  6. Experimental study of a linear/non-linear flux rope

    NASA Astrophysics Data System (ADS)

    DeHaas, Timothy; Gekelman, Walter; Van Compernolle, Bart

    2015-08-01

    Flux ropes are magnetic structures of helical field lines, accompanied by spiraling currents. Commonly observed on the solar surface extending into the solar atmosphere, flux ropes are naturally occurring and have been observed by satellites in the near earth and in laboratory environments. In this experiment, a single flux rope (r = 2.5 cm, L = 1100 cm) was formed in the cylindrical, magnetized plasma of the Large Plasma Device (LaPD, L = 2200 cm, rplasma = 30 cm, no = 1012 cm-3, Te = 4 eV, He). The flux rope was generated by a DC discharge between an electron emitting cathode and anode. This fixes the rope at its source while allowing it to freely move about the anode. At large currents (I > πr2B0c/2 L), the flux rope becomes helical in structure and oscillates about a central axis. Under varying Alfven speeds and injection current, the transition of the flux rope from stable to kink-unstable was examined. As it becomes non-linear, oscillations in the magnetic signals shift from sinusoidal to Sawtooth-like, associated with elliptical motion of the flux rope; or the signal becomes intermittent as its current density increases.

  7. Fast low frequency (down to 10 cm(-1)) multichannel Raman spectroscopy using an iodine vapor filter.

    PubMed

    Okajima, Hajime; Hamaguchi, Hiro-o

    2009-08-01

    We have constructed a multi-channel Raman spectrometer that is capable of recording the low frequency region down to 5 cm(-1) with a measurement time of a few tenths of a second. An iodine vapor filter, which uses a narrow (approximately 0.03 cm(-1)) absorption line of iodine for Rayleigh scattering elimination, is combined with a multi-channel Raman spectrometer composed of a single polychromator and a charge-coupled device (CCD) camera. Thanks to the high Rayleigh scattering elimination efficiency of the filter, which is over 10(6), Raman spectra of microcrystalline L-cystine from -300 cm(-1) to 1000 cm(-1) are simultaneously measurable with a small gap of 10 cm(-1) (-5 cm(-1) to 5 cm(-1)). Although raw spectra contain many sharp spikes due to the fine structures of iodine absorption, they can be correctly compensated with the use of a transmittance spectrum measured under the same experimental conditions. Many Raman bands including the 9.8 cm(-1) band are measured with a high signal-to-noise ratio in both the Stokes and anti-Stokes sides with a measurement time as short as 0.2 s.

  8. Magnetic flux relaxation in YBa2Cu3)(7-x) thin film: Thermal or athermal

    NASA Technical Reports Server (NTRS)

    Vitta, Satish; Stan, M. A.; Warner, J. D.; Alterovitz, S. A.

    1991-01-01

    The magnetic flux relaxation behavior of YBa2Cu3O(7-x) thin film on LaAlO3 for H is parallel to c was studied in the range 4.2 - 40 K and 0.2 - 1.0 T. Both the normalized flux relaxation rate S and the net flux pinning energy U increase continuously from 1.3 x 10(exp -2) to 3.0 x 10(exp -2) and from 70 to 240 meV respectively, as the temperature T increases from 10 to 40 K. This behavior is consistent with the thermally activated flux motion model. At low temperatures, however, S is found to decrease much more slowly as compared with kT, in contradiction to the thermal activation model. This behavior is discussed in terms of the athermal quantum tunneling of flux lines. The magnetic field dependence of U, however, is not completely understood.

  9. Swift XRT Observation of 1E 1841-045

    NASA Astrophysics Data System (ADS)

    Archibald, Robert; Scholz, Paul; Kaspi, Victoria

    2013-09-01

    We report on Swift XRT observations made following an X-ray/soft gamma-ray burst detected by Fermi-GBM on 13 September 2013 (GCNs 15245, 15228) from the direction of magnetar 1E 1841-045 in the supernova remnant Kes 73. As part of an ongoing monitoring campaign of 1E 1841-045, as well as several other magnetars with the Swift XRT, we observed the source on 16 September 2013 for 4.4 ks. We detect no significant change in the X-ray flux relative to pre-burst epochs: we measure an absorbed 2-10 keV flux of 2.48^(+0.07)_(-0.09) E-11 ergs/s/cm^2 for the 16 September 2013 observation, compared with an average of 2.484^(+0.006)_(-0.06) E-11 ergs/s/cm^2 for observations for the 2 years prior, or 2.39^(+0.10)_(-0.17) E-11 ergs/s/cm^2 for the prior observation on 24 August, 2013.

  10. /sup 7/Be and /sup 210/Pb total deposition fluxes at New Haven, Connecticut and at Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turekian, K.K.; Benninger, L.K.; Dion, E.P.

    1983-06-20

    The total deposition fluxes of /sup 210/Pb and /sup 7/Be were determined at New Haven, Connecticut, and Bermuda over approximately the same annual period in 1977-1978. The /sup 210/Pb flux has remained virtually constant at New Haven from 1973 to 1978, the flux in the 1977--1978 period being 1.2 dpm/cm/sup 2//y. The /sup 210/Pb flux at Bermuda is 0.69 dpm/cm/sup 2//y. This lower flux than expected from model calculations is due to the establishment of a blocking high pressure cell during the summer which deflects continental air. The /sup 7/Be fluxes at New Haven and Bermuda are 22.7 and 17.1more » dpm/cm/sup 2//y, values consistent with western North Atlantic oceanic standing crop measurements, but higher than some other estimates. Where the difference cannot be attributed to differences in sampling it is ascribable to regional differences compatible with the oceanic data.« less

  11. Oxygen isotope systematics of chondrules in the Murchison CM2 chondrite and implications for the CO-CM relationship

    NASA Astrophysics Data System (ADS)

    Chaumard, Noël; Defouilloy, Céline; Kita, Noriko T.

    2018-05-01

    High-precision oxygen three-isotope measurements of olivine and pyroxene were performed on 29 chondrules in the Murchison CM2 chondrite by secondary ion mass spectrometry (SIMS). The oxygen isotope ratios of analyzed chondrules all plot very close to the primitive chondrule minerals (PCM) line. In each of 24 chondrules, the olivine and/or pyroxene grains analyzed show indistinguishable oxygen isotope ratios. Exceptions are minor occurrences of isotopically distinguished relict olivine grains, which were found in nine chondrules. The isotope homogeneity of these phenocrysts is consistent with a co-magmatic crystallization of olivine and pyroxene from the final chondrule melts and a significant oxygen isotope exchange between the ambient gas and the melts. Homogeneous type I chondrules with Mg#'s of 98.9-99.5 have host chondrule Δ17O values ranging from -6.0‰ to -4.1‰, with one exception (Δ17O: -1.2‰; Mg#: 99.6). Homogeneous chondrules with Mg#'s <96, including four type II chondrules (Mg# ∼65-70), have Δ17O values of around -2.5‰. Five type I chondrules (Mg# ≥99) have internally heterogeneous oxygen isotope ratios with Δ17O values ranging from -6.5‰ to -4.0‰, similar to those of host chondrule values. These heterogeneous chondrules have granular or porphyritic textures, convoluted outlines, and contain numerous metal grains dispersed within fine-grained silicates. This is consistent with a low degree of melting of the chondrule precursors, possibly because of a low temperature of the melting event and/or a shorter duration of melting. The Δ17O values of relict olivine grains in nine chondrules range from -17.9‰ to -3.4‰, while most of them overlap the range of the host chondrule values. Similar to those reported from multiple carbonaceous chondrites (Acfer 094, Y-82094, CO, and CV), the Δ17O ∼ -5‰ and high Mg# (≥99) chondrules, which might derive from a reduced reservoir with limited dust enrichments (∼50 × Solar System), dominate

  12. Organic Power Electronics: Transistor Operation in the kA/cm2 Regime.

    PubMed

    Klinger, Markus P; Fischer, Axel; Kaschura, Felix; Widmer, Johannes; Kheradmand-Boroujeni, Bahman; Ellinger, Frank; Leo, Karl

    2017-03-17

    In spite of interesting features as flexibility, organic thin-film transistors have commercially lagged behind due to the low mobilities of organic semiconductors associated with hopping transport. Furthermore, organic transistors usually have much larger channel lengths than their inorganic counterparts since high-resolution structuring is not available in low-cost production schemes. Here, we present an organic permeable-base transistor (OPBT) which, despite extremely simple processing without any high-resolution structuring, achieve a performance beyond what has so far been possible using organic semiconductors. With current densities above 1 kA cm -2 and switching speeds towards 100 MHz, they open the field of organic power electronics. Finding the physical limits and an effective mobility of only 0.06 cm 2  V -1s -1 , this OPBT device architecture has much more potential if new materials optimized for its geometry will be developed.

  13. Plasma flux-dependent lipid A deactivation

    NASA Astrophysics Data System (ADS)

    Chang, Hung-Wen; Hsu, Cheng-Che; Ahmed, Musahid; Liu, Suet Yi; Fang, Yigang; Seog, Joonil; Oehrlein, Gottlieb S.; Graves, David B.

    2014-06-01

    This paper reports the influence of gas plasma flux on endotoxin lipid A film deactivation. To study the effect of the flux magnitude of reactive species, a modified low-pressure inductively coupled plasma (ICP) with O radical flux ˜1016 cm-2 s-1 was used. After ICP exposures, it was observed that while the Fourier transform infrared absorbance of fatty chains responsible for the toxicity drops by 80% through the film, no obvious film endotoxin deactivation is seen. This is in contrast to that previously observed under low flux exposure conducted in a vacuum beam system: near-surface only loss of fatty chains led to significant film deactivation. Secondary ion mass spectrometry characterization of changes at the film surface did not appear to correlate with the degree of deactivation. Lipid A films need to be nearly completely removed in order to detect significant deactivation under high flux conditions. Additional high reactive species flux experiments were conducted using an atmospheric pressure helium plasma jet and a UV/ozone device. Exposure of lipid A films to reactive species with these devices showed similar deactivation behaviour. The causes for the difference between low and high flux exposures may be due to the nature of near-surface structural modifications as a function of the rate of film removal.

  14. Effect of fertilizer application on NO and N2O fluxes from agricultural fields

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.; Yamulki, Sirwan; Goulding, K. W. T.; Webster, C. P.

    1995-12-01

    Losses of fertilizer as NO and N2O were studied at Broadbalk field, Rothamsted Experimental Station in England, on which subplots have been subject to differing constant levels of fertilizer application for many years. Fluxes of NO and N2O were measured using open- and closed-chamber techniques, respectively. Fluxes from unfertilized soil ranged from 0.3 to 4.8 ng N m-2 s-1 for NO and 0.23 to 3.0 ng N m-2 s-1 for N2O. The corresponding fluxes from the plot with the highest fertilizer application (92 kg N ha-1 yr-1 as NH4NO3) ranged from 0.5 to 64 ng N m-2 s-1 for NO and 0.4 to 240 ng N m-2 s-1 for N2O. Application of increasing amounts of fertilizer substantially enhanced emission rates of both NO and N2O. However, the amount of increase was controlled by competition between the crop and the microorganisms for the available soil nutrients, and loss of N2O to the atmosphere increased sharply at superoptimal levels of fertilizer application. The fertilizer-derived NO and N2O emissions represented approximately 90% of the total emission of these gases during the 25-day sampling period after fertilizer application. The results suggest that while increasing the amount of fertilizer increases both NO and N2O fluxes simultaneously, the NO/N2O emission ratio decreases. Results from laboratory experiments showed that the magnitude of the fertilizer loss as N2O was strongly affected by the form of the applied fertilizer.

  15. Impact of 2-staged stereotactic radiosurgery for treatment of brain metastases ≥ 2 cm.

    PubMed

    Angelov, Lilyana; Mohammadi, Alireza M; Bennett, Elizabeth E; Abbassy, Mahmoud; Elson, Paul; Chao, Samuel T; Montgomery, Joshua S; Habboub, Ghaith; Vogelbaum, Michael A; Suh, John H; Murphy, Erin S; Ahluwalia, Manmeet S; Nagel, Sean J; Barnett, Gene H

    2017-09-22

    OBJECTIVE Stereotactic radiosurgery (SRS) is the primary modality for treating brain metastases. However, effective radiosurgical control of brain metastases ≥ 2 cm in maximum diameter remains challenging and is associated with suboptimal local control (LC) rates of 37%-62% and an increased risk of treatment-related toxicity. To enhance LC while limiting adverse effects (AEs) of radiation in these patients, a dose-dense treatment regimen using 2-staged SRS (2-SSRS) was used. The objective of this study was to evaluate the efficacy and toxicity of this treatment strategy. METHODS Fifty-four patients (with 63 brain metastases ≥ 2 cm) treated with 2-SSRS were evaluated as part of an institutional review board-approved retrospective review. Volumetric measurements at first-stage stereotactic radiosurgery (first SSRS) and second-stage SRS (second SSRS) treatments and on follow-up imaging studies were determined. In addition to patient demographic data and tumor characteristics, the study evaluated 3 primary outcomes: 1) response at first follow-up MRI, 2) time to local progression (TTP), and 3) overall survival (OS) with 2-SSRS. Response was analyzed using methods for binary data, TTP was analyzed using competing-risks methods to account for patients who died without disease progression, and OS was analyzed using conventional time-to-event methods. When needed, analyses accounted for multiple lesions in the same patient. RESULTS Among 54 patients, 46 (85%) had 1 brain metastasis treated with 2-SSRS, 7 patients (13%) had 2 brain metastases concurrently treated with 2-SSRS, and 1 patient underwent 2-SSRS for 3 concurrent brain metastases ≥ 2 cm. The median age was 63 years (range 23-83 years), 23 patients (43%) had non-small cell lung cancer, and 14 patients (26%) had radioresistant tumors (renal or melanoma). The median doses at first and second SSRS were 15 Gy (range 12-18 Gy) and 15 Gy (range 12-15 Gy), respectively. The median duration between stages was 34 days

  16. Mineralogy of iron sulfides in CM1 and CI1 lithologies of the Kaidun breccia: Records of extreme to intense hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Harries, Dennis; Zolensky, Michael E.

    2016-06-01

    The polymict Kaidun microbreccia contains lithologies of C-type chondrites with euhedral iron sulfide crystals of hydrothermal origin. Our FIB-TEM study reveals that acicular sulfides in a CM1 lithology are composed of Fe-rich pyrrhotite with nonintegral vacancy superstructures (NC-pyrrhotite), troilite, and pentlandite, all showing distinct exsolution textures. Based on phase relations in the Fe-Ni-S system, we constrain the temperature of formation of the originally homogeneous monosulfide solid solution to the range of 100-300 °C. In some crystals the exsolution of pentlandite and the microtextural equilibration was incomplete, probably due to rapid cooling. We use thermodynamic modeling to constrain the physicochemical conditions of the extreme hydrothermal alteration in this lithology. Unless the CM1 lithology was sourced from a large depth in the parent body (internal pressure >85 bar) or the temperatures were in the lower range of the interval determined, the water was likely present as vapor. Previously described light δ34S compositions of sulfides in Kaidun's CM1 lithology are likely due to the loss of 34S-enriched H2S during boiling. Platy sulfide crystals in an adjacent, intensely altered CI1 lithology are composed of Fe-poor, monoclinic 4C-pyrrhotite and NC-pyrrhotite and probably formed at lower temperatures and higher fS2 relative to the CM1 lithology. However, a better understanding of the stability of Fe-poor pyrrhotites at temperatures below 300 °C is required to better constrain these conditions.

  17. Diurnal variability of CO2 flux at coastal zone of Taiwan based on eddy covariance observation

    NASA Astrophysics Data System (ADS)

    Chien, Hwa; Zhong, Yao-Zhao; Yang, Kang-Hung; Cheng, Hao-Yuan

    2018-06-01

    In this study, we employed shore-based eddy covariance systems for a continuous measurement of the coastal CO2 flux near the northwestern coast of Taiwan from 2011 to 2015. To ensure the validity of the analysis, the data was selected and filtered with a footprint model and an empirical mode decomposition method. The results indicate that the nearshore air-sea and air-land CO2 fluxes exhibited a significant diurnal variability and a substantial day-night difference. The net air-sea CO2 flux was -1.75 ± 0.98 μmol-C m-2 s-1, whereas the net air-land CO2 flux was 0.54 ± 7.35 μmol-C m-2 s-1, which indicated that in northwestern Taiwan, the coastal water acts as a sink of atmospheric CO2 but the coastal land acts as a source. The Random Forest Method was applied to hierarchize the influence of Chl-a, SST, DO, pH and U10 on air-sea CO2 fluxes. The result suggests that the strength of the diurnal air-sea CO2 flux is strongly influenced by the local wind speed.

  18. Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S.P.; Radha, P.B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (Te ~ 10–40 eV, rho ~ 3–11 g/cm^3) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10^14–10^15 W/cm^2 and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4–1.7 keV. The laser ablation process launches 10–70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra weremore » analyzed using the atomic physic code PRISMSPECT to infer Te and rho in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f =0.06 and f =0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f = 0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  19. Low-Temperature Desorption of N2O from NO on Rutile TiO2(110)-1x1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Boseong; Li, Zhenjun; Kay, Bruce D.

    2014-05-08

    We find that NO dosed on rutile TiO2(110)-1×1 at substrate temperatures as low as 50 K readily reacts to produce N2O which desorbs promptly from the surface leaving an oxygen adatom behind. The desorption rate of N2O reaches a maximum value after 12 sec at an NO flux of 1.2 ×1014 NO/cm2∙sec and then decreases rapidly as the initially clean, reduced TiO2(110) surface with ~5% oxygen vacancies (VO’s) becomes covered with oxygen adatoms and unreacted NO. The maximum desorption rate is also found to increase as the substrate temperature is raised up to about 100 K. Interestingly, themore » N2O desorption during the low-temperature (LT) NO dose is strongly suppressed when molecular oxygen is predosed, whereas it persists on the surface with VO’s passivated by surface hydroxyls. Our results show that the surface charge, not the VO sites, plays a dominant role in the LT N2O desorption induced by a facile NO reduction at such low temperatures.« less

  20. Search for very high energy γ radiation from the radio bright region DR4 of the SNR G78.2+2.1.

    NASA Astrophysics Data System (ADS)

    Prosch, C.; Feigl, E.; Plaga, R.; Arqueros, F.; Cortina, J.; Fernandez, J.; Fernandez, P.; Fonseca, V.; Funk, B.; Gonzalez, J. C.; Haustein, V.; Heinzelmann, G.; Karle, A.; Krawczynski, H.; Krennrich, F.; Kuehn, M.; Lindner, A.; Lorenz, E.; Magnussen, N.; Martinez, S.; Matheis, V.; Merck, M.; Meyer, H.; Mirzoyan, R.; Moeller, H.; Moralejo, A.; Mueller, N.; Padilla, L.; Prahl, J.; Rhode, W.; Samorski, M.; Sanchez, J. A.; Sander, H.; Schmele, D.; Stamm, W.; Wahl, H.; Westerhoff, S.; Wiebel-Sooth, B.; Willmer, M.

    1996-10-01

    Data from the HEGRA air shower array are used to set an upper limit on the emission of γ-radiation above 25(18)TeV from the direction of the radio bright region DR4 within the SNR G78.2+2.1 of 2.5(7.1)x10^-13^cm^-2^/s. The shock front of SNR G78.2+2.1 probably recently overtook the molecular cloud Cong 8 which then acts as a target for the cosmic rays produced within the SNR, thus leading to the expectation of enhanced γ-radiation. Using a model of Drury, Aharonian and Voelk which assumes that SNRs are the sources of galactic cosmic rays via first order Fermi acceleration, we calculated a theoretical prediction for the γ-ray flux from the DR4 region and compared it with our experimental flux limit. Our `best estimate' value for the predicted flux lies a factor of about 18 above the upper limit for γ-ray energies above 25TeV. Possible reasons for this discrepancy are discussed.

  1. Operation of low-noise single-gap RPC modules exposed to ionisation rates up to 1 kHz /cm2

    NASA Astrophysics Data System (ADS)

    Ćwiok, M.; Dominik, W.; Górski, M.; Królikowski, J.

    2004-11-01

    Two single gap medium-size RPC modules, made of bakelite plates of very good mechanical quality of the surface and having initial volume resistivity of 1 ×1010 Ω cm, were tested in the Gamma Irradiation Facility at CERN at ionisation rates up to 1 kHz /cm2. The internal surfaces facing the gas volume of one RPC module were cladded with a thin layer of linseed oil varnish for comparison of oiled and non-oiled RPC operation. The results refer to the gas mixture of C2H2F4/isobutane (97:3) with SF6 addition below 1%. The single gap modules exhibited full detection efficiency plateau for the high voltage range of about 1 kV at full intensity of gamma rays. Good timing characteristics allowed to reach 95% efficiency at fully opened irradiation source with time window of 20 ns. The intrinsic noise rate for a non-oiled and an oiled RPC gap was, respectively, below 5 and 1 Hz /cm2 at full efficiency over 1 kV voltage range.

  2. Version 2 Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF2)

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.; Shie, Chung-Lin; Starr, David O'C. (Technical Monitor)

    2002-01-01

    Information on the turbulent fluxes of momentum, moisture, and heat at the air-sea interface is essential in improving model simulations of climate variations and in climate studies. We have derived a 13.5-year (July 1987-December 2000) dataset of daily surface turbulent fluxes over global oceans from the Special Sensor Mcrowave/Imager (SSM/I) radiance measurements. This dataset, version 2 Goddard Satellite-based Surface Turbulent Fluxes (GSSTF2), has a spatial resolution of 1 degree x 1 degree latitude-longitude and a temporal resolution of 1 day. Turbulent fluxes are derived from the SSM/I surface winds and surface air humidity, as well as the 2-m air and sea surface temperatures (SST) of the NCEP/NCAR reanalysis, using a bulk aerodynamic algorithm based on the surface layer similarity theory.

  3. Magnetic flux relaxation in YBa2Cu3O(7-x) thin film: Thermal or athermal

    NASA Technical Reports Server (NTRS)

    Vitta, Satish; Stan, M. A.; Warner, Joseph D.; Alterovitz, Samuel A.

    1992-01-01

    The magnetic flux relaxation behavior of YBa2Cu3O(7-x) thin film on LaAlO3 for H parallel c was studied in the range of 4.2-40 k and 0.2-1.0 T. Both the normalized flux relaxation rate (S) and the net flux pinning energy (U) increase continuously from 1.3 x 10 exp -2 to 3.0 x 10 exp -2 and from 70-240 meV respectively, as the temperature (T) increases from 10 to 40 K. This behavior is consistent with the thermally activated flux motion model. At low temperatures, however, S is found to decrease much more slowly as compared with kT, in contradiction to the thermal activation model. This behavior is discussed in terms of the athermal quantum tunneling of flux lines. The magnetic field dependence of U, however, is not completely understood.

  4. Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.

    PubMed

    Ekama, G A; Marais, P

    2004-01-01

    The applicability of the 1D idealized flux theory (1DFT) for design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated from the 2D hydrodynamic model SettlerCAD using as a basis 35 full scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25 to 4.1 m side water depth, with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the sloping bottom shallow (1.5-2.5 m SWD) Dutch SSTs tested by STOWa and the Watts et al. SST, all with doubled SWDs, and the Darvill new (4.1 m) and old (2.5 m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also done. While the design of the internal features of the SST, such as baffling, have a marked influence on the effluent SS concentration for underloaded SSTs, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST, In the meantime until more information is obtained, it would appear that from the simulations so far that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais remains a reasonable value to apply in the design of full scale SSTs--for deep SSTs (4 m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5 m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, that this be avoided and that (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the

  5. Mars - VLA observations of the northern hemisphere and the north polar region at wavelengths of 2 and 6 cm

    NASA Technical Reports Server (NTRS)

    Rudy, Donald J.; Muhleman, Duane O.; Berge, Glenn L.; Jakosky, Bruce M.; Christensen, Philip R.

    1987-01-01

    Calculations based on 2- and 6-cm observations of Mars with the A configuration of the VLA have yielded a whole-disk effective dielectric constant of 2.34 + or - 0.05, implying a subsurface density of 1.24 + or - 0.11 g/cu cm at 2 cm, as well as 1.45 + or - 0.10 g/cu cm effective density and 2.70 + or - 0.10 dielectric constant at 6 cm. These parameters have also been estimated as a function of latitude over the 15 deg S - 60 deg N range; subsurface radio absorption length was estimated to be about 15 wavelengths at most of these latitudes. Most of the subsurface density calculations yielded results in the 1-2-g/cu cm range, implying that the subsurface is not very different from the surface observed by Viking and Mariner spacecraft; the decrease in correlation with depth is in keeping with slow variation of the subsurface in the near-subsurface region.

  6. Collisional relaxation of O2(X^3Σ _g^ -, υ = 1) and O2(a1Δg, υ = 1) by atmospherically relevant species

    NASA Astrophysics Data System (ADS)

    Pejaković, Dušan A.; Campbell, Zachary; Kalogerakis, Konstantinos S.; Copeland, Richard A.; Slanger, Tom G.

    2011-09-01

    Laboratory measurements are reported of the rate coefficient for collisional removal of O2(X^3Σ _g^ -, υ = 1) by O(3P), and the rate coefficients for removal of O2(a1Δg, υ = 1) by O2, CO2, and O(3P). A two-laser method is employed, in which the pulsed output of the first laser at 285 nm photolyzes ozone to produce oxygen atoms and O2(a1Δg, υ = 1), and the output of the second laser detects O2(a1Δg, υ = 1) via resonance-enhanced multiphoton ionization. The kinetics of O2(X^3Σ _g^ -, υ = 1) + O(3P) relaxation is inferred from the temporal evolution of O2(a1Δg, υ = 1), an approach enabled by the rapid collision-induced equilibration of the O2(X^3Σ _g^ -, υ = 1) and O2(a1Δg, υ = 1) populations in the system. The measured O2(X^3Σ _g^ -, υ = 1) + O(3P) rate coefficient is (2.9 ± 0.6) × 10-12 cm3 s-1 at 295 K and (3.4 ± 0.6) × 10-12 cm3 s-1 at 240 K. These values are consistent with the previously reported result of (3.2 ± 1.0) × 10-12 cm3 s-1, which was obtained at 315 K using a different experimental approach [K. S. Kalogerakis, R. A. Copeland, and T. G. Slanger, J. Chem. Phys. 123, 194303 (2005)]. For removal of O2(a1Δg, υ = 1) by O(3P), the upper limits for the rate coefficient are 4 × 10-13 cm3 s-1 at 295 K and 6 × 10-13 cm3 s-1 at 240 K. The rate coefficient for removal of O2(a1Δg, υ = 1) by O2 is (5.6 ± 0.6) × 10-11 cm3 s-1 at 295 K and (5.9 ± 0.5) × 10-11 cm3 s-1 at 240 K. The O2(a1Δg, υ = 1) + CO2 rate coefficient is (1.5 ± 0.2) × 10-14 cm3 s-1 at 295 K and (1.2 ± 0.1) × 10-14 cm3 s-1 at 240 K. The implications of the measured rate coefficients for modeling of atmospheric emissions are discussed.

  7. Variations in the Strength of the Infrared Forbidden 2328.2 cm-1 Fundamental of Solid N2 in Binary Mixtures

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Mead, Susan (Technical Monitor)

    2002-01-01

    We present the 2335-2325 cm(exp -1) infrared spectra and band positions, profiles, and strengths (A values) of solid nitrogen and binary mixtures of N2 with other molecules at 12 K. The data demonstrate that the strength of the infrared forbidden N2 fundamental near 2328 cm(exp -1) is moderately enhanced in the presence of NH3, strongly enhanced in the presence of H2O and very strongly enhanced in the presence of CO2, but is not significantly affected by CO, CH4, or O2. The mechanisms for the enhancements in N2-NH3 and N2-H2O mixtures are fundamentally different from those proposed for N2-CO2 mixtures. In the first case, interactions involving hydrogen-bonding are likely the cause. In the latter, a resonant exchange between the N2 stretching fundamental and the O-18=C-12 asymmetric stretch of O-18C-12O-16 is indicated. The implications of these results for several astrophysical issues are briefly discussed.

  8. Temporal integration of soil N2O fluxes: validation of IPNOA station automatic chamber prototype.

    PubMed

    Laville, P; Bosco, S; Volpi, I; Virgili, G; Neri, S; Continanza, D; Bonari, E

    2017-09-04

    The assessment of nitrous oxide (N 2 O) fluxes from agricultural soil surfaces still poses a major challenge to the scientific community. The evaluations of integrated soil fluxes of N 2 O are difficult owing to their lower emissions when compared with CO 2 . These emissions are also sporadic as environmental conditions act as a limiting factor. A station prototype was developed to integrate annual N 2 O and CO 2 emissions using an automatic chamber technique and infrared spectrometers within the LIFE project (IPNOA: LIFE11 ENV/IT/00032). It was installed from June 2014 to October 2015 in an experimental maize field in Tuscany. The detection limits for the fluxes were evaluated up to 1.6 ng N-N 2 O m 2  s -1 and 0.3 μg C-CO 2  m 2  s -1 . A cross-comparison carried out in September 2015 with the "mobile IPNOA prototype"; a high-sensibility transportable instrument already validated provided evidence of very similar values and highlighted flux assessment limitations according to the gas analyzers used. The permanent monitoring device showed that temporal distribution of N 2 O fluxes can be very large and discontinuous over short periods of less than 10 days and that N 2 O fluxes were below the detection limit of the instrumentation during approximately 70% of the measurement time. The N 2 O emission factors were estimated to 1.9% in 2014 and 1.7% in 2015, within the range of IPCC assessments.

  9. GIANT METREWAVE RADIO TELESCOPE DETECTION OF TWO NEW H I 21 cm ABSORBERS AT z ≈ 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanekar, N., E-mail: nkanekar@ncra.tifr.res.in

    2014-12-20

    I report the detection of H I 21 cm absorption in two high column density damped Lyα absorbers (DLAs) at z ≈ 2 using new wide-band 250-500 MHz receivers on board the Giant Metrewave Radio Telescope. The integrated H I 21 cm optical depths are 0.85 ± 0.16 km s{sup –1} (TXS1755+578) and 2.95 ± 0.15 km s{sup –1} (TXS1850+402). For the z = 1.9698 DLA toward TXS1755+578, the difference in H I 21 cm and C I profiles and the weakness of the radio core suggest that the H I 21cm absorption arises toward radio components in the jet,more » and that the optical and radio sightlines are not the same. This precludes an estimate of the DLA spin temperature. For the z = 1.9888 DLA toward TXS1850+402, the absorber covering factor is likely to be close to unity, as the background source is extremely compact, with the entire 5 GHz emission arising from a region of ≤ 1.4 mas in size. This yields a DLA spin temperature of T{sub s} = (372 ± 18) × (f/1.0) K, lower than typical T{sub s} values in high-z DLAs. This low spin temperature and the relatively high metallicity of the z = 1.9888 DLA ([Zn/H] =(– 0.68 ± 0.04)) are consistent with the anti-correlation between metallicity and spin temperature that has been found earlier in damped Lyα systems.« less

  10. Identification of the 1s2s2p 4P5/2-->1s22s 2S1/2 magnetic quadrupole inner-shell satellite line in the Ar16+ K-shell x-ray spectrum

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Bitter, M.; Hey, D.; Reed, K. J.

    2002-09-01

    We have identified the dipole-forbidden 1s2s2p 4P5/2-->1s22s 2S1/2 transition in lithiumlike Ar15+ in high-resolution K-shell x-ray emission spectra recorded at the Livermore EBIT-II electron-beam ion trap and the Princeton National Spherical Tokamak Experiment. Unlike other Ar15+ satellite lines, which can be excited by dielectronic recombination, the line is exclusively excited by electron-impact excitation. Its predicted radiative rate is comparable to that of the well-known 1s2p 3P1-->1s2 1S0 magnetic quadrupole transition in heliumlike Ar16+. As a result, it can also only be observed in low-density plasma. We present calculations of the electron-impact excitation cross sections of the innershell excited Ar15+ satellite lines, including the magnetic sublevels needed for calculating the linear line polarization. We compare these calculations to the relative magnitudes of the observed 1s2s2p-->1s22s transitions and find good agreement, confirming the identification of the lithiumlike 1s2s2p 4P5/2-->1s22s 2S1/2 magnetic quadrupole line.

  11. Combining two complementary micrometeorological methods to measure CH4 and N2O fluxes over pasture

    NASA Astrophysics Data System (ADS)

    Laubach, Johannes; Barthel, Matti; Fraser, Anitra; Hunt, John E.; Griffith, David W. T.

    2016-03-01

    New Zealand's largest industrial sector is pastoral agriculture, giving rise to a large fraction of the country's emissions of methane (CH4) and nitrous oxide (N2O). We designed a system to continuously measure CH4 and N2O fluxes at the field scale on two adjacent pastures that differed with respect to management. At the core of this system was a closed-cell Fourier transform infrared (FTIR) spectrometer, which measured the mole fractions of CH4, N2O and carbon dioxide (CO2) at two heights at each site. In parallel, CO2 fluxes were measured using eddy-covariance instrumentation. We applied two different micrometeorological ratio methods to infer the CH4 and N2O fluxes from their respective mole fractions and the CO2 fluxes. The first is a variant of the flux-gradient method, where it is assumed that the turbulent diffusivities of CH4 and N2O equal that of CO2. This method was reliable when the CO2 mole-fraction difference between heights was at least 4 times greater than the FTIR's resolution of differences. For the second method, the temporal increases of mole fractions in the stable nocturnal boundary layer, which are correlated for concurrently emitted gases, are used to infer the unknown fluxes of CH4 and N2O from the known flux of CO2. This method was sensitive to "contamination" from trace gas sources other than the pasture of interest and therefore required careful filtering. With both methods combined, estimates of mean daily CH4 and N2O fluxes were obtained for 56 % of days at one site and 73 % at the other. Both methods indicated both sites as net sources of CH4 and N2O. Mean emission rates for 1 year at the unfertilised, winter-grazed site were 8.9 (±0.79) nmol CH4 m-2 s-1 and 0.38 (±0.018) nmol N2O m-2 s-1. During the same year, mean emission rates at the irrigated, fertilised and rotationally grazed site were 8.9 (±0.79) nmol CH4 m-2 s-1 and 0.58 (±0.020) nmol N2O m-2 s-1. At this site, the N2O emissions amounted to 1.21 (±0.15) % of the nitrogen

  12. Methane flux across the air-water interface - Air velocity effects

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  13. G0S2: A small giant controller of lipolysis and adipose-liver fatty acid flux.

    PubMed

    Zhang, Xiaodong; Heckmann, Bradlee L; Campbell, Latoya E; Liu, Jun

    2017-10-01

    The discovery of adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) provided a major paradigm shift in the understanding of intracellular lipolysis in both adipocytes and nonadipocyte cells. The subsequent discovery of G0/G1 switch gene 2 (G0S2) as a potent endogenous inhibitor of ATGL revealed a unique mechanism governing lipolysis and fatty acid (FA) availability. G0S2 is highly conserved in vertebrates, and exhibits cyclical expression pattern between adipose tissue and liver that is critical to lipid flux and energy homeostasis in these two tissues. Biochemical and cell biological studies have demonstrated that a direct interaction with ATGL mediates G0S2's inhibitory effects on lipolysis and lipid droplet degradation. In this review we examine evidence obtained from recent in vitro and in vivo studies that lends support to the proof-of-principle concept that G0S2 functions as a master regulator of tissue-specific balance of TG storage vs. mobilization, partitioning of metabolic fuels between adipose and liver, and the whole-body adaptive energy response. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Generalized analytical model for benthic water flux forced by surface gravity waves

    USGS Publications Warehouse

    King, J.N.; Mehta, A.J.; Dean, R.G.

    2009-01-01

    A generalized analytical model for benthic water flux forced by linear surface gravity waves over a series of layered hydrogeologic units is developed by adapting a previous solution for a hydrogeologic unit with an infinite thickness (Case I) to a unit with a finite thickness (Case II) and to a dual-unit system (Case III). The model compares favorably with laboratory observations. The amplitude of wave-forced benthic water flux is shown to be directly proportional to the amplitude of the wave, the permeability of the hydrogeologic unit, and the wave number and inversely proportional to the kinematic viscosity of water. A dimensionless amplitude parameter is introduced and shown to reach a maximum where the product of water depth and the wave number is 1.2. Submarine groundwater discharge (SGD) is a benthic water discharge flux to a marine water body. The Case I model estimates an 11.5-cm/d SGD forced by a wave with a 1 s period and 5-cm amplitude in water that is 0.5-m deep. As this wave propagates into a region with a 0.3-m-thick hydrogeologic unit, with a no-flow bottom boundary, the Case II model estimates a 9.7-cm/d wave-forced SGD. As this wave propagates into a region with a 0.2-m-thick hydrogeologic unit over an infinitely thick, more permeable unit, the Case III quasi-confined model estimates a 15.7-cm/d wave-forced SGD. The quasi-confined model has benthic constituent flux implications in coral reef, karst, and clastic regions. Waves may undermine tracer and seepage meter estimates of SGD at some locations. Copyright 2009 by the American Geophysical Union.

  15. Atlas of absorption lines from 0 to 17 900 cm(-1)

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Rothman, L. S.; Rinsland, C. P.; Smith, M. A. H.; Richardson, D. J.; Larsen, J. C.

    1981-01-01

    Plots of absorption line strength versus line position for wavenumbers from 0 to 17,900 cm(-1) are shown for 20 atmospheric gases (H2O, CO2, O3, N2O, CO, CH4, O2, NO, SO2, NO2, NH3, HNO3, OH, HF, HCl, HBr, HI, ClO, OCS, H2CO). Also shown are similar plots of lower-state energy values for adsorption lines for the strongly adsorbing atmospheric gases (H2O, CO2, O3, and CH4) for wavenumbers from 0 to 5000 cm(-1).

  16. Frequency-agile, rapid scanning spectroscopy: absorption sensitivity of 2 × 10-12 cm-1 Hz-1/2 with a tunable diode laser

    NASA Astrophysics Data System (ADS)

    Long, D. A.; Truong, G.-W.; van Zee, R. D.; Plusquellic, D. F.; Hodges, J. T.

    2014-03-01

    We present ultrasensitive measurements of molecular absorption using frequency-agile rapid scanning, cavity ring-down spectroscopy with an external-cavity diode laser. A microwave source that drives an electro-optic phase modulator with a bandwidth of 20 GHz generates pairs of sidebands on the probe laser. The optical cavity provides for high sensitivity and filters the carrier and all but a single, selected sideband. Absorption spectra were acquired by stepping the tunable sideband from mode-to-mode of the ring-down cavity at a rate that was limited only by the cavity decay time. This approach allows for scanning rates of 8 kHz per cavity resonance, a minimum detectable absorption coefficient of 1.7 × 10-11 cm-1 after only 20 ms of averaging, and a noise-equivalent absorption coefficient of 1.7 × 10-12 cm-1 Hz-1/2. By comparison with cavity-enhanced laser absorption spectrometers reported in the literature, the present system is, to the best of our knowledge, among the most sensitive and has by far the highest spectrum scanning rate.

  17. Preliminary results on yield and CO2 fluxes when using alternate wetting and drying on different varieties of European rice

    NASA Astrophysics Data System (ADS)

    Oliver, Viktoria; Monaco, Stefano; Volante, Andrea; Cochrane, Nicole; Gennaro, Massimo; Orasen, Gabriele; Valè, Giampiero; Price, Adam; Arn Teh, Yit

    2016-04-01

    potential, PAR) were collected concomitantly. Above and belowground biomass were determined by destructively harvesting at the end of the growing season. Belowground biomass was estimated by manually extracting roots from 30 cm deep soil cores and aboveground biomass estimated by collecting and weighing the rachis, grain and straw on a 1 metre linear section from every variety of rice. Overall, there was no significant effect between AWD and PF systems on rough grain production (863 and 822 g DM m-2) or straw yield (776 and 813 g DM m-2) for PF and AWD, respectively. There was also no significant difference for net ecosystem exchange (NEE) (-10.83 ± 1.10 and -9.71 ± 1.17 mg C m-2 s-1) or ecosystem respiration (Re) (6.86 ± 0.63 and 6.26 ± 0.61 mg C m-2 s-1), with the exception of one French variety (Gageron). This cultivar showed a significant increase in NEE under AWD (PF = -13.61 ± 2.89 and AWD = -17.63 ± 5.33 mg C m-2 s-1). The results from this study highlight that this novel water management strategy for European rice can have multiple environmental benefits without sacrificing yield.

  18. CO2 flux from Javanese mud volcanism

    PubMed Central

    Burton, M. R.; Arzilli, F.; Chiarugi, A.; Marliyani, G. I.; Anggara, F.; Harijoko, A.

    2017-01-01

    Abstract Studying the quantity and origin of CO2 emitted by back‐arc mud volcanoes is critical to correctly model fluid‐dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s−1 (117 t d−1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d−1, comparable with the expected back‐arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man‐portable active remote sensing instruments for probing natural gas releases, enabling bottom‐up quantification of CO2 fluxes. PMID:28944134

  19. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Melling, Lulie; Hatano, Ryusuke; Goh, Kah Joo

    2005-02-01

    Soil CO2 flux was measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The soil CO2 flux ranged from 100 to 533 mg C m-2 h-1 for the forest ecosystem, 63 to 245 mg C m-2 h-1 for the sago and 46 to 335 mg C m-2 h-1 for the oil palm. Based on principal component analysis (PCA), the environmental variables over all sites could be classified into three components, namely, climate, soil moisture and soil bulk density, which accounted for 86% of the seasonal variability. A regression tree approach showed that CO2 flux in each ecosystem was related to different underlying environmental factors. They were relative humidity for forest, soil temperature at 5 cm for sago and water-filled pore space for oil palm. On an annual basis, the soil CO2 flux was highest in the forest ecosystem with an estimated production of 2.1 kg C m-2 yr-1 followed by oil palm at 1.5 kg C m-2 yr-1 and sago at 1.1 kg C m-2 yr

  20. Experimental study of a linear/non-linear flux rope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeHaas, Timothy; Gekelman, Walter; Van Compernolle, Bart

    2015-08-15

    Flux ropes are magnetic structures of helical field lines, accompanied by spiraling currents. Commonly observed on the solar surface extending into the solar atmosphere, flux ropes are naturally occurring and have been observed by satellites in the near earth and in laboratory environments. In this experiment, a single flux rope (r = 2.5 cm, L = 1100 cm) was formed in the cylindrical, magnetized plasma of the Large Plasma Device (LaPD, L = 2200 cm, r{sub plasma} = 30 cm, n{sub o} = 10{sup 12 }cm{sup −3}, T{sub e} = 4 eV, He). The flux rope was generated by a DC discharge between an electron emitting cathode and anode. This fixes the rope at its source while allowingmore » it to freely move about the anode. At large currents (I > πr{sup 2}B{sub 0}c/2 L), the flux rope becomes helical in structure and oscillates about a central axis. Under varying Alfven speeds and injection current, the transition of the flux rope from stable to kink-unstable was examined. As it becomes non-linear, oscillations in the magnetic signals shift from sinusoidal to Sawtooth-like, associated with elliptical motion of the flux rope; or the signal becomes intermittent as its current density increases.« less

  1. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles

    NASA Astrophysics Data System (ADS)

    D'Amelio, M. T. S.; Gatti, L. V.; Miller, J. B.; Tans, P.

    2009-11-01

    Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N2O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rainforest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N2O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajós National Forest (SAN) and Cuieiras Biologic Reserve (MAN), and the estimation of N2O fluxes for regions upwind of these sites. To our knowledge, these regional scale N2O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. The fluxes upwind of MAN exhibited little seasonality, and the annual mean was 2.1±1.0 mg N2O m-2 day-1, higher than that for fluxes upwind of SAN, which averaged 1.5±1.6 mg N2O m-2 day-1. The higher rainfall around the MAN site could explain the higher N2O emissions, as a result of increased soil moisture accelerating microbial nitrification and denitrification processes. For fluxes from the coast to SAN seasonality is present for all years, with high fluxes in the months of March through May, and in November through December. The first peak of N2O flux is strongly associated with the wet season. The second peak of high N2O flux recorded at SAN occurs during the dry season and can not be easily explained. However, about half of the dry season profiles exhibit significant correlations with CO, indicating a larger than expected source of N2O from biomass burning. The average CO:N2O ratio for all profiles sampled during the dry season is 94±77 mol CO:mol N2O and suggests a larger biomass burning contribution to the global N2O budget than previously reported.

  2. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles

    NASA Astrophysics Data System (ADS)

    D'Amelio, M. T. S.; Gatti, L. V.; Miller, J. B.; Tans, P.

    2009-08-01

    Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N2O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rainforest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N2O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajós National Forest (SAN) and Cuieiras Biologic Reserve (MAN), and the estimation of N2O fluxes for regions upwind of these sites. To our knowledge, these regional scale N2O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. The fluxes upwind of MAN exhibited little seasonality, and the annual mean was 2.1±1.0 mg N2O m-2 day-1, higher than that for fluxes upwind of SAN, which averaged 1.5±1.6 mg N2O m-2 day-1. The higher rainfall around the MAN site could explain the higher N2O emissions. For fluxes from the coast to SAN seasonality is present for all years, with high fluxes in the months of March through May, and in November through December. The first peak of N2O flux is strongly associated with the wet season. The second peak of high N2O flux recorded at SAN occurs during the dry season and can not be easily explained. However, about half of the dry season profiles exhibit significant correlations with CO, indicating a larger than expected source of N2O from biomass burning. The average CO:N2O ratio for all profiles sampled during the dry season is 94±77 mol CO:mol N2O and suggests a larger biomass burning contribution to the global N2O budget than previously reported.

  3. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets

    NASA Astrophysics Data System (ADS)

    Miller, Michael F.; Kessler, William J.; Allen, Mark G.

    1996-08-01

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.

  4. High-resolution laser absorption spectroscopy of ozone near 1129.4 cm (-1)

    NASA Technical Reports Server (NTRS)

    Majorana, L. N.

    1981-01-01

    A Beer's Law experiment was performed with a tunable diode laser to determine self broadened line shape parameters of one infrared absorption ozone line in the nu1 band for ten pressures from 0.26 to 6.29 torr at 285 K. The SO2 line positions were used for wavelength calibration. Line shapes were iteratively fitted to the Voigt function at a Doppler width of 29.54 MHz (HWHM) resulting in values for the integrated line strength, (S), of (0.144 +/- 0.007) x 10 to the minus 20th/cm molecule/cu cm, line center frequency, nu sub o, of 1129.426/cm and the Lorentzian contributions to halfwidth. A linear least squares fit of (alpha sub L)5 as a function of pressure yielded a zero intercept of 15.27 +/- 0.29 MHz (rho = 0.99) and a broadening parameter, (alpha sub L)5, of 5.71 +/- 0.29 MHz/Torr. This results in a line width (FWHM) of 0.144 +/- .007/cm at 760 torr and 285 K.

  5. Flux-pinning and inhomogeneity in MgB 2 /Fe wires

    NASA Astrophysics Data System (ADS)

    Husnjak, O.; Babić, E.; Kušević, I.; Wang, X. L.; Soltanian, S.; Dou, S. X.

    2007-08-01

    Transport critical current densities Jc and irreversibility fields B of undoped and nanoparticle doped (10 wt% SiC) Fe-sheathed MgB 2 wires were measured from 2 to 40 K in magnetic field B≤16 T. For the best segments of wires (≤1 cm) both the magnitude and field variations of Jc and the pinning force density Fp=JcB depend only on the magnitude of B, hence the strength of flux-pinning. B of doped wire for T≤30 K is ˜1.4 times larger than that of undoped and reaches that of NbTi (10 T at 4.2 K) already at 20 K. Accordingly, its high-field Jcs and Fps are large, typically three times larger than the best literature results, and are limited by the porosity and inhomogeneity of the superconducting cores in present-day MgB 2 wires.

  6. Combining two complementary micrometeorological methods to measure CH4 and N2O fluxes over pasture

    NASA Astrophysics Data System (ADS)

    Laubach, J.; Barthel, M.; Fraser, A.; Hunt, J. E.; Griffith, D. W. T.

    2015-09-01

    New Zealand's largest industrial sector is pastoral agriculture, giving rise to a large fraction of the country's emissions of methane (CH4) and nitrous oxide (N2O). We designed a system to continuously measure CH4 and N2O fluxes at the field scale on two adjacent pastures that differed with respect to management. At the core of this system was a closed-cell Fourier-transform infrared spectrometer (FTIR), measuring the mole fractions of CH4, N2O and carbon dioxide (CO2) at two heights at each site. In parallel, CO2 fluxes were measured using eddy-covariance instrumentation. We applied two different micrometeorological ratio methods to infer the CH4 and N2O fluxes from their respective mole fractions and the CO2 fluxes. The first is a variant of the flux-gradient method, where it is assumed that the turbulent diffusivities of CH4 and N2O equal that of CO2. This method was reliable when the CO2 mole-fraction difference between heights was at least 4 times greater than the FTIR's resolution of differences. For the second method, the temporal increases of mole fractions in the stable nocturnal boundary layer, which are correlated for concurrently-emitted gases, are used to infer the unknown fluxes of CH4 and N2O from the known flux of CO2. This method was sensitive to "contamination" from trace gas sources other than the pasture of interest and therefore required careful filtering. With both methods combined, estimates of mean daily CH4 and N2O fluxes were obtained for 60 % of days at one site and 77 % at the other. Both methods indicated both sites as net sources of CH4 and N2O. Mean emission rates for one year at the unfertilised, winter-grazed site were 8.2 (± 0.91) nmol CH4 m-2 s-1 and 0.40 (± 0.018) nmol N2O m-2 s-1. During the same year, mean emission rates at the irrigated, fertilised and rotationally-grazed site were 7.0 (± 0.89) nmol CH4 m-2 s-1 and 0.57 (± 0.019) nmol N2O m-2 s-1. At this site, the N2O emissions amounted to 1.19 (± 0.15) % of the

  7. Synthesis and characterization of nanotubes from misfit compounds (LnS)1+yTaS2 (Ln= Pr, Sm, Gd, Yb).

    PubMed

    Tenne, Reshef; Serra, Marco; Stolovas, Dalit; Houben, Lothar; Popovitz-Biro, Ronit; Pinkas, Iddo; Kampmann, Felix; Maultzsch, Janina; Joselevich, Ernesto

    2018-06-06

    The synthesis and characterization of nanotubes from the misfit layered compounds (MLC) (LnS)1+yTaS2 (shortly denoted as LnS-TaS2) (Ln= Pr, Sm, Gd and Yb), not reported before, are described (the bulk compound YbS-LaS2 was not documented before). Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) show that the interlayer spacing along the c-axis decrease with increasing atomic number of the lanthanide atom, suggesting tighter interaction between the LnS layer and the TaS2 for the late lanthanides. The Raman spectra of the tubules were studied and compared to the bulk MLC compounds. Like bulk MLC, the Raman spectra can be divided into the low frequency modes (110-150 cm-1) of the LnS lattice and the high frequency (250-400 cm-1) of the TaS2 lattice. The Raman spectra indicate that the vibrational lattice modes of the strained layers in the tubes are stiffer than those in the bulk compounds. Furthermore, the modes of the late lanthanides are higher in energy compared with the earlier lanthanides, suggesting larger charge transfer between the LnS and the TaS2 layers for the late lanthanides. Polarized Raman measurements showed the expected binodal intensity profile (antenna effect). The intensity ratio of the Raman signal showed that the E2g mode of TaS2 is more sensitive to the light polarization effect than its A1g mode. These nanotubes are expected to reveal interesting low temperature quasi-1D transport behavior. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Benthic fluxes in San Francisco Bay

    USGS Publications Warehouse

    Hammond, Douglas E.; Fuller, C.; Harmon, D.; Hartman, Blayne; Korosec, M.; Miller, L.G.; Rea, R.; Warren, S.; Berelson, W.; Hager, S.W.

    1985-01-01

    Measurements of benthic fluxes have been made on four occasions between February 1980 and February 1981 at a channel station and a shoal station in South San Francisco Bay, using in situ flux chambers. On each occasion replicate measurements of easily measured substances such as radon, oxygen, ammonia, and silica showed a variability (??1??) of 30% or more over distances of a few meters to tens of meters, presumably due to spatial heterogeneity in the benthic community. Fluxes of radon were greater at the shoal station than at the channel station because of greater macrofaunal irrigation at the former, but showed little seasonal variability at either station. At both stations fluxes of oxygen, carbon dioxide, ammonia, and silica were largest following the spring bloom. Fluxes measured during different seasons ranged over factors of 2-3, 3, 4-5, and 3-10 (respectively), due to variations in phytoplankton productivity and temperature. Fluxes of oxygen and carbon dioxide were greater at the shoal station than at the channel station because the net phytoplankton productivity is greater there and the organic matter produced must be rapidly incorporated in the sediment column. Fluxes of silica were greater at the shoal station, probably because of the greater irrigation rates there. N + N (nitrate + nitrite) fluxes were variable in magnitude and in sign. Phosphate fluxes were too small to measure accurately. Alkalinity fluxes were similar at the two stations and are attributed primarily to carbonate dissolution at the shoal station and to sulfate reduction at the channel station. The estimated average fluxes into South Bay, based on results from these two stations over the course of a year, are (in mmol m-2 d-1): O2 = -27 ?? 6; TCO2 = 23 ?? 6; Alkalinity = 9 ?? 2; N + N = -0.3 ?? 0.5; NH3 = 1.4 ?? 0.2; PO4 = 0.1 ?? 0.4; Si = 5.6 ?? 1.1. These fluxes are comparable in magnitude to those in other temperate estuaries with similar productivity, although the seasonal

  9. Accuracy of free energies of hydration using CM1 and CM3 atomic charges.

    PubMed

    Udier-Blagović, Marina; Morales De Tirado, Patricia; Pearlman, Shoshannah A; Jorgensen, William L

    2004-08-01

    Absolute free energies of hydration (DeltaGhyd) have been computed for 25 diverse organic molecules using partial atomic charges derived from AM1 and PM3 wave functions via the CM1 and CM3 procedures of Cramer, Truhlar, and coworkers. Comparisons are made with results using charges fit to the electrostatic potential surface (EPS) from ab initio 6-31G* wave functions and from the OPLS-AA force field. OPLS Lennard-Jones parameters for the organic molecules were used together with the TIP4P water model in Monte Carlo simulations with free energy perturbation theory. Absolute free energies of hydration were computed for OPLS united-atom and all-atom methane by annihilating the solutes in water and in the gas phase, and absolute DeltaGhyd values for all other molecules were computed via transformation to one of these references. Optimal charge scaling factors were determined by minimizing the unsigned average error between experimental and calculated hydration free energies. The PM3-based charge models do not lead to lower average errors than obtained with the EPS charges for the subset of 13 molecules in the original study. However, improvement is obtained by scaling the CM1A partial charges by 1.14 and the CM3A charges by 1.15, which leads to average errors of 1.0 and 1.1 kcal/mol for the full set of 25 molecules. The scaled CM1A charges also yield the best results for the hydration of amides including the E/Z free-energy difference for N-methylacetamide in water. Copyright 2004 Wiley Periodicals, Inc.

  10. Percolation flux and Transport velocity in the unsaturated zone, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Yang, I.C.

    2002-01-01

    The percolation flux for borehole USW UZ-14 was calculated from 14C residence times of pore water and water content of cores measured in the laboratory. Transport velocity is calculated from the depth interval between two points divided by the difference in 14C residence times. Two methods were used to calculate the flux and velocity. The first method uses the 14C data and cumulative water content data directly in the incremental intervals in the Paintbrush nonwelded unit and the Topopah Spring welded unit. The second method uses the regression relation for 14C data and cumulative water content data for the entire Paintbrush nonwelded unit and the Topopah Spring Tuff/Topopah Spring welded unit. Using the first method, for the Paintbrush nonwelded unit in boreholeUSW UZ-14 percolation flux ranges from 2.3 to 41.0 mm/a. Transport velocity ranges from 1.2 to 40.6 cm/a. For the Topopah Spring welded unit percolation flux ranges from 0.9 to 5.8 mm/a in the 8 incremental intervals calculated. Transport velocity ranges from 1.4 to 7.3 cm/a in the 8 incremental intervals. Using the second method, average percolation flux in the Paintbrush nonwelded unit for 6 boreholes ranges from 0.9 to 4.0 mm/a at the 95% confidence level. Average transport velocity ranges from 0.6 to 2.6 cm/a. For the Topopah Spring welded unit and Topopah Spring Tuff, average percolation flux in 5 boreholes ranges from 1.3 to 3.2 mm/a. Average transport velocity ranges from 1.6 to 4.0 cm/a. Both the average percolation flux and average transport velocity in the PTn are smaller than in the TS/TSw. However, the average minimum and average maximum values for the percolation flux in the TS/TSw are within the PTn average range. Therefore, differences in the percolation flux in the two units are not significant. On the other hand, average, average minimum, and average maximum transport velocities in the TS/TSw unit are all larger than the PTn values, implying a larger transport velocity for the TS

  11. Distinct Mechanisms of the ORANGE Protein in Controlling Carotenoid Flux1[OPEN

    PubMed Central

    Ohali, Shachar; Meir, Ayala; Sa’ar, Uzi; Mazourek, Michael; Lewinsohn, Efraim; Schaffer, Arthur A.; Burger, Joseph

    2017-01-01

    β-Carotene adds nutritious value and determines the color of many fruits, including melon (Cucumis melo). In melon mesocarp, β-carotene accumulation is governed by the Orange gene (CmOr) golden single-nucleotide polymorphism (SNP) through a yet to be discovered mechanism. In Arabidopsis (Arabidopsis thaliana), OR increases carotenoid levels by posttranscriptionally regulating phytoene synthase (PSY). Here, we identified a CmOr nonsense mutation (Cmor-lowβ) that lowered fruit β-carotene levels with impaired chromoplast biogenesis. Cmor-lowβ exerted a minimal effect on PSY transcripts but dramatically decreased PSY protein levels and enzymatic activity, leading to reduced carotenoid metabolic flux and accumulation. However, the golden SNP was discovered to not affect PSY protein levels and carotenoid metabolic flux in melon fruit, as shown by carotenoid and immunoblot analyses of selected melon genotypes and by using chemical pathway inhibitors. The high β-carotene accumulation in golden SNP melons was found to be due to a reduced further metabolism of β-carotene. This was revealed by genetic studies with double mutants including carotenoid isomerase (yofi), a carotenoid-isomerase nonsense mutant, which arrests the turnover of prolycopene. The yofi F2 segregants accumulated prolycopene independently of the golden SNP. Moreover, Cmor-lowβ was found to inhibit chromoplast formation and chloroplast disintegration in fruits from 30 d after anthesis until ripening, suggesting that CmOr regulates the chloroplast-to-chromoplast transition. Taken together, our results demonstrate that CmOr is required to achieve PSY protein levels to maintain carotenoid biosynthesis metabolic flux but that the mechanism of the CmOr golden SNP involves an inhibited metabolism downstream of β-carotene to dramatically affect both carotenoid content and plastid fate. PMID:27837090

  12. Interannual Variability in Soil Trace Gas (CO2, N2O, NO) Fluxes and Analysis of Controllers

    NASA Technical Reports Server (NTRS)

    Potter, C.; Klooster, S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Interannual variability in flux rates of biogenic trace gases must be quantified in order to understand the differences between short-term trends and actual long-term change in biosphere-atmosphere interactions. We simulated interannual patterns (1983-1988) of global trace gas fluxes from soils using the NASA Ames model version of CASA (Carnegie-Ames-Stanford Approach) in a transient simulation mode. This ecosystem model has been recalibrated for simulations driven by satellite vegetation index data from the NOAA Advanced Very High Resolution Radiometer (AVHRR) over the mid-1980s. The predicted interannual pattern of soil heterotropic CO2 emissions indicates that relatively large increases in global carbon flux from soils occurred about three years following the strong El Nino Southern Oscillation (ENSO) event of 1983. Results for the years 1986 and 1987 showed an annual increment of +1 Pg (1015 g) C-CO2 emitted from soils, which tended to dampen the estimated global increase in net ecosystem production with about a two year lag period relative to plant carbon fixation. Zonal discrimination of model results implies that 80-90 percent of the yearly positive increments in soil CO2 emission during 1986-87 were attributable to soil organic matter decomposition in the low-latitudes (between 30 N and 30 S). Soils of the northern middle-latitude zone (between 30 N and 60 N) accounted for the residual of these annual increments. Total annual emissions of nitrogen trace gases (N2O and NO) from soils were estimated to vary from 2-4 percent over the time period modeled, a level of variability which is consistent with predicted interannual fluctuations in global soil CO2 fluxes. Interannual variability of precipitation in tropical and subtropical zones (30 N to 20 S appeared to drive the dynamic inverse relationship between higher annual emissions of NO versus emissions of N2O. Global mean emission rates from natural (heterotrophic) soil sources over the period modeled (1983

  13. Thermal neutron flux mapping in a head phantom

    NASA Astrophysics Data System (ADS)

    Lee, C. L.; Zhou, X.-L.; Harmon, J. F.; Bartholomay, R. W.; Harker, Y. D.; Kudchadker, R. J.

    1999-02-01

    Boron neutron capture therapy (BNCT) is a binary cancer treatment modality in which a boron-containing compound is preferentially loaded into a tumor, followed by irradiation by thermal neutrons. In accelerator-based BNCT, neutrons are produced by charged particle-induced reactions such as 7Li(p, n) 7Be. For deeply seated brain tumors, epithermal (1 eV to 10 kev) neutrons are needed to penetrate the skull cap and subsequently thermalize at the tumor location. Cell damage in BNCT is caused by the high linear energy transfer (LET) products from the 10B(n, α) 7Li reaction. Because the cross section for this reaction is of 1/ v character, the dose due to 10B has essentially the same spatial distribution as the thermal neutron flux. A cylindrical acrylic head phantom (15.24 cm diameter by 21.59 cm length) has been constructed to simulate the patient's head and neck, and acrylic spacers of varying width allow placement of small (active sizes: 0.635 cm diameter by 1.27 cm length and 1.5875 cm diameter by 2.54 cm length) BF 3 proportional counters at nearly all radial and axial locations. Measurements of the thermal flux have also been benchmarked with gold and indium foils (bare and cadmium covered), as well as MCNP simulations. Measurement of the thermal neutron flux using these small BF 3 counters is shown to be adequate for experimentally determining the spatial variation of the 10B dose in head phantoms for accelerator-based BNCT.

  14. Search for diffuse neutrino flux from astrophysical sources with MACRO

    NASA Astrophysics Data System (ADS)

    MACRO Collaboration; Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.

    2003-04-01

    Many galactic and extragalactic astrophysical sources are currently considered promising candidates as high-energy neutrino emitters. Astrophysical neutrinos can be detected as upward-going muons produced in charged-current interactions with the medium surrounding the detector. The expected neutrino fluxes from various models start to dominate on the atmospheric neutrino background at neutrino energies above some tens of TeV. We present the results of a search for an excess of high-energy upward-going muons among the sample of data collected by MACRO during ~5.8 years of effective running time. No significant evidence for this signal was found. As a consequence, an upper limit on the flux of upward-going muons from high-energy neutrinos was set at the level of 1.7×10-14 cm-2s-1sr-1. The corresponding upper limit for the diffuse neutrino flux was evaluated assuming a neutrino power law spectrum. Our result was compared with theoretical predictions and upper limits from other experiments.

  15. Benchmarking and performance analysis of the CM-2. [SIMD computer

    NASA Technical Reports Server (NTRS)

    Myers, David W.; Adams, George B., II

    1988-01-01

    A suite of benchmarking routines testing communication, basic arithmetic operations, and selected kernel algorithms written in LISP and PARIS was developed for the CM-2. Experiment runs are automated via a software framework that sequences individual tests, allowing for unattended overnight operation. Multiple measurements are made and treated statistically to generate well-characterized results from the noisy values given by cm:time. The results obtained provide a comparison with similar, but less extensive, testing done on a CM-1. Tests were chosen to aid the algorithmist in constructing fast, efficient, and correct code on the CM-2, as well as gain insight into what performance criteria are needed when evaluating parallel processing machines.

  16. Ionizing radiation improves glioma-specific targeting of superparamagnetic iron oxide nanoparticles conjugated with cmHsp70.1 monoclonal antibodies (SPION-cmHsp70.1)

    NASA Astrophysics Data System (ADS)

    Shevtsov, Maxim A.; Nikolaev, Boris P.; Ryzhov, Vyacheslav A.; Yakovleva, Ludmila Y.; Marchenko, Yaroslav Y.; Parr, Marina A.; Rolich, Valerij I.; Mikhrina, Anastasiya L.; Dobrodumov, Anatolii V.; Pitkin, Emil; Multhoff, Gabriele

    2015-12-01

    The stress-inducible 72 kDa heat shock protein Hsp70 is known to be expressed on the membrane of highly aggressive tumor cells including high-grade gliomas, but not on the corresponding normal cells. Membrane Hsp70 (mHsp70) is rapidly internalized into tumor cells and thus targeting of mHsp70 might provide a promising strategy for theranostics. Superparamagnetic iron oxide nanoparticles (SPIONs) are contrast negative agents that are used for the detection of tumors with MRI. Herein, we conjugated the Hsp70-specific antibody (cmHsp70.1) which is known to recognize mHsp70 to superparamagnetic iron nanoparticles to assess tumor-specific targeting before and after ionizing irradiation. In vitro experiments demonstrated the selectivity of SPION-cmHsp70.1 conjugates to free and mHsp70 in different tumor cell types (C6 glioblastoma, K562 leukemia, HeLa cervix carcinoma) in a dose-dependent manner. High-resolution MRI (11 T) on T2-weighted images showed the retention of the conjugates in the C6 glioma model. Accumulation of SPION-cmHsp70.1 nanoparticles in the glioma resulted in a nearly 2-fold drop of values in comparison to non-conjugated SPIONs. Biodistribution analysis using NLR-M2 measurements showed a 7-fold increase in the tumor-to-background (normal brain) uptake ratio of SPION-cmHsp70.1 conjugates in glioma-bearing rats in comparison to SPIONs. This accumulation within Hsp70-positive glioma was further enhanced after a single dose (10 Gy) of ionizing radiation. Elevated accumulation of the magnetic conjugates in the tumor due to radiosensitization proves the combination of radiotherapy and application of Hsp70-targeted agents in brain tumors.The stress-inducible 72 kDa heat shock protein Hsp70 is known to be expressed on the membrane of highly aggressive tumor cells including high-grade gliomas, but not on the corresponding normal cells. Membrane Hsp70 (mHsp70) is rapidly internalized into tumor cells and thus targeting of mHsp70 might provide a promising strategy

  17. Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.

    2011-12-01

    NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.

  18. Measurement of the 1s2s ^1S0 - 1s2p ^3P1 interval in helium-like silicon.

    NASA Astrophysics Data System (ADS)

    Redshaw, M.; Harry, R.; Myers, E. G.; Weatherford, C. A.

    2001-05-01

    Accurate calculation of the energy levels of helium-like ions is a basic problem in relativistic atomic theory. For the n=3D2 levels at moderate Z, published calculations give all ``structure'' but not all explicit QED contributions to order (Zα)^4 a.u.(D.R. Plante, W.R. Johnson and J. Sapirstein, Phys. Rev. A 49), 3519 (1994).^, (K.T. Cheng, M.H. Chen, W.R. Johnson and J. Sapirstein, Phys. Rev. A 50), 247 (1994).. Measurements of the 1s2p ^3P - 1s2s ^3S transitions, which lie in the vacuum ultra-violet, are barely precise enough to challenge the theory. However, the intercombination 1s2s ^1S0 - 1s2p ^3P1 interval lies in the infra-red for Z<40 and enables precision measurements using laser spectroscopy(E.G. Myers, J.K. Thompson, E.P. Gavathas, N.R. Claussen, J.D. Silver and D.J.H. Howie, Phys. Rev. Lett. 75), 3637 (1995).. We aim to measure this interval in Si^12+ using a foil-stripped 1 MeV/u ion beam from the Florida State Van de Graaff accelerator and a single-mode c.w. Nd:YAG laser at 1.319 μm. To obtain a sufficient transition probability, the Si^12+ beam is merged co-linearly with the laser light inside an ultra-high finesse build-up cavity. The results should provide a clear test of current and developing calculations of QED contributions in two-electron ions.

  19. The Effect of Breaking Waves on CO_2 Air-Sea Fluxes in the Coastal Zone

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.; García-Nava, Héctor

    2018-03-01

    The influence of wave-associated parameters controlling turbulent CO_2 fluxes through the air-sea interface is investigated in a coastal region. A full year of high-quality data of direct estimates of air-sea CO_2 fluxes based on eddy-covariance measurements is presented. The study area located in Todos Santos Bay, Baja California, Mexico, is a net sink of CO_2 with a mean flux of -1.3 μmol m^{-2}s^{-1} (-41.6 mol m^{-2}yr^{-1} ). The results of a quantile-regression analysis computed between the CO_2 flux and, (1) wind speed, (2) significant wave height, (3) wave steepness, and (4) water temperature, suggest that the significant wave height is the most correlated parameter with the magnitude of the flux but the behaviour of the relation varies along the probability distribution function, with the slopes of the regression lines presenting both positive and negative values. These results imply that the presence of surface waves in coastal areas is the key factor that promotes the increase of the flux from and into the ocean. Further analysis suggests that the local characteristics of the aqueous and atmospheric layers might determine the direction of the flux.

  20. Fixation of chiral smectic liquid crystal (S)-(+)-4-(2-methyl-1-butyloyloxy)phenyl 4-[1-(propenoyloxy) butiloxy] benzoate using UV curing techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afrizal,, E-mail: rizalunj04@yahoo.com; Nurdelima,; Umeir

    2014-03-24

    Chiral Smectic Liquid Crystal (S)-(+)-4-(2-methyl-1-butyloyloxy)phenyl 4-[1-(propenoyloxy) butiloxy] benzoate has been synthesized using method of steglich esterification at room temperature. The mesomorphic behavior of chiral smectic at 55°C that showed schlieren texture in POM analysis. Fixation of structure chiral smectic liquid crystal by means of photopolymerization of monomer (S)-(+)-4-(2-methyl-1-butyloyloxy)phenyl 4-[1-(propenoyloxy) butiloxy] benzoate under UV irradiation which called UV curing techniques. The curing process using UV 3 lamps 100 volt at 60°C for an hour. The product of photopolymerization could be seen by analysis of FTIR spectra both monomer and polymer. FTIR spectra of monomer, two peaks for ester carbonyl and C-Cmore » double bond groups appeared at 1729.09 cm-1and 3123.46 cm{sup −1}. After UV curing process, peak for the carbonyl group at 1729.09 cm{sup −1} decreased and a new peak at 1160.21 cm{sup −1} appeared due to the carbonyl group attached to a C-C bond group and then peak at 3123.46 cm{sup −1} for C-C double bond group was disappeared.« less

  1. Influence of CSN1S2 protein from Caprine milk Etawah Breed (EB) on histology of microglial cells in rat (Rattus norvegicus) Type-2 diabetes mellitus (T2DM)

    NASA Astrophysics Data System (ADS)

    Rika, Margareth; Fatchiyah

    2017-11-01

    Type-2 diabetes mellitus (T2DM) is a degenerative disease that causes an imbalance in the metabolism. The aim of this research is to determine the influences of CSN1S2 on the structure of microglial cells in T2DM. Rats (Rattus norvegicus) were divided into eight groups of treatment with looping three times each between treatment groups (CM) Control. The control is given a milk treatment with doses of 375 mg/kg (CM375), 750 mg/kg (CM750), and 1500 mg/kg (CM1500), T2DM (DMK), and T2DM with CSN1S2 375 mg/kg dose (DM375), 750mg/kg (DM750), and 1500 mg/kg (DM1500). The animal model T2DM was induced by a high-fat diet in the form of feed followed by injection of STZ (dose of 25 mg/kg of animal treatment) and treatment of CSN1S2 for 28 days. Brain organs were taken and analysed in histopathology stained by Hematoxylin-eosin (HE) and observed using Olympus BX53. Based on the results, it was concluded that CSN1S2 protein is influential for induction of microglial cell proliferation in animal models of T2DM, as immunity responds to the inflammatory condition in T2DM.

  2. Ureteroscopic treatment of larger renal calculi (>2 cm).

    PubMed

    Bagley, Demetrius H; Healy, Kelly A; Kleinmann, Nir

    2012-09-01

    To evaluate the current status of ureteroscopic lithotripsy (UL) for treating renal calculi of >2 cm, as advances in flexible ureteroscope design, accessory instrumentation and lithotrites have revolutionised the treatment of urinary calculi. While previously reserved for ureteric and small renal calculi, UL has gained an increasing role in the selective management of larger renal stone burdens. We searched the available databases, including PubMed, Google Scholar, and Scopus, for relevant reports in English, and the article bibliographies to identify additional relevant articles. Keywords included ureteroscopy, lithotripsy, renal calculi, and calculi >2 cm. Retrieved articles were reviewed to consider the number of patients, mean stone size, success rates, indications and complications. In all, nine studies (417 patients) were eligible for inclusion. After one, two or three procedures the mean (range) success rates were 68.2 (23-84)%, 87.1 (79-91)% and 94.4 (90.1-96.7)%, respectively. Overall, the success rate was >90% with a mean of 1.2-2.3 procedures per patient. The overall complication rate was 10.3%, including six (1.4%) intraoperative and 37 (8.9%) postoperative complications, most of which were minor. The most common indications for UL were a failed previous treatment (46%), comorbidities (18.2%), and technical and anatomical factors (12.3%). UL is safe and effective for treating large renal calculi. While several procedures might be required for total stone clearance, UL should be considered a standard approach in the urologist's options treating renal calculi of >2 cm.

  3. Tables of spectral transmission of the atmosphere in the 2660-2750 cm(-1) and 810-980 cm(-1) ranges

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Thermal sounding data from satellites are presented together with a description of transmission function calculations. Tables contain experimental values for transmission of the entire thickness of the atmosphere for two regions of the spectrum: at 2660 to 2750 cm/1 and at 810 to 980 cm/1. The spectrum was recorded on an infrared spectrophotometer.

  4. High CO2 emissions through porous media: Transport mechanisms and implications for flux measurement and fractionation

    USGS Publications Warehouse

    Evans, William C.; Sorey, M.L.; Kennedy, B.M.; Stonestrom, David A.; Rogie, J.D.; Shuster, D.L.

    2001-01-01

    Diffuse emissions of CO2 are known to be large around some volcanoes and hydrothermal areas. Accumulation-chamber measurements of CO2 flux are increasingly used to estimate the total magmatic or metamorphic CO2 released from such areas. To assess the performance of accumulation chamber systems at fluxes one to three orders of magnitude higher than normally encountered in soil respiration studies, a test system was constructed in the laboratory where known fluxes could be maintained through dry sand. Steady-state gas concentration profiles and fractionation effects observed in the 30-cm sand column nearly match those predicted by the Stefan-Maxwell equations, indicating that the test system was functioning successfully as a uniform porous medium. Eight groups of investigators tested their accumulation chamber equipment, all configured with continuous infrared gas analyzers (IRGA), in this system. Over a flux range of ~ 200-12,000 g m-2 day-1, 90% of their 203 flux measurements were 0-25% lower than the imposed flux with a mean difference of - 12.5%. Although this difference would seem to be within the range of acceptability for many geologic investigations, some potential sources for larger errors were discovered. A steady-state pressure gradient of -20 Pa/m was measured in the sand column at a flux of 11,200 g m-2 day-1. The derived permeability (50 darcies) was used in the dusty-gas model (DGM) of transport to quantify various diffusive and viscous flux components. These calculations were used to demonstrate that accumulation chambers, in addition to reducing the underlying diffusive gradient, severely disrupt the steady-state pressure gradient. The resultant diversion of the net gas flow is probably responsible for the systematically low flux measurements. It was also shown that the fractionating effects of a viscous CO2 efflux against a diffusive influx of air will have a major impact on some important geochemical indicators, such as N2/Ar, ??15N-N2, and 4He/22

  5. Temporal variability of nitrous oxide fluxes from a fertilized grassland in Belgium: preliminary results from dynamic closed chambers.

    NASA Astrophysics Data System (ADS)

    Beekkerk van Ruth, Joran; Moureaux, Christine; Degré, Aurore; Jérome, Elisabeth; Beckers, Yves; Bodson, Bernard; Aubinet, Marc

    2013-04-01

    This work presents preliminary results of nitrous oxide (N2O) fluxes measured by dynamic closed chambers from a fertilized grassland grazed by the Belgian Blue breed of cattle. It is part of a project funded by the public service of Wallonia (SPW-DGARNE), whose objectives are to make a carbon/CO2 balance of the grassland (Jérôme et al., 2013) and to quantify CH4 (Dumortier et al., 2013) and N2O fluxes. The site is located in Dorinne (Dorinne Terrestrial Observatory), Belgium (50° 18' 44" N; 4° 58' 07" E; 248 m al.). It is a permanent grassland of ca. 4.2 ha with a moderate slope of 1 to 2 %. Mineral fertilisation took place in March and May 2012. Two cylindrical chambers of 19,2 cm diameter and 11,5 cm height were placed inside a protected area around a micrometeorological station. An infrared gas analyser (Thermofischer 46i) was used in order to measure the N2O concentrations inside of the chambers, closed by automatically controlled lids and ventilated by a constant air flow of 1liter/min. These devices were completed by adjacent soil humidity and temperature sensors. The first measurement campaign took place during June and July 2012. The chambers were installed in the field and N2O fluxes were followed without manipulation. N2O fluxes were characterised by a background emission (between 2 and 10 ngN.m2s-1) on which intense but time limited peaks (between 50 and 300 ngN.m2s-1) superimposed. Peaks were found to be mainly linked to fertilisation and driven by precipitation. Background fluxes were found to correlate positively with soil temperature. Secondly, a manipulation experiment took place in November 2012: two different fertilizer treatments were applied to the chambers. Doses of respectively 100 and 200 kg N/ha of ammonium nitrate were sprayed in the chambers (equivalent to a 8 mm precipitation). N2O fluxes peaked shortly after fertiliser application (respectively 300 and 550 ngN.m2s-1), as well as after a posterior rain event (respectively 800 and 1500

  6. Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet-tail lobe boundary to UVI images: An energy source for the aurora

    NASA Astrophysics Data System (ADS)

    Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.; Russell, C. T.; Parks, G.; Brittnacher, M.; Germany, G.; Spann, J.

    2000-08-01

    In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 RE near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame) ranging from 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly in the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs cm-2 s-1 and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines, the resulting energy flux ranges up to 100 ergs cm-2s-1. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1° mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5° ) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs cm-2s-1. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward propagation of Alfven surface waves with phase velocities of 4000-10000 km/s. During other events

  7. Termites as a factor of spatial differentiation of CO2 fluxes from the soils of monsoon tropical forests in Southern Vietnam

    NASA Astrophysics Data System (ADS)

    Lopes de Gerenyu, Valentin; Anichkin, Alexander

    2016-04-01

    Termites play the key role in biogeochemical transformation of organic matter acting as "moderators" of fluxes of carbon and other nutrients. They destroy not only leave litter but also coarse woody debris. Termites translocate considerable masses of dead organic materials into their houses, which leads to significant accumulations of organic matter in termite mounds. We studied the impact of termite mounds on redistribution of CO2 fluxes from soils in semi-deciduous monsoon tropical forests of southern Vietnam. Field study was performed in the Cat Tien National Park (11°21'-11°48'N, 107°10'-107°34'E). The spatial and temporary dynamics of CO2 fluxes from soils (Andosols) populated by termites were studied in plain lagerstroemia (Lagerstroemia calyculata Kurz) monsoon tropical forests. The rate of CO2 emission from the soil surface was measured by closed chamber method two-three times per month from November 2010 to December 2011. Permanent cylindrical PVC chambers (9 cm in diameter and 15 cm in height) were installed beyond the areas occupied by termite mounds (5 replications). Litter was not removed from the soil surface before the measurements. To estimate the spatial heterogeneity of the CO2 emission fluxes from soils populated by termites, a special 'termite' plot (TerPl) was equipped. It was 10×10 m in size and included three termite mounds: one mound built up by Globitermes sulphureus and two mounds populated by termites of the Odontotermes genus. Overall, 52 PVC chambers were installed permanently on the 'termite' plot (ca. 1 m apart from one another). The CO2 emission rate from TerPl was also measured by chamber closed method once in the dry season (April) and twice through the wet season (July and August). The average rate of CO2 emission from termite mounds was two times higher than that from the surrounding area (SurAr). In the dry season, it comprised 91±7 mg C/m2/h from the surrounding soils and 196±16 mg C/m2/h from the termite mounds. In the

  8. Soil methane and CO2 fluxes in rainforest and rubber plantations

    NASA Astrophysics Data System (ADS)

    Lang, Rong; Blagodatsky, Sergey; Goldberg, Stefanie; Xu, Jianchu

    2017-04-01

    Expansion of rubber plantations in South-East Asia has been a land use transformation trend leading to losses of natural forest cover in the region. Besides impact on ecosystem carbon stocks, this conversion influences the dynamics of greenhouse gas fluxes from soil driven by microbial activity, which has been insufficiently studied. Aimed to understand how land use change affects the soil CO2 and CH4 fluxes, we measured surface gas fluxes, gas concentration gradient, and 13C signature in CH4 and soil organic matter in profiles in a transect in Xishuangbanna, including a rainforest site and three rubber plantation sites with age gradient. Gas fluxes were measured by static chamber method and open chamber respiration system. Soil gases were sampled from installed gas samplers at 5, 10, 30, and 75cm depth at representative time in dry and rainy season. The soil CO2 flux was comparable in rainforest and old rubber plantations, while young rubber plantation had the lowest rate. Total carbon content in the surface soil well explained the difference of soil CO2 flux between sites. All sites were CH4 sinks in dry season and uptake decreased in the order of rainforest, old rubber plantations and young rubber plantation. From dry season to rainy season, CH4 consumption decreased with increasing CH4 concentration in the soil profile at all depths. The enrichment of methane by 13CH4 shifted towards to lowerδ13C, being the evidence of enhanced CH4 production process while net surface methane flux reflected the consumption in wet condition. Increment of CH4 concentration in the profile from dry to rainy season was higher in old rubber plantation compared to rainforest, while the shifting of δ13CH4 was larger in rainforest than rubber sites. Turnover rates of soil CO2 and CH4 suggested that the 0-5 cm surface soil was the most active layer for gaseous carbon exchange. δ13C in soil organic matter and soil moisture increased from rainforest, young rubber plantation to old

  9. AmeriFlux US-Ho1 Howland Forest (main tower)

    DOE Data Explorer

    Hollinger, David [USDA Forest Service; Hollinger, David [USDA Forest Service

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ho1 Howland Forest (main tower). Site Description - Closed conifer forest, minimal disturbance. References: Fernandez et al. (1993), Canadian Journal of Soil Science 73 317-328. Hollinger et al. (1999), Global Change Biology 5: 891-902. Savage KE, Davidson EA (2001), Global Biogeochemical Cycles 15 337-350. Scott et al. (2004), Environmental Management, Vol. 33, Supplement 1, pp. S9-S22. Hollinger et al. (2004), Global Change Biology 10: 1689-1706.

  10. Electrical transport property, thermal stability and oxidation resistance of single crystalline β-Zn4Sb3 prepared using the Bi-Sn mixed-flux method

    NASA Astrophysics Data System (ADS)

    Deng, Shuping; Li, Decong; Chen, Zhong; Tang, Yu; Shen, Lanxian; Deng, Shukang

    2017-12-01

    Single crystal samples β-Zn4Sb3 have been prepared by using Bi-Sn mixed-flux method. The obtained crystals exhibit p-type conduction behavior with carrier concentration varying from 4.40 × 1019 to 18.12 × 1019 cm-3 as carrier mobility changes from 25.8 to 61.5 cm2 V-1 s-1 at room temperature. Electrical transport properties of the samples were optimized by Bi-Sn co-doped, which brought by Bi-Sn mixed-flux. And the maximal power factor of 1.45 × 10-3 W m-1 K-2 is achieved at 510 K for the sample with Bi flux content x = 0.5. Consequently, the oxidation resistance of the sample was determined by exploring the effects of heat treatment in air on electrical transport properties and thermal stability, which the single crystalline β-Zn4Sb3 still possess an excellent oxidation resistance and thermal stability after the heat treatment process.

  11. Interferometric measurement of the 1S/sub 1/2/-2S/sub 1/2/ transition frequency in atomic hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, J.R.M.; Girkin, J.M.; Tolchard, J.M.

    The 1S/sub 1/2/-2S/sub 1/2/ transition frequency in atomic hydrogen has been interferometrically measured by comparison with a reference line in /sup 130/Te/sub 2/ by Doppler-free two-photon laser spectroscopy. The measured 1S/sub 1/2/-2S/sub 1/2/ transition frequency of 2 466 061 397(25) MHz is in good agreement with the theoretical predictions of Erickson modified to take account of recent measurements of the Rydberg constant. This measurement can be used to deduce a value for the ground-state Lamb shift and gives the result of 8182(25) MHz which compares with a value of 8173.248(81) MHz predicted by Erickson.

  12. Self-Driven Photoelectrochemical Splitting of H2S for S and H2 Recovery and Simultaneous Electricity Generation.

    PubMed

    Luo, Tao; Bai, Jing; Li, Jinhua; Zeng, Qingyi; Ji, Youzhi; Qiao, Li; Li, Xiaoyan; Zhou, Baoxue

    2017-11-07

    A novel, facile self-driven photoelectrocatalytic (PEC) system was established for highly selective and efficient recovery of H 2 S and simultaneous electricity production. The key ideas were the self-bias function between a WO 3 photoanode and a Si/PVC photocathode due to their mismatched Fermi levels and the special cyclic redox reaction mechanism of I - /I 3 - . Under solar light, the system facilitated the separation of holes in the photoanode and electrons in the photocathode, which then generated electricity. Cyclic redox reactions were produced in the photoanode region as follows: I - was transformed into I 3 - by photoholes or hydroxyl radicals, H 2 S was oxidized to S by I 3 - , and I 3 - was then reduced to I - . Meanwhile, H + was efficiently converted to H 2 in the photocathode region. In the system, H 2 S was uniquely oxidized to sulfur but not to polysulfide (S x n- ) because of the mild oxidation capacity of I 3 - . High recovery rates for S and H 2 were obtained up to ∼1.04 mg h -1 cm -1 and ∼0.75 mL h -1 cm -1 , respectively, suggesting that H 2 S was completely converted into H 2 and S. In addition, the output power density of the system reached ∼0.11 mW cm -2 . The proposed PEC-H 2 S system provides a self-sustaining, energy-saving method for simultaneous H 2 S treatment and energy recovery.

  13. Hadronic transitions Υ(2S)-->Υ(1S)

    NASA Astrophysics Data System (ADS)

    P. Alexander, J.; Baker, R.; Bebek, C.; Berger, B. E.; Berkelman, K.; Bloom, K.; Boisvert, V.; Cassel, D. G.; Crowcroft, D. S.; Dickson, M.; von Dombrowski, S.; Drell, P. S.; Ecklund, K. M.; Ehrlich, R.; Foland, A. D.; Gaidarev, P.; Galik, R. S.; Gibbons, L.; Gittelman, B.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hopman, P. I.; Kandaswamy, J.; Kim, P. C.; Kreinick, D. L.; Lee, T.; Liu, Y.; Mistry, N. B.; Ng, C. R.; Nordberg, E.; Ogg, M.; Patterson, J. R.; Peterson, D.; Riley, D.; Soffer, A.; Valant-Spaight, B.; Ward, C.; Athanas, M.; Avery, P.; Jones, C. D.; Lohner, M.; Patton, S.; Prescott, C.; Yelton, J.; Zheng, J.; Brandenburg, G.; Briere, R. A.; Ershov, A.; Gao, Y. S.; Kim, D. Y.-J.; Wilson, R.; Yamamoto, H.; Browder, T. E.; Li, Y.; Rodriguez, J. L.; Bergfeld, T.; Eisenstein, B. I.; Ernst, J.; Gladding, G. E.; Gollin, G. D.; Hans, R. M.; Johnson, E.; Karliner, I.; Marsh, M. A.; Palmer, M.; Selen, M.; Thaler, J. J.; Edwards, K. W.; Bellerive, A.; Janicek, R.; Macfarlane, D. B.; Patel, P. M.; Sadoff, A. J.; Ammar, R.; Baringer, P.; Bean, A.; Besson, D.; Coppage, D.; Darling, C.; Davis, R.; Kotov, S.; Kravchenko, I.; Kwak, N.; Zhou, L.; Anderson, S.; Kubota, Y.; Lee, S. J.; O'neill, J. J.; Poling, R.; Riehle, T.; Smith, A.; Alam, M. S.; Athar, S. B.; Ling, Z.; Mahmood, A. H.; Timm, S.; Wappler, F.; Anastassov, A.; Duboscq, J. E.; Fujino, D.; Gan, K. K.; Hart, T.; Honscheid, K.; Kagan, H.; Kass, R.; Lee, J.; Spencer, M. B.; Sung, M.; Undrus, A.; Wanke, R.; Wolf, A.; Zoeller, M. M.; Nemati, B.; Richichi, S. J.; Ross, W. R.; Severini, H.; Skubic, P.; Bishai, M.; Fast, J.; Hinson, J. W.; Menon, N.; Miller, D. H.; Shibata, E. I.; Shipsey, I. P.; Yurko, M.; Glenn, S.; Johnson, S. D.; Kwon, Y.; Roberts, S.; Thorndike, E. H.; Jessop, C. P.; Lingel, K.; Marsiske, H.; Perl, M. L.; Savinov, V.; Ugolini, D.; Wang, R.; Zhou, X.; Coan, T. E.; Fadeyev, V.; Korolkov, I.; Maravin, Y.; Narsky, I.; Shelkov, V.; Staeck, J.; Stroynowski, R.; Volobouev, I.; Ye, J.; Artuso, M.; Azfar, F.; Efimov, A.; Goldberg, M.; He, D.; Kopp, S.; Moneti, G. C.; Mountain, R.; Schuh, S.; Skwarnicki, T.; Stone, S.; Viehhauser, G.; Xing, X.; Bartelt, J.; Csorna, S. E.; Jain, V.; McLean, K. W.; Marka, S.; Godang, R.; Kinoshita, K.; Lai, I. C.; Pomianowski, P.; Schrenk, S.; Bonvicini, G.; Cinabro, D.; Greene, R.; Perera, L. P.; Zhou, G. J.; Chadha, M.; Chan, S.; Eigen, G.; Miller, J. S.; O'grady, C.; Schmidtler, M.; Urheim, J.; Weinstein, A. J.; Würthwein, F.; Bliss, D. W.; Masek, G.; Paar, H. P.; Prell, S.; Sharma, V.; Asner, D. M.; Gronberg, J.; Hill, T. S.; Lange, D. J.; Morrison, R. J.; Nelson, H. N.; Nelson, T. K.; Roberts, D.; Ryd, A.; Balest, R.; Behrens, B. H.; Ford, W. T.; Gritsan, A.; Park, H.; Roy, J.; Smith, J. G.

    1998-09-01

    Using a 73.6 pb-1 data sample of Υ(2S) events collected with the CLEO II detector at the Cornell Electron Storage Ring, we have investigated the hadronic transitions between the Υ(2S) and the Υ(1S). The dipion transition Υ(2S)-->Υ(1S)π+π- was studied using two different analysis techniques. Selecting events in which Υ(1S)-->e+e-,μ+μ- (``exclusive'' analysis), and using the Υ(1S) leptonic branching fractions world averages from the PDG review, we obtained B(Υ(2S)-->Υ(1S)π+π-)=0.189+/-0.004+/-0.010, while using a method allowing Υ(1S)-->anything (``inclusive'' analysis) we obtained B(Υ(2S)-->Υ(1S)π+π-)=0.196+/-0.002+/-0.010. The appropriate weighted average of the two measurements gives B(Υ(2S)-->Υ(1S)π+π-)=0.192+/-0.002+/-0.010. Combining the exclusive and inclusive results we derive the Υ(1S) leptonic branching fractions Bee=0.0229+/-0.0008+/-0.0011 and Bμμ=0.0249+/-0.0008+/-0.0013. We also studied Υ(2S)-->Υ(1S)π0π0 and obtained B(Υ(2S)-->Υ(1S)π0π0)=0.092+/-0.006+/-0.008. Parameters of the ππ system (dipion invariant mass spectra, angular distributions) were analyzed and found to be consistent with current theoretical models. Lastly, we searched for the η and single π0 transitions and obtained the 90% confidence level upper limits B(Υ(2S)-->Υ(1S)η)<0.0028 and B(Υ(2S)-->Υ(1S)π0)<0.0011.

  14. NO2 fluxes from Tijuana using a mobile mini-DOAS during Cal-Mex 2010

    NASA Astrophysics Data System (ADS)

    Rivera, Claudia; Barrera, Hugo; Grutter, Michel; Zavala, Miguel; Galle, Bo; Bei, Naifang; Li, Guohui; Molina, Luisa T.

    2013-05-01

    NO2 fluxes were measured using a mobile mini-DOAS during Cal-Mex 2010 field study, between May 15 and June 30, 2010, from the urban area of Tijuana, Baja California as well as the Rosarito power plant. The average calculated NO2 fluxes were 328 ± 184 (269 ± 201) g s-1, and 23.4 ± 4.9 (12.9 ± 11.9) g s-1 for Tijuana urban area and Rosarito power plant, respectively, using model based wind fields and onsite measurements (in parenthesis). Wind speed and wind direction data needed to estimate the fluxes were both modeled and obtained from radiosondes launched regularly during the field campaign, whereas the mixing layer height throughout the entire field campaign was measured using a ceilometer. Large variations in the NO2 fluxes from both the Tijuana urban area and Rosarito power plant were observed during Cal-Mex 2010; however, the variability was less when model based wind fields were used. Qualitative comparisons of modeled and measured plumes from the Tijuana urban area and Rosarito power plant showed good agreement.

  15. The flux jumps in high Tc Bi(1.7)Pb(0.3)Sr2 Ca2Cu3O(y) bulk superconductor

    NASA Astrophysics Data System (ADS)

    Cao, Xiaowen; Huang, Sunli

    1989-11-01

    There were giant flux jumps in high T sub c Bi(1.7)Pb(0.3)Sr2Ca2Cu3O(v) bulk superconductor. The relaxation time, tau, decreased with both the increase of magnetic field and the rise of temperature. The maximum tau was about 40 min. The average -dM/dt increased with both the increase of magnetic field and the rise of temperature. The minimum average -dM/dt was about 4.1 x 10(exp -2) G/min. The flux jump weakened with time. It was dependent on the decrease of gradient of magnetic flux density dn/dx in the sample.

  16. Significant human impact on the flux and δ(34)S of sulfate from the largest river in North America.

    PubMed

    Killingsworth, Bryan A; Bao, Huiming

    2015-04-21

    Riverine dissolved sulfate (SO4(2-)) flux and sulfur stable isotope composition (δ(34)S) yield information on the sources and processes affecting sulfur cycling on different spatial and temporal scales. However, because pristine preindustrial natural baselines of riverine SO4(2-) flux and δ(34)S cannot be directly measured, anthropogenic impact remains largely unconstrained. Here we quantify natural and anthropogenic SO4(2-) flux and δ(34)S for North America's largest river, the Mississippi, by means of an exhaustive source compilation and multiyear monitoring. Our data and analysis show that, since before industrialization to the present, Mississippi River SO4(2-) has increased in flux from 7.0 to 27.8 Tg SO4(2-) yr(-1), and in mean δ(34)S from -5.0‰, within 95% confidence limits of -14.8‰ to 4.1‰ (assuming normal distribution for mixing model input parameters), to -2.7 ± 1.6‰, reflecting an impressive footprint of bedrocks particular to this river basin and human activities. Our first-order modern Mississippi River sulfate partition is 25 ± 6% natural and 75% ± 6% anthropogenic sources. Furthermore, anthropogenic coal usage is implicated as the dominant source of modern Mississippi River sulfate, with an estimated 47 ± 5% and 13% of total Mississippi River sulfate due to coal mining and burning, respectively.

  17. Determination of the Sampler Type and Rainfall Effect on the Deposition Fluxes of the Polychlorinated Biphenyls

    PubMed Central

    Birgül, Askin; Tasdemir, Yücel

    2012-01-01

    Atmospheric concentration and deposition samples were collected between June 2008 and June 2009 in an urban sampling site Yavuzselim, Turkey. Eighty-three polychlorinated biphenyl (PCB) congeners were targeted in the collected samples. It was found that 90% of the total PCB concentration was in the gas phase. Deposition samples were collected by a wet-dry deposition sampler (WDDS) and a bulk deposition sampler (BDS). Average total deposition fluxes measured with the BDS in dry periods was 5500 ± 2400 pg/(m2day); average dry deposition fluxes measured by the WDDS in the same period were 6400 ± 3300 pg/(m2day). The results indicated that the sampler type affected the measured flux values. Bulk deposition samples were also collected in rainy periods by using the BDS and the average flux value was 8700 ± 3100 pg/(m2day). The measured flux values were lower than the values reported for the urban and industrial areas. Dry deposition velocities for the WDDS and BDS samples were calculated 0.48 ± 0.35 cm/s and 0.13 ± 0.15 cm/s, respectively. PMID:22629199

  18. Flux flow induced microwave absorption in high temperature superconductor Bi 2-XPb XSr 2Ca N-1Cu NO 4+2N

    NASA Astrophysics Data System (ADS)

    Owens, F. J.

    1990-12-01

    Direct measurements of microwave absorption without use of rf H field modulation in granular composites of the 115 K superconductor Bi 2-XPb XSr 2Ca N-1Cu NO 4+2N as a function of magnetic field above 0.1 T reveal a continuing increase of absorption of microwave energy increasing magnetic field. The temperature and magnetic field dependence of the absorption are very different from the low magnetic field (<0.01 T) absorption arising from weak links in the material. The magnetic field and temperature dependence are consistent with the behavior of thermally activated flux flow resistance suggesting the absorption is due to flux creep.

  19. Global Flux Balance in the Terrestrial H2O Cycle: Reconsidering the Post-Arc Subducted H2O Flux

    NASA Astrophysics Data System (ADS)

    Parai, R.; Mukhopadhyay, S.

    2010-12-01

    Quantitative estimates of H2O fluxes between the mantle and the exosphere (i.e., the atmosphere, oceans and crust) are critical to our understanding of the chemistry and dynamics of the solid Earth: the abundance and distribution of water in the mantle has dramatic impacts upon mantle melting, degassing history, structure and style of convection. Water is outgassed from the mantle is association with volcanism at mid-ocean ridges, ocean islands and convergent margins. H2O is removed from the exosphere at subduction zones, and some fraction of the subducted flux may be recycled past the arc into the Earth’s deep interior. Estimates of the post-arc subducted H2O flux are primarily based on the stability of hydrous phases at subduction zone pressures and temperatures (e.g. Schmidt and Poli, 1998; Rüpke et al., 2004; Hacker, 2008). However, the post-arc H2O flux remains poorly quantified, in part due to large uncertainties in the water content of the subducting slab. Here we evaluate estimated post-arc subducted fluxes in the context of mantle-exosphere water cycling, using a Monte Carlo simulation of the global H2O cycle. Literature estimates of primary magmatic H2O abundances and magmatic production rates at different tectonic settings are used with estimates of the total subducted H2O flux to establish the parameter space under consideration. Random sampling of the allowed parameter space affords insight into which input and output fluxes satisfy basic constraints on global flux balance, such as a limit on sea-level change over time. The net flux of H2O between mantle and exosphere is determined by the total mantle output flux (via ridges and ocean islands, with a small contribution from mantle-derived arc output) and the input flux subducted beyond the arc. Arc and back-arc output is derived mainly from the slab, and therefore cancels out a fraction of the trench intake in an H2O subcycle. Limits on sea-level change since the end of the Archaean place

  20. Increasing dust fluxes on the northeastern Tibetan Plateau linked with the Little Ice Age and recent human activity since the 1950s

    NASA Astrophysics Data System (ADS)

    Wan, Dejun; Jin, Zhangdong; Zhang, Fei; Song, Lei; Yang, Jinsong

    2016-12-01

    Arid and semi-arid areas in inner Asia contribute lots of mineral dust in the northern hemisphere, but dust flux evolution in the past is poorly constrained. Based on particle sizes and elemental compositions of a sediment core from Lake Qinghai on the northeastern Tibetan Plateau, dust fluxes during ∼1518-2011 A.D. were reconstructed based on 18-100 μm fractions of the lake sediment. The dust fluxes during the past ∼500 years ranged between 100 and 300 g/m2/yr, averaging 202 g/m2/yr, experiencing four stages: Stage 1 (∼1518-1590s), the flux was averaged 165 g/m2/yr, much lower than that in the Stage 2 (1590s-1730s, 254 g/m2/yr); similarly, an average flux of 169 g/m2/yr in the Stage 3 (1730s-1950s) was followed by an increased flux of 259 g/m2/yr in the Stage 4 (1950s-2011). During the first three stages the fluxes were dominated by natural dust activities in arid inner Asia, having a positive relation with wind intensity but a poor correlation with effective moisture (or precipitation) and temperature. The high dust flux in Stage 2 was due to relatively strong wind during the maximum Little Ice Age, whereas the remarkably high flux in 1950s-2011 was resulted from recent increasing human activities in northwestern China. The dust record not only documents past dust fluxes on the northeastern Tibetan Plateau but also reflects evolutions and mechanisms of dust activity/emission in inner Asia during the past ∼500 years.

  1. Al 1s-2p absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S. P.; Radha, P. B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (T{sub e}{approx}10-40 eV, {rho}{approx}3-11 g/cm{sup 3}) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10{sup 14}-10{sup 15} W/cm{sup 2} and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4-1.7 keV. The laser ablation process launches 10-70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectramore » were analyzed using the atomic physic code PRISMSPECT to infer T{sub e} and {rho} in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f=0.06 and f=0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f=0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  2. Uncertainty of calorimeter measurements at NREL's high flux solar furnace

    NASA Astrophysics Data System (ADS)

    Bingham, C. E.

    1991-12-01

    The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/sq cm). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6/sq cm) exit aperture, corresponding to a flux of about 2 kW/sq cm. This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/sq cm) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty.

  3. Observation of nuclear spin species conversion inside the 1593 cm -1 structure of H 2O trapped in argon matrices: Nitrogen impurities and the H 2O:N 2 complex

    NASA Astrophysics Data System (ADS)

    Pardanaud, Cédric; Vasserot, Anne-Marie; Michaut, Xavier; Abouaf-Marguin, L.

    2008-02-01

    We have investigated, at high resolution (0.03 cm -1), the 1593 cm -1 structure observed in the IR absorption spectrum of water trapped in solid argon doped with nitrogen. It exhibits a doublet at 1592.59 ± 0.05 and 1593.08 ± 0.05 cm -1 and a line centered at 1592.93 ± 0.05 cm -1. The central component, which increases irreversibly upon annealing and when the concentration is increased, is due to the proton acceptor submolecule of the H 2O dimer, as mentioned in the literature. The doublet is assigned to the H 2O:N 2 complex. After a fast cooling of the sample from 20 to 4 K, the low frequency line of the doublet decreases with time and the high frequency one increases, the total integrated absorption increasing slightly. The ratio of the integrated intensities between the low frequency component and the high frequency one reaches a constant limit of 0.5 ± 0.1 at infinite time. This time behavior, perfectly exponential with a time constant τ of about 680 min, is reproducible. As the nitrogen molecule cannot rotate in an argon substitutional site, and as the H 2O submolecule seems to preserve somewhat its identity, this is interpreted as nuclear spin species conversion between ortho and para states of the H 2O submolecule within the complex. The order of magnitude of the energy difference between the ortho and para lowest levels, about 5 cm -1, is too weak to imply any, even very hindered, rotational motion of H 2O, but it could be the energy range of a tunneling effect. When the temperature is increased, the two components coalesce at 25 K into a single symmetrical line pointing at 1593.3 cm -1 and the conversion time shortens dramatically. An Arrhenius plot leads to a weak activation energy of the conversion process (about 30 cm -1). A possible geometry of the complex in solid argon, different from the gas phase one, is proposed.

  4. FeS2 /CoS2 Interface Nanosheets as Efficient Bifunctional Electrocatalyst for Overall Water Splitting.

    PubMed

    Li, Yuxuan; Yin, Jie; An, Li; Lu, Min; Sun, Ke; Zhao, Yong-Qin; Gao, Daqiang; Cheng, Fangyi; Xi, Pinxian

    2018-05-28

    Electrochemical water splitting to produce hydrogen and oxygen, as an important reaction for renewable energy storage, needs highly efficient and stable catalysts. Herein, FeS 2 /CoS 2 interface nanosheets (NSs) as efficient bifunctional electrocatalysts for overall water splitting are reported. The thickness and interface disordered structure with rich defects of FeS 2 /CoS 2 NSs are confirmed by atomic force microscopy and high-resolution transmission electron microscopy. Furthermore, extended X-ray absorption fine structure spectroscopy clarifies that FeS 2 /CoS 2 NSs with sulfur vacancies, which can further increase electrocatalytic performance. Benefiting from the interface nanosheets' structure with abundant defects, the FeS 2 /CoS 2 NSs show remarkable hydrogen evolution reaction (HER) performance with a low overpotential of 78.2 mV at 10 mA cm -2 and a superior stability for 80 h in 1.0 m KOH, and an overpotential of 302 mV at 100 mA cm -2 for the oxygen evolution reaction (OER). More importantly, the FeS 2 /CoS 2 NSs display excellent performance for overall water splitting with a voltage of 1.47 V to achieve current density of 10 mA cm -2 and maintain the activity for at least 21 h. The present work highlights the importance of engineering interface nanosheets with rich defects based on transition metal dichalcogenides for boosting the HER and OER performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Molecular structure studies of (1S,2S)-2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol

    PubMed Central

    Zhang, Tao; Paluch, Krzysztof; Scalabrino, Gaia; Frankish, Neil; Healy, Anne-Marie; Sheridan, Helen

    2015-01-01

    The single enantiomer (1S,2S)-2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol (2), has recently been synthesized and isolated from its corresponding diastereoisomer (1). The molecular and crystal structures of this novel compound have been fully analyzed. The relative and absolute configurations have been determined by using a combination of analytical tools including X-ray crystallography, X-ray Powder Diffraction (XRPD) analysis and Nuclear Magnetic Resonance (NMR) spectroscopy. PMID:25750458

  6. Investigation of corrosion and stress corrosion cracking susceptibility of S30400 and S31600 stainless steels exposed to commercial soldering flux containing zinc chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, D.T.

    1995-10-01

    A corrosion investigation was conducted to determine corrosion behavior and stress corrosion cracking (SCC) susceptibility of S30400 and S31600 stainless steel exposed to soldering flux paste containing 25 wt% zinc chloride. Electrochemical test results indicated that soldering flux paste was not corrosive to S30400 and S31600 at room temperature. The wax phase (light phase) of soldering flux was also not corrosive to S30400 and S31600. However, the heavy phase of solder flux was corrosive to S30400 and S31600 at elevated temperatures. In heavy phase, S30400 did not passivate, while S31600 passivated at temperatures up to 80 C while no passivitymore » was observed at 85 C and above. AC impedance test results showed that S30400 and S31600 corroded at rates of less than 0.1 mpy in solder flux pastes at room temperature. In the soldering flux heavy phase, corrosion rates were about 2 mpy or less for S30400 at temperatures up to 75 C and S31600 at temperatures up to 70 C. However, corrosion rates of S30400 in the soldering flux heavy phase increased to 5, 8, 10, and 22 mpy at 80, 85, 90, and 95 C while corrosion rates of S31600 sst in the soldering flux heavy phase increased to 4, 5, 7, and 11, and 30 mpy at 75, 80, 85, 90 and 95 C, respectively. CERT results revealed that no SCC susceptibility when S30400 and S31600 were exposed to soldering flux paste at room temperature and wax phase at 65 and 95 C. However, both test alloys were susceptible to transgranular SCC when exposed to the soldering flux heavy phase at temperatures of 65+ C. Severity of SCC increased with temperature increase. SCC fractures were characterized by reduction of ductility and numerous SCC secondary cracks on the specimen gage length. The most severe SCC fracture was observed on a S30400 specimen partially submersed in the soldering flux heavy phase and partially submersed in the soldering flux wax phase at 95 C. No similar cracking was observed on S31600.« less

  7. Measuring patchy reionization with kSZ2-21 cm correlations

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Helgason, K.; Komatsu, E.; Ciardi, B.; Ferrara, A.

    2018-05-01

    We study cross-correlations of the kinetic Sunyaev-Zel'dovich effect (kSZ) and 21 cm signals during the epoch of reionization (EoR) to measure the effects of patchy reionisation. Since the kSZ effect is proportional to the line-of-sight velocity, the kSZ-21 cm cross correlation suffers from cancellation at small angular scales. We thus focus on the correlation between the kSZ-squared field (kSZ2) and 21 cm signals. When the global ionization fraction is low (xe ≲ 0.7), the kSZ2 fluctuation is dominated by rare ionized bubbles, which leads to an anticorrelation with the 21 cm signal. When 0.8 ≲ xe < 1, the correlation is dominated by small pockets of neutral regions, leading to a positive correlation. However, at very high redshifts when xe < 0.15, the spin temperature fluctuations change the sign of the correlation from negative to positive, as weakly ionized regions can have strong 21 cm signals in this case. To extract this correlation, we find that Wiener filtering is effective in removing large signals from the primary cosmic microwave background (CMB) anisotropy. The expected signal-to-noise ratios for a ˜10-h integration of upcoming Square Kilometre Array data cross-correlated with maps from the current generation of CMB observatories with 3.4μK arcmin noise and 1.7 arcmin beam over 100 deg2 are 51, 60, and 37 for xe = 0.2, 0.5, and 0.9, respectively.

  8. Evaluation of the entropy consistent euler flux on 1D and 2D test problems

    NASA Astrophysics Data System (ADS)

    Roslan, Nur Khairunnisa Hanisah; Ismail, Farzad

    2012-06-01

    Perhaps most CFD simulations may yield good predictions of pressure and velocity when compared to experimental data. Unfortunately, these results will most likely not adhere to the second law of thermodynamics hence comprising the authenticity of predicted data. Currently, the test of a good CFD code is to check how much entropy is generated in a smooth flow and hope that the numerical entropy produced is of the correct sign when a shock is encountered. Herein, a shock capturing code written in C++ based on a recent entropy consistent Euler flux is developed to simulate 1D and 2D flows. Unlike other finite volume schemes in commercial CFD code, this entropy consistent flux (EC) function precisely satisfies the discrete second law of thermodynamics. This EC flux has an entropy-conserved part, preserving entropy for smooth flows and a numerical diffusion part that will accurately produce the proper amount of entropy, consistent with the second law. Several numerical simulations of the entropy consistent flux have been tested on two dimensional test cases. The first case is a Mach 3 flow over a forward facing step. The second case is a flow over a NACA 0012 airfoil while the third case is a hypersonic flow passing over a 2D cylinder. Local flow quantities such as velocity and pressure are analyzed and then compared with mainly the Roe flux. The results herein show that the EC flux does not capture the unphysical rarefaction shock unlike the Roe-flux and does not easily succumb to the carbuncle phenomenon. In addition, the EC flux maintains good performance in cases where the Roe flux is known to be superior.

  9. EXTraS discovery of a 1.2-s X-ray pulsar in M31

    NASA Astrophysics Data System (ADS)

    Esposito, P.; Israel, G.; Belfiore, A.; Novara, G.; Sidoli, L.; Rodriguez Castillo, G.; De Luca, A.; Tiengo, A.; Haberl, F.; Salvaterra, R.

    2017-10-01

    A systematic search for periodic signals in the XMM-Newton's EPIC archive carried out within the EXTraS project resulted in the discovery of a 1.2-s flux modulation in 3XMM J004301.4+413017. It is the first accreting neutron star in M31 for which the spin period has been detected. Besides this distinction, 3XMM J0043 proved to be an interesting system. Doppler shifts of the spin modulation revealed an orbital motion with period of 1.27 d and the analysis of optical data shows that, while the source is likely associated to a globular cluster, a counterpart with V ˜ 22 outside the cluster cannot be excluded. The emission of the pulsar appears rather hard (most data are described by a power law with photon index <1) and, assuming the distance to M31, the 0.3-10 keV luminosity was variable, from ˜3×10^{37} to 2×10^{38} erg/s. Based on this, we discuss two main possible scenarios for 3X J0043: a peculiar low-mass X-ray binary, perhaps similar to 4U 1822-37 or 4U 1626-67, or an intermediate-mass X-ray binary akin Her X-1.

  10. Characterization of three types of silicon solar cells for SEPS deep space missions. Volume 1: Current-voltage characteristics of OCLI BSF/BSR 10 ohm-cm, and BSR 2 ohm-cm cells as a function of temperature and intensity

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Little, S. A.; Smith, C. F., Jr.; Wooden, V. A.

    1979-01-01

    Three types of high performance silicon solar cells, BSF/BSR 10 ohm-cm, BSR 10 ohm-cm, and BSR 2 ohm-cm, were evaluated for their low temperature and low intensity performance. Sixteen cells of each type were subjected to ten temperatures and nine intensities. The BSF/BSR 10 ohm-cm cells provided the best performance at 1 solar constant and +25 C with an efficiency of 14.1% while the BSR 2 ohm-cm cells had the highest low temperature and low intensity performance with an efficiency of 22.2% at 0.04 solar constant and -170 C and the most consistent cell-to-cell characteristics.

  11. S1(1A1)<--S0(1A1) transition of benzo[g,h,i]perylene in supersonic jets and rare gas matrices.

    PubMed

    Rouillé, G; Arold, M; Staicu, A; Krasnokutski, S; Huisken, F; Henning, Th; Tan, X; Salama, F

    2007-05-07

    The study of the S1(1A1)<--S0(1A1) transition of benzo[g,h,i]perylene (BghiP, C22H12) in supersonic jets and solid rare gas matrices is reported. In the jet-cooled spectrum, the origin band position is located at 25,027.1+/-0.2 cm-1, the assignment being supported by the analysis of vibrational shifts and rotational band contours. Except for the origin band, which is weak, all bands are attributed to the fundamental excitation of nontotally symmetric b1 vibrational modes of S1. The intensity pattern is interpreted as a consequence of the weak oscillator strength of the electronic transition combined with intensity-borrowing through vibronic interaction between the S1(1A1) and S2(1B1) states. The spectra of the S1(1A1)<--S0(1A1) and S2(1B1)<--S0(1A1) transitions have also been measured for BghiP in solid neon and argon matrices. The comparison of the redshifts determined for either transition reveals that the polarizability of BghiP is larger in its S2 than in its S1 state. Bandwidths of 2.7 cm-1 measured in supersonic jets, which provide conditions relevant for astrophysics, are similar to those of most diffuse interstellar bands. The electronic transitions of BghiP are found to lie outside the ranges covered by present databases. From the comparison between experimental spectra and theoretical computations, it is concluded that the accuracy of empirical and ab initio approaches in predicting electronic energies is still not sufficient to identify astrophysically interesting candidates for spectroscopic laboratory studies.

  12. Estimating the flux of the 14.4 keV solar axions

    NASA Astrophysics Data System (ADS)

    Avignone, F. T., III; Creswick, R. J.; Vergados, J. D.; Pirinen, P.; Srivastava, P. C.; Suhonen, J.

    2018-01-01

    In this paper we present a calculation of the expected flux of the mono-energetic 14.4 keV solar axions emitted by the M1 type nuclear transition of 57Fe in the Sun. These axions can be detected, e.g., by inverse coherent Bragg-Primakoff conversion in single-crystal TeO2 bolometers. The ingredients of this calculation are i) the axion nucleon coupling, estimated in several popular axion models and ii)the nuclear spin matrix elements involving realistic shell model calculations with both proton and neutron excitations. For the benefit of the experiments we have also calculated the branching ratio involving axion and photon emission. We find the solar axion flux on Earth to be Φa = 0.703×109cm-2s-1 (107 GeV/fa)2 and the branching ratio of axion to photon for the same model to be: wa/wγ = 0.229×10-15 ≈ 2×10-16.

  13. Accurate measurements of solar spectral irradiance between 4000-10000 cm-1

    NASA Astrophysics Data System (ADS)

    Elsey, J.; Coleman, M. D.; Gardiner, T.; Shine, K. P.

    2017-12-01

    The near-infrared solar spectral irradiance (SSI) is an important input into simulations of weather and climate; the distribution of energy throughout this region of the spectrum influences atmospheric heating rates and the global hydrological cycle through absorption and scattering by water vapour. Current measurements by a mixture of ground-based and space-based instruments show differences of around 10% in the 4000-7000 cm-1 region, with no resolution to this controversy in sight. This work presents observations of SSI taken using a ground-based Fourier Transform spectrometer between 4000-10000 cm-1 at a field site in Camborne, UK, with particular focus on a rigorously defined uncertainty budget. While there is good agreement between this work and the commonly-used ATLAS3 spectrum between 7000-10000 cm-1, the SSI is systematically lower by 10% than ATLAS3 between 4000-7000 cm-1, with no overlap within the k = 2 measurement uncertainties.

  14. E-Flux2 and SPOT: Validated Methods for Inferring Intracellular Metabolic Flux Distributions from Transcriptomic Data.

    PubMed

    Kim, Min Kyung; Lane, Anatoliy; Kelley, James J; Lun, Desmond S

    2016-01-01

    Several methods have been developed to predict system-wide and condition-specific intracellular metabolic fluxes by integrating transcriptomic data with genome-scale metabolic models. While powerful in many settings, existing methods have several shortcomings, and it is unclear which method has the best accuracy in general because of limited validation against experimentally measured intracellular fluxes. We present a general optimization strategy for inferring intracellular metabolic flux distributions from transcriptomic data coupled with genome-scale metabolic reconstructions. It consists of two different template models called DC (determined carbon source model) and AC (all possible carbon sources model) and two different new methods called E-Flux2 (E-Flux method combined with minimization of l2 norm) and SPOT (Simplified Pearson cOrrelation with Transcriptomic data), which can be chosen and combined depending on the availability of knowledge on carbon source or objective function. This enables us to simulate a broad range of experimental conditions. We examined E. coli and S. cerevisiae as representative prokaryotic and eukaryotic microorganisms respectively. The predictive accuracy of our algorithm was validated by calculating the uncentered Pearson correlation between predicted fluxes and measured fluxes. To this end, we compiled 20 experimental conditions (11 in E. coli and 9 in S. cerevisiae), of transcriptome measurements coupled with corresponding central carbon metabolism intracellular flux measurements determined by 13C metabolic flux analysis (13C-MFA), which is the largest dataset assembled to date for the purpose of validating inference methods for predicting intracellular fluxes. In both organisms, our method achieves an average correlation coefficient ranging from 0.59 to 0.87, outperforming a representative sample of competing methods. Easy-to-use implementations of E-Flux2 and SPOT are available as part of the open-source package MOST (http

  15. Characterization of Primary Carrier Transport Properties of the Light-Harvesting Chalcopyrite Semiconductors CuIn(S 1–xSe x) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frick, Jessica J.; Kushwaha, Satya K.; Cava, Robert J.

    We report the carrier transport properties of CuIn(S 1-xSe x) 2 (0 ≤ x ≤ 1), a promising chalcopyrite semiconductor series for solar water splitting. A low concentration Mg dopant is used to decrease the carrier resistivity through facilitating bulk p-type transport at ambient temperature. Temperature-dependent resistivity measurements reveal a four-order magnitude decrease in bulk electrical resistivity (from 10 3 to 10 –1 Ohm cm) for 1% Mg-doped CuIn(S 1–xSe x) 2 as x increases from 0 to 1. Hall effect measurements at room temperature reveal p-type majority carrier concentrations that vary from 10 15 to 10 18 cm –3more » and mobilities of approximately 1–10 cm 2 V –1 s1. These results provide insights into the fundamental carrier transport properties of CuIn(S 1–xSe x) 2 and will be of value in optimizing these materials further for photoelectrochemistry applications.« less

  16. Characterization of Primary Carrier Transport Properties of the Light-Harvesting Chalcopyrite Semiconductors CuIn(S 1–xSe x) 2

    DOE PAGES

    Frick, Jessica J.; Kushwaha, Satya K.; Cava, Robert J.; ...

    2017-07-27

    We report the carrier transport properties of CuIn(S 1-xSe x) 2 (0 ≤ x ≤ 1), a promising chalcopyrite semiconductor series for solar water splitting. A low concentration Mg dopant is used to decrease the carrier resistivity through facilitating bulk p-type transport at ambient temperature. Temperature-dependent resistivity measurements reveal a four-order magnitude decrease in bulk electrical resistivity (from 10 3 to 10 –1 Ohm cm) for 1% Mg-doped CuIn(S 1–xSe x) 2 as x increases from 0 to 1. Hall effect measurements at room temperature reveal p-type majority carrier concentrations that vary from 10 15 to 10 18 cm –3more » and mobilities of approximately 1–10 cm 2 V –1 s1. These results provide insights into the fundamental carrier transport properties of CuIn(S 1–xSe x) 2 and will be of value in optimizing these materials further for photoelectrochemistry applications.« less

  17. Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm

    NASA Astrophysics Data System (ADS)

    Yan, Y. C.; Faber, A. J.; de Waal, H.; Kik, P. G.; Polman, A.

    1997-11-01

    Erbium-doped multicomponent phosphate glass waveguides were deposited by rf sputtering techniques. The Er concentration was 5.3×1020cm-3. By pumping the waveguide at 980 nm with a power of ˜21 mW, a net optical gain of 4.1 dB at 1.535 μm was achieved. This high gain per unit length at low pump power could be achieved because the Er-Er cooperative upconversion interactions in this heavily Er-doped phosphate glass are very weak [the upconversion coefficient is (2.0±0.5)×10-18 cm3/s], presumably due to the homogeneous distribution of Er in the glass and due to the high optical mode confinement in the waveguide which leads to high pump power density at low pump power.

  18. [Effects of land-use conversion from double rice cropping to vegetables on CO2 and CH4 fluxes in southern China].

    PubMed

    Yuan, Ye; Liu, Chang-hong; Dai, Xiao-qin; Wang, Hui-min

    2015-01-01

    In this study, the CO2 and CH4 fluxes in the first year after land use conversion from paddy rice to vegetables were measured by static opaque chamber and gas-chromatograph (GC) method to investigate the land conversion effects on soil CO2 and CH4 emissions. Our results showed that the differences in CO2 fluxes depended on the vegetable types, growing status and seasons. The CO2 flux from the vegetable field was greater than that from the paddy rice field when cowpea was planted, but was lower when pepper was planted. The CH4 flux significantly decreased from 6.96 mg C . m-2 . h-1 to -0.004 mg C . m-2 . h-1 with the land use conversion from rice to vegetables.The net carbon absorption ( CO2 + CH4) of the vegetable fields was 543 kg C . hm-2, significantly lower than that (3641 kg C . hm-2) of the rice paddies. However, no significant difference was found in their global warming impact. In addition, soil carbon content increased in vegetable fields compared to the paddy rice fields after a year of conversion, especially in the 10-20 cm soil layer.

  19. The turbomachine blading design using S2-S1 approach

    NASA Technical Reports Server (NTRS)

    Luu, T. S.; Bencherif, L.; Viney, B.; Duc, J. M. Nguyen

    1991-01-01

    The boundary conditions corresponding to the design problem when the blades being simulated by the bound vorticity distribution are presented. The 3D flow is analyzed by the two steps S2 - S1 approach. In the first step, the number of blades is supposed to be infinite, the vortex distribution is transformed into an axisymmetric one, so that the flow field can be analyzed in a meridional plane. The thickness distribution of the blade producing the flow channel striction is taken into account by the modification of metric tensor in the continuity equation. Using the meridional stream function to define the flow field, the mass conservation is satisfied automatically. The governing equation is deduced from the relation between the azimuthal component of the vorticity and the meridional velocity. The value of the azimuthal component of the vorticity is provided by the hub to shroud equilibrium condition. This step leads to the determination of the axisymmetric stream sheets as well as the approximate camber surface of the blade. In the second step, the finite number of blades is taken into account, the inverse problem corresponding to the blade to blade flow confined in each stream sheet is analyzed. The momentum equation implies that the free vortex of the absolute velocity must be tangential to the stream sheet. The governing equation for the blade to blade flow stream function is deduced from this condition. At the beginning, the upper and the lower surfaces of the blades are created from the camber surface obtained from the first step with the assigned thickness distribution. The bound vorticity distribution and the penetrating flux conservation applied on the presumed blade surface constitute the boundary conditions of the inverse problem. The detection of this flux leads to the rectification of the geometry of the blades.

  20. Fluid and chemical fluxes along a buried-basement ridge in the eastern Juan de Fuca Ridge flank

    NASA Astrophysics Data System (ADS)

    Hulme, S.; Wheat, C. G.

    2010-12-01

    Hydrothermal fluid circulation within oceanic crust at low temperatures affects global biogeochemical cycles, with the volume of fluid circulation rivaling that of the world’s water flux to the oceans from rivers. Our work focuses on the best studied low temperature hydrothermal system on the eastern flank of the Juan de Fuca Ridge where a buried basement ridge 100 km from the active spreading axis has been sampled with a variety of mediums. We use data from deep sea drilling, gravity coring, and submersible operations from five sites along-strike of the buried ridge to better constrain the chemical and fluid fluxes along this transect. A transport (advection-diffusion) model is applied to the data, constraining the volumetric fluid flux per unit length within the oceanic crust from 0.05 and 0.2 m3 y-1 cm-1 and identifying conservative elements within this system. Using an average fluid flux, reactive fluxes are determined for non-conservative elements within basaltic crust for twenty-four chemical species. Conservative species include K, Cl, SO4, Ba, Sr, Cs, Mo, and Y. Only Ca and the rare earth elements Ce and Gd are produced by basaltic basement. The remaining chemical species Mg, Na, ammonium, Li, Rb, Mn, Fe, Co, Zn, Cd, U, La and Yb are all consumed within upper basaltic basement. Fluxes of potentially-bioavailable redox species ammonium, Fe, and Mn into the upper basaltic basement are 3 to 20 nmol y-1cm-2. Possible mechanisms of removal are suggested, placing constraints on microbial metabolic activity and biomineralization.

  1. CO2, CH4, and DOC Flux During Long Term Thaw of High Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Stackhouse, B. T.; Vishnivetskaya, T. A.; Layton, A.; Bennett, P.; Mykytczuk, N.; Lau, C. M.; Whyte, L.; Onstott, T. C.

    2013-12-01

    Arctic regions are expected to experience temperature increases of >4° C by the end of this century. This warming is projected to cause a drastic reduction in the extent of permafrost at high northern latitudes, affecting an estimated 1000 Pg of SOC in the top 3 m. Determining the effects of this temperature change on CO2 and CH4 emissions is critical for defining source constraints to global climate models. To investigate this problem, 18 cores of 1 m length were collected in late spring 2011 before the thawing of the seasonal active layer from an ice-wedge polygon near the McGill Arctic Research Station (MARS) on Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45). Cores were collected from acidic soil (pH 5.5) with low SOC (~1%), summertime active layer depth between 40-70 cm (2010-2013), and sparse vegetation consisting primarily of small shrubs and sedges. Cores were progressively thawed from the surface over the course of 14 weeks to a final temperature of 4.5° C and held at that temperature for 15 months under the following conditions: in situ water saturation conditions versus fully water saturated conditions using artificial rain fall, surface light versus no surface light, cores from the polygon edge, and control cores with a permafrost table maintained at 70 cm depth. Core headspaces were measured weekly for CO2, CH4, H2, CO, and O2 flux during the 18 month thaw experiment. After ~20 weeks of thawing maximum, CO2 flux for the polygon edge and dark treatment cores were 3.0×0.7 and 1.7×0.4 mmol CO2 m-2 hr-1, respectively. The CO2 flux for the control, saturated, and in situ saturation cores reached maximums of 0.6×0.2, 0.9×0.5, and 0.9×0.1 mmol CO2 m-2 hr-1, respectively. Field measurements of CO2 flux from an adjacent polygon during the mid-summer of 2011 to 2013 ranged from 0.3 to 3.7 mmol CO2 m-2 hr-1. Cores from all treatments except water saturated were found to consistently oxidize CH4 at ~atmospheric concentrations (2 ppmv) with a maximum

  2. First spectroscopic identification of pyrocarbonate for high CO2 flux membranes containing highly interconnected three dimensional ionic channels.

    PubMed

    Zhang, Lingling; Huang, Xinyu; Qin, Changyong; Brinkman, Kyle; Gong, Yunhui; Wang, Siwei; Huang, Kevin

    2013-08-21

    Identification of the existence of pyrocarbonate ion C2O5(2-) in molten carbonates exposed to a CO2 atmosphere provides key support for a newly established bi-ionic transport model that explains the mechanisms of high CO2 permeation flux observed in mixed oxide-ion and carbonate-ion conducting (MOCC) membranes containing highly interconnected three dimensional ionic channels. Here we report the first Raman spectroscopic evidence of C2O5(2-) as an active species involved in the CO2-transport process of MOCC membranes exposed to a CO2 atmosphere. The two new broad peaks centered at 1317 cm(-1) and 1582 cm(-1) are identified as the characteristic frequencies of the C2O5(2-) species. The measured characteristic Raman frequencies of C2O5(2-) are in excellent agreement with the DFT-model consisting of six overlapping individual theoretical bands calculated from Li2C2O5 and Na2C2O5.

  3. AmeriFlux US-Tw2 Twitchell Corn

    DOE Data Explorer

    Baldocchi, Dennis [University of California, Berkeley

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Tw2 Twitchell Corn. Site Description - The Twitchell Corn site is a corn field on peat soil. The tower was installed on May 17, 2012 and was equipped to analyze energy, H2O and CO2 fluxes. The field was planted in early May 2012 and harvested in early November 2012. The field was fallow during the non-growing season. The variety of corn used was ES-7477 hybrid corn commercialized by Eureka seeds. The site is near US-Tw1, US-Tw3 and US-Twt sites.

  4. Determining Accuracy of Thermal Dissipation Methods-based Sap Flux in Japanese Cedar Trees

    NASA Astrophysics Data System (ADS)

    Su, Man-Ping; Shinohara, Yoshinori; Laplace, Sophie; Lin, Song-Jin; Kume, Tomonori

    2017-04-01

    Thermal dissipation method, one kind of sap flux measurement method that can estimate individual tree transpiration, have been widely used because of its low cost and uncomplicated operation. Although thermal dissipation method is widespread, the accuracy of this method is doubted recently because some tree species materials in previous studies were not suitable for its empirical formula from Granier due to difference of wood characteristics. In Taiwan, Cryptomeria japonica (Japanese cedar) is one of the dominant species in mountainous area, quantifying the transpiration of Japanese cedar trees is indispensable to understand water cycling there. However, no one have tested the accuracy of thermal dissipation methods-based sap flux for Japanese cedar trees in Taiwan. Thus, in this study we conducted calibration experiment using twelve Japanese cedar stem segments from six trees to investigate the accuracy of thermal dissipation methods-based sap flux in Japanese cedar trees in Taiwan. By pumping water from segment bottom to top and inserting probes into segments to collect data simultaneously, we compared sap flux densities calculated from real water uptakes (Fd_actual) and empirical formula (Fd_Granier). Exact sapwood area and sapwood depth of each sample were obtained from dying segment with safranin stain solution. Our results showed that Fd_Granier underestimated 39 % of Fd_actual across sap flux densities ranging from 10 to 150 (cm3m-2s-1); while applying sapwood depth corrected formula from Clearwater, Fd_Granier became accurately that only underestimated 0.01 % of Fd_actual. However, when sap flux densities ranging from 10 to 50 (cm3m-2s-1)which is similar with the field data of Japanese cedar trees in a mountainous area of Taiwan, Fd_Granier underestimated 51 % of Fd_actual, and underestimated 26 % with applying Clearwater sapwood depth corrected formula. These results suggested sapwood depth significantly impacted on the accuracy of thermal dissipation

  5. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Butorov, I.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dove, J.; Draeger, E.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, X. H.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, K. Y.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S. S.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Monari Kebwaro, J.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Tsang, K. V.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zang, S. L.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2016-02-01

    This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWt h nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 ±0.04 ) ×10-18 cm2 GW-1 day-1 or (5.92 ±0.14 ) ×10-43 cm2 fission-1 . This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946 ±0.022 (0.991 ±0.023 ) relative to the flux predicted with the Huber -Mueller (ILL -Vogel ) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2 σ over the full energy range with a local significance of up to ˜4 σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.

  6. Temporal dynamics of CO2 fluxes and profiles over a Central European city

    NASA Astrophysics Data System (ADS)

    Vogt, R.; Christen, A.; Rotach, M. W.; Roth, M.; Satyanarayana, A. N. V.

    2006-02-01

    In Summer 2002 eddy covariance flux measurements of CO2 were performed over a dense urban surface. The month-long measurements were carried out in the framework of the Basel Urban Boundary Layer Experiment (BUBBLE). Two Li7500 open path analysers were installed at z/z H = 1.0 and 2.2 above a street canyon with z H the average building height of 14.6 m and z the height above street level. Additionally, profiles of CO2 concentration were sampled at 10 heights from street level up to 2 z H . The minimum and maximum of the average diurnal course of CO2 concentration at 2 z H were 362 and 423 ppmv in late afternoon and early morning, respectively. Daytime CO2 concentrations were not correlated to local sources, e.g. the minimum occurred together with the maximum in traffic load. During night-time CO2 is in general accumulated, except when inversion development is suppressed by frontal passages. CO2 concentrations were always decreasing with height and correspondingly, the fluxes on average always directed upward. At z/z H = 2.2 low values of about 3 µmol m-2 s-1 were measured during the second half of the night. During daytime average values reached up to 14 µmol m-2 s-1. The CO2 fluxes are well correlated with the traffic load, with their maxima occurring together in late afternoon. Daytime minimum CO2 concentrations fell below regional background values. Besides vertical mixing and entrainment, it is suggested that this is also due to advection of rural air with reduced CO2 concentration. Comparison with other urban observations shows a large range of differences among urban sites in terms of both CO2 fluxes and concentrations.

  7. Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2).

    PubMed

    Werner, Jérémie; Weng, Ching-Hsun; Walter, Arnaud; Fesquet, Luc; Seif, Johannes Peter; De Wolf, Stefaan; Niesen, Bjoern; Ballif, Christophe

    2016-01-07

    Monolithic perovskite/crystalline silicon tandem solar cells hold great promise for further performance improvement of well-established silicon photovoltaics; however, monolithic tandem integration is challenging, evidenced by the modest performances and small-area devices reported so far. Here we present first a low-temperature process for semitransparent perovskite solar cells, yielding efficiencies of up to 14.5%. Then, we implement this process to fabricate monolithic perovskite/silicon heterojunction tandem solar cells yielding efficiencies of up to 21.2 and 19.2% for cell areas of 0.17 and 1.22 cm(2), respectively. Both efficiencies are well above those of the involved subcells. These single-junction perovskite and tandem solar cells are hysteresis-free and demonstrate steady performance under maximum power point tracking for several minutes. Finally, we present the effects of varying the intermediate recombination layer and hole transport layer thicknesses on tandem cell photocurrent generation, experimentally and by transfer matrix simulations.

  8. Low-frequency 1/f noise in MoS{sub 2} transistors: Relative contributions of the channel and contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renteria, J.; Jiang, C.; Samnakay, R.

    2014-04-14

    We report on the results of the low-frequency (1/f, where f is frequency) noise measurements in MoS{sub 2} field-effect transistors revealing the relative contributions of the MoS{sub 2} channel and Ti/Au contacts to the overall noise level. The investigation of the 1/f noise was performed for both as fabricated and aged transistors. It was established that the McWhorter model of the carrier number fluctuations describes well the 1/f noise in MoS{sub 2} transistors, in contrast to what is observed in graphene devices. The trap densities extracted from the 1/f noise data for MoS{sub 2} transistors, are 2 × 10{sup 19} eV{sup −1}cm{sup −3}more » and 2.5 × 10{sup 20} eV{sup −1}cm{sup −3} for the as fabricated and aged devices, respectively. It was found that the increase in the noise level of the aged MoS{sub 2} transistors is due to the channel rather than the contact degradation. The obtained results are important for the proposed electronic applications of MoS{sub 2} and other van der Waals materials.« less

  9. AmeriFlux US-SuS Maui Sugarcane Lee/Sheltered

    DOE Data Explorer

    Anderson, Ray [USDA-Agricultural Research Service, United States Salinity Laboratory, Contaminant Fate and Transport Unit; Wang, Dong [USDA - Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Water Management Research Unit

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-SuS Maui Sugarcane Lee/Sheltered. Site Description - Continuous, irrigated, sugarcane cultivation for >100 years. Practice is to grow plant sugarcane for 2 years, drydown, burn leaves, harvest cane, and then till and replant very shortly after harvest. First cycle of observations were from July 2011 to November 2012. Second cycle was from April 2013 to December 2013. Site differs from Sugarcane Windy and Sugarcane Middle in soil type and meteorology.

  10. BOREAS TGB-1 NSA CH4 and CO2 Chamber Flux Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Crill, Patrick; Varner, Ruth K.

    2000-01-01

    The BOREAS TGB-1 team made methane (CH4) and carbon dioxide (CO2) dark chamber flux measurements at the NSA-OJP, NSA-OBS, NSA-BP, and NSA-YJP sites from 16-May-1994 through 13-Sep-1994. Gas samples were extracted approximately every 7 days from dark chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  11. Intermediate-scale community-level flux of CO 2 and CH 4 in a Minnesota peatland: Putting the SPRUCE project in a global context

    DOE PAGES

    Hanson, Paul J.; Gill, Allison; Xu, Xiaofeng; ...

    2016-08-20

    Peatland measurements of CO 2 and CH 4 flux were obtained at scales appropriate to the in situ biological community below the tree layer to demonstrate representativeness of the spruce and peatland responses under climatic and environmental change (SPRUCE) experiment. Surface flux measurements were made using dual open-path analyzers over an area of 1.13 m 2 in daylight and dark conditions along with associated peat temperatures, water table height, hummock moisture, atmospheric pressure and incident radiation data. Observations from August 2011 through December 2014 demonstrated seasonal trends correlated with temperature as the dominant apparent driving variable. The S1-Bog for themore » SPRUCE study was found to be representative of temperate peatlands in terms of CO 2 and CH 4 flux. Maximum net CO 2 flux in midsummer showed similar rates of C uptake and loss: daytime surface uptake was -5 to -6 µmol m -2 s -1 and dark period loss rates were 4–5 µmol m -2 s -1 (positive values are carbon lost to the atmosphere). Maximum midsummer CH4-C flux ranged from 0.4 to 0.5 µmol m -2 s -1 and was a factor of 10 lower than dark CO 2–C efflux rates. Midwinter conditions produced near-zero flux for both CO 2 and CH 4 with frozen surfaces. Integrating temperature-dependent models across annual periods showed dark CO 2–C and CH 4–C flux to be 894 ± 34 and 16 ± 2 gC m -2 y -1, respectively. Net ecosystem exchange of carbon from the shrub-forb-Sphagnum-microbial community (excluding tree contributions) ranged from -3.1 gCO2–C m -2 y -1 in 2013, to C losses from 21 to 65 gCO 2–C m -2 y -1 for the other years.« less

  12. NADPH oxidase promotes Parkinsonian phenotypes by impairing autophagic flux in an mTORC1-independent fashion in a cellular model of Parkinson’s disease

    PubMed Central

    Pal, Rituraj; Bajaj, Lakshya; Sharma, Jaiprakash; Palmieri, Michela; Di Ronza, Alberto; Lotfi, Parisa; Chaudhury, Arindam; Neilson, Joel; Sardiello, Marco; Rodney, George G.

    2016-01-01

    Oxidative stress and aberrant accumulation of misfolded proteins in the cytosol are key pathological features associated with Parkinson’s disease (PD). NADPH oxidase (Nox2) is upregulated in the pathogenesis of PD; however, the underlying mechanism(s) of Nox2-mediated oxidative stress in PD pathogenesis are still unknown. Using a rotenone-inducible cellular model of PD, we observed that a short exposure to rotenone (0.5 μM) resulted in impaired autophagic flux through activation of a Nox2 dependent Src/PI3K/Akt axis, with a consequent disruption of a Beclin1-VPS34 interaction that was independent of mTORC1 activity. Sustained exposure to rotenone at a higher dose (10 μM) decreased mTORC1 activity; however, autophagic flux was still impaired due to dysregulation of lysosomal activity with subsequent induction of the apoptotic machinery. Cumulatively, our results highlight a complex pathogenic mechanism for PD where short- and long-term oxidative stress alters different signaling pathways, ultimately resulting in anomalous autophagic activity and disease phenotype. Inhibition of Nox2-dependent oxidative stress attenuated the impaired autophagy and cell death, highlighting the importance and therapeutic potential of these pathways for treating patients with PD. PMID:26960433

  13. Human Effects and Soil Surface CO2 fluxes in Tropical Urban Green Areas, Singapore

    NASA Astrophysics Data System (ADS)

    Ng, Bernard; Gandois, Laure; Kai, Fuu Ming; Chua, Amy; Cobb, Alex; Harvey, Charles; Hutyra, Lucy

    2013-04-01

    Urban green spaces are appreciated for their amenity value, with increasing interest in the ecosystem services they could provide (e.g. climate amelioration and increasingly as possible sites for carbon sequestration). In Singapore, turfgrass occupies approximately 20% of the total land area and is readily found on both planned and residual spaces. This project aims at understanding carbon fluxes in tropical urban green areas, including controls of soil environmental factors and the effect of urban management techniques. Given the large pool of potentially labile carbon, management regimes are recognised to have an influence on soil environmental factors (temperature and moisture), this would affect soil respiration and feedbacks to the greenhouse effect. A modified closed dynamic chamber method was employed to measure total soil respiration fluxes. In addition to soil respiration rates, environmental factors such as soil moisture and temperature, and ambient air temperature were monitored for the site in an attempt to evaluate their control on the observed fluxes. Measurements of soil-atmosphere CO2 exchanges are reported for four experimental plots within the Singtel-Kranji Radio Transmission Station (103o43'49E, 1o25'53N), an area dominated by Axonopus compressus. Different treatments such as the removal of turf, and application of clippings were effected as a means to determine the fluxes from the various components (respiration of soil and turf, and decomposition of clippings), and to explore the effects of human intervention on observed effluxes. The soil surface CO2 fluxes observed during the daylight hours ranges from 2.835 + 0.772 umol m-2 s-1 for the bare plot as compared to 6.654 + 1.134 umol m-2 s-1 for the turfed plot; this could be attributed to both autotrophic and heterotrophic respiration. Strong controls of both soil temperature and soil moisture are observed on measured soil fluxes. On the base soils, fluxes were positively correlated to soil

  14. The production and sputtering of S2 by keV ion bombardment

    NASA Technical Reports Server (NTRS)

    Boring, J. W.; Chrisey, D. B.; Oshaughnessy, D. J.; Phipps, J. A.; Zhao, N.

    1986-01-01

    The ion bombardment of S-containing molecules in comets is simulated experimentally. Mass-analyzed 30-keV beams of Ar(+) and He(+) are directed at solid S, H2S, and CS2 targets at temperatures 15 K, and the neutral molecular species produced are ionized and analyzed using a quadrupole mass spectrometer. The dominant species detected are S1 and S2 for the S target, H2S and S2 for the H2S target, and S, CS, S2, and CS2 for the CS2 target. In the latter case, it is found that after about 10 to the 14th He(+) ions/sq cm have struck the target, further sputtering is prevented by formation of a dark brown deposit which is stable at room temperature; the residue forms more slowly when Ar(+) ions are used. These results, indicating relatively efficient S2 production by ion bombardment, are applied to theoretical models of S2 production and/or ejection by solar-wind, solar-flare, or cosmic-ray ions striking comets. It is found that direct solar-wind production of S2 by sputtering is unlikely at realistic bombardment rates, but that H2S-S2 conversion by energetic ions could be significant, with less stringent ice-temperature and irradiation-flux constraints than in the case of S2 production by photons.

  15. Risk stratification of gallbladder polyps (1-2 cm) for surgical intervention with 18F-FDG PET/CT.

    PubMed

    Lee, Jaehoon; Yun, Mijin; Kim, Kyoung-Sik; Lee, Jong-Doo; Kim, Chun K

    2012-03-01

    We assessed the value of (18)F-FDG uptake in the gallbladder polyp (GP) in risk stratification for surgical intervention and the optimal cutoff level of the parameters derived from GP (18)F-FDG uptake for differentiating malignant from benign etiologies in a select, homogeneous group of patients with 1- to 2-cm GPs. Fifty patients with 1- to 2-cm GPs incidentally found on the CT portion of PET/CT were retrospectively analyzed. All patients had histologic diagnoses. GP (18)F-FDG activity was visually scored positive (≥liver) or negative (1- to 2-cm GPs.

  16. Thermoelectric Properties of Sr-Filled Ge-Based Type I Single-Crystal Clathrate Grown by Sn-Flux Method

    NASA Astrophysics Data System (ADS)

    Deng, Shuping; Liu, Hongxia; Li, Decong; Wang, Jinsong; Cheng, Feng; Shen, Lanxian; Deng, Shukang

    2017-05-01

    Single-crystal samples of Sr-filled Ge-based type I clathrate have been prepared by the Sn-flux method, and their thermoelectric properties investigated. The obtained samples exhibited n-type conduction with carrier concentration varying from 2.8 × 1019/cm3 to 6.8 × 1019/cm3 as the carrier mobility changed from 23.9 cm2/V-s to 15.1 cm2/V-s at room temperature. Structural analysis indicated that all samples were type I clathrate in space group pm\\bar{it{3}}n . The total content of group IV (Ge + Sn) atoms in the crystalline structure increased with increasing x value (where x defines the atomic ratio of starting elements, Sr:Ga:Ge:Sn = 8:16: x:20), reaching a maximum value of 31.76 at.% for the sample with x = 30; consequently, the lattice parameters increased. The melting points for all samples were approximately 1012 K, being considerably lower than that of single-crystal Sr8Ga16Ge30 prepared by other methods. The electrical conductivity increased while the absolute value of α increased gradually with increasing temperature; the maximum value of α reached 193 μV/K at 750 K for the sample with x = 24. The sample with x = 30 exhibited lower lattice thermal conductivity of 0.80 W/m-K. As a result, among all the Sn-flux samples, single-crystal Sr7.92Ga15.04Sn0.35Ge30.69 had the largest ZT value of 1.0 at about 750 K.

  17. New observation and combined analysis of the Cs{sub 2} 0{sub g}{sup −}, 0{sub u}{sup +}, and 1{sub g} states at the asymptotes 6S{sub 1/2} + 6P{sub 1/2} and 6S{sub 1/2} + 6P{sub 3/2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jie; Liu, Wenliang; Wu, Jizhou

    2014-12-28

    We report on new observations of the photoassociation spectroscopy of ultracold cesium molecules using a highly sensitive detection technique and a combined analysis with all observed electronic states. The technique is achieved by directly modulating the frequency of the trapping lasers of a magneto-optical trap. New observations of the Cs{sub 2}0{sub g}{sup −}, 0{sub u}{sup +}, and 1{sub g} states at the asymptotes 6S{sub 1/2} + 6P{sub 1/2} and 6S{sub 1/2} + 6P{sub 3/2} are reported. The spectral range is extended to the red detuning of 112 cm{sup −1} below the 6S{sub 1/2} + 6P{sub 3/2} dissociation limit. Dozens ofmore » vibrational levels of the ultracold Cs{sub 2}0{sub g}{sup −}, 0{sub u}{sup +}, and 1{sub g} states are observed for the first time. The available experimental binding energies of these states are analyzed simultaneously in a framework of the generalized LeRoy–Bernstein theory and the almost degenerate perturbation theory by Marinescu and Dalgarno [Phys. Rev. A: At., Mol., Opt. Phys. 52, 311 (1995)]. The unique atomic-related parameter c{sub 3} governing the dispersion forces of all the molecular states is estimated as (10.29 ± 0.05) a.u.« less

  18. H2O and CO2 fluxes at the floor of a boreal pine forest

    NASA Astrophysics Data System (ADS)

    Kulmala, Liisa; Launiainen, Samuli; Pumpanen, Jukka; Lankreijer, Harry; Lindroth, Anders; Hari, Pertti; Vesala, Timo

    2008-04-01

    We measured H2O and CO2 fluxes at a boreal forest floor using eddy covariance (EC) and chamber methods. Maximum evapotranspiration measured with EC ranged from 1.5 to 2.0mmol m-2 s-1 while chamber estimates depended substantially on the location and the vegetation inside the chamber. The daytime net CO2 exchange measured with EC (0-2μmol m-2 s-1) was of the same order as measured with the chambers. The nocturnal net CO2 exchange measured with the chambers ranged from 4 to 7μmol m-2 s-1 and with EC from ~4 to ~5μmol m-2 s-1 when turbulent mixing below the canopy was sufficient and the measurements were reliable. We studied gross photosynthesis by measuring the light response curves of the most common forest floor species and found the saturated rates of photosynthesis (Pmax) to range from 0.008 (mosses) to 0.184μmol g-1 s-1 (blueberry). The estimated gross photosynthesis at the study site based on average leaf masses and the light response curves of individual plant species was 2-3μmol m-2 s-1. At the same time, we measured a whole community with another chamber and found maximum gross photosynthesis rates from 4 to 7μmol m-2 s-1.

  19. (2R,1'S,2'R)- and (2S,1'S,2'R)-3-[2-Mono(di,tri)fluoromethylcyclopropyl]alanines and their incorporation into hormaomycin analogues

    PubMed Central

    Kozhushkov, Sergei I; Yufit, Dmitrii S; Grosse, Christian; Kaiser, Marcel

    2014-01-01

    Summary Efficient and scalable syntheses of enantiomerically pure (2R,1'S,2'R)- and (2S,1'S,2'R)-3-[2-mono(di,tri)fluoromethylcyclopropyl]alanines 9a–c, as well as allo-D-threonine (4) and (2S,3R)-β-methylphenylalanine (3), using the Belokon' approach with (S)- and (R)-2-[(N-benzylprolyl)amino]benzophenone [(S)- and (R)-10] as reusable chiral auxiliaries have been developed. Three new fluoromethyl analogues of the naturally occurring octadepsipeptide hormaomycin (1) with (fluoromethylcyclopropyl)alanine moieties have been synthesized and subjected to preliminary tests of their antibiotic activity. PMID:25550751

  20. Measuring surface fluxes in CAPE

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; D-Shah, T.; Nie, Dalin

    1992-01-01

    Two stations (site 1612 and site 2008) were operated by the University of Georgia group from 6 July 1991 to 18 August 1991. The following data were collected continuously: surface energy fluxes (i.e., net radiation, soil heat fluxes, sensible heat flux and latent heat flux), air temperature, vapor pressure, soil temperature (at 1 cm depth), and precipitation. Canopy reflectance and light interception data were taken three times at each site between 6 July and 18 August. Soil moisture content was measured twice at each site.

  1. Boron neutrino flux and the MSW solution of the solar neutrino problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krastev, P.I.; Smirnov, A.Y.

    1994-10-01

    There are large uncertainties in the predictions of the boron neutrino flux from the Sun which cannot be considered as being of purely statistical origin. We treat the magnitude of this flux, {Phi}{sub B}, as a parameter to be found from experiment. The properties of the, MSW solution to the solar neutrino problem for different values of {Phi}{sub B} are studied. Present, data give the bounds: 0.38 < {Phi}{sub B}/{Phi}{sub B}{sup O} < 3.1 (2{sigma}), where {Phi}{sub B}{sup O} {identical_to} 5.7 {center_dot} 10{sup 6} cm{sup {minus}2}s{sup {minus}1} is the flux in the reference SSM. The variations of the flux inmore » this interval enlarge the allowed region of mixing angles: sin{sup 2} 2{theta} = 0.2 {divided_by} 2 {center_dot} 10{sup {minus}4} {divided_by} 2 {center_dot} 10{sup {minus}2} (small mixing solutions) and sin{sup 2} 2{theta} = 0.2 {divided_by} 0.85 (large mixing solution). If the value of the original boron neutrino flux is about that measured by Kamiokande, a consistent description of the data is achieved for sin{sup 2} 2{theta} {approximately} (0.8 {divided_by} 2) {center_dot} 10{sup {minus}3} (``very small mixing solution``). The solution is characterized by a strong suppression of the beryllium neutrino line, a weak distortion of the high energy part of the baron neutrino spectrum and a value of the double ratio (CC/NC){sup exp}/(CC/NC){sup SSM} at E > 5 MeV close to 1. We comment on the possibility to measure the neutrino parameters and the original boron neutrino flux in future experiments.« less

  2. Rapid gamma-ray flux variability during the 2013 March Crab Nebula flare

    DOE PAGES

    Mayer, Michael; Buehler, Rolf; Hays, Elizabeth; ...

    2013-09-11

    Here, we report on a bright flare in the Crab Nebula detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The period of significantly increased luminosity occurred in 2013 March and lasted for approximately two weeks. During this period, we observed flux variability on timescales of approximately 5 hr. The combined photon flux above 100 MeV from the pulsar and its nebula reached a peak value of (12.5 ± 0.8) • 10 –6 cm2 s1 on 2013 March 6. This value exceeds the average flux by almost a factor of six and impliesmore » a ~20 times higher flux for the synchrotron component of the nebula alone. This is the second brightest flare observed from this source. Spectral and temporal analysis of the LAT data collected during the outburst reveal a rapidly varying synchrotron component of the Crab Nebula while the pulsar emission remains constant in time.« less

  3. Comparative analysis between percutaneous nephrolithotomy and flexible ureteroscopy in kidney stones of 2-3cm.

    PubMed

    Pieras, E; Tubau, V; Brugarolas, X; Ferrutxe, J; Pizá, P

    2017-04-01

    To compare percutaneous nephrolithotomy and flexible ureterorenoscopy for treating kidney stones between 2 and 3cm. A prospective, comparative, nonrandomised study was conducted with 108 patients with kidney stones between 2 and 3cm. Fifty-four patients underwent percutaneous nephrolithotomy and 54 underwent flexible ureteroscopy. We compared the following variables: lithiasis-free rate (%), surgical time, the need for an auxiliary process, postoperative complications, hospital stay, readmission rates and recovery time. There were no differences in the lithiasis-free rate between the 2 surgical techniques (76% for ureteroscopy vs. 87% for nephrolithotomy; P=.1) or in the complications (29% for nephrolithotomy vs. 27% for ureteroscopy; P=.4). A larger number of auxiliary process were needed for the ureteroscopy group (20%) than for the nephrolithotomy group (7%) (P=.04). The surgical time was longer for the nephrolithotomy group (121±52min) than for the ureteroscopy group (93±42min) (P=.004). The ureteroscopy group had shorter hospital stays (2.1±1.6 vs. 3.9±1.9 days; P=.002), shorter convalescence (8.1±4.9 vs. 13.3±4.2 days; P=.005) and higher readmission rates (7.4% vs. 0%, P=.05) than the nephrolithotomy group. Nephrolithotomy and ureteroscopy have similar efficacy for treating kidney stones measuring 2-3cm, with no differences in complications. Ureteroscopy results in shorter hospital stays, quicker recoveries but more readmissions and a greater need for auxiliary procedures. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. H.E.S.S. observations of the binary system PSR B1259-63/LS 2883 around the 2010/2011 periastron passage

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chaves, R. C. G.; Cheesebrough, A.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Grudzińska, M.; Häer, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Krüger, P. P.; Lan, H.; Lamanna, G.; Lefaucheur, J.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nguyen, N.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Willmann, P.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2013-03-01

    Aims: We present very high energy (VHE; E > 100 GeV) data from the γ-ray binary system PSR B1259-63/LS 2883 taken around its periastron passage on 15th of December 2010 with the High Energy Stereoscopic System (H.E.S.S.) of Cherenkov Telescopes. We aim to search for a possible TeV counterpart of the GeV flare detected by the Fermi LAT. In addition, we aim to study the current periastron passage in the context of previous observations taken at similar orbital phases, testing the repetitive behaviour of the source. Methods: Observations at VHEs were conducted with H.E.S.S. from 9th to 16th of January 2011. The total dataset amounts to ~6 h of observing time. The data taken around the 2004 periastron passage were also re-analysed with the current analysis techniques in order to extend the energy spectrum above 3 TeV to fully compare observation results from 2004 and 2011. Results: The source is detected in the 2011 data at a significance level of 11.5σ revealing an averaged integral flux above 1 TeV of (1.01 ± 0.18stat ± 0.20sys) × 10-12 cm-2 s-1. The differential energy spectrum follows a power-law shape with a spectral index Γ = 2.92 ± 0.30stat ± 0.20sys and a flux normalisation at 1 TeV of N0 = (1.95 ± 0.32stat ± 0.39sys) × 10-12 TeV-1 cm-2 s-1. The measured light curve does not show any evidence for variability of the source on the daily scale. The re-analysis of the 2004 data yields results compatible with the published ones. The differential energy spectrum measured up to ~10 TeV is consistent with a power law with a spectral index Γ = 2.81 ± 0.10stat ± 0.20sys and a flux normalisation at 1 TeV of N0 = (1.29 ± 0.08stat ± 0.26sys) × 10-12 TeV-1 cm-2 s-1. Conclusions: The measured integral flux and the spectral shape of the 2011 data are compatible with the results obtained around previous periastron passages. The absence of variability in the H.E.S.S. data indicates that the GeV flare observed by Fermi LAT in the time period covered also by H.E.S.S

  5. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm² V(-1) s(-1).

    PubMed

    Zhang, Fengjiao; Hu, Yunbin; Schuettfort, Torben; Di, Chong-an; Gao, Xike; McNeill, Christopher R; Thomsen, Lars; Mannsfeld, Stefan C B; Yuan, Wei; Sirringhaus, Henning; Zhu, Daoben

    2013-02-13

    Substituted side chains are fundamental units in solution processable organic semiconductors in order to achieve a balance of close intermolecular stacking, high crystallinity, and good compatibility with different wet techniques. Based on four air-stable solution-processed naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malononitrile groups (NDI-DTYM2) that bear branched alkyl chains with varied side-chain length and different branching position, we have carried out systematic studies on the relationship between film microstructure and charge transport in their organic thin-film transistors (OTFTs). In particular synchrotron measurements (grazing incidence X-ray diffraction and near-edge X-ray absorption fine structure) are combined with device optimization studies to probe the interplay between molecular structure, molecular packing, and OTFT mobility. It is found that the side-chain length has a moderate influence on thin-film microstructure but leads to only limited changes in OTFT performance. In contrast, the position of branching point results in subtle, yet critical changes in molecular packing and leads to dramatic differences in electron mobility ranging from ~0.001 to >3.0 cm(2) V(-1) s(-1). Incorporating a NDI-DTYM2 core with three-branched N-alkyl substituents of C(11,6) results in a dense in-plane molecular packing with an unit cell area of 127 Å(2), larger domain sizes of up to 1000 × 3000 nm(2), and an electron mobility of up to 3.50 cm(2) V(-1) s(-1), which is an unprecedented value for ambient stable n-channel solution-processed OTFTs reported to date. These results demonstrate that variation of the alkyl chain branching point is a powerful strategy for tuning of molecular packing to enable high charge transport mobilities.

  6. Effects of experimental warming and mowing on greenhouse gas fluxes in an alpine meadow on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Jinsong; Quan, Quan; Sun, Jian; Niu, Shuli

    2017-04-01

    Rapid climate change and intensified human activities on the Tibetan Plateau may alter the magnitude and direction of greenhouse gas (GHG) emissions, affecting the climate change impact on these fragile ecosystems. We conducted a controlled experiment to investigate the effects of warming and mowing (simulation of grazing) on soil CO2, CH4 and N2O fluxes in an alpine meadow in eastern Tibetan Plateau between August 2015 and July 2016. Three levels of temperature (C, ambient temperature; W1, < 2 °C warming at 5 cm soil depth by infrared heaters; and W2, > 2 °C warming) were combined with two levels of mowing treatment (UM, un-mowing; and M, mowing). GHG fluxes were measured once an hour using static chamber. Both CO2 emission and CH4 uptake rates showed a seasonal fluctuation, with the maximum value occurred in late summer and the minimum in winter. However, N2O flux did not show a strong seasonal pattern. High level of warming (W2) regardless of mowing significantly increased CO2 emission and CH4 uptake by 15.4 % and 38.2 % averaged over the year, compared with no-warming (C). Moderate warming (W1) did not have significant effects on either CO2 or CH4 fluxes. N2O flux was reduced by 54.1% by W2 and 15.7% by W1 warming. Mowing alone increased CH4 uptake and N2O emission by 18.0 % and 12.7%, respectively, but had no significant effect on CO2 flux. The interactions between warming and mowing were detected in CO2 and CH4 fluxes. Among all treatments, W2UM in general had the highest rates of CO2 emission and CH4 uptake but the lowest rate of N2O flux, while CUM and CM showed the opposite. In addition, warming induced increase in CH4 uptake and decline in N2O release had very limited ability to offset the enhanced CO2 emission, resulting in a net positive feedback of the three GHGs to climate warming. Furthermore, daily CO2 flux increased exponentially with soil temperature at 5 cm. CH4 flux correlated negatively with soil temperature but positively with soil moisture.

  7. The SeaFlux Turbulent Flux Dataset Version 1.0 Documentation

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent; Bogdanoff, Alec S.

    2012-01-01

    Under the auspices of the World Climate Research Programme (WCRP) Global Energy and Water cycle EXperiment (GEWEX) Data and Assessment Panel (GDAP), the SeaFlux Project was created to investigate producing a high-resolution satellite-based dataset of surface turbulent fluxes over the global oceans. The most current release of the SeaFlux product is Version 1.0; this represents the initial release of turbulent surface heat fluxes, associated near-surface variables including a diurnally varying sea surface temperature.

  8. Observation of an hexatic vortex glass in flux lattices of the high- Tc superconductor Bi 2.1Sr 1.9Ca 0.9Cu 2O 8+δ

    NASA Astrophysics Data System (ADS)

    Bishop, D. J.; Gammel, P. L.; Murray, C. A.; Mitzi, D. B.; Kapitulnik, A.

    1991-02-01

    We report observation of hexatic order in Abrikosov flux lattices in very clean crystals of the high- Tc superconductor Bi 2.1Sr 1.9Ca 0.9Cu 2O 8+δ (BSCCO). Our experiments consist of in situ magnetic decoration of the flux lattice at 4.2 K. Analysis of the decoration images shows that the positional order decays exponentially with a correlation length of a few lattice constants while the orientational order persists for hundreds of lattice constants and decays algebraically with an exponent η 6 = 0.6 ± 0.01. Our results confirm recent theoretical speculation that the positional order should be far more sensitive to disorder than the orientational order and that the low-temperature ordered phase of the flux lines in these systems might be an hexatic glass.

  9. Observation of an hexatic vortex glass in flux lattices of the high Tc superconductor Bi2.1Sr1.9Ca0.9Cu2O8+δ

    NASA Astrophysics Data System (ADS)

    Bishop, D. J.; Gammel, P. L.; Murray, C. A.; Mitzi, D. B.; Kapitulnik, A.

    1990-10-01

    We report observation of hexatic order in Abrikosov flux lattices in very clean crystals of the high Tc superconductor Bi2.1Sr1.9Ca0.9Cu2O8+δ (BSCCO). Our experiments consist of in situ magnetic decoration of the flux lattice at 4.2 K. Analysis of the decoration images shows that the positional order decays exponentially with a correlation length of a few lattice constants while the orientational order persists for hundreds of lattice constants and decays algebraically with an exponent η6=0.06±0.01. Our results confirm recent theoretical speculation that the positional order should be far more sensitive to disorder than the orientational order and that the low temperature ordered phase of the flux lines in these systems might be an hexatic glass.

  10. Observation of a hexatic vortex glass in flux lattices of the High-Tc superconductor Bi(2.1)Sr(1.9)Ca(0.9)Cu2O(8 + delta)

    NASA Astrophysics Data System (ADS)

    Murray, C. A.; Gammel, P. L.; Bishop, D. J.; Mitzi, D. B.; Kapitulnik, A.

    1990-05-01

    Hexatic order is observed in Abrikosov flux lattices in very clean crystals of the high-Tc superconductor Bi(2.1)Sr(1.9)Ca(0.9)Cu2O(8 + delta) by in situ magnetic decoration of the flux lattice at 4.2 K. Analysis of the decoration images shows that the positional order decays exponentially with a correlation length of a few lattice constants, while the orientational order persists for hundreds of lattice constants and decays algebraically with an exponent eta6 = 0.06 + or - 0.01. These results confirm recent theoretical speculation that the positional order should be far more sensitive to disorder than the orientational order, and that the low-temperature ordered phase of the flux lines in these systems might be a hexatic glass.

  11. First analysis of the rotationally-resolved ν 2 and 2ν 22 bands of sulfur dioxide, 33S 16O 2

    DOE PAGES

    Blake, T. A.; Flaud, J. -M.; Lafferty, W. J.

    2017-01-03

    A Fourier transform spectrum of sulfur dioxide 33S 16O 2 has been recorded in the 18.3 μm spectral region at a resolution of 0.002 cm $-$1 using a Bruker IFS 125HR spectrometer leading to the observation of the ν 2 and 2ν 22 vibrational bands of the 33S 16O 2 molecule. The corresponding upper state ro-vibrational levels were fit using Watson-type Hamiltonians. In this way it was possible to reproduce the upper state ro-vibrational levels to within the experimental uncertainty; i.e., ~ 0.20 × 10 $-$3 cm $-$1. Finally, very accurate rotational and centrifugal distortion constants were derived frommore » the fit together with the following band centers: ν 0 (ν 2) = 515.659089(50) cm $-$1, ν 0 (2ν 2) = 1030.697723(20) cm $-$1.« less

  12. Turbulence intensity in a region of interest 2cm distal to the carotid bifurcation in a family of seven anthropomorphic flow phantoms

    NASA Astrophysics Data System (ADS)

    Powell, Janet L.; Poepping, Tamie L.

    2011-03-01

    An in vitro flow system has been used to assess the flow disturbances downstream of the stenosis in a family of seven carotid bifurcation phantoms modelling varying plaque build-up both axially symmetrically (concentrically) and asymmetrically (eccentrically). Radio frequency data were collected for 10 s at each of over 1000 sites within each model, and a sliding 1024-point FFT is applied to the data to extract the Doppler spectrum every 12 ms. From this, the ensemble average over 10 cardiac cycles of the spectral mean velocity, and the root mean square over these same 10 cardiac cycles - the turbulence intensity (TI), can be obtained as a function of an ensemble averaged cardiac cycle at each spatial point in all phantoms. TI was investigated by looking at the average over a 25 mm2 square region of interest in the ICA centered 2 cm distal to the apex of the bifurcation. TI in the region of interest increased with stenosis severity; at 23ms following peak systole, the time point when TI was maximal for the majority of models, this ranged from 2.4+/-0.1 cm/s in the non-diseased model to 6.6+/-0.3, 16.0+/-1.4 and 26.1+/-1.3 cm/s in the 30, 50 and 70% concentrically stenosed (by NASCET criteria) models, respectively. Similarly, TI was 8.3+/-0.7, 19.9+/-1.1, and 26.2+/-1.2 cm/s in the 30, 50 and 70% eccentrically stenosed models, respectively. Differences in TI between models, both in increasing stenosis severity and between eccentricities, were statistically different except between the 70% concentric and eccentric models.

  13. Improved Statistical Model Of 10.7-cm Solar Radiation

    NASA Technical Reports Server (NTRS)

    Vedder, John D.; Tabor, Jill L.

    1993-01-01

    Improved mathematical model simulates short-term fluctuations of flux of 10.7-cm-wavelength solar radiation during 91-day averaging period. Called "F10.7 flux", important as measure of solar activity and because it is highly correlated with ultraviolet radiation causing fluctuations in heating and density of upper atmosphere. F10.7 flux easily measureable at surface of Earth.

  14. CO2 Fluxes Associated with Soil Organic C Stock Changes in the Mid-Continent Region of the U.S.

    NASA Astrophysics Data System (ADS)

    Ogle, S. M.; Paustian, K.; Easter, M.; Killian, K.; Williams, S.

    2005-12-01

    Regional CO2 sources and sinks need to be quantified in the terrestrial biosphere for basic understanding and policy development. Our objective was to quantify CO2 fluxes for the Mid-Continent Region of the US, including Iowa and neighboring areas in adjacent states, using a "bottom-up" simulation modeling approach. Soils represent an important potential sink for this largely agricultural region because of limited potential for CO2 uptake and storage in woody biomass. SOC stocks were estimated to have increased during the 1990s at a rate equivalent to 3.81 Tg CO2 yr-1, but with considerable sub-regional variation due to differences in land use and management patterns. Sinks were driven by conservation tillage adoption, enrollment in the Conservation Reserve Program, and conversion of annual crops to continuous hay or pasture. The dominant source of CO2 from soils in the Mid-Continent Region was attributed to drainage and cultivation of organic soils. Uncertainties in regional estimates were determined using a Monte Carlo Analysis and empirically-based uncertainty estimator, and the largest uncertainties were associated with estimating the fluxes from drained organic soils. A major research challenge is to verify the accuracy of these rates using "top-down" atmospheric budgets that are independent of the bottom-up inventory.

  15. Derivation of the Energy and Flux Morphology in an Aurora Observed at Midlatitude Using Multispectral Imaging

    NASA Astrophysics Data System (ADS)

    Aryal, Saurav; Finn, Susanna C.; Hewawasam, Kuravi; Maguire, Ryan; Geddes, George; Cook, Timothy; Martel, Jason; Baumgardner, Jeffrey L.; Chakrabarti, Supriya

    2018-05-01

    Energies and fluxes of precipitating electrons in an aurora over Lowell, MA on 22-23 June 2015 were derived based on simultaneous, high-resolution (≈ 0.02 nm) brightness measurements of N2+ (427.8 nm, blue line), OI (557.7 nm, green line), and OI (630.0 nm, red line) emissions. The electron energies and energy fluxes as a function of time and look direction were derived by nonlinear minimization of model predictions with respect to the measurements. Three different methods were compared; in the first two methods, we constrained the modeled brightnesses and brightness ratios, respectively, with measurements to simultaneously derive energies and fluxes. Then we used a hybrid method where we constrained the individual modeled brightness ratios with measurements to derive energies and then constrained modeled brightnesses with measurements to derive fluxes. Derived energy, assuming Maxwellian distribution, during this storm ranged from 109 to 262 eV and the total energy flux ranged from 0.8 to 2.2 ergs·cm-2·s-1. This approach provides a way to estimate energies and energy fluxes of the precipitating electrons using simultaneous multispectral measurements.

  16. CO/sub 2/ fluxes in the tropical Atlantic during FOCAL cruises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrie, C.; Oudot, C.; Genthon, C.

    1986-10-15

    CO/sub 2/ partial pressures in the atmosphere and in surface seawater have been measured in the equatorial Atlantic Ocean during Programme Francais Ocean-Climat en Atlantique Equatorial cruises extending from July 1982 to August 1984 along the 4/degree/W, 22/degree/W, and 35/degree/W meridians. Gas transfer coefficients based on recently reported field data combined with information deduced from wind tunnel experiments are used to compute the CO/sub 2/ fluxes. The global mean net flux between 5/degree/N and 5/degree/S is equal to 1.05 mmol m/sup /minus/2/ d/sup /minus/1/ and is from the ocean to the atmosphere. The escape of CO/sub 2/ increases strongly frommore » the east to the west and is always lower in the north than in the south. The importance of wind speed, pCO/sub 2/ in atmosphere, PCO/sub 2/ in surface seawater, and temperature on the flux variability is discussed. The relative influence of the equatorial upwelling on one hand and of the advection and warming of surface waters on the other hand is studied in order to explain high partial pressure in seawater. 59 refs., 15 figs., 5 tabs.« less

  17. Land use and rainfall effect on soil CO2 fluxes in a Mediterranean agroforestry system

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Álvaro-Fuentes, Jorge; Lizaga, Iván; Navas, Ana

    2017-04-01

    Soils are the largest C reservoir of terrestrial ecosystems and play an important role in regulating the concentration of CO2 in the atmosphere. The exchange of CO2 between the atmosphere and soil controls the balance of C in soils. The CO2 fluxes may be influenced by climate conditions and land use and cover change especially in the upper soil organic layer. Understanding C dynamics is important for maintaining C stocks to sustain and improve soil quality and to enhance sink C capacity of soils. This study focuses on the response of the CO2 emitted to rainfall events from different land uses (i.e. forest, abandoned cultivated soils and winter cereal cultivated soils) in a representative Mediterranean agroforestry ecosystem in the central part of the Ebro basin, NE Spain (30T 4698723N 646424E). A total of 30 measurement points with the same soil type (classified as Calcisols) were selected. Soil CO2 flux was measured in situ using a portable EGM-4 CO2 analyzer PPSystems connected to a dynamic chamber system (model CFX-1, PPSystems) weekly during autumn 2016. Eleven different rainfall events were measured at least 24 hours before (n=7) and after the rainfall event (n=4). Soil water content and temperature were measured at each sampling point within the first 5 cm. Soil samples were taken at the beginning of the experiment to determine soil organic carbon (SOC) content using a LECO RC-612. The mean SOC for forest, abandoned and cultivated soils were 2.5, 2.7 and 0.6 %, respectively. The results indicated differences in soil CO2 fluxes between land uses. The field measurements of CO2 flux show that before cereal sowing the highest values were recorded in the abandoned soils varying from 56.1 to 171.9 mg CO2-C m-2 h-1 whereas after cereal sowing the highest values were recorded in cultivated soils ranged between 37.8 and 116.2 mg CO2-C m-2 h-1 indicating the agricultural impact on CO2 fluxes. In cultivated soils, lower mean CO2 fluxes were measured after direct seeding

  18. The Regulation of CH4 and N2O fluxes by Wetlands at Landscape Level

    NASA Astrophysics Data System (ADS)

    Soosaar, K.; Maddison, M.; Salm, J. O.; Järveoja, J.; Hansen, R.; Mander, Ü.

    2012-04-01

    The world's wetlands, despite being only about 5% of the terrestrial landscape, are currently significant net sinks of more than 1 Pg yr-1 of carbon (Mitsch et al 2012). At landscape level wetlands and riparian zones are important regulators of nutrient transport (Zedler 2003). However, they can be also significant hot spots of greenhouse gas (GHG) emissions (Teiter&Mander 2005). Swedish experience shows that the nationally planned wetland creation (12,000 ha) could make a significant contribution to the targeted reduction of N fluxes (up to 27% of the Swedish environmental objective), at an environmental risk equalling 0.04% of the national anthropogenic GHG emission (Thiere et al 2011). Only few studies consider the potential GHG emission throughout both natural and created wetlands. The main objective of this study was to clarify the potential of various wetland ecosystem and riparian zones of northern rural landscapes in regulation of GHG emissions. Monthly-based measurements of GHG emissions using closed chamber method were performed from October 2007 to October 2011 in 47 study sites in Estonia. The study sites cover various wetlands and riparian forests as well as reference areas on automorphic soils. In general, wetlands' drainage was the most significant disturbance factor influencing GHG fluxes, causing significant increase of N2O emission as well as decreasing CH4 emission. However, we also observed significantly high CH4 flux from drained peatlands. In most of the soils with ground/soil water levels deeper than 30 cm from the surface, a significant decrease of CH4 fluxes were detected. The highest CH4 emissions (up to 5060 kg CH4-C ha-1 yr-1) were detected from drained fen grasslands. In the case of N2O, no clear differences were found between colder and warmer periods. Relatively higher N2O fluxes were measured from the drained fen grassland, the fertilized arable land, the riparian forest on automorphic soil, and the drained transition fen forest

  19. Burning lithium in CS2 for high-performing compact Li2 S-graphene nanocapsules for Li-S batteries

    NASA Astrophysics Data System (ADS)

    Tan, Guoqiang; Xu, Rui; Xing, Zhenyu; Yuan, Yifei; Lu, Jun; Wen, Jianguo; Liu, Cong; Ma, Lu; Zhan, Chun; Liu, Qi; Wu, Tianpin; Jian, Zelang; Shahbazian-Yassar, Reza; Ren, Yang; Miller, Dean J.; Curtiss, Larry A.; Ji, Xiulei; Amine, Khalil

    2017-07-01

    Tremendous efforts have been made to design the cathode of Li-S batteries to improve their energy density and cycling life. However, challenges remain in achieving fast electronic and ionic transport while accommodating the significant cathode volumetric change, especially for the cathode with a high practical mass loading. Here we report a cathode architecture, which is constructed by burning lithium foils in a CS2 vapour. The obtained structure features crystalline Li2S nanoparticles wrapped by few-layer graphene (Li2S@graphene nanocapsules). Because of the improvement on the volumetric efficiency for accommodating sulfur active species and electrical properties, the cathode design enables promising electrochemical performance. More notably, at a loading of 10 mgLi2S cm-2, the electrode exhibits a high reversible capacity of 1,160 mAh g-1s, namely, an area capacity of 8.1 mAh cm-2. Li2S@graphene cathode demonstrates a great potential for Li-ion batteries, where the Li2S@graphene-cathode//graphite-anode cell displays a high capacity of 730 mAh g-1s as well as stable cycle performance.

  20. The Rovibrational Intensities of the (40 deg 1) and (00 deg 0) Pentad Absorption Bands of 12C16O2 Between 7284 and 7921 cm(exp-1)

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Chackerian, C., Jr.; Spencer, N.; Brown, L. R.; Wattson, R. B.; Gore, Warren J. (Technical Monitor)

    1995-01-01

    Carbon dioxide is the major constituent of the atmospheres of both Mars and Venus. Correct interpretations of spectra of these atmospheres require accurate knowledge of a substantial number of absorption bands of this gas. This is especially true for Venus; many weak CO2 bands that are insignificant in the earth's atmosphere are prominent absorbers in Venus' hot, dense lower atmosphere. Yet, recent near-infrared spectra of Venus' nightside have discovered emission windows, which occur between CO2 absorption bands, at 4040-4550 cm(exp-1), 5700-5900 cm(exp-1), and several smaller ones between 7500 and 9400 cm(exp-1). This radiation is due to thermal emission from Venus' lower atmosphere, diminished by scattering and absorption within the sulfuric acid clouds on its way to space. Simulations of these data with radiative transfer models can provide improved information on the abundances of a number of constituents of the lower atmosphere (e.g. H2O, CO, HDO, HCl, HF, and OCS) and the optical properties of the clouds, whose spatial variation modulates the brightness of the emissions. However, the accuracy of these retrievals has been limited by insufficient knowledge of the opacity of some of the gas species, including CO2, at the large pathlengths and high temperatures and pressures that exist on Venus. In particular, modeling the emission spectrum did not produce a good fit for the emission window centered at 7830 cm(exp-1). In an ongoing effort to assist analyses of these Venus spectra, we have been making laboratory intensity measurements of several weak bands of CO2 which are significant absorbers in these Venus emission windows. The CO2 bands that are prominent in the 7830 cm(exp-1) region belong to the vibrational sequence 4v1+v3 and associated hot bands. Only 2 of the 5 bands of this sequence have been previously measured. Modeling Venus' emission spectrum in the 7830 cm(exp-1) region had to rely on calculated intensity values for the weak ground state band at

  1. From the S U (2 ) quantum link model on the honeycomb lattice to the quantum dimer model on the kagome lattice: Phase transition and fractionalized flux strings

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Jiang, F.-J.; Olesen, T. Z.; Orland, P.; Wiese, U.-J.

    2018-05-01

    We consider the (2 +1 ) -dimensional S U (2 ) quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the kagome lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges [which transform nontrivially under the Z (2 ) center of the S U (2 ) gauge group] are confined to each other by fractionalized strings with a delocalized Z (2 ) flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the three-dimensional Ising universality class separates two confining phases: one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.

  2. High-Resolution Infrared Spectrum of Monoiodoacetylene Between 2000 and 3000 cm -1

    NASA Astrophysics Data System (ADS)

    Ahonen, Anne-Maaria; Ahonen, Tarmo; Alanko, Seppo

    1998-09-01

    The high-resolution infrared spectrum of monoiodoacetylene measured with a Bruker IFS 120 HR Fourier transform spectrometer in the spectral range of 2000-3000 cm-1has been studied in detail. The strongest bands observed in the wavenumber region investigated are the C-C stretching fundamental ν2(2034-2082 cm-1) and the accompanying hot bands of the types ν2+ νn- νn, wheren= 3, 4, or 5, associated with the lowest stretching statev3= 1 and with the low-lying bending statesv4= 1 andv5= 1, 2, respectively. The combination bands of the types ν2+ νn, wherenis as above, starting direct from the ground state have also been observed. In addition, the weak overtone band 2ν2(4081-4121 cm-1) has been measured to study the anharmonicity of the C-C stretching mode. The new, more accurate values for the ground state rotational constants have been derived by combining the ground state combination differences calculated from our IR data available in the present work as well as in our previous investigations concerning the HCCI molecule to the accurate MW transitions from the literature. The rotational structures of the overtone levelv2= 2 and the combination levelsv2=vn= 1, wherenis as above, have been investigated by analyzing the observed spectra with a model including various Fermi- andl-type resonances. As a result, the values for the harmonic frequency ω02and the anharmonicity constantsx22,x23,x24, andx25are determined.

  3. Ultrafast mid-infrared spectroscopy by chirped pulse upconversion in 1800-1000cm(-1) region.

    PubMed

    Zhu, Jingyi; Mathes, Tilo; Stahl, Andreas D; Kennis, John T M; Groot, Marie Louise

    2012-05-07

    Broadband femtosecond mid-infrared pulses can be converted into the visible spectral region by chirped pulse upconversion. We report here the upconversion of pump probe transient signals in the frequency region below 1800cm(-1), using the nonlinear optical crystal AgGaGeS4, realizing an important expansion of the application range of this method. Experiments were demonstrated with a slab of GaAs, in which the upconverted signals cover a window of 120cm(-1), with 1.5cm(-1) resolution. In experiments on the BLUF photoreceptor Slr1694, signals below 1 milliOD were well resolved after baseline correction. Possibilities for further optimization of the method are discussed. We conclude that this method is an attractive alternative for the traditional MCT arrays used in most mid-infrared pump probe experiments.

  4. CM-2 Environmental / Modal Testing of Spacehab Racks

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Goodnight, Thomas W.; Farkas, Michael A.

    2001-01-01

    Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that launches on Shuttle mission STS 107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the Shuttle.

  5. Predictors for microinvasion of small hepatocellular carcinoma ≤ 2 cm.

    PubMed

    Yamashita, Yo-ichi; Tsuijita, Eiji; Takeishi, Kazuki; Fujiwara, Megumu; Kira, Shinsuke; Mori, Masaki; Aishima, Shinichi; Taketomi, Akinobu; Shirabe, Ken; Ishida, Terutoshi; Maehara, Yoshihiko

    2012-06-01

    Hepatocellular carcinoma (HCC) ≤ 2 cm in diameter is considered to have a low potential for malignancy. A retrospective review was undertaken of 149 patients with primary solitary HCC ≤ 2 cm who underwent initial hepatic resection between 1994 and 2010. The independent predictors of the microinvasion (MI) such as portal venous, hepatic vein, or bile duct infiltration and/or intrahepatic metastasis were identified by multivariate analysis. Prognosis of patients with HCC ≤ 2 cm accompanied by MI was compared to that of patients with HCC ≤ 2 cm without MI. Forty-three patients with HCC ≤ 2 cm had MI in patients (28.9%). Three independent predictors of the MI were revealed: invasive gross type (simple nodular type with extranodular growth or confluent multinodular type), des-γ-carboxy prothrombin (DCP) >100 mAU/ml, and poorly differentiated. Disease-free survival rates of patients with HCC ≤ 2 cm with MI (3 year 44%) were significantly worse than those for HCC ≤ 2 cm without MI (3 year 72%). This disadvantage of disease-free survival rate of patients with HCC ≤ 2 cm with MI could be dissolved by hepatic resection with a wide tumor margin of ≥ 5 mm (P = 0.04). Even in cases of HCC ≤ 2 cm, patients who are suspected of having invasive gross type tumors in preoperative imaging diagnosis or who have a high DCP level (>100 mAU/ml) are at risk for MI. Therefore, in such patients, hepatic resection with a wide tumor margin should be recommended.

  6. The ultraviolet flux distribution of Alpha-2 Canum Venaticorum

    NASA Technical Reports Server (NTRS)

    Leckrone, D. S.; Snijders, M. A. J.

    1979-01-01

    Intermediate- and narrow-band UV spectrophotometry from Copernicus, OAO 2, the S2-68 experiment on TD 1, and a sounding-rocket experiment are combined with ground-based observations to define the absolute flux distribution of the bright magnetic Ap star Alpha-2 CVn over the wavelength range from 1030 to 7580 A. Two flux distributions are presented which coincide more or less with the rare-earth maximum and minimum in the star's cycle. The results are compared with those for two normal stars, the UV variability of Alpha-2 CVn is characterized as a function of wavelength, and non-LTE effects on the UV continua of C I and Si I are analyzed. Some physical properties of Alpha-2 CVn are estimated, and the evolutionary age of the star is estimated to be between 220 million and 300 million years. It is concluded that Alpha-2 CVn is old enough to have been magnetically braked to its current rotational velocity by either the centrifugal-wind or the accretion mechanism and to have developed its chemical peculiarities by either mechanism.

  7. Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahrens, J.; Bai, X.; Barwick, S.W.

    2003-03-11

    Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the universe. This search yielded no excess events above those expected from the background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux. For an assumed E{sup -2} spectrum, a 90 percent classical confidence level upper limit has been placed at a level E{sup 2} Phi(E) = 8.4 x 10{sup -7} GeV cm{sup -2} s{sup -1}1 sr{sup -1} (for a predominant neutrino energymore » range 6-1000 TeV) which is the most restrictive bound placed by any neutrino detector. When specific predicted spectral forms are considered, it is found that some are excluded.« less

  8. A first determination of the surface density of galaxy clusters at very low x-ray fluxes

    NASA Technical Reports Server (NTRS)

    Rosati, Piero; Della Ceca, Roberta; Burg, Richard; Norman, Colin; Giacconi, Riccardo

    1995-01-01

    We present the first results of a serendipitous search for clusters of galaxies in deep ROSAT position sensitive proportional counter (PSPC) pointed observations at high Galactic latitude. The survey is being carried out using a wavelet-based detection algorithm which is not biased against extended, low surface brightness sources. A new flux-diameter limited sample of 10 cluster candidates has been created from approximately 3 deg(exp 2) surveyed area. Preliminary CCD observations have revealed that a large fraction of these candidates correspond to a visible enhancement in the galaxy surface density, and several others have been identified from other surveys. We believe these sources to be either low- to moderate-redshift groups or intermediate- to high-redshift clusters. We show X-ray and optical images of some of the clusters identified to date. We present, for the first time, the derived number density of the galaxy clusters to a flux limit of 1 x 10(exp -14) ergs cm(exp -2) s(exp -1) (0.5-2.0 keV). This extends the log N-log S of previous cluster surveys by more than one decade in flux. Results are compared to theoretical predictions for cluster number counts.

  9. Sediment Flux, East Greenland Margin

    DTIC Science & Technology

    1991-09-17

    D.. T 0ATE [3. AEORT TYPE AND ý -2-’S .’:2,E.i 09/17/91 Final Oct. . 1988 - Seot.l. 1991 4. TITLE AND SU.3TITLE S. F*.i1CjG . AU • 12..5 Sediment Flux...and s le ,; its ditribution is unlimited. 13. ABSTRACT (Maximum 2CO words) We investigated sediment flux across an ice-dominated, high latitude...investigated an area off the East Greenland margin where the world’s second largest ice sheet still exists and where information on the extent of glaciation on

  10. LIF excitation spectra for S 0 → S 1 transition of deuterated anthranilic acid COOD, ND 2 in supersonic-jet expansion

    NASA Astrophysics Data System (ADS)

    Kolek, Przemysław; Leśniewski, Sebastian; Andrzejak, Marcin; Góra, Maciej; Cias, Pawel; Weģrzynowicz, Adam; Najbar, Jan

    2010-12-01

    Laser induced fluorescence (LIF) excitation spectrum for the S 0 → S 1 transition of anthranilic acid molecules deuterated in the substituent groups (COOD, ND 2) was investigated. Analysis of the LIF spectrum allowed for the assignment of the six most prominent fundamental in-plane modes of frequencies up to ca. 850 cm. The experimental results show good correlation with the frequency changes upon deuteration computed with CIS (CI-Singles) and TD-DFT for the S 1 state. Deuteration induced red-shifts of the identified fundamental bands are used for examination of the alternative assignments proposed in earlier studies. Potential energy distributions (PED) and overlaps of the in-plane normal modes with frequencies below 850 cm indicate that the correspondence of the respective vibrations of the deuterated and non-deuterated molecule is very good. A blue-shift of the 00 transition due to the isotopic substitution, is equal to 47 cm. This relatively large value is caused primarily by a significant decrease of the N-H stretching frequency associated with the increase of strength of the intramolecular hydrogen bond upon the electronic excitation. The deuteration shift of the 00 band was interpreted in terms of the differences of the zero point energy (ZPE) between the S 0 and S 1 electronic states, computed with DFT and TD-DFT methods, respectively.

  11. Upper limits on resonance contributions to proton-proton elastic scattering in the c.m. mass range 2.05-2.85 GeV/ c2

    NASA Astrophysics Data System (ADS)

    Rohdjeß, H.; Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Bollmann, R.; Büßer, K.; Busch, M.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Eyser, K. O.; Felden, O.; Gebel, R.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Langkau, R.; Lindlein, J.; Maier, R.; Mosel, F.; Prasuhn, D.; von Rossen, P.; Scheid, N.; Schulz-Rojahn, M.; Schwandt, F.; Schwarz, V.; Scobel, W.; Trelle, H.-J.; Ulbrich, K.; Weise, E.; Wellinghausen, A.; Woller, K.; Ziegler, R.

    2006-04-01

    Recently published excitation functions in proton-proton ( pp) elastic scattering observables in the laboratory energy range 0.5-2.5GeV provide an excellent data base to establish firm upper limits on the elasticities ηel = Γel/Γtot of possible isovector resonant contributions to the nucleon-nucleon ( NN) system. Such contributions have been predicted to arise from dibaryonic states, with c.m. masses between 2.1-2.9GeV/c2, but have not been confirmed experimentally. A method to determine quantitatively the maximum value of ηel compatible with experimental data is presented. We use energy-dependent phase shift fits to the pp data base to model the non-resonant interaction. Based upon the differential cross-section data measured by the EDDA Collaboration an unbiased statistical test is constructed to obtain upper limits on ηel, that exclude larger values with a 99% confidence level. Results in the c.m. mass range 2.05-2.85GeV/c2 and total widths of 10-100MeV/c2 in the partial waves 1 S 0, 1 D 2, 3 P 0, 3 P 1, and 3 F 3 are presented and discussed.

  12. AlGaN/GaN heterostructures with an AlGaN layer grown directly on reactive-ion-etched GaN showing a high electron mobility (>1300 cm2 V-1 s-1)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akio; Makino, Shinya; Kanatani, Keito; Kuzuhara, Masaaki

    2018-04-01

    In this study, the metal-organic-vapor-phase-epitaxial growth behavior and electrical properties of AlGaN/GaN structures prepared by the growth of an AlGaN layer on a reactive-ion-etched (RIE) GaN surface without regrown GaN layers were investigated. The annealing of RIE-GaN surfaces in NH3 + H2 atmosphere, employed immediately before AlGaN growth, was a key process in obtaining a clean GaN surface for AlGaN growth, that is, in obtaining an electron mobility as high as 1350 cm2 V-1 s-1 in a fabricated AlGaN/RIE-GaN structure. High-electron-mobility transistors (HEMTs) were successfully fabricated with AlGaN/RIE-GaN wafers. With decreasing density of dotlike defects observed on the surfaces of AlGaN/RIE-GaN wafers, both two-dimensional electron gas properties of AlGaN/RIE-GaN structures and DC characteristics of HEMTs were markedly improved. Since dotlike defect density was markedly dependent on RIE lot, rather than on growth lot, surface contaminations of GaN during RIE were believed to be responsible for the formation of dotlike defects and, therefore, for the inferior electrical properties.

  13. Pulmonary compliance and lung volume varies with ecomorphology in anuran amphibians: implications for ventilatory-assisted lymph flux.

    PubMed

    Hedrick, Michael S; Hillman, Stanley S; Drewes, Robert C; Withers, Philip C

    2011-10-01

    Vertical movement of lymph from ventral regions to the dorsally located lymph hearts in anurans is accomplished by specialized skeletal muscles working in concert with lung ventilation. We hypothesize that more terrestrial species with greater lymph mobilization capacities and higher lymph flux rates will have larger lung volumes and higher pulmonary compliance than more semi-aquatic or aquatic species. We measured in situ mean and maximal compliance (Δvolume/Δpressure), distensibility (%Δvolume/Δpressure) and lung volume over a range of physiological pressures (1.0 to 4.0 cmH(2)O) for nine species of anurans representing three families (Bufonide, Ranidae and Pipidae) that span a range of body masses and habitats from terrestrial to aquatic. We further examined the relationship between these pulmonary variables and lymph flux for a semi-terrestrial bufonid (Rhinella marina), a semi-aquatic ranid (Lithobates catesbeianus) and an aquatic pipid (Xenopus laevis). Allometric scaling of pulmonary compliance and lung volume with body mass showed significant differences at the family level, with scaling exponents ranging from ∼0.75 in Bufonidae to ∼1.3 in Pipidae. Consistent with our hypothesis, the terrestrial Bufonidae species had significantly greater pulmonary compliance and greater lung volumes compared with semi-aquatic Ranidae and aquatic Pipidae species. Pulmonary distensibility ranged from ∼20 to 35% cmH(2)O(-1) for the three families but did not correlate with ecomorphology. For the three species for which lymph flux data are available, R. marina had a significantly higher (P<0.001) maximal compliance (84.9±2.7 ml cmH(2)O(-1) kg(-1)) and lung volume (242.1±5.5 ml kg(-1)) compared with L. catesbeianus (54.5±0.12 ml cmH(2)O(-1) kg(-1) and 139.3±0.5 ml kg(-1)) and X. laevis (30.8±0.7 ml cmH(2)O(-1) kg(-1) and 61.3±2.5 ml kg(-1)). Lymph flux rates were also highest for R. marina, lowest for X. laevis and intermediate in L. catesbeianus. Thus, there is

  14. Muon Energy Reconstruction in ANTARES and Its Application to the Diffuse Neutrino Flux

    NASA Astrophysics Data System (ADS)

    Romeyer, A.; Bruijn, R.; Zornoza, J.-d.-D.; ANTARES Collaboration

    2003-07-01

    The Europ ean collab oration ANTARES aims to operate a large neutrino telescope in the Mediterranean Sea, 2400 m deep, 40 km from Toulon (France). Muon neutrinos are detected through the muon produced in charged current interactions in the medium surrounding the detector. The Cherenkov light emitted by the muon is registered by a 3D photomultiplier array. Muon energy can be inferred using 3 different methods based on the knowledge of the features of muon energy losses. They result in an energy resolution of a factor ˜ 2 above 1 TeV. The ANTARES sensitivity to diffuse neutrino flux models is obtained from an energy cut, rejecting most of the atmospheric neutrino background which has a softer spectrum. Fake upgoing events from downgoing atmospheric muons are rejected using dedicated variables. After 1 year of data taking, the ANTARES sensitivity is E 2 dΦν /dEν º 8 · 10-8 GeV cm-2 s-1 sr -1 for a 10 string detector and an E -2 diffuse flux spectrum.

  15. The Infrared Spectrum of H(sub 2)S from 1 to 5 Mm

    NASA Technical Reports Server (NTRS)

    Bykov, A. D.; Naumenko, O. V.; Smirnov, M. A.; Sinitsa, L. N.; Brown, L. R.; Crisp, J.; Crisp, D.

    1994-01-01

    The absorption spectra of H2S from 2000 to 11,147/cm have been obtained with spectral resolutions of 0.006, 0.012 and 0.021/cm using the Fourier transform spectrometer at Kitt Peak National Observatory.

  16. Leveraging the NLM map from SNOMED CT to ICD-10-CM to facilitate adoption of ICD-10-CM.

    PubMed

    Cartagena, F Phil; Schaeffer, Molly; Rifai, Dorothy; Doroshenko, Victoria; Goldberg, Howard S

    2015-05-01

    Develop and test web services to retrieve and identify the most precise ICD-10-CM code(s) for a given clinical encounter. Facilitate creation of user interfaces that 1) provide an initial shortlist of candidate codes, ideally visible on a single screen; and 2) enable code refinement. To satisfy our high-level use cases, the analysis and design process involved reviewing available maps and crosswalks, designing the rule adjudication framework, determining necessary metadata, retrieving related codes, and iteratively improving the code refinement algorithm. The Partners ICD-10-CM Search and Mapping Services (PI-10 Services) are SOAP web services written using Microsoft's.NET 4.0 Framework, Windows Communications Framework, and SQL Server 2012. The services cover 96% of the Partners problem list subset of SNOMED CT codes that map to ICD-10-CM codes and can return up to 76% of the 69,823 billable ICD-10-CM codes prior to creation of custom mapping rules. We consider ways to increase 1) the coverage ratio of the Partners problem list subset of SNOMED CT codes and 2) the upper bound of returnable ICD-10-CM codes by creating custom mapping rules. Future work will investigate the utility of the transitive closure of SNOMED CT codes and other methods to assist in custom rule creation and, ultimately, to provide more complete coverage of ICD-10-CM codes. ICD-10-CM will be easier for clinicians to manage if applications display short lists of candidate codes from which clinicians can subsequently select a code for further refinement. The PI-10 Services support ICD-10 migration by implementing this paradigm and enabling users to consistently and accurately find the best ICD-10-CM code(s) without translation from ICD-9-CM. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. CO2 Fluxes Monitoring at the Level of Field Agroecosystem in Moscow Region of Russia

    NASA Astrophysics Data System (ADS)

    Meshalkina, Joulia; Mazirov, Ilya; Samardzic, Miljan; Yaroslavtsev, Alexis; Valentini, Riccardo; Vasenev, Ivan

    2014-05-01

    The Central Russia is still one of the less GHG-investigated European areas especially in case of agroecosystem-level carbon dioxide fluxes monitoring by eddy covariance method. The eddy covariance technique is a statistical method to measure and calculate vertical turbulent fluxes within atmospheric boundary layers. The major assumption of the metod is that measurements at a point can represent an entire upwind area. Eddy covariance researches, which could be considered as repeated for the same area, are very rare. The research has been carried out on the Precision Farming Experimental Field of the Russian Timiryazev State Agricultural University (Moscow, Russia) in 2013 under the support of RF Government grant No. 11.G34.31.0079. Arable derno-podzoluvisls have around 1 The results have shown high daily and seasonal dynamic of agroecosystem CO2 emission. Sowing activates soil microbiological activity and the average soil CO2 emission and adsorption are rising at the same time. CO2 streams are intensified after crop emerging from values of 3 to 7 μmol/s-m2 for emission, and from values of 5 to 20 μmol/s-m2 for adsorption. Stabilization of the flow has come at achieving plants height of 10-12 cm. The vegetation period is characterized by high average soil CO2 emission and adsorption at the same time, but the adsorption is significantly higher. The resulted CO2 absorption during the day is approximately 2-5 times higher than emissions at night. For example, in mid-June, the absorption value was about 0.45 mol/m2 during the day-time, and the emission value was about 0.1 mol/m2 at night. After harvesting CO2 emission is becoming essentially higher than adsorption. Autumn and winter data are fluctuate around zero, but for some periods a small predominance of CO2 emissions over the absorption may be observed. The daily dynamics of CO2 emissions depends on the air temperature with the correlation coefficient changes between 0.4 and 0.8. Crop stage, agrotechnological

  18. Absolute band intensities in the nu19/nu23 (530 cm(-1)) and nu7 (777 cm(-1)) bands of acetone ((CH3)2CO) from 232 to 295 K

    NASA Technical Reports Server (NTRS)

    Wang, W. F.; Stevenson, A.; Reuter, D. C.; Sirota, J. M.

    2000-01-01

    Absolute band intensities of acetone ((CH3)2CO) in the nu19/nu23 and nu7 band systems near 530 and 777 cm(-1), respectively, were measured at temperatures of 232, 262 and 295 K, using a Fourier transform infrared (FTIR) spectrometer. No evident temperature dependence for the band intensities was observed. The dipole moments and the fundamental band intensities were derived in the harmonic oscillator approximation. The results are useful for the spectroscopic retrieval of acetone concentrations in the upper atmosphere.

  19. CM-2 Environmental/Modal Testing of SPACEHAB Racks

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Goodnight, Thomas W.

    2001-01-01

    Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that will launch on shuttle mission STS-107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack-level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the shuttles.

  20. Synthesis, structural characterization and conversion of dinuclear iron-sulfur clusters containing the disulfide ligand: [Cp*Fe(μ-η22-bdt)(cis-μ-η11-S2)FeCp*], [Cp*Fe(μ-S(C6H4S2))(cis-μ-η11-S2)FeCp*], and [{Cp*Fe(bdt)}2(trans-μ-η11-S2)].

    PubMed

    Ji, Xiaoxiao; Tong, Peng; Yang, Dawei; Wang, Baomin; Zhao, Jinfeng; Li, Yang; Qu, Jingping

    2017-03-21

    The treatment of [Cp*Fe(μ-η 2 :η 4 -bdt)FeCp*] (1, Cp* = η 5 -C 5 Me 5 , bdt = benzene-1,2-dithiolate) with 1/4 equiv. of elemental sulfur (S 8 ) gave a dinuclear iron-sulfur cluster [Cp*Fe(μ-η 22 -bdt)(cis-μ-η 11 -S 2 )FeCp*] (2), which contains a cis-1,2-disulfide ligand. When complex 2 further interacted with 1/8 equiv. of S 8 , another sulfur atom inserted into an Fe-S bond to give a rare product [Cp*Fe(μ-S(C 6 H 4 S 2 ))(cis-μ-η 11 -S 2 )FeCp*] (3). Unexpectedly, a trans-1,2 disulfide-bridged diiron complex [{Cp*Fe(bdt)} 2 (trans-μ-η 11 -S 2 )] (4) was isolated from the reaction of complex 1 with 1/2 equiv. of S 8 , which represents a structural isomer of [2Fe-2S] ferredoxin-type clusters. In addition, cis-1,2-disulfide-bridged complex 3 can slowly convert into trans-1,2-disulfide-bridged complex 4 and the complex [Cp*Fe(μ-η 22 -S 2 )(cis-μ-η 11 -S 2 )FeCp*] (5) by self-assembly reaction at ambient temperature, which is evidenced by time-dependent 1 H NMR spectroscopy.

  1. Multiyear search for a diffuse flux of muon neutrinos with AMANDA-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achterberg, A.; Duvoort, M. R.; Heise, J.

    2007-08-15

    A search for TeV-PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent live time of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with nonthermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E{sup 2}{phi}{sub 90percentC.L.}<7.4x10{sup -8} GeV cm{sup -2} s{sup -1} sr{sup -1} is placed on the diffuse flux of muon neutrinos with a {phi}{proportional_to}E{sup -2}more » spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive {phi}{proportional_to}E{sup -2} diffuse astrophysical neutrino limit. We also set upper limits for astrophysical and prompt neutrino models, all of which have spectra different from {phi}{proportional_to}E{sup -2}.« less

  2. Mobility in excess of 106 cm2/V s in InAs quantum wells grown on lattice mismatched InP substrates

    NASA Astrophysics Data System (ADS)

    Hatke, A. T.; Wang, T.; Thomas, C.; Gardner, G. C.; Manfra, M. J.

    2017-10-01

    We investigate the transport properties of a two-dimensional electron gas residing in strained composite quantum wells of In0.75Ga0.25As/InAs/In0.75Ga0.25As cladded with In0.75Al0.25As barriers grown metamorphically on insulating InP substrates. By optimizing the widths of the In0.75Ga0.25As layers, the In0.75Al0.25As barrier, and the InAs quantum well, we demonstrate mobility in excess of 1 ×106 cm2/V s. Mobility vs. density data indicate that scattering is dominated by a residual three dimensional distribution of charged impurities. We extract the effective Rashba parameter and spin-orbit length for these composite quantum wells.

  3. Measurements of Band Intensities, Herman-Wallis Parameters, and Self-Broadening Line-Widths of the 30011 - 00001 and 30014 - 00001 Bands of CO2 at 6503 cm(exp -1) and 6076 cm(exp -1)

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Brown, L. R.; Wattson, R. B.; Spencer, M. N.; Chackerian, C., Jr.; Strawa, Anthony W. (Technical Monitor)

    1995-01-01

    Rotationless band intensities and Herman-Wallis parameters are listed in HITRAN tabulations for several hundred CO2 overtone-combination bands. These parameters are based on laboratory measurements when available, and on DND calculations for the unmeasured bands. The DND calculations for the Fermi interacting nv(sub 1) + v(sub 3) polyads show the a(sub 2) Herman-Wallis parameter varying smoothly from a negative value for the first member of the polyad to a positive value for the final member. Measurements of the v(sub 1) + v(sub 3) dyad are consistent with the DND calculations for the a(sub 2) parameter, as are our recent measurements of the 4v(sub 1) + v(sub 3) pentad. However, the measurement-based values in the HITRAN tables for the 2v(sub 1) + v(sub 3) triad and the 3v(sub 1) + v(sub 3) tetrad do not support the DND calculated values for the a(sub 2) parameters. We therefore decided to make new measurements to improve some of these intensity parameters. With the McMath FTS at Kitt Peak National Observatory/National Solar Observatory we recorded several spectra of the. 4000 to 8000 cm(exp -1) region of pure CO2 at 0.011 cm(exp -1) resolution using the 6 meter White absorption cell. The signal/noise and absorbance of the first and fourth bands of the 3v(sub 1) + v(sub 3) tetrad of C-12O-16 were ideal on these spectra for measuring line intensities and broadening widths. Our selfbroadening results agree with the HITRAN parameterization, while our measurements of the rotationless band intensities are about 15% less than the HITRAN values. We find a negative value of a(sub 2) for the 30011-00001 band and a positive value for the 30014-00001 band, whereas the HITRAN values of a(sub 2) are positive for all four tetrad bands. Our a(sub 1) and a(sub 2) Herman-Wallis parameters are closer to DND calculated values than the 1992 HITRAN values for both the 30011-00001 and the 30014-00001 band.

  4. Highly Efficient and Uniform 1 cm 2 Perovskite Solar Cells with an Electrochemically Deposited NiO x Hole-Extraction Layer

    DOE PAGES

    Park, Ik Jae; Kang, Gyeongho; Park, Min Ah; ...

    2017-05-10

    Here, given that the highest certified conversion efficiency of the organic-inorganic perovskite solar cell (PSC) already exceeds 22%, which is even higher than that of the polycrystalline silicon solar cell, the significance of new scalable processes that can be utilized for preparing large-area devices and their commercialization is rapidly increasing. From this perspective, the electrodeposition method is one of the most suitable processes for preparing large-area devices because it is an already commercialized process with proven controllability and scalability. Here, a highly uniform NiO x layer prepared by electrochemical deposition is reported as an efficient hole-extraction layer of a p-i-n-typemore » planar PSC with a large active area of >1 cm 2. It is demonstrated that the increased surface roughness of the NiO x layer, achieved by controlling the deposition current density, facilitates the hole extraction at the interface between perovskite and NiO x, and thus increases the fill factor and the conversion efficiency. The electrochemically deposited NiO x layer also exhibits extremely uniform thickness and morphology, leading to highly efficient and uniform large-area PSCs. As a result, the p-i-n-type planar PSC with an area of 1.084 cm 2 exhibits a stable conversion efficiency of 17.0% (19.2% for 0.1 cm 2) without showing hysteresis effects.« less

  5. Variations of iron flux and organic carbon remineralization in a subterranean estuary caused by interannual variations in recharge

    USGS Publications Warehouse

    Roy, Moutusi; Martin, Jonathan B.; Cable, Jaye E.; Smith, Christopher G.

    2013-01-01

    We determine the inter-annual variations in diagenetic reaction rates of sedimentary iron (Fe ) in an east Florida subterranean estuary and evaluate the connection between metal fluxes and recharge to the coastal aquifer. Over the three-year study period (from 2004 to 2007), the amount of Fe-oxides reduced at the study site decreased from 192 g/yr to 153 g/yr and associated organic carbon (OC) remineralization decreased from 48 g/yr to 38 g/yr. These reductions occurred although the Fe-oxide reduction rates remained constant around 1 mg/cm2/yr. These results suggest that changes in flow rates of submarine groundwater discharge (SGD) related to changes in precipitation may be important to fluxes of the diagenetic reaction products. Rainfall at a weather station approximately 5 km from the field area decreased from 12.6 cm/month to 8.4 cm/month from 2004 to 2007. Monthly potential evapotranspiration (PET) calculated from Thornthwaite’s method indicated potential evapotranspiration cycled from about 3 cm/month in the winter to about 15 cm/month in the summer so that net annual recharge to the aquifer decreased from 40 cm in 2004 to -10 cm in 2007. Simultaneously, with the decrease in recharge of groundwater, freshwater SGD decreased by around 20% and caused the originally 25 m wide freshwater seepage face to decrease in width by about 5 m. The smaller seepage face reduced the area under which Fe-oxides were undergoing reductive dissolution. Consequently, the observed decrease in Fe flux is controlled by hydrology of the subterranean estuary. These results point out the need to better understand linkages between temporal variations in diagenetic reactions and changes in flow within subterranean estuaries in order to accurately constrain their contribution to oceanic fluxes of solutes from subterranean estuaries.

  6. Atmospheric inversion of the surface CO2 flux with 13CO2 constraint

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Mo, G.; Deng, F.

    2013-10-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using the 13CO2/CO2 flux ratio modeled with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and respiration and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. For the 2002-2004 period, the 13CO2 constraint on the inversion increases the total land carbon sink from 3.40 to 3.70 Pg C yr-1 and decreases the total oceanic carbon sink from 1.48 to 1.12 Pg C yr-1. The largest changes occur in tropical areas: a considerable decrease in the carbon source in the Amazon forest, and this decrease is mostly compensated by increases in the ocean region immediately west of the Amazon and the southeast Asian land region. Our further investigation through different treatments of the 13CO2/CO2 flux ratio used in the inversion suggests that variable spatial distributions of the 13CO2 isotopic discrimination rate simulated by the models over land and ocean have considerable impacts on the spatial distribution of the inverted CO2 flux over land and the inversion results are not sensitive to errors in the estimated disequilibria over land and ocean.

  7. Carbon dioxide fluxes from an urban area in Beijing

    NASA Astrophysics Data System (ADS)

    Song, Tao; Wang, Yuesi

    2012-03-01

    A better understanding of urban carbon dioxide (CO 2) emissions is important for quantifying urban contributions to the global carbon budget. From January to December 2008, CO 2 fluxes were measured, by eddy covariance at 47 m above ground on a meteorological tower in a high-density residential area in Beijing. The results showed that the urban surface was a net source of CO 2 in the atmosphere. Diurnal flux patterns were similar to those previously observed in other cities and were largely influenced by traffic volume. Carbon uptake by both urban vegetation during the growing season and the reduction of fuel consumption for domestic heating resulted in less-positive daily fluxes in the summer. The average daily flux measured in the summer was 0.48 mg m - 2 s - 1 , which was 82%, 35% and 36% lower than those in the winter, spring and autumn, respectively. The reduction of vehicles on the road during the 29th Olympic and Paralympic Games had a significant impact on CO 2 flux. The flux of 0.40 mg m - 2 s - 1 for September 2008 was approximately 0.17 mg m - 2 s - 1 lower than the flux for September 2007. Annual CO 2 emissions from the study site were estimated at 20.6 kg CO 2 m - 2 y - 1 , considerably higher than yearly emissions obtained from other urban and suburban landscapes.

  8. Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Fuchs, B.; Fujii, T.; García, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Louedec, K.; Lu, L.; Lucero, A.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhu, Y.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2015-05-01

    Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array (SD) of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultrahigh energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for "Earth-skimming" neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins 60°-75° and 75°-90° as well as for upward-going neutrinos, are combined to give a single limit. The 90% C.L. single-flavor limit to the diffuse flux of ultrahigh energy neutrinos with an E-2 spectrum in the energy range 1.0 ×1 017 eV - 2.5 ×1 019 eV is Eν2d Nν/d Eν<6.4 ×10-9 GeV cm-2 s-1 sr-1 .

  9. Magneto-transport properties of proposed triply degenerate topological semimetal Pd3Bi2S2

    NASA Astrophysics Data System (ADS)

    Roy, Shubhankar; Pariari, Arnab; Singha, Ratnadwip; Satpati, Biswarup; Mandal, Prabhat

    2018-04-01

    We report transport properties of single-crystalline Pd3Bi2S2, which has been predicted to host an unconventional electronic phase of matter beyond three-dimensional Dirac and Weyl semimetals. Similar to several topological systems, the resistivity shows field-induced metal to semiconductor-like crossover at low temperature. Large, anisotropic, and non-saturating magnetoresistance has been observed in the transverse experimental configuration. At 2 K and 9 T, the MR value reaches as high as ˜1.1 × 103%. Hall resistivity reveals the presence of two types of charge carriers and has been analyzed using the two-band model. In spite of the large density (>1021 cm-3), the mobility of charge carriers is found to be quite high (˜ 0.75 × 104 cm2 V-1 s-1 for the hole and ˜ 0.3 × 104 cm2 V-1 s-1 for the electron). The observed magneto-electrical properties indicate that Pd3Bi2S2 may be a new member of the topological semimetal family, which can have a significant impact in technological applications.

  10. High Resolution Far-Infrared Spectra of Thiophosgene with a Synchrotron Source: The ν2 and ν4 Bands Near 500 cm-1

    NASA Astrophysics Data System (ADS)

    McKellar, A. R. W.; Billinghurst, B. E.

    2010-02-01

    Thiophosgene (Cl2CS) is a favorite model system for studies of vibrational dynamics. But there are no previous rotationally-resolved infrared studies because the spectra are very congested due to its (relatively) large mass and multiple isotopic species. Here we report a detailed gas-phase study of the ν2 (˜504 cm-1) and ν4 (˜471 cm-1) fundamental bands, based on spectra obtained at the Canadian Light Source far-infrared beamline using synchrotron radiation and a Bruker IFS125 FT spectrometer.

  11. Determination of the 1s2{\\ell }2{{\\ell }}^{\\prime } state production ratios {{}^{4}P}^{o}/{}^{2}P, {}^{2}D/{}^{2}P and {{}^{2}P}_{+}/{{}^{2}P}_{-} from fast (1{s}^{2},1s2s\\,{}^{3}S) mixed-state He-like ion beams in collisions with H2 targets

    NASA Astrophysics Data System (ADS)

    Benis, E. P.; Zouros, T. J. M.

    2016-12-01

    New results are presented on the ratio {R}m={σ }{T2p}( {}4P)/{σ }{T2p}({}2P) concerning the production cross sections of Li-like 1s2s2p quartet and doublet P states formed in energetic ion-atom collisions by single 2p electron transfer to the metastable 1s2s {}3S component of the He-like ion beam. Spin statistics predict a value of R m = 2 independent of the collision system in disagreement with most reported measurements of {R}m≃ 1{--}9. A new experimental approach is presented for the evaluation of R m having some practical advantages over earlier approaches. It also allows for the determination of the separate contributions of ground- and metastable-state beam components to the measured spectra. Applying our technique to zero-degree Auger projectile spectra from 4.5 MeV {{{B}}}3+ (Benis et al 2002 Phys. Rev. A 65 064701) and 25.3 MeV {{{F}}}7+ (Zamkov et al 2002 Phys. Rev. A 65 062706) mixed state (1{s}2 {}1S,1s2s {}3S) He-like ion collisions with H2 targets, we report new values of {R}m=3.5+/- 0.4 for boron and {R}m=1.8+/- 0.3 for fluorine. In addition, the ratios of {}2D/{}2P and {{}2P}+/{{}2P}- populations from either the metastable and/or ground state beam component, also relevant to this analysis, are evaluated and compared to previously reported results for carbon collisions on helium (Strohschein et al 2008 Phys. Rev. A 77 022706) including a critical comparison to theory.

  12. LYM2-dependent chitin perception limits molecular flux via plasmodesmata

    PubMed Central

    Faulkner, Christine; Petutschnig, Elena; Benitez-Alfonso, Yoselin; Beck, Martina; Robatzek, Silke; Lipka, Volker; Maule, Andrew J.

    2013-01-01

    Chitin acts as a pathogen-associated molecular pattern from fungal pathogens whose perception triggers a range of defense responses. We show that LYSIN MOTIF DOMAIN-CONTAINING GLYCOSYLPHOSPHATIDYLINOSITOL-ANCHORED PROTEIN 2 (LYM2), the Arabidopsis homolog of a rice chitin receptor-like protein, mediates a reduction in molecular flux via plasmodesmata in the presence of chitin. For this response, lym2-1 mutants are insensitive to the presence of chitin, but not to the flagellin derivative flg22. Surprisingly, the chitin-recognition receptor CHITIN ELCITOR RECEPTOR KINASE 1 (CERK1) is not required for chitin-induced changes to plasmodesmata flux, suggesting that there are at least two chitin-activated response pathways in Arabidopsis and that LYM2 is not required for CERK1-mediated chitin-triggered defense responses, indicating that these pathways are independent. In accordance with a role in the regulation of intercellular flux, LYM2 is resident at the plasma membrane and is enriched at plasmodesmata. Chitin-triggered regulation of molecular flux between cells is required for defense responses against the fungal pathogen Botrytis cinerea, and thus we conclude that the regulation of symplastic continuity and molecular flux between cells is a vital component of chitin-triggered immunity in Arabidopsis. PMID:23674687

  13. Muon flux Measurements at the Davis Campus of the Sanford Underground Research Facility with the Majorana Demonstrator Veto System

    DOE PAGES

    Abgrall, N.; Aguayo, E.; Avignone, F. T.; ...

    2017-02-16

    Here, we report the first measurement of the total muon flux underground at the Davis Campus of the Sanford Underground Research Facility at the 4850 ft level. Measurements were performed using the MajoranaDemonstratormuon veto system arranged in two different configurations. The measured total flux is (5.31±0.17)× 10–9μ/s/cm 2.

  14. Muon flux Measurements at the Davis Campus of the Sanford Underground Research Facility with the Majorana Demonstrator Veto System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abgrall, N.; Aguayo, E.; Avignone, F. T.

    Here, we report the first measurement of the total muon flux underground at the Davis Campus of the Sanford Underground Research Facility at the 4850 ft level. Measurements were performed using the MajoranaDemonstratormuon veto system arranged in two different configurations. The measured total flux is (5.31±0.17)× 10–9μ/s/cm 2.

  15. Particle flux in deep seas: regional characteristics and temporal variability

    NASA Astrophysics Data System (ADS)

    Lampitt, R. S.; Antia, A. N.

    1997-08-01

    Particle flux data have been collated from the literature representing most areas of the open ocean to determine regional trends in deep water flux and its seasonal variability. Organic carbon flux data normalised to a depth of 2000 m exhibits a range of an order of magnitude in areas outside the polar domains (0.38 to 4.2 g/m2/y). In polar regions the range is wider (0.01-5.9 g/m2/y). Latitudinal trends are not apparent for most components of the flux although calcite flux exhibits a poleward decrease. Limited data from polar regions show fluxes of opaline silica not significantly higher than elsewhere. The variability of flux over annual cycles was calculated and expressed as a Flux Stability Index (FSI) and the relationship between this and vertical flux of material examined. Somewhat surprisingly there is no significant relationship between FSI and fluxes of dry mass, organic carbon, inorganic carbon or opaline silica. At each site, net annual primary production was determined using published satellite derived estimates. There is a negative but weak relationship between FSI and the proportion of primary production exported to 2000 m (e2000 ratio). The most variable of the non-polar environments export to 2000 m about twice as much of the primary production as the most stable ones. Polar environments have very low e2000 ratios with no apparent relationship to FSI. At primary production levels below 200 g C/m2/y there is a positive correlation between production and organic carbon flux at 2000 m but above this level, flux remains constant at about 3.5g C/m2/y. A curve derived to describe this relationship was applied to estimates of annual primary production in each of 34 of the open ocean biogeochemical provinces proposed by Longhurst et al. (1995). Globally, open ocean flux of organic carbon at 2000 m is 0.34 Gt/yr which is 1% of the total net primary production in these regions. This flux is nearly equally divided between the Atlantic, Pacific and Southern

  16. COMMAND MODULE (C/M) - APOLLO/SATURN (A/S) MISSION 204 - SPACECRAFT (S/C) 012 - CAPE

    NASA Image and Video Library

    1967-01-28

    Closeup view of the interior of Apollo S/C 012 C/M, Pad 34, showing the effects of the intense heat of the flash fire which killed the Prime Crew of the A/S 204 Mission. CAPE KENNEDY, FL CAPE KENNEDY, FL

  17. Normal and grazing incidence pulsed laser deposition of nanostructured MoSx hydrogen evolution catalysts from a MoS2 target

    NASA Astrophysics Data System (ADS)

    Fominski, V. Yu.; Romanov, R. I.; Fominski, D. V.; Dzhumaev, P. S.; Troyan, I. A.

    2018-06-01

    Pulsed laser ablation of a MoS2 target causes enhanced splashing of the material. So, for MoSx films obtained by pulsed laser deposition (PLD) in the conventional normal incidence (NI) configuration, their typical morphology is characterized by an underlying granular structure with an overlayer of widely dispersed spherical Mo and MoSx particles possessing micro-, sub-micro- and nanometer sizes. We investigated the possibility of using high surface roughness, which occurs due to particle deposition, as a support with a large exposed surface area for thin MoSx catalytic layers for the hydrogen evolution reaction (HER). For comparison, the HER performance of MoSx layers formed by grazing incidence (GI) PLD was studied. During GI-PLD, a substrate was placed along the direction of laser plume transport and few large particles loaded the substrate. The local structure and composition of thin MoSx layers formed by the deposition of the vapor component of the laser plume were varied by changing the pressure of the buffer gas (argon, Ar). In the case of NI-PLD, an increase in Ar pressure caused the formation of quasi-amorphous MoSx (x ≥ 2) films that possessed highly active catalytic sites on the edges of the layered MoS2 nanophase. At the same time, a decrease in the deposition rate of the MoSx film appeared due to the scattering of the vapor flux by Ar molecules during flux transport from the target to the substrate. This effect prevented uniform deposition of the MoSx catalytic film on the surface of most particles, whose deposition rate was independent of Ar pressure. The scattered vapor flux containing Mo and S atoms was a dominant source for MoSx film growth during GI-PLD. The thickness and composition distribution of the MoSx film on the substrate depended on both the pressure of the buffer gas and the distance from the target. For 1.0-2.5 cm from the target, the deposition rate was quite sufficient to form S-enriched quasi-amorphous MoSx (2.5 < x < 6) catalytic

  18. A promising p-type transparent conducting material: Layered oxysulfide [Cu2S2][Sr3Sc2O5

    NASA Astrophysics Data System (ADS)

    Liu, Min-Ling; Wu, Li-Bin; Huang, Fu-Qiang; Chen, Li-Dong; Chen, I.-Wei

    2007-12-01

    Sr3Cu2Sc2O5S2, a layered oxysulfide, composed of anti-PbO-like [Cu2S2] slabs alternating with perovskitelike [Sr3Sc2O5] slabs, was systematically studied as a p-type transparent conducting material. The material has a wide energy gap of 3.1eV and a p-type electrical conductivity of 2.8Scm-1 at room temperature. The hole mobility of +150cm2V-1S-1 at room temperature, which is much higher than the typical value of ˜10-1-10width="0.3em"/>cm2V-1S-1 found in other copper compounds. The performances of bulk undoped Sr3Cu2Sc2O5S2 show the promise of copper oxysulfides as a class of p-type transparent conductive materials that is essential for optoelectronic applications.

  19. PHLUX: Photographic Flux Tools for Solar Glare and Flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2010-12-02

    A web-based tool to a) analytically and empirically quantify glare from reflected light and determine the potential impact (e.g., temporary flash blindness, retinal burn), and b) produce flux maps for central receivers. The tool accepts RAW digital photographs of the glare source (for hazard assessment) or the receiver (for flux mapping), as well as a photograph of the sun for intensity and size scaling. For glare hazard assessment, the tool determines the retinal irradiance (W/cm2) and subtended source angle for an observer and plots the glare source on a hazard spectrum (i.e., low-potential for flash blindness impact, potential for flashmore » blindness impact, retinal burn). For flux mapping, the tool provides a colored map of the receiver scaled by incident solar flux (W/m2) and unwraps the physical dimensions of the receiver while accounting for the perspective of the photographer (e.g., for a flux map of a cylindrical receiver, the horizontal axis denotes receiver angle in degrees and the vertical axis denotes vertical position in meters; for a flat panel receiver, the horizontal axis denotes horizontal position in meters and the vertical axis denotes vertical position in meters). The flux mapping capability also allows the user to specify transects along which the program plots incident solar flux on the receiver.« less

  20. Ultra-modular 500m2 heliostat field for high flux/high temperature solar-driven processes

    NASA Astrophysics Data System (ADS)

    Romero, Manuel; González-Aguilar, José; Luque, Salvador

    2017-06-01

    The main objective of the European Project SUN-to-LIQUID is the scale-up and experimental demonstration of the complete process chain to solar liquid fuels from H2O and CO2. This implies moving from a 4 kW laboratory setup to a pre-commercial plant including a heliostat field. The small power and high irradiance onto the focal spot is forcing the optical design to behave half way between a large solar furnace and an extremely small central receiver system. The customized heliostat field makes use of the most recent developments on small size heliostats and a tower with reduced optical height (15 m) to minimize visual impact. A heliostat field of 250kWth (500 m2 reflective surface) has been built adjacent to IMDEA Energy premises at the Technology Park of Móstoles, Spain, and consists of 169 small size heliostats (1.9 m × 1.6 m). In spite of the small size and compactness of the field, when all heliostats are aligned, it is possible to fulfil the specified flux above 2500 kW/m2 for at least 50 kW and an aperture of 16 cm, with a peak flux of 3000 kW/m2.

  1. A Preliminary Study of CO2 Flux Measurements by Lidar

    NASA Technical Reports Server (NTRS)

    Gibert, Fabien; Koch, Grady J.; Beyon, Jeffrey Y.; Hilton, T.; Davis, Kenneth J.; Andrews, Arlyn; Ismail, Syed; Singh, Upendra N.

    2008-01-01

    A mechanistic understanding of the global carbon cycle requires quantification of terrestrial ecosystem CO2 fluxes at regional scales. In this paper, we analyze the potential of a Doppler DIAL system to make flux measurements of atmospheric CO2 using the eddy-covariance and boundary layer budget methods and present results from a ground based experiment. The goal of this study is to put CO2 flux point measurements in a mesoscale context. In June 2007, a field experiment combining a 2-m Doppler Heterodyne Differential Absorption Lidar (HDIAL) and in-situ sensors of a 447-m tall tower (WLEF) took place in Wisconsin. The HDIAL measures simultaneously: 1) CO2 mixing ratio, 2) atmosphere structure via aerosol backscatter and 3) radial velocity. We demonstrate how to synthesize these data into regional flux estimates. Lidar-inferred fluxes are compared with eddy-covariance fluxes obtained in-situ at 396m AGL from the tower. In cases where the lidar was not yet able to measure the fluxes with acceptable precision, we discuss possible modifications to improve system performance.

  2. Comparative study of flux pinning, creep and critical currents between YBaCuO crystals with and without Y2BaCuO5 inclusions

    NASA Technical Reports Server (NTRS)

    Murakami, Masato; Gotoh, Satoshi; Fujimoto, Hiroyuki; Koshizuka, Naoki; Tanaka, Shoji

    1991-01-01

    In the Y-Ba-Cu-O system, YBa2Cu3O(x) phase is produced by the following peritectic reaction: Y2BaCuO5 + liquid yields 2YBa2Cu3O(x). Through the control of processing conditions and starting compositions, it becomes possible to fabricate large crystals containing fine Y2BaCuO5(211) inclusions. Such crystals exhibit Jc values exceeding 10000 A/sq cm at 77 K and 1T. Recently, researchers developed a novel process which can control the volume fraction of 211 inclusions. Elimination of 211 inclusions is also possible. In this study, researchers prepared YBaCuO crystals with and without 211 inclusions using the novel process, and compared flux pinning, flux creep and critical currents. Magnetic field dependence of Jc for YBaCuO crystals with and with 211 inclusions is shown. It is clear that fine 211 inclusions can contribute to flux pinning. It was also found that flux creep rate could be reduced by increasing flux pinning force. Critical current density estimates based on the conventional flux pinning theory were in good agreement with experimental results.

  3. Assessing HYDRUS-2D model to estimate soil water contents and olive tree transpiration fluxes under different water distribution systems

    NASA Astrophysics Data System (ADS)

    Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe

    2016-04-01

    comparison between measured and simulated soil water content and actual transpiration fluxes, under the hypothesis to neglect the contribute of the tree capacitance. Moreover, two different crop water stress functions and in particular the linear model proposed by Feddes et al. (1978) and the S-shape model suggested by van Genuchten et al. (1987), were considered. The result of the study evidenced that for the investigated crop and under the examined conditions, HYDRUS-2D model reproduces fairly well the dynamic of soil water contents at different distances from the emitters (RMSE<0.09 cm3 cm-3) and actual crop transpiration fluxes (RMSE<0.11 mm d-1), whose estimations can be slightly improved by assuming a S-shape crop water stress function. Key-words: Olive tree, HYDRUS-2D, Soil water content, Actual transpiration fluxes

  4. Surgical outcomes of lung cancer measuring less than 1 cm in diameter.

    PubMed

    Hamatake, Daisuke; Yoshida, Yasuhiro; Miyahara, So; Yamashita, Shin-ichi; Shiraishi, Takeshi; Iwasaki, Akinori

    2012-11-01

    The increased use of computed tomography has led to an increasing proportion of lung cancers that are identified when still less than 1 cm in diameter. However, there is no defined treatment strategy for such cases. The aim of this study was to investigate the surgical outcomes of small lung cancers. A total of 143 patients were retrospectively evaluated, who had undergone a complete surgical resection for lung cancer less than 1 cm in diameter between January 1995 and December 2011. The 143 study subjects included 62 male and 81 female patients. The mean age was 64.0 years (43-82 years). The mean tumour size was 0.8 cm (0.3-1.0 cm). Seventy-seven patients (53.8%) underwent lobectomy. Thirty-two patients (22.4%) underwent segmentectomy and 34 patients (23.8%) underwent wedge resection. The 3-, 5- and 10-year survival rates were 95.7, 92.2 and 85.7%, respectively, after resection for sub-centimetre lung cancer. There were no significant differences between sub-lobar resection and lobectomy. However, two patients (1.4%) had recurrent cancer and seven (4.9%) had lymph node metastasis. The selection of the surgical procedure is important and a long-term follow-up is mandatory, because lung cancer of only 1 cm or less can be associated with lymph node metastasis and distant metastatic recurrence.

  5. Effect of Ce Substitution on the Magnetoresistivity and Flux Pinning Energy of the Bi2Sr2Ca1- x Ce x Cu2O8+ δ Superconductors

    NASA Astrophysics Data System (ADS)

    Özçelik, B.; Kaya, C.; Gündoğmuş, H.; Sotelo, A.; Madre, M. A.

    2014-02-01

    In this study, the effect of Ce doping on the properties of Bi2Sr2Ca1- x Ce x Cu2O8+ δ ceramic superconductors, with x=0.0, 0.01, 0.05, 0.1, and 0.25, has been investigated. Samples' precursors were prepared using the conventional solid state method and subsequently textured using the Laser Floating Zone technique. The magnetoresistance measurements were studied under various applied magnetic fields. The activation energies, irreversibility fields ( H irr ), upper critical fields ( H c2) and coherence lengths at 0 K ( ξ(0)) were calculated from the resistivity versus temperature ( ρ- T) curves, under DC magnetic fields up to 5 T. The thermally activated flux flow model has been applied in order to calculate the flux pinning energies. The results indicated that H c2(0) varied from 416.19 to 115 T and the flux pinning energies varied from 1.46 to 0.042 eV at 0 T.

  6. A calibration line list for 807-1167 cm -1 from high resolution Fourier spectroscopy of the 14NH3 nu sub 2 band

    NASA Technical Reports Server (NTRS)

    Hillman, J. J.; Jennings, D. E.; Brault, J. W.

    1982-01-01

    A calibration list of 295 lines observed over the 800 to 1170 cm to the -1 power region is presented. This list is intended for use as a calibration reference for calibrating diode laser spectra. The transition frequencies were calibrated against the well established laser frequencies of CO2. The estimated uncertainty in the corrected frequencies is + or - 1x.0001 cm to the -1 power.

  7. PROCESS OF PRODUCING Cm$sup 244$ AND Cm$sup 24$$sup 5$

    DOEpatents

    Manning, W.M.; Studier, M.H.; Diamond, H.; Fields, P.R.

    1958-11-01

    A process is presented for producing Cm and Cm/sup 245/. The first step of the process consists in subjecting Pu/sup 2339/ to a high neutron flux and subsequently dissolving the irradiated material in HCl. The plutonium is then oxidized to at least the tetravalent state and the solution is contacted with an anion exchange resin, causing the plutonium values to be absorbed while the fission products and transplutonium elements remain in the effluent solution. The effluent solution is then contacted with a cation exchange resin causing the transplutonium, values to be absorbed while the fission products remain in solution. The cation exchange resin is then contacted with an aqueous citrate solution and tbe transplutonium elements are thereby differentially eluted in order of decreasing atomic weight, allowing collection of the desired fractions.

  8. RAPID GAMMA-RAY FLUX VARIABILITY DURING THE 2013 MARCH CRAB NEBULA FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, M.; Buehler, R.; Hays, E.

    2013-10-01

    We report on a bright flare in the Crab Nebula detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The period of significantly increased luminosity occurred in 2013 March and lasted for approximately two weeks. During this period, we observed flux variability on timescales of approximately 5 hr. The combined photon flux above 100 MeV from the pulsar and its nebula reached a peak value of (12.5 ± 0.8) · 10{sup –6} cm{sup –2} s{sup –1} on 2013 March 6. This value exceeds the average flux by almost a factor of six and implies amore » ∼20 times higher flux for the synchrotron component of the nebula alone. This is the second brightest flare observed from this source. Spectral and temporal analysis of the LAT data collected during the outburst reveal a rapidly varying synchrotron component of the Crab Nebula while the pulsar emission remains constant in time.« less

  9. Impact-Induced Chondrule Deformation and Aqueous Alteration of CM2 Murchison

    NASA Technical Reports Server (NTRS)

    Hanna, R. D.; Zolensky, M.; Ketcham, R. A.; Behr, W. M.; Martinez, J. E.

    2014-01-01

    Deformed chondrules in CM2 Murchison have been found to define a prominent foliation [1,2] and lineation [3] in 3D using X-ray computed tomography (XCT). It has been hypothesized that chondrules in foliated chondrites deform by "squeezing" into surrounding pore space [4,5], a process that also likely removes primary porosity [6]. However, shock stage classification based on olivine extinction in Murchison is consistently low (S1-S2) [4-5,7] implying that significant intracrystalline plastic deformation of olivine has not occurred. One objective of our study is therefore to determine the microstructural mechanisms and phases that are accommodating the impact stress and resulting in relative displacements within the chondrules. Another question regarding impact deformation in Murchison is whether it facilitated aqueous alteration as has been proposed for the CMs which generally show a positive correlation between degree of alteration and petrofabric strength [7,2]. As pointed out by [2], CM Murchison represents a unique counterpoint to this correlation: it has a strong petrofabric but a relatively low degree of aqueous alteration. However, Murchison may not represent an inconsistency to the proposed causal relationship between impact and alteration, if it can be established that the incipient aqueous alteration post-dated chondrule deformation. Methods: Two thin sections from Murchison sample USNM 5487 were cut approximately perpendicular to the foliation and parallel to lineation determined by XCT [1,3] and one section was additionally polished for EBSD. Using a combination of optical petrography, SEM, EDS, and EBSD several chondrules were characterized in detail to: determine phases, find microstructures indicative of strain, document the geometric relationships between grain-scale microstructures and the foliation and lineation direction, and look for textural relationships of alteration minerals (tochilinite and Mg-Fe serpentine) that indicate timing of their

  10. Highly Efficient and Uniform 1cm2 Perovskite Solar Cells with an Electrochemically Deposited NiOx Hole-Extraction Layer.

    PubMed

    Park, Ik Jae; Kang, Gyeongho; Park, Min Ah; Kim, Ju Seong; Seo, Se Won; Kim, Dong Hoe; Zhu, Kai; Park, Taiho; Kim, Jin Young

    2017-06-22

    Given that the highest certified conversion efficiency of the organic-inorganic perovskite solar cell (PSC) already exceeds 22 %, which is even higher than that of the polycrystalline silicon solar cell, the significance of new scalable processes that can be utilized for preparing large-area devices and their commercialization is rapidly increasing. From this perspective, the electrodeposition method is one of the most suitable processes for preparing large-area devices because it is an already commercialized process with proven controllability and scalability. Here, a highly uniform NiO x layer prepared by electrochemical deposition is reported as an efficient hole-extraction layer of a p-i-n-type planar PSC with a large active area of >1cm 2 . It is demonstrated that the increased surface roughness of the NiO x layer, achieved by controlling the deposition current density, facilitates the hole extraction at the interface between perovskite and NiO x , and thus increases the fill factor and the conversion efficiency. The electrochemically deposited NiO x layer also exhibits extremely uniform thickness and morphology, leading to highly efficient and uniform large-area PSCs. As a result, the p-i-n-type planar PSC with an area of 1.084 cm 2 exhibits a stable conversion efficiency of 17.0 % (19.2 % for 0.1cm 2 ) without showing hysteresis effects. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Experimental Line List of Water Vapor Absorption Lines in the Spectral Ranges 1850 - 2280 CM-1 and 2390-4000 CM-1

    NASA Astrophysics Data System (ADS)

    Loos, Joep; Birk, Manfred; Wagner, Georg

    2017-06-01

    A new experimental line parameter list of water vapor absorption lines in the spectral ranges 1850 - 2280 cm-1 and 2390 - 4000 cm-1 is presented. The line list is based on the analysis of several transmittance spectra measured using a Bruker IFS 125 HR high resolution Fourier transform spectrometer. A total of 54 measurements of pure water and water/air-mixtures at 296 K as well as water/air-mixtures at high and low temperatures were performed. A multispectrum fitting approach was used applying a quadratic speed-dependent hard collision line shape model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation in order to retrieve line positions, intensities, self- and air-broadening parameters, their speed-dependence, self- and air-shifts as well as line mixing and in some cases collisional narrowing parameters. Additionally, temperature dependence parameters for widths, shifts and in a few cases line mixing were retrieved. For every parameter an extensive error estimation calculation was performed identifying and specifying systematic error sources. The resulting parameters are compared to the databases HITRAN12 as well as experimental values. For intensities, a detailed comparison to results of recent ab initio calculations performed at University College London was done showing an agreement within 2 % for a majority of the data. However, for some bands there are systematic deviations attributed to ab initio calculation errors. .H. Ngo et al. JQSRT 129, 89-100 (2013) doi:10.1016/j.jqsrt.2013.05.034; JQSRT 134, 105 (2014) doi:10.1016/j.jqsrt.2013.10.016. H. Tran et al. JQSRT 129, 199-203 (2013) doi:10.1016/j.jqsrt.2013.06.015; JQSRT 134, 104 (2014) doi:10.1016/j.jqsrt.2013.10.015. L.S. Rothman et al. JQSRT 130, 4-50 (2013) doi:10.1016/j.jqsrt.2013.07.002. N. Jacquinet-Husson et al. JMS 112, 2395-2445 (2016) doi:10.1016/j.jms.2016.06.007.

  12. X-Ray Radiation Measurements With Photodiodes In Plasmas Generated By 1017 W/Cm2 Intensity Krf Excimer Laser Pulses

    NASA Astrophysics Data System (ADS)

    Rácz, E.; Földes, I. B.; Ryć, L.

    2006-01-01

    Experiments were carried out using a prepulse-free hybrid KrF excimer-dye laser system (700fs pulse duration, 248nm wavelength, 15mJ pulse energy). The intensity of the p-polarized, focused laser beam was 1.5ṡ1017 W/cm2. Vacuum ultraviolet (VUV) and x-rays from solid state laser plasmas were generated in the laser-plasma interaction of subpicosecond laser pulses of nonrelativistic laser intensities. An x-ray sensitive FLM photodiode (ITE, Warsaw) was used to detect x-rays between 1-19 keV in front of the targets. The diode was filtered by a 4μm Al foil. The dependence of the x-ray flux on laser intensity and the angular distribution of x-rays for aluminum and copper targets in the half space of the front side of the targets were investigated.

  13. Flux-trapping during the formation of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Armstrong, W. T.; Harding, D. G.; Crawford, E. A.; Hoffman, A. L.

    1982-11-01

    Flux-trapping during the early formation phases of a field-reversed configuration has been studied experimentally on the field-reversed theta-pinch TRX-1. An annular z-pinch preionizer was employed to permit ionization at high values of reverse-bias flux. Contrary to previous analysis, the rate of flux loss was not governed exclusively by inertially limited plasma convection to the tube walls. At high reverse flux levels, a pressure bearing sheath was observed to form at the tube walls and the flux loss was restricted by resistive diffusion across this sheath. The characteristic time for flux loss was 0.08rt (cm) μsec, independent of the bias field and independent of the fill pressure for fill pressures above 15 mTorr D2. Octopole barrier fields were found to be effective in limiting the inertially governed flux loss at very early times before the wall sheath formed.

  14. Benchmark Wall Heat Flux Data for a GO2/GH2 Single Element Combustor

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Pal, Sibtosh; Woodward, Roger d.; Santoro, Robert J.

    2005-01-01

    Wall heat flux measurements in a 1.5 in. diameter circular cross-section rocket chamber for a uni-element shear coaxial injector element operating on gaseous oxygen (GOz)/gaseous hydrogen (GH,) propellants are presented. The wall heat flux measurements were made using arrays of Gardon type heat flux gauges and coaxial thermocouple instrumentation. Wall heat flux measurements were made for two cases. For the first case, GOZ/GHz oxidizer-rich (O/F=l65) and fuel-rich preburners (O/F=1.09) integrated with the main chamber were utilized to provide vitiated hot fuel and oxidizer to the study shear coaxial injector element. For the second case, the preburners were removed and ambient temperature gaseous oxygen/gaseous hydrogen propellants were supplied to the study injector. Experiments were conducted at four chamber pressures of 750, 600, 450 and 300psia for each case. The overall mixture ratio for the preburner case was 6.6, whereas for the ambient propellant case, the mixture ratio was 6.0. Total propellant flow was nominally 0.27-0.29 Ibm/s for the 750 psia case with flowrates scaled down linearly for lower chamber pressures. The axial heat flux profile results for both the preburner and ambient propellant cases show peak heat flux levels a t axial locations between 2.0 and 3.0 in. from the injector face. The maximum heat flux level was about two times greater for the preburner case. This is attributed to the higher injector fuel-to-oxidizer momentum flux ratio that promotes mixing and higher initial propellant temperature for the preburner case which results in a shorter reaction zone. The axial heat flux profiles were also scaled with respect to the chamber pressure to the power 0.8. The results at the four chamber pressures for both cases collapsed to a single profile indicating that at least to first approximation, the basic fluid dynamic structures in the flow field are pressure independent as long as the chamber/njector/nozzle geometry and injection velocities

  15. 1/2-BPS D-branes from covariant open superstring in AdS4 × CP3 background

    NASA Astrophysics Data System (ADS)

    Park, Jaemo; Shin, Hyeonjoon

    2018-05-01

    We consider the open superstring action in the AdS4 × CP 3 background and investigate the suitable boundary conditions for the open superstring describing the 1/2-BPS D-branes by imposing the κ-symmetry of the action. This results in the classification of 1/2-BPS D-branes from covariant open superstring. It is shown that the 1/2-BPS D-brane configurations are restricted considerably by the Kähler structure on CP 3. We just consider D-branes without worldvolume fluxes.

  16. A statistical approach to determining energetic outer radiation belt electron precipitation fluxes

    NASA Astrophysics Data System (ADS)

    Simon Wedlund, Mea; Clilverd, Mark A.; Rodger, Craig J.; Cresswell-Moorcock, Kathy; Cobbett, Neil; Breen, Paul; Danskin, Donald; Spanswick, Emma; Rodriguez, Juan V.

    2014-05-01

    Subionospheric radio wave data from an Antarctic-Arctic Radiation-Belt (Dynamic) Deposition VLF Atmospheric Research Konsortia (AARDDVARK) receiver located in Churchill, Canada, is analyzed to determine the characteristics of electron precipitation into the atmosphere over the range 3 < L < 7. The study advances previous work by combining signals from two U.S. transmitters from 20 July to 20 August 2010, allowing error estimates of derived electron precipitation fluxes to be calculated, including the application of time-varying electron energy spectral gradients. Electron precipitation observations from the NOAA POES satellites and a ground-based riometer provide intercomparison and context for the AARDDVARK measurements. AARDDVARK radiowave propagation data showed responses suggesting energetic electron precipitation from the outer radiation belt starting 27 July 2010 and lasting ~20 days. The uncertainty in >30 keV precipitation flux determined by the AARDDVARK technique was found to be ±10%. Peak >30 keV precipitation fluxes of AARDDVARK-derived precipitation flux during the main and recovery phase of the largest geomagnetic storm, which started on 4 August 2010, were >105 el cm-2 s-1 sr-1. The largest fluxes observed by AARDDVARK occurred on the dayside and were delayed by several days from the start of the geomagnetic disturbance. During the main phase of the disturbances, nightside fluxes were dominant. Significant differences in flux estimates between POES, AARDDVARK, and the riometer were found after the main phase of the largest disturbance, with evidence provided to suggest that >700 keV electron precipitation was occurring. Currently the presence of such relativistic electron precipitation introduces some uncertainty in the analysis of AARDDVARK data, given the assumption of a power law electron precipitation spectrum.

  17. Electron Excitation Rate Coefficients for Transitions from the IS21S Ground State to the 1S2S1,3S and 1S2P1,3P0 Excited States of Helium

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Kingston, A. E.; McDowell, M. R. C.

    1984-03-01

    The available experimental and theoretical electron impact excitation cross section data for the transitions from the 1s2 1S ground state to the 1s2s 1,3S and 1s2p 1,3P0 excited states of helium are assessed. Based on this assessed data, excitation rate coefficients are calculated over a wide electron temperature range below 3.0×106K. A comparison with other published results suggests that the rates used should be lower by a factor of 2 or more.

  18. Quantitative estimation of the energy flux during an explosive chromospheric evaporation in a white light flare kernel observed by Hinode, IRIS, SDO, and RHESSI

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Sun; Imada, Shinsuke; Kyoko, Watanabe; Bamba, Yumi; Brooks, David H.

    2016-10-01

    An X1.6 flare occurred at the AR 12192 on 2014 October 22 at14:02 UT was observed by Hinode, IRIS, SDO, and RHESSI. We analyze a bright kernel which produces a white light (WL) flare with continuum enhancement and a hard X-ray (HXR) peak. Taking advantage of the spectroscopic observations of IRIS and Hinode/EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We found that explosive evaporation was observed when the WL emission occurred, even though the intensity enhancement in hotter lines is quite weak. The temporal correlation of the WL emission, HXR peak, and evaporation flows indicate that the WL emission was produced by accelerated electrons. To understand the white light emission processes, we calculated the deposited energy flux from the non-thermal electrons observed by RHESSI and compared it to the dissipated energy estimated from the chromospheric line (Mg II triplet) observed by IRIS. The deposited energy flux from the non-thermal electrons is about 3.1 × 1010erg cm-2 s-1 when we consider a cut-off energy 20 keV. The estimated energy flux from the temperature changes in the chromosphere measured from the Mg II subordinate line is about 4.6-6.7×109erg cm-2 s-1, ˜ 15-22% of the deposited energy. By comparison of these estimated energy fluxes we conclude that the continuum enhancement was directly produced by the non-thermal electrons.

  19. Constraining terrestrial ecosystem CO2 fluxes by integrating models of biogeochemistry and atmospheric transport and data of surface carbon fluxes and atmospheric CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Zhuang, Q.; Henze, D.; Bowman, K.; Chen, M.; Liu, Y.; He, Y.; Matsueda, H.; Machida, T.; Sawa, Y.; Oechel, W.

    2014-09-01

    Regional net carbon fluxes of terrestrial ecosystems could be estimated with either biogeochemistry models by assimilating surface carbon flux measurements or atmospheric CO2 inversions by assimilating observations of atmospheric CO2 concentrations. Here we combine the ecosystem biogeochemistry modeling and atmospheric CO2 inverse modeling to investigate the magnitude and spatial distribution of the terrestrial ecosystem CO2 sources and sinks. First, we constrain a terrestrial ecosystem model (TEM) at site level by assimilating the observed net ecosystem production (NEP) for various plant functional types. We find that the uncertainties of model parameters are reduced up to 90% and model predictability is greatly improved for all the plant functional types (coefficients of determination are enhanced up to 0.73). We then extrapolate the model to a global scale at a 0.5° × 0.5° resolution to estimate the large-scale terrestrial ecosystem CO2 fluxes, which serve as prior for atmospheric CO2 inversion. Second, we constrain the large-scale terrestrial CO2 fluxes by assimilating the GLOBALVIEW-CO2 and mid-tropospheric CO2 retrievals from the Atmospheric Infrared Sounder (AIRS) into an atmospheric transport model (GEOS-Chem). The transport inversion estimates that: (1) the annual terrestrial ecosystem carbon sink in 2003 is -2.47 Pg C yr-1, which agrees reasonably well with the most recent inter-comparison studies of CO2 inversions (-2.82 Pg C yr-1); (2) North America temperate, Europe and Eurasia temperate regions act as major terrestrial carbon sinks; and (3) The posterior transport model is able to reasonably reproduce the atmospheric CO2 concentrations, which are validated against Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) CO2 concentration data. This study indicates that biogeochemistry modeling or atmospheric transport and inverse modeling alone might not be able to well quantify regional terrestrial carbon fluxes. However, combining

  20. A high-resolution atlas of the infrared spectrum of the sun and the earth atmosphere from space. A compilation of ATMOS spectra of the region from 650 to 4800 cm-1 (2.3 to 16 microns). Volume 2: Stratosphere and mesosphere, 650 to 3350 cm-1

    NASA Technical Reports Server (NTRS)

    Farmer, Crofton B.; Norton, Robert H.

    1989-01-01

    During the period April 29 to May 2, 1985, the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment was operated for the first time, as part of the Spacelab-3 payload of the shuttle Challenger. The principal purpose of this experiment was to study the distributions of the atmosphere's minor and trace molecular constituents. The instrument, a modified Michelson interferometer covering the frequency range from 600 to 5000/cm-1 at a spectral resolution of 0.01/cm-1, recorded infrared absorption spectra of the sun and of the earth's atmosphere at times close to entry into and exit from occultation by the earth's limb. Spectra were obtained that are free from absorptions due to constituents of the atmosphere (i.e., they are pure solar spectra), as well as spectra of the atmosphere itself, covering line-of-sight tangent altitudes that span the range from the lower thermosphere to the bottom of the troposphere. This atlas presents a compilation of these spectra arranged in a hardcopy format suitable for quick-look reference purposes. Volume 2 covers the stratosphere and mesosphere (i.e., tangent altitudes from 20 to 80 km) for frequencies from 650 to 3350/cm-1.

  1. Comparative study of elemental mercury flux measurement techniques over a Fennoscandian boreal peatland

    NASA Astrophysics Data System (ADS)

    Osterwalder, S.; Sommar, J.; Åkerblom, S.; Jocher, G.; Fritsche, J.; Nilsson, M. B.; Bishop, K.; Alewell, C.

    2018-01-01

    Quantitative estimates of the land-atmosphere exchange of gaseous elemental mercury (GEM) are biased by the measurement technique employed, because no standard method or scale in space and time are agreed upon. Here we present concurrent GEM exchange measurements over a boreal peatland using a novel relaxed eddy accumulation (REA) system, a rectangular Teflon® dynamic flux chamber (DFC) and a DFC designed according to aerodynamic considerations (Aero-DFC). During four consecutive days the DFCs were placed alternately on two measurement plots in every cardinal direction around the REA sampling mast. Spatial heterogeneity in peat surface characteristics (0-34 cm) was identified by measuring total mercury in eight peat cores (57 ± 8 ng g-1, average ± SE), vascular plant coverage (32-52%), water table level (4.5-14.1 cm) and dissolved gaseous elemental mercury concentrations (28-51 pg L-1) in the peat water. The GEM fluxes measured by the DFCs showed a distinct diel pattern, but no spatial difference in the average fluxes was detected (ANOVA, α = 0.05). Even though the correlation between the Teflon® DFC and Aero-DFC was significant (r = 0.76, p < 0.05) the cumulative flux of the Aero-DFC was a factor of three larger. The average flux of the Aero-DFC (1.9 ng m-2 h-1) and REA (2 ng m-2 h-1) were in good agreement. The results indicate that the novel REA design is in agreement for cumulative flux estimates with the Aero-DFC, which incorporates the effect of atmospheric turbulence. The comparison was performed over a fetch with spatially rather homogenous GEM flux dynamics under fairly consistent weather conditions, minimizing the effect of weather influence on the data from the three measurement systems. However, in complex biomes with heterogeneous surface characteristics where there can be large spatial variability in GEM gas exchange, the small footprint of chambers (<0.2 m2) makes for large coefficients of variation. Thus many chamber measurement replications

  2. Compositional Homogeneity of CM Parent Bodies

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Marsset, M.; Beck, P.; Binzel, R. P.; Birlan, M.; Cloutis, E. A.; DeMeo, F. E.; Dumas, C.; Hiroi, T.

    2016-09-01

    CM chondrites are the most common type of hydrated meteorites, making up ˜1.5% of all falls. Whereas most CM chondrites experienced only low-temperature (˜0°C-120°C) aqueous alteration, the existence of a small fraction of CM chondrites that suffered both hydration and heating complicates our understanding of the early thermal evolution of the CM parent body(ies). Here, we provide new constraints on the collisional and thermal history of CM-like bodies from a comparison between newly acquired spectral measurements of main-belt Ch/Cgh-type asteroids (70 objects) and existing laboratory spectral measurements of CM chondrites. It first appears that the spectral variation observed among CM-like bodies is essentially due to variations in the average regolith grain size. Second, the spectral properties of the vast majority (unheated) of CM chondrites resemble both the surfaces and the interiors of CM-like bodies, implying a “low” temperature (<300°C) thermal evolution of the CM parent body(ies). It follows that an impact origin is the likely explanation for the existence of heated CM chondrites. Finally, similarly to S-type asteroids and (2) Pallas, the surfaces of large (D > 100 km)—supposedly primordial—Ch/Cgh-type main-belt asteroids likely expose the interiors of the primordial CM parent bodies, a possible consequence of impacts by small asteroids (D < 10 km) in the early solar system.

  3. Airborne boundary layer flux measurements of trace species over Canadian boreal forest and northern wetland regions

    NASA Technical Reports Server (NTRS)

    Ritter, John A.; Barrick, John D. W.; Watson, Catherine E.; Sachse, Glen W.; Gregory, Gerald L.; Anderson, Bruce E.; Woerner, Mary A.; Collins, James E., Jr.

    1994-01-01

    Airborne heat, moisture, O3, CO, and CH4 flux measurements were obtained over the Hudson Bay lowlands (HBL) and northern boreal forest regions of Canada during July - August 1990. The airborne flux measurements were an integral part of the NASA/Arctic Boundary Layer Expedition (ABLE) 3B field experiment executed in collaboration with the Canadian Northern Wetlands Study (NOWES). Airborne CH4 flux measurements were taken over a large portion of the HBL. The surface level flux of CH4 was obtained from downward extrapolations of multiple-level CH4 flux measurements. Methane source strengths ranged from -1 to 31 mg m(exp -2)/d, with the higher values occurring in relatively small, isolated areas. Similar measurements of the CH4 source strength in the boreal forest region of Schefferville, Quebec, ranged from 6 to 27 mg m(exp -2)/d and exhibited a diurnal dependence. The CH4 source strengths found during the ABLE 3B expedition were much lower than the seasonally averaged source strength of 51 mg m(exp -2)/d found for the Yukon-Kuskokwim delta region of Alaska during the previous ABLE 3A study. Large positive CO fluxes (0.31 to 0.53 parts per billion by volume (ppbv) m/s) were observed over the inland, forested regions of the HBL study area, although the mechanism for the generation of these fluxes was not identified. Repetitive measurements along the same ground track at various times of day near the Schefferville site also suggested a diurnal dependence for CO emissions. Measurements of surface resistance to the uptake of O3 (1.91 to 0.80 s/cm) for the HBL areas investigated were comparable to those observed near the Schefferville site (3.40 to 1.10 s/cm). Surface resistance values for the ABLE 3B study area were somewhat less than those observed over the Yukon-Kuskokwim delta during the previous ABLE 3A study. The budgets for heat, moisture, O3, CO, and CH4 were evaluated. The residuals from these budget studies indicated, for the cases selected, a moderate net

  4. Effect of Sampling Depth on Air-Sea CO2 Flux Estimates in River-Stratified Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Miller, L. A.; Papakyriakou, T. N.

    2015-12-01

    In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated air-sea CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated air-sea CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on air-sea fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.

  5. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    DOE PAGES

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.; ...

    2017-05-24

    13C metabolic flux analysis ( 13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant ofmore » 13C MFA known as 2-Scale 13C metabolic flux analysis (2S- 13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a

  6. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.

    13C metabolic flux analysis ( 13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant ofmore » 13C MFA known as 2-Scale 13C metabolic flux analysis (2S- 13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a

  7. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    PubMed Central

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.; Gin, Jennifer; Apel, Amanda Reider; Mukhopadhyay, Aindrila; García Martín, Héctor; Keasling, Jay D.

    2017-01-01

    13C metabolic flux analysis (13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant of 13C MFA known as 2-Scale 13C metabolic flux analysis (2S-13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical

  8. Empirical Bolometric Fluxes and Angular Diameters of 1.6 Million Tycho-2 Stars and Radii of 350,000 Stars with Gaia DR1 Parallaxes

    NASA Astrophysics Data System (ADS)

    Stevens, Daniel J.; Stassun, Keivan G.; Gaudi, B. Scott

    2017-12-01

    We present bolometric fluxes and angular diameters for over 1.6 million stars in the Tycho-2 catalog, determined using previously determined empirical color-temperature and color-flux relations. We vet these relations via full fits to the full broadband spectral energy distributions for a subset of benchmark stars and perform quality checks against the large set of stars for which spectroscopically determined parameters are available from LAMOST, RAVE, and/or APOGEE. We then estimate radii for the 355,502 Tycho-2 stars in our sample whose Gaia DR1 parallaxes are precise to ≲ 10 % . For these stars, we achieve effective temperature, bolometric flux, and angular diameter uncertainties of the order of 1%-2% and radius uncertainties of order 8%, and we explore the effect that imposing spectroscopic effective temperature priors has on these uncertainties. These stellar parameters are shown to be reliable for stars with {T}{eff} ≲ 7000 K. The over half a million bolometric fluxes and angular diameters presented here will serve as an immediate trove of empirical stellar radii with the Gaia second data release, at which point effective temperature uncertainties will dominate the radius uncertainties. Already, dwarf, subgiant, and giant populations are readily identifiable in our purely empirical luminosity-effective temperature (theoretical) Hertzsprung-Russell diagrams.

  9. Distribution of flux-pinning energies in YBa2Cu3O(7-delta) and Bi2Sr2CaCu2O(8+delta) from flux noise

    NASA Astrophysics Data System (ADS)

    Ferrari, M. J.; Johnson, Mark; Wellstood, Frederick C.; Clarke, John; Mitzi, D.

    1990-01-01

    The spectral density of the magnetic flux noise measured in high-temperature superconductors in low magnetic fields scales approximately as the inverse of the frequency and increases with temperature. The temperature and frequency dependence of the noise are used to determine the pinning energies of individual flux vortices in thermal equilibrium. The distribution of pinning energies below 0.1 eV in YBa(2)Cu(3)O(7-delta) and near 0.2 eV in Bi(2)Sr(2)CaCu(2)O(8+delta). The noise power is proportional to the ambient magnetic field, indicating that the vortex motion is uncorrelated.

  10. Modeling Global Atmospheric CO2 Fluxes and Transport Using NASA MERRA Reanalysis Data

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Kawa, S. R.; Collatz, G. J.

    2010-12-01

    We present our first results of CO2 surface biosphere fluxes and global atmospheric CO2 transport using NASA’s new MERRA reanalysis data. MERRA is the Modern Era Retrospective-Analysis For Research And Applications based on the Goddard Global Modeling and Assimilation Office GEOS-5 data assimilation system. After some application testing and analysis, we have generated biospheric CO2 fluxes at 3-hourly temporal resolution from an updated version of the CASA carbon cycle model using the 1x1.25-degree reanalysis data. The experiment covers a period of 9 years from 2000 -2008. The affects of US midwest crop (largely corn and soy) carbon uptake and removal by harvest are explicitly included in this version of CASA. Across the agricultural regions of the Midwest US, USDA crop yield data are used to scale vegetation fluxes producing a strong sink in the growing season and a comparatively weaker source from respiration after harvest. Comparisons of the new fluxes to previous ones generated using GEOS-4 data are provided. The Parameterized Chemistry/Transport Model (PCTM) is then used with the analyzed meteorology in offline CO2 transport. In the simulation of CO2 transport, we have a higher vertical resolution from MERRA (the lowest 56 of 72 levels are used in our simulation). A preliminary analysis of the CO2 simulation results is carried out, including diurnal, seasonal and latitudinal variability. We make comparisons of our simulation to continuous CO2 analyzer sites, especially those in agricultural regions. The results show that the model captures reasonably well the observed synoptic variability due to transport changes and biospheric fluxes.

  11. Spacecraft-produced neutron fluxes on Skylab

    NASA Technical Reports Server (NTRS)

    Quist, T. C.; Furst, M.; Burnett, D. S.; Baum, J. H.; Peacock, C. L., Jr.; Perry, D. G.

    1977-01-01

    Estimates of neutron fluxes in different energy ranges are reported for the Skylab spacecraft. Detectors composed of uranium, thorium, and bismuth foils with mica as a fission track recorder, as well as boron foils with cellulose acetate as an alpha-particle recorder, were deployed at different positions in the Orbital Workshop. It was found that the Skylab neutron flux was dominated by high energy (greater than 1 MeV) contributions and that there was no significant time variation in the fluxes. Firm upper limits of 7-15 neutrons/sq cm-sec, depending on the detector location in the spacecraft, were established for fluxes above 1 MeV. Below 1 MeV, the neutron fluxes were about an order of magnitude lower. The neutrons are interpreted as originating from the interactions of leakage protons from the radiation belt with the spacecraft.

  12. Planarizing cytosine: The S1 state structure, vibrations, and nonradiative dynamics of jet-cooled 5,6-trimethylenecytosine

    NASA Astrophysics Data System (ADS)

    Trachsel, Maria A.; Lobsiger, Simon; Schär, Tobias; Blancafort, Lluís; Leutwyler, Samuel

    2017-06-01

    We measure the S0 → S1 spectrum and time-resolved S1 state nonradiative dynamics of the "clamped" cytosine derivative 5,6-trimethylenecytosine (TMCyt) in a supersonic jet, using two-color resonant two-photon ionization (R2PI), UV/UV holeburning, and ns time-resolved pump/delayed ionization. The experiments are complemented with spin-component scaled second-order approximate coupled cluster (SCS-CC2), time-dependent density functional theory, and multi-state second-order perturbation-theory (MS-CASPT2) ab initio calculations. While the R2PI spectrum of cytosine breaks off ˜500 cm-1 above its 000 band, that of TMCyt extends up to +4400 cm-1 higher, with over a hundred resolved vibronic bands. Thus, clamping the cytosine C5-C6 bond allows us to explore the S1 state vibrations and S0 → S1 geometry changes in detail. The TMCyt S1 state out-of-plane vibrations ν1', ν3', and ν5' lie below 420 cm-1, and the in-plane ν11', ν12', and ν23' vibrational fundamentals appear at 450, 470, and 944 cm-1. S0 → S1 vibronic simulations based on SCS-CC2 calculations agree well with experiment if the calculated ν1', ν3', and ν5' frequencies are reduced by a factor of 2-3. MS-CASPT2 calculations predict that the ethylene-type S1S0 conical intersection (CI) increases from +366 cm-1 in cytosine to >6000 cm-1 in TMCyt, explaining the long lifetime and extended S0 → S1 spectrum. The lowest-energy S1S0 CI of TMCyt is the "amino out-of-plane" (OPX) intersection, calculated at +4190 cm-1. The experimental S1S0 internal conversion rate constant at the S1(v'=0 ) level is kI C=0.98 -2.21 08 s-1, which is ˜10 times smaller than in 1-methylcytosine and cytosine. The S1(v'=0 ) level relaxes into the T1(3π π *) state by intersystem crossing with kI S C=0.41 -1.6 ṡ1 08 s-1. The T1 state energy is measured to lie 24 580 ±560 cm-1 above the S0 state. The S1(v'=0 ) lifetime is τ =2.9 ns, resulting in an estimated fluorescence quantum yield of Φf l=24 %. Intense

  13. Analysis of the v2, v4 Infrared Hot Bands and v1 CARS Spectrum of 34S16O3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, Jeffrey B.; Chrysostom, Engelene; Masiello, Tony

    2003-04-01

    High-resolution (0.0015 cm-1) infrared spectroscopy has been used to study the 34S16O3 IR-active hot bands originating from the v2 and v4 bending mode levels and terminating in the states 2v2 (l=0), v2+v4 (l=+1), and 2v4 (1=0,+2). The upper states are strongly coupled via Fermi resonance and indirect Coriolis interactions to the v1 symmetric stretching mode levels that are only directly accessible from the ground state via a Raman-active transition. A Coherent anti-Stokes Raman (CARS) spectrum of v1 for 34S16O3 is presented which is dramatically different from the corresponding one for 32S16O3. From the infrared transitions, accurate rovibrational constants are deducedmore » for all the mixed states, leading to deperturbed values for v1, a1B, and a1C of 1064.920(84), 0.000 834 5 (54), and 0.000 410(11) cm-1 respectively. The uncertainties in the last digits are shown in parentheses and represent two standard deviations. These parameters reproduce the unresolved Q-branch contour of the C ARS spectrum very well. Various other rotational and vibrational parameters have been determined, leading to values of Be= 0.349 760 6(33) cm-1 and re= 141.734 70(68) pm, values that are identical (within experimental error) to those found for 32S16O3.« less

  14. [Factors affecting benzene diffusion from contaminated soils to the atmosphere and flux characteristics].

    PubMed

    Du, Ping; Wang, Shi-Jie; Zhao, Huan-Huan; Wu, Bin; Han, Chun-Mei; Fang, Ji-Dun; Li, Hui-Ying; Hosomi, Masaaki; Li, Fa-Sheng

    2013-12-01

    The influencing factors of benzene diffusion fluxes from sand and black soil to atmosphere were investigated using a flux chamber (30.0 cm x 17.5 cm x 29.0 cm). In this study, the benzene diffusion fluxes were estimated by measuring the benzene concentrations both in the headspace of the chamber and in the soils of different layers. The results indicated that the soil water content played an important role in benzene diffusion fluxes. The diffusion flux showed positive correlation with the initial benzene concentration and the benzene dissolution concentration for both soil types. The changes of air flow rate from 300 to 900 mL x min(-1) and temperature from 20 degrees C to 40 degrees C resulted in increases of the benzene diffusion flux. Our study of benzene diffusion fluxes from contaminated soils will be beneficial for the predicting model, and emergency management and precautions.

  15. CO2 fluxes from diffuse degassing in Italy

    NASA Astrophysics Data System (ADS)

    Cardellini, C.; Chiodini, G.; Frondini, F.; Caliro, S.

    2016-12-01

    Central and southern Italy are affected by an intense process of CO2 Earth degassing from both active volcanoes, and tectonically active areas. Regional scale studies, based on C mass balance of groundwater of regional aquifers in not volcanically active areas, highlighted the presence of two large CO2 degassing structures that, for magnitude and the geochemical-isotopic features, were related to a regional process of mantle degassing. Quantitative estimates provided a CO2 flux of 9 Mt/y for the region (62000 km2). Besides the magnitude of the process, a strong link between the deep CO2 degassing and the seismicity of the region and a strict correlation between migration of deep CO2-rich fluids and the heat flux have been highlighted. In addition, the region is also characterised by the presence of many cold gas emissions where deeply derived CO2 is released by vents and soil diffuse degassing areas. Both direct CO2 expulsion at the surface and C-rich groundwater are different manifestations of the same process, in fact, the deeply produced gas can be dissolved by groundwater or emitted directly to the atmosphere depending on the gas flux rate, and the geological-structural and hydrogeological settings. Quantitative estimations of the CO2 fluxes are available only for a limited number ( 30) of the about 270 catalogued gas manifestations allowing an estimations of a CO2 flux of 1.4 Mt/y. Summing the two estimates the non-volcanic CO2 flux from the region results globally relevant, being from 2 to 10% of the estimated present-day global CO2 discharge from subaerial volcanoes. Large amounts of CO2 is also discharged by soil diffuse degassing in volcanic-hydrothermal systems. Specific surveys at Solfatara of Pozzuoli (Campi Flegrei Caldera) pointed out the relevance of this process. CO2 diffuse degassing at Solfatara, measured since 1998 shows a persistent CO2 flux of 1300 t/d (± 390 t/d), a flux comparable to an erupting volcano. The quantification of diffuse CO2

  16. Beyond the Methanogenic Black-Box: Greenhouse Gas Fluxes (CO2, CH4, N2O) as Evidence for Wetlands as Dynamic Redox Systems

    NASA Astrophysics Data System (ADS)

    Mcnicol, G.; Knox, S. H.; Sturtevant, C. S.; Baldocchi, D. D.; Silver, W. L.

    2015-12-01

    Seminal wetland research in the 1990s demonstrated that annual methane (CH4) fluxes scaled positively with ecosystem production across distinctive wetlands globally. This relationship implies a model of flooded wetland ecosystems as 'methanogenic black-boxes'; poised at a low redox state, and tending to release a fixed fraction of incoming annual productivity as CH4. In contrast, recent studies have reported high ratios of carbon dioxide (CO2) to CH4 emissions, and are adding to a body of evidence suggesting wetlands can vary more widely in their redox state. To explore this apparent incongruence we used principles of redox thermodynamics and laboratory experiments to develop predictions of wetland greenhouse gas (GHG) fluxes under different redox regimes. We then used a field study to test the hypothesis that ecosystem seasonality in gross primary productivity (GPP) and temperature would drive changes in GHG emissions, mediated by a dynamic - as opposed to static - redox regime. We estimated wetland GHG emissions from an emergent marsh in the Sacramento Delta, CA from March 2014-2015. We measured CO2, CH4 and N2O emissions via diffusion and ebullition with manual sampling, and whole-ecosystem fluxes of CO2 and CH4 using eddy-covariance. Ebullition and diffusive CH4 fluxes were strongly seasonal, with minimum rates (0.86 and 0.35 mg C-CH­­4 m-2 yr-1, respectively) during winter, and maximum rates (1.3 and 1.8 g C-CH­­4 m-2 yr-1, respectively) during the summer growing season. In contrast, winter diffusive CO2 fluxes (494 g C-CO2 m-2 yr-1) and fall bubble CO2 concentrations (1.49%) were highest, despite being seasons of lower GPP, temperature, and CH4 flux. Further, diffusive and ebullition fluxes of N2O showed zero net flux only during spring and summer months, whereas the wetland was a significant source of N2O during winter (81.2 ± 24.4 mg N-N2O m-2 yr-1). These seasonal flux dynamics contradict a 'methanogenic black box' model of wetland redox, which

  17. Measurement of the reactor antineutrino flux and spectrum at Daya Bay

    DOE PAGES

    D. E. Jaffe; Bishai, M; Diwan, M.; ...

    2016-02-12

    This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW th nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 ± 0.04) × 10 –18 cm 2/GW/day or (5.92 ± 0.14) × 10 –43 cm 2/fission. This flux measurement is consistent with previous short-baseline reactor antineutrino experimentsmore » and is 0.946 ± 0.022 (0.991 ± 0.023) relative to the flux predicted with the Huber+Mueller (ILL+Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ~4σ between 4-6 MeV. Furthermore, a reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.« less

  18. Coupling of Community Land Model with RegCM4 for Indian Summer Monsoon Simulation

    NASA Astrophysics Data System (ADS)

    Maurya, R. K. S.; Sinha, P.; Mohanty, M. R.; Mohanty, U. C.

    2017-11-01

    Three land surface schemes available in the regional climate model RegCM4 have been examined to understand the coupling between land and atmosphere for simulation of the Indian summer monsoon rainfall. The RegCM4 is coupled with biosphere-atmosphere transfer scheme (BATS) and the National Center for Atmospheric Research (NCAR) Community Land Model versions 3.5, and 4.5 (CLM3.5 and CLM4.5, respectively) and model performance is evaluated for recent drought (2009) and normal (2011) monsoon years. The CLM4.5 has a more distinct category of surface and it is capable of representing better the land surface characteristics. National Centers for Environmental Prediction (NCEP) and Department of Energy (DOE) reanalysis version 2 (NNRP2) datasets are considered as driving force to conduct the experiments for the Indian monsoon region (30°E-120°E; 30°S-50°N). The NNRP2 and India Meteorological Department (IMD) gridded precipitation data are used for verification analysis. The results indicate that RegCM4 simulations with CLM4.5 (RegCM4-CLM4.5) and CLM3.5 (RegCM4-CLM3.5) surface temperature (at 2 ms) have very low warm biases ( 1 °C), while with BATS (RegCM4-BATS) has a cold bias of about 1-3 °C in peninsular India and some parts of central India. Warm bias in the RegCM4-BATS is observed over the Indo-Gangetic plain and northwest India and the bias is more for the deficit year as compared to the normal year. However, the warm (cold) bias is less in RegCM4-CLM4.5 than other schemes for both the deficit and normal years. The model-simulated maximum (minimum) surface temperature and sensible heat flux at the surface are positively (negatively) biased in all the schemes; however, the bias is higher in RegCM4-BATS and lower in RegCM4-CLM4.5 over India. All the land surface schemes overestimated the precipitation in peninsular India and underestimated in central parts of India for both the years; however, the biases are less in RegCM4-CLM4.5 and more in RegCM4-CLM3.5 and RegCM

  19. Intrinsic electronic transport and thermoelectric power factor in n-type doped monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Zhao, Yinchang; Dai, Zhenhong; Zhang, Chao; Lian, Chao; Zeng, Shuming; Li, Geng; Meng, Sheng; Ni, Jun

    2018-04-01

    The electronic transport and thermoelectric properties in n-type doped monolayer MoS2 are investigated by a parameter-free method based on first-principles calculations, electron–phonon coupling (EPC), and Boltzmann transport equation (BTE). Remarkably, the calculated electron mobility μ ∼ 47 cm2 V‑1s‑1 and thermoelectric power factor σS 22.93 × 10‑3 W m‑1 K‑2 at room temperature are much lower than the previous theoretical values (e.g. μ ∼ 130–410 cm2 V‑1 s‑1 and σS 22.80 × 10‑2 W m‑1 K‑2), but agree well with the most recent experimental findings of μ ∼ 37 cm2 V‑1 s‑1 and σS 2 ∼ 3.00 × 10‑3 W m‑1 K‑2. The EPC projections on phonon dispersion and the phonon branch dependent scattering rates indicate that the acoustic phonons, especially the longitudinal acoustic phonons, dominate the carrier scattering. Therefore, a mobility of 68 cm2 V‑1 s‑1 is achieved if only the acoustic phonons induced scattering is included, in accordance with the result of 72 cm2 V‑1 s‑1 estimated from the deformation potential driven by acoustic modes. Furthermore, via excluding the scattering from the out-of-plane modes to simulate the EPC suppression, the obtained mobility of 258 cm2 V‑1 s‑1 is right in the range of 200–700 cm2 V‑1 s‑1 measured in the samples with top deposited dielectric layer. In addition, we also compute the lattice thermal conductivity κ L of monolayer MoS2 using phonon BTE, and obtain a κ L ∼ 123 W m‑1 K‑1 at 300 K.

  20. Regional climate modeling over the Maritime Continent: Assessment of RegCM3-BATS1e and RegCM3-IBIS

    NASA Astrophysics Data System (ADS)

    Gianotti, R. L.; Zhang, D.; Eltahir, E. A.

    2010-12-01

    Despite its importance to global rainfall and circulation processes, the Maritime Continent remains a region that is poorly simulated by climate models. Relatively few studies have been undertaken using a model with fine enough resolution to capture the small-scale spatial heterogeneity of this region and associated land-atmosphere interactions. These studies have shown that even regional climate models (RCMs) struggle to reproduce the climate of this region, particularly the diurnal cycle of rainfall. This study builds on previous work by undertaking a more thorough evaluation of RCM performance in simulating the timing and intensity of rainfall over the Maritime Continent, with identification of major sources of error. An assessment was conducted of the Regional Climate Model Version 3 (RegCM3) used in a coupled system with two land surface schemes: Biosphere Atmosphere Transfer System Version 1e (BATS1e) and Integrated Biosphere Simulator (IBIS). The model’s performance in simulating precipitation was evaluated against the 3-hourly TRMM 3B42 product, with some validation provided of this TRMM product against ground station meteorological data. It is found that the model suffers from three major errors in the rainfall histogram: underestimation of the frequency of dry periods, overestimation of the frequency of low intensity rainfall, and underestimation of the frequency of high intensity rainfall. Additionally, the model shows error in the timing of the diurnal rainfall peak, particularly over land surfaces. These four errors were largely insensitive to the choice of boundary conditions, convective parameterization scheme or land surface scheme. The presence of a wet or dry bias in the simulated volumes of rainfall was, however, dependent on the choice of convection scheme and boundary conditions. This study also showed that the coupled model system has significant error in overestimation of latent heat flux and evapotranspiration from the land surface, and

  1. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.

    PubMed

    Liu, H B; Brugger, R M; Rorer, D C; Tichler, P R; Hu, J P

    1994-10-01

    Beams of epithermal neutrons are being used in the development of boron neutron capture therapy for cancer. This report describes a design study in which 235U fission plates and moderators are used to produce an epithermal neutron beam with higher intensity and better quality than the beam currently in use at the Brookhaven Medical Research Reactor (BMRR). Monte Carlo calculations are used to predict the neutron and gamma fluxes and absorbed doses produced by the proposed design. Neutron flux measurements at the present epithermal treatment facility (ETF) were made to verify and compare with the computed results where feasible. The calculations indicate that an epithermal neutron beam produced by a fission-plate converter could have an epithermal neutron intensity of 1.2 x 10(10) n/cm2.s and a fast neutron dose per epithermal neutron of 2.8 x 10(-11) cGy.cm2/nepi plus being forward directed. This beam would be built into the beam shutter of the ETF at the BMRR. The feasibility of remodeling the facility is discussed.

  2. Interferometric observations of M42 at 1. 3 cm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, N.; Mizuno, A.; Tatematsu, K.

    1989-02-01

    New interferometric observations of the central 4.5 deg of M42 have been made at 1.3 cm with the NRO Millimeter-Wave Array. Distribution of the radio source consists of two known components. One is centered on the Trapezium stars, and the other corresponds to the bright bar. The present map is compared with the distribution of the CS molecular gas (Hayashi et al., 1989), and it is found that the boundary of the ionized gas is well delineated by the CS ridge. This indicates that the ionized gas is distributed in a cavity of the molecular gas, as suggested by Sugitanimore » et al. (1986). A comparison of the map with a 6-cm radio-continuum map (Johnston et al., 1983) indicates that the 6 cm distribution is more extended than the 1.3 cm distribution, except in the southern part of the bright bar. 9 references.« less

  3. Eddy covariance measurement of isoprene fluxes

    NASA Astrophysics Data System (ADS)

    Guenther, Alex B.; Hills, Alan J.

    1998-06-01

    A system has been developed to directly measure isoprene flux above a forest canopy by eddy covariance using the combination of a fast response, real-time isoprene sensor and sonic anemometer. This system is suitable for making nearly unattended, long-term, and continuous measurements of isoprene fluxes. Isoprene detection is based on chemiluminescence between isoprene and reactant ozone, which produces green light at 500 nm. The sensor has a noise level (1σ) of 450 pptv for a 1-s integration which is dominated by random high-frequency noise that does not significantly degrade eddy covariance flux measurements. Interference from the flux of other compounds is primarily due to the emission of monoterpenes, propene, ethene, and methyl butenol and the deposition of methacrolein and methyl vinyl ketone. The average total interference for North American landscapes in midday summer is estimated to be about 5% for emissions and -3% for deposition fluxes. In only a few North American landscapes, where isoprene emissions are very low and methyl butenol emissions are high, are interferences predicted to be significant. The system was field tested on a tower above a mixed deciduous forest canopy (Duke Forest, North Carolina, U.S.A.) dominated by oak trees, which are strong isoprene emitters. Isoprene fluxes were estimated for 307 half-hour sampling periods over 10 days. Daytime fluxes ranging from 1 to 14 mg C m-2 h-1 were strongly correlated with light and temperature. The daytime mean flux of 6 mg C m-2 h-1 is similar to previous estimates determined by relaxed eddy accumulation by Geron et al [1997] at this site. Nighttime fluxes were near zero (0.01±0.03 mg C m-2 h-1).

  4. Quantifying the Observability of CO2 Flux Uncertainty in Atmospheric CO2 Records Using Products from Nasa's Carbon Monitoring Flux Pilot Project

    NASA Technical Reports Server (NTRS)

    Ott, Lesley; Pawson, Steven; Collatz, Jim; Watson, Gregg; Menemenlis, Dimitris; Brix, Holger; Rousseaux, Cecile; Bowman, Kevin; Bowman, Kevin; Liu, Junjie; hide

    2014-01-01

    NASAs Carbon Monitoring System (CMS) Flux Pilot Project (FPP) was designed to better understand contemporary carbon fluxes by bringing together state-of-the art models with remote sensing datasets. Here we report on simulations using NASAs Goddard Earth Observing System Model, version 5 (GEOS-5) which was used to evaluate the consistency of two different sets of observationally constrained land and ocean fluxes with atmospheric CO2 records. Despite the strong data constraint, the average difference in annual terrestrial biosphere flux between the two land (NASA Ames CASA and CASA-GFED) models is 1.7 Pg C for 2009-2010. Ocean models (NOBM and ECCO2-Darwin) differ by 35 in their global estimates of carbon flux with particularly strong disagreement in high latitudes. Based upon combinations of terrestrial and ocean fluxes, GEOS-5 reasonably simulated the seasonal cycle observed at northern hemisphere surface sites and by the Greenhouse gases Observing SATellite (GOSAT) while the model struggled to simulate the seasonal cycle at southern hemisphere surface locations. Though GEOS-5 was able to reasonably reproduce the patterns of XCO2 observed by GOSAT, it struggled to reproduce these aspects of AIRS observations. Despite large differences between land and ocean flux estimates, resulting differences in atmospheric mixing ratio were small, typically less than 5 ppmv at the surface and 3 ppmv in the XCO2 column. A statistical analysis based on the variability of observations shows that flux differences of these magnitudes are difficult to distinguish from natural variability, regardless of measurement platform.

  5. Measuring denitrification after grassland renewal and grassland conversion to cropland by using the 15N gas-flux method

    NASA Astrophysics Data System (ADS)

    Buchen, Caroline; Eschenbach, Wolfram; Flessa, Heinz; Giesemann, Anette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2015-04-01

    Denitrification, the reduction of oxidized forms of inorganic N to N2O and N2 is an important pathway of gaseous nitrogen losses. Measuring denitrification, especially the reduction of N2O to N2, expressed in the product ratio (N2O/(N2O + N2)), is rather difficult and hence rarely performed under field conditions. But using the 15N gas-flux method allows determining N transformation processes in their natural environment. In order to develop effective climate mitigation strategies understanding the N2O source is essential. We used the 15N gas-flux method to determine N2O and N2 emissions following grassland renewal and conversion techniques. Therefore we selected three different treatments: control (C), mechanical grassland renovation (GR) (autumn 2013) and grassland conversion to maize (GM) (spring 2014) from field plot trials on two different sites (Histic Gleysoil and Plaggic Anthrosol) near Oldenburg, Lower Saxony, Germany. We applied 15N labeled KNO3- (60 atom. % 15N) at a rate equivalent to common farming practices (150 kg N*ha-1) using needle injection of fertilizer solution in three different depths (10 cm, 15 cm, 20 cm) for homogeneous soil labeling up to 30 cm in microplots. During the first 10 days after application (May 2014) gas flux measurements from closed chambers were performed every second day and then weekly following a period of 8 weeks. Gas samples were analyzed for δ15N of N2 and N2O by IRMS according to Lewicka-Szczebak et al. (2013). Concentration and 15N enrichment of NO3- in soil water was determined on weekly samples using the SPIN-MAS technique (Stange et al. 2007). Fluxes of N2 and N2O evolved from the 15N labeled soil nitrogen pool were calculated using the equations of Spott et al. (2006). Peak events of N2 and N2O emissions occurred during the first 10 days of measurement, showing differences in soil types, as well as treatment variations. N2 fluxes up to 178 g*ha-1*day-1 and N2O fluxes up to 280 g*ha-1*day-1 were measured on the

  6. Methane fluxes from the mound-building termite species of North Australian savannas

    NASA Astrophysics Data System (ADS)

    Jamali, H.; Livesely, S. J.; Arndt, S. K.; Dawes-Gromadzki, T.; Cook, G. D.; Hutley, L.

    2009-04-01

    Termites are estimated to contribute 3-19% to the global methane emissions. These estimates have large uncertainties because of the limited number of field-based studies and species studied, as well as issues of diel and seasonal variation. We measured methane fluxes from four common mound-building termite species (Microcerotermes nervosus, n=26; M. serratus, n=4; Tumulitermes pastinator, n=5; and Amitermes darwini, n=4) in tropical savannas near Darwin in the Northern Territory, Australia. Methane fluxes from replicated termite mounds were measured in the field using manual chambers with fluxes reported on a mound volume basis. Methane flux was measured in both wet and dry seasons and diel variation was investigated by measuring methane flux every 4 hours over a 24 hour period. Mound temperature was measured concurrently with flux to examine this relationship. In addition, five M. nervosus mounds removed from the field and incubated under controlled temperature conditions over a 24 hour period to remove the effect of varying temperature. During the observation campaigns, mean monthly minimum and maximum temperatures for February (wet season) were 24.7 and 30.8°C, respectively, and were 20.1 to 31.4 °C in June (dry season). Annual rainfall in 2008 for Darwin was 1970.1 mm, with a maximum of 670 mm falling in February and no rain in May and June. Methane fluxes were greatest in the wet season for all species, ranging from 265.1±101.1 (T. pastinator) to 2256.6±757.1 (M. serratus) µg CH4-C/m3/h. In the dry season, methane fluxes were at their lowest, ranging from 10.0±5.5 (T. pastinator) to 338.0±165.9 (M. serratus) µg CH4-C/m3/h. On a diel basis, methane fluxes were smallest at the coolest time of the day (~0700 hrs) and greatest at the warmest (~1400 hrs) for all species, and for both wet and dry seasons. Typical diel variation in flux from M. serratus dominated mounds ranged from 902.6±261.9 to 1392.1±408.1 µg CH4-C/m3/h in wet season and 99.6±57.4 to

  7. Quantifying the drivers of ocean-atmosphere CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Lauderdale, Jonathan M.; Dutkiewicz, Stephanie; Williams, Richard G.; Follows, Michael J.

    2016-07-01

    A mechanistic framework for quantitatively mapping the regional drivers of air-sea CO2 fluxes at a global scale is developed. The framework evaluates the interplay between (1) surface heat and freshwater fluxes that influence the potential saturated carbon concentration, which depends on changes in sea surface temperature, salinity and alkalinity, (2) a residual, disequilibrium flux influenced by upwelling and entrainment of remineralized carbon- and nutrient-rich waters from the ocean interior, as well as rapid subduction of surface waters, (3) carbon uptake and export by biological activity as both soft tissue and carbonate, and (4) the effect on surface carbon concentrations due to freshwater precipitation or evaporation. In a steady state simulation of a coarse-resolution ocean circulation and biogeochemistry model, the sum of the individually determined components is close to the known total flux of the simulation. The leading order balance, identified in different dynamical regimes, is between the CO2 fluxes driven by surface heat fluxes and a combination of biologically driven carbon uptake and disequilibrium-driven carbon outgassing. The framework is still able to reconstruct simulated fluxes when evaluated using monthly averaged data and takes a form that can be applied consistently in models of different complexity and observations of the ocean. In this way, the framework may reveal differences in the balance of drivers acting across an ensemble of climate model simulations or be applied to an analysis and interpretation of the observed, real-world air-sea flux of CO2.

  8. The ROSAT Brightest Cluster Sample - I. The compilation of the sample and the cluster log N-log S distribution

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Edge, A. C.; Bohringer, H.; Allen, S. W.; Crawford, C. S.; Fabian, A. C.; Voges, W.; Huchra, J. P.

    1998-12-01

    We present a 90 per cent flux-complete sample of the 201 X-ray-brightest clusters of galaxies in the northern hemisphere (delta>=0 deg), at high Galactic latitudes (|b|>=20 deg), with measured redshifts z<=0.3 and fluxes higher than 4.4x10^-12 erg cm^-2 s^-1 in the 0.1-2.4 keV band. The sample, called the ROSAT Brightest Cluster Sample (BCS), is selected from ROSAT All-Sky Survey data and is the largest X-ray-selected cluster sample compiled to date. In addition to Abell clusters, which form the bulk of the sample, the BCS also contains the X-ray-brightest Zwicky clusters and other clusters selected from their X-ray properties alone. Effort has been made to ensure the highest possible completeness of the sample and the smallest possible contamination by non-cluster X-ray sources. X-ray fluxes are computed using an algorithm tailored for the detection and characterization of X-ray emission from galaxy clusters. These fluxes are accurate to better than 15 per cent (mean 1sigma error). We find the cumulative logN-logS distribution of clusters to follow a power law kappa S^alpha with alpha=1.31^+0.06_-0.03 (errors are the 10th and 90th percentiles) down to fluxes of 2x10^-12 erg cm^-2 s^-1, i.e. considerably below the BCS flux limit. Although our best-fitting slope disagrees formally with the canonical value of -1.5 for a Euclidean distribution, the BCS logN-logS distribution is consistent with a non-evolving cluster population if cosmological effects are taken into account. Our sample will allow us to examine large-scale structure in the northern hemisphere, determine the spatial cluster-cluster correlation function, investigate correlations between the X-ray and optical properties of the clusters, establish the X-ray luminosity function for galaxy clusters, and discuss the implications of the results for cluster evolution.

  9. SMM observations of gamma-ray transients. 2: A search for gamma-ray lines between 400 and 600 keV from the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Harris, Michael J.; Share, Gerald H.; Leising, Mark D.

    1994-01-01

    We have search spectra obtained by the Solar Maximum Mission Gamma-Ray Spectrometer during 1981-1988 for evidence of transient gamma-ray lines from the Crab Nebula which have been reported by previous experiments at energies 400-460 keV and 539 keV. We find no evidence for significant emission in any of these lines on time scales between aproximately 1 day and approximately 1 yr. Our 3 sigma upper limits on the transient flux during 1 d intervals are approximately equal to 2.2 x 10(exp -3) photons/sq cm/s for narrow lines at any energy, and approximately equal to 2.9 x 10(exp -3) photons/sq cm/s for the 539 keV line if it is as broad as 42 keV Full Width at Half Maximum (FWHM). We also searched our data during the approximately 5 hr period on 1981 June 6 during which Owens, Myers, & Thompson (1985) reported a strong line at 405 keV. We detected no line down to a 3 upper sigma limit of 3.3 x 10(exp -3) photons/sq cm/s in disagreement with the flux 7.2 +/- 2.1 x 10(exp -3) photos/sq cm/s measured by Owens et al.

  10. Chemical vapor deposited monolayer MoS2 top-gate MOSFET with atomic-layer-deposited ZrO2 as gate dielectric

    NASA Astrophysics Data System (ADS)

    Hu, Yaoqiao; Jiang, Huaxing; Lau, Kei May; Li, Qiang

    2018-04-01

    For the first time, ZrO2 dielectric deposition on pristine monolayer MoS2 by atomic layer deposition (ALD) is demonstrated and ZrO2/MoS2 top-gate MOSFETs have been fabricated. ALD ZrO2 overcoat, like other high-k oxides such as HfO2 and Al2O3, was shown to enhance the MoS2 channel mobility. As a result, an on/off current ratio of over 107, a subthreshold slope of 276 mV dec-1, and a field-effect electron mobility of 12.1 cm2 V-1 s-1 have been achieved. The maximum drain current of the MOSFET with a top-gate length of 4 μm and a source/drain spacing of 9 μm is measured to be 1.4 μA μm-1 at V DS = 5 V. The gate leakage current is below 10-2 A cm-2 under a gate bias of 10 V. A high dielectric breakdown field of 4.9 MV cm-1 is obtained. Gate hysteresis and frequency-dependent capacitance-voltage measurements were also performed to characterize the ZrO2/MoS2 interface quality, which yielded an interface state density of ˜3 × 1012 cm-2 eV-1.

  11. The Rovibrational Intensities of Five Absorption Bands of (12)C(16)O2 Between 5218 and 5349/cm

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Brown, Linda R.; Chackerian, Charles, Jr.; Freedman, Richard S.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Absolute line intensities, band intensities, and Herman-Wallis parameters were measured for the (01(sup 1)2)(sub I) from (00(sup 0)0)(sub I) perpendicular band of (12)C(16)O2 centered at 5315/cm, along with the three nearby associated hot bands: (10(sup 0)2)(sub II) from (01(sup 1)0)(sub I) at 5248/cm, (02(sup 2))(sub I) from (01(sup 1)0)(sub I) at 5291/cm, and (10(sup 0)2)(sub I) from (01(sup 1)0)(sub I) at 5349/cm. The nearby parallel hot band (30(sup 0))(sub I) from (10(sup 0)0)(sub II) at 5218/cm was also included in this study.

  12. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    NASA Astrophysics Data System (ADS)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2003-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p < 0.001), but different models were required for each drainage class × aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  13. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    NASA Astrophysics Data System (ADS)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2002-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p < 0.001), but different models were required for each drainage class × aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  14. Field evaluation of open and closed-path CO2 flux systems over asphalt surface

    NASA Astrophysics Data System (ADS)

    Bogoev, I.; Santos, E.

    2016-12-01

    Eddy covariance (EC) is a widely used method for quantifying surface fluxes of heat, water vapor and carbon dioxide between ecosystems and the atmosphere. A typical EC system consists of an ultrasonic anemometer measuring the 3D wind vector and a fast-response infrared gas analyzer for sensing the water vapor and CO2 density in the air. When using an open-path analyzer that detects the constituent's density in situ a correction for concurrent air temperature and humidity fluctuations must be applied, Webb et al. (1980). In environments with small magnitudes of CO2 flux (<5µmol m-2 s-1) and in the presence of high sensible heat flux, like wintertime over boreal forest, open-path flux measurements have been challenging since the magnitude of the density corrections are as large as the uncorrected CO2 flux itself. A new technology merging the sensing paths of the gas analyzer and the sonic anemometer has been recently developed. This new integrated instrument allows a direct measurement of CO2 mixing ratio in the open air and has the potential to improve the quality of the temperature related density corrections by synchronously measuring the sensible heat flux in the optical path of the gas analyzer. We evaluate the performance and the accuracy of this new sensor over a large parking lot with an asphalt surface where the CO2 fluxes are considered low and the interfering sensible heat fluxes are above 200 Wm-2. A co-located closed-path EC system is used as a reference measurement to examine any systematic biases and apparent CO2 uptake observed with open-path sensors under high sensible heat flux regimes. Half-hour mean and variance of CO2 and water vapor concentrations are evaluated. The relative spectral responses, covariances and corrected turbulent fluxes using a common sonic anemometer are analyzed. The influence of sensor separation and frequency response attenuation on the density corrections is discussed.

  15. Controls on the fore-arc CO2 flux along the Central America margin

    NASA Astrophysics Data System (ADS)

    Hilton, D. R.; Barry, P. H.; Ramirez, C. J.; Kulongoski, J. T.; Patel, B. S.; Virrueta, C.; Blackmon, K.

    2015-12-01

    The subduction of carbon to the deep mantle via subduction zones is interrupted by outputs via the fore-arc, volcanic front, and back-arc regions. Whereas output fluxes for arc and back-arc locales are well constrained for the Central America Volcanic Arc (CAVA) [1-2], the fore-arc flux via cold seeps and ground waters is poorly known. We present new He and CO2 data (isotopes and relative abundances) for the volcanic front and inner fore-arc of western Panama to complement on-going studies of fore-arc C-fluxes in Costa Rica [3-4] and to determine tectonic controls on the fore-arc C-outgassing fluxes. Helium isotope (3He/4He) values at Baru, La Yeguada, and El Valle volcanoes are high (5-8RA), consistent with results for other Central America volcanoes. However, CO2/3He values are variable (from > 1012 to < 108). Baru has an arc-like δ13C of - 4‰, whereas the other volcanoes have δ13C < -10 ‰. Cold seeps collected in the coastal fore-arc of Panama show a trend of decreasing He-isotopes from west (~6RA) to east (~1RA). This trend is mirrored by δ13C (-5‰ to <-20‰) values. CO2/3He values of the seeps are also variable and fall between 106 and 1012. Using CO2/3He-δ13C mixing plots with conventional endmember values for Limestone, Organic Sediment and Mantle CO2, we show that several Panama samples have been extensively modified by crustal processes. Nevertheless, there are clear west-to east trends (both volcanoes and coastal seeps), whereby L dominates the CO2 inventory in the west, similar to Costa Rica, and S-derived CO2 increases eastward towards central Panama. Previously [4], we limited the Costa Rica subaerial fore-arc flux to ~ 6 × 107 gCkm-1yr-1, or ~ 4% of the total incoming sedimentary C-load. This flux diminishes to zero within ~400 km to the east of Baru volcano. The transition from orthogonal subduction of the Cocos Plate to oblique subduction of the Nazca Plate, relative to the common over-riding Caribbean Plate, is the major impediment to

  16. Annual dynamics of N2O, CH4 and CO2 fluxes from the agricultural irrigation watersheds in southeast China

    NASA Astrophysics Data System (ADS)

    Wu, S.; Zou, J.; Liu, S.; Chen, J.; Kong, D.; Geng, Y.

    2017-12-01

    Agricultural irrigation watershed covers a large area in southeast of China and is a potentially important source of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). However, the flux magnitudes contribution to the overall catchment greenhouse gas (GHGs) fluxes and their drivers of seasonal variability are limited in agricultural irrigation watersheds. An in-situ observation was performed to measure annual CO2, CH4 and N2O fluxes from an agricultural irrigation watershed in southeast of China from September 2014 to September 2016. GHGs fluxes were measured using floating chambers and a gas exchange model was also used to predict CH4 and N2O fluxes. All GHGs showed varied seasonally with highest fluxes in early summer (July) and lowest in winter. Estimated seasonal CH4-C fluxes (11.5-97.6 mg m-2 hr-1) and N2O-N fluxes (2.8-80.8μg m-2 hr-1) were in relative agreement with measured CH4-C fluxes (0.05-74.9mg m-2 hr-1) and N2O-N fluxes (3.9-68.7μg m-2 hr-1) fluxes using floating chambers. Both CH4 and N2O fluxes were positively related to water temperature. The CH4 fluxes were negatively related to water dissolved oxygen (DO) concentration but positively related to sediment dissolved organic carbon (DOC). The N2O fluxes were positively related to water NH4+ and NO3-. The calculated EF5-r value in this study (mean = 0.0016; range = 0.0013-0.0018) was below the current IPCC (2006) default value of 0.0025. This implied that IPCC methodology may over estimates of N2O emissions associated with nitrogen leaching and runoff from agriculture.

  17. Scaling up carbonyl sulfide (COS) fluxes from leaf and soil to the canopy

    NASA Astrophysics Data System (ADS)

    Yang, Fulin; Yakir, Dan

    2016-04-01

    Carbonyl sulfide (COS) with atmospheric concentrations around 500 ppt is an analog of CO2 which can potentially serve as powerful and much needed tracer of photosynthetic CO2 uptake, and global gross primary production (GPP). However, questions remain regarding the application of this approach due to uncertainties in the contributions of different ecosystem components to the canopy scale fluxes of COS. We used laser quantum cascade spectroscopy in combination with soil and branch chambers, and eddy covariance measurements of net ecosystem exchange fluxes of COS and CO2 (NEE) in citrus orchard during the driest summer month to test our ability to integrate the chamber measurements into the ecosystem fluxes. The results indicated that: 1) Soil fluxes showed clear gradient from continuous uptake under the trees in wet soil of up to -4 pmol m-2s-1 (CO2 emission of ~0.5 umol m-2s-1) to emission in dry hot and exposed soil between rows of trees of up to +3 pmol m-2s-1 (CO2 emission of ~11 umol m-2s-1). In all cases a clear correlation between fluxes and soil temperature was observed. 2) At the leaf scale, midday uptake was ~5.5 pmol m-2s-1 (CO2 uptake of ~1.8 umol m-2s-1). Some nighttime COS uptake was observed in the citrus leaves consistent with nocturnal leaf stomatal conductance. Leaf relative uptake (LRU) of COS vs. CO2 was not constant over the diurnal cycle, but showed exponential correlation with photosynthetically active radiation (PAR) during the daytime. 3) At the canopy scale mid-day summer flux reached -12.0 pmol m-2s-1 (NEE ~6 umol m-2s-1) with the diurnal patterns of COS fluxes following those of CO2 fluxes during the daytime, but with small COS uptake fluxes maintained also during the night when significant CO2 emission fluxes were observed. The canopy-scale fluxes always indicated COS uptake, irrespective of the soil emission effects. GPP estimates were consistent with conventional indirect estimates based on NEE and nocturnal measurements. Scaling up

  18. Homozygosity and linkage-disequilibrium mapping of the syndrome of congenital hypoparathyroidism, growth and mental retardation, and dysmorphism to a 1-cM interval on chromosome 1q42-43.

    PubMed

    Parvari, R; Hershkovitz, E; Kanis, A; Gorodischer, R; Shalitin, S; Sheffield, V C; Carmi, R

    1998-07-01

    The syndrome of hypoparathyroidism associated with growth retardation, developmental delay, and dysmorphism (HRD) is a newly described, autosomal recessive, congenital disorder with severe, often fatal consequences. Since the syndrome is very rare, with all parents of affected individuals being consanguineous, it is presumed to be caused by homozygous inheritance of a single recessive mutation from a common ancestor. To localize the HRD gene, we performed a genomewide screen using DNA pooling and homozygosity mapping for apparently unlinked kindreds. Analysis of a panel of 359 highly polymorphic markers revealed linkage to D1S235. The maximum LOD score obtained was 4.11 at a recombination fraction of 0. Analysis of three additional markers-GGAA6F06, D1S2678, and D1S179-in a 2-cM interval around D1S235 resulted in LOD scores >3. Analysis of additional chromosome 1 markers revealed evidence of genetic linkage disequilibrium and place the HRD locus within an approximately 1-cM interval defined by D1S1540 and D1S2678 on chromosome 1q42-43.

  19. [O3 dry deposition flux observation and soil resistance modeling over a bare soil in Nanjing area in autumn].

    PubMed

    Huang, Ji Qing; Zheng, You Fei; Xu, Jing Xin; Zhao, Hui; Yuan, Yue; Chu, Zhong Fang

    2016-10-01

    In this study, the concentration of O 3 and its deposition flux over a bare soil in Nanjing in autumn were observed by using an eddy covariance system with rapid ozone analyzer. We analyzed the correlation of ozone concentration, deposition flux, and meteorological conditions in order to explore the characteristics of the variations in ozone deposition flux and deposition velocity. We also compared flux and velocity by using modeled soil resistance with observations. The results showed that the diurnal variation of ozone concentration exhibited a single peak distribution, and it increased due to radiation enhancement from September 25th to October 28th, 2015. Ozone deposition flux over a bare soil in autumn was mainly affected by its concentration, with diurnal average values varying from -31.4 to -156.8 ng·s -1 ·m -2 (the negative sign indicated that the deposition direction was toward the ground). As a result of non-vegetation over a bare soil, the ozone deposition flux was significantly influenced by environmental factors. Diurnal average of deposition velocities varied in the range of 0.09-0.30 cm·s -1 . The turbulence exchange played a major role in the atmosphere transportation of ozone, and underlying surface condition was particularly important to O 3 dry deposition over the bare soil. Soil resistance (R s ) increased exponentially with air relative humidity (RH), and the equation was R s =89.981e 0.0246 RH . The parameterized ozone deposition velocities and fluxes were in good agreement with the measured values.

  20. Thermal management of high heat flux electronic components in space and aircraft systems, phase 1

    NASA Astrophysics Data System (ADS)

    Iversen, Arthur H.

    1991-03-01

    The objectives of this Phase 1 program were to analyze, design, construct and demonstrate the application of curved surface cooling to power devices with the goal of demonstrating greater than 200 W/sq cm chip dissipation while maintaining junction temperatures within specification. Major components of the experiment comprised the test fixture for mounting the device under test and the cooling loop equipment and instrumentation. The work conducted in this Phase 1 study was to establish the basic parameters for the design of an entire class of efficient, compact, lightweight and cost competitive power conversion/conditioning systems for space, aircraft and general DOD requirements. This has been accomplished. Chip power dissipation of greater than 400 W/sq cm was demonstrated, and a general packaging and the thermal management design has been devised to meet the above requirements. The power limit reached was dictated by the junction temperature and not power dissipation, i.e., critical heat flux. The key to the packaging design is a basic construction concept that provides low junction to fluid thermal resistance. High heat flux dissipation without low thermal resistance is useless because excessive junction temperatures will results.

  1. Heat deposition analysis for the High Flux Isotope Reactor’s HEU and LEU core models

    DOE PAGES

    Davidson, Eva E.; Betzler, Benjamin R.; Chandler, David; ...

    2017-08-01

    The High Flux Isotope Reactor at Oak Ridge National Laboratory is an 85 MW th pressurized light-water-cooled and -moderated flux-trap type research reactor. The reactor is used to conduct numerous experiments, advancing various scientific and engineering disciplines. As part of an ongoing program sponsored by the US Department of Energy National Nuclear Security Administration Office of Material Management and Minimization, studies are being performed to assess the feasibility of converting the reactor’s highly enriched uranium fuel to low-enriched uranium fuel. To support this conversion project, reference models with representative experiment target loading and explicit fuel plate representation were developed andmore » benchmarked for both fuels to (1) allow for consistent comparison between designs for both fuel types and (2) assess the potential impact of low-enriched uranium conversion. These high-fidelity models were used to conduct heat deposition analyses at the beginning and end of the reactor cycle and are presented herein. This article (1) discusses the High Flux Isotope Reactor models developed to facilitate detailed heat deposition analyses of the reactor’s highly enriched and low-enriched uranium cores, (2) examines the computational approach for performing heat deposition analysis, which includes a discussion on the methodology for calculating the amount of energy released per fission, heating rates, power and volumetric heating rates, and (3) provides results calculated throughout various regions of the highly enriched and low-enriched uranium core at the beginning and end of the reactor cycle. These are the first detailed high-fidelity heat deposition analyses for the High Flux Isotope Reactor’s highly enriched and low-enriched core models with explicit fuel plate representation. Lastly, these analyses are used to compare heat distributions obtained for both fuel designs at the beginning and end of the reactor cycle, and they are essential

  2. Evaporation Rates of Chemical Warfare Agents Measured Using 5 CM Wind Tunnels. 2. Munitions Grade Sulfur Mustard From Sand

    DTIC Science & Technology

    2009-07-01

    micropores and the pH of 0.1 g sand in 2 mL water, measured after 24 hr using pH paper, was 6. The measured bulk and tapped densities of the sand...o oasr^^roryrgQcor-»infO KNceend’-ojnrS^’u:* ^ t\\i kO N © co uS oS - <- eg CM M (M n eft ^ eg ni r»i s rt...O cn o o 2 eft — cn co in ^ ^ iri — 3 *- t- — n vt rt CD £ 2 9 a H d a -i --’ p | E •i = ° 2r ^ A

  3. Phosphorous doped p-type MoS2 polycrystalline thin films via direct sulfurization of Mo film

    NASA Astrophysics Data System (ADS)

    Momose, Tomohiro; Nakamura, Atsushi; Daniel, Moraru; Shimomura, Masaru

    2018-02-01

    We report on the successful synthesis of a p-type, substitutional doping at S-site, MoS2 thin film using Phosphorous (P) as the dopant. MoS2 thin films were directly sulfurized for molybdenum films by chemical vapor deposition technique. Undoped MoS2 film showed n-type behavior and P doped samples showed p-type behavior by Hall-effect measurements in a van der Pauw (vdP) configuration of 10×10 mm2 area samples and showed ohmic behavior between the silver paste contacts. The donor and the acceptor concentration were detected to be ˜2.6×1015 cm-3 and ˜1.0×1019 cm-3, respectively. Hall-effect mobility was 61.7 cm2V-1s-1 for undoped and varied in the range of 15.5 ˜ 0.5 cm2V-1s-1 with P supply rate. However, the performance of field-effect transistors (FETs) declined by double Schottky barrier contacts where the region between Ni electrodes on the source/drain contact and the MoS2 back-gate cannot be depleted and behaves as a 3D material when used in transistor geometry, resulting in poor on/off ratio. Nevertheless, the FETs exhibit hole transport and the field-effect mobility showed values as high as the Hall-effect mobility, 76 cm2V-1s-1 in undoped MoS2 with p-type behavior and 43 cm2V-1s-1 for MoS2:P. Our findings provide important insights into the doping constraints for transition metal dichalcogenides.

  4. Room-temperature mobility above 2200 cm{sup 2}/V·s of two-dimensional electron gas in a sharp-interface AlGaN/GaN heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jr-Tai, E-mail: jrche@ifm.liu.se; Persson, Ingemar; Nilsson, Daniel

    A high mobility of 2250 cm{sup 2}/V·s of a two-dimensional electron gas (2DEG) in a metalorganic chemical vapor deposition-grown AlGaN/GaN heterostructure was demonstrated. The mobility enhancement was a result of better electron confinement due to a sharp AlGaN/GaN interface, as confirmed by scanning transmission electron microscopy analysis, not owing to the formation of a traditional thin AlN exclusion layer. Moreover, we found that the electron mobility in the sharp-interface heterostructures can sustain above 2000 cm{sup 2}/V·s for a wide range of 2DEG densities. Finally, it is promising that the sharp-interface AlGaN/GaN heterostructure would enable low contact resistance fabrication, less impurity-related scattering, andmore » trapping than the AlGaN/AlN/GaN heterostructure, as the high-impurity-contained AlN is removed.« less

  5. Ectopic Expression of Pumpkin NAC Transcription Factor CmNAC1 Improves Multiple Abiotic Stress Tolerance in Arabidopsis

    PubMed Central

    Cao, Haishun; Wang, Li; Nawaz, Muhammad A.; Niu, Mengliang; Sun, Jingyu; Xie, Junjun; Kong, Qiusheng; Huang, Yuan; Cheng, Fei; Bie, Zhilong

    2017-01-01

    Drought, cold and salinity are the major environmental stresses that limit agricultural productivity. NAC transcription factors regulate the stress response in plants. Pumpkin (Cucurbita moschata) is an important cucurbit vegetable crop and it has strong resistance to abiotic stress; however, the biological functions of stress-related NAC genes in this crop are largely unknown. This study reports the function of CmNAC1, a stress-responsive pumpkin NAC domain protein. The CmNAC1-GFP fusion protein was transiently expressed in tobacco leaves for subcellular localization analysis, and we found that CmNAC1 is localized in the nucleus. Transactivation assay in yeast cells revealed that CmNAC1 functions as a transcription activator, and its transactivation domain is located in the C-terminus. CmNAC1 was ubiquitously expressed in different organs, and its transcript was induced by salinity, cold, dehydration, H2O2, and abscisic acid (ABA) treatment. Furthermore, the ectopic expression (EE) of CmNAC1 in Arabidopsis led to ABA hypersensitivity and enhanced tolerance to salinity, drought and cold stress. In addition, five ABA-responsive elements were enriched in CmNAC1 promoter. The CmNAC1-EE plants exhibited different root architecture, leaf morphology, and significantly high concentration of ABA compared with WT Arabidopsis under normal conditions. Our results indicated that CmNAC1 is a critical factor in ABA signaling pathways and it can be utilized in transgenic breeding to improve the abiotic stress tolerance of crops. PMID:29234347

  6. Constraints on particle acceleration in SS433/W50 from MAGIC and H.E.S.S. observations

    NASA Astrophysics Data System (ADS)

    MAGIC Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; de Oña Wilhelmi, E.; di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Griffiths, S.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Oramas, A.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Munar-Adrover, P.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zarić, D.; H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Safi-Harb, S.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zywucka, N.

    2018-04-01

    Context. The large jet kinetic power and non-thermal processes occurring in the microquasar SS 433 make this source a good candidate for a very high-energy (VHE) gamma-ray emitter. Gamma-ray fluxes above the sensitivity limits of current Cherenkov telescopes have been predicted for both the central X-ray binary system and the interaction regions of SS 433 jets with the surrounding W50 nebula. Non-thermal emission at lower energies has been previously reported, indicating that efficient particle acceleration is taking place in the system. Aim. We explore the capability of SS 433 to emit VHE gamma rays during periods in which the expected flux attenuation due to periodic eclipses (Porb 13.1 days) and precession of the circumstellar disk (Ppre 162 days) periodically covering the central binary system is expected to be at its minimum. The eastern and western SS 433/W50 interaction regions are also examined using the whole data set available. We aim to constrain some theoretical models previously developed for this system with our observations. Methods: We made use of dedicated observations from the Major Atmospheric Gamma Imaging Cherenkov telescopes (MAGIC) and High Energy Spectroscopic System (H.E.S.S.) of SS 433 taken from 2006 to 2011. These observation were combined for the first time and accounted for a total effective observation time of 16.5 h, which were scheduled considering the expected phases of minimum absorption of the putative VHE emission. Gamma-ray attenuation does not affect the jet/medium interaction regions. In this case, the analysis of a larger data set amounting to 40-80 h, depending on the region, was employed. Results: No evidence of VHE gamma-ray emission either from the central binary system or from the eastern/western interaction regions was found. Upper limits were computed for the combined data set. Differential fluxes from the central system are found to be ≲ 10-12-10-13 TeV-1 cm-2 s-1 in an energy interval ranging from few × 100 Ge

  7. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer

    Margaret Torn

    2015-01-14

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  8. Effect of Zn/Sn molar ratio on the microstructural and optical properties of Cu2Zn1-xSnxS4 thin films prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Thiruvenkadam, S.; Prabhakaran, S.; Sujay Chakravarty; Ganesan, V.; Vasant Sathe; Santhosh Kumar, M. C.; Leo Rajesh, A.

    2018-03-01

    Quaternary kesterite Cu2ZnSnS4 (CZTS) compound is one of the most promising semiconductor materials consisting of abundant and eco-friendly elements for absorption layer in thin film solar cells. The effect of Zn/Sn ratio on Cu2Zn1-xSnxS4 (0 ≤ x ≤ 1) thin films were studied by deposited by varying molar volumes in the precursor solution of zinc and tin was carried out in proportion of (1-x) and x respectively onto soda lime glass substrates kept at 573 K by using chemical spray pyrolysis technique. The GIXRD pattern revealed that the films having composites of Cu2ZnSnS4, Cu2SnS3, Sn2S3, CuS and ZnS phases. The crystallinity and grain size were found to increase by increasing the x value and the preferential orientation along (103), (112), (108) and (111) direction corresponding to CZTS, Cu2SnS3, CuS, and ZnS phases respectively. Micro-Raman spectra exposed a prominent peak at 332 cm-1 corresponding to the CZTS phase. Atomic force microscopy was employed to study the grain size and roughness of the deposited thin films. The optical band gap was found to lie between 1.45 and 2.25 eV and average optical absorption coefficient was found to be greater than 105 cm-1. Hall measurements exhibited that all the deposited Cu2Zn1-xSnxS4 films were p type and the resistivity lies between 10.9 ×10-2Ωcm and 149.6 × 10-2Ωcm .

  9. Impact of Different Correlations on TRACEv4.160 Predicted Critical Heat Flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasiulevicius, A.; Macian-Juan, R.

    2006-07-01

    This paper presents an independent assessment of the Critical Heat Flux (CHF) models implemented in TRACEv4.160 with data from the experiments carried out at the Royal Institute of Technology (RIT) in Stockholm, Sweden, with single vertical uniformly heated 7.0 m long tubes. In previous CHF assessment studies with TRACE, it was noted that, although the overall code predictions in long single tubes with inner diameters of 1.0 to 2.49 cm agreed rather well with the results of experiments (with r.m.s. error being 25.6%), several regions of pressure and coolant mass flux could be identified, in which the code strongly under-predictsmore » or over-predicts the CHF. In order to evaluate the possibility of improving the code performance, some of the most widely used and assessed CHF correlations were additionally implemented in TRACEv4.160, namely Bowring, Levitan - Lantsman, and Tong-W3. The results obtained for the CHF predictions in single tubes with uniform axial heat flux by using these correlations, were compared to the results produced with the standard TRACE correlations (Biasi and CISE-GE), and with the experimental data from RIT, which covered a broad range of pressures (3-20 MPa) and coolant mass fluxes (500-3000 kg/m{sup 2}s). Several hundreds of experimental points were calculated to cover the parameter range mentioned above for the evaluation of the newly implemented correlations in the TRACEv4.160 code. (author)« less

  10. The WZNW model on PSU(1,1|2)

    NASA Astrophysics Data System (ADS)

    Götz, Gerhard; Quella, Thomas; Schomerus, Volker

    2007-03-01

    According to the work of Berkovits, Vafa and Witten, the non-linear sigma model on the supergroup PSU(1,1|2) is the essential building block for string theory on AdS3 × S3 × T4. Models associated with a non-vanishing value of the RR flux can be obtained through a psu(1,1|2) invariant marginal deformation of the WZNW model on PSU(1,1|2). We take this as a motivation to present a manifestly psu(1,1|2) covariant construction of the model at the Wess-Zumino point, corresponding to a purely NSNS background 3-form flux. At this point the model possesses an enhanced psu with wide hat(1,1|2) current algebra symmetry whose representation theory, including explicit character formulas, is developed systematically in the first part of the paper. The space of vertex operators and a free fermion representation for their correlation functions is our main subject in the second part. Contrary to a widespread claim, bosonic and fermionic fields are necessarily coupled to each other. The interaction changes the supersymmetry transformations, with drastic consequences for the multiplets of localized normalizable states in the model. It is only this fact which allows us to decompose the full state space into multiplets of the global supersymmetry. We analyze these decompositions systematically as a preparation for a forthcoming study of the RR deformation.

  11. Methane flux from Minnesota Peatlands

    NASA Astrophysics Data System (ADS)

    Crill, P. M.; Bartlett, K. B.; Harriss, R. C.; Gorham, E.; Verry, E. S.; Sebacher, D. I.; Madzar, L.; Sanner, W.

    1988-12-01

    Northern (>40°N) wetlands have been suggested as the largest natural source of methane (CH4) to the troposphere. To refine our estimates of source strengths from this region and to investigate climatic controls on the process, fluxes were measured from a variety of Minnesota peatlands during May, June, and August 1986. Sites included forested and unforested ombrotrophic bogs and minerotrophic fens in and near the U.S. Department of Agriculture Marcell Experimental Forest and the Red Lake peatlands. Late spring and summer fluxes ranged from 11 to 866 mg CH4 m-2 d-1, averaging 207 mg CH4 m-2 d-1 overall. At Marcell Forest, forested bogs and fen sites had lower fluxes (averages of 77 ± 21 mg CH4 m-2 d-1 and 142 ± 19 mg CH4 m-2 d-1) than open bogs (average of 294 ± 30 mg CH4 m-2 d-1). In the Red Lake peatland, circumneutral fens, with standing water above the peat surface, produced more methane than acid bog sites in which the water table was beneath the moss surface (325 ± 31 and 102 ± 13 mg CH4 m-2 d-1, respectively). Peat temperature was an important control. Methane flux increased in response to increasing soil temperature. For example, the open bog in the Marcell Forest with the highest CH4 flux exhibited a 74-fold increase in flux over a three-fold increase in temperature. We estimate that the methane flux from all peatlands north of 40° may be on the order of 70 to 90 Tg/yr though estimates of this sort are plagued by uncertainties in the areal extent of peatlands, length of the CH4 producing season, and the spatial and temporal variability of the flux.

  12. Channel size influence on the heat flux density at zero net mass flow in the non-linear transport regime between 1.2 and 2.1 K

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Yuan, S. W. K.; Lee, J. M.; Sun, G. S.

    1987-01-01

    Porous media and narrow ducts of simple shape at zero net mass flow (ZNMF) are used to investigate the influence of pore size on the entropy/heat convection rate at ZNMF. The study is relevant to the development of specific types of phase separators. Previous work on heat transport by convection is extended to porous media without mass loss. The experimental results show the influence of pore size on heat flux for permeabilities between 10 to the -8th and 10 to the -6th sq cm. ZNMF plug data are found to be similar to results obtained for vapor liquid phase separation.

  13. Coupling of N2O and CO2 fluxes from agriculture in Michigan

    NASA Astrophysics Data System (ADS)

    Cui, M.; Tang, J.; Hastings, M. G.; Gelfand, I.; Tao, L.; Sun, K.

    2012-12-01

    CO2 has been known to cause global warming, and N2O is the largest contributor to the greenhouse gas burden of cropping systems in the United States due to application of fertilizer. In our study, fluxes of N2O and CO2 were measured at two maize fields and one reference grassland from Kellogg Biological Station in Southwest Michigan. Here we compared two measuring systems, traditional GC method and LGR/Li-Cor system. Our initial results show that the two measuring systems are consistent (N2O slope=0.96, R2=0.96; and CO2 slope= 1.03, R2=0.86 measuring from the same chamber). Measurements done in pairs of chambers suggest great spatial variations, despite that the chambers were only 0.5 meter apart. The two systems are still comparable by averaging 8 pairs of chambers distributed within one site. Increase of CO2 fluxes were observed the second day after fertilization, but no significant change of N2O fluxes was shown. After artificial rainfall, boosting N2O fluxes and further increase in CO2 fluxes were demonstrated. Our result indicates that precipitation is necessary before a prominent N2O peak. In our LGR/Li-Cor system, CO was also measured from chambers. Interesting CO fluxes were shown in our experiment. Soil, which is usually considered as a CO sink, emits CO in some chambers during our measurement, which is probably related to the nationwide forest fires and lack of precipitation during the period.

  14. Epitaxial growth of lithium fluoride on the (1 1 1) surface of CaF 2

    NASA Astrophysics Data System (ADS)

    Klumpp, St; Dabringhaus, H.

    1999-08-01

    Growth of lithium fluoride by molecular beam epitaxy on the (1 1 1) surface of calcium fluoride crystals was studied by TEM and LEED for crystal temperatures from 400 to 773 K and impinging lithium fluoride fluxes from 3×10 11 to 3×10 14 cm -2 s -1. Growth starts, usually, at the <1 1 0> steps on the (1 1 1) surface of CaF 2. For larger step distances and at later growth stages also growth on the terraces between the steps is found. Preferably, longish, roof-like crystallites are formed, which can be interpreted by growth of LiF(2 0 1¯)[0 1 0] parallel to CaF 2(1 1 1)[ 1¯ 0 1]. To a lesser extent square crystallites, i.e. growth with LiF(0 0 1), and, rarely, three-folded pyramidal crystallites, i.e. growth with LiF(1 1 1) parallel to CaF 2(1 1 1), are observed. While the pyramidal crystallites show strict epitaxial orientation with LiF[ 1¯ 0 1]‖CaF 2[ 1¯ 0 1] and LiF[ 1¯ 0 1]‖CaF 2[1 2¯ 1], only about 80% of the square crystallites exhibit an epitaxial alignment, where LiF[1 0 0]‖CaF 2[ 1¯ 0 1] is preferred to LiF[1 1 0]‖CaF 2[ 1¯ 0 1]. The epitaxial relationships are discussed on the basis of theoretically calculated adsorption positions of the lithium fluoride monomer and dimer on the terrace and at the steps of the CaF 2(1 1 1) surface.

  15. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  16. Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory

    DOE PAGES

    Aab, Alexander

    2015-05-26

    Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array (SD) of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultrahigh energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as wellmore » as for “Earth-skimming” neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins 60°–75° and 75°–90° as well as for upward-going neutrinos, are combined to give a single limit. In addition, the 90% C.L. single-flavor limit to the diffuse flux of ultrahigh energy neutrinos with an E –2 spectrum in the energy range 1.0 × 10 17 eV – 2.5 × 10 19 eV is E 2 νdN ν/dE ν < 6.4 × 10 –9 GeV cm2 s1 sr –1.« less

  17. Decadal trends in regional CO2 fluxes estimated from atmospheric inversions

    NASA Astrophysics Data System (ADS)

    Saeki, T.; Patra, P. K.

    2016-12-01

    Top-down approach (or atmospheric inversion) using atmospheric transport models and CO2 observations are an effective way to optimize surface fluxes at subcontinental scales and monthly time intervals. We used the CCSR/NIES/FRCGC AGCM-based Chemistry Transport Model (JAMSTEC's ACTM) and atmospheric CO2 concentrations at NOAA, CSIRO, JMA, NIES, NIES-MRI sites from Obspack GLOBALVIEW-CO2 data product (2013) for estimating CO2 fluxes for the period of 1990-2011. Carbon fluxes were estimated for 84 partitions (54 lands + 30 oceans) of the globe by using a Bayesian synthesis inversion framework. A priori fluxes are (1) atmosphere-ocean exchange from Takahashi et al. (2009), (2) 3-hourly terrestrial biosphere fluxes (annually balanced) from CASA model, and (3) fossil fuel fluxes from CDIAC global totals and EDGAR4.2 spatial distributions. Four inversion cases have been tested with 1) 21 sites (sites which have real data fraction of 90 % or more for 1989-2012), 2) 21 sites + CONTRAIL data, 3) 66 sites (over 70 % coverage), and 4) 157 sites. As a result of time-dependent inversions, mean total flux (excluding fossil fuel) for the period 1990-2011 is estimated to be -3.09 ±0.16 PgC/yr (mean and standard deviation of the four cases), where land (incl. biomass burning and land use change) and ocean absorb an average rate of -1.80 ±0.18 and -1.29 ±0.08 PgC/yr, respectively. The average global total sink from 1991-2000 to 2001-2010 increases by about 0.5 PgC/yr, mainly due to the increase in northern and tropical land sinks (Africa, Boreal Eurasia, East Asia and Europe), while ocean sinks show no clear trend. Inversion with CONTRAIL data estimates large positive flux anomalies in late 1997 associated with the 1997/98 El-Nino, while inversion without CONTARIL data between Japan and Australia fails to estimate such large anomalies. Acknowledgements. This work is supported by the Environment Research and Technology Development Fund (2-1401) of the Ministry of the Environment

  18. Observations of the Crab Nebula, NGC 4151, Cyg X1 and Cyg X3 at medium gamma ray energies

    NASA Technical Reports Server (NTRS)

    Zanrosso, E. M.; Long, J. L.; Zych, A. D.; Gibbons, R.; White, R. S.; Dayton, B.

    1980-01-01

    The paper analyzes observations of the Crab Nebula, NGC 4151, Cyg X1, and Cyg X3 taken with the UCR gamma ray telescope at a residual atmospheric depth of about 3.5 g/sq cm on a balloon launched from Palestine, Texas, 4.5 GV, 2000 local time LT (0100 UT), on September 29, 1978. The data consists of continuous observations from 0430 LT (0930 UT) on September 30 to 1800 LT (2300 UT) on October 1, 1979. A flux increase is observed at the right ascension of the Crab Nebula within about a 10 min uncertainty of telescope source position determination, eliminating the SAS-2, CG 195+4, and the two COS-B sources in the antigalactic center direction as the origin of the gamma rays. The total flux of gamma rays for the Crab Nebula from 1.2 to 10 MeV is (6.1 + or - 1.5) x 10 to the -3rd photons/sq cm-s, with an upper limit at 10-20 MeV of 7 x 10 to the -5th photons/sq cm-s. Results for the NGC 4151, Cyg X1, and Cyg X3 are also discussed and flux upper limits are given.

  19. Prospective comparative study of miniperc and standard PNL for treatment of 1 to 2 cm size renal stone.

    PubMed

    Mishra, Shashikant; Sharma, Rajan; Garg, Chandrapraksh; Kurien, Abraham; Sabnis, Ravindra; Desai, Mahesh

    2011-09-01

    • To evaluate the results of miniperc vis-à-vis standard PNL in the treatment of stones of 1-2 cm in size. Miniperc may represent a reasonable procedure in patients with nonbulky urolithiasis offering a similar outcome as standard percutaneous nephrolithotomy (PNL) with advantage of reduced morbidity. • 55 procedures including 27 miniperc and 28 standard PNL were performed for renal stones 1-2 cm in size. Pediatric patient, active urinary tract infection, renal malformation, uncorrected coagulopathy and morbid obesity patients were excluded from the study. • The parameters studied were demography, operative time, postoperative analgesic requirement, hemoglobin drop, complications and stone clearance. • Mean tract size was 18.2 ± 2 F (15-20) and 26.8 ± 2 F (24-30), P value <0.0001 in the miniperc and standard PNL, respectively. Holmium LASER and pneumatic lithotripter were the main energy sources used in miniperc and standard PNL, respectively. • Miniperc operative time was longer than that of standard PNL (45.2 ± 12.6 vs 31 ± 16.6 min, P= 0.0008 respectively). • Conversely, there was an advantage of miniperc over standard PNL in terms of a significantly reduced hemoglobin drop (0.8 ± 0.9 vs 1.3 ± 0.4 gram%, P= 0.01), analgesic requirement (55.4 ± 50 vs 70.2 ± 52 mg tramadol, P= 0.29) and hospital stay (3.2 ± 0.8 vs 4.8 ± 0.6 days, P ≤ 0.001), respectively. • Intra- operative conversion of the procedure into a tubeless PNL was significantly more in the miniperc group (P ≤ 0.001). The miniperc and standard PNL group had clearance rates of 96% and 100%, respectively at 1 month follow up. • This study demonstrated significant advantages of the miniperc procedure in terms of reduced bleeding leading to a tubeless procedure and reduced hospital stay. • The stone free rates and the complications were similar in either group. © 2011 THE AUTHORS. BJU INTERNATIONAL © 2011 BJU INTERNATIONAL.

  20. Mechanism of chemical sputtering of graphite under high flux deuterium bombardment

    NASA Astrophysics Data System (ADS)

    Ueda, Y.; Sugai, T.; Ohtsuka, Y.; Nishikawa, M.

    2000-12-01

    Chemical sputtering of graphite materials (isotropic graphite and carbon fiber composite) was studied by irradiation of 5 keV D 3+ beam with a flux up to 4×10 21 m-2 s-1, which is more than one order magnitude higher than previous low flux beam experiments (< 10 20 m-2 s-1) . The chemical sputtering yield was obtained from measurements of the released methane signal with a quadrupole mass analyser. It was found that the methane yield at peak temperatures is almost independent of flux from 5×10 20 to 4×10 21 m-2 s-1. Peak temperatures range between 900 and 1000 K, which is higher than those of the previous low flux experiments (<900 K, <10 20 m-2 s-1) . By comparing our experimental results with calculation results based on Roth's model, the annealing effect of radiation damage to prevent methyl group formation appears to be unimportant.

  1. The Structure and Evolution of a CM2 Regolith: A Three-dimensional Study of Cold Bokkeveld

    NASA Astrophysics Data System (ADS)

    Greenwood, R. C.; Hutchison, R.; Jones, C. G.

    1993-07-01

    The matrices of CM2 chondrites are a complex assemblage of high- and low-temperature components, some of which may have formed in a nebular environment, others by reprocessing in an asteroidal regolith. A necessary first step in identifying the primitive components is to understand the processes by which they were modified following incorporation into their parent bodies. Here we report the results of a textural investigation of Cold Bokkeveld. This work follows an earlier study [1] that had identified a planar fabric within Cold Bokkeveld, defined by the alignment of the long axes of various macroscopic objects. However, on sectioning the meteorite it was realized that it is composed of a more diverse range of lithic material than had been previously recognized. The nature and origin of these lithic fragments have therefore been examined in some detail. Method: To study the structure and fabric of Cold Bokkeveld a single fusion-crusted stone (maximum diameter 8cm) was cut along three directions at right angles and a series of slices removed. The stone was photographed before and after cutting to record the relationships between the slices and to document the major structural features. A polished section from each of the orthogonal cuts was prepared (total area 9 cm^2) and these were photographed using a Hitachi S2500 SEM. Montages of back- scattered electron images (x30 magnification), covering the full area of each section, were assembled. Results: Cold Bokkeveld is an inhomogeneous breccia comprising lithic fragments enclosed in a matrix of comminuted clastic material. Two end-member lithic fragment-types are present, fine- grained dark clasts and lighter-colored, coarse-grained fragments. Dark clasts are up to 1.2 cm diameter and consist predominantly of fine-grained Mg-phyllosilicate-rich material with a variable Fe-Ni sulphide content; coarser-grained, anhedral olivine grains (Fo(sub)98.1-99.5) are sometimes present. Raster- beam analysis of the four largest

  2. Soil nitrate accumulation dominates the nonlinear responses of soil CO2 and CH4 fluxes to multi-level nitrogen addition in a temperate needle-broadleaved mixed forest

    NASA Astrophysics Data System (ADS)

    Fang, Huajun

    2017-04-01

    The responses of soil-atmosphere carbon (C) exchange fluxes to increased atmospheric nitrogen (N) deposition are controversial, leading to great uncertainty in the evaluation on the C sink capacity of global forest ecosystems elicited by anthropogenic N inputs. To date, we hardly knew how much was the critical level of N input for the alteration of the soil C fluxes, and what factors controlled the changes in soil CO2 and CH4 fluxes under N enrichment. Nine levels of urea addition experiment (0, 10, 20, 40, 60, 80, 100, 120, 140 kg N ha-1 yr-1) was conducted in the needle-broadleaved mixed forest in Changbai Mountain, Northeast China. Soil CO2 and CH4 fluxes were monitored weekly using the static chamber and gas chromatograph technique. Environmental variables (soil temperature and moisture in the 0-10 cm depth) and dissolved N (NH4+-N, NO3-N, total dissolved N (TDN), and dissolved organic N (DON)) in the organic layer and the 0-10 cm mineral soil layer were simultaneously measured. High rates of N addition (≥ 60 kg N ha-1 yr-1) significantly increased soil NO3-N contents in the organic layer and the mineral layer by 120%-180% and 56.4%-84.6%, respectively. However, N application did not lead to a significant accumulation of soil NH4+-N contents in the two soil layers except for a few treatments. N addition at a low rate of 10 kg N ha-1 yr-1 significantly promoted soil CO2 emission and CH4 uptake, whereas high rate of N addition (140 kg N ha-1 yr-1) significantly inhibited them. Significant negative relationships were observed between changes in soil CO2 emission and CH4 uptake and changes in soil NO3-N and moisture contents under N enrichment. These results suggest that soil nitrification and NO3-N accumulation could be important regulators of soil CO2 emission and CH4 uptake in the temperate needle-broadleaved mixed forest. The nonlinear responses to exogenous N inputs and the critical levels for the alteration of soil C fluxes should be considered in the

  3. Detection of radio continuum emission from Herbig-Haro objects 1 and 2 and from their central exciting source

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Rodriguez, L. F.; Curiel, S.; Canto, J.; Torrelles, J. M.; Becker, R. H.; Sellgren, K.

    1985-01-01

    The region in Orion containing HH 1 and HH 2 was observed with the VLA at 20, 6, and 2 cm on several occasions from 1981 to 1984. At lower resolution, four continuum sources were detected. Two of these sources coincide positionally with HH 1 and HH 2. At 6 cm and higher resolution, HH 1 is resolved into at least two components. The emission is probably bremsstrahlung originating in the same region where the visible line emission is produced. This is the first detection of radio continuum from classic Herbig-Haro objects. At a position closely centered between HH 1 and HH 2, an object that can be interpreted as the energy source of the system was detected. The central source spectrum is S(nu) of about nu to the alpha power, where alpha = 0.4 + or - 0.2, suggesting a stellar wind. Finally, the fourth radio continuum source coincides positionally with an H2O maser and is probably excited by an independent star. There is evidence of time variability in its radio flux. No emission was detected from the Cohen-Schwartz (1979) star at the 0.1 mJy level.

  4. The XMM-Newton Wide-Field Survey in the COSMOS Field. II. X-Ray Data and the logN-logS Relations

    NASA Astrophysics Data System (ADS)

    Cappelluti, N.; Hasinger, G.; Brusa, M.; Comastri, A.; Zamorani, G.; Böhringer, H.; Brunner, H.; Civano, F.; Finoguenov, A.; Fiore, F.; Gilli, R.; Griffiths, R. E.; Mainieri, V.; Matute, I.; Miyaji, T.; Silverman, J.

    2007-09-01

    We present data analysis and X-ray source counts for the first season of XMM-Newton observations in the COSMOS field. The survey covers ~2 deg2 within the region of sky bounded by 09h57m30ss, 01deg27'30''2, 2-4.5, and 4.5-10 keV energy bands, and 1390 pointlike sources were detected in at least one band. Detailed Monte Carlo simulations were performed to fully test the source-detection method and to derive the sky coverage to be used in the computation of the logN-logS relations. These relations were then derived in the 0.5-2, 2-10, and 5-10 keV energy bands, down to flux limits of 7.2×10-16 ergs cm-2 s-1, 4.0×10-15 ergs cm-2 s-1, and 9.7×10-15 ergs cm-2 s-1, respectively. Thanks to the large number of sources detected in the COSMOS survey, the logN-logS curves are tightly constrained over a range of fluxes which were poorly covered by previous surveys, especially in the 2-10 and 5-10 keV bands. The 0.5-2 and 2-10 keV differential logN-logS relations were fitted with a broken power-law model which revealed a Euclidean slope at the bright end and a flatter slope (α~1.5) at faint fluxes. In the 5-10 keV energy band a single power law provides an acceptable fit to the observed source counts with a slope α~2.4. A comparison with the results of previous surveys shows good agreement in all the energy bands under investigation in the overlapping flux range. We also notice a remarkable agreement between our logN-logS relations and the most recent model of the X-ray background. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; also based on data collected at the Canada-France-Hawaii Telescope operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of

  5. Operation of the ORNL High Particle Flux Helicon Plasma Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.

    2011-12-23

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes {Gamma}{sub p}10{sup 23} m{sup -3} s{sup -1}, and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of {approx}10 MW/m{sup 2}. An rf-based source for PMI research is of interest because high plasma densities are generated with nomore » internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength |B| in the antenna region up to {approx}0.15 T. Maximum densities of 3x10{sup 19} m{sup -3} in He and 2.5x10{sup 19} m{sup -3} in H have been achieved. Radial density profiles have been seen to be dependent on the axial |B| profile.« less

  6. Operation of the ORNL High Particle Flux Helicon Plasma Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulding, Richard Howell; Biewer, Theodore M; Caughman, John B

    2011-01-01

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Gamma(p) > 10(23) M-3 s(-1), and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of similar to 10 MW/m(2). An rf-based source for PMI research is of interest because high plasma densities are generated with no internalmore » electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength vertical bar B vertical bar in the antenna region up to similar to 0.15 T. Maximum densities of 3 x 10(19) M-3 in He and 2.5 x 10(19) m(-3) in H have been achieved. Radial density profiles have been seen to be dependent on the axial vertical bar B vertical bar profile.« less

  7. Photoneutron Flux Measurement via Neutron Activation Analysis in a Radiotherapy Bunker with an 18 MV Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Çeçen, Yiğit; Gülümser, Tuğçe; Yazgan, Çağrı; Dapo, Haris; Üstün, Mahmut; Boztosun, Ismail

    2017-09-01

    In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs). If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n) which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA) using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270°) with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe) detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s) which is compatible with an americium-beryllium (Am-Be) neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.

  8. Termites as a factor of spatial differentiation of CO2 fluxes from the soils of monsoon tropical forests in southern Vietnam

    NASA Astrophysics Data System (ADS)

    Lopes de Gerenyu, V. O.; Anichkin, A. E.; Avilov, V. K.; Kuznetsov, A. N.; Kurganova, I. N.

    2015-02-01

    Annual dynamics of CO2 fluxes from soils and the impact of the living activity of termites on them were studied in plain lagerstroemia semideciduous monsoon tropical forests of southern Vietnam. On the plot populated by Globitermes sulphureus and Odontotermes termites, a detailed study of the spatial heterogeneity of the CO2 emission from the surface of soil and termite mounds was performed in the wet and dry seasons. It was found that the average rate of the CO2 emission from termite mounds was two times and more higher than that from the background soil surface. In the dry season, it comprised 91 ± 7 mg C/m2 per h from the background soil and 196 ± 16 mg C/m2 per h from the termite mounds. In the wet season, the CO2 emission rate was considerably higher and reached 266 ± 40 and 520 ± 39 mg C/m2 per h, respectively. The maximum rates of CO2 fluxes were determined in the wet season in some of the measurement chambers installed on termite mounds; they reached 730-880 mg C/m2 per h. Though termite mounds occupy about 4% of the area of tropical forest ecosystems, the overall effect of termites on the carbon budget was more significant; according to our estimates, it reached up to 10% of the total efflux of CO2 from the soil surface.

  9. Time Series of SO2 Flux from Popocatépetl Volcano by an Ultra-Violet Camera with a Set of Different Band-Pass Filters

    NASA Astrophysics Data System (ADS)

    Schiavo, B.; Stremme, W.; Grutter, M.; Campion, R.; Rivera, C. I.; Inguaggiato, S.

    2017-12-01

    The measurement of SO2flux from active volcanoes are of great importance, for monitoring and hazard of volcanic activity, environmental impact and flux emissions related to changes of magmatic activity. Sulfur dioxide total flux from Popocatépetl volcano was determinad using a ultra-violet camera (or SO2 camera) with different band-pass filter. The flux is obteined from the product of the gas concentration over integrated the plume cross-section (slant column in molec/cm2 or ppm*m) and wind velocity data. Model of plume altitude and wind speed measurement are used to calculate a wind velocity, but a new method of sequential images is widely used in several years for this calculation. Volcanic plume measurements, for a total of about 60 days from from January to March 2017, were collected and utilized to generate the SO2 time series. The importance of monitoring and the time series of volcanic gas emissions is described and proven by many scientific studies. A time series of the Popocatépetl volcano will allow us to detect the volcanic gas as well as anomalies in volcanic processes and help to estimate the average SO2 flux of the volcano. We present a detailed description of the posterior correction of the dilution effect, which occurs due to a simplification of the radiative transfer equation. The correction scheme is especial applicable for long term monitoring from a permanent observation site. Images of volcanic SO2 plumes from the active Popocatépetl volcano in Mexico are presented, showing persistent passive degassing. The measurment are taken from the Altzomoni Atmospheric Observatory (19.12N, -98.65W, 3,985 m.a.s.l.), which forms part of the RUOA (www.ruoa.unam.mx) and NDACC (https://www2.acom.ucar.edu/irwg) networks. It is located north of the crater at 11 km distance. The data to calculate SO2 flux (t/d or kg/s) were recorded with the QSI UV camera and processed using Python scripts.

  10. Homozygosity and linkage-disequilibrium mapping of the syndrome of congenital hypoparathyroidism, growth and mental retardation, and dysmorphism to a 1-cM interval on chromosome 1q42-43.

    PubMed Central

    Parvari, R; Hershkovitz, E; Kanis, A; Gorodischer, R; Shalitin, S; Sheffield, V C; Carmi, R

    1998-01-01

    The syndrome of hypoparathyroidism associated with growth retardation, developmental delay, and dysmorphism (HRD) is a newly described, autosomal recessive, congenital disorder with severe, often fatal consequences. Since the syndrome is very rare, with all parents of affected individuals being consanguineous, it is presumed to be caused by homozygous inheritance of a single recessive mutation from a common ancestor. To localize the HRD gene, we performed a genomewide screen using DNA pooling and homozygosity mapping for apparently unlinked kindreds. Analysis of a panel of 359 highly polymorphic markers revealed linkage to D1S235. The maximum LOD score obtained was 4.11 at a recombination fraction of 0. Analysis of three additional markers-GGAA6F06, D1S2678, and D1S179-in a 2-cM interval around D1S235 resulted in LOD scores >3. Analysis of additional chromosome 1 markers revealed evidence of genetic linkage disequilibrium and place the HRD locus within an approximately 1-cM interval defined by D1S1540 and D1S2678 on chromosome 1q42-43. PMID:9634513

  11. Energy Input Flux in the Global Quiet-Sun Corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mac Cormack, Cecilia; Vásquez, Alberto M.; López Fuentes, Marcelo

    We present first results of a novel technique that provides, for the first time, constraints on the energy input flux at the coronal base ( r ∼ 1.025 R {sub ⊙}) of the quiet Sun at a global scale. By combining differential emission measure tomography of EUV images, with global models of the coronal magnetic field, we estimate the energy input flux at the coronal base that is required to maintain thermodynamically stable structures. The technique is described in detail and first applied to data provided by the Extreme Ultraviolet Imager instrument, on board the Solar TErrestrial RElations Observatory mission,more » and the Atmospheric Imaging Assembly instrument, on board the Solar Dynamics Observatory mission, for two solar rotations with different levels of activity. Our analysis indicates that the typical energy input flux at the coronal base of magnetic loops in the quiet Sun is in the range ∼0.5–2.0 × 10{sup 5} (erg s{sup −1} cm{sup −2}), depending on the structure size and level of activity. A large fraction of this energy input, or even its totality, could be accounted for by Alfvén waves, as shown by recent independent observational estimates derived from determinations of the non-thermal broadening of spectral lines in the coronal base of quiet-Sun regions. This new tomography product will be useful for the validation of coronal heating models in magnetohydrodinamic simulations of the global corona.« less

  12. Turbulent CO2 Flux Measurements by Lidar: Length Scales, Results and Comparison with In-Situ Sensors

    NASA Technical Reports Server (NTRS)

    Gilbert, Fabien; Koch, Grady J.; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Ismail, Syed; Singh, Upendra N.

    2009-01-01

    The vertical CO2 flux in the atmospheric boundary layer (ABL) is investigated with a Doppler differential absorption lidar (DIAL). The instrument was operated next to the WLEF instrumented tall tower in Park Falls, Wisconsin during three days and nights in June 2007. Profiles of turbulent CO2 mixing ratio and vertical velocity fluctuations are measured by in-situ sensors and Doppler DIAL. Time and space scales of turbulence are precisely defined in the ABL. The eddy-covariance method is applied to calculate turbulent CO2 flux both by lidar and in-situ sensors. We show preliminary mean lidar CO2 flux measurements in the ABL with a time and space resolution of 6 h and 1500 m respectively. The flux instrumental errors decrease linearly with the standard deviation of the CO2 data, as expected. Although turbulent fluctuations of CO2 are negligible with respect to the mean (0.1 %), we show that the eddy-covariance method can provide 2-h, 150-m range resolved CO2 flux estimates as long as the CO2 mixing ratio instrumental error is no greater than 10 ppm and the vertical velocity error is lower than the natural fluctuations over a time resolution of 10 s.

  13. Quantitative evaluation of high-energy O- ion particle flux in a DC magnetron sputter plasma with an indium-tin-oxide target

    NASA Astrophysics Data System (ADS)

    Suyama, Taku; Bae, Hansin; Setaka, Kenta; Ogawa, Hayato; Fukuoka, Yushi; Suzuki, Haruka; Toyoda, Hirotaka

    2017-11-01

    O- ion flux from the indium tin oxide (ITO) sputter target under Ar ion bombardment is quantitatively evaluated using a calorimetry method. Using a mass spectrometer with an energy analyzer, O- energy distribution is measured with spatial dependence. Directional high-energy O- ion ejected from the target surface is observed. Using a calorimetry method, localized heat flux originated from high-energy O- ion is measured. From absolute evaluation of the heat flux from O- ion, O- particle flux in order of 1018 m-2 s-1 is evaluated at a distance of 10 cm from the target. Production yield of O- ion on the ITO target by one Ar+ ion impingement at a kinetic energy of 244 eV is estimated to be 3.3  ×  10-3 as the minimum value.

  14. Magnetoresistive Flux Focusing Eddy Current Flaw Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor)

    2005-01-01

    A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil s longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multi-layer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.

  15. A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; He, Xin; Wang, Yiting; Xu, Zedong

    2017-11-01

    In this work, a high-performance asymmetric supercapacitor device based on NiCo2S4/NiS hollow nanospheres as the positive electrode and the porous activated carbon as the negative electrode was successfully fabricated via a facile two-step hydrothermal synthesis approach. This NiCo2S4/NiS//activated carbon asymmetric supercapacitor achieved a high energy density of 43.7 Wh kg-1 at a power density of 160 W kg-1, an encouraging specific capacitance of 123 F g-1 at a current density of 1 mA cm-2, as well as a long-term performance with capacitance degradation of 5.2% after 3000 consecutive cycles at 1 mA cm-2. Moreover, the NiCo2S4/NiS electrode also demonstrated an excellent specific capacitance (1947.5 F g-1 at 3 mA cm-2) and an outstanding cycling stability (retaining 90.3% after 1000 cycles). The remarkable electrochemical performances may be attributed to the effect of NiS doping on NiCo2S4 which could enlarge the surface area and increase the surface roughness.

  16. Eddy-correlation measurements of fluxes of CO 2 and H 2O above a spruce stand

    NASA Astrophysics Data System (ADS)

    Ibrom, A.; Schütz, C.; Tworek, T.; Morgenstern, K.; Oltchev, A.; Falk, M.; Constantin, J.; Gravenhorst, G.

    1996-12-01

    Atmospheric fluxes of CO 2 and H 2O above a mature spruce stand ( Picea abies (L.) Karst.) have been investigated using the eddy- correlation technique. A closed path sensor adapted to the special requirements of long-term studies has been developed and tested. Field measurements have been performed since April 1995. Estimates of fetch showed a very narrow source area dimension under instable stratification (≤ 200 m). Fetch requirements at night are not met in some directions. Energy balance closure was influenced systematically by the wind direction indicating a substantial attenuation of the vertical wind motion by the tower (up to 40 %). Even for optimal flow directions, energy balance closure was about 88%. Intercomparison of the used ultra sonic anemometer (USAT-3) with a GILL - anemometer showed systematically lower values of vertical wind speed fluctuations (13 %). Average CO 2-fluxes ranged between -13 at noon to 3 μ mol m-2, s-1 at night in summer. In November and December the stand released CO 2 on a daily basis. A preliminary estimate of the cumulative net carbon balance over the observed period of 9 months is 4-5 t, Cha-1.

  17. Heat flux microsensor measurements and calibrations

    NASA Technical Reports Server (NTRS)

    Terrell, James P.; Hager, Jon M.; Onishi, Shinzo; Diller, Thomas E.

    1992-01-01

    A new thin-film heat flux gage has been fabricated specifically for severe high temperature operation using platinum and platinum-10 percent rhodium for the thermocouple elements. Radiation calibrations of this gage were performed at the AEDC facility over the available heat flux range (approx. 1.0 - 1,000 W/cu cm). The gage output was linear with heat flux with a slight increase in sensitivity with increasing surface temperature. Survivability of gages was demonstrated in quench tests from 500 C into liquid nitrogen. Successful operation of gages to surface temperatures of 750 C has been achieved. No additional cooling of the gages is required because the gages are always at the same temperature as the substrate material. A video of oxyacetylene flame tests with real-time heat flux and temperature output is available.

  18. Spitzer Mid-to-Far-Infrared Flux Densities of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Papovich, Casey J.; Rudnick, G.; Le Floc'h, E.; van Dokkum, P. G.; Rieke, G. H.; Taylor, E. N.; Armus, L.; Gawiser, E.; Marcillac, D.; Huang, J.; Franx, M.

    2007-05-01

    We study the 24, 70, and 160 μm properties of high-redshift galaxies. Our primary interest is to improve the constraints on the total infrared (IR) luminosities, L(IR), of these galaxies. We combine Spitzer data in the southern Extended Chandra Deep Field with a Ks-band-selected galaxy sample with photometric redshifts from the Multiwavelength Survey by Yale-Chile. We used a stacking analysis to measure the average 70 and 160 μm flux densities of 1.5 < zph < 2.5 galaxies as a function of 24 μm flux density, X-ray activity, and rest-frame near-IR color. Galaxies with 1.5 < zph < 2.5 and S(24) = 54-250 μJy have L(IR) derived from their average 24-160 μm flux densities within factors of 2-3 of those derived from the 24 μm flux densities only. However, L(IR) derived from the average 24-160 μm flux densities for galaxies with S(24) > 250 μJy and 1.5 < zph < 2.5 are lower than those derived using only the 24 μm flux density by factors of 2-6. Galaxies with S(24) > 250 μJy have S(70)/S(24) flux ratios comparable to sources with X-ray detections or red rest-frame IR colors, suggesting that warm dust possibly heated by AGN produces high 24 μm emission. Based on the average 24-160 μm flux densities, 24 μm-selected galaxies at 1.5 < zph < 2.5 have an upper envelope of L(IR) < 6 × 1012 L⊙, which if attributed to star formation corresponds to < 1000 M⊙ yr-1. This envelope is similar to the maximal star formation rate observed in low redshift galaxies, suggesting that high redshift galaxies have star formation efficiencies and feedback processes comparable to lower redshift analogs. Support for this work was provided by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by JPL, Caltech under a contract with NASA.

  19. The carbon dioxide system on the Mississippi River‐dominated continental shelf in the northern Gulf of Mexico: 1. Distribution and air‐sea CO2 flux

    PubMed Central

    Huang, Wei‐Jen; Wang, Yongchen; Lohrenz, Steven E.; Murrell, Michael C.

    2015-01-01

    Abstract River‐dominated continental shelf environments are active sites of air‐sea CO2 exchange. We conducted 13 cruises in the northern Gulf of Mexico, a region strongly influenced by fresh water and nutrients delivered from the Mississippi and Atchafalaya River system. The sea surface partial pressure of carbon dioxide (pCO2) was measured, and the air‐sea CO2 flux was calculated. Results show that CO2 exchange exhibited a distinct seasonality: the study area was a net sink of atmospheric CO2 during spring and early summer, and it was neutral or a weak source of CO2 to the atmosphere during midsummer, fall, and winter. Along the salinity gradient, across the shelf, the sea surface shifted from a source of CO2 in low‐salinity zones (0≤S<17) to a strong CO2 sink in the middle‐to‐high‐salinity zones (17≤S<33), and finally was a near‐neutral state in the high‐salinity areas (33≤S<35) and in the open gulf (S≥35). High pCO2 values were only observed in narrow regions near freshwater sources, and the distribution of undersaturated pCO2 generally reflected the influence of freshwater inputs along the shelf. Systematic analyses of pCO2 variation demonstrated the importance of riverine nitrogen export; that is, riverine nitrogen‐enhanced biological removal, along with mixing processes, dominated pCO2 variation along the salinity gradient. In addition, extreme or unusual weather events were observed to alter the alongshore pCO2 distribution and to affect regional air‐sea CO2 flux estimates. Overall, the study region acted as a net CO2 sink of 0.96 ± 3.7 mol m−2 yr−1 (1.15 ± 4.4 Tg C yr−1). PMID:27656331

  20. CW-cavity ring down spectroscopy of the ozone molecule in the 6220-6400 cm -1 region

    NASA Astrophysics Data System (ADS)

    Barbe, A.; De Backer-Barilly, M.-R.; Tyuterev, Vl. G.; Kassi, S.; Campargue, A.

    2007-11-01

    The absorption spectrum of ozone, 16O 3, has been recorded in the 6220-6400 cm -1 region by high sensitivity CW-cavity ring down spectroscopy ( αmin ˜ 3 × 10 -10 cm -1). 1836 rovibrational transitions have been assigned to the 2 ν2 + 5 ν3, 5 ν1 + ν3 and 2 ν1 + 2 ν2 + 3 ν3 A-type bands centred at 6305, 6355 and 6387 cm -1, respectively. In addition, 99 lines of the very weak ν1 + 2 ν2 + 4 ν3 and 4 ν1 + 3 ν2 B-type bands are identified. The modeling of the observed spectrum in the effective Hamiltonian approach was particularly laborious and complex as several rovibrational interactions of both Coriolis and anaharmonic type were found to be of importance, in particular for the (124) vibrational state. Nevertheless, it has finally been possible to fit the 990 experimentally determined energy levels with an rms deviation of 8.29 × 10 -3 cm -1 and to derive the transition moment parameters allowing a satisfactory reproduction of the observed intensities. As the differences in positions between the final calculations and observations are still larger than the experimental accuracy, we provide the list of all energy levels derived from the observation, in addition to their differences with the calculated ones. These experimental energy levels, with the transition moment parameters were used to generate a line-list of 2451 transitions, reproducing the observed spectrum. This list is given as Supplementary Material.

  1. Coherent quantum control of internal conversion: {S}_{2}\\;\\leftrightarrow \\;{S}_{1} in pyrazine via {S}_{0}\\;\\to \\;{S}_{2}/{S}_{1} weak field excitation

    NASA Astrophysics Data System (ADS)

    Grinev, Timur; Shapiro, Moshe; Brumer, Paul

    2015-09-01

    Coherent control of internal conversion (IC) between the first (S1) and second (S2) singlet excited electronic states in pyrazine, where the S2 state is populated from the ground singlet electronic state S0 by weak field excitation, is examined. Control is implemented by shaping the laser which excites S2. Excitation and IC are considered simultaneously, using the recently introduced resonance-based control approach. Highly successful control is achieved by optimizing both the amplitude and phase profiles of the laser spectrum. The dependence of control on the properties of resonances in S2 is demonstrated.

  2. Ni Foam-Ni3 S2 @Ni(OH)2 -Graphene Sandwich Structure Electrode Materials: Facile Synthesis and High Supercapacitor Performance.

    PubMed

    Wang, Xiaobing; Hu, Jiangjiang; Su, Yichang; Hao, Jin; Liu, Fanggang; Han, Shuang; An, Jian; Lian, Jianshe

    2017-03-23

    A novel Ni foam-Ni 3 S 2 @Ni(OH) 2 -graphene sandwich-structured electrode (NF-NN-G) with high areal mass loading (8.33 mg cm -2 ) has been developed by sulfidation and hydrolysis reactions. The conductivity of Ni 3 S 2 and Ni(OH) 2 were both improved. The upper layer of Ni(OH) 2 , covered with a thin graphene film, is formed in situ from the surface of the lower layer of Ni 3 S 2 , whereas the Ni 3 S 2 grown on Ni foam substrate mainly acts as a rough support bridging the Ni(OH) 2 and Ni foam. The graphene stabilized the Ni(OH) 2 and the electrochemical properties were effectively enhanced. The as-synthesized NF-NN-G-5mg electrode shows a high specific capacitance (2258 F g -1 at 1 A g -1 or 18.81 F cm -2 at 8.33 mA cm -2 ) and an outstanding rate property (1010 F g -1 at 20 Ag -1 or 8.413 F cm -2 at 166.6 mA cm -2 ). This result is around double the capacitance achieved in previous research on Ni 3 S 2 @Ni(OH) 2 /3DGN composites (3DGN=three-dimensional graphene network). In addition, the as-fabricated NF-NN-G-5mg composite electrode has an excellent cycle life with no capacitance loss after 3000 cycles, indicating a potential application as an efficient electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Quenching of I(2P1/2) by NO2, N2O4, and N2O.

    PubMed

    Kabir, Md Humayun; Azyazov, Valeriy N; Heaven, Michael C

    2007-10-11

    Quenching of excited iodine atoms (I(5p5, 2P1/2)) by nitrogen oxides are processes of relevance to discharge-driven oxygen iodine lasers. Rate constants at ambient and elevated temperatures (293-380 K) for quenching of I(2P1/2) atoms by NO2, N2O4, and N2O have been measured using time-resolved I(2P1/2) --> I(2P3/2) 1315 nm emission. The excited atoms were generated by pulsed laser photodissociation of CF3I at 248 nm. The rate constants for I(2P1/2) quenching by NO2 and N2O were found to be independent of temperature over the range examined with average values of (2.9 +/- 0.3) x 10(-15) and (1.4 +/- 0.1) x 10(-15) cm3 s(-1), respectively. The rate constant for quenching of I(2P1/2) by N2O4 was found to be (3.5 +/- 0.5) x 10(-13) cm3 s(-1) at ambient temperature.

  4. 2. SOUTHEAST VIEW OF TRIPPER CAR ON THE FLUX STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SOUTHEAST VIEW OF TRIPPER CAR ON THE FLUX STORAGE FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  5. Transparent 1T-MoS2 nanofilm robustly anchored on substrate by layer-by-layer self-assembly and its ultra-high cycling stability as supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Danqin; Zhou, Weiqiang; Zhou, Qianjie; Ye, Guo; Wang, Tongzhou; Wu, Jing; Chang, Yanan; Xu, Jingkun

    2017-09-01

    Two-dimensional MoS2 materials have attracted more and more interest and been applied to the field of energy storage because of its unique physical, optical, electronic and electrochemical properties. However, there are no reports on high-stable transparent MoS2 nanofilms as supercapacitors electrode. Here, we describe a transparent 1T-MoS2 nanofilm electrode with super-long stability anchored on the indium tin oxide (ITO) glass by a simple alternate layer-by-layer (LBL) self-assembly of a highly charged cationic poly(diallyldimethylammonium chloride) (PDDA) and negative single-/few-layer 1T MoS2 nanosheets. The ITO/(PDDA/MoS2)20 electrode shows a transmittance of 51.6% at 550 nm and obviously exhibits excellent transparency by naked eye observation. Ultrasonic damage test validates that the (PDDA/MoS2)20 film with the average thickness about 50 nm is robustly anchored on ITO substrate. Additionally, the electrochemical results indicate that the ITO/(PDDA/MoS2)20 film shows areal capacitance of 1.1 mF cm-2 and volumetric capacitance of 220 F cm-3 at 0.04 mA cm-2, 130.6% retention of the original capacitance value after 5000 cycles. Further experiments indicate that the formation of transparent (PDDA/MoS2) x nanofilm by LBL self-assembly can be extended to other substrates, e.g., slide glass and flexible polyethylene terephthalate (PET). Thus, the easily available (PDDA/MoS2) x nanofilm electrode has great potential for application in transparent and/or flexible optoelectronic and electronics devices.

  6. Pinning in the flux-line-cutting regime of Bi 2Sr 2Ca 1Cu 2O 8 single crystals at high field

    NASA Astrophysics Data System (ADS)

    D'Anna, G.; André, M.-O.; Indenbom, M. V.; Benoit, W.

    1994-09-01

    Using a low-frequency torsion pendulum we show that in a Bi 2Sr 2Ca 1Cu 2O 8 single crystal the irreversibility line Birr( T) is frequency dependent down to 10 -5 Hz in the high-field regime. The activation energy has a logarithmic field dependence, U0( B)= U∗ 1n( B∗/ B). A microscopic model for flux-line-cutting and pancake collision yields quantitative expressions for U0 and for Birr( T)= B∗ exp(- T/T∗), which reproduce the experimental data very well.

  7. A 1 cm space debris impact onto the Sentinel-1A solar array

    NASA Astrophysics Data System (ADS)

    Krag, H.; Serrano, M.; Braun, V.; Kuchynka, P.; Catania, M.; Siminski, J.; Schimmerohn, M.; Marc, X.; Kuijper, D.; Shurmer, I.; O'Connell, A.; Otten, M.; Muñoz, Isidro; Morales, J.; Wermuth, M.; McKissock, D.

    2017-08-01

    Sentinel-1A is a 2-ton spacecraft of the Copernicus Earth observation program operated by ESA's Space Operations Centre in Darmstadt, Germany. Sentinel-1A and its sister spacecraft Sentinel-1B operate in a sun-synchronous orbit at about 700 km altitude. On 2016/08/23 17:07:37 UTC, Sentinel-1A suffered from an anomaly resulting in a sudden permanent partial power loss and significant impulsive orbit and attitude changes. A deeper investigation identified that an impulsive orbit change against flight direction of 0.7 mm/s, estimated at the time of the event, gave the best results in terms of GPS residuals. At the same time, a peak attitude off-pointing of 0.7° (around the spacecraft yaw axis) and peak attitude rate increase of 0.04°/s (around the same axis) were observed. The simultaneous occurrence of these anomalies, starting from a sudden attitude change and ending with a permanent partial power loss, made an MMOD (Micro-Meteoroid and Orbital Debris) impact onto a solar array a possible explanation for this event. While the spacecraft is able to continue its mission nominally, a detailed investigation involving ESA's Space Debris and Flight Dynamics experts was conducted. An MMOD impact as an explanation gained further credibility, due to the pictures of the solar array taken by the on-board camera displaying a significant damage area. On September 7th, JSpOC (US Joint Space Operations Centre) informed SDO on 8 tracked fragments that are considered to be released by Sentinel-1A after the impact. This paper addresses the analysis that was performed on the data characterising the attitude and orbit change, the on-board camera image, and the tracked fragments. The data helped to identify the linear momentum vector while a flux analysis helped to identify the origin of the impactor and allowed to understand its mass and size characteristics.

  8. Effects of PCB Substrate Surface Finish, Flux, and Phosphorus Content on Ionic Contamination

    NASA Astrophysics Data System (ADS)

    Bacior, M.; Sobczak, N.; Siewiorek, A.; Kudyba, A.; Homa, M.; Nowak, R.; Dziula, M.; Masłoń, S.

    2015-02-01

    The ionic contamination on printed circuit boards (PCB) having different surface finishes was examined using ionograph. The study was performed at the RT on three types of PCBs covered with: (i) hot air solder leveling (HASL LF), (ii) electroless nickel immersion gold (ENIG), and (iii) organic surface protectant (OSP), all on Cu substrates, as well as two types of fluxes, namely EF2202 and RF800. In the group of boards without soldered components, the lowest average value of contamination was for the ENIG 18 µm surface (0.01 μg NaCl/cm2). Boards with soldered components were more contaminated (from 0.29 μg NaCl/cm2 for the HASL LF 18 µm surface). After spraying boards with fluxing agents, the values of contaminants were the highest. The influence of phosphorus content in Ni-P layer of ENIG finish on ionic contamination was examined. In the group of PCBs with Au coating, the smallest amount of surface contaminants (0.32 μg NaCl/cm2) was for Ni-2-5%P layer. PCBs with Ni-11%P layer were higher contaminated (0.47 μg NaCl/cm2), and another with Ni-8%P layer had 0.81 μg NaCl/cm2. PCBs without Au coating, had the lowest contamination (0.48 μg NaCl/cm2) at phosphorous content equal 11%P. Higher contamination (0.67 μg NaCl/cm2) was at 2-5%P, up to 1.98 μg NaCl/cm2 for 8% of P. Boards with Au finish have lower value of contamination than identical boards without Au layer thus contributing to better reliability of electronic assemblies, since its failures due to current leakage and corrosion can be caused by contaminants.

  9. Assessing the applicability of the 1D flux theory to full-scale secondary settling tank design with a 2D hydrodynamic model.

    PubMed

    Ekama, G A; Marais, P

    2004-02-01

    The applicability of the one-dimensional idealized flux theory (1DFT) for the design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated with the two-dimensional computational fluid dynamics model SettlerCAD using as a basis 35 full-scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25-4.1m side water depth (SWD), with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the Watts et al. (Water Res. 30(9)(1996)2112) SST, with doubled SWDs and the Darvill new (4.1m) and old (2.5m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also performed. While the design of the internal features of the SST, such as baffling, has a marked influence on the effluent SS concentration while the SST is underloaded, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST. Until more information is obtained, it would appear from the simulations that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais (Water Pollut. Control 85(1)(1986)101) remains a reasonable value to apply in the design of full-scale SSTs-for deep SSTs (4m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, this be avoided and (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the

  10. Dielectron widths of the Gamma(1S,2S,3S) resonances.

    PubMed

    Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Wiss, J; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Arms, K; Severini, H; Dytman, S A; Love, W; Mehrabyan, S; Savinov, V; Aquines, O; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Blusk, S; Butt, J; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Briere, R A; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E

    2006-03-10

    We determine the dielectron widths of the Gamma(1S), Gamma(2S), and Gamma(3S) resonances with better than 2% precision by integrating the cross section of e+e- -->Gamma over the e+e- center-of-mass energy. Using e+e- energy scans of the Gamma resonances at the Cornell Electron Storage Ring and measuring Gamma production with the CLEO detector, we find dielectron widths of 1.252+/-0.004(sigma(stat))+/-0.019(sigma(syst)) keV, 0.581+/-0.004+/-0.009 keV, and 0.413+/-0.004+/-0.006 keV for the Gamma(1S), Gamma(2S), and Gamma(3S), respectively.

  11. Line Shape Parameters of Water Vapor Transitions in the 3645-3975 cm^{-1} Region

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Gamache, Robert R.; Vispoel, Bastien; Renaud, Candice L.; Smith, Mary Ann H.; Sams, Robert L.; Blake, Thomas A.

    2017-06-01

    A Bruker IFS 120HR Fourier transform spectrometer (FTS) at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington was used to record a series of spectra in the regions of the ν_1 and ν_3 bands of H_2O. The samples included low pressures of pure H_2O as well as H_2O broadened by air at different pressures, temperatures and volume mixing ratios. We fit simultaneously 16 high-resolution (0.008 cm^{-1}), high S/N ratio absorption spectra recorded at 268, 296 and 353 K (L=19.95 cm), employing a multispectrum fitting technique to retrieve accurate line positions, relative intensities, Lorentz air-broadened half-width and pressure-shift coefficients and their temperature dependences for more than 220 H_2O transitions. Self-broadened half-width and self-shift coefficients were measured for over 100 transitions. For select sets of transition pairs for the H_2O-air system we determined collisional line mixing coefficients via the off-diagonal relaxation matrix element formalism, and we also measured speed dependence parameters for 85 transitions. Modified Complex Robert Bonamy (MCRB) calculations of the half-widths, line shifts, and temperature dependences were made for self-, N_2-, O_2-, and air-broadening. The measurements and calculations are compared with each other and with similar parameters reported in the literature. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith, D. Atkins, JQSRT 53 (1995) 705-721. A. Levy, N. Lacome, C. Chackerian, Collisional line mixing, in Spectroscopy of the Earth's Atmosphere and Interstellar Medium, Academic Press, Inc., Boston (1992) 261-337.

  12. Methylation effects in state resolved quenching of highly vibrationally excited azabenzenes (Evib˜38 500 cm-1). I. Collisions with water

    NASA Astrophysics Data System (ADS)

    Elioff, Michael S.; Fang, Maosen; Mullin, Amy S.

    2001-10-01

    To investigate the role of molecular structure in collisions that quench highly vibrationally excited molecules, we have performed state resolved transient infrared absorption studies of energy gain in a number of rotational levels of H2O(000) resulting from collisions of water with vibrationally excited 2-methylpyridine (2-picoline) and 2,6-dimethylpyridine (2,6-lutidine) in a low-pressure gas-phase environment at 298 K. Vibrationally excited methylpyridines were prepared with ˜38 500 cm-1 of internal energy using 266 nm ultraviolet excitation to an S1 electronic state followed by rapid radiationless decay to the S0 electronic state. Collisions that populate rotationally excited states of H2O(000) were investigated with infrared absorption by monitoring the appearance of individual rotational states of H2O(000) with energies between 1000 and 2000 cm-1. Rotational state distributions for recoiling water molecules were characterized by Boltzmann temperatures of Trot=590±90 K for quenching of hot picoline and Trot=490±80 K for lutidine quenching. Doppler-broadened transient absorption line profiles show that the scattered H2O(000) molecules have laboratory-frame translational energy distributions corresponding to Ttrans≈600 K for deactivation of picoline and Ttrans≈590 K for lutidine. Energy transfer rate constant measurements indicate that rotational excitation of H2O(000) with Evib>1000 cm-1 occurs for one in 31 picoline/water collisions and one in 17 lutidine/water collisions. Comparison with earlier quenching studies on pyrazine [M. Fraelich, M. S. Elioff, and A. S. Mullin, J. Phys. Chem. 102, 9761 (1998)] and pyridine [M. S. Elioff, M. Fraelich, R. L. Sansom, and A. S. Mullin, J. Chem. Phys. 111, 3517 (1999)] indicate that, for the same initial internal energy in the hot donor, the extent of rotational excitation in water is diminished as the number of vibrational modes in the donor increases. The energy transfer probability for this pathway exhibits

  13. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices

    NASA Astrophysics Data System (ADS)

    Smithe, Kirby K. H.; English, Chris D.; Suryavanshi, Saurabh V.; Pop, Eric

    2017-03-01

    We demonstrate monolayer (1L) MoS2 grown by chemical vapor deposition (CVD) with transport properties comparable to those of the best exfoliated 1L devices over a wide range of carrier densities (up to ˜1013 cm-2) and temperatures (80-500 K). Transfer length measurements decouple the intrinsic material mobility from the contact resistance, at practical carrier densities (>1012 cm-2). We demonstrate the highest current density reported to date (˜270 μA μm-1 or 44 MA cm-2) at 300 K for an 80 nm long device from CVD-grown 1L MoS2. Using simulations, we discuss what improvements of 1L MoS2 are still required to meet technology roadmap requirements for low power and high performance applications. Such results are an important step towards large-area electronics based on 1L semiconductors.

  14. Observation of the Hadronic transitions chi(b1,2)(2P)-->omegaUpsilon(1S).

    PubMed

    Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Dambasuren, E; Dorjkhaidav, O; Mountain, R; Muramatsu, H; Nandakumar, R; Skwarnicki, T; Stone, S; Wang, J C; Mahmood, A H; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Sun, W M; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Mistry, N B; Patterson, J R; Pedlar, T K; Peterson, D; Pivarski, J; Richichi, S J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Thayer, J G; Urner, D; Wilksen, T; Warburton, A; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stoeck, H; Yelton, J; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Plager, C; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Severini, H; Skubic, P; Dytman, S A; Mueller, J A; Nam, S; Savinov, V; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Danko, I

    2004-06-04

    The CLEO Collaboration has made the first observations of hadronic transitions among bottomonium (bbmacr;) states other than the dipion transitions among Upsilon(nS) states. In our study of Upsilon(3S) decays, we find a significant signal for Upsilon(3S)-->gammaomegaUpsilon(1S) that is consistent with radiative decays Upsilon(3S)-->gammachi(b1,2)(2P), followed by chi(b1,2)(2P)-->omegaUpsilon(1S). The branching ratios we obtain are B[chi(b1)(2P)-->omegaUpsilon(1S)]=(1.63(+0.35+0.16)(-0.31-0.15))% and B[chi(b2)(2P)-->omegaUpsilon(1S)]=(1.10(+0.32+0.11)(-0.28-0.10))%, in which the first error is statistical and the second is systematic.

  15. Effects of subacute ruminal acidosis and low feed intake on short-chain fatty acid transporters and flux pathways in Holstein steers.

    PubMed

    Laarman, A H; Pederzolli, R-L A; Wood, K M; Penner, G B; McBride, B W

    2016-09-01

    The objective of this study was to investigate the role of protein-mediated transport pathways for short-chain fatty acid flux across the ruminal epithelium, using subacute ruminal acidosis (SARA) and feed restriction as models. Twenty-one Holstein steers (216.8 ± 31.4 kg BW) were individually housed and fed a total mixed ration (TMR) with a 50:50 forage:concentrate ad libitum for 5 d. After the 5 d diet adjustment period, calves were assigned 1 of 3 treatments: control (CTRL) calves were fed the TMR ad libitum on d 1, subacute ruminal acidosis calves were given 25% of their ad libitum DMI on d 1 and then given a barley grain challenge at 30% of ad libitum DMI on d2 (ACID) calves were given 25% of their ad libitum DMI on d 1 and then given a barley grain challenge at 30% of ad libitum DMI on d 2, and feed restriction (FR) calves were given 25% of their ad libitum DMI for 5 d. Reticuloruminal pH was continuously measured during the entire study. At the end of the study, rumen tissue was harvested and acetate and butyrate flux were measured. Selective inhibitors were used to differentiate total flux (TOTAL), protein-mediated flux (PMF), and passive diffusion flux (PDF). The duration that rumen pH was <5.6 was greater in ACID calves compared with CTRL and FR calves (57 ± 90 vs. 519.71 ± 90 vs. 30 ± 90 min/d for CTRL, ACID, and FR, respectively; < 0.01). Total acetate flux was greater in FR than in CTRL (630.6 ± 38.9 vs. 421.1 ± 41.4 nmol/cm × h, respectively; < 0.01), but no difference was observed between CTRL and ACID (421.1 ± 41.4 vs. 455.4 ± 38.9 nmol/cm × h, respectively). Also, total butyrate flux was greater in FR than in CTRL (1,241.9 ± 94.8 vs. 625.5 ± 86.3 nmol/cm × h, respectively; < 0.01), but no difference was detected between CTRL and ACID (625.5 ± 86.3 vs. 716.7 ± 81.0 nmol/cm × h, respectively). For butyrate flux, PMF was greater for FR than for CTRL (479.21 ± 103.9 vs. 99.9 ± 86.3 nmol/cm × h, respectively; < 0.01), but no

  16. Application of p-i-n photodiodes to charged particle fluence measurements beyond 1015 1-MeV-neutron-equivalent/cm2

    NASA Astrophysics Data System (ADS)

    Hoeferkamp, M. R.; Grummer, A.; Rajen, I.; Seidel, S.

    2018-05-01

    Methods are developed for the application of forward biased p-i-n photodiodes to measurements of charged particle fluence beyond 1015 1-MeV-neutron-equivalent/cm2. An order of magnitude extension of the regime where forward voltage can be used to infer fluence is achieved for OSRAM BPW34F devices.

  17. Dust Flux Monitor Instrument for the Stardust mission to comet Wild 2

    NASA Astrophysics Data System (ADS)

    Tuzzolino, A. J.; Economou, T. E.; McKibben, R. B.; Simpson, J. A.; McDonnell, J. A. M.; Burchell, M. J.; Vaughan, B. A. M.; Tsou, P.; Hanner, M. S.; Clark, B. C.; Brownlee, D. E.

    2003-10-01

    The Dust Flux Monitor Instrument (DFMI) is part of the Stardust instrument payload. The prime goal of the DFMI is to measure the particle flux, intensity profile, and mass distribution during passage through the coma of comet Wild 2 in January 2004. This information is valuable for assessment of spacecraft risk and health and also for interpretation of the laboratory analysis of dust captured by the Aerogel dust collectors and returned to Earth. At the encounter speed of 6.1 km/s, the DFMI measurements will extend over the particle mass range of 8 decades, from 10-11 to >10-3 g. A secondary science goal is to measure the particle flux and mass distribution during the ~7 year interplanetary portions of the mission, where, in addition to measurements of the background interplanetary dust over the radial range 0.98 AU to 2.7 AU, multiple opportunities exist for possible detection by the DFMI of interplanetary meteor-stream particles and interstellar dust. The DFMI consists of two different dust detector systems: a polyvinylidene fluoride (PVDF) Dust Sensor Unit (SU), which measures particles with mass <~10-4 g, and a Dual Acoustic Sensor System (DASS), which utilizes two quartz piezoelectric accelerometers mounted on the first two layers of the spacecraft Whipple dust shield to measure the flux of particles with mass >10-4 g. The large Whipple shield structures provide the large effective sensitive area required for detection of the expected low flux of high-mass particles.

  18. Inverse modeling of Asian (222)Rn flux using surface air (222)Rn concentration.

    PubMed

    Hirao, Shigekazu; Yamazawa, Hiromi; Moriizumi, Jun

    2010-11-01

    When used with an atmospheric transport model, the (222)Rn flux distribution estimated in our previous study using soil transport theory caused underestimation of atmospheric (222)Rn concentrations as compared with measurements in East Asia. In this study, we applied a Bayesian synthesis inverse method to produce revised estimates of the annual (222)Rn flux density in Asia by using atmospheric (222)Rn concentrations measured at seven sites in East Asia. The Bayesian synthesis inverse method requires a prior estimate of the flux distribution and its uncertainties. The atmospheric transport model MM5/HIRAT and our previous estimate of the (222)Rn flux distribution as the prior value were used to generate new flux estimates for the eastern half of the Eurasian continent dividing into 10 regions. The (222)Rn flux densities estimated using the Bayesian inversion technique were generally higher than the prior flux densities. The area-weighted average (222)Rn flux density for Asia was estimated to be 33.0 mBq m(-2) s(-1), which is substantially higher than the prior value (16.7 mBq m(-2) s(-1)). The estimated (222)Rn flux densities decrease with increasing latitude as follows: Southeast Asia (36.7 mBq m(-2) s(-1)); East Asia (28.6 mBq m(-2) s(-1)) including China, Korean Peninsula and Japan; and Siberia (14.1 mBq m(-2) s(-1)). Increase of the newly estimated fluxes in Southeast Asia, China, Japan, and the southern part of Eastern Siberia from the prior ones contributed most significantly to improved agreement of the model-calculated concentrations with the atmospheric measurements. The sensitivity analysis of prior flux errors and effects of locally exhaled (222)Rn showed that the estimated fluxes in Northern and Central China, Korea, Japan, and the southern part of Eastern Siberia were robust, but that in Central Asia had a large uncertainty.

  19. Heterotic flux tubes in N=2 supersymmetric QCD with N=1 preserving deformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shifman, M.; Yung, A.; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300

    2008-06-15

    We consider non-Abelian Bogomol'nyi-Prasad-Sommerfield-saturated flux tubes (strings) in N=2 supersymmetric QCD deformed by superpotential terms of a special type breaking N=2 supersymmetry down to N=1. Previously it was believed that world sheet supersymmetry is accidentally enhanced due to the facts that N=(1,1) supersymmetry is automatically elevated up to N=(2,2) on CP(N-1) and, at the same time, there are no N=(0,2) generalizations of the bosonic CP(N-1) model. Edalati and Tong noted that the target space is in fact CP(N-1)xC rather than CP(N-1). This allowed them to suggest a heterotic N=(0,2) sigma model, with the CP(N-1) target space for bosonic fields andmore » an extra right-handed fermion which couples to the fermion fields of the N=(2,2) CP(N-1) model. We derive the heterotic N=(0,2) world sheet model directly from the bulk theory. The relation between the bulk and world sheet deformation parameters we obtain does not coincide with that suggested by Edalati and Tong at large values of the deformation parameter. For polynomial deformation superpotentials in the bulk we find nonpolynomial response in the world sheet model. We find a geometric representation for the heterotic model. Supersymmetry is proven to be spontaneously broken for small deformations (at the quantum level). This confirms Tong's conjecture. A proof valid for large deformations will be presented in the subsequent publication.« less

  20. Line Assignments and Position Measurements in Several Weak CO2 Bands Between 4590/cm and 7930/cm

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Kshirsagar, R. J.; Freedman, R. C.; Chackerian, C., Jr.; Wattson, R. B.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    A substantial set of CO2 spectra from 4500 to 12000/cm has been obtained at Ames with 1500 m path length using a Bomem DA8 FTS. The signal/noise was improved compared to prior spectra obtained in this laboratory by including a filter wheel limiting the band-pass of each spectrum to several hundred per cm. We have measured positions of lines in several weak bands not previously resolved in laboratory spectra. Using our positions and assignments of lines of the Qbranch of the 31103-00001 vibrational band at 4591/cm, we have redetermined the rotational constants for the 31103f levels. Q-branch lines of this band were previously observed, but misassigned, in Venus spectra by Mandin. The current HITRAN values of the rotational constants for this level are incorrect due to the Q-branch misassignments. Our prior measurements of the 21122-00001 vibrational band at 7901/cm were limited to Q-and R-branch lines; with the improved signal/noise of these new spectra we have now measured lines in the weaker P branch. The 21122 (Gv = 790148/cm) levels are known to be perturbed by the 32211 (G(sub v) = 789757/cm) levels; new DND calculations predict that high-J lines of the forbidden 32211-00001 vibrational band 'borrow' intensity from the corresponding transitions of the 21122-00001 band. We have identified such Q- and R-branch transitions of the 32211-00001 band from 26 < J" < 44, based on our position measurements of lines in the 32211-02201 band at 6562/cm.

  1. From COS ecosystem fluxes to GPP: integrating soil, branch and ecosystem fluxes.

    NASA Astrophysics Data System (ADS)

    Kooijmans, L.; Maseyk, K. S.; Vesala, T.; Mammarella, I.; Baker, I. T.; Seibt, U.; Sun, W.; Aalto, J.; Franchin, A.; Kolari, P.; Keskinen, H.; Levula, J.; Chen, H.

    2016-12-01

    The close coupling of Carbonyl Sulfide (COS) and CO2 due to a similar uptake pathway into plant stomata makes COS a promising new tracer that can potentially be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. Although ecosystem-scale measurements have been made at several sites, the contribution of different ecosystem components to the total COS budget is often unknown. Besides that, the average Leaf Relative Uptake (LRU) ratio needs to be better determined to accurately translate COS ecosystem fluxes into GPP estimates when the simple linear correlation between GPP estimates and COS plant uptake is used. We performed two campaigns in the summer of 2015 and 2016 at the SMEAR II site in Hyytiälä, Finland to provide better constrained COS flux data for boreal forests. A combination of COS measurements were made during both years, i.e. atmospheric profile concentrations up to 125 m, eddy-covariance fluxes and soil chamber fluxes. In addition to these, branch chamber measurements were done in 2016 in an attempt to observe the LRU throughout the whole season. The LRU ratio shows an exponential correlation with photosynthetic active radiation (PAR) but is constant for PAR levels above 500 µmol m-2 s-1. Mid-day LRU values are 1.0 (aspen) and 1.5 (pine). The correlation between LRU and PAR can be explained by the fact that COS is hydrolyzed with the presence of the enzyme carbonic anhydrase, and is not light dependent, whereas the photosynthetic uptake of CO2 is. We observed nighttime fluxes on the order of 25-30 % of the daily maximum COS uptake. Soils are a small sink of COS and contribute to 3 % of the total ecosystem COS flux during daytime. In a comparison between observed and simulated fluxes from the Simple Biosphere (SiB) model, the modelled COS and CO2 ecosystem fluxes are on average 40 % smaller than the observed fluxes, however, the Ecosystem Relative Uptake (ERU) ratios are identical at a value of 1.9 ± 0.2

  2. Oxyanion flux characterization using passive flux meters: Development and field testing of surfactant-modified granular activated carbon

    NASA Astrophysics Data System (ADS)

    Lee, Jimi; Rao, P. S. C.; Poyer, Irene C.; Toole, Robyn M.; Annable, M. D.; Hatfield, K.

    2007-07-01

    We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate >> chromate > selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (˜ 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of ˜ 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m 2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field testing. Use of

  3. Oxyanion flux characterization using passive flux meters: development and field testing of surfactant-modified granular activated carbon.

    PubMed

    Lee, Jimi; Rao, P S C; Poyer, Irene C; Toole, Robyn M; Annable, M D; Hatfield, K

    2007-07-17

    We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate>chromate>selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (approximately 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of approximately 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field

  4. Background CH4 and N2O fluxes in low-input short rotation coppice

    NASA Astrophysics Data System (ADS)

    Görres, Carolyn-Monika; Zenone, Terenzio; Ceulemans, Reinhart

    2016-04-01

    Extensively managed short rotation coppice systems are characterized by low fluxes of CH4 and N2O. However due to the large global warming potential of these trace gases (GWP100: CH4: 34, N2O: 298), such background fluxes can still significantly contribute to offsetting the CO2 uptake of short rotation coppice systems. Recent technological advances in fast-response CH4 and N2O analysers have improved our capability to capture these background fluxes, but their quantification still remains a challenge. As an example, we present here CH4 and N2O fluxes from a short-rotation bioenergy plantation in Belgium. Poplars have been planted in a double-row system on a loamy sand in 2010 and coppiced in the beginning of 2012 and 2014 (two-year rotation system). In 2013 (June - November) and 2014 (April - August), the plantation's CH4 and N2O fluxes were measured in parallel with an eddy covariance tower (EC) and an automated chamber system (AC). The EC had a detection limit of 13.68 and 0.76 μmol m-2 h-1 for CH4 and N2O, respectively. The median detection limit of the AC was 0.38 and 0.08 μmol m-2 h-1 for CH4 and N2O, respectively. The EC picked up a few high CH4 emission events with daily averages >100 μmol m-2 h-1, but a large proportion of the measured fluxes were within the EC's detection limit. The same was true for the EC-derived N2O fluxes where the daily average flux was often close to the detection limit. Sporadically, some negative (uptake) fluxes of N2O were observed. On the basis of the EC data, no clear link was found between CH4 and N2O fluxes and environmental variables. The problem with fluxes within the EC detection limit is that a significant amount of the values can show the opposite sign, thus "mirroring" the true flux. Subsequently, environmental controls of background trace gas fluxes might be disguised in the analysis. As a next step, it will be tested if potential environmental drivers of background CH4 and N2O fluxes at the plantation can be

  5. Cs 2 Hg 3 S 4 : A Low-Dimensional Direct Bandgap Semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Saiful M.; Vanishri, S.; Li, Hao

    2015-01-13

    Cs2Hg3S4 was synthesized by slowly cooling a melted stoichiometric mixture of Hg and Cs2S4. Cs2Hg3S4 crystallizes in the Ibam spacegroup with a = 6.278(1) angstrom, b = 11.601(2) angstrom, and c = 14.431(3)angstrom; d(calc) = 6.29 g/cm(3). Its crystal structure consists of straight chains of [Hg3S4](n)(2n-) that engage in side-by-side weak bonding interactions forming layers and are charge balanced by Cs+ cations. The thermal stability of this compound was investigated with differential thermal analysis and temperature dependent in situ synchrotron powder diffraction. The thermal expansion coefficients of the a, b, and c axes were assessed at 1.56 x 10(-5), 2.79more » x10(-5), and 3.04 x 10(-5) K-1, respectively. Large single-crystals up to similar to 5 cm in length and similar to 1 cm in diameter were grown using a vertical Bridgman method. Electrical conductivity and photoconductivity measurements on naturally cleaved crystals of Cs2Hg3S4 gave resistivity rho of >= 10(8) Omega.cm and carrier mobility-lifetime (mu tau) products of 4.2 x 10(-4) and 5.82 x 10(-5) cm(2) V-1 for electrons and holes, respectively. Cs2Hg3S4 is a semiconductor with a bandgap E-g similar to 2.8 eV and exhibits photoluminescence (PL) at low temperature. Electronic band structure calculations within the density functional theory (DFT) framework employing the nonlocal hybrid functional within Heyd-Scuseria-Ernzerhof (HSE) formalism indicate a direct bandgap of 2.81 eV at Gamma. The theoretical calculations show that the conduction band minimum has a highly dispersive and relatively isotropic mercury-based s-orbital-like character while the valence band maximum features a much less dispersive and more anisotropic sulfur orbital-based band.« less

  6. Redox non-innocence of thioether crowns: elucidation of the electronic structure of the mononuclear Pd(III) complexes [Pd([9]aneS3)2]3+ and [Pd([18]aneS6)]3+.

    PubMed

    Stephen, Emma; Blake, Alexander J; Carter, Emma; Collison, David; Davies, E Stephen; Edge, Ruth; Lewis, William; Murphy, Damien M; Wilson, Claire; Gould, Robert O; Holder, Alan J; McMaster, Jonathan; Schröder, Martin

    2012-02-06

    The Pd(II) complexes [Pd([9]aneS(3))(2)](PF(6))(22MeCN (1) ([9]aneS(3) = 1,4,7-trithiacyclononane) and [Pd([18]aneS(6))](PF(6))(2) (2) ([18]aneS(6) = 1,4,7,10,13,16-hexathiacyclooctadecane) can be oxidized electrochemically or chemically oxidized with 70% HClO(4) to [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+), respectively. These centers have been characterized by single crystal X-ray diffraction, and by UV/vis and multifrequency electron paramagnetic resonance (EPR) spectroscopies. The single crystal X-ray structures of [Pd(III)([9]aneS(3))(2)](ClO(4))(6)·(H(3)O)(3)·(H(2)O)(4) (3) at 150 K and [Pd([18]aneS(6))](ClO(4))(6)·(H(5)O(2))(3) (4) at 90 K reveal distorted octahedral geometries with Pd-S distances of 2.3695(8), 2.3692(8), 2.5356(9) and 2.3490(6), 2.3454(5), 2.5474(6) Å, respectively, consistent with Jahn-Teller distortion at a low-spin d(7) Pd(III) center. The Pd(II) compound [Pd([9]aneS(3))(2)](PF(6))(2) shows a one-electron oxidation process in MeCN (0.2 M NBu(4)PF(6), 293 K) at E(1/2) = +0.57 V vs. Fc(+)/Fc assigned to a formal Pd(III)/Pd(II) couple. Multifrequency (Q-, X-, S-, and L-band) EPR spectroscopic analysis of [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+) gives g(iso) = 2.024, |A(iso(Pd))| = 18.9 × 10(-4) cm(-1); g(xx) = 2.046, g(yy) = 2.041, g(zz) = 2.004; |A(xx(Pd))| = 24 × 10(-4) cm(-1), |A(yy(Pd))| = 22 × 10(-4) cm(-1), |A(zz(Pd))| = 14 × 10(-4) cm(-1), |a(xx(H))| = 4 × 10(-4) cm(-1), |a(yy(H))| = 5 × 10(-4) cm(-1), |a(zz(H))| = 5.5 × 10(-4) cm(-1) for [Pd([9]aneS(3))(2)](3+), and g(iso) = 2.015, |A(iso(Pd))| = 18.8× 10(-4) cm(-1); g(xx) = 2.048 g(yy) = 2.036, g(zz) = 1.998; |a(xx(H))| = 5, |a(yy(H))| = 5, |a(zz(H))| = 6 × 10(-4) cm(-1); |A(xx(Pd))| = 23× 10(-4) cm(-1), |A(yy(Pd))| = 22 × 10(-4) cm(-1), |A(zz(Pd))| = 4 × 10(-4) cm(-1) for [Pd([18]aneS(6))](3+). Both [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+) exhibit five-line superhyperfine splitting in the g(zz) region in their frozen solution EPR

  7. Carbon Fluxes and Transport Along the Terrestrial Aquatic Continuum

    NASA Astrophysics Data System (ADS)

    Butman, D. E.; Kolka, R.; Fennel, K.; Stackpoole, S. M.; Trettin, C.; Windham-Myers, L.

    2017-12-01

    Terrestrial wetlands, inland surface waters, tidal wetlands and estuaries, and the coastal ocean are distinct aquatic ecosystems that integrate carbon (C) fluxes and processing among the major earth system components: the continents, oceans, and atmosphere. The development of the 2nd State of the Carbon Cycle Report (SOCCR2) noted that incorporating the C cycle dynamics for these ecosystems was necessary to reconcile some of the gaps associated with the North American C budget. We present major C stocks and fluxes for Canada, Mexico and the United States. North America contains nearly 42% of the global terrestrial wetland area. Terrestrial wetlands, defined as soils that are seasonally or permanently inundated or saturated, contain significant C stocks equivalent to 174,000 Tg C in the top 40 cm of soil. While terrestrial wetlands are a C sink of approximately 64 Tg C yr-1, they also emit 21 Tg of CH4 yr-1. Inland waters are defined as lakes, reservoirs, rivers, and streams. Carbon fluxes, which include lateral C export to the coast, riverine and lacustrine CO2 emissions, and C burial in lakes and reservoirs are estimated at 507 Tg yr-1. Estuaries and tidal wetlands assimilate C and nutrients from uplands and rivers, and their total C stock is 1,323 Tg C in the top 1 m of soils and sediment. Accounting for soil accretion, lateral C flux, and CO2 assimilation and emission, tidal wetlands and estuaries are net sinks with a total flux equal to 6 Tg C yr-1. The coastal ocean and sea shelfs, defined as non-estuarine waters within 200 nautical miles (370 km) of the coast, function as net sinks, with the air-sea exchange of CO2 estimated at 150 Tg C yr-1. In total, fluxes from these four aquatic ecosystems are equal to a loss of 302 Tg C yr-1. Including these four discrete fluxes in this assessment demonstrates the importance of linking hydrology and biogeochemical cycling to evaluate the impacts of climate change and human activities on carbon fluxes across the

  8. High current density 2D/3D MoS2/GaN Esaki tunnel diodes

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Sriram; Lee, Edwin W.; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D.; Johnson, Jared M.; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth

    2016-10-01

    The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.

  9. MESSENGER Observations of Large Flux Transfer Events at Mercury

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Lepping, Ronald P.; Wu, Chin-Chun; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Killen, Rosemary M.; Korth, Haje; Krimigis, Stamatios M.; hide

    2010-01-01

    Six flux transfer events (FTEs) were encountered during MESSENGER's first two flybys of Mercury (M1 and M2). For M1 the interplanetary magnetic field (IMF) was predominantly northward and four FTEs with durations of 1 to 6 s were observed in the magnetosheath following southward IMF turnings. The IMF was steadily southward during M2, and an FTE 4 s in duration was observed just inside the dawn magnetopause followed approx. 32 s later by a 7 s FTE in the magnetosheath. Flux rope models were fit to the magnetic field data to determine FTE dimensions and flux content. The largest FTE observed by MESSENGER had a diameter of approx. 1 R(sub M) (where R(sub M) is Mercury s radius), and its open magnetic field increased the fraction of the surface exposed to the solar wind by 10 - 20 percent and contributed up to approx. 30 kV to the cross-magnetospheric electric potential.

  10. The magnitude of the snow-sourced reactive nitrogen flux to the boundary layer in the Uintah Basin, Utah, USA

    NASA Astrophysics Data System (ADS)

    Zatko, Maria; Erbland, Joseph; Savarino, Joel; Geng, Lei; Easley, Lauren; Schauer, Andrew; Bates, Timothy; Quinn, Patricia K.; Light, Bonnie; Morison, David; Osthoff, Hans D.; Lyman, Seth; Neff, William; Yuan, Bin; Alexander, Becky

    2016-11-01

    Reactive nitrogen (Nr = NO, NO2, HONO) and volatile organic carbon emissions from oil and gas extraction activities play a major role in wintertime ground-level ozone exceedance events of up to 140 ppb in the Uintah Basin in eastern Utah. Such events occur only when the ground is snow covered, due to the impacts of snow on the stability and depth of the boundary layer and ultraviolet actinic flux at the surface. Recycling of reactive nitrogen from the photolysis of snow nitrate has been observed in polar and mid-latitude snow, but snow-sourced reactive nitrogen fluxes in mid-latitude regions have not yet been quantified in the field. Here we present vertical profiles of snow nitrate concentration and nitrogen isotopes (δ15N) collected during the Uintah Basin Winter Ozone Study 2014 (UBWOS 2014), along with observations of insoluble light-absorbing impurities, radiation equivalent mean ice grain radii, and snow density that determine snow optical properties. We use the snow optical properties and nitrate concentrations to calculate ultraviolet actinic flux in snow and the production of Nr from the photolysis of snow nitrate. The observed δ15N(NO3-) is used to constrain modeled fractional loss of snow nitrate in a snow chemistry column model, and thus the source of Nr to the overlying boundary layer. Snow-surface δ15N(NO3-) measurements range from -5 to 10 ‰ and suggest that the local nitrate burden in the Uintah Basin is dominated by primary emissions from anthropogenic sources, except during fresh snowfall events, where remote NOx sources from beyond the basin are dominant. Modeled daily averaged snow-sourced Nr fluxes range from 5.6 to 71 × 107 molec cm-2 s-1 over the course of the field campaign, with a maximum noontime value of 3.1 × 109 molec cm-2 s-1. The top-down emission estimate of primary, anthropogenic NOx in Uintah and Duchesne counties is at least 300 times higher than the estimated snow NOx emissions presented in this study. Our results suggest

  11. Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1

    NASA Astrophysics Data System (ADS)

    Hutchinson, David K.; de Boer, Agatha M.; Coxall, Helen K.; Caballero, Rodrigo; Nilsson, Johan; Baatsen, Michiel

    2018-06-01

    The Eocene-Oligocene transition (EOT), which took place approximately 34 Ma ago, is an interval of great interest in Earth's climate history, due to the inception of the Antarctic ice sheet and major global cooling. Climate simulations of the transition are needed to help interpret proxy data, test mechanistic hypotheses for the transition and determine the climate sensitivity at the time. However, model studies of the EOT thus far typically employ control states designed for a different time period, or ocean resolution on the order of 3°. Here we developed a new higher resolution palaeoclimate model configuration based on the GFDL CM2.1 climate model adapted to a late Eocene (38 Ma) palaeogeography reconstruction. The ocean and atmosphere horizontal resolutions are 1° × 1.5° and 3° × 3.75° respectively. This represents a significant step forward in resolving the ocean geography, gateways and circulation in a coupled climate model of this period. We run the model under three different levels of atmospheric CO2: 400, 800 and 1600 ppm. The model exhibits relatively high sensitivity to CO2 compared with other recent model studies, and thus can capture the expected Eocene high latitude warmth within observed estimates of atmospheric CO2. However, the model does not capture the low meridional temperature gradient seen in proxies. Equatorial sea surface temperatures are too high in the model (30-37 °C) compared with observations (max 32 °C), although observations are lacking in the warmest regions of the western Pacific. The model exhibits bipolar sinking in the North Pacific and Southern Ocean, which persists under all levels of CO2. North Atlantic surface salinities are too fresh to permit sinking (25-30 psu), due to surface transport from the very fresh Arctic ( ˜ 20 psu), where surface salinities approximately agree with Eocene proxy estimates. North Atlantic salinity increases by 1-2 psu when CO2 is halved, and similarly freshens when CO2 is doubled, due

  12. NAS Experiences of Porting CM Fortran Codes to HPF on IBM SP2 and SGI Power Challenge

    NASA Technical Reports Server (NTRS)

    Saini, Subhash

    1995-01-01

    Current Connection Machine (CM) Fortran codes developed for the CM-2 and the CM-5 represent an important class of parallel applications. Several users have employed CM Fortran codes in production mode on the CM-2 and the CM-5 for the last five to six years, constituting a heavy investment in terms of cost and time. With Thinking Machines Corporation's decision to withdraw from the hardware business and with the decommissioning of many CM-2 and CM-5 machines, the best way to protect the substantial investment in CM Fortran codes is to port the codes to High Performance Fortran (HPF) on highly parallel systems. HPF is very similar to CM Fortran and thus represents a natural transition. Conversion issues involved in porting CM Fortran codes on the CM-5 to HPF are presented. In particular, the differences between data distribution directives and the CM Fortran Utility Routines Library, as well as the equivalent functionality in the HPF Library are discussed. Several CM Fortran codes (Cannon algorithm for matrix-matrix multiplication, Linear solver Ax=b, 1-D convolution for 2-D datasets, Laplace's Equation solver, and Direct Simulation Monte Carlo (DSMC) codes have been ported to Subset HPF on the IBM SP2 and the SGI Power Challenge. Speedup ratios versus number of processors for the Linear solver and DSMC code are presented.

  13. The 700-1500 cm{sup −1} region of the S{sub 1} (A{sup ~1}B{sub 2}) state of toluene studied with resonance-enhanced multiphoton ionization (REMPI), zero-kinetic-energy (ZEKE) spectroscopy, and time-resolved slow-electron velocity-map imaging (tr-SEVI) spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Adrian M.; Green, Alistair M.; Tamé-Reyes, Victor M.

    We report (nanosecond) resonance-enhanced multiphoton ionization (REMPI), (nanosecond) zero-kinetic-energy (ZEKE) and (picosecond) time-resolved slow-electron velocity map imaging (tr-SEVI) spectra of fully hydrogenated toluene (Tol-h{sub 8}) and the deuterated-methyl group isotopologue (α{sub 3}-Tol-d{sub 3}). Vibrational assignments are made making use of the activity observed in the ZEKE and tr-SEVI spectra, together with the results from quantum chemical and previous experimental results. Here, we examine the 700–1500 cm{sup −1} region of the REMPI spectrum, extending our previous work on the region ≤700 cm{sup −1}. We provide assignments for the majority of the S{sub 1} and cation bands observed, and in particular wemore » gain insight regarding a number of regions where vibrations are coupled via Fermi resonance. We also gain insight into intramolecular vibrational redistribution in this molecule.« less

  14. Line Parameters of Carbon Dioxide in the 4850 CM-1 Region

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Nugent, Emily; Sung, Keeyoon; Brown, Linda R.; Miller, Charles E.; Toth, Robert A.

    2011-06-01

    The spectral region near 4850 Cm-1 is used to monitor atmospheric carbon dioxide, but current accuracies of the line intensities and line shape coefficients do not permit carbon dioxide mixing ratios to be obtained to 1 ppm (about one part in 400). To improve the line parameters, we are remeasuring the prominent CO2 bands in this region specifically to characterize the non-Voigt effects of line mixing and speed dependence at room temperature. The laboratory spectra of air- and self-broadened CO2 have been recorded at a variety of pressures, path lengths, mixing ratios and resolutions (0.005 to 0.01 Cm-1) with two different Fourier transform spectrometers (the McMath-Pierce FTS at Kitt Peak and a Bruker 125 HR FTS at JPL). The line parameters of some 2000 transitions are being derived by simultaneous multispectrum fitting using a few dozen spectra encompassing a 230 Cm-1 wide spectral interval. The rovibrational constants for line positions and the band intensities and Herman-Wallis coefficients are being retrieved directly from the spectra, rather than floating positions and intensities individually. Self and foreign Lorentz widths and pressure shifts are being determined for the stronger bands while non-Voigt coefficients describing line mixing and speed dependence are being obtained for at least one of the strongest bands. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. A. Atkins, JQSRT 1995;53:705-21. V. M. Devi, D. Chris Benner, L. R. Brown, C. E. Miller, and R. A. Toth, J. Mol. Spectrosc. 2007;245:52-80. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. Support for the work at William and Mary was provided by contracts with JPL.

  15. Effect of mixed pinning landscapes produced by 6 MeV oxygen irradiation on the resulting critical current densities Jc in 1.3 μm thick GdBa2Cu3O7-d coated conductors grown by co-evaporation

    NASA Astrophysics Data System (ADS)

    Haberkorn, N.; Suárez, S.; Pérez, P. D.; Troiani, H.; Granell, P.; Golmar, F.; Lee, Jae-Hun; Moon, S. H.

    2017-11-01

    We report the influence of crystalline defects introduced by 6 MeV 16O3+ irradiation on the critical current densities Jc and flux creep rates in 1.3 μm thick GdBa2Cu3O7-δ coated conductor produced by co-evaporation. Pristine films with pinning produced mainly by random nanoparticles with diameter close to 50 nm were irradiated with doses between 2 × 1013 cm-2 and 4 × 1014 cm-2. The irradiations were performed with the ion beam perpendicular to the surface of the samples. The Jc and the flux creep rates were analyzed for two magnetic field configurations: magnetic field applied parallel (H║c) and at 45° (H║45°) to the c-axis. The results show that at temperatures below 40 K the in-field Jc dependences can be significantly improved by irradiation. For doses of 1 × 1014 cm-2 the Jc values at μ0H = 5 T are doubled without affecting significantly the Jc at small fields. Analyzing the flux creep rates as function of the temperature in both magnetic field configurations, it can be observed that the irradiation suppresses the peak associated with double-kink relaxation and increases the flux creep rates at intermediate and high temperatures. Under 0.5 T, the flux relaxation for H‖c and H||45° in pristine films presents characteristic glassy exponents μ = 1.63 and μ = 1.45, respectively. For samples irradiated with 1 × 1014 cm-2, these values drop to μ = 1.45 and μ = 1.24, respectively

  16. Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells

    PubMed Central

    2013-01-01

    Ag2S quantum dots were deposited on the surface of TiO2 nanorod arrays by a two-step photodeposition. The prepared TiO2 nanorod arrays as well as the Ag2S deposited electrodes were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope, suggesting a large coverage of Ag2S quantum dots on the ordered TiO2 nanorod arrays. UV–vis absorption spectra of Ag2S deposited electrodes show a broad absorption range of the visible light. The quantum dot-sensitized solar cells (QDSSCs) based on these electrodes were fabricated, and the photoelectrochemical properties were examined. A high photocurrent density of 10.25 mA/cm2 with a conversion efficiency of 0.98% at AM 1.5 solar light of 100 mW/cm2 was obtained with an optimal photodeposition time. The performance of the QDSSC at different incident light intensities was also investigated. The results display a better performance at a lower incident light level with a conversion efficiency of 1.25% at 47 mW/cm2. PMID:23286551

  17. Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation.

    PubMed

    Zhang, Guoqi; Yang, Li; Kim, Gab Seok; Ryan, Kieran; Lu, Shulin; O'Donnell, Rebekah K; Spokes, Katherine; Shapiro, Nathan; Aird, William C; Kluk, Michael J; Yano, Kiichiro; Sanchez, Teresa

    2013-07-18

    The endothelium, as the interface between blood and all tissues, plays a critical role in inflammation. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid, highly abundant in plasma, that potently regulates endothelial responses through interaction with its receptors (S1PRs). Here, we studied the role of S1PR2 in the regulation of the proadhesion and proinflammatory phenotype of the endothelium. By using genetic approaches and a S1PR2-specific antagonist (JTE013), we found that S1PR2 plays a key role in the permeability and inflammatory responses of the vascular endothelium during endotoxemia. Experiments with bone marrow chimeras (S1pr2(+/+) → S1pr2(+/+), S1pr2(+/+) → S1pr2(-/-), and S1pr2(-/-) → S1pr2(+/+)) indicate the critical role of S1PR2 in the stromal compartment, in the regulation of vascular permeability and vascular inflammation. In vitro, JTE013 potently inhibited tumor necrosis factor α-induced endothelial inflammation. Finally, we provide detailed mechanisms on the downstream signaling of S1PR2 in vascular inflammation that include the activation of the stress-activated protein kinase pathway that, together with the Rho-kinase nuclear factor kappa B pathway (NF-kB), are required for S1PR2-mediated endothelial inflammatory responses. Taken together, our data indicate that S1PR2 is a key regulator of the proinflammatory phenotype of the endothelium and identify S1PR2 as a novel therapeutic target for vascular disorders.

  18. Estimation of the solar Lyman alpha flux from ground based measurements of the Ca II K line

    NASA Technical Reports Server (NTRS)

    Rottman, G. J.; Livingston, W. C.; White, O. R.

    1990-01-01

    Measurements of the solar Lyman alpha and Ca II K from October 1981 to April 1989 show a strong correlation (r = 0.95) that allows estimation of the Lyman alpha flux at 1 AU from 1975 to December 1989. The estimated Lyman alpha strength of 3.9 x 10 to the 11th + or - 0.15 x 10 to the 11th photons/s sq cm on December 7, 1989 is at the same maximum levels seen in Cycle 21. Relative to other UV surrogates (sunspot number, 10.7 cm radio flux, and He I 10830 line strength), Lyman alpha estimates computed from the K line track the SME measurements well from solar maximum, through solar minimum, and into Cycle 22.

  19. Silyl group internal rotation in S1 phenylsilane and phenylsilane cation: Experiments and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Lu, Kueih-Tzu; Weisshaar, James C.

    1993-09-01

    Resonant two-photon ionization (R2PI) and pulsed field ionization (PFI) were used to measure S1-S0 and cation-S1 spectra of internally cold phenylsilane. We measure the adiabatic ionization potentials IP(phenylsilane)=73 680±5 cm-1, IP(phenylsilane ṡAr)=73 517±5 cm-1 and IP(phenylsilane ṡAr2)=73 359±5 cm-1. We assign many low lying torsion-vibration levels of the S11A1) state and of X˜ 2B1 of phenylsilane+. In both states, the pure torsional transitions are well fit by a simple sixfold hindered rotor Hamiltonian. The results for the rotor inertial constant B and internal rotation potential barrier V6 are, in S1, B=2.7±0.2 cm-1 and V6=-44±4 cm-1; in the cation, B=2.7±0.2 cm-1 and V6=+19±3 cm-1. The sign of V6 and the conformation of minimum energy are inferred from spectral intensities of bands terminating on the 3a`1 and 3a`2 torsional levels. In S1 the staggered conformation is most stable, while in the cation ground state the eclipsed conformation is most stable. For all sixfold potentials whose absolute phase is known experimentally, the most stable conformer is staggered in the neutral states (S0 and S1 p-fluorotoluene, S1 toluene, S1 p-fluorotoluene) and eclipsed in the cationic states (ground state toluene+ and phenylsilane+). In phenylsilane+ we estimate several potential energy coupling matrix elements between torsional and vibrational states. For small V6, the term PαPa in the rigid-frame model Hamiltonian strongly mixes the 6a'1 and 6a'2 torsional states, which mediates further torsion-vibrational coupling. In addition, the cation X˜ 2B1 vibrational structure is badly perturbed, apparently by strong vibronic coupling with the low-lying à 2A2 state. Accordingly, ab initio calculations find a substantial in-plane distortion of the equilibrium geometry of the X˜ 2B1 state, while the à 2A2 state is planar and symmetric. The calculations also correctly predict the lowest energy conformer for S0 states and for cation ground states. Finally

  20. AmeriFlux US-Bo1 Bondville

    DOE Data Explorer

    Meyers, Tilden [NOAA/ARL

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bo1 Bondville. Site Description - Agriculture, continuous no-till since 1986, Annual rotation between corn (C4) and soybeans (C3). The field was planted with corn during 2005 and 2007, with soybeans during 2006 and 2008.

  1. The study of heat flux for disruption on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Yang, Zhendong; Fang, Jianan; Gong, Xianzu; Gan, Kaifu; Luo, Jiarong; Zhao, Hailin; Cui, Zhixue; Zhang, Bin; Chen, Meiwen

    2016-05-01

    Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptions have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dRsep = -2 cm, while it changes to upper single null (dRsep = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m2.

  2. The cross-correlation between 21 cm intensity mapping maps and the Lyα forest in the post-reionization era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carucci, Isabella P.; Villaescusa-Navarro, Francisco; Viel, Matteo, E-mail: ipcarucci@sissa.it, E-mail: fvillaescusa@simonsfoundation.org, E-mail: viel@oats.inaf.it

    We investigate the cross-correlation signal between 21cm intensity mapping maps and the Lyα forest in the fully non-linear regime using state-of-the-art hydrodynamic simulations. The cross-correlation signal between the Lyα forest and 21cm maps can provide a coherent and comprehensive picture of the neutral hydrogen (HI) content of our Universe in the post-reionization era, probing both its mass content and volume distribution. We compute the auto-power spectra of both fields together with their cross-power spectrum at z = 2.4 and find that on large scales the fields are completely anti-correlated. This anti-correlation arises because regions with high (low) 21cm emission, suchmore » as those with a large (low) concentration of damped Lyα systems, will show up as regions with low (high) transmitted flux. We find that on scales smaller than k ≅ 0.2 h Mpc{sup −1} the cross-correlation coefficient departs from −1, at a scale where non-linearities show up. We use the anisotropy of the power spectra in redshift-space to determine the values of the bias and of the redshift-space distortion parameters of both fields. We find that the errors on the value of the cosmological and astrophysical parameters could decrease by 30% when adding data from the cross-power spectrum, in a conservative analysis. Our results point out that linear theory is capable of reproducing the shape and amplitude of the cross-power up to rather non-linear scales. Finally, we find that the 21cm-Lyα cross-power spectrum can be detected by combining data from a BOSS-like survey together with 21cm intensity mapping observations by SKA1-MID with a S/N ratio higher than 3 in k element of [0.06,1] h Mpc{sup −1}. We emphasize that while the shape and amplitude of the 21cm auto-power spectrum can be severely affected by residual foreground contamination, cross-power spectra will be less sensitive to that and therefore can be used to identify systematics in the 21cm maps.« less

  3. The cross-correlation between 21 cm intensity mapping maps and the Lyα forest in the post-reionization era

    NASA Astrophysics Data System (ADS)

    Carucci, Isabella P.; Villaescusa-Navarro, Francisco; Viel, Matteo

    2017-04-01

    We investigate the cross-correlation signal between 21cm intensity mapping maps and the Lyα forest in the fully non-linear regime using state-of-the-art hydrodynamic simulations. The cross-correlation signal between the Lyα forest and 21cm maps can provide a coherent and comprehensive picture of the neutral hydrogen (HI) content of our Universe in the post-reionization era, probing both its mass content and volume distribution. We compute the auto-power spectra of both fields together with their cross-power spectrum at z = 2.4 and find that on large scales the fields are completely anti-correlated. This anti-correlation arises because regions with high (low) 21cm emission, such as those with a large (low) concentration of damped Lyα systems, will show up as regions with low (high) transmitted flux. We find that on scales smaller than k simeq 0.2 hMpc-1 the cross-correlation coefficient departs from -1, at a scale where non-linearities show up. We use the anisotropy of the power spectra in redshift-space to determine the values of the bias and of the redshift-space distortion parameters of both fields. We find that the errors on the value of the cosmological and astrophysical parameters could decrease by 30% when adding data from the cross-power spectrum, in a conservative analysis. Our results point out that linear theory is capable of reproducing the shape and amplitude of the cross-power up to rather non-linear scales. Finally, we find that the 21cm-Lyα cross-power spectrum can be detected by combining data from a BOSS-like survey together with 21cm intensity mapping observations by SKA1-MID with a S/N ratio higher than 3 in kin[0.06,1] hMpc-1. We emphasize that while the shape and amplitude of the 21cm auto-power spectrum can be severely affected by residual foreground contamination, cross-power spectra will be less sensitive to that and therefore can be used to identify systematics in the 21cm maps.

  4. Fucosylation of LAMP-1 and LAMP-2 by FUT1 correlates with lysosomal positioning and autophagic flux of breast cancer cells.

    PubMed

    Tan, Keng-Poo; Ho, Ming-Yi; Cho, Huan-Chieh; Yu, John; Hung, Jung-Tung; Yu, Alice Lin-Tsing

    2016-08-25

    Alpha1,2-fucosyltransferases, FUT1 and FUT2, which transfer fucoses onto the terminal galactose of N-acetyl-lactosamine via α1,2-linkage have been shown to be highly expressed in various types of cancers. A few studies have shown the involvement of FUT1 substrates in tumor cell proliferation and migration. Lysosome-associated membrane protein 1, LAMP-1, has been reported to carry alpha1,2-fucosylated Lewis Y (LeY) antigens in breast cancer cells, however, the biological functions of LeY on LAMP-1 remain largely unknown. Whether or not its family member, LAMP-2, displays similar modifications and functions as LAMP-1 has not yet been addressed. In this study, we have presented evidence supporting that both LAMP-1 and 2 are substrates for FUT1, but not FUT2. We have also demonstrated the presence of H2 and LeY antigens on LAMP-1 by a targeted nanoLC-MS(3) and the decreased levels of fucosylation on LAMP-2 by MALDI-TOF analysis upon FUT1 knockdown. In addition, we found that the expression of LeY was substantial in less invasive ER+/PR+/HER- breast cancer cells (MCF-7 and T47D) but negligible in highly invasive triple-negative MDA-MB-231 cells, of which LeY levels were correlated with the levels of LeY carried by LAMP-1 and 2. Intriguingly, we also observed a striking change in the subcellular localization of lysosomes upon FUT1 knockdown from peripheral distribution of LAMP-1 and 2 to a preferential perinuclear accumulation. Besides that, knockdown of FUT1 led to an increased rate of autophagic flux along with diminished activity of mammalian target of rapamycin complex 1 (mTORC1) and enhanced autophagosome-lysosome fusion. This may be associated with the predominantly perinuclear distribution of lysosomes mediated by FUT1 knockdown as lysosomal positioning has been reported to regulate mTOR activity and autophagy. Taken together, our results suggest that downregulation of FUT1, which leads to the perinuclear localization of LAMP-1 and 2, is correlated with increased

  5. Fucosylation of LAMP-1 and LAMP-2 by FUT1 correlates with lysosomal positioning and autophagic flux of breast cancer cells

    PubMed Central

    Tan, Keng-Poo; Ho, Ming-Yi; Cho, Huan-Chieh; Yu, John; Hung, Jung-Tung; Yu, Alice Lin-Tsing

    2016-01-01

    Alpha1,2-fucosyltransferases, FUT1 and FUT2, which transfer fucoses onto the terminal galactose of N-acetyl-lactosamine via α1,2-linkage have been shown to be highly expressed in various types of cancers. A few studies have shown the involvement of FUT1 substrates in tumor cell proliferation and migration. Lysosome-associated membrane protein 1, LAMP-1, has been reported to carry alpha1,2-fucosylated Lewis Y (LeY) antigens in breast cancer cells, however, the biological functions of LeY on LAMP-1 remain largely unknown. Whether or not its family member, LAMP-2, displays similar modifications and functions as LAMP-1 has not yet been addressed. In this study, we have presented evidence supporting that both LAMP-1 and 2 are substrates for FUT1, but not FUT2. We have also demonstrated the presence of H2 and LeY antigens on LAMP-1 by a targeted nanoLC-MS3 and the decreased levels of fucosylation on LAMP-2 by MALDI-TOF analysis upon FUT1 knockdown. In addition, we found that the expression of LeY was substantial in less invasive ER+/PR+/HER− breast cancer cells (MCF-7 and T47D) but negligible in highly invasive triple-negative MDA-MB-231 cells, of which LeY levels were correlated with the levels of LeY carried by LAMP-1 and 2. Intriguingly, we also observed a striking change in the subcellular localization of lysosomes upon FUT1 knockdown from peripheral distribution of LAMP-1 and 2 to a preferential perinuclear accumulation. Besides that, knockdown of FUT1 led to an increased rate of autophagic flux along with diminished activity of mammalian target of rapamycin complex 1 (mTORC1) and enhanced autophagosome–lysosome fusion. This may be associated with the predominantly perinuclear distribution of lysosomes mediated by FUT1 knockdown as lysosomal positioning has been reported to regulate mTOR activity and autophagy. Taken together, our results suggest that downregulation of FUT1, which leads to the perinuclear localization of LAMP-1 and 2, is correlated with

  6. Chiari malformation Type I surgery in pediatric patients. Part 1: validation of an ICD-9-CM code search algorithm.

    PubMed

    Ladner, Travis R; Greenberg, Jacob K; Guerrero, Nicole; Olsen, Margaret A; Shannon, Chevis N; Yarbrough, Chester K; Piccirillo, Jay F; Anderson, Richard C E; Feldstein, Neil A; Wellons, John C; Smyth, Matthew D; Park, Tae Sung; Limbrick, David D

    2016-05-01

    OBJECTIVE Administrative billing data may facilitate large-scale assessments of treatment outcomes for pediatric Chiari malformation Type I (CM-I). Validated International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) code algorithms for identifying CM-I surgery are critical prerequisites for such studies but are currently only available for adults. The objective of this study was to validate two ICD-9-CM code algorithms using hospital billing data to identify pediatric patients undergoing CM-I decompression surgery. METHODS The authors retrospectively analyzed the validity of two ICD-9-CM code algorithms for identifying pediatric CM-I decompression surgery performed at 3 academic medical centers between 2001 and 2013. Algorithm 1 included any discharge diagnosis code of 348.4 (CM-I), as well as a procedure code of 01.24 (cranial decompression) or 03.09 (spinal decompression or laminectomy). Algorithm 2 restricted this group to the subset of patients with a primary discharge diagnosis of 348.4. The positive predictive value (PPV) and sensitivity of each algorithm were calculated. RESULTS Among 625 first-time admissions identified by Algorithm 1, the overall PPV for CM-I decompression was 92%. Among the 581 admissions identified by Algorithm 2, the PPV was 97%. The PPV for Algorithm 1 was lower in one center (84%) compared with the other centers (93%-94%), whereas the PPV of Algorithm 2 remained high (96%-98%) across all subgroups. The sensitivity of Algorithms 1 (91%) and 2 (89%) was very good and remained so across subgroups (82%-97%). CONCLUSIONS An ICD-9-CM algorithm requiring a primary diagnosis of CM-I has excellent PPV and very good sensitivity for identifying CM-I decompression surgery in pediatric patients. These results establish a basis for utilizing administrative billing data to assess pediatric CM-I treatment outcomes.

  7. The flux qubit revisited to enhance coherence and reproducibility

    PubMed Central

    Yan, Fei; Gustavsson, Simon; Kamal, Archana; Birenbaum, Jeffrey; Sears, Adam P; Hover, David; Gudmundsen, Ted J.; Rosenberg, Danna; Samach, Gabriel; Weber, S; Yoder, Jonilyn L.; Orlando, Terry P.; Clarke, John; Kerman, Andrew J.; Oliver, William D.

    2016-01-01

    The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). Here, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad-frequency tunability, strong anharmonicity, high reproducibility and relaxation times in excess of 40 μs at its flux-insensitive point. Qubit relaxation times T1 across 22 qubits are consistently matched with a single model involving resonator loss, ohmic charge noise and 1/f-flux noise, a noise source previously considered primarily in the context of dephasing. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal-photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, resulting in T2≈85 μs, approximately the 2T1 limit. In addition to realizing an improved flux qubit, our results uniquely identify photon shot noise as limiting T2 in contemporary qubits based on transverse qubit–resonator interaction. PMID:27808092

  8. Solar cycle variations of MIR radiation environment as observed by the LIULIN dosimeter.

    PubMed

    Dachev TsP; Tomov, B T; Matviichuk YuN; Koleva, R T; Semkova, J V; Petrov, V M; Benghin, V V; Ivanov YuV; Shurshakov, V A; Lemaire, J F

    1999-06-01

    Measurements on board the MIR space station by the Bulgarian-Russian dosimeter LIULIN have been used to study the solar cycle variations of the radiation environment. The fixed locations of the instrument in the MIR manned compartment behind 6-15 g/cm2 of shielding have given homogeneous series of particle fluxes and doses measurements to be collected during the declining phase of 22nd solar cycle between September 1989 and April 1994. During the declining phase of 22nd solar cycle the GCR (Galactic Cosmic Rays) flux observed at L>4 (where L is the McIlwain parameter) has enhanced from 0.6-0.7 cm-2 s-1 up to 1.4-1.6 cm-2 s-1. The long-term observations of the trapped radiation can be summarized as follows: the main maximum of the flux and dose rate is located at the southeast side of the geomagnetic field minimum of South Atlantic Anomaly (SAA) at L=1.3-1.4. Protons depositing few (nGy cm2)/particle in the detector predominantly populate this region. At practically the same spatial location and for similar conditions the dose rate rises up from 480 to 1470 microGy/h dose in silicon in the 1990-1994 time interval, during the declining phase of the solar cycle. On the other hand the flux rises from 35 up to 115 cm-2 s-1 for the same period of time. A power law dependence was extracted which predicts that when the total neutral density at the altitude of the station decreases from 8x10(-15) to 6x10(-16) g/cm3 the dose increase from about 200 microGy/h up to 1200 microGy/h. At the same time the flux increase from about 30 cm-2 s-1 up to 120 cm-2 s-1. The AP8 model predictions give only 5.8% increase of the flux for the same conditions.

  9. Comparisons between TiO2- and SiO2-flux assisted TIG welding processes.

    PubMed

    Tseng, Kuang-Hung; Chen, Kuan-Lung

    2012-08-01

    This study investigates the effects of flux compounds on the weld shape, ferrite content, and hardness profile in the tungsten inert gas (TIG) welding of 6 mm-thick austenitic 316 L stainless steel plates, using TiO2 and SiO2 powders as the activated fluxes. The metallurgical characterizations of weld metal produced with the oxide powders were evaluated using ferritoscope, optical microscopy, and Vickers microhardness test. Under the same welding parameters, the penetration capability of TIG welding with TiO2 and SiO2 fluxes was approximately 240% and 292%, respectively. A plasma column made with SiO2 flux exhibited greater constriction than that made with TiO2 flux. In addition, an anode root made with SiO2 flux exhibited more condensation than that made with TiO2 flux. Results indicate that energy density of SiO2-flux assisted TIG welding is higher than that of TiO2-flux assisted TIG welding.

  10. Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics.

    PubMed

    Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag

    2018-05-25

    Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS 2 ) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS 2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS 2 thin film by annealing at 450 °C for 1 h in H 2 S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS 2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 10 5 and 10 4 cm -1 in the visible region, respectively. In addition, SnS and SnS 2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS 2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS 2 thin films exhibited on-off drain current ratios of 8.8 and 2.1 × 10 3 and mobilities of 0.21 and 0.014 cm 2 V -1 s -1 , respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS 2 thin films were 6.0 × 10 16 and 8.7 × 10 13 cm -3 , respectively, in this experiment.

  11. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    DOE PAGES

    An, F. P.; Balantekin, A. B.; Band, H. R.; ...

    2017-06-19

    Here, the Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW th reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective 239Pu fission fractions F 239 from 0.25 to 0.35, Daya Bay measures an average IBD yield ¯σf of (5.90±0.13)×10 –43 cm 2/fission and a fuel-dependent variation in the IBDmore » yield, dσ f/dF 239, of (–1.86±0.18)×10 –43 cm 2/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the 239Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ. This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes 235U, 239Pu, 238U, and 241Pu. Based on measured IBD yield variations, yields of (6.17±0.17) and (4.27±0.26)×10 –43 cm 2/fission have been determined for the two dominant fission parent isotopes 235U and 239Pu. A 7.8% discrepancy between the observed and predicted 235U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.« less

  12. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay.

    PubMed

    An, F P; Balantekin, A B; Band, H R; Bishai, M; Blyth, S; Cao, D; Cao, G F; Cao, J; Chan, Y L; Chang, J F; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J; Cheng, Z K; Cherwinka, J J; Chu, M C; Chukanov, A; Cummings, J P; Ding, Y Y; Diwan, M V; Dolgareva, M; Dove, J; Dwyer, D A; Edwards, W R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guo, L; Guo, X H; Guo, Y H; Guo, Z; Hackenburg, R W; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hsiung, Y B; Hu, B Z; Hu, T; Huang, E C; Huang, H X; Huang, X T; Huang, Y B; Huber, P; Huo, W; Hussain, G; Jaffe, D E; Jen, K L; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Jones, D; Kang, L; Kettell, S H; Khan, A; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lee, J H C; Lei, R T; Leitner, R; Leung, J K C; Li, C; Li, D J; Li, F; Li, G S; Li, Q J; Li, S; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, S; Lin, S K; Lin, Y-C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, J L; Liu, J C; Loh, C W; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, X Y; Ma, X B; Ma, Y Q; Malyshkin, Y; Martinez Caicedo, D A; McDonald, K T; McKeown, R D; Mitchell, I; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ochoa-Ricoux, J P; Olshevskiy, A; Pan, H-R; Park, J; Patton, S; Pec, V; Peng, J C; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Qiu, R M; Raper, N; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Steiner, H; Stoler, P; Sun, J L; Tang, W; Taychenachev, D; Treskov, K; Tsang, K V; Tull, C E; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, C-H; Wu, Q; Wu, W J; Xia, D M; Xia, J K; Xing, Z Z; Xu, J L; Xu, Y; Xue, T; Yang, C G; Yang, H; Yang, L; Yang, M S; Yang, M T; Yang, Y Z; Ye, M; Ye, Z; Yeh, M; Young, B L; Yu, Z Y; Zeng, S; Zhan, L; Zhang, C; Zhang, C C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, R; Zhang, X T; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhou, L; Zhuang, H L; Zou, J H

    2017-06-23

    The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW_{th} reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective ^{239}Pu fission fractions F_{239} from 0.25 to 0.35, Daya Bay measures an average IBD yield σ[over ¯]_{f} of (5.90±0.13)×10^{-43}  cm^{2}/fission and a fuel-dependent variation in the IBD yield, dσ_{f}/dF_{239}, of (-1.86±0.18)×10^{-43}  cm^{2}/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the ^{239}Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ. This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes ^{235}U, ^{239}Pu, ^{238}U, and ^{241}Pu. Based on measured IBD yield variations, yields of (6.17±0.17) and (4.27±0.26)×10^{-43}  cm^{2}/fission have been determined for the two dominant fission parent isotopes ^{235}U and ^{239}Pu. A 7.8% discrepancy between the observed and predicted ^{235}U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.

  13. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Chan, Y. L.; Chang, J. F.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guo, L.; Guo, X. H.; Guo, Y. H.; Guo, Z.; Hackenburg, R. W.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huang, Y. B.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jen, K. L.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Kang, L.; Kettell, S. H.; Khan, A.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Qiu, R. M.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Stoler, P.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Yang, Y. Z.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, C. C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, R.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhou, L.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2017-06-01

    The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 G Wth reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective 239Pu fission fractions F239 from 0.25 to 0.35, Daya Bay measures an average IBD yield σ¯f of (5.90 ±0.13 )×10-43 cm2/fission and a fuel-dependent variation in the IBD yield, d σf/d F239, of (-1.86 ±0.18 )×10-43 cm2/fission . This observation rejects the hypothesis of a constant antineutrino flux as a function of the 239Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1 σ . This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes 235U, 239Pu, 238U, and 241Pu. Based on measured IBD yield variations, yields of (6.17 ±0.17 ) and (4.27 ±0.26 )×10-43 cm2 /fission have been determined for the two dominant fission parent isotopes 235U and 239Pu. A 7.8% discrepancy between the observed and predicted 235U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.

  14. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, F. P.; Balantekin, A. B.; Band, H. R.

    Here, the Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW th reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective 239Pu fission fractions F 239 from 0.25 to 0.35, Daya Bay measures an average IBD yield ¯σf of (5.90±0.13)×10 –43 cm 2/fission and a fuel-dependent variation in the IBDmore » yield, dσ f/dF 239, of (–1.86±0.18)×10 –43 cm 2/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the 239Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ. This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes 235U, 239Pu, 238U, and 241Pu. Based on measured IBD yield variations, yields of (6.17±0.17) and (4.27±0.26)×10 –43 cm 2/fission have been determined for the two dominant fission parent isotopes 235U and 239Pu. A 7.8% discrepancy between the observed and predicted 235U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.« less

  15. High heat flux Langmuir probe array for the DIII-D divertor platesa)

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Taussig, D.; Boivin, R. L.; Mahdavi, M. A.; Nygren, R. E.

    2008-10-01

    Two modular arrays of Langmuir probes designed to handle a heat flux of up to 25 MW/m2 for 10 s exposures have been installed in the lower divertor target plates of the DIII-D tokamak. The 20 pyrolytic graphite probe tips have more than three times higher thermal conductivity and 16 times larger mass than the original DIII-D isotropic graphite probes. The probe tips have a fixed 12.5° surface angle to distribute the heat flux more uniformly than the previous 6 mm diameter domed collectors and a symmetric "rooftop" design to allow operation with reversed toroidal magnetic field. A large spring-loaded contact area improves heat conduction from each probe tip through a ceramic insulator into a cooled graphite divertor floor tile. The probe tips, brazed to molybdenum foil to ensure good electrical contact, are mounted in a ceramic tray for electrical isolation and reliable cable connections. The new probes are located 1.5 cm radially apart in a staggered arrangement near the entrance to the lower divertor pumping baffle and are linearly spaced 3 cm apart on the shelf above the in-vessel cryopump. Typical target plate profiles of Jsat, Te, and Vf with 4 mm spatial resolution are shown.

  16. Line Assignments and Position Measurements in Several Weak CO2 Bands between 4590 /cm and 7930/ cm

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Kshirsagar, R. J.; Freedman, R. C.; Chackerian, C.; Wattson, R. B.

    1998-01-01

    A substantial set of CO2 spectra from 4500 to 12000 /cm has been obtained at Ames with 1500 m path length using a Bomem DA8 FTS. The signal/noise was improved compared to prior spectra obtained in this laboratory by including a filter wheel limiting the band-pass of each spectrum to several hundred/cm. We have measured positions of lines in several weak bands not previously resolved in laboratory spectra. Using our positions and assignments of lines of the Q branch of the 31103-00001 vibrational band at 4591/cm, we have re-determined the rotational constants for the 31103f levels. Q-branch lines of this band were previously observed, but misassigned, in Venus spectra by Mandin. The current HITRAN values of the rotational constants for this level are incorrect due to the Q-branch misassignments. Our prior measurements of the 21122-00001 vibrational band at 7901/cm were limited to Q- and R-branch lines; with the improved signal/noise of these new spectra we have now measured lines in the weaker P branch.

  17. Soil carbon content and CO2 flux along a hydrologic gradient in a High-Arctic tundra lake basin, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    McKnight, J.; Klein, E. S.; Welker, J. M.; Schaeffer, S. M.; Franklin, M.

    2015-12-01

    High Arctic landscapes are composed of watershed basins that vary in size and ecohydrology, but typically have a plant community complex that ranges from dry tundra to moist tundra to wet sedge systems along water body shorelines. The spatial extent of these plant communities reflects mean annual soil moisture and temperature, and is vulnerable to changes in climate conditions. Soil moisture and temperature significantly influence organic matter microbial activity and decomposition, and can affect the fate of soil carbon in tundra soils. Consequently, due to the unique soil carbon differences between tundra plant communities, shifts in their spatial extent may drive future High Arctic biosphere-atmosphere interactions. Understanding this terrestrial-atmosphere trace gas feedback, however, requires quantification of the rates and patterns of CO2 exchange along soil moisture gradients and the associated soil properties. In summer of 2015, soil CO2 flux rate, soil moisture and temperature were measured along a soil moisture gradient spanning three vegetation zones (dry tundra, wet tundra, and wet grassland) in a snow melt-fed lake basin near Thule Greenland. Mean soil temperature during the 2015 growing season was greater in dry tundra than in wet tundra and wet grassland (13.0 ± 1.2, 7.8 ± 0.8, and 5.5 ± 0.9°C, respectively). Mean volumetric soil moisture differed among all three vegetation zones where the soil moisture gradient ranged from 9 % (dry tundra) to 34 % (wet tundra) to 51 % (wet grassland). Mean soil CO2 flux was significantly greater in the wet grassland (1.7 ± 0.1 μmol m-2 s-1) compared to wet tundra (0.9 ± 0.2 μmol m-2 s-1) and dry tundra (1.2 ± 0.2 μmol m-2 s-1). Soil CO2 flux increased and decreased with seasonal warming and cooling of soil temperature. Although soil temperature was an important seasonal driver of soil CO2 flux rates, differences in mean seasonal soil CO2 flux rates among vegetation zones appeared to be a function of the

  18. Evidence for the η(b)(2S) and observation of h(b)(1P)→η(b)(1S)γ and h(b)(2P)→η(b)(1S)γ.

    PubMed

    Mizuk, R; Asner, D M; Bondar, A; Pedlar, T K; Adachi, I; Aihara, H; Arinstein, K; Aulchenko, V; Aushev, T; Aziz, T; Bakich, A M; Bay, A; Belous, K; Bhardwaj, V; Bhuyan, B; Bischofberger, M; Bonvicini, G; Bozek, A; Bračko, M; Brodzicka, J; Browder, T E; Chekelian, V; Chen, A; Chen, P; Cheon, B G; Chilikin, K; Chistov, R; Cho, I-S; Cho, K; Choi, S-K; Choi, Y; Dalseno, J; Danilov, M; Doležal, Z; Drásal, Z; Drutskoy, A; Eidelman, S; Epifanov, D; Fast, J E; Gaur, V; Gabyshev, N; Garmash, A; Golob, B; Haba, J; Hara, T; Hayasaka, K; Hayashii, H; Horii, Y; Hoshi, Y; Hou, W-S; Hsiung, Y B; Hyun, H J; Iijima, T; Ishikawa, A; Itoh, R; Iwabuchi, M; Iwasaki, Y; Iwashita, T; Jaegle, I; Julius, T; Kang, J H; Kapusta, P; Kawasaki, T; Kim, H J; Kim, H O; Kim, J H; Kim, K T; Kim, M J; Kim, Y J; Kinoshita, K; Ko, B R; Koblitz, S; Kodyš, P; Korpar, S; Kouzes, R T; Križan, P; Krokovny, P; Kuhr, T; Kumita, T; Kuzmin, A; Kwon, Y-J; Lange, J S; Lee, S-H; Li, J; Libby, J; Liu, C; Liu, Y; Liu, Z Q; Liventsev, D; Louvot, R; Matvienko, D; McOnie, S; Miyabayashi, K; Miyata, H; Mohanty, G B; Mohapatra, D; Moll, A; Muramatsu, N; Mussa, R; Nakao, M; Natkaniec, Z; Ng, C; Nishida, S; Nishimura, K; Nitoh, O; Nozaki, T; Ohshima, T; Okuno, S; Olsen, S L; Onuki, Y; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Pestotnik, R; Petrič, M; Piilonen, L E; Poluektov, A; Röhrken, M; Sakai, Y; Sandilya, S; Santel, D; Sanuki, T; Sato, Y; Schneider, O; Schwanda, C; Senyo, K; Seon, O; Sevior, M E; Shapkin, M; Shen, C P; Shibata, T-A; Shiu, J-G; Shwartz, B; Sibidanov, A; Simon, F; Smerkol, P; Sohn, Y-S; Sokolov, A; Solovieva, E; Stanič, S; Starič, M; Sumihama, M; Sumiyoshi, T; Tanida, K; Tatishvili, G; Teramoto, Y; Tikhomirov, I; Trabelsi, K; Tsuboyama, T; Uchida, M; Uehara, S; Uglov, T; Unno, Y; Uno, S; Vanhoefer, P; Varner, G; Varvell, K E; Vinokurova, A; Vorobyev, V; Wang, C H; Wang, M-Z; Wang, P; Wang, X L; Watanabe, M; Watanabe, Y; Williams, K M; Won, E; Yabsley, B D; Yamaoka, J; Yamashita, Y; Yuan, C Z; Zhang, Z P; Zhilich, V

    2012-12-07

    We report the first evidence for the η(b)(2S) using the h(b)(2P)→η(b)(2S)γ transition and the first observation of the h(b)(1P)→η(b)(1S)γ and h(b)(2P)→η(b)(1S)γ transitions. The mass and width of the η(b)(1S) and η(b)(2S) are measured to be m(η(b)(1S))=(9402.4±1.5±1.8) MeV/c(2), m(η(b)(2S))=(9999.0±3.5(-1.9)(+2.8)) MeV/c(2), and Γ(η(b)(1S))=(10.8(-3.7-2.0)(+4.0+4.5)) MeV. We also update the h(b)(1P) and h(b)(2P) mass measurements. We use a 133.4 fb(-1) data sample collected at energies near the Υ(5S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider.

  19. Results from twelve years of continuous monitoring of the soil CO2 flux at the Ketzin CO2 storage pilot site, Germany

    NASA Astrophysics Data System (ADS)

    Szizybalski, Alexandra; Zimmer, Martin; Pilz, Peter; Liebscher, Axel

    2017-04-01

    Under the coordination of the GFZ German Research Centre for Geosciences the complete life-cycle of a geological storage site for CO2 has been investigated and studied in detail over the past 12 years at Ketzin near Berlin, Germany. The test site is located at the southern flank of an anticlinal structure. Beginning with an exploration phase in 2004, drilling of the first three wells took place in 2007. From June 2008 to August 2013 about 67 kt of CO2 were injected into Upper Triassic sandstones at a depth of 630 to 650 m overlain by more than 165 m of shaley cap rocks. A comprehensive operational and scientific monitoring program forms the central part of the Ketzin project targeting at the reservoir itself, its overburden or above-zone and the surface. The surface monitoring is done by continuous soil CO2 flux measurements. These already started in 2005, more than three years prior to the injection phase using a survey chamber from LI-COR Inc. Twenty sampling locations were selected in the area of the anticline covering about 3 x 3 km. In order to obtain information on seasonal trends, measurements are performed at least once a month. The data set obtained prior to the injection serves as a basis for comparison with all further measurements during the injection and storage operations [Zimmer et al., 2010]. To refine the monitoring network, eight automatic, permanent soil CO2 flux stations were additionally installed in 2011 in the direct vicinity of the boreholes. Using this system, the CO2 soil flux is measured on an hourly basis. Over the whole monitoring time, soil temperature and moisture are recorded simultaneously and soil samples down to 70 cm depth were studied for their structure, carbon and nitrogen content. ver the whole monitoring time. Both, diurnal and seasonal flux variations can be detected and hence, provide a basis for interpretation of the measured data. Detailed analysis of the long-term monitoring at each station clearly reveals the influence

  20. AmeriFlux US-Dk1 Duke Forest-open field

    DOE Data Explorer

    Novick, Kim [Indiana University; Oishi, Chris [USDA Forest Service; Stoy, Paul [Montana State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Dk1 Duke Forest-open field. Site Description - The Duke Forest grass field is approximately 480×305 m, dominated by the C3 grass Festuca arundinacea Shreb. (tall fescue) includes minor components of C3 herbs and the C4 grass Schizachyrium scoparium (Michx.) Nash, not considered here. The site was burned in 1979 and is mowed annually during the summer for hay according to local practices. Lai, C.T. and G.G. Katul, 2000, "The dynamic role of root-water uptake in coupling potential to actual transpiration" , Advances in Water Resources, 23, 427-439; Novick , K.A., P. C. Stoy, G. G. Katul, D. S. Ellsworth, M. B. S. Siqueira, J. Juang, R. Oren, 2004, Carbon dioxide and water vapor exchange in a warm temperate grassland, Oecologia, 138, 259-274; Stoy PC, Katul GG, Siqueira MBS, Juang J-Y, McCarthy HR, Oishi AC, Uebelherr JM, Kim H-S, Oren R (2006). Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern U.S. Global Change Biology 12:2115-2135

  1. Discovery of VHE emission towards the Carina arm region with the H.E.S.S. telescope array: HESS J1018-589

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöh, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gallant, Y. A.; Gast, H.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Keogh, D.; Khélifi, B.; Klochkov, D.; Klużniak, D.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Rayner, S. M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2012-05-01

    The Carina arm region, containing the supernova remnant SNR G284.3-1.8, the high-energy (HE; E > 100 MeV) binary 1FGL J1018.6-5856 and the energetic pulsar PSR J1016-5857 and its nebula, has been observed with the H.E.S.S. telescope array. The observational coverage of the region in very-high-energy (VHE; E > 0.1 TeV) γ-rays benefits from deep exposure (40 h) of the neighboring open cluster Westerlund 2. The observations have revealed a new extended region of VHE γ-ray emission. The new VHE source HESS J1018-589 shows a bright, point-like emission region positionally coincident with SNR G284.3-1.8 and 1FGL J1018.6-5856 and a diffuse extension towards the direction of PSR J1016-5857. A soft (Γ = 2.7 ± 0.5stat)photon index, with a differential flux at 1 TeV of N0 = (4.2 ± 1.1) × 10-13 TeV-1 cm-2 s-1 is found for the point-like source, whereas the total emission region including the diffuse emission region is well fit by a power-law function with spectral index Γ = 2.9 ± 0.4stat and differential flux at 1 TeV of N0 = (6.8 ± 1.6) × 10-13 TeV-1 cm-2 s-1. This H.E.S.S. detection motivated follow-up X-ray observations with the XMM-Newton satellite to investigate the origin of the VHE emission. The analysis of the XMM-Newton data resulted in the discovery of a bright, non-thermal point-like source (XMMU J101855.4-58564) with a photon index of Γ = 1.65 ± 0.08 in the center of SNR G284.3-1.8, and a thermal, extended emission region coincident with its bright northern filament. The characteristics of this thermal emission are used to estimate the plasma density in the region as n ≈ 0.5 cm-3 (2.9 kpc/d)2. The position of XMMU J101855.4-58564 is compatible with the position reported by the Fermi-LAT collaboration for the binary system 1FGL J1018.6-5856 and the variable Swift XRT source identified with it. The new X-ray data are used alongside archival multi-wavelength data to investigate the relationship between the VHE γ-ray emission from HESS J1018-589 and the

  2. TEM study of the (SbS){sub 1+δ}(NbS{sub 2}){sub n}, (n=1, 2, 3; δ~1.14, 1.20) misfit layer phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez-Herrero, A., E-mail: adriangh@pdi.ucm.es; Landa-Cánovas, A.R.; Otero-Díaz, L.C.

    In the Sb–Nb–S system four new misfit layer phases have been found and carefully investigated via Transmission Electron Microscopy (TEM). Their structures are of composite modulated structure type with stoichiometries that can be formulated as (SbS){sub 1+δ}(NbS{sub 2}){sub n}; for n=1, δ~1.14 and 1.19; for n=2, δ~1.18 and for n=3, δ~1.19. Selected Area Electron Diffraction (SAED) patterns show an almost commensurate fit between the pseudo-tetragonal (SbS) and the pseudo-orthohexagonal (NbS{sub 2}){sub n} subcells along the misfit direction a, with 3(SbS)≈5(NbS{sub 2}), being b the same for both sub-lattices and c the stacking direction. For n=1, a commensurate phase with 4a{submore » SbS}=7a{sub NbS2} has also been observed. In addition to the characteristic misfit and associated modulation of the two sub-structures, a second modulation is also present which appears to be primarily associated with the (SbS) sub-structure of both the n=1 and n=2 phases. High Resolution Transmission Electron Microscopy (HRTEM) images show ordered stacking sequences between the (SbS) and (NbS{sub 2}){sub n} lamellae for each of the four phases, however, disordered intergrowths were also occasionally found. Most of the crystals showed different kinds of twinning defects on quite a fine scale. Many crystals showed curled up edges. In some cases the lamellar crystals were entirely folded giving rise to similar diffraction patterns as found for cylindrical crystals. - Graphical abstract: Idealized structure models of the first three members of the homologous series (SbS){sub 1+δ}(NbS{sub 2}){sub n}. - Highlights: • Transmission Electron Microscopy study of misfit layer sulfides (SbS){sub 1+δ}(NbS{sub 2}){sub n}. • The structures consist of a (SbS) layer interleaved between n (NbS{sub 2}) layers. • Two different members n=1, one n=2 and one n=3 have been studied. • Twinning, intergrowths and different modulations in the (SbS) substructure.« less

  3. Fermi LAT detection of an increase in gamma-ray activity of the FSRQ S5 1044+71

    NASA Astrophysics Data System (ADS)

    Ojha, Roopesh; Carpen, Bryce

    2017-01-01

    The Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope, has observed gamma-ray flaring activity from a source positionally consistent with the flat spectrum radio quasar S5 1044+71 (also known as 3FGL J1048.4+7144, Acero et al. 2015, ApJS 218, 23) with radio coordinates R.A: 10h48m27.6199s, Dec: +71d43m35.938s (J2000; Johnston et al. 1995, AJ, 110, 880) and redshift z=1.15 (Polatidis et al. 1995, ApJS, 98, 1). Preliminary results indicate that S5 1044+71 showed a marked increase in activity on 2016 December 29, with a daily flux (E > 100 MeV) of (1.1+/-0.2) x10^-6 ph cm^-2 s^-1 (errors are statistical only) which is a factor of about 16 greater than the average flux reported in the third Fermi LAT catalog (3FGL).

  4. BOREAS TF-3 Automated Chamber CO2 Flux Data from the NSA-OBS

    NASA Technical Reports Server (NTRS)

    Goulden, Michael L.; Crill, Patrick M.; Hall, Forrest G. (Editor); Conrad, Sara (Editor)

    2000-01-01

    The BOReal Ecosystem Atmosphere Study Tower Flux (BOREAS TF-3) and Trace Gas Biogeochemistry (TGB-1) teams collected automated CO2 chamber flux data in their efforts to fully describe the CO2 flux at the Northern Study Area-Old Black Spruce (NSA-OBS) site. This data set contains fluxes of CO2 at the NSA-OBS site measured using automated chambers. In addition to reporting the CO2 flux, it reports chamber air temperature, moss temperature, and light levels during each measurement. The data set covers the period from 23-Sep-1995 through 26-Oct-1995 and from 28-May-1996 through 21-Oct-1996. The data are stored in tabular ASCII files.

  5. Neutron flux and gamma dose measurement in the BNCT irradiation facility at the TRIGA reactor of the University of Pavia

    NASA Astrophysics Data System (ADS)

    Bortolussi, S.; Protti, N.; Ferrari, M.; Postuma, I.; Fatemi, S.; Prata, M.; Ballarini, F.; Carante, M. P.; Farias, R.; González, S. J.; Marrale, M.; Gallo, S.; Bartolotta, A.; Iacoviello, G.; Nigg, D.; Altieri, S.

    2018-01-01

    University of Pavia is equipped with a TRIGA Mark II research nuclear reactor, operating at a maximum steady state power of 250 kW. It has been used for many years to support Boron Neutron Capture Therapy (BNCT) research. An irradiation facility was constructed inside the thermal column of the reactor to produce a sufficient thermal neutron flux with low epithermal and fast neutron components, and low gamma dose. In this irradiation position, the liver of two patients affected by hepatic metastases from colon carcinoma were irradiated after borated drug administration. The facility is currently used for cell cultures and small animal irradiation. Measurements campaigns have been carried out, aimed at characterizing the neutron spectrum and the gamma dose component. The neutron spectrum has been measured by means of multifoil neutron activation spectrometry and a least squares unfolding algorithm; gamma dose was measured using alanine dosimeters. Results show that in a reference position the thermal neutron flux is (1.20 ± 0.03) ×1010 cm-2 s-1 when the reactor is working at the maximum power of 250 kW, with the epithermal and fast components, respectively, 2 and 3 orders of magnitude lower than the thermal component. The ratio of the gamma dose with respect to the thermal neutron fluence is 1.2 ×10-13 Gy/(n/cm2).

  6. CERES Monthly Gridded Single Satellite Fluxes and Clouds (FSW) in HDF (CER_FSW_Terra-FM1-MODIS_Edition2C)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator)

    The Monthly Gridded Radiative Fluxes and Clouds (FSW) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The FSW is also produced for combinations of scanner instruments. All instantaneous fluxes from the CERES CRS product for a month are sorted by 1-degree spatial regions and by the Universal Time (UT) hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the FSW along with other flux statistics and scene information. The mean adjusted fluxes at the four atmospheric levels defined by CRS are also included for both clear-sky and total-sky scenes. In addition, four cloud height categories are defined by dividing the atmosphere into four intervals with boundaries at the surface, 700-, 500-, 300-hPa, and the Top-of-the-Atmosphere (TOA). The cloud layers from CRS are put into one of the cloud height categories and averaged over the region. The cloud properties are also column averaged and included on the FSW. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].

  7. Nutrient loading enhances methane flux in an ombrotrophic bog

    NASA Astrophysics Data System (ADS)

    Bubier, Jill L.; Juutinen, Sari; Moore, Tim; Arnkil, Sini; Humphreys, Elyn; Marincak, Brenden; Roy, Cameron; Larmola, Tuula

    2017-04-01

    Peatlands are significant sources of atmospheric methane (CH4) and emission rates may be affected by atmospheric nutrient inputs and associated changes in vegetation. In a long-term (10-15 yr) fertilization experiment at a nutrient-poor, Sphagnum moss- and dwarf shrub-dominated bog in eastern Canada, we tested the effect of ammonium nitrate (NH4NO3,0 to 6.4 g N m-2 yr-1) and potassium phosphate (KH2PO4,5 g P m-2 yr-1) on fluxes of CH4. Fluxes were measured using a closed chamber technique over the growing seasons of 2005 and 2015. The effect of long-term field treatments on aerobic consumption and anaerobic production potentials of CH4 was tested by laboratory incubations of peat samples, as well as an amendment with KH2PO4on anaerobic production potentials at the water table. Over the 10-15 yr, three levels of N plus PK addition and N-only addition of 6.4g N m-2yr-1 decreased the abundance of Sphagnum and Polytrichum mosses, increased the growth and coverage of dwarf shrubs, and caused a decline in surface elevation and thus a higher water table. Overall, CH4 flux was small, ˜ 12 mg m-2 d-1 in the control plots, primarily because of the low water table (30 to 50 cm beneath the peat surface), but flux varied as a function of water table position and treatment. KH2PO4 addition was associated with the highest fluxes: in the 5th treatment year, the PK treatment had the largest CH4 flux (˜25 mg m-2 d-1), whereas in the 15th year the 6.4NPK treatment had the largest flux (˜50 mg m-2 d-1). Rates of potential production and consumption of CH4in laboratory incubations of peat samples were associated with position relative to the water table. Anaerobic potential CH4production was largest in the PK treatment and overall was marginally increased by PK amendment; there were no clear effects of NH4NO3 on CH4 production. The major increase in CH4 flux appearing in the long term seemed to be result of the change in water table position owing to peat subsidence and loss of moss

  8. The Impact of Prior Biosphere Models in the Inversion of Global Terrestrial CO2 Fluxes by Assimilating OCO-2 Retrievals

    NASA Technical Reports Server (NTRS)

    Philip, Sajeev; Johnson, Matthew S.

    2018-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric fluxes. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in terrestrial biospheric models having significant differences in the quantification of biospheric CO2 fluxes. Atmospheric transport models assimilating measured (in situ or space-borne) CO2 concentrations to estimate "top-down" fluxes, generally use these biospheric CO2 fluxes as a priori information. Most of the flux inversion estimates result in substantially different spatio-temporal posteriori estimates of regional and global biospheric CO2 fluxes. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission dedicated to accurately measure column CO2 (XCO2) allows for an improved understanding of global biospheric CO2 fluxes. OCO-2 provides much-needed CO2 observations in data-limited regions facilitating better global and regional estimates of "top-down" CO2 fluxes through inversion model simulations. The specific objectives of our research are to: 1) conduct GEOS-Chem 4D-Var assimilation of OCO-2 observations, using several state-of-the-science biospheric CO2 flux models as a priori information, to better constrain terrestrial CO2 fluxes, and 2) quantify the impact of different biospheric model prior fluxes on OCO-2-assimilated a posteriori CO2 flux estimates. Here we present our assessment of the importance of these a priori fluxes by conducting Observing System Simulation Experiments (OSSE) using simulated OCO-2 observations with known "true" fluxes.

  9. Recent NA61/SHINE measurements performed for the T2K experiment

    NASA Astrophysics Data System (ADS)

    2017-12-01

    The neutrino programme of the NA61/ SHINE experiment at the CERN SPS is aiming to deliver precise hadron production measurements for improving calculations of the initial neutrino beam flux in the long-baseline neutrino oscillation experiments. The first receiver of such measurements is the T2K neutrino oscillation project in Japan. New results on π±, K±, p, K0S and Λ production from the NA61/SHINE 2009 thin target data analyses with smaller statistical and systematic errors are discussed. They enable us to reduce further the flux uncertainties in T2K for neutrino and antineutrino beam mode. We also report on the first corrected π± results obtained for T2K replica target (a 90 cm long cylinder of 2.6 cm diameter, about 1.9λI). Up to 90% of the neutrino flux can be constrained by such measurements as compared to 60% for the thin target measurements that are sensitive only to primary hadron interactions.

  10. Monitoring Ocean CO2 Fluxes from Space: GOSAT and OCO-2

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2012-01-01

    The ocean is a major component of the global carbon cycle, emitting over 330 billion tons of carbon dioxide (CO2) into the atmosphere each year, or about 10 times that emitted fossil fuel combustion and all other human activities [1, 2]. The ocean reabsorbs a comparable amount of CO2 each year, along with 25% of the CO2 emitted by these human activities. The nature and geographic distribution of the processes controlling these ocean CO2 fluxes are still poorly constrained by observations. A better understanding of these processes is essential to predict how this important CO2 sink may evolve as the climate changes.While in situ measurements of ocean CO2 fluxes can be very precise, the sampling density is far too sparse to quantify ocean CO2 sources and sinks over much of the globe. One way to improve the spatial resolution, coverage, and sampling frequency is to make observations of the column averaged CO2 dry air mole fraction, XCO2, from space [4, 5, 6]. Such measurements could provide global coverage at high resolution (< 100 km) on monthly time scales. High precision (< 1 part per million, ppm) is essential to resolve the small, near-surface CO2 variations associated with ocean fluxes and to better constrain the CO2 transport over the ocean. The Japanese Greenhouse gases Observing Satellite (GOSAT) and the NASA Orbiting Carbon Observatory (OCO) were first two space based sensors designed specifically for this task. GOSAT was successfully launched on January 23, 2009, and has been returning measurements of XCO2 since April 2009. The OCO mission was lost in February 2009, when its launch vehicle malfunctioned and failed to reach orbit. In early 2010, NASA authorized a re-flight of OCO, called OCO-2, which is currently under development.

  11. Flux-coherent series SQUID array magnetometers operating above 77 K with superior white flux noise than single-SQUIDs at 4.2 K

    NASA Astrophysics Data System (ADS)

    Chesca, Boris; John, Daniel; Mellor, Christopher J.

    2015-10-01

    A very promising direction to improve the sensitivity of magnetometers based on superconducting quantum interference devices (SQUIDs) is to build a series-array of N non-interacting SQUIDs operating flux-coherently, because in this case their voltage modulation depth, ΔV, linearly scales with N whereas the white flux noise SΦ1/2 decreases as 1/N1/2. Here, we report the realization of both these improvements in an advanced layout of very large SQUID arrays made of YBa2Cu3O7. Specially designed with large area narrow flux focusers for increased field sensitivity and improved flux-coherency, our arrays have extremely low values for SΦ1/2 between (0.25 and 0.44) μΦ0/Hz1/2 for temperatures in the range (77-83) K. In this respect, they outperform niobium/aluminium trilayer technology-based single-SQUIDs operating at 4.2 K. Moreover, with values for ΔV and transimpedance in the range of (10-17) mV and (0.3-2.5) kΩ, respectively, a direct connection to a low-noise room temperature amplifier is allowed, while matching for such readout is simplified and the available bandwidth is greatly increased. These landmark performances suggest such series SQUID arrays are ideal candidates to replace single-SQUIDs operating at 4.2 K in many applications.

  12. A practical CO2 flux remote sensing technique

    NASA Astrophysics Data System (ADS)

    Queisser, Manuel; Burton, Mike

    2017-04-01

    An accurate quantification of CO2 flux from both natural and anthropogenic sources is of great interest in various areas of the Earth, environmental and atmospheric sciences. As emitted excess CO2 quickly dilutes into the 400 ppm ambient CO2 concentration and degassing often occurs diffusively, measuring CO2 fluxes is challenging. Therefore, fluxes are usually derived from grids of in-situ measurements, which are labour intensive measurements. Other than a safe measurement distance, remote sensing offers quick, spatially integrated and thus a more thorough measurement of gas fluxes. Active remote sensing combines these merits with operation independent of sunlight or clear sky conditions. Due to their weight and size, active remote sensing platforms for CO2, such as LIDAR, cannot easily be applied in the field or transported overseas. Moreover, their complexity requires a rather lengthy setup procedure to be undertaken by skilled personal. To meet the need for a rugged, practical CO2 remote sensing technique to scan volcanic plumes, we have developed the CO2 LIDAR. It measures 1-D column densities of CO2 with sufficient sensitivity to reveal the contribution of magmatic CO2. The CO2 LIDAR has been mounted inside a small aircraft and used to measure atmospheric column CO2 concentrations between the aircraft and the ground. It was further employed on the ground, measuring CO2 emissions from mud volcanism. During the measurement campaign the CO2 LIDAR demonstrated reliability, portability, quick set-up time (10 to 15 min) and platform independence. This new technique opens the possibility of rapid, comprehensive surveys of point source, open-vent CO2 emissions, as well as emissions from more diffuse sources such as lakes and fumarole fields. Currently, within the proof-of-concept ERC project CarbSens, a further reduction in size, weight and operational complexity is underway with the goal to commercialize the platform. Areas of potential applications include fugitive

  13. Large-scale studies of ion acceleration in laser-generated plasma at intensities from 1010 W/cm2 to 1019 W/cm2

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2018-02-01

    A large-scale study of ion acceleration in laser-generated plasma, extended to intensities from 1010 W/cm2 up to 1019 W/cm2, is presented. Aluminium thick and thin foils were irradiated in high vacuum using different infrared lasers and pulse durations from ns up to fs scale. Plasma was monitored mainly using SiC detectors employed in time-of-flight configuration. Protons and aluminium ions, at different energies and yields, were measured as a function of the laser intensity. The discontinuity region between particle acceleration from both the backward plasma (BPA) in thick targets and the forward plasma in thin foils in the target normal sheath acceleration (TNSA) regimes were investigated.

  14. Preparation and characterization of Cu2SnS3 thin films by electrodeposition

    NASA Astrophysics Data System (ADS)

    Patel, Biren; Narasimman, R.; Pati, Ranjan K.; Mukhopadhyay, Indrajit; Ray, Abhijit

    2018-05-01

    Cu2SnS3 thin films were electrodeposited on F:SnO2/Glass substrates at room temperature by using aqueous solution. Copper and tin were first electrodeposited from single bath and post annealed in the presence of sulphur atmosphere to obtain the Cu2SnS3 phase. The Cu2SnS3 phase with preferred orientation along the (112) crystal direction grows to greater extent by the post annealing of the film. Raman analysis confirms the monoclinic crystal structure of Cu2SnS3 with principle mode of vibration as A1 (symmetric breathing mode) corresponding to the band at 291 cm-1. It also reveals the benign coexistence of orthorhombic Cu3SnS4 and Cu2SnS7 phases. Optical properties of the film show direct band gap of 1.25 eV with a high absorption coefficient of the order of 104 cm-1 in the visible region. Photo activity of the electrodeposited film was established in two electrode photoelectro-chemical cell, where an open circuit voltage of 91.6 mV and a short circuit current density of 10.6 µA/cm2 were recorded. Fabrication of Cu2SnS3 thin film heterojunction solar cell is underway.

  15. Differentiation of nonneoplastic and neoplastic gallbladder polyps 1 cm or bigger with multi-detector row computed tomography.

    PubMed

    Park, Ko Woon; Kim, Seong Hyun; Choi, Seong Ho; Lee, Won Jae

    2010-01-01

    To evaluate useful computed tomographic features to differentiate nonneoplastic and neoplastic gallbladder polyps 1 cm or bigger. Thirty-one patients with 32 nonneoplastic polyps and 67 patients with 73 neoplastic polyps 1 cm or bigger underwent unenhanced and dual-phase (arterial and portal venous phases) multi-detector row computed tomography. Gallbladder polyps were diagnosed by cholecystectomy. Computed tomographic features including size (1.5 or >1.5 cm), surface (smooth or irregular), shape (pedunculated or sessile), accompanying wall thickening, basal indentation, perception on unenhanced images, and enhancement pattern between 2 groups were compared using univariate and multivariate analyses. On univariate analysis, age 55 years or older (P = 0.0019), size bigger than 1.5 cm (P < 0.0001), irregular surface (P = 0.0033), sessile shape (P = 0.0016), accompanying wall thickening (P = 0.0056), basal indentation (P = 0.0236), and perception on unenhanced images (P < 0.0001) were significantly more frequent in neoplastic polyps as compared with nonneoplastic polyps. On multivariate analysis, size bigger than 1.5 cm (P = 0.0260), sessile shape (P = 0.0397), and perception on unenhanced images (P < 0.0001) were statistically significant. Size bigger than 1.5 cm, sessile shape, and perception on unenhanced images are the main factors that differentiate neoplastic from nonneoplastic gallbladder polyps 1 cm or bigger.

  16. Transdermal penetration of vasoconstrictors--present understanding and assessment of the human epidermal flux and retention of free bases and ion-pairs.

    PubMed

    Cross, Sheree E; Thompson, Melanie J; Roberts, Michael S

    2003-02-01

    As reductions in dermal clearance increase the residence time of solutes in the skin and underlying tissues we compared the topical penetration of potentially useful vasoconstrictors (VCs) through human epidermis as both free bases and ion-pairs with salicylic acid (SA). We determined the in vitro epidermal flux of ephedrine, naphazoline, oxymetazoline, phenylephrine, and xylometazoline applied as saturated solutions in propylene glycol:water (1:1) and of ephedrine, naphazoline and tetrahydrozoline as 10% solutions of 1:1 molar ratio ion-pairs with SA in liquid paraffin. As free bases, ephedrine had the highest maximal flux, Jmax = 77.4 +/- 11.7 microg/cm2/h, being 4-fold higher than tetrahydrozoline and xylometazoline, 6-fold higher than phenylephrine, 10-fold higher than naphazoline and 100-fold higher than oxymetazoline. Stepwise regression of solute physicochemical properties identified melting point as the most significant predictor of flux. As ion-pairs with SA, ephedrine and naphazoline had similar fluxes (11.5 +/- 2.3 and 12.0 +/- 1.6 microg/cm2/h respectively), whereas tetrahydrozoline was approximately 3-fold slower. Corresponding fluxes of SA from the ion-pairs were 18.6 +/- 0.6, 7.8+/- 0.8 and 1.1 +/- 0.1 respectively. Transdermal transport of VC's is discussed. Epidermal retention of VCs and SA did not correspond to their molar ratio on application and confirmed that following partitioning into the stratum corneum, ion-pairs separate and further penetration is governed by individual solute characteristics.

  17. [Partial pressure of CO2 and CO2 degassing fluxes of Huayuankou and Xiaolangdi Station affected by Xiaolangdi Reservoir].

    PubMed

    Zhang, Yong-ling; Yang, Xiao-lin; Zhang, Dong

    2015-01-01

    According to periodic sampling analysis per month in Xiaolangdi station and Huayuankou station from November 2011 to October 2012, combined with continuous sampling analysis of Xiaolangdi Reservoir during runoff and sediment control period in 2012, partial pressure of CO2 (pCO2) in surface water were calculated based on Henry's Law, pCO2 features and air-water CO2 degassing fluxes of Huayuankou station and Xiaolangdi station affected by Xiaolangdi Reservoir were studied. The results were listed as follows, when Xiaolangdi Reservoir operated normally, pCO2 in surface water of Xiaolangdi station and Huayuankou station varied from 82 to 195 Pa and from 99 to 228 Pa, moreover, pCO2 in surface water from July to September were distinctly higher than those in other months; meanwhile, pCO, in surface water from Huayuankou station were higher than that from Xiaolangdi station. During runoff and sediment control period of Xiaolangdi Reservoir, two hydrological stations commonly indicated that pCO2 in surface water during water draining were obviously lower than those during sediment releasing. Whether in the period of normal operation or runoff and sediment control, pCO2 in surface water had positive relations to DIC content in two hydrological stations. Since the EpCO,/AOU value was higher than the theoretical value of 0. 62, the biological aerobic respiration effect had distinct contribution to pCO2. Throughout the whole year, air-water CO2 degassing fluxes from Xiaolangdi station and Huayuankou station were 0.486 p.mol (m2 s) -l and 0.588 pmol (m2 x s)(-1) respectively; When Xiaolangdi Reservoir operated normally, air-water CO, degassing fluxes in Huayuankou station were higher than that in Xiaolangdi station; during runoff and sediment control from Xiaolangdi Reservoir, two hydrological stations had one observation result in common, namely, air-water CO2 degassing fluxes in the period of water draining were obviously lower than that in the period of sediment releasing.

  18. Enhanced carrier mobility of multilayer MoS2 thin-film transistors by Al2O3 encapsulation

    NASA Astrophysics Data System (ADS)

    Kim, Seong Yeoul; Park, Seonyoung; Choi, Woong

    2016-10-01

    We report the effect of Al2O3 encapsulation on the carrier mobility and contact resistance of multilayer MoS2 thin-film transistors by statistically investigating 70 devices with SiO2 bottom-gate dielectric. After Al2O3 encapsulation by atomic layer deposition, calculation based on Y-function method indicates that the enhancement of carrier mobility from 24.3 cm2 V-1 s-1 to 41.2 cm2 V-1 s-1 occurs independently from the reduction of contact resistance from 276 kΩ.μm to 118 kΩ.μm. Furthermore, contrary to the previous literature, we observe a negligible effect of thermal annealing on contact resistance and carrier mobility during the atomic layer deposition of Al2O3. These results demonstrate that Al2O3 encapsulation is a useful method of improving the carrier mobility of multilayer MoS2 transistors, providing important implications on the application of MoS2 and other two-dimensional materials into high-performance transistors.

  19. A Study of Mid-Latitude 5577A CI Dayglow Emissions

    DTIC Science & Technology

    1992-01-01

    The subroutine returns the longwave and shortwave boundaries, WAVE1 and WAVE2 , of the wavelength bins (A), and the solar flux in each bin SFLUX...average 10.7 cm flux (’) C FLYA H Lyman-alpha flux (photons cm-2 s-i) C WAVE 1 longwave bound of spectral intervals (Angstroms) C WAVE2 shortwave bound...currently = 59 C WAVEL = WAVE1 C WAVES = WAVE2 C RFLUX low solar activity reference flux C XFLUX high solar activity flux C SCALE1 scaling factors for H LyB

  20. Precision Laser Spectroscopic Measurement of Helium -4(1S2S S(3) to 1S2P P(3)) Lamb Shift and Fine Structure

    NASA Astrophysics Data System (ADS)

    Dixson, Ronald Gene

    This thesis is a presentation of the results of a precise measurement of the absolute wavelength and fine structure splitting of the 1s2s ^3S to 1s2p ^3P transition of the ^4He atom. The experiment described in this thesis is the first one in which laser spectroscopy has been done on the 2 ^3S to 2^3 P transition in a metastable atomic beam. The energy interval between the 2^3S and the 2^3P state is precisely determined by comparison of the absolute wavelength of the transition with our standard laser (an iodine stabilized He-Ne laser with an accuracy of 1.6 parts in 10^{10 }) in a Fabry-Perot interferometer. The experimental Lamb shift of the transition is determined by subtracting from the measured frequency the precisely known non-quantum electrodynamic contributions to the theoretical value of the interval. From our measurements of the absolute wavelength, the following weighted (2J + 1) average for the 2^3S to 2^3P transition frequency and experimental Lamb Shift are obtained:eqalign{& rm f_{2S{-}2P} = 276 736 495.59 (5) rm MHz.cr& {bf L}[ 2^3Sto2 ^3P] = 5311.26 (5) rm MHz.cr} Our value for the Lamb Shift is in agreement with the best previous measurement but a factor of 60 more precise. It is also two orders of magnitude more precise than the present theoretical calculation, presenting quite a challenge to theorists. Nevertheless, this work is very timely since it is anticipated (DRA94) (MOR94) that the theory will reach this level in the near future. The measured fine structure splittings of the 2^3P level are: eqalign{rm 2^3P_0to rm2^3P_2 &: 31908.135 (3) rm MHzcrrm 2^3P_1to rm2^3P_2 &: sk{5}2291.173 (3) rm MHz}These results are more precise than previous microwave measurements and in significant disagreement with them, a situation which is especially timely and interesting since new theoretical calculations of these fine structure intervals (DRA94) at this level of precision are nearing completion.