Sample records for s-alkyl organophosphorus insecticides

  1. Organophosphorus Insecticide Pharmacokinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Charles

    2010-01-01

    This chapter highlights a number of current and future applications of pharmacokinetics to assess organophosphate (OP) insecticide dosimetry, biological response and risk in humans exposed to these agents. Organophosphates represent a large family of pesticides where insecticidal as well as toxicological mode of action is associated with their ability to target and inhibit acetylcholinesterase (AChE). Pharmacokinetics entails the quantitative integration of physiological and metabolic processes associated with the absorption, distribution, metabolism and excretion (ADME) of drugs and xenobiotics. Pharmacokinetic studies provide important data on the amount of toxicant delivered to a target site as well as species-, age-, gender-specific andmore » dose-dependent differences in biological response. These studies have been conducted with organophosphorus insecticides in multiple species, at various dose levels, and across different routes of exposure to understand their in vivo pharmacokinetics and how they contribute to the observed toxicological response. To access human exposure to organophosphorus insecticides, human pharmacokinetic studies have been conducted and used to develop biological monitoring strategies based on the quantitation of key metabolites in biological fluids. Pharmacokinetic studies with these insecticides are also useful to facilitate extrapolation of dosimetry and biological response from animals to humans and for the assessment of human health risk. In this regard, physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) models are being utilized to assess risk and understand the toxicological implications of known or suspected exposures to various insecticides. In this chapter a number of examples are presented that illustrate the utility and limitation of pharmacokinetic studies to address human health concerns associated with organophosphorus insecticides.« less

  2. Detection and determination of organophosphorus insecticides in tissues by thin-layer chromatography.

    PubMed

    Tewari, S N; Harpalani, S P

    1977-01-11

    The toxicological analysis of 12 common organophosphorus insecticides is described. Suitable methods for the extraction of organophosphorus insecticides from tissues are proposed. The detection, identification and estimation of these insecticides by thin-layer chromatography is described for 25 solvent systems and a series of chromogenic reagents. The distribution of insecticides in human body tissues in five cases of poisoning by ethyl parathion, malathion, dimethoate, sumithion and phosphamidon has also been studied.

  3. Differences between organophosphorus insecticides in human self-poisoning: a prospective cohort study.

    PubMed

    Eddleston, Michael; Eyer, Peter; Worek, Franz; Mohamed, Fahim; Senarathna, Lalith; von Meyer, Ludwig; Juszczak, Edmund; Hittarage, Ariyasena; Azhar, Shifa; Dissanayake, Wasantha; Sheriff, M H Rezvi; Szinicz, Ladislaus; Dawson, Andrew H; Buckley, Nick A

    Although more than 100 organophosphorus insecticides exist, organophosphorus poisoning is usually regarded as a single entity, distinguished only by the compound's lethal dose in animals. We aimed to determine whether the three most common organophosphorus insecticides used for self-poisoning in Sri Lanka differ in the clinical features and severity of poisoning they cause. We prospectively studied 802 patients with chlorpyrifos, dimethoate, or fenthion self-poisoning admitted to three hospitals. Blood cholinesterase activity and insecticide concentration were measured to determine the compound and the patients' response to insecticide and therapy. We recorded clinical outcomes for each patient. Compared with chlorpyrifos (35 of 439, 8.0%), the proportion dying was significantly higher with dimethoate (61 of 264, 23.1%, odds ratio [OR] 3.5, 95% CI 2.2-5.4) or fenthion (16 of 99, 16.2%, OR 2.2, 1.2-4.2), as was the proportion requiring endotracheal intubation (66 of 439 for chlorpyrifos, 15.0%; 93 of 264 for dimethoate, 35.2%, OR 3.1, 2.1-4.4; 31 of 99 for fenthion, 31.3%, 2.6, 1.6-4.2). Dimethoate-poisoned patients died sooner than those ingesting other pesticides and often from hypotensive shock. Fenthion poisoning initially caused few symptoms but many patients subsequently required intubation. Acetylcholinesterase inhibited by fenthion or dimethoate responded poorly to pralidoxime treatment compared with chlorpyrifos-inhibited acetylcholinesterase. Organophosphorus insecticide poisoning is not a single entity, with substantial variability in clinical course, response to oximes, and outcome. Animal toxicity does not predict human toxicity since, although chlorpyrifos is generally the most toxic in rats, it is least toxic in people. Each organophosphorus insecticide should be considered as an individual poison and, consequently, patients might benefit from management protocols developed for particular organophosphorus insecticides.

  4. [Perspectives in the treatments of poisonings by organophosphorus insecticides and warfare nerve agents].

    PubMed

    Sogorb-Sánchez, M A; Vilanova-Gisbert, E; Carrera-González, V

    Organophosphorus compounds are worldwide employed as insecticides and are yearly responsible of several millions of poisonings. The chemical structure of most of the warfare nerve agents also corresponds with an organophosphorus compound. Organophosphorus insecticides and warfare nerve agents exert their main toxicological effects through inhibition of acetylcholinesterase. Current treatments of patients poisoned with organophosphorus compounds include atropine (in order to protect muscarinic receptors), oximes (in order to accelerate the reactivation of the inhibited acetylcholinesterase) and benzodiazepines (in order to avoid convulsions). The administration of phosphotriesterases (enzymes involved in the detoxication of organophosphorus compounds through hydrolysis) is a very effective treatment against poisonings by organophosphorus insecticides and warfare nerve agents. There are experimental preventive treatments based on the simultaneous administration of carbamates and certain antimuscarinic drugs, different from atropine, which notably improve the efficacy of the classical treatments applied after poisonings by warfare nerve agents. The treatments based in the administration of phosphotriesterases might be the response to the call of the World Health Organization for searching new treatments with capability to reduce the high mortality recorded in the cases of poisonings by organophosphorus compounds. These treatments can be applied in a preventive way without the intrinsic neurotoxicity associated to the preventive treatments based on carbamates and antimuscarinic drugs. Therefore, these treatments are specially interesting for people susceptible to suffer severe exposures, i.e. sprayers in the farms.

  5. Effectiveness of organo-phosphorus insecticides against houseflies and mosquitos

    PubMed Central

    Lindquist, A. W.

    1957-01-01

    The paper describes the research being undertaken on organo-phosphorus insecticides for the control of houseflies and mosquitos. The information obtained from laboratory and field tests indicates that these insecticides are at present effective substitutes for DDT and other chlorinated-hydrocarbon insecticides for use against resistant houseflies and culicine mosquitos, but the residual applications are not as long lasting as those of DDT and therefore will probably not be as efficient in anopheline control. PMID:13413645

  6. The role of glutathione S-transferases in the detoxification of some organophosphorus insecticides in larvae and pupae of the yellow mealworm, Tenebrio molitor (Coleoptera: Tenebrionidae).

    PubMed

    Kostaropoulos, I; Papadopoulos, A I; Metaxakis, A; Boukouvala, E; Papadopoulou-Mourkidou, E

    2001-06-01

    The correlation between the natural levels of glutathione S-transferase (GST) and the tolerance to the organophosphorus insecticides parathion-methyl and paraoxon-methyl, as well as the interaction of affinity-purified enzyme and the insecticides were investigated in order to collect further information on the role of the glutathione S-transferase system as a mechanism of defence against insecticides in insects. The studies were carried out on the larvae and pupae of the coleopteran Tenebrio molitor L, which exhibit varying natural levels of GST activity. Stage-dependent susceptibility of the insect against insecticides was observed during the first 24 h. However, 48 h after treatment, the KD50 value increased significantly due to the recovery of some individuals. Simultaneous injection of insecticide with compounds which inhibit GST activity in vitro caused an alteration in susceptibility of insects 24 or 48 h post-treatment, depending on stage and insecticide used. Inhibition studies combined with competitive fluorescence spectroscopy revealed that the insecticides probably bind to the active site of the enzyme, thus inhibiting its activity towards 1-chloro-2,4-dinitrobenzene in a competitive manner. High-performance liquid chromatography and gas chromatography revealed that T molitor GST catalyses the conjugation of the insecticides studied to a reduced form of glutathione (GSH). From the above experimental results, it is considered that GST offers a protection against the organophosphorus insecticides studied by active site binding and subsequent conjugation with GSH.

  7. Inhibition of Phenylamide Hydrolysis by Bacillus sphaericus with Methylcarbamate and Organophosphorus Insecticides

    PubMed Central

    Engelhardt, G.; Wallnöfer, P. R.

    1975-01-01

    The degradation of the phenylamide herbicides monolinuron, linuron, and solan by cultures of Bacillus sphaericus ATCC 12123 was inhibited by the methylcarbamate insecticides metmercapturon, aldicarb, propoxur, and carbaryl and by the organophosphorus insecticides fenthion and parathion. The extent of inhibition was largest with metmercapturon and smallest with parathion. Inhibition of hydrolysis of the two phenylurea herbicides was greater than of the acylanilide compound. Tests with crude enzyme preparations of aryl acylamidase derived from B. sphaericus showed that the inhibition of the hydrolysis of linuron with methylcarbamates is a competitive one. The insecticides tested did not induce the enzyme, nor could they serve as its substrate. PMID:1155931

  8. Osmoregulatory function in ducks following ingestion of the organophosphorus insecticide fenthion

    USGS Publications Warehouse

    Rattner, B.A.; Fleming, W.J.; Murray, H.C.

    1983-01-01

    Salt gland function and osmoregulation in aquatic birds drinking hyperosmotic water has been suggested to be impaired by organophosphorus insecticides. To test this hypothesis, adult black ducks (Anas rubripes) were provided various regimens of fresh or salt (1.5% NaCl) water before, during, and after ingestion of mash containing 21 ppm fenthion. Ducks were bled by jugular venipuncture after I, 7. and 12 days of treatment, and were then killed. Brain and salt gland acetylcholinesterase activities were substantially inhibited (44-61% and 14-36%) by fenthion. However, salt gland weight and Na + -K + -ATPase activity, and plasma Na + , CI- , and osmolality, were uniformly elevated in all groups receiving salt water including those ingesting fenthion. In a second study, salt gland Na + -K + -ATPase activity in mallards (A. platyrhynchos) was not affected after in vitro incubation with either fenthion or fenthion oxon at concentrations ranging from 0.04 to 400 ?M, but was reduced in the presence of 40 and 400 ?M DDE (positive control). These findings suggest that environmentally realistic concentrations of organophosphorus insecticides do not markedly affect osmoregulatory function in adult black ducks.

  9. Degradation of Organophosphorus and Pyrethroid Insecticides in Beverages: Implications for Risk Assessment.

    PubMed

    Radford, Samantha A; Panuwet, Parinya; Hunter, Ronald E; Barr, Dana Boyd; Ryan, P Barry

    2018-02-02

    Since urinary insecticide metabolites are commonly used as biomarkers of exposure, it is important that we quantify whether insecticides degrade in food and beverages in order to better perform risk assessment. This study was designed to quantify degradation of organophosphorus and pyrethroid insecticides in beverages. Purified water, white grape juice, orange juice, and red wine were fortified with 500 ng/mL diazinon, malathion, chlorpyrifos, permethrin, cyfluthrin, cypermethrin, and deltamethrin, and aliquots were extracted several times over a 15-day storage period at 2.5 °C. Overall, statistically significant loss of at least one insecticide was observed in each matrix, and at least five out of seven insecticides demonstrated a statistically significant loss in all matrices except orange juice. An investigation of an alternative mechanism of insecticide loss-adsorption onto the glass surface of the storage jars-was carried out, which indicated that this mechanism of loss is insignificant. Results of this work suggest that insecticides degrade in these beverages, and this degradation may lead to pre-existing insecticide degradates in the beverages, suggesting that caution should be exercised when using urinary insecticide metabolites to assess exposure and risk.

  10. Degradation of Organophosphorus and Pyrethroid Insecticides in Beverages: Implications for Risk Assessment

    PubMed Central

    Panuwet, Parinya; Hunter, Ronald E.; Barr, Dana Boyd; Ryan, P. Barry

    2018-01-01

    Since urinary insecticide metabolites are commonly used as biomarkers of exposure, it is important that we quantify whether insecticides degrade in food and beverages in order to better perform risk assessment. This study was designed to quantify degradation of organophosphorus and pyrethroid insecticides in beverages. Purified water, white grape juice, orange juice, and red wine were fortified with 500 ng/mL diazinon, malathion, chlorpyrifos, permethrin, cyfluthrin, cypermethrin, and deltamethrin, and aliquots were extracted several times over a 15-day storage period at 2.5 °C. Overall, statistically significant loss of at least one insecticide was observed in each matrix, and at least five out of seven insecticides demonstrated a statistically significant loss in all matrices except orange juice. An investigation of an alternative mechanism of insecticide loss—adsorption onto the glass surface of the storage jars—was carried out, which indicated that this mechanism of loss is insignificant. Results of this work suggest that insecticides degrade in these beverages, and this degradation may lead to pre-existing insecticide degradates in the beverages, suggesting that caution should be exercised when using urinary insecticide metabolites to assess exposure and risk. PMID:29393904

  11. Organophosphorus and carbamate pesticides

    USGS Publications Warehouse

    Glaser, L.C.

    1999-01-01

    The insecticidal properties of organophosphorus (OP) and carbamate compounds were first discovered in the 1930s, and the compounds were developed for pesticide use in the 1940s. They have been used increasingly since the 1970s when environmentally persistent organochlorine pesticides, such as DDT and dieldrin, were banned for use in the United States. Organophosphorus and carbamate pesticides are generally short-lived in the environment (usually lasting only days to months instead of years) and, generally, chemical breakdown is accelerated as temperatures or pH or both increase.

  12. Effective countermeasure against poisoning by organophosphorus insecticides and nerve agents

    PubMed Central

    Albuquerque, Edson X.; Pereira, Edna F. R.; Aracava, Yasco; Fawcett, William P.; Oliveira, Maristela; Randall, William R.; Hamilton, Tracey A.; Kan, Robert K.; Romano, James A.; Adler, Michael

    2006-01-01

    The nerve agents soman, sarin, VX, and tabun are deadly organophosphorus (OP) compounds chemically related to OP insecticides. Most of their acute toxicity results from the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that inactivates the neurotransmitter acetylcholine. The limitations of available therapies against OP poisoning are well recognized, and more effective antidotes are needed. Here, we demonstrate that galantamine, a reversible and centrally acting AChE inhibitor approved for treatment of mild to moderate Alzheimer’s disease, protects guinea pigs from the acute toxicity of lethal doses of the nerve agents soman and sarin, and of paraoxon, the active metabolite of the insecticide parathion. In combination with atropine, a single dose of galantamine administered before or soon after acute exposure to lethal doses of soman, sarin, or paraoxon effectively and safely counteracted their toxicity. Doses of galantamine needed to protect guinea pigs fully against the lethality of OPs were well tolerated. In preventing the lethality of nerve agents, galantamine was far more effective than pyridostigmine, a peripherally acting AChE inhibitor, and it was less toxic than huperzine, a centrally acting AChE inhibitor. Thus, a galantamine-based therapy emerges as an effective and safe countermeasure against OP poisoning. PMID:16914529

  13. THE INTERACTION OF AN ANTICHOLINESTERASE INSECTICIDE, DIAZINON, WITH A PYRETHROID INSECTICIDE, DELTAMETHRIN.

    EPA Science Inventory

    This present study explores the interaction of the toxicity induced by an organophosphorus insecticide, diazinon (diethyl 2-isopropyl-6methyl-4-pyrimidal phosphorothionate), with a pyrethroid insecticide, deltamethrin ((S)-a-cyano-3-phenoxybenzyl (1R,3R)-3-(2,2-dibromovinyl)-2,...

  14. Organophosphorus insecticide induced decrease in plasma luteinizing hormone concentration in white-footed mice

    USGS Publications Warehouse

    Rattner, B.A.; Michael, S.D.

    1985-01-01

    Oral intubation of 50 and 100 mg/kg acephate inhibited brain acetylcholinesterase (AChE) activity by 45% and 56%, and reduced basal luteinizing hormone (LH) concentration by 29% and 25% after 4 h in white-footed mice (Peromyscus leucopus noveboracensis). Dietary exposure to 25, 100, and 400 ppm acephate for 5 days substantially inhibited brain AChE activity, but did not affect plasma LH concentration. These preliminary findings suggest that acute exposure to organophosphorus insecticides may affect LH secretion and possibly reproductive function.

  15. THE ANTICHOLINESTERASE INSECTICIDE, DIAZINON, MAY POTENTIATE THE TOXICITY OF THE PYRETHROID INSECTICIDE DELTAMETHRIN AT LOW DOSAGES.

    EPA Science Inventory

    This present study explores the interaction of the toxicity induced by an organophosphorus insecticide, diazinon (diethyl 2-isopropyl-6methyl-4-pyrimidal phosphorothionate), with a pyrethroid insecticide, deltamethrin ((S)-a-cyano-3-phenoxybenzyl (1R,3R)-3-(2,2-dibromovinyl)-2,...

  16. Pharmacological treatment of organophosphorus insecticide poisoning: the old and the (possible) new.

    PubMed

    Eddleston, Michael; Chowdhury, Fazle Rabbi

    2016-03-01

    Despite being a major clinical and public health problem across the developing world, responsible for at least 5 million deaths over the last three decades, the clinical care of patients with organophosphorus (OP) insecticide poisoning has little improved over the last six decades. We are still using the same two antidotes - atropine and oximes - that first came into clinical use in the late 1950s. Clinical research in South Asia has shown how improved regimens of atropine can prevent deaths. However, we are still unsure about which patients are most likely to benefit from the use of oximes. Supplemental antidotes, such as magnesium, clonidine and sodium bicarbonate, have all been proposed and studied in small trials without production of definitive answers. Novel antidotes such as nicotinic receptor antagonists, beta-adrenergic agonists and lipid emulsions are being studied in large animal models and in pilot clinical trials. Hopefully, one or more of these affordable and already licensed antidotes will find their place in routine clinical care. However, the large number of chemically diverse OP insecticides, the varied poisoning they produce and their varied response to treatment might ultimately make it difficult to determine definitively whether these antidotes are truly effective. In addition, the toxicity of the varied solvents and surfactants formulated with the OP active ingredients complicates both treatment and studies. It is possible that the only effective way to reduce deaths from OP insecticide poisoning will be a steady reduction in their agricultural use worldwide. © 2015 The British Pharmacological Society.

  17. USE OF PBPK MODELS FOR ASSESSING ABSORBED DOSE AND CHE INHIBITION FROM AGGREGATE EXPOSURE OF INFANTS AND CHILDREN TO ORGANOPHOSPHORUS INSECTICIDES

    EPA Science Inventory

    A physiological pharmacokinetic (PBPK) modeling framework has been established to assess cumulative risk of dose and injury of infants and children to organophosphorus (OP) insecticides from aggregate sources and routes. Exposure inputs were drawn from all reasonable sources, pr...

  18. Revealing chemophoric sites in organophosphorus insecticides through the MIA-QSPR modeling of soil sorption data.

    PubMed

    Daré, Joyce K; Silva, Cristina F; Freitas, Matheus P

    2017-10-01

    Soil sorption of insecticides employed in agriculture is an important parameter to probe the environmental fate of organic chemicals. Therefore, methods for the prediction of soil sorption of new agrochemical candidates, as well as for the rationalization of the molecular characteristics responsible for a given sorption profile, are extremely beneficial for the environment. A quantitative structure-property relationship method based on chemical structure images as molecular descriptors provided a reliable model for the soil sorption prediction of 24 widely used organophosphorus insecticides. By means of contour maps obtained from the partial least squares regression coefficients and the variable importance in projection scores, key molecular moieties were targeted for possible structural modification, in order to obtain novel and more environmentally friendly insecticide candidates. The image-based descriptors applied encode molecular arrangement, atoms connectivity, groups size, and polarity; consequently, the findings in this work cannot be achieved by a simple relationship with hydrophobicity, usually described by the octanol-water partition coefficient. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effective countermeasure against poisoning by organophosphorus insecticides and nerve agents.

    PubMed

    Albuquerque, Edson X; Pereira, Edna F R; Aracava, Yasco; Fawcett, William P; Oliveira, Maristela; Randall, William R; Hamilton, Tracey A; Kan, Robert K; Romano, James A; Adler, Michael

    2006-08-29

    The nerve agents soman, sarin, VX, and tabun are deadly organophosphorus (OP) compounds chemically related to OP insecticides. Most of their acute toxicity results from the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that inactivates the neurotransmitter acetylcholine. The limitations of available therapies against OP poisoning are well recognized, and more effective antidotes are needed. Here, we demonstrate that galantamine, a reversible and centrally acting AChE inhibitor approved for treatment of mild to moderate Alzheimer's disease, protects guinea pigs from the acute toxicity of lethal doses of the nerve agents soman and sarin, and of paraoxon, the active metabolite of the insecticide parathion. In combination with atropine, a single dose of galantamine administered before or soon after acute exposure to lethal doses of soman, sarin, or paraoxon effectively and safely counteracted their toxicity. Doses of galantamine needed to protect guinea pigs fully against the lethality of OPs were well tolerated. In preventing the lethality of nerve agents, galantamine was far more effective than pyridostigmine, a peripherally acting AChE inhibitor, and it was less toxic than huperzine, a centrally acting AChE inhibitor. Thus, a galantamine-based therapy emerges as an effective and safe countermeasure against OP poisoning.

  20. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms

    PubMed Central

    Burke, Richard D.; Todd, Spencer W.; Lumsden, Eric; Mullins, Roger J.; Mamczarz, Jacek; Fawcett, William P.; Gullapalli, Rao P.; Randall, William R.; Pereira, Edna F. R.; Albuquerque, Edson X.

    2017-01-01

    Organophosphorus (OP) insecticides are pest-control agents heavily used worldwide. Unfortunately, they are also well known for the toxic effects that they can trigger in humans. Clinical manifestations of an acute exposure of humans to OP insecticides include a well-defined cholinergic crisis that develops as a result of the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes the neurotransmitter acetylcholine (ACh). Prolonged exposures to levels of OP insecticides that are insufficient to trigger signs of acute intoxication, which are hereafter referred to as subacute exposures, have also been associated with neurological deficits. In particular, epidemiological studies have reported statistically significant correlations between prenatal subacute exposures to OP insecticides, including chlorpyrifos, and neurological deficits that range from cognitive impairments to tremors in childhood. The primary objectives of this article are: (i) to address the short- and long-term neurological issues that have been associated with acute and subacute exposures of humans to OP insecticides, especially early in life (ii) to discuss the translational relevance of animal models of developmental exposure to OP insecticides, and (iii) to review mechanisms that are likely to contribute to the developmental neurotoxicity of OP insecticides. Most of the discussion will be focused on chlorpyrifos, the top-selling OP insecticide in the United States and throughout the world. These points are critical for the identification and development of safe and effective interventions to counter and/or prevent the neurotoxic effects of these chemicals in the developing brain. PMID:28791702

  1. Respiratory Complications of Organophosphorus Nerve Agent and Insecticide Poisoning. Implications for Respiratory and Critical Care

    PubMed Central

    Hulse, Elspeth J.; Davies, James O. J.; Simpson, A. John; Sciuto, Alfred M.

    2014-01-01

    Organophosphorus (OP) compound poisoning is a major global public health problem. Acute OP insecticide self-poisoning kills over 200,000 people every year, the majority from self-harm in rural Asia. Highly toxic OP nerve agents (e.g., sarin) are a significant current terrorist threat, as shown by attacks in Damascus during 2013. These anticholinesterase compounds are classically considered to cause an acute cholinergic syndrome with decreased consciousness, respiratory failure, and, in the case of insecticides, a delayed intermediate syndrome that requires prolonged ventilation. Acute respiratory failure, by central and peripheral mechanisms, is the primary cause of death in most cases. However, preclinical and clinical research over the last two decades has indicated a more complex picture of respiratory complications after OP insecticide poisoning, including onset of delayed neuromuscular junction dysfunction during the cholinergic syndrome, aspiration causing pneumonia and acute respiratory distress syndrome, and the involvement of solvents in OP toxicity. The treatment of OP poisoning has not changed over the last 50 years. However, a better understanding of the multiple respiratory complications of OP poisoning offers additional therapeutic opportunities. PMID:25419614

  2. Case histories of bald eagles and other raptors killed by organophosphorus insecticides topically applied to livestock

    USGS Publications Warehouse

    Henny, C.J.; Kolbe, E.J.; Hill, E.F.; Blus, L.J.

    1987-01-01

    Since 1982 when secondary poisoning of a red-tailed hawk (Buteo jamaicensis) was documented following the recommended use of famphur applied topically to cattle, the Patuxent Wildlife Research Center has tested dead birds of prey for poisoning by famphur and other pour-on organophosphorus (OP) insecticides. Brain cholinesterase (ChE) activity was first determined, then if ChE was depressed greater than or equal to 50%, stomach and/or crop contents were evaluated for anti-ChE compounds. This report presents the circumstances surrounding the OP-caused deaths of eight bald eagles (Haliaeetus leucocephalus), two red-tailed hawks, and one great horned owl (Bubo virginianus) between March 1984 and March 1985. OP poisoning of raptors by pour-on insecticides in the United States is widespread, but its magnitude is unknown.

  3. Case histories of bald eagles and other raptors killed by organophosphorus insecticides topically applied to livestock.

    PubMed

    Henny, C J; Kolbe, E J; Hill, E F; Blus, L J

    1987-04-01

    Since 1982 when secondary poisoning of a red-tailed hawk (Buteo jamaicensis) was documented following the recommended use of famphur applied topically to cattle, the Patuxent Wildlife Research Center has tested dead birds of prey for poisoning by famphur and other pour-on organophosphorus (OP) insecticides. Brain cholinesterase (ChE) activity was first determined, then if ChE was depressed greater than or equal to 50%, stomach and/or crop contents were evaluated for anti-ChE compounds. This report presents the circumstances surrounding the OP-caused deaths of eight bald eagles (Haliaeetus leucocephalus), two red-tailed hawks, and one great horned owl (Bubo virginianus) between March 1984 and March 1985. OP poisoning of raptors by pour-on insecticides in the United States is widespread, but its magnitude is unknown.

  4. Validation of an SPME method, using PDMS, PA, PDMS-DVB, and CW-DVB SPME fiber coatings, for analysis of organophosphorus insecticides in natural waters.

    PubMed

    Lambropoulou, D A; Sakkas, V A; Albanis, T A

    2002-11-01

    Solid-phase microextraction (SPME) has been optimized and applied to the determination of the organophosphorus insecticides diazinon, dichlofenthion, parathion methyl, malathion, fenitrothion, fenthion, parathion ethyl, bromophos methyl, bromophos ethyl, and ethion in natural waters. Four types of SPME fiber coated with different stationary phases (PDMS, PA, PDMS-DVB, and CW-DVB) were used to examine their extraction efficiencies for the compounds tested. Conditions that might affect the SPME procedure, such as extraction time and salt content, were investigated to determine the analytical performance of these fiber coatings for organophosphorus insecticides. The optimized procedure was applied to natural waters - tap, sea, river, and lake water - spiked in the concentration range 0.5 to 50 micro g L(-1) to obtain the analytical characteristics. Recoveries were relatively high - >80% for all types of aqueous sample matrix - and the calibration plots were reproducible and linear (R(2)>0.982) for all analytes with all the fibers tested. The limits of detection ranged from 2 to 90 ng L(-1), depending on the detector and the compound investigated, with relative standard deviations in the range 3-15% at all the concentration levels tested. The SPME partition coefficients (K(f)) of the organophosphorus insecticides were calculated experimentally for all the polymer coatings. The effect of organic matter such as humic acids on extraction efficiency was also studied. The analytical performance of the SPME procedure using all the fibers in the tested natural waters proved effective for the compounds.

  5. Cleanup procedure for water, soil, animal and plant extracts for the use of electron-capture detector in the gas chromatographic analysis of organophosphorus insecticide residues.

    PubMed

    Kadoum, A M

    1968-07-01

    A simple, aqueous acetonitrile partition cleanup method for analyses of some common organophosphorus insecticide residues is described. The procedure described is for cleanup and quantitative recovery of parathion, methyl parathion, diazinon, malathion and thimet from different extracts. Those insecticides in the purified extracts of ground water, grain, soil, plant and animal tissues can be detected quantitatively by gas chromatography with an electron capture-detector at 0.01 ppm. Cleanup is satisfactory for paper and thin-layer chromatography for further identification of individual insecticides in the extracts.

  6. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms.

    PubMed

    Burke, Richard D; Todd, Spencer W; Lumsden, Eric; Mullins, Roger J; Mamczarz, Jacek; Fawcett, William P; Gullapalli, Rao P; Randall, William R; Pereira, Edna F R; Albuquerque, Edson X

    2017-08-01

    Organophosphorus (OP) insecticides are pest-control agents heavily used worldwide. Unfortunately, they are also well known for the toxic effects that they can trigger in humans. Clinical manifestations of an acute exposure of humans to OP insecticides include a well-defined cholinergic crisis that develops as a result of the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes the neurotransmitter acetylcholine (ACh). Prolonged exposures to levels of OP insecticides that are insufficient to trigger signs of acute intoxication, which are hereafter referred to as subacute exposures, have also been associated with neurological deficits. In particular, epidemiological studies have reported statistically significant correlations between prenatal subacute exposures to OP insecticides, including chlorpyrifos, and neurological deficits that range from cognitive impairments to tremors in childhood. The primary objectives of this article are: (i) to address the short- and long-term neurological issues that have been associated with acute and subacute exposures of humans to OP insecticides, especially early in life (ii) to discuss the translational relevance of animal models of developmental exposure to OP insecticides, and (iii) to review mechanisms that are likely to contribute to the developmental neurotoxicity of OP insecticides. Most of the discussion will be focused on chlorpyrifos, the top-selling OP insecticide in the United States and throughout the world. These points are critical for the identification and development of safe and effective interventions to counter and/or prevent the neurotoxic effects of these chemicals in the developing brain. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  7. The relationship between the chemical structure and neurotoxicity of alkyl organophosphorus compounds

    PubMed Central

    Davies, D. R.; Holland, P.; Rumens, M. J.

    1960-01-01

    Thirty-six alkyl organophosphorus compounds have been tested for neurotoxicity in the chicken. The individual compounds were chosen to enable the importance of each portion of the molecule to be assessed in relation to the property of neurotoxicity. Seventeen substances were found to be neurotoxic, fifteen for the first time. All of these contained fluorine. On the basis of the results reported, certain predictions have been made about the chemical structure of compounds which would be expected to be neurotoxic. The importance of fluorine suggests that it plays a direct role in the development of the biochemical lesion, and this may occur as the result of its being carried by the molecule as a whole to specific areas in the nervous system. By the action of cholinesterase, the P-F bond may be ruptured and ionic fluorine liberated where it blocks some metabolic cycle. PMID:13814387

  8. The comparative toxicity of phosphoramidothionates and phosphoramidates to susceptible and insecticide-resistant houseflies and mosquitos*

    PubMed Central

    March, R. B.; Georghiou, G. P.; Metcalf, R. L.; Printy, G. E.

    1964-01-01

    Studies of the comparative toxicity of a number of homologous X-chlorophenyl phosphoramidothionates and phosphoramidates and related analogues to susceptible and insecticide-resistant houseflies (Musca domestica L.) and mosquitos (Culex pipiens quinquefasciatus Say and Anopheles albimanus Wied.) have shown that the 2,4,5-trichlorophenyl series is the most active and the 4-chlorophenyl series the least active. Toxicity decreases in general with increasing chain length of the alkoxy and alkylamido moieties, maximum toxicity residing in methoxy, ethoxy, amido, methylamido, and ethylamido homologues. Toxicity is greatest to the susceptible strain but the alkylamido and X-chlorophenyl structures confer toxicological advantages from the standpoint of relative effectiveness against organophosphorus-resistance and organophosphorus vigour-tolerance. Many of the phosphoramidates are less toxic than their phosphoramidothionate analogues, probably due to less favourable physical properties. Certain of these compounds show promise against both susceptible and insecticide-resistant housefly adults and it is suggested that they be further evaluated in broad-spectrum field trials. Although some show promise as mosquito larvicides, in general the introduction of an alkyl-amido group markedly decreases residual toxicity from a filter-paper residue to mosquito adults in comparison with the corresponding dialkoxy analogues. PMID:14122443

  9. [Comparative analysis of sensitivity of proteases (chymotrypsin and trypsin) and cholinesterases of different origin to some organophosphorus inhibitors].

    PubMed

    Rozengart, E V

    2009-01-01

    The antichymotrypsin, antitrypsin, and anticholinesterase efficiencies of four homologous series of organophosphorus inhibitors are compared: O-ethyl-S-(n-alkyl)methylthiophosphonates, O-(n-alkyl)-S-(n-butyl)methylthiophosphonates, O-(n-alkyl)-S-beta-(ethylmercaptoethylene)methylthiophosphonates, and their methylsulfomethylates. As sources of a-chymotrypsin and trypsin, commercial compounds of Worthington Biochemical Corporation and Leningrad Myasokombinat were tested. Bimolecular constant of the reaction rate was used as the measure of antienzyme efficiency. In all cases, the antichymotrypsin efficiency was lower, while the antitrypsin--essentially higher than the anticholinesterase activity of the studied inhibitors. These differences were found to much depend both on the inhibitor structure and on nature of the cholinesterase compounds.

  10. Reactivation of Plasma Butyrylcholinesterase by Pralidoxime Chloride in Patients Poisoned by WHO Class II Toxicity Organophosphorus Insecticides

    PubMed Central

    Eddleston, Michael

    2013-01-01

    Some clinicians assess the efficacy of pralidoxime in organophosphorus (OP) poisoned patients by measuring reactivation of butyrylcholinesterase (BuChE). However, the degree of BuChE inhibition varies by OP insecticide, and it is unclear how well oximes reactivate BuChE in vivo. We aimed to assess the usefulness of BuChE activity to monitor pralidoxime treatment by studying its reactivation after pralidoxime administration to patients with laboratory-proven World Health Organization (WHO) class II OP insecticide poisoning. Patient data were derived from 2 studies, a cohort study (using a bolus treatment of 1g pralidoxime chloride) and a randomized controlled trial (RCT) (comparing 2g pralidoxime over 20min, followed by an infusion of 0.5g/h, with placebo). Two grams of pralidoxime variably reactivated BuChE in patients poisoned by 2 diethyl OP insecticides, chlorpyrifos and quinalphos; however, unlike acetylcholinesterase reactivation, this reactivation was not sustained. It did not reactivate BuChE inhibited by the dimethyl OPs dimethoate or fenthion. The 1-g dose produced no reactivation. Pralidoxime produced variable reactivation of BuChE in WHO class II OP-poisoned patients according to the pralidoxime dose administered, OP ingested, and individual patient. The use of BuChE assays for monitoring the effect of pralidoxime treatment is unlikely to be clinically useful. PMID:24052565

  11. Effects of an organophosphorus pesticide on reproduction in the rat.

    DOT National Transportation Integrated Search

    1970-01-01

    The toxic effects of organophosphorus insecticides are commonly ascribed to cholinesterase (CHE) inhibition. A search of the scientific literature revealed the well-established fact that a number of chlorinated pesticides adversely affect reproductio...

  12. Insect nicotinic receptor interactions in vivo with neonicotinoid, organophosphorus, and methylcarbamate insecticides and a synergist

    PubMed Central

    Shao, Xusheng; Xia, Shanshan; Durkin, Kathleen A.; Casida, John E.

    2013-01-01

    The nicotinic acetylcholine (ACh) receptor (nAChR) is the principal insecticide target. Nearly half of the insecticides by number and world market value are neonicotinoids acting as nAChR agonists or organophosphorus (OP) and methylcarbamate (MC) acetylcholinesterase (AChE) inhibitors. There was no previous evidence for in vivo interactions of the nAChR agonists and AChE inhibitors. The nitromethyleneimidazole (NMI) analog of imidacloprid, a highly potent neonicotinoid, was used here as a radioligand, uniquely allowing for direct measurements of house fly (Musca domestica) head nAChR in vivo interactions with various nicotinic agents. Nine neonicotinoids inhibited house fly brain nAChR [3H]NMI binding in vivo, corresponding to their in vitro potency and the poisoning signs or toxicity they produced in intrathoracically treated house flies. Interestingly, nine topically applied OP or MC insecticides or analogs also gave similar results relative to in vivo nAChR binding inhibition and toxicity, but now also correlating with in vivo brain AChE inhibition, indicating that ACh is the ultimate OP- or MC-induced nAChR active agent. These findings on [3H]NMI binding in house fly brain membranes validate the nAChR in vivo target for the neonicotinoids, OPs and MCs. As an exception, the remarkably potent OP neonicotinoid synergist, O-propyl O-(2-propynyl) phenylphosphonate, inhibited nAChR in vivo without the corresponding AChE inhibition, possibly via a reactive ketene metabolite reacting with a critical nucleophile in the cytochrome P450 active site and the nAChR NMI binding site. PMID:24108354

  13. Effects of a provincial ban of two toxic organophosphorus insecticides on pesticide poisoning hospital admissions.

    PubMed

    Eddleston, Michael; Adhikari, Sriyantha; Egodage, Samitha; Ranganath, Hasantha; Mohamed, Fahim; Manuweera, Gamini; Azher, Shifa; Jayamanne, Shaluka; Juzczak, Edmund; Sheriff, Mh Rezvi; Dawson, Andrew H; Buckley, Nick A

    2012-03-01

    Pesticide self-poisoning causes one third of global suicides. Sri Lanka halved its suicide rate by banning WHO Class I organophosphorus (OP) insecticides and then endosulfan. However, poisoning with Class II toxicity OPs, particularly dimethoate and fenthion, remains a problem. We aimed to determine the effect and feasibility of a ban of the two insecticides in one Sri Lankan district. Sale was banned in June 2003 in most of Polonnaruwa District, but not Anuradhapura District. Admissions with pesticide poisoning to the district general hospitals was prospectively recorded from 2002. Hospital admissions for dimethoate and fenthion poisoning fell by 43% after the ban in Polonnaruwa, while increasing by 23% in Anuradhapura. The pesticide case fatality fell from 14.4% to 9.0% in Polonnaruwa (odds ratio [OR] 0.59, 95% confidence interval [CI] 0.41-0.84) and 11.3% to 10.6% in Anuradhapura (OR 0.93, 95%CI 0.70-1.25; p = 0.051). This reduction was not sustained, with case fatality in Polonnaruwa rising to 12.1% in 2006-2007. Further data analysis indicated that the fall in case fatality had actually been due to a coincidental reduction in case fatality for pesticide poisoning overall, in particular for paraquat poisoning. We found that the insecticides could be effectively banned from agricultural practice, as shown by the fall in hospital admissions, with few negative consequences. However, the ban had only a minor effect on pesticide poisoning deaths because it was too narrow. A study assessing the agricultural and health effects of a more comprehensive ban of highly toxic pesticides is necessary to determine the balance between increased costs of agriculture and reduced health care costs and fewer deaths.

  14. Effects of a provincial ban of two toxic organophosphorus insecticides on pesticide poisoning hospital admissions

    PubMed Central

    2012-01-01

    Background. Pesticide self-poisoning causes one third of global suicides. Sri Lanka halved its suicide rate by banning WHO Class I organophosphorus (OP) insecticides and then endosulfan. However, poisoning with Class II toxicity OPs, particularly dimethoate and fenthion, remains a problem. We aimed to determine the effect and feasibility of a ban of the two insecticides in one Sri Lankan district. Methods. Sale was banned in June 2003 in most of Polonnaruwa District, but not Anuradhapura District. Admissions with pesticide poisoning to the district general hospitals was prospectively recorded from 2002. Results. Hospital admissions for dimethoate and fenthion poisoning fell by 43% after the ban in Polonnaruwa, while increasing by 23% in Anuradhapura. The pesticide case fatality fell from 14.4% to 9.0% in Polonnaruwa (odds ratio [OR] 0.59, 95% confidence interval [CI] 0.41–0.84) and 11.3% to 10.6% in Anuradhapura (OR 0.93, 95%CI 0.70–1.25; p = 0.051). This reduction was not sustained, with case fatality in Polonnaruwa rising to 12.1% in 2006–2007. Further data analysis indicated that the fall in case fatality had actually been due to a coincidental reduction in case fatality for pesticide poisoning overall, in particular for paraquat poisoning. Conclusions. We found that the insecticides could be effectively banned from agricultural practice, as shown by the fall in hospital admissions, with few negative consequences. However, the ban had only a minor effect on pesticide poisoning deaths because it was too narrow. A study assessing the agricultural and health effects of a more comprehensive ban of highly toxic pesticides is necessary to determine the balance between increased costs of agriculture and reduced health care costs and fewer deaths. PMID:22372788

  15. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of catonic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrogen hydrolysis rate constant.

  16. Discovery and identification of O, O-diethyl O-(4-(5-phenyl-4, 5-dihydroisoxazol-3-yl) phenyl) phosphorothioate (XP-1408) as a novel mode of action of organophosphorus insecticides.

    PubMed

    Zeng, Zhigang; Yan, Ying; Wang, Bingfeng; Liu, Niu; Xu, Hanhong

    2017-06-15

    Organophosphorus (OP) insecticides play an important role in pest control. Many OP insecticides have been removed from the market because of their high toxicity to humans. We designed and synthesized a new OP insecticide with the goal of providing a low cost, and less toxic insecticide. The mode of action of O, O-diethyl O-(4-(5-phenyl-4, 5-dihydroisoxazol-3-yl) phenyl) phosphorothioate (XP-1408) was studied in Drosophila melanogaster. Bioassays showed that XP-1408 at a concentration of 50 mg/L delayed larval development. Molecular docking into Drosophila acetylcholinesterase (AChE) and voltage-gated sodium channels suggested that XP-1408 fitted into their active sites and could be inhibitory. Whole-cell patch clamp recordings indicated that XP-1408 exhibited synergistic effects involving the inhibition of cholinergic synaptic transmission and blockage of voltage-gated potassium (K v ) channels and sodium (Na v ) channels. In conclusion, the multiple actions of XP-1408 rendered it as a lead compound for formulating OP insecticides with a novel mode of action.

  17. ORGANOPHOSPHORUS HYDROLASE-BASED AMPEROMETRIC SENSOR: MODULATION OF SENSITIVITY AND SUBSTRATE SELECTIVITY

    EPA Science Inventory

    The detection of organophosphate (OP) insecticides with nitrophenyl substituents is reported using an enzyme electrode composed of Organophosphorus Hydrolase (OPH) and albumin co-immobilized to a nylon net and attached to a carbon paste electrode. The mechanism for this biosen...

  18. Studies of the acetylcholinesterase from houseflies (Musca domestica L.) resistant and susceptible to organophosphorus insecticides.

    PubMed Central

    Devonshire, A L

    1975-01-01

    Acetylcholinesterase from the heads of insecticide-resistant and -susceptible houseflies (Musca domestica L.) was studied in vitro. The enzymes could not be distinguished electrophoretically, and their behaviour on polyacrylamide-disc-gel electrophoresis was influenced by the presence of Triton X-100 in both the homogenate and the gels. In the absence of detergent, the acetylcholinesterase was heterogeneous, but behaved as a single enzyme when it was present. By analogy with studies of acetylcholinesterase from other sources, these observations were attributed to aggregation of the enzyme when not bound by membranes. The enzyme from resistant flies was more slowly inhibited than the susceptible enzyme, bimolecular rate constants (ki) differing by approx. 4-20-fold for a range of organophosphorus compounds. The kinetics of inhibition of acetylcholinesterase were consistent with the results of electrophoresis, i.e. they corresponded to those of a single enzyme in the presence of Triton X-100, but a mixture of enzymes in its absence. The susceptibility of the more sensitive components in these mixtures was determined. Images PLATE 1 PMID:1180906

  19. Postfledging survival of European starlings exposed as nestlings to an organophosphorus insecticide

    USGS Publications Warehouse

    Stromborg, K.L.; Grue, C.E.; Nichols, J.D.; Hepp, G.R.; Hines, J.E.; Bourne, H.C.

    1988-01-01

    To test the hypothesis that exposure to organophosphorus (OP) insecticides reduces postfledging survival of altricial birds, 16-d-old European Starlings (Sturnus vulgaris) were weighed and orally dosed with corn oil containing 6.0 mg of dicrotophos per kilogram of body mass or an equivalent exposure of pure corn oil (controls). Two days later, each survivor was weighed again and patagially tagged for identification after fledging. Resightings of marked fledglings were made during weekly 2-d intensive observations yielding four estimates of postfledging survival. Before fledging, only OP-dosed birds died (18.5%), and OP-dosed survivors lost more mass (5.2%, P = .001) than controls (1.4%) but their masses on day 18 were only slightly lower (2% of control mean, P = .10). Brain cholinesterase activity, a sensitive indicator of OP exposure in birds, was depressed and average of 93% in OP-dosed nestlings that died compared to controls, and an average of 46% in OP-dosed nestlings alive on day 18. Age at fledging, postfledging survival, flocking behavior, and habitat use, however, did not differ between OP-dosed and control birds. The effects of the OP on the nestlings appeared to be rapid, to be reversible in survivors, and did not extend into the postfledging period. In addition, we found no relationship between body mass at fledging and postfledging survival.

  20. Neurotoxic and teratogenic effects of an organophosphorus insecticide (phenyl phosphonothioic acid-O-ethyl -O-[4-nitrophenyl] ester) on mallard development

    USGS Publications Warehouse

    Hoffman, D.J.; Sileo, L.

    1984-01-01

    Phenyl phosphonothioic acid-O-ethyl-O-[4-nitrophenyl] ester (EPN) is one of the 10 most frequently used organophosphorus insecticides and causes delayed neurotoxicity in adult chickens and mallards. Small amounts of organophosphorus insecticides placed on birds' eggs are embryotoxic and teratogenic. For this reason, the effects of topical egg application on EPN were examined on mallard (Anas platyrhynchos) embryo development. Mallard eggs were treated topically at 72 hr of incubation with 25 microliter of a nontoxic oil vehicle or with EPN in the vehicle at concentrations of approximately 12, 36, or 108 micrograms/g egg, equivalent to one, three, and nine times the agricultural level of application used to spray crops. Treatment with EPN resulted in 22 to 44% mortality over this dose range by 18 days of development compared with 4 and 5% for untreated and vehicle-treated controls. EPN impaired embryonic growth and was highly teratogenic: 37-42% of the surviving embryos at 18 days were abnormal with cervical and axial scoliosis as well as severe edema. Brain weights were significantly lower in EPN-treated groups at different stages of development including hatchlings. Brain neurotoxic esterase (NTE) activity was inhibited by as much as 91% at 11 days, 81% at 18 days, and 79% in hatchlings. Examination of brain NTE activity during the course of normal development revealed an increase of nearly sixfold from Day 11 through hatching. The most rapid increase occurred between Day 20 and hatching. Brain acetylcholinesterase (AChE) activity was inhibited by as much as 41% at 11 days, 47% at 18 days, and 20% in hatchlings. Plasma cholinesterase and alkaline phosphatase activities were inhibited and plasma aspartate aminotransferase activity was increased at one or more stages of development. Hatchlings from EPN-treated eggs were weaker and slower to right themselves. Histopathological examination did not reveal demyelination and axonopathy of the spinal cord that was

  1. Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper, Nilaparvata lugens.

    PubMed

    Small, G J; Hemingway, J

    2000-12-01

    Widespread resistance to organophosphorus insecticides (OPs) in Nilaparvata lugens is associated with elevation of carboxylesterase activity. A cDNA encoding a carboxylesterase, Nl-EST1, has been isolated from an OP-resistant Sri Lankan strain of N. lugens. The full-length cDNA codes for a 547-amino acid protein with high homology to other esterases/lipases. Nl-EST1 has an N-terminal hydrophobic signal peptide sequence of 24 amino acids which suggests that the mature protein is secreted from cells expressing it. The nucleotide sequence of the homologue of Nl-EST1 in an OP-susceptible, low esterase Sri Lankan strain of N. lugens is identical to Nl-EST1. Southern analysis of genomic DNA from the Sri Lankan OP-resistant and susceptible strains suggests that Nl-EST1 is amplified in the resistant strain. Therefore, resistance to OPs in the Sri Lankan strain is through amplification of a gene identical to that found in the susceptible strain.

  2. Blood cholinesterases as human biomarkers of organophosphorus pesticide exposure.

    PubMed

    Nigg, H N; Knaak, J B

    2000-01-01

    The organophosphorus pesticides of this review were discovered in 1936 during the search for a replacement for nicotine for cockroach control. The basic biochemical characteristics of RBC AChE and BChE were determined in the 1940s. The mechanism of inhibition of both enzymes and other serine esterases was known in the 1940s and, in general, defined in the 1950s. In 1949, the death of a parathion mixer-loader dictated blood enzyme monitoring to prevent acute illness from organophosphorus pesticide intoxication. However, many of the chemical and biochemical steps for serine enzyme inhibition by OP compounds remain unknown today. The possible mechanisms of this inhibition are presented kinetically beginning with simple (by comparison) Michaelis-Menten substrate enzyme interaction kinetics. As complicated as the inhibition kinetics appear here, PBPK model kinetics will be more complex. The determination of inter- and intraindividual variation in RBC ChE and BChE was recognized early as critical knowledge for a blood esterase monitoring program. Because of the relatively constant production of RBCs, variation in RBC AChE was determined by about 1970. The source of plasma (or serum) BChE was shown to be the liver in the 1960s with the change in BChE phenotype to the donor in liver transplant patients. BChE activity was more variable than RBC AChE, and only in the 1990s have BChE individual variation questions been answered. We have reviewed the chemistry, metabolism, and toxicity of organophosphorus insecticides along with their inhibitory action toward tissue acetyl- and butyrylcholinesterases. On the basis of the review, a monitoring program for individuals mixing-loading and applying OP pesticides for commercial applicators was recommended. Approximately 41 OPs are currently registered for use by USEPA in the United States. Under agricultural working conditions, OPs primarily are absorbed through the skin. Liver P-450 isozymes catalyze the desulfurization of

  3. Monoacylglycerol lipase inhibition by organophosphorus compounds leads to elevation of brain 2-arachidonoylglycerol and the associated hypomotility in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quistad, Gary B.; Klintenberg, Rebecka; Caboni, Pierluigi

    2006-02-15

    Three components of the cannabinoid system are sensitive to selected organophosphorus (OP) compounds: monoacylglycerol (MAG) lipase that hydrolyzes the major endogenous agonist 2-arachidonoylglycerol (2-AG); fatty acid amide hydrolase (FAAH) that cleaves the agonist anandamide present in smaller amounts; the CB1 receptor itself. This investigation considers which component of the cannabinoid system is the most likely contributor to OP-induced hypomotility in mice. Structure-activity studies by our laboratory and others rule against major involvement of a direct toxicant-CB1 receptor interaction for selected OPs. Attention was therefore focused on the OP sensitivities of MAG lipase and FAAH, assaying 19 structurally diverse OP chemicalsmore » (pesticides, their metabolites and designer compounds) for in vitro inhibition of both enzymes. Remarkably high potency and low selectivity is observed with three O-alkyl (C{sub 1}, C{sub 2}, C{sub 3}) alkylphosphonofluoridates (C{sub 8}, C{sub 12}) (IC50 0.60-3.0 nM), five S-alkyl (C{sub 5}, C{sub 7}, C{sub 9}) and alkyl (C{sub 1}, C{sub 12}) benzodioxaphosphorin oxides (IC50 0.15-5.7 nM) and one OP insecticide metabolite (chlorpyrifos oxon, IC50 34-40 nM). In ip-treated mice, the OPs at 1-30 mg/kg more potently inhibit brain FAAH than MAG lipase, but FAAH inhibition is not correlated with hypomotility. However, the alkylphosphonofluoridate-treated mice show dose-dependent increases in severity of hypomotility, inhibition of MAG lipase activity and elevation of 2-AG. Moderate to severe hypomotility is accompanied by 64 to 86% MAG lipase inhibition and about 6-fold elevation of brain 2-AG level. It therefore appears that OP-induced MAG lipase inhibition leads to elevated 2-AG and the associated hypomotility.« less

  4. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis. [quantitative structure-activity relationship, complete neglect of differential overlap

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of cationic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR-primeP(O)X, where R and R-prime are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrolysis rate constant.

  5. Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: Sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vose, Sarah C.; Center for Children's Environmental Health Research, School of Public Health, University of California, Berkeley, CA 94720; Holland, Nina T.

    2007-10-01

    Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC{sub 50} valuesmore » of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined.« less

  6. Acute organophosphorus poisoning complicated by acute coronary syndrome.

    PubMed

    Pankaj, Madhu; Krishna, Kavita

    2014-07-01

    We report a case of 30 year old alcoholic male admitted with vomiting, drowsiness, limb weakness and fasciculations after alleged history of consumption of 30 ml of chlorpyriphos insecticide. He had low serum cholinesterase levels. With standard treatment for organophosphorus poisoning (OPP), he improved gradually until day 5, when he developed neck and limb weakness and respiratory distress. This intermediate syndrome was treated with oximes, atropine and artificial ventilation. During treatment, his ECG showed fresh changes of ST elevation. High CPK & CPK-MB levels, septal hypokinesia on 2D echo suggested acute coronary syndrome. Coronary angiography was postponed due to his bedridden and obtunded status. The patient finally recovered fully by day 15 and was discharged. Acute coronary syndrome is a rare occurrence in OP poisoning. The present case thus emphasises the need for careful electrocardiographic and enzymatic monitoring of all patients of organophosphorus poisoning to prevent potential cardiac complication which can prove fatal.

  7. Present status of biochemical research on the insecticide resistance problem*

    PubMed Central

    Agosin, Moises

    1963-01-01

    In order to provide a rational basis for the development of new insecticides, a thorough understanding of resistance mechanisms is necessary and this presupposes a detailed knowledge of the normal biochemical pathways in insects. The author reviews recent progress in this field, particularly the work on enzymatic detoxication of insecticides which appears to be the most important single factor in the production of resistance. The mechanisms include dehydrochlorination and α-methylenic oxidation (DDT), hydrolysis by phosphatases or carboxyesterases (organophosphorus compounds), and oxidation by microsomal enzyme systems (various classes of insecticides). Much work still needs to be done on the enzyme systems involved, especially in relation to substrate specificity and the effect of enzyme inhibitors that might act as synergists of insecticides. PMID:20604178

  8. Insecticide residues on weathered passerine carcass feet

    USGS Publications Warehouse

    Vyas, N.B.; Spann, J.W.; Hulse, C.S.; Butterbrodt, J.J.; Mengelkoch, J.; MacDougall, K.; Williams, B.; Pendergrass, P.

    2003-01-01

    Nine brown-headed cowbirds (Molothrus ater) were exposed to turf srayed with either EarthCare? (25% diazinon; 477 L a.i./ha) or Ortho-Klor? (12 .6% chlorpyrifos; 5.21 L a.i./ha.). Birds were euthanized and one foot from each bird was weathered outdoors for up to 28 days and the other foot was kept frozen until residue analysis. When compared to the unweathered feet, feet weathered for 28 days retained 43% and 37% of the diazinon and chlorpyrifors, respectively. Insecticide residues were below the level of detection (1.0 ppm) on control feet. Weathered feet may be used for determining organophosphorus insecticide exposure to birds.

  9. Production of Insecticide Degradates in Juices: Implications for Risk Assessment.

    PubMed

    Radford, Samantha A; Panuwet, Parinya; Hunter, Ronald E; Barr, Dana Boyd; Ryan, P Barry

    2016-06-08

    This study was designed to observe the production of degradates of two organophosphorus insecticides and one pyrethroid insecticide in beverages. Purified water, white grape juice, apple juice, and red grape juice were fortified with 500 ng/g malathion, chlorpyrifos, and permethrin, and aliquots were extracted for malathion dicarboxylic acid (MDA), 3,5,6-trichloro-2-pyridinol (TCPy), and 3-phenoxybenzoic acid (3-PBA) several times over a 15 day period of being stored in the dark at 2.5 °C. Overall, first-order kinetics were observed for production of MDA, and statistically significant production of TCPy was also observed. Statistically significant production of 3-phenoxybenzoic acid was not observed. Results indicate that insecticides degrade in food and beverages, and this degradation may lead to preexisting insecticide metabolites in the beverages. Therefore, it is suggested that caution should be exercised when using urinary insecticide metabolites to assess exposure and risk.

  10. ANTICHOLINESTERASE INSECTICIDE RETROSPECTIVE

    PubMed Central

    Casida, John E.; Durkin, Kathleen A.

    2012-01-01

    The anticholinesterase (antiChE) organophosphorus (OP) and methylcarbamate (MC) insecticides have been used very effectively as contact and systemic plant protectants for seven decades. About 90 of these compounds are still in use – the largest number for any insecticide chemotype or mode of action. In both insects and mammals, AChE inhibition and acetylcholine accumulation leads to excitation and death. The cholinergic system of insects is located centrally (where it is protected from ionized OPs and MCs) but not at the neuromuscular junction. Structural differences between insect and mammalian AChE are also evident in their genomics, amino acid sequences and active site conformations. Species selectivity is determined in part by inhibitor and target site specificity. Pest population selection with OPs and MCs has resulted in a multitude of modified AChEs of altered inhibitor specificity some conferring insecticide resistance and others enhancing sensitivity. Much of the success of antiChE insecticides results from a suitable balance of bioactivation and detoxification by families of CYP450 oxidases, hydrolases, glutathione S-transferases and others. Known inhibitors for these enzymes block detoxification and enhance potency which is particularly important in resistant strains. The current market for OPs and MCs of 19% of worldwide insecticide sales is only half of that of 10 years ago for several reasons: there have been no major new compounds for 30 years; resistance has eroded their effectiveness; human toxicity problems are still encountered; the patents have expired reducing the incentive to update registration packages; alternative chemotypes or control methods have been developed. Despite this decline, they still play a major role in pest control and the increasing knowledge on their target sites and metabolism may make it possible to redesign the inhibitors for insensitive AChEs and to target new sites in the cholinergic system. The OPs and MCs are down

  11. Anticholinesterase insecticide retrospective.

    PubMed

    Casida, John E; Durkin, Kathleen A

    2013-03-25

    The anticholinesterase (antiChE) organophosphorus (OP) and methylcarbamate (MC) insecticides have been used very effectively as contact and systemic plant protectants for seven decades. About 90 of these compounds are still in use - the largest number for any insecticide chemotype or mode of action. In both insects and mammals, AChE inhibition and acetylcholine accumulation leads to excitation and death. The cholinergic system of insects is located centrally (where it is protected from ionized OPs and MCs) but not at the neuromuscular junction. Structural differences between insect and mammalian AChE are also evident in their genomics, amino acid sequences and active site conformations. Species selectivity is determined in part by inhibitor and target site specificity. Pest population selection with OPs and MCs has resulted in a multitude of modified AChEs of altered inhibitor specificity some conferring insecticide resistance and others enhancing sensitivity. Much of the success of antiChE insecticides results from a suitable balance of bioactivation and detoxification by families of CYP450 oxidases, hydrolases, glutathione S-transferases and others. Known inhibitors for these enzymes block detoxification and enhance potency which is particularly important in resistant strains. The current market for OPs and MCs of 19% of worldwide insecticide sales is only half of that of 10 years ago for several reasons: there have been no major new compounds for 30 years; resistance has eroded their effectiveness; human toxicity problems are still encountered; the patents have expired reducing the incentive to update registration packages; alternative chemotypes or control methods have been developed. Despite this decline, they still play a major role in pest control and the increasing knowledge on their target sites and metabolism may make it possible to redesign the inhibitors for insensitive AChEs and to target new sites in the cholinergic system. The OPs and MCs are down

  12. Insecticide residues in Australian plague locusts (Chortoicetes terminifera Walker) after ultra-low volume aerial application of the organophosphorus insecticide fenitrothion.

    PubMed

    Story, Paul G; Mineau, Pierre; Mullié, Wim C

    2013-12-01

    The need for locust control throughout eastern Australia during spring 2010 provided an opportunity to quantify residues of the organophosphorus insecticide fenitrothion on nymphs of the Australian plague locust, Chortoicetes terminifera Walker. Residues were collected across the different physiological states--live, dead, and debilitated (characterized by ease of capture, erratic hopping, and the inability to remain upright)--of locust nymphs observed following exposure to fenitrothion. The time course of residue depletion for 72 h after spraying was quantified, and residue-per-unit dose values in the present study were compared with previous research. Fenitrothion residue-per-unit dose values ranged from 0.2 µg/g to 31.2 µg/g (mean ± standard error [SE] = 6.3 ± 1.3 µg/g) in live C. terminifera nymps, from 0.5 µg/g to 25.5 µg/g (7.8 ± 1.3 µg/g) in debilitated nymphs, and from 2.3 µg/g to 39.8 µg/g (16.5 ± 2.8 µg/g) in dead nymphs. Residues of the oxidative derivative of fenitrothion, fenitrooxon, were generally below the limit of quantitation for the analysis (0.02 µg/g), with 2 exceptions--1 live and 1 debilitated sample returned residues at the limit of quantitation. The results of the present study suggest that sampling of acridids for risk assessment should include mimicking predatory behavior and be over a longer time course (preferably 3-24 h postspray) than sampling of vegetation (typically 1-2 h postspray) and that current regulatory frameworks may underestimate the risk of pesticides applied for locust or grasshopper control. © 2013 SETAC.

  13. Parasuicidal poisoning by intramuscular injection of insecticide: A case report.

    PubMed

    Liu, Huimin; Kan, Baotian; Jian, Xiangdong; Zhang, Wei; Zhou, Qian; Wang, Jieru

    2013-09-01

    Suicidal poisoning by ingestion of organophosphate (OP) insecticides represents a serious emergency with a high mortality rate. However, attempted suicide via the parenteral route has rarely been reported. The present study reports a case of parasuicide by self-injection of an organophosphorus insecticide (phoxim, phenylglyoxylonitrile oxime O,O-diethyl phosphorothioate) into the distal region of the left arm. The patient developed necrosis at the injection site and an abscess of the affected limb following injection. A fasciotomy and surgical debridement resulted in the symptoms of the patient disappearing within a few days and were vital in shortening the course of the disease.

  14. Neonicotinoid insecticides: highlights of a symposium on strategic molecular designs.

    PubMed

    Tomizawa, Motohiro; Casida, John E

    2011-04-13

    Neonicotinoids are the newest of the five major classes of insecticides (the others are chlorinated hydrocarbons, organophosphorus compounds, methylcarbamates, and pyrethroids), and they make up approximately one-fourth of the world insecticide market. Nithiazine was the lead compound from Shell Development Co. in California later optimized by Shinzo Kagabu of Nihon Tokushu Noyaku Seizo to increase the potency and photostability, resulting in imidacloprid and thiacloprid. These discoveries are the basis for the International Award for Research in Agrochemicals of the American Chemical Society presented in 2010 to Professor Shinzo Kagabu. Five other neonicotinoids were added by others for the current set of seven commercial compounds. This symposium considers the progress in discovery and development of novel chemotype nicotinic insecticides with enhanced effectiveness, unique biological properties, and maximal safety. Chemorational approaches considered include physicochemical properties, metabolic activation and detoxification, and chemical and structural biology aspects potentially facilitating receptor structure-guided insecticide design.

  15. Simulating cholinesterase inhibition in birds caused by dietary insecticide exposure

    USGS Publications Warehouse

    Corson, M.S.; Mora, M.A.; Grant, W.E.

    1998-01-01

    We describe a stochastic simulation model that simulates avian foraging in an agricultural landscape to evaluate factors affecting dietary insecticide exposure and to predict post-exposure cholinesterase (ChE) inhibition. To evaluate the model, we simulated published field studies and found that model predictions of insecticide decay and ChE inhibition reasonably approximated most observed results. Sensitivity analysis suggested that foraging location usually influenced ChE inhibition more than diet preferences or daily intake rate. Although organophosphorus insecticides usually caused greater inhibition than carbamate insecticides, insecticide toxicity appeared only moderately important. When we simulated impact of heavy insecticide applications during breeding seasons of 15 wild bird species, mean maximum ChE inhibition in most species exceeded 20% at some point. At this level of inhibition, birds may experience nausea and/or may exhibit minor behavioral changes. Simulated risk peaked in April–May and August–September and was lowest in July. ChE inhibition increased with proportion of vegetation in the diet. This model, and ones like it, may help predict insecticide exposure of and sublethal ChE inhibition in grassland animals, thereby reducing dependence of ecological risk assessments on field studies alone.

  16. Cytochrome c oxidase inhibition in the rice weevil Sitophilus oryzae (L.) by formate, the toxic metabolite of volatile alkyl formates.

    PubMed

    Haritos, V S; Dojchinov, G

    2003-10-01

    Volatile alkyl formates are potential replacements for the ozone-depleting fumigant, methyl bromide, as postharvest insecticides and here we have investigated their mode of insecticidal action. Firstly, a range of alkyl esters, ethanol and formic acid were tested in mortality bioassays with adults of the rice weevil, Sitophilus oryzae (L.) and the grain borer, Rhyzopertha dominica (F.) to determine whether the intact ester or one of its components was the toxic moiety. Volatile alkyl formates and formic acid caused similar levels of mortality (LC(50) 131-165 micromol l(-1)) to S. oryzae and were more potent than non-formate containing alkyl esters and ethanol (LC(50)>275 micromol l(-1)). The order of potency was the same in R. dominica. Ethyl formate was rapidly metabolised in vitro to formic acid when incubated with insect homogenates, presumably through the action of esterases. S. oryzae and R. dominica fumigated with a lethal dose of ethyl formate had eight and 17-fold higher concentrations of formic acid, respectively, in their bodies than untreated controls. When tested against isolated mitochondria from S. oryzae, alkyl esters, alcohols, acetate and propionate salts were not inhibitory towards cytochrome c oxidase (EC 1.9.3.1), but sodium cyanide and sodium formate were inhibitory with IC(50) values of 0.0015 mM and 59 mM, respectively. Volatile formate esters were more toxic than other alkyl esters, and this was found to be due, at least in part, to their hydrolysis to formic acid and its inhibition of cytochrome c oxidase.

  17. Parasuicidal poisoning by intramuscular injection of insecticide: A case report

    PubMed Central

    LIU, HUIMIN; KAN, BAOTIAN; JIAN, XIANGDONG; ZHANG, WEI; ZHOU, QIAN; WANG, JIERU

    2013-01-01

    Suicidal poisoning by ingestion of organophosphate (OP) insecticides represents a serious emergency with a high mortality rate. However, attempted suicide via the parenteral route has rarely been reported. The present study reports a case of parasuicide by self-injection of an organophosphorus insecticide (phoxim, phenylglyoxylonitrile oxime O,O-diethyl phosphorothioate) into the distal region of the left arm. The patient developed necrosis at the injection site and an abscess of the affected limb following injection. A fasciotomy and surgical debridement resulted in the symptoms of the patient disappearing within a few days and were vital in shortening the course of the disease. PMID:24137249

  18. Zebrafish Models for Human Acute Organophosphorus Poisoning.

    PubMed

    Faria, Melissa; Garcia-Reyero, Natàlia; Padrós, Francesc; Babin, Patrick J; Sebastián, David; Cachot, Jérôme; Prats, Eva; Arick Ii, Mark; Rial, Eduardo; Knoll-Gellida, Anja; Mathieu, Guilaine; Le Bihanic, Florane; Escalon, B Lynn; Zorzano, Antonio; Soares, Amadeu M V M; Raldúa, Demetrio

    2015-10-22

    Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning.

  19. An Age-Dependent Physiologically-Based Pharmacokinetic/Pharmacodynamic Model for the Organophosphorus Insecticide Chlorpyrifos in the Preweanling Rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Chuck; Kousba, Ahmed A.; Poet, Torka S.

    2007-08-01

    Juvenile rats are more susceptible than adults to the acute toxicity of organophosphorus insecticides like chlorpyrifos (CPF). Age- and dose-dependent differences in metabolism may be responsible. Of importance is CYP450 activation and detoxification of CPF to chlorpyrifos-oxon (CPF-oxon) and trichloropyridinol (TCP), as well as B-esterase (cholinesterase; ChE) and A-esterase (PON-1) detoxification of CPF-oxon to TCP. In the current study, a modified physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model incorporating age-dependent changes in CYP450, PON-1, and tissue ChE levels for rats was developed. In this model, age was used as a dependent function to estimate body weight which was then used to allometricallymore » scale both metabolism and tissue ChE levels. Model simulations suggest that preweanling rats are particularly sensitive to CPF toxicity, with levels of CPF-oxon in blood and brain disproportionately increasing, relative to the response in adult rats. This age-dependent non-linear increase in CPF-oxon concentration may potentially result from the depletion of non-target B-esterases, and a lower PON-1 metabolic capacity in younger animals. These results indicate that the PBPK/PD model behaves consistently with the general understanding of CPF toxicity, pharmacokinetics and tissue ChE inhibition in neonatal and adult rats. Hence, this model represents an important starting point for developing a computational model to assess the neurotoxic potential of environmentally relevant organophosphate exposures in infants and children.« less

  20. APPROXIMATE ENZYMIC METHOD OF MICROANALYSIS FOR IDENTIFYING RESIDUAL AMOUNTS OF ORGANOPHOSPHORUS INSECTICIDES,

    DTIC Science & Technology

    plant extracts gradually increases. This is evidently explained by a conversion of the insecticide into a compound possessing high anticholinesterase activity . (Author)...possible to determine from 1 to 100 micrograms of insecticide per 1 ml. It was established that the anticholinesterase activity of chlorphos when...inherent anticholinesterase action, was developed. In order to realize this method a portable kit was constructed which contains a rack for the storage

  1. Comparative Pharmacokinetics of the Organophosphorus Insecticide Chlorpyrifos and its Major Metabolites Diethylphosphate, Diethylthiophosphate and 3,5,6-Trichloro-2-pyridinol in the Rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Chuck; Busby, Andrea L; Campbell, James A

    2007-07-31

    Abstract Chlorpyrifos (CPF) is a commonly used diethylphosphorothionate organophosphorus (OP) insecticide. Diethylphosphate (DEP), diethylthiophosphate (DETP) and 3,5,6-trichloro-2-pyridinol (TCPy) are products of metabolism and of environmental degradation of CPF and are routinely measured in urine as biomarkers of exposure. However, because these same chemicals can result from metabolism or by biodegradation, monitoring total urinary metabolite levels may be reflective of not only an individual’s contact with the parent pesticide, but also exposure with the metabolites, which are present in the environment. The objective of the current study was to compare the pharmacokinetics of orally administered DEP, DETP and TCPy with theirmore » kinetics following oral dosing with the parent insecticide CPF in the rat. Groups of rats were orally administered CPF, DEP, TCPy or DETP at doses of 140 μmol/kg body weight, and the time-courses of the metabolites were evaluated in blood and urine. Following oral administration, all three metabolites were well absorbed with peak blood concentrations being attained between 1-3 h post-dosing. In the case of DEP and TCPy virtually all the administered dose was recovered in the urine by 72 h post-dosing, suggesting negligible, if any, metabolism; whereas with DETP, ~50% of the orally administered dose was recovered in the urine. The CPF oral dose was likewise rapidly absorbed and metabolized to DEP, TCPy and DETP, with the distribution of metabolites in the urine followed the order: TCPy (22 ± 3 μmol) > DETP (14 ± 2 μmol) > DEP (1.4 ± 0.7 μmol). Based upon the total amount of TCPy detected in the urine a minimum of 63% of the oral CPF dose was absorbed. These studies support the hypotheses that DEP, DETP and TCPy present in the environment can be readily absorbed and eliminated in the urine of rats and potentially humans.« less

  2. The structural requirements of organophosphorus insecticides (OPI) for reducing chicken embryo NAD(+) content in OPI-induced teratogenesis in chickens.

    PubMed

    Seifert, Josef

    2016-05-01

    The objective of this study was to determine the structural requirements of organophosphorus insecticides (OPI) for reducing chicken embryo nicotinamide adenine dinucleotide (NAD(+)) content in OPI-induced teratogenesis and compare them with those needed for OPI inhibition of yolk sac membrane kynurenine formamidase (KFase), the proposed primary target for OPI teratogens in chicken embryos. The comparative molecular field analysis (COMFA) of three-dimensional quantitative structure-activity relationship (3D QSAR) revealed the electrostatic and steric fields as good predictors of OPI structural requirements to reduce NAD(+) content in chicken embryos. The dominant electrostatic interactions were localized at nitrogen-1, nitrogen-3, nitrogen of 2-amino substituent of the pyrimidinyl of pyrimidinyl phosphorothioates, and at the oxygen of crotonamide carbonyl in crotonamide phosphates. Bulkiness of the substituents at carbon-6 of the pyrimidinyls and/or N-substituents of crotonamides was the steric structural component that contributed to superiority of those OPI for reducing embryonic NAD(+) levels. Both electrostatic and steric requirements are similar to those defined in our previous study for OPI inhibition of chicken embryo yolk sac membrane KFase. The findings of this study provide another piece of evidence for the cause-and-effect relationship between yolk sac membrane KFase inhibition and reduced embryo NAD(+) content in NAD-associated OPI-induced teratogenesis in chickens. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Occurrence and relationship of organophosphorus insecticides and their degradation products in the atmosphere in Western Canada agricultural regions.

    PubMed

    Raina, Renata; Hall, Patricia; Sun, Lina

    2010-11-15

    This paper presents the atmospheric occurrence and seasonal variations of the most frequently detected organophosphorus insecticides (OPs) and their OP oxon degradation products at Bratt's Lake, Saskatchewan in the Canadian Prairies (April 2003 to March 2004, January-December, 2005) and at Abbotsford in the Lower Frazer Valley (LFV) of British Columbia from May 2004 to December, 2005. During 2005 there were 10 OPs, 8 OP oxons, and 6 other OP degradation products measured. The most frequently detected OPs were chlorpyrifos, malathion, and diazinon. At Bratt's Lake the highest atmospheric concentrations were observed for chlorpyrifos, with maximum concentrations observed during July and August in 2003 showing much higher concentrations than those from 2005. This was related to its usage for grasshopper control in the province. At Abbotsford, diazinon and malathion were observed in much higher atmospheric concentrations than chlorpyrifos. Concentrations reached maximum in spring for diazinon and summer for malathion. This study is the first reported study of seasonal variations of OP oxons with their parent OP. Chlorpyrifos oxon concentrations during July were generally low, indicating strong local source contributions. The chlorpyrifos oxon/chlorpyrifos ratio and diazinon oxon/diazinon ratio showed a strong seasonal variation with increasing ratio from spring to summer which was attributed to increasing sunlight hours. Malathion oxon/mathion at both sites was similar and relatively constant throughout the year. The oxon/thion ratio represents a good indicator of age of source or contributions from local versus regional atmospheric sources.

  4. BIODEGRADATION OF ORGANOPHOSPHORUS PESTICIDES BY SURFACE-EXPRESSED ORGANOPHOSPHORUS HYDROLASE. (R823663)

    EPA Science Inventory

    Organophosphorus hydrolase (OPH) was displayed and anchored onto the surface of
    Escherichia coli using an Lpp-OmpA fusion system. Production of the fusion proteins in membrane
    fractions was verified by immunoblotting with OmpA antisera. inclusion of the organophosphorus
    ...

  5. [Decontamination of organophosphorus compounds: Towards new alternatives].

    PubMed

    Poirier, L; Jacquet, P; Elias, M; Daudé, D; Chabrière, E

    2017-05-01

    Organophosphorus coumpounds (OP) are toxic chemicals mainly used for agricultural purpose such as insecticides and were also developed and used as warfare nerve agents. OP are inhibitors of acetylcholinesterase, a key enzyme involved in the regulation of the central nervous system. Chemical, physical and biological approaches have been considered to decontaminate OP. This review summarizes the current and emerging strategies that are investigated to tackle this issue with a special emphasis on enzymatic remediation methods. During the last decade, many studies have been dedicated to the development of biocatalysts for OP removal. Among these, recent reports have pointed out the promising enzyme SsoPox isolated from the archaea Sulfolobus solfataricus. Considering both its intrinsic stability and activity, this hyperthermostable enzyme is highly appealing for the decontamination of OP. Copyright © 2017 Académie Nationale de Pharmacie. All rights reserved.

  6. De novo amplification within a silent human cholinesterase gene in a family subjected to prolonged exposure to organophosphorus insecticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prody, C.A.; Dreyfus, P.; Soreq, H.

    1989-01-01

    A 100-fold DNA amplification in the CHE gene, coding for serum butyrylcholinesterase (BtChoEase), was found in a farmer expressing silent CHE phenotype. Individuals homozygous for this gene display a defective serum BtChoEase and are particularly vulnerable to poisoning by agricultural organophosphorus insecticides, to which all members of this family had long been exposed. DNA blot hybridization with regional BtChoEase cDNA probes suggested that the amplification was most intense in regions encoding central sequences within BtChoEase cDNA, whereas distal sequences were amplified to a much lower extent. This is in agreement with the onion skin model, based on amplification of genesmore » in cultured cells and primary tumors. The amplification was absent in the grandparents but present at the same extent in one of their sons and in a grandson, with similar DNA blot hybridization patterns. In situ hybridization experiments localized the amplified sequences to the long arm of chromosome 3, close to the site where the authors previously mapped the CHE gene. Altogether, these observations suggest that the initial amplification event occurred early in embryogenesis, spermatogenesis, or oogenesis, where the CHE gene is intensely active and where cholinergic functioning was indicated to be physiologically necessary. These findings demonstrate a de novo amplification in apparently healthy individuals within an autosomal gene producing a target protein to an inhibitor.« less

  7. Recovery of cholinesterase activity in five avian species exposed to dicrotophos, an organophosphorus pesticide

    USGS Publications Warehouse

    Fleming, W.J.; Grue, C.E.

    1981-01-01

    The responses of brain and plasma cholinesterase (ChE) activities were examined in mallard ducks, bobwhite quail, barn owls, starlings, and common grackles given oral doses of dicrotophos, an organophosphorus insecticide. Up to an eightfold difference in response of brain ChE activity to dicrotophos was found among these species. Brain ChE activity recovered to within 2 SD of normal within 26 days after being depressed 55 to 64%. Recovery of brain ChE activity was similar among species and followed the model Y = a + b (log10X).

  8. A comparative study on the relationship between various toxicological endpoints in Caenorhabditis elegans exposed to organophosphorus insecticides.

    PubMed

    Rajini, P S; Melstrom, Paul; Williams, Phillip L

    2008-01-01

    The toxicity of 10 organophophorus (OP) insecticides-acephate, dimethoate, dichlorvos, dicrotophos, monocrotophos, methamidophos, phosphamidon, omethoate, phosdrin, and trichlorfon-was evaluated in Caenorhabditis elegans using lethality, movement, and acetylcholinesterase (AChE) activity as the endpoints after a 4-hr- exposure period. The OP insecticides tested showed LC50 values ranging from 0.039 mM (for dichlorovs) to 472.8 mM (for methamidophos). The order of toxicity for lethality and movement was not significantly different when tested using the rank order correlation coefficient. AChE activity was markedly affected by all the OP insecticide exposures that caused significant inhibition in movement, indicating that the mechanism of toxicity of OP insecticides in C. elegans is the same as in higher animals. All OP insecticides induced greater than 50% inhibition of AChE at the lowest tested OP insecticide concentration resulting in inhibition in movement. While a significant correlation was evident between LC50 values in C. elegans and the LD50 values in rats for the 10 OP insecticides studied, a correlation was not evident between EC50 values in C. elegans and LD50 values in rats. Overall, the two endpoints, LC50 and movement, were more reliable and easier to perform than measurement of AChE activity in C. elegans for determining the toxicity of OP insecticides. Further, ranking of these endpoints with respect to the OP insecticides studied indicates that these parameters in C. elegans are predictive of OP insecticides mammalian neurotoxicity.

  9. Effect of two organophosphorus insecticides on the phosphate-dissolving soil bacteria.

    PubMed Central

    Congregado, F; Simon-Pujol, D; Juárez, A

    1979-01-01

    Dimethoate and malathion added to soil at 10 and 100 microgram/g caused an initial stimulation of CO2 production. Total counts of bacterial propagules were increased. All insecticide applications increased bacteria producing phospholipases from week 1 until week 4 after the application; bacteria then returned to the original levels. PMID:760634

  10. Declining ring-necked pheasants in the Klamath Basin, California: I. Insecticide exposure

    USGS Publications Warehouse

    Grove, Robert A.; Buhler, D.R.; Henny, Charles J.; Drew, A.D.

    1998-01-01

    A study of organophosphorus (OP) insecticide exposure was conducted on a declining population of ring-necked pheasants (Phasianus colchicus) associated with agricultural lands at Tule Lake National Wildlife Refuge (TLNWR) during the summers of 1990a??92. Findings at TLNWR were compared with a nearby pheasant population at Lower Klamath National Wildlife Refuge (LKNWR) not subjected to intensive farming or OP insecticide applications. Direct toxicity of anticholinesterase (antiChE) compounds (in this case methamidophos) killed 2 young pheasants (91 and 92% brain acetylcholinesterase [AChE] inhibition), but no deaths of adult radio-equipped hens were ascribed to direct insecticide intoxication. However, within 20 days postspray of OP insecticides, 68% (28 of 41) of the adult pheasants collected at TLNWR were exposed to antiChE insecticides, and exhibited brain AChE inhibition of 19a??62%, with 15% (6 of 41) showing >55% brain AChE inhibition. The lack of radio-equipped hens dying was unexpected because >50% brain AChE inhibition has been frequently used as a diagnostic tool for evaluating cause of death from antiChE insecticides. No young were radio-equipped, so the extent of the effects of insecticide exposure on the survivorship of young was unknown. It is concluded that insecticide exposure was not the major factor impacting the pheasant population (see Grove et al., in press), although some young were acutely intoxicated. However, the loss of insects killed by insecticide use may have contributed to food shortages of young pheasants, indirectly influencing survival.

  11. Poisoning of raptors with organophosphorus and carbamate pesticides with emphasis on Canada, U.S. and U.K.

    USGS Publications Warehouse

    Mineau, P.; Fletcher, M.R.; Glaser, L.C.; Thomas, N.J.; Brassard, C.; Wilson, L.K.; Elliott, J.E.; Lyon, L.A.; Henny, C.J.; Bollinger, T.; Porter, S.L.

    1999-01-01

    We reviewed cases of raptor mortality resulting from cholinesterase-inhibiting pesticides. We compiled records from the U.S., U.K. and Canada for the period 1985-95 (520 incidents) and surveyed the relevant literature to identify the main routes of exposure and those products that led to the greatest number of poisoning cases. A high proportion of cases in the U.K. resulted from abusive uses of pesticides (willful poisoning). The proportion was smaller in North America where problems with labeled uses of pesticides were as frequent as abuse cases. Poisoning resulting from labeled use was possible with a large number of granular pesticides and some seed treatments through secondary poisoning or through the ingestion of contaminated invertebrates, notably earthworms. With the more toxic products, residue levels in freshly-sprayed insects were high enough to cause mortality. The use of organophosphorus products as avicides and for the topical treatment of livestock appeared to be common routes of intoxication. The use of insecticides in dormant oils also gave rise to exposure that can be lethal or which can debilitate birds and increase their vulnerability. A few pesticides of high toxicity were responsible for the bulk of poisoning cases. Based on limited information, raptors appeared to be more sensitive than other bird species to organophosphorus and carbamate pesticides. Some of the more significant risk factors that resulted in raptor poisonings were: insectivory and vermivory; opportunistic taking of debilitated prey; scavenging, especially if the gastrointestinal tracts are consumed; presence in agricultural areas; perceived status as pest species; and flocking or other gregarious behavior at some part of their life cycle. Lethal or sublethal poisoning should always be considered in the diagnosis of dead or debilitated raptors even when another diagnosis (e.g., electrocution, car or building strike) is apparent. Many cases of poisoning are not currently

  12. Enzymatic Decontamination of Environmental Organophosphorus Compounds

    DTIC Science & Technology

    2006-12-04

    ABSTRACT (Maximum 200 words) The abstract is below since many authors do not follow the 200 word limit 14. SUBJECT TERMS organophosphorus compounds ...5404 Enzymatic decontamination of environmental organophosphorus compounds REPORT DOCUMENTATION PAGE 18. SECURITY CLASSIFICATION ON THIS PAGE...239-18 298-102 15. NUMBER OF PAGES 20. LIMITATION OF ABSTRACT UL - 4-Dec-2006 Enzymatic decontamination of environmental organophosphorus compounds

  13. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth.

    PubMed

    David, Jean-Philippe; Ismail, Hanafy Mahmoud; Chandor-Proust, Alexia; Paine, Mark John Ingraham

    2013-02-19

    The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementation of control interventions and reduce their environmental impact on Earth. Recent technological advances are helping us to build a functional profile of the P450 determinants of insecticide metabolic resistance in mosquitoes. Alongside, the cross-responses of mosquito P450s to insecticides and pollutants are also being investigated. Such research will provide the means to produce diagnostic tools for early detection of P450s linked to resistance. It will also enable the design of new insecticides with optimized efficacy in different environments.

  14. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth

    PubMed Central

    David, Jean-Philippe; Ismail, Hanafy Mahmoud; Chandor-Proust, Alexia; Paine, Mark John Ingraham

    2013-01-01

    The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementation of control interventions and reduce their environmental impact on Earth. Recent technological advances are helping us to build a functional profile of the P450 determinants of insecticide metabolic resistance in mosquitoes. Alongside, the cross-responses of mosquito P450s to insecticides and pollutants are also being investigated. Such research will provide the means to produce diagnostic tools for early detection of P450s linked to resistance. It will also enable the design of new insecticides with optimized efficacy in different environments. PMID:23297352

  15. Emergence of multi drug resistance among soil bacteria exposing to insecticides.

    PubMed

    Rangasamy, Kirubakaran; Athiappan, Murugan; Devarajan, Natarajan; Parray, Javid A

    2017-04-01

    Impacts of pesticide exposure on the soil microbial flora and cross resistance to antibiotics have not been well documented. Development of antibiotic resistance is a common issue among soil bacteria which are exposing to pesticides continuously at sub-lethal concentration. The present study was focused to evaluate the correlation between pesticide exposures and evolution of multi drug resistance among isolates collected from soil applied with insecticides. Twenty five insecticide (Monochrotophos) degrading bacteria were isolated from contaminated agricultural soil. The bacterial isolates Bacillus Sps, Bacillus cereus, Bacillus firmus and Bacillus thuringiensis were found to be resistant against chloramphenical, monochrotophos, ampicillin, cefotaxime, streptomycin and tetracycline antibiotics used. Involvement of plasmid in drug as well as insecticide resistant was confirmed through plasmid curing among selected bacterial strains. Bacillus Sps (MK-07), Bacillus cereus (MK-11), Bacillus firmus (MK-13) and Bacillus thuringiensis (MK-24) lost their resistant against insecticides and antibiotics once after removal of plasmid by exposing to 2% sodium dodecyl sulphate. The plasmid was transformed back to bacteria which produced similar derivatives when cultured in Minimal Salt medium (pH 7.0) supplemented with 0.4% of insecticide. Homology modeling was used to prove that organophosphorus hydrolase and able to metabolize all the antibiotics showed positive interaction with high docking score. The present study revealed that persistent of insecticides in the agricultural soil may lead to increasing development of multidrug resistance among soil bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Enhanced Synthesis of Alkyl Amino Acids in Miller's 1958 H2S Experiment

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, James P.; Glavin, Daniel P.; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Stanley Miller's 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the alpha-, beta-, and gamma-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspariic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.

  17. Organophosphorus poisoning (acute).

    PubMed

    2007-03-01

    Acute organophosphorus poisoning occurs after dermal, respiratory, or oral exposure to either low-volatility pesticides (e.g. chlorpyrifos, dimethoate) or high-volatility nerve gases (e.g. sarin, tabun). Most cases occur in resource-poor countries as a result of occupational or deliberate exposure to organophosphorus pesticides. We conducted a systematic review and aimed to answer the following clinical question: What are the effects of treatments for acute organophosphorus poisoning? We searched: Medline, Embase, The Cochrane Library and other important databases up to August 2006 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 22 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: activated charcoal, alpha2 adrenergic receptor agonists, atropine, benzodiazepines, butyrylcholinesterase replacement therapy, cathartics, extracorporeal clearance, gastric lavage, glycopyrronium bromide, ipecacuanha, magnesium sulphate, milk or other home remedies, N-methyl-D-aspartate receptor antagonists, organophosphorus hydrolases, oximes, sodium bicarbonate, washing the poisoned person and removing contaminated clothing.

  18. Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giordano, Gennaro; Afsharinejad, Zhara; Guizzetti, Marina

    2007-03-15

    Over the past several years evidence has been accumulating from in vivo animal studies, observations in humans, and in vitro studies, that organophosphorus (OP) insecticides may induce oxidative stress. Such effects may contribute to some of the toxic manifestations of OPs, particularly upon chronic or developmental exposures. The aim of this study was to investigate the role of oxidative stress in the neurotoxicity of two commonly used OPs, chlorpyrifos (CPF) and diazinon (DZ), their oxygen analogs (CPO and DZO), and their 'inactive' metabolites (TCP and IMP), in neuronal cells from a genetic model of glutathione deficiency. Cerebellar granule neurons frommore » wild type mice (Gclm +/+) and mice lacking the modifier subunit of glutamate cysteine ligase (Gclm -/-), the first and limiting step in the synthesis of glutathione (GSH), were utilized. The latter display very low levels of GSH and are more susceptible to the toxicity of agents that increase oxidative stress. CPO and DZO were the most cytotoxic compounds, followed by CPF and DZ, while TCP and IMP displayed lower toxicity. Toxicity was significantly higher (10- to 25-fold) in neurons from Gclm (-/-) mice, and was antagonized by various antioxidants. Depletion of GSH from Gclm (+/+) neurons significantly increased their sensitivity to OP toxicity. OPs increased intracellular levels of reactive oxygen species and lipid peroxidation and in both cases the effects were greater in neurons from Gclm (-/-) mice. OPs did not alter intracellular levels of GSH, but significantly increased those of oxidized glutathione (GSSG). Cytotoxicity was not antagonized by cholinergic antagonists, but was decreased by the calcium chelator BAPTA-AM. These studies indicate that cytotoxicity of OPs involves generation of reactive oxygen species and is modulated by intracellular GSH, and suggest that it may involve disturbances in intracellular homeostasis of calcium.« less

  19. Solid phase microextraction applied to the analysis of organophosphorus insecticides in fruits.

    PubMed

    Fytianos, K; Raikos, N; Theodoridis, G; Velinova, Z; Tsoukali, H

    2006-12-01

    Trace amounts of organophosphorus pesticides (OPs) were determined in various fruits by headspace solid phase microextraction (HS-SPME) and gas chromatography-nitrogen phosphorous detection (GC-NPD). Sampling from the headspace enhanced method selectivity, whereas at the same time improved fiber life time and method sensitivity. Diazinon, parathion, methyl parathion, malathion and fenithrothion were determined in various fruits: more than 150 samples of 21 types of fruits were studied. SPME-GC-NPD provided a useful and very efficient analytical tool: method linearity ranged from 1.2 to 700 ng/ml. Limits of detection (LODs) and quantitation (LOQs) ranged from 0.03 to 3 ng/ml and 0.12 to 10 ng/ml respectively, values well below the residue limits set by the EU. Less than 2% of the samples were found positive containing amounts higher than the EU limits. The effect of fruit peeling and washing was also investigated.

  20. Cresyl Saligenin Phosphate, an Organophosphorus Toxicant, Makes Covalent Adducts with Histidine, Lysine and Tyrosine Residues of Human Serum Albumin

    PubMed Central

    Liyasova, Mariya S.; Schopfer, Lawrence M.; Lockridge, Oksana

    2012-01-01

    CBDP (2-(2-cresyl)-4H-1-3-2-benzodioxaphosphorin-2-oxide) is a toxic organophosphorus compound. It is generated in vivo from tri-ortho-cresyl phosphate (TOCP), a component of jet engine oil and hydraulic fluids. Exposure to TOCP was proven to occur on board aircraft by finding CBDP-derived phospho-butyrylcholinesterase in the blood of passengers. Adducts on BChE however do not explain the toxicity of CBDP. Critical target proteins of CBDP are yet to be identified. Our goal was to facilitate the search for the critical targets of CBDP by determining the range of amino acid residues capable of reacting with CBDP and characterizing the types of adducts formed. We used human albumin as a model protein. Mass spectral analysis of the tryptic digest of CBDP-treated human albumin revealed adducts on His-67, His-146, His-242, His-247, His-338, Tyr-138, Tyr-140, Lys-199, Lys-351, Lys-414, Lys-432, Lys-525. Adducts formed on tyrosine residues were different from those formed on histidines and lysines. Tyrosines were organophosphorylated by CBDP, while histidine and lysine residues were alkylated. This is the first report of an organophosphorus compound with both phosphorylating and alkylating properties. The hydroxybenzyl adduct on histidine is novel. The ability of CBDP to form stable adducts on histidine, tyrosine and lysine allows one to consider new mechanisms of toxicity from TOCP exposure. PMID:22793878

  1. Cresyl saligenin phosphate, an organophosphorus toxicant, makes covalent adducts with histidine, lysine, and tyrosine residues of human serum albumin.

    PubMed

    Liyasova, Mariya S; Schopfer, Lawrence M; Lockridge, Oksana

    2012-08-20

    CBDP [2-(2-cresyl)-4H-1-3-2-benzodioxaphosphorin-2-oxide] is a toxic organophosphorus compound. It is generated in vivo from tri-ortho-cresyl phosphate (TOCP), a component of jet engine oil and hydraulic fluids. Exposure to TOCP was proven to occur on board aircraft by finding CBDP-derived phospho-butyrylcholinesterase in the blood of passengers. Adducts on BChE, however, do not explain the toxicity of CBDP. Critical target proteins of CBDP are yet to be identified. Our goal was to facilitate the search for the critical targets of CBDP by determining the range of amino acid residues capable of reacting with CBDP and characterizing the types of adducts formed. We used human albumin as a model protein. Mass spectral analysis of the tryptic digest of CBDP-treated human albumin revealed adducts on His-67, His-146, His-242, His-247, His-338, Tyr-138, Tyr-140, Lys-199, Lys-351, Lys-414, Lys-432, and Lys-525. Adducts formed on tyrosine residues were different from those formed on histidines and lysines. Tyrosines were organophosphorylated by CBDP, while histidine and lysine residues were alkylated. This is the first report of an organophosphorus compound with both phosphorylating and alkylating properties. The o-hydroxybenzyl adduct on histidine is novel. The ability of CBDP to form stable adducts on histidine, tyrosine, and lysine allows one to consider new mechanisms of toxicity from TOCP exposure.

  2. Age-dependent pharmacokinetic and pharmacodynamic response in preweanling rats following oral exposure to the organophosphorus insecticide chlorpyrifos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Chuck; Poet, Torka S.; Kousba, Ahmed A.

    2006-03-01

    Juvenile rats are more susceptible than adults to the acute toxicity of organophosphorus insecticides like chlorpyrifos (CPF). Age- and dose-dependent differences in metabolism may be responsible. Of importance is CYP450 activation and detoxification of CPF to CPF-oxon and 3,5,6-trichloro-2-pyridinol (TCP), as well as B-esterase (cholinesterase; ChE) and A-esterase (PON-1) detoxification of CPF-oxon to TCP. The pharmacokinetics of CPF, TCP, and the extent of blood (plasma/RBC), and brain ChE inhibition in rats were determined on postnatal days (PND) -5, -12, and -17 following oral gavage administration of 1 and 10 mg CPF/kg of body weight. For all neonatal ages the bloodmore » TCP exceeded the CPF concentration, and within each age group there was no evidence of non-linear kinetics over the dose range evaluated. Younger animals demonstrated a greater sensitivity to ChE inhibition as evident by the dose- and age-dependent inhibition of plasma, RBC, and brain ChE. Of particular importance was the observation that even in rats as young as PND-5, the CYP450 metabolic capacity was adequate to metabolize CPF to both TCP and CPF-oxon based on the detection of TCP in blood and extensive ChE inhibition (biomarker of CPF-oxon) at all ages. In addition, the increase in the blood TCP concentration ({approx}3-fold) in PND-17 rats relative to the response in the younger animals, and the higher blood concentrations of CPF in neonatal rats (1.7 to 7.5-fold) relative to adults was consistent with an increase in CYP450 metabolic capacity with age. This is the first reported study that evaluated both the pharmacokinetics of the parent pesticide, the major metabolite and the extent of ChE inhibition dynamics in the same animals as a function of neonatal age. The results suggest that in the neonatal rat, CPF was rapidly absorbed and metabolized, and the extent of metabolism was age-dependent.« less

  3. Proteomic analysis of adducted butyrylcholinesterase for biomonitoring organophosphorus exposures

    PubMed Central

    Marsillach, Judit; Hsieh, Edward J.; Richter, Rebecca J.; MacCoss, Michael J.; Furlong, Clement E.

    2014-01-01

    Organophosphorus (OP) compounds include a broad group of toxic chemicals such as insecticides, chemical warfare agents and antiwear agents. The liver cytochromes P450 bioactivate many OPs to potent inhibitors of serine hydrolases. Cholinesterases were the first OP targets discovered and are the most studied. They are used to monitor human exposures to OP compounds. However, the assay that is currently used has limitations. The mechanism of action of OP compounds is the inhibition of serine hydrolases by covalently modifying their active-site serine. After structural rearrangement, the complex OP inhibitor-enzyme is irreversible and will remain in circulation until the modified enzyme is degraded. Mass spectrometry is a sensitive technology for analyzing protein modifications, such as OP-adducted enzymes. These analyses also provide some information about the nature of the OP adduct. Our aim is to develop high-throughput protocols for monitoring OP exposures using mass spectrometry. PMID:23123252

  4. Insecticide exposure impacts vector-parasite interactions in insecticide-resistant malaria vectors.

    PubMed

    Alout, Haoues; Djègbè, Innocent; Chandre, Fabrice; Djogbénou, Luc Salako; Dabiré, Roch Kounbobr; Corbel, Vincent; Cohuet, Anna

    2014-07-07

    Currently, there is a strong trend towards increasing insecticide-based vector control coverage in malaria endemic countries. The ecological consequence of insecticide applications has been mainly studied regarding the selection of resistance mechanisms; however, little is known about their impact on vector competence in mosquitoes responsible for malaria transmission. As they have limited toxicity to mosquitoes owing to the selection of resistance mechanisms, insecticides may also interact with pathogens developing in mosquitoes. In this study, we explored the impact of insecticide exposure on Plasmodium falciparum development in insecticide-resistant colonies of Anopheles gambiae s.s., homozygous for the ace-1 G119S mutation (Acerkis) or the kdr L1014F mutation (Kdrkis). Exposure to bendiocarb insecticide reduced the prevalence and intensity of P. falciparum oocysts developing in the infected midgut of the Acerkis strain, whereas exposure to dichlorodiphenyltrichloroethane reduced only the prevalence of P. falciparum infection in the Kdrkis strain. Thus, insecticide resistance leads to a selective pressure of insecticides on Plasmodium parasites, providing, to our knowledge, the first evidence of genotype by environment interactions on vector competence in a natural Anopheles-Plasmodium combination. Insecticide applications would affect the transmission of malaria in spite of resistance and would reduce to some degree the impact of insecticide resistance on malaria control interventions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Muscarinic receptors mediate the endocrine-disrupting effects of an organophosphorus insecticide in zebrafish.

    PubMed

    Santos da Rosa, João Gabriel; Alcântara Barcellos, Heloísa Helena de; Fagundes, Michele; Variani, Cristiane; Rossini, Mainara; Kalichak, Fabiana; Koakoski, Gessi; Acosta Oliveira, Thiago; Idalencio, Renan; Frandoloso, Rafael; Piato, Angelo L; José Gil Barcellos, Leonardo

    2017-07-01

    The glucocorticoid cortisol, the end product of hypothalamus-pituitary-interrenal axis in zebrafish (Danio rerio), is synthesized via steroidogenesis and promotes important physiological regulations in response to a stressor. The failure of this axis leads to inability to cope with environmental challenges preventing adaptive processes in order to restore homeostasis. Pesticides and agrichemicals are widely used, and may constitute an important class of environmental pollutants when reach aquatic ecosystems and nontarget species. These chemical compounds may disrupt hypothalamus-pituitary-interrenal axis by altering synthesis, structure or function of its constituents. We present evidence that organophosphorus exposure disrupts stress response by altering the expression of key genes of the neural steroidogenesis, causing downregulation of star, hsp70, and pomc genes. This appears to be mediated via muscarinic receptors, since the muscarinic antagonist scopolamine blocked these effects. © 2017 Wiley Periodicals, Inc.

  6. Cytochrome P450s--Their expression, regulation, and role in insecticide resistance.

    PubMed

    Liu, Nannan; Li, Ming; Gong, Youhui; Liu, Feng; Li, Ting

    2015-05-01

    P450s are known to be critical for the detoxification and/or activation of xenobiotics such as drugs and pesticides and overexpression of P450 genes can significantly affect the disposition of xenobiotics in the tissues of organisms, altering their pharmacological/toxicological effects. In insects, P450s play an important role in detoxifying exogenous compounds such as insecticides and plant toxins and their overexpression can result in increased levels of P450 proteins and P450 activities. This has been associated with enhanced metabolic detoxification of insecticides and has been implicated in the development of insecticide resistance in insects. Multiple P450 genes have been found to be co-overexpressed in individual insect species via several constitutive overexpression and induction mechanisms, which in turn are co-responsible for high levels of insecticide resistance. Many studies have also demonstrated that the transcriptional overexpression of P450 genes in resistant insects is regulated by trans and/or cis regulatory genes/factors. Taken together, these earlier findings suggest not only that insecticide resistance is conferred via multi-resistance P450 genes, but also that it is mediated through the interaction of regulatory genes/factors and resistance genes. This chapter reviews our current understanding of how the molecular mechanisms of P450 interaction/gene regulation govern the development of insecticide resistance in insects and our progress along the road to a comprehensive characterization of P450 detoxification-mediated insecticide resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Neurotoxic disorders of organophosphorus compounds and their managements.

    PubMed

    Balali-Mood, Mahdi; Balali-Mood, Kia

    2008-01-01

    Organophosphorus compounds have been used as pesticides and as chemical warfare nerve agents. The mechanism of toxicity of organophosphorus compounds is the inhibition of acetylcholinesterase, which results in accumulation of acetylcholine and the continued stimulation of acetylcholine receptors. Therefore, they are also called anticholinesterase agents. Organophosphorus pesticides have largely been used worldwide, and poisoning by these agents, particularly in developing countries, is a serious health problem. Organophosphorus nerve agents were used by Iraqi army against Iranian combatants and even civilian population in 1983 - 1988. They were also used for chemical terrorism in Japan in 1994 - 1995. Their use is still a constant threat to the population. Therefore, medical and health professionals should be aware and learn more about the toxicology and proper management of organophosphorus poisoning. Determination of acetylcholinesterase and butyrylcholinesterase activity in blood remains a mainstay for the fast initial screening of organophosphorus compounds but lacks sensitivity and specificity. Quantitative analysis of organophosphorus compounds and their degradation products in plasma and urine by mass spectrometric methods may prove exposure but is expensive and is limited to specialized laboratories. However, history of exposure to organophosphorous compounds and clinical manifestations of a cholinergic syndrome are sufficient for management of the affected patients. The standard management of poisoning with organophosphorous compounds consists of decontamination, and injection of atropine sulfate with an oxime. Recent advances on treatment of organophosphorus pesticides poisoning revealed that blood alkalinization with sodium bicarbonate and also magnesium sulfate as adjunctive therapies are promising. Patients who receive prompt proper treatment usually recover from acute toxicity but may suffer from neurologic complications.

  8. Chlorfenapyr, a Potent Alternative Insecticide of Phoxim To Control Bradysia odoriphaga (Diptera: Sciaridae).

    PubMed

    Zhao, Yunhe; Wang, Qiuhong; Wang, Yao; Zhang, Zhengqun; Wei, Yan; Liu, Feng; Zhou, Chenggang; Mu, Wei

    2017-07-26

    Bradysia odoriphaga is the major pest affecting Chinese chive production, and in China, it has developed widespread resistance to organophosphorus insecticides. Chlorfenapyr is a promising pyrrole insecticide with a unique mechanism of action that does not confer cross-resistance to neurotoxic insecticides. However, the effect of chlorfenapyr on organophosphate-resistant B. odoriphaga is not well understood. The present study evaluated the potential of chlorfenapyr for the control of phoxim-resistant B. odoriphaga. The results showed that chlorfenapyr had significant insecticidal activity to B. odoriphaga in multiple developmental stages, and there were no significant differences in susceptibility between the field (phoxim-resistant) and laboratory (phoxim-susceptible) populations. The pot experiment and field trials confirmed the results of our laboratory bioassays. In the field trial, chlorfenapyr applied at 3.0, 6.0, or 12.0 kg of active ingredient (a.i.)/ha significantly decreased the number of B. odoriphaga and improved the yield compared to phoxim at 6.0 kg of a.i./ha and the control conditions. Moreover, the final residues of chlorfenapyr on plants were below the maximum residue limits (MRLs) as a result of its non-systemic activity. These results demonstrate that chlorfenapyr has potential as a potent alternative to phoxim for controlling B. odoriphaga.

  9. Exposure to insecticides of brushland wildlife within the lower Rio Grande valley Texas USA

    USGS Publications Warehouse

    Custer, T.W.; Mitchell, C.A.

    1987-01-01

    Brushland wildlife within the Lower Rio Grande Valley of south Texas were studied following applications of eleven insecticides to nearby sugarcane or cotton fields. During the study no wildlife were found dead. Mean brain acetycholinesterase (AChE) activity of great-tailed grackles (Quiscalus mexicanus) and mourning doves (Zenaida microura) was significantly lower than controls following application of some organophosphorus insecticides. Brain AChE activity varied significantly among chemicals, days after exposure and lactin rates. Mean brain AChE activity of white-winged doves (Zenaida asiatica) and three small mammals species was not significantly different than their respective control following application of the insecticides. Mean brain AChE activity of grackles was inhibited significantly more than white-winged doves after application of Bolstar, EPN-methyl parathion, and Azodrin and significantly more than that of mourning doves after applications of Bolstar and EPN-methyl parathion. Our data indicate that there were no adverse effects on most brushland wildlife. Exposure was probably dependent upon use of the agricultural fields as feeding or resting site and only grackles and mourning doves were regularly present in the fields.

  10. Structure-activity correlations for organophosphorus ester anticholinesterases. Part 2: CNDO/2 calculations applied to ester hydrolysis rates

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1984-01-01

    Quantitative structure-activity relationships are presented for the hydrolysis of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. CNDO/2 calculations provide values for molecular parameters that correlate with alkaline hydrolysis rates. For each subset of esters with the same leaving group, X, the CNDO-derived net atomic charge at the central phosphorus atom correlates well with the alkaline hydrolysis rate constants. For the whole set of esters with different leaving groups, equations are derived that relate charge, orbital energy and bond order to the hydrolysis rate constants.

  11. [Meta-analysis of association between organophosphorus pesticides and aplastic anemia].

    PubMed

    Zhang, Ji; Yang, Tubao

    2015-09-01

    To evaluate the association between organophosphorus pesticides and aplastic anemia, and provide scientific evidence for the primary prevention of aplastic anemia. The published papers of case control studies on the association between organophosphorus pesticides and aplastic anemia from January 1990 to August 2014 were collected from Chinese BioMedical Literature Base (CBM), Chinese National Knowledge Infrastructure (CNKI), PubMed and EMBASE. The papers which met the inclusion criteria were evaluated. The pooled odds ratios (OR) and 95% confidence interval (CI) of organophosphorus pesticides were calculated with software Review Manager 5.0. Subgroup analysis were conducted for different population and different usage of organophosphorus pesticides. A total of 9 papers were selected, involving 5 833 subjects (1 404 cases and 4 429 controls). The results showed that organophosphorus pesticides could increase the risk of aplastic anemia (OR=1.97, 95% CI: 1.60-2.44) . Subgroup analysis showed that Asian (OR=2.01, 95% CI: 1.52-2.66) had higher risk of aplastic anemia than American or European (OR=1.93, 95% CI: 1.39-2.67) . Using pure organophosphorus pesticides (OR=2.15, 95% CI: 1.60-2.88) was more prone to cause aplastic anemia than using the mixture of organophosphorus pesticides (OR=1.82, 95% CI: 1.34-2.47). The analysis indicated that organophosphorus pesticides might be a risk factor for aplastic anemia. Reducing organophosphorus pesticides exposure in daily life and industrial or agricultural production could prevent the incidence of aplastic anemia.

  12. Biodegradation of organophosphorus pesticides by soil bacteria

    NASA Astrophysics Data System (ADS)

    de Pasquale, C.; Fodale, R.; Lo Piccolo, L.; Palazzolo, E.; Alonzo, G.; Quatrini, P.

    2009-04-01

    A number of studies in the 1980s and 1990s showed that crop-protection products, applied to drained fields, could move downwards through the soil profile and to the groundwater. Organophosphorus insecticides (OPs) are used all over the world for crop protection, for other agricultural practices such as sheep dipping and, in aquaculture, for the control of sea lice. Ops besides showing a specific neurotoxicity and have also been related to various modern diseases, including Creutzfeldt-Jakob (CJD) and the Gulf War syndrome. Although OPs are less persistent than Organoclorine pesticides (OCs), they still constitute an environmental risks thus increasing the social concern about their levels in soils, surface waters, and ground waters. Degradation of OPs by microorganisms has been assessed for a few bacterial strains. In the present study the OPs degrading potential of indigenous soil microorganisms was investigated. Using enrichment cultures in which parathion was the only C and energy sources many bacterial strains were isolated from OPs contaminated and pristine agricultural soils characterized by different physico-chemical properties. More than 40 potential OPs degraders were isolated and grouped in operational taxonomic units (OTU) using analysis of polymorphism showed by the ribosomal internal transcribed spacer (ITS). Partial sequencing of 16S rRNA gene of representative isolates of each OTU revealed that most of them belong to Proteobacteria and Actinobacteria. All the analyzed soils showed the presence of putative OPs degraders: the highest diversity was found in organic cultivated soils, the lowest in chemically cultivated soils. Degradation of different OPs, characterized by different physical and chemical properties, was obtained by different selected representative strains using SPME GC-MS analysis on water and soil microcosms. The results showed that, after the incubation period, the amount of pesticide residues were in the range 20-80%. Some of the

  13. Organophosphorus and carbamate pesticides. Chapter 12 in Handbook of Ecotoxicology

    USGS Publications Warehouse

    Hill, Elwood F.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    1995-01-01

    Organophosphorus and carbamate pesticides are used throughout the world to control a large variety of insects and other invertebrates, fungi, birds, mammals, and herbaceous plants. Over 100 different organophosphorus and carbamate chemicals are registered in the U.S. alone for use in thousands of products applied to widely diverse habitats including agricultural crops, forests, rangelands, wetlands, towns, and cities. These applications are estimated to be nearly 200 million acre-treatments (i.e., number of acres treated corrected for number of treatments) per year to control nuisance, depradating, and disease-bearing invertebrates and vertebrates, and to maintain landscape aesthetics. Except for mosquito control, most applications target terrestrial habitat. Due to drift or run-off, pesticide and degrades are inevitably detected in soils and water that are fundamental to the primary productivity of ecosystems. Thus, critical life-giving systems are frequently contaminated with organophosphorus and carbamate pesticides, however briefly, each year.

  14. Alkylation of 6-mercaptopurine (6-MP) with N-alkyl-N-alkoxycarbonylaminomethyl chlorides: S6-(N-alkyl-N-alkoxycarbonyl)aminomethyl-6-MP prodrug structure effect on the dermal delivery of 6-MP.

    PubMed

    Siver, K G; Sloan, K B

    1990-01-01

    The S6-(N-alkyl-N-alkoxycarbonyl)aminomethyl-6-MP (6-CARB-6-MP) prodrugs 5-20 were synthesized from the reaction of 6-MP with N-alkyl-N-alkyoxycarbonylaminomethyl chlorides (4) in dimethyl sulfoxide in overall yields of 5-62%, depending on the N-alkyl and the alkoxy groups involved. The derivatives were fully characterized by spectral and microanalyses. The assignment of the substitution pattern as S6-alkyl was based on comparisons of the UV, 1H NMR and 13C NMR spectra with model compounds. A S6, 9-bis-alkyl derivative was obtained from the reaction of 2 equivalents of 4 with 6-MP but the product was unstable and decomposed on standing to a 9-alkyl derivative. The 6-CARB-6-MP prodrugs reverted to 6-MP in water by an SN1-type mechanism involving unimolecular charge separation in the transition state of the rate determining step. There was no effect of dermal enzymes on the rate of hydrolysis. The solubilities in isopropyl myristate (IPM) for all of the 6-CARB-6-MP prodrugs were significantly greater than the solubility of 6-MP in IPM but only one prodrug (5) was apparently even as soluble as 6-MP in water. Selected 6-CARB-6-MP prodrugs were examined in diffusion cell experiments. Only the N-methyl-N-methoxycarbonyl derivative 5 gave a steady-state rate of delivery of 6-MP from IPM that was significantly greater than the steady-state rate of delivery of 6-MP from 6-MP in IPM. All the other derivatives gave steady-state rates of delivery of 6-MP from IPM that were either not significantly different, or were significantly lower than the rate obtained from 6-MP in IPM. In all cases, the effect of the 6-CARB-6-MP:IPM suspensions on the permeability of the skin, as determined by the second application flux of theophylline:propylene glycol, was of the same magnitude as the effect of IPM alone.

  15. Fenthion##

    EPA Science Inventory

    Fenthion (CAS 55-38-9) is an organophosphorus (OP) insecticide used for field and post-harvest treatments of fruits and vegetables, an ectoparasiticide in livestock and pets, and as an insecticide for public health and commercial applications. As with all Cl’s, it inhibits acetyl...

  16. Optimization of Therapeutic Strategies for Organophosphate Poisoning

    DTIC Science & Technology

    2008-03-01

    chemical (Szinicz, 2005:173). Researchers later created various forms of the organophosphate and applied the chemicals as insecticides (Szinicz, 2005:173...of organophosphorus insecticides and nerve agents (Cannard, 2006:87). Organophosphates poison an estimated 100,000 people each year throughout the...quantifiable result in order to facilitate comparison among different therapeutic strategies. Justification and Applicability Organophosphorus insecticides are

  17. Enzymes and Inhibitors in Neonicotinoid Insecticide Metabolism

    PubMed Central

    Shi, Xueyan; Dick, Ryan A.; Ford, Kevin A.; Casida, John E.

    2009-01-01

    Neonicotinoid insecticide metabolism involves considerable substrate specificity and regioselectivity of the relevant CYP450, aldehyde oxidase, and phase II enzymes. Human CYP450 recombinant enzymes carry out the following conversions: CYP3A4, 2C19 and 2B6 for thiamethoxam (TMX) to clothianidin (CLO); 3A4, 2C19 and 2A6 for CLO to desmethyl-CLO; 2C19 for TMX to desmethyl-TMX. Human liver aldehyde oxidase reduces the nitro substituent of CLO to nitroso much more rapidly than that of TMX. Imidacloprid (IMI), CLO and several of their metabolites do not give detectable N-glucuronides but 5-hydroxy-IMI, 4,5-diol-IMI and 4-hydroxy-thiacloprid are converted to O-glucuronides in vitro with mouse liver microsomes and UDP-glucuronic acid or in vivo in mice. Mouse liver cytosol with S-adenosylmethionine converts desmethyl-CLO to CLO but not desmethyl-TMX to TMX. Two organophosphorus CYP450 inhibitors partially block IMI, thiacloprid and CLO metabolism in vivo in mice, elevating the brain and liver levels of the parent compounds while reducing amounts of the hydroxylated metabolites. PMID:19391582

  18. Clastogenic and mitodepressive effects of the insecticide dichlorvos on root meristems of Vicia faba.

    PubMed

    Kontek, Renata; Osiecka, Regina; Kontek, Bodgan

    2007-01-01

    Plant bioassays are an important and integral part of the test battery used in detecting genotoxic/carcinogenic contamination in the environment. Highly sensitive biomonitoring of plant models have been developed, which enables the detection of hazards arising from pesticides, insecticides, industrial contamination, heavy metals and radiation. Root tips of Vicia faba ssp. minor were treated with 1-60 mM of the organophosphorus insecticide dichlorvos (DDVP) for 2 h, followed by a 20-h recovery period. Maleic acid hydrazide (MH) was used as a positive control for the mitotic index, micronucleus and chromosomal aberration assays performed on the Vicia model system. All treatments with DDVP significantly decreased the mitotic activity and increased the frequency of chromosomal aberrations at the metaphase. The frequency of micronuclei was significantly increased at DDVP concentrations starting from 10 mM. The results demonstrate clastogenic and mitodepressive effects of DDVP on Vicia faba cells.

  19. Molecular and immunological responses of the giant freshwater prawn, Macrobrachium rosenbergii, to the organophosphorus insecticide, trichlorfon.

    PubMed

    Chang, Chin-Chyuan; Rahmawaty, Atiek; Chang, Zhong-Wen

    2013-04-15

    Trichlorfon is an organophosphorus (OP) insecticide that is used as an agriculture pesticide to destroy insects, a human medicine to combat internal parasites, and an ectoparasiticide in the livestock and aquaculture industries, but which has caused aquatic toxicity in the prawn industry. The aim of this study was to investigate the effects of trichlorfon on molecular and enzymatic processes of the immunological response of the giant freshwater prawn, Macrobrachium rosenbergii, at 0, 0.2, and 0.4mgL(-1) with 0, 3, 6, 12, and 24h of exposure. The total hemocyte count (THC), respiratory bursts (RBs), phenoloxidase (PO) activity, and superoxide dismutase (SOD) activity were examined to evaluate immunological responses and oxidative stress. Results showed that THCs of the prawn exposed to trichlorfon at both concentrations (0.2 and 0.4mgL(-1)) had increased after 12 and 24h; SOD and PO activities had significantly increased at 3h, whereas production of RBs had dramatically increased as oxidative stress at each sampling time after exposure to trichlorfon compared to the control. A potential biomarker of OPs, acetylcholinesterase (AChE) revealed a significant decrease after exposure for 6h, and showed a time-dependent tendency. Immune gene expressions, including prophenoloxidase (proPO), the lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP), peroxinectin (PE), α2-macroglubulin (α2M), transglutaminase (TG), and copper, zinc (Cu,Zn)-SOD, of prawns exposed to trichlorfon at 0, 0.2, and 0.4mgL(-1) for 0, 6, and 24h were further evaluated. Expressions of all of the immune genes significantly decreased when prawns were exposed to 0.4mgL(-1) trichlorfon for 24h, and among them, an increase in SOD expression was seen after exposure to 0.4mgL(-1) for 6h. Prawns exposed to trichlorfon within 24h exhibited the decrease of circulating hemocytes, and also the induction of oxidative stress, which caused subsequent damage to DNA formation of immune genes. From these

  20. Organophosphorus poisoning (acute).

    PubMed

    Blain, Peter G

    2011-05-17

    Acetylcholinesterase inhibition by organophosphorus pesticides or organophosphate nerve agents can cause acute parasympathetic system dysfunction, muscle weakness, seizures, coma, and respiratory failure. Prognosis depends on the dose and relative toxicity of the specific compound, as well as pharmacokinetic factors. We conducted a systematic review and aimed to answer the following clinical question: What are the effects of treatments for acute organophosphorus poisoning? We searched: Medline, Embase, The Cochrane Library, and other important databases up to April 2010 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 62 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: activated charcoal (single or multiple doses), alpha(2) adrenergic receptor agonists, atropine, benzodiazepines, butyrylcholinesterase replacement therapy, cathartics, extracorporeal clearance, gastric lavage, glycopyrronium bromide (glycopyrrolate), ipecacuanha (ipecac), magnesium sulphate, milk or other home remedy immediately after ingestion, N-methyl-D-aspartate receptor antagonists, organophosphorus hydrolases, oximes, removing contaminated clothes and washing the poisoned person, and sodium bicarbonate.

  1. Resistance of Aëdes aegypti to certain chlorinated hydrocarbon and organo-phosphorus insecticides in Puerto Rico*

    PubMed Central

    Fox, Irving

    1961-01-01

    Failure to control Aëdes aegypti in Puerto Rico has suggested resistance to the insecticides, particularly DDT. A laboratory colony (named Isla Verde strain) was established from material obtained near the International Airport. This strain proved highly resistant to DDT and dieldrin as well as various other insecticides. The scientific and practical significance of this is far-reaching. Heretofore, it was thought that populations of Aëdes aegypti could be resistant to the DDT group of insecticides or to the dieldrin group but not to both, and that one type of resistance involved biochemical, toxicological and genetic characteristics different from the other. This theory must now be modified or even abandoned. From the practical point of view, it is clear that the continued use of DDT or dieldrin for Aëdes aegypti control in Puerto Rico is questionable, for it is not wise to attempt to overcome high resistance by increasing the concentration or rate of application. Further, the situation demonstrated for Puerto Rico may also obtain in other islands of the Caribbean where Aëdes aegypti is known to be DDT-resistant. PMID:13701099

  2. Key environmental processes affecting the fate of the insecticide chloropyrifos applied to leaves.

    PubMed

    Lester, Yaal; Sabach, Sara; Zivan, Ohad; Dubowski, Yael

    2017-03-01

    Chlorpyrifos (CP) is still a commonly employed organophosphorus insecticide worldwide. In semi-arid and Mediterranean climates, applied CP is expected to remain on leaves surfaces for relatively long time due to the lack of summer rains and common use of drip irrigation. The present work examines the loss rate of CP from leaves via different surface processes: evaporation, direct photolysis and reactions with ozone and OH radicals. Laboratory experiments showed that evaporation rate constant of CP increased from 0.109 to 0.492 h -1 with the increase in wind speed up to 4 m/s. First-order rate constant of direct photolysis, measured using a solar simulator, was k' UV  = 1.15 (±0.01) x 10 -20  cm 2 photon -1 . Second-order rate constants for the reaction of CP with ozone and OH were measured as 6 × 10 -20 and 6 × 10 -12  cm 3  molecule -1  s -1 , respectively. The above rate constants were applied successfully in an outdoor experiment to predict the disappearance of chloropyrifos under specific environmental conditions. Further modeling showed that the insecticide half-life time on exposed surfaces under typical Mediterranean environment will be in the range of 0.9-6.9 h. Evaporation is expected to be the dominant removal path under most environmental conditions, followed by direct photolysis and reaction with OH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Embryo yolk sac membrane kynurenine formamidase of l-tryptophan to NAD+ pathway as a primary target for organophosphorus insecticides (OPI) in OPI-induced NAD-associated avian teratogenesis.

    PubMed

    Seifert, Josef

    2017-10-01

    The objective of this study was to provide in ovo evidence for the proposed role of kynurenine formamidase of l-tryptophan to NAD + pathway in embryo yolk sac membranes as a primary target for organophosphorus insecticide (OPI) teratogens in OPI-induced NAD-associated avian teratogenesis. Slices prepared from yolk sac membranes or embryo livers of chicken eggs treated with the OPI dicrotophos and/or methyl parathion were incubated with l-tryptophan. Yolk sac membrane slices metabolized l-tryptophan in the pathway to NAD + before that function was established in livers. OPI interfered in ovo with the second step of l-tryptophan to NAD + biosynthesis by inhibiting kynurenine formamidase. Its inhibition due to the teratogen dicrotophos occurred in yolk sac membranes during the period of embryo highest susceptibility to OPI teratogens in contrast to delayed and lower inhibition caused by the nonteratogen methyl parathion. Both OPI affected liver kynurenine formamidase in a similar manner. The onsets of liver enzyme inhibition, however, were delayed by about two days and occurred at the time of the reduced embryo susceptibility to teratogens. The early disruption of l-tryptophan metabolism and higher inhibition of kynurenine formamidase in yolk sac membranes may be the factors that determine action of OPI as teratogens in chicken embryos. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mitochondrial impacts of insecticidal formate esters in insecticide-resistant and insecticide-susceptible Drosophila melanogaster.

    PubMed

    Song, Cheol; Scharf, Michael E

    2009-06-01

    Previous research on insecticidal formate esters in flies and mosquitoes has documented toxicity profiles, metabolism characteristics and neurological impacts. The research presented here investigated mitochondrial impacts of insecticidal formate esters and their hydrolyzed metabolite formic acid in the model dipteran insect Drosophila melanogaster Meig. These studies compared two Drosophila strains: an insecticide-susceptible strain (Canton-S) and a strain resistant by cytochrome P450 overexpression (Hikone-R). In initial studies investigating inhibition of mitochondrial cytochrome c oxidase, two proven insecticidal materials (hydramethylnon and sodium cyanide) caused significant inhibition. However, for insecticidal formate esters and formic acid, no significant inhibition was identified in either fly strain. Mitochondrial impacts of formate esters were then investigated further by tracking toxicant-induced cytochrome c release from mitochondria into the cytoplasm, a biomarker of apoptosis and neurological dysfunction. Formic acid and three positive control treatments (rotenone, antimycin A and sodium cyanide) induced cytochrome c release, verifying that formic acid is capable of causing mitochondrial disruption. However, when comparing formate ester hydrolysis and cytochrome c release between Drosophila strains, formic acid liberation was only weakly correlated with cytochrome c release in the susceptible Canton-S strain (r(2) = 0.70). The resistant Hikone-R strain showed no correlation (r(2) < 0.0001) between formate ester hydrolysis and cytochrome c release. The findings of this study provide confirmation of mitochondrial impacts by insecticidal formate esters and suggest links between mitochondrial disruption, respiratory inhibition, apoptosis and formate-ester-induced neurotoxicity.

  5. Phytodegradation of organophosphorus compounds by transgenic plants expressing a bacterial organophosphorus hydrolase.

    PubMed

    Wang, Xiaoxue; Wu, Ningfeng; Guo, Jun; Chu, Xiaoyu; Tian, Jian; Yao, Bin; Fan, Yunliu

    2008-01-18

    Organophosphorus (OP) compounds are widely used as pesticides in agriculture but cause broad-area environmental pollution. In this work, we have expressed a bacterial organophosphorus hydrolase (OPH) gene in tobacco plants. An assay of enzyme activity showed that transgenic plants could secrete OPH into the growth medium. The transgenic plants were resistant to methyl parathion (Mep), an OP pesticide, as evidenced by a toxicity test showing that the transgenic plants produced greater shoot and root biomass than did the wild-type plants. Furthermore, at 0.02% (v/v) Mep, the transgenic plants degraded more than 99% of Mep after 14 days of growth. Our work indicates that transgenic plants expressing an OPH gene may provide a new strategy for decontaminating OP pollutants.

  6. Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils.

    PubMed

    Cycoń, Mariusz; Żmijowska, Agnieszka; Wójcik, Marcin; Piotrowska-Seget, Zofia

    2013-03-15

    The ability of diazinon-degrading Serratia marcescens to remove organophosphorus pesticides (OPPs), i.e. chlorpyrifos (CP), fenitrothion (FT), and parathion (PT) was studied in a mineral salt medium (MSM) and in three soils of different characteristics. This strain was capable of using all insecticides at concentration of 50 mg/l as the only carbon source when grown in MSM, and 58.9%, 70.5%, and 82.5% of the initial dosage of CP, FT, and PT, respectively was degraded within 14 days. The biodegradation experiment showed that autochthonous microflora in all soils was characterized by a degradation potential of all tested OPPs; however, the initial lag phases for degradation of CP and FT, especially in sandy soil, were observed. During the 42-day experiment, 45.3%, 61.4% and 72.5% of the initial dose of CP, FT, and PT, respectively, was removed in sandy soil whereas the degradation of CP, FT, and PT in the same period, in sandy loam and silty soils reached 61.4%, 79.7% and 64.2%, and 68.9%, 81.0% and 63.6%, respectively. S. marcescens introduced into sterile soils showed a higher degradation potential (5-13%) for OPPs removal than those observed in non-sterile soil with naturally occurring attenuation. Inoculation of non-sterile soils with S. marcescens enhanced the disappearance rates of all insecticides, and DT50 for CP, FT, and PT was reduced by 20.7, 11.3 and 13.0 days, and 11.9, 7.0 and 8.1 days, and 9.7, 14.5 and 12.6 days in sandy, sandy loam, and silty soils, respectively, in comparison with non-sterile soils with only indigenous microflora. This ability of S. marcescens makes it a suitable strain for bioremediation of soils contaminated with OPPs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Observations on the influence of water and soil pH on the persistence of insecticides.

    PubMed

    Chapman, R A; Cole, C M

    1982-01-01

    The pH-disappearance rate profiles were determined at ca. 25 degrees C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water-ethanol (99:1 v/v). Half-lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (greater than 1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1-2 days for trichlorfon and oxamyl to greater than 1 year for fensulfothion and cypermethrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.

  8. Household organophosphorus pesticide use and Parkinson’s disease

    PubMed Central

    Narayan, Shilpa; Liew, Zeyan; Paul, Kimberly; Lee, Pei-Chen; Sinsheimer, Janet S; Bronstein, Jeff M; Ritz, Beate

    2013-01-01

    Background Household pesticide use is widespread in the USA. Since the 1970s, organophosphorus chemicals (OPs) have been common active ingredients in these products. Parkinson’s disease (PD) has been linked to pesticide exposures but little is known about the contributions of chronic exposures to household pesticides. Here we investigate whether long-term use of household pesticides, especially those containing OPs, increases the odds of PD. Methods In a population-based case-control study, we assessed frequency of household pesticide use for 357 cases and 807 controls, relying on the California Department of Pesticide Regulation product label database to identify ingredients in reported household pesticide products and the Pesticide Action Network pesticide database of chemical ingredients. Using logistic regression we estimated the effects of household pesticide use. Results Frequent use of any household pesticide increased the odds of PD by 47% [odds ratio (OR) = 1.47, (95% confidence interval (CI): 1.13, 1.92)]; frequent use of products containing OPs increased the odds of PD more strongly by 71% [OR = 1.71, (95% CI: 1.21, 2.41)] and frequent organothiophosphate use almost doubled the odds of PD. Sensitivity analyses showed that estimated effects were independent of other pesticide exposures (ambient and occupational) and the largest odds ratios were estimated for frequent OP users who were carriers of the 192QQ paraoxonase genetic variant related to slower detoxification of OPs. Conclusions We provide evidence that household use of OP pesticides is associated with an increased risk of developing PD. PMID:24057998

  9. In vitro study of the neuropathic potential of the organophosphorus compounds trichlorfon and acephate.

    PubMed

    Fernandes, Laís S; Emerick, Guilherme L; dos Santos, Neife Aparecida G; de Paula, Eloísa Silva; Barbosa, Fernando; dos Santos, Antonio Cardozo

    2015-04-01

    Organophosphorus-induced delayed neuropathy (OPIDN) is a central and peripheral distal axonopathy characterized by ataxia and paralysis. Trichlorfon and acephate are two organophosphorus compounds (OPs) used worldwide as insecticide and which cause serious effects to non-target species. Despite that, the neuropathic potential of these OPs remains unclear. The present study addressed the neurotoxic effects and the neuropathic potential of trichlorfon and acephate in SH-SY5Y human neuroblastoma cells, by evaluating inhibition and aging of neuropathy target esterase (NTE), inhibition of acetylcholinesterase (AChE), neurite outgrowth, cytotoxicity and intracellular calcium. Additionally, the effects observed were compared to those of two well-studied OPs: mipafox (known as neuropathic) and paraoxon (known as non-neuropathic). Trichlorfon and mipafox presented the lowest percentage of reactivation of inhibited NTE and the lowest ratio IC50 NTE/IC50 AChE. Moreover, they caused inhibition and aging of at least 70% of the activity of NTE at sub-lethal concentrations. All these effects have been associated with induction of OPIDN. When assayed at these concentrations, trichlorfon and mipafox reduced neurite outgrowth and increased intracellular calcium, events implicated in the development of OPIDN. Acephate caused effects similar to those caused by paraoxon (non-neuropathic OP) and was only able to inhibit 70% of NTE activity at lethal concentrations. These findings suggest that trichlorfon is potentially neuropathic, whereas acephate is not. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A review of insecticide poisonings among domestic livestock in southern Ontario, Canada, 1982-1989

    PubMed Central

    Frank, Richard; Braun, Heinz E.; Wilkie, Ian; Ewing, Ronald

    1991-01-01

    From 1982 to 1989, inclusive, 20 poisonings were investigated by the Ontario Ministry of Agriculture and Food following ingestion by domestic livestock of granular insecticides including terbufos (13 poisonings), disulfoton (two poisonings), fonofos (two poisonings), phorate (two poisonings), and carbofuran (one poisoning); all are used for rootworm (Diabrotica spp.) control in corn. A further three poisonings of livestock occurred following the ingestion of the foliar insecticide, endosulfan (two poisonings), and the seed protectant insecticides diazinon plus lindane (one poisoning). There were six poisoning cases as a result of excessive topical applications of the three insecticides coumpahos, fenthion, and lindane as dusts or sprays to control external parasites. Together, these events caused the deaths of 258 domestic animals of which 200 were cattle, 23 were swine, and 35 were sheep. Not all deaths are reported to the Ministry and the cases reported here may only represent 30-50% of the actual deaths over the period. Based on total populations of livestock, the percent losses were very small but they represent serious losses to individual growers. The economic loss is estimated at $160,000 over the eight years, or $20,000 per annum, and this does not include veterinary costs. Some of the poisoned animals died within as little as three to four hours of ingestion while others were sick but survived for several days. Lethal doses of insecticide were found in the rumen, abomasum, or stomach of dead animals. Signs typical of cholinesterase inhibition caused by organophosphorus poisoning were observed in most cases. Cholinesterase readings were found to be zero in dying animals. Necropsy findings were rarely more than pulmonary edema or myocardial hemorrhage. Where organochlorine insecticides were ingested, convulsions were the major manifestation. Contamination of feed was most often accidental, and chemical analysis was most helpful in identifying both potent and

  11. UPTAKE AND PHYTOTRANSFORMATION OF ORGANOPHOSPHORUS PESTICIDES BY AXENICALLY CULTIVATED AQUATIC PLANTS

    EPA Science Inventory

    The uptake and phytotransformation of organophosphorus (OP) pesticides (malathion, demeton-S-methyl, and crufomate) was investigated in vitro using the axenically aquatic cultivated plants parrot feather (Myriophyllum aquaticum), duckweed (Spirodela oligorrhiza L.), and elodea (E...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, Wayne Joseph

    Results are reported from an investigation of correlations between molecular structural parameters of selected organophosphorus insecticides and their corresponding toxic effectiveness. The crystal and molecular structures of azinphos-methyl, emidithion, and tetrachlorvinphos were determined via three-dimensional x-ray analysis. Acetylcholinesterase (AChE) in nerve cells was identified as the target for organophosphorus insecticides.

  13. A role for solvents in the toxicity of agricultural organophosphorus pesticides

    PubMed Central

    Eddleston, Michael; Street, Jonathan M.; Self, Ian; Thompson, Adrian; King, Tim; Williams, Nicola; Naredo, Gregorio; Dissanayake, Kosala; Yu, Ly-Mee; Worek, Franz; John, Harald; Smith, Sionagh; Thiermann, Horst; Harris, John B.; Eddie Clutton, R.

    2012-01-01

    Organophosphorus (OP) insecticide self-poisoning is responsible for about one-quarter of global suicides. Treatment focuses on the fact that OP compounds inhibit acetylcholinesterase (AChE); however, AChE-reactivating drugs do not benefit poisoned humans. We therefore studied the role of solvent coformulants in OP toxicity in a novel minipig model of agricultural OP poisoning. Gottingen minipigs were orally poisoned with clinically relevant doses of agricultural emulsifiable concentrate (EC) dimethoate, dimethoate active ingredient (AI) alone, or solvents. Cardiorespiratory physiology and neuromuscular (NMJ) function, blood AChE activity, and arterial lactate concentration were monitored for 12 h to assess poisoning severity. Poisoning with agricultural dimethoate EC40, but not saline, caused respiratory arrest within 30 min, severe distributive shock and NMJ dysfunction, that was similar to human poisoning. Mean arterial lactate rose to 15.6 [SD 2.8] mM in poisoned pigs compared to 1.4 [0.4] in controls. Moderate toxicity resulted from poisoning with dimethoate AI alone, or the major solvent cyclohexanone. Combining dimethoate with cyclohexanone reproduced severe poisoning characteristic of agricultural dimethoate EC poisoning. A formulation without cyclohexanone showed less mammalian toxicity. These results indicate that solvents play a crucial role in dimethoate toxicity. Regulatory assessment of pesticide toxicity should include solvents as well as the AIs which currently dominate the assessment. Reformulation of OP insecticides to ensure that the agricultural product has lower mammalian toxicity could result in fewer deaths after suicidal ingestion and rapidly reduce global suicide rates. PMID:22365945

  14. Assessing the Developmental Neurotoxicity of 27 Organophosphorus Pesticides Using a Zebrafish Behavioral Assay

    EPA Science Inventory

    Assessing the Developmental Neurotoxicity of 27 Organophosphorus Pesticides Using a Zebrafish Behavioral Assay, Waalkes, M., Hunter, D.L., Jarema, K., Mundy, W., and S. Padilla. The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize organophosphor...

  15. EFFECT OF ORGANOPHOSPHORUS FLAME RETARDANTS ON NEURONAL DEVELOPMENT IN VITRO

    EPA Science Inventory

    The increased use of organophosphorus compounds as alternatives to brominated flame retardants (BFRs) has led to widespread human exposure, There is, however, limited information on their potential health effects. This study compared the effects of nii ne organophosphorus flame...

  16. Insecticide applications to soil contribute to the development of Burkholderia mediating insecticide resistance in stinkbugs.

    PubMed

    Tago, Kanako; Kikuchi, Yoshitomo; Nakaoka, Sinji; Katsuyama, Chie; Hayatsu, Masahito

    2015-07-01

    Some soil Burkholderia strains are capable of degrading the organophosphorus insecticide, fenitrothion, and establish symbiosis with stinkbugs, making the host insects fenitrothion-resistant. However, the ecology of the symbiotic degrading Burkholderia adapting to fenitrothion in the free-living environment is unknown. We hypothesized that fenitrothion applications affect the dynamics of fenitrothion-degrading Burkholderia, thereby controlling the transmission of symbiotic degrading Burkholderia from the soil to stinkbugs. We investigated changes in the density and diversity of culturable Burkholderia (i.e. symbiotic and nonsymbiotic fenitrothion degraders and nondegraders) in fenitrothion-treated soil using microcosms. During the incubation with five applications of pesticide, the density of the degraders increased from less than the detection limit to around 10(6)/g of soil. The number of dominant species among the degraders declined with the increasing density of degraders; eventually, one species predominated. This process can be explained according to the competitive exclusion principle using V(max) and K(m) values for fenitrothion metabolism by the degraders. We performed a phylogenetic analysis of representative strains isolated from the microcosms and evaluated their ability to establish symbiosis with the stinkbug Riptortus pedestris. The strains that established symbiosis with R. pedestris were assigned to a cluster including symbionts commonly isolated from stinkbugs. The strains outside the cluster could not necessarily associate with the host. The degraders in the cluster predominated during the initial phase of degrader dynamics in the soil. Therefore, only a few applications of fenitrothion could allow symbiotic degraders to associate with their hosts and may cause the emergence of symbiont-mediated insecticide resistance. © 2015 John Wiley & Sons Ltd.

  17. Multiple insecticide resistance mechanisms in Anopheles gambiae s.l. populations from Cameroon, Central Africa.

    PubMed

    Nwane, Philippe; Etang, Josiane; Chouaїbou, Mouhamadou; Toto, Jean Claude; Koffi, Alphonsine; Mimpfoundi, Rémy; Simard, Frédéric

    2013-02-22

    Increasing incidence of DDT and pyrethroid resistance in Anopheles mosquitoes is seen as a limiting factor for malaria vector control. The current study aimed at an in-depth characterization of An. gambiae s.l. resistance to insecticides in Cameroon, in order to guide malaria vector control interventions. Anopheles gambiae s.l. mosquitoes were collected as larvae and pupae from six localities spread throughout the four main biogeographical domains of Cameroon and reared to adults in insectaries. Standard WHO insecticide susceptibility tests were carried out with 4% DDT, 0.75% permethrin and 0.05% deltamethrin. Mortality rates and knockdown times (kdt50 and kdt95) were determined and the effect of pre-exposure to the synergists DEF, DEM and PBO was assessed. Tested mosquitoes were identified to species and molecular forms (M or S) using PCR-RFLP. The hot ligation method was used to depict kdr mutations and biochemical assays were conducted to assess detoxifying enzyme activities. The An. arabiensis population from Pitoa was fully susceptible to DDT and permethrin (mortality rates>98%) and showed reduced susceptibility to deltamethrin. Resistance to DDT was widespread in An. gambiae s.s. populations and heterogeneous levels of susceptibility to permethrin and deltamethrin were observed. In many cases, prior exposure to synergists partially restored insecticide knockdown effect and increased mortality rates, suggesting a role of detoxifying enzymes in increasing mosquito survival upon challenge by pyrethroids and, to a lower extent DDT. The distribution of kdr alleles suggested a major role of kdr-based resistance in the S form of An. gambiae. In biochemical tests, all but one mosquito population overexpressed P450 activity, whereas baseline GST activity was low and similar in all field mosquito populations and in the control. In Cameroon, multiple resistance mechanisms segregate in the S form of An. gambiae resulting in heterogeneous resistance profiles, whereas in

  18. Management of acute organophosphorus pesticide poisoning.

    PubMed

    Eddleston, Michael; Buckley, Nick A; Eyer, Peter; Dawson, Andrew H

    2008-02-16

    Organophosphorus pesticide self-poisoning is an important clinical problem in rural regions of the developing world, and kills an estimated 200,000 people every year. Unintentional poisoning kills far fewer people but is a problem in places where highly toxic organophosphorus pesticides are available. Medical management is difficult, with case fatality generally more than 15%. We describe the limited evidence that can guide therapy and the factors that should be considered when designing further clinical studies. 50 years after first use, we still do not know how the core treatments--atropine, oximes, and diazepam--should best be given. Important constraints in the collection of useful data have included the late recognition of great variability in activity and action of the individual pesticides, and the care needed cholinesterase assays for results to be comparable between studies. However, consensus suggests that early resuscitation with atropine, oxygen, respiratory support, and fluids is needed to improve oxygen delivery to tissues. The role of oximes is not completely clear; they might benefit only patients poisoned by specific pesticides or patients with moderate poisoning. Small studies suggest benefit from new treatments such as magnesium sulphate, but much larger trials are needed. Gastric lavage could have a role but should only be undertaken once the patient is stable. Randomised controlled trials are underway in rural Asia to assess the effectiveness of these therapies. However, some organophosphorus pesticides might prove very difficult to treat with current therapies, such that bans on particular pesticides could be the only method to substantially reduce the case fatality after poisoning. Improved medical management of organophosphorus poisoning should result in a reduction in worldwide deaths from suicide.

  19. Management of acute organophosphorus pesticide poisoning

    PubMed Central

    Eddleston, Michael; Buckley, Nick A; Eyer, Peter; Dawson, Andrew H

    2008-01-01

    Summary Organophosphorus pesticide self-poisoning is an important clinical problem in rural regions of the developing world, and kills an estimated 200 000 people every year. Unintentional poisoning kills far fewer people but is a problem in places where highly toxic organophosphorus pesticides are available. Medical management is difficult, with case fatality generally more than 15%. We describe the limited evidence that can guide therapy and the factors that should be considered when designing further clinical studies. 50 years after first use, we still do not know how the core treatments—atropine, oximes, and diazepam—should best be given. Important constraints in the collection of useful data have included the late recognition of great variability in activity and action of the individual pesticides, and the care needed cholinesterase assays for results to be comparable between studies. However, consensus suggests that early resuscitation with atropine, oxygen, respiratory support, and fluids is needed to improve oxygen delivery to tissues. The role of oximes is not completely clear; they might benefit only patients poisoned by specific pesticides or patients with moderate poisoning. Small studies suggest benefit from new treatments such as magnesium sulphate, but much larger trials are needed. Gastric lavage could have a role but should only be undertaken once the patient is stable. Randomised controlled trials are underway in rural Asia to assess the effectiveness of these therapies. However, some organophosphorus pesticides might prove very difficult to treat with current therapies, such that bans on particular pesticides could be the only method to substantially reduce the case fatality after poisoning. Improved medical management of organophosphorus poisoning should result in a reduction in worldwide deaths from suicide. PMID:17706760

  20. Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds.

    PubMed

    Voorhees, Jaymie R; Rohlman, Diane S; Lein, Pamela J; Pieper, Andrew A

    2016-01-01

    Organophosphorus (OPs) compounds are widely used as insecticides, plasticizers, and fuel additives. These compounds potently inhibit acetylcholinesterase (AChE), the enzyme that inactivates acetylcholine at neuronal synapses, and acute exposure to high OP levels can cause cholinergic crisis in humans and animals. Evidence further suggests that repeated exposure to lower OP levels insufficient to cause cholinergic crisis, frequently encountered in the occupational setting, also pose serious risks to people. For example, multiple epidemiological studies have identified associations between occupational OP exposure and neurodegenerative disease, psychiatric illness, and sensorimotor deficits. Rigorous scientific investigation of the basic science mechanisms underlying these epidemiological findings requires valid preclinical models in which tightly-regulated exposure paradigms can be correlated with neurotoxicity. Here, we review the experimental models of occupational OP exposure currently used in the field. We found that animal studies simulating occupational OP exposures do indeed show evidence of neurotoxicity, and that utilization of these models is helping illuminate the mechanisms underlying OP-induced neurological sequelae. Still, further work is necessary to evaluate exposure levels, protection methods, and treatment strategies, which taken together could serve to modify guidelines for improving workplace conditions globally.

  1. Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds

    PubMed Central

    Voorhees, Jaymie R.; Rohlman, Diane S.; Lein, Pamela J.; Pieper, Andrew A.

    2017-01-01

    Organophosphorus (OPs) compounds are widely used as insecticides, plasticizers, and fuel additives. These compounds potently inhibit acetylcholinesterase (AChE), the enzyme that inactivates acetylcholine at neuronal synapses, and acute exposure to high OP levels can cause cholinergic crisis in humans and animals. Evidence further suggests that repeated exposure to lower OP levels insufficient to cause cholinergic crisis, frequently encountered in the occupational setting, also pose serious risks to people. For example, multiple epidemiological studies have identified associations between occupational OP exposure and neurodegenerative disease, psychiatric illness, and sensorimotor deficits. Rigorous scientific investigation of the basic science mechanisms underlying these epidemiological findings requires valid preclinical models in which tightly-regulated exposure paradigms can be correlated with neurotoxicity. Here, we review the experimental models of occupational OP exposure currently used in the field. We found that animal studies simulating occupational OP exposures do indeed show evidence of neurotoxicity, and that utilization of these models is helping illuminate the mechanisms underlying OP-induced neurological sequelae. Still, further work is necessary to evaluate exposure levels, protection methods, and treatment strategies, which taken together could serve to modify guidelines for improving workplace conditions globally. PMID:28149268

  2. Thioimidazolium Ionic Liquids as Tunable Alkylating Agents.

    PubMed

    Guterman, Ryan; Miao, Han; Antonietti, Markus

    2018-01-19

    Alkylating ionic liquids based on the thioimidazolium structure combine the conventional properties of ionic liquids, including low melting point and nonvolatility, with the alkylating function. Alkyl transfer occurs exclusively from the S-alkyl position, thus allowing for easy derivatization of the structure without compromising specificity. We apply this feature to tune the electrophilicty of the cation to profoundly affect the reactivity of these alkylating ionic liquids, with a caffeine-derived compound possessing the highest reactivity. Anion choice was found to affect reaction rates, with iodide anions assisting in the alkylation reaction through a "shuttling" process. The ability to tune the properties of the alkylating agent using the toolbox of ionic liquid chemistry highlights the modular nature of these compounds as a platform for alkylating agent design and integration in to future systems.

  3. Development and validation of a multiresidue method for the simultaneous determination of organophosphorus insecticides and their toxic metabolites in sugarcane juice and refined sugar by gas chromatography with flame photometric detection.

    PubMed

    Ramasubramanian, Thirumalaiandi; Paramasivam, Mariappan

    2016-06-01

    A multiresidue method has been developed and validated for the simultaneous determination of organophosphorus insecticides and their toxic metabolites in sugarcane juice and refined sugar by gas chromatography with flame photometric detection. Limits of quantification of the method varied between 0.007 and 0.01 μg/g. Ethyl acetate based extraction followed by dispersive solid-phase extraction cleanup with primary secondary amine yielded internationally acceptable recoveries of acephate, chlorpyrifos, dichlorvos, monocrotophos, malathion, malaoxon, phorate, phorate-sulfoxide, phorate-oxon, phorate-sulfone, and quinalphos from selected matrices. The recoveries of target analytes from cane juice were 75.55 ± 0.5-102.57 ± 4.2, 77.45 ± 4.7-103.33 ± 3.3, and 80.55 ± 6.6-105.82 ± 9.8% at 0.01, 0.02, and 0.1 μg/g levels of fortification, respectively. The recoveries from cane sugar were 73.24 ± 3.5-104.47 ± 1.9, 75.23 ± 1.5-116.10 ± 3.7, and 70.75 ± 5.7-110.15 ± 2.7%, respectively at 0.01, 0.02, and 0.1 μg/g levels of fortification. Matrix effect and measurement uncertainty were within the permissible limit (less than 20%) as prescribed for pesticide residue analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. S - and N-alkylating agents diminish the fluorescence of fluorescent dye-stained DNA.

    PubMed

    Giesche, Robert; John, Harald; Kehe, Kai; Schmidt, Annette; Popp, Tanja; Balzuweit, Frank; Thiermann, Horst; Gudermann, Thomas; Steinritz, Dirk

    2017-01-25

    Sulfur mustard (SM), a chemical warfare agent, causes DNA alkylation, which is believed to be the main cause of its toxicity. SM DNA adducts are commonly used to verify exposure to this vesicant. However, the required analytical state-of-the-art mass-spectrometry methods are complex, use delicate instruments, are not mobile, and require laboratory infrastructure that is most likely not available in conflict zones. Attempts have thus been made to develop rapid detection methods that can be used in the field. The analysis of SM DNA adducts (HETE-G) by immunodetection is a convenient and suitable method. For a diagnostic assessment, HETE-G levels must be determined in relation to the total DNA in the sample. Total DNA can be easily visualized by the use of fluorescent DNA dyes. This study examines whether SM and related compounds affect total DNA staining, an issue that has not been investigated before. After pure DNA was extracted from human keratinocytes (HaCaT cells), DNA was exposed to different S- and N-alkylating agents. Our experiments revealed a significant, dose-dependent decrease in the fluorescence signal of fluorescent dye-stained DNA after exposure to alkylating agents. After mass spectrometry and additional fluorescence measurements ruled out covalent modifications of ethidium bromide (EthBr) by SM, we assumed that DNA crosslinks caused DNA condensation and thereby impaired access of the fluorescent dyes to the DNA. DNA digestion by restriction enzymes restored fluorescence, a fact that strengthened our hypothesis. However, monofunctional agents, which are unable to crosslink DNA, also decreased the fluorescence signal. In subsequent experiments, we demonstrated that protons produced during DNA alkylation caused a pH decrease that was found responsible for the reduction in fluorescence. The use of an appropriate buffer system eliminated the adverse effect of alkylating agents on DNA staining with fluorescent dyes. An appropriate buffer system is thus

  5. Levels of organophosphorus pesticides in medicinal plants commonly consumed in Iran

    PubMed Central

    2012-01-01

    The frequent occurrence of pesticide residues in herbal materials was indicated by previous studies. In this study, the concentration of some of the organophosphorus pesticides including parathion, malathion, diazinon and pirimiphos methyl in different kinds of medicinal plants were determined. The samples were collected randomly from ten local markets of different areas of Iran. At the detection limit of 0.5 ng g-1, parathion and pirimiphos methyl were not detected in any of the samples. Some amounts of malathion and diazinon were found in Zataria, Matricaria chamomile, Spearmint and Cumin Seed samples while, the concentrations of target organophosphorus pesticides in Borage samples were below the detection limits of the methods which could be a result of intensive transformation of organophosphorus pesticides by Borage. In addition the organophosphorus pesticides were detected in all of the samples below the maximum residue levels (MRLs) proposed by the international organizations. PMID:23351610

  6. Decrease of insecticide resistance over generations without exposure to insecticides in Nilaparvata lugens (Hemipteran: Delphacidae).

    PubMed

    Yang, Yajun; Dong, Biqin; Xu, Hongxing; Zheng, Xusong; Tian, Junce; Heong, Kongleun; Lu, Zhongxian

    2014-08-01

    The brown planthopper, Nilaparvata lugens (Stål), is one of the most important insect pests on paddy rice in tropical and temperate Asia. Overuse and misuse of insecticides have resulted in the development of high resistance to many different insecticides in this pest. Studies were conducted to evaluate the change of resistance level to four insecticides over 15 generations without any exposure to insecticides in brown planthopper. After 15 generations' rearing without exposure to insecticide, brown planthopper could reverse the resistance to imidacloprid, chlorpyrifos, fipronil, and fenobucarb. The range and style of resistance reversal of brown planthopper differed when treated with four different insecticides. To monitor potential changes in insect physiological responses, we measured the activity of each of the three selected enzymes, including acetylcholinesterases (AChE), general esterases (EST), and glutathione S-transferases. After multiple generations' rearing without exposure to insecticide, AChE and EST activities of brown planthopper declined with the increased generations, suggesting that the brown planthopper population adjusted activities of EST and AChE to adapt to the non-insecticide environment. These findings suggest that the reducing, temporary stop, or rotation of insecticide application could be incorporated into the brown planthopper management.

  7. Competitive immunochromatographic assay for the detection of the organophosphorus pesticide chlorpyrifos

    PubMed Central

    Kim, Young Ah; Lee, Eun-Hye; Kim, Kwang-Ok; Lee, Yong Tae; Hammock, Bruce D.; Lee, Hye-Sung

    2014-01-01

    An immunochromatographic assay (ICA) based on competitive antigen-coated format using colloidal gold as the label was developed for the detection of the organophosphorus insecticide chlorpyrifos. The ICA test strip consisted of a membrane with a detection zone, a sample pad and an absorbent pad. The membrane was separately coated with chlorpyrifos hapten-OVA conjugate (test line) and anti-mouse IgG (control line). Based on the fact that the competition is between the migrating analyte in the sample and the analyte hapten immobilized on the test strip for the binding sites of the antibody-colloidal gold (Ab-CG) conjugate migrating on the test strip, this study suggests that the relative migration speed between the two migrating substances is a critically important factor for the sensitive detection by competitive ICA. This criterion was utilized for the confirmation of appropriateness of a nitrocellulose (NC) membrane for chlorpyrifos ICA. The detection limit of the ICA for chlorpyrifos standard and chlorpyrifos spiked into agricultural samples were 10 and 50 ng mL−1, respectively. The assay time for the ICA test was less than 10 min, suitable for rapid on-site testing of chlorpyrifos. PMID:21504817

  8. Depression of plasma luteinizing hormone concentration in quail by the anticholinesterase insecticide parathion

    USGS Publications Warehouse

    Rattner, B.A.; Clarke, R.N.; Ottinger, M.A.

    1986-01-01

    1. To examine the effects of parathion on basal plasma luteinizing hormone (LH) concentration, male Japanese quail (Coturnix japonica) were orally intubated with 0, 5 or 10 mg/kg parathion and sacrificed after 4, 8 and 24 hr.2. At the 5 mg/kg dose, plasma LH levels were reduced at 4 and 8 hr, but returned to control values by 24 hr. Brain acetylcholinesterase activity was substantially reduced by 10 mg/kg parathion (52, 75 and 37% inhibition at 4, 8 and 24 hr, respectively) and plasma LH concentration remained depressed through the 24-hr period.3. These findings suggest that the organophosphorus insecticide parathion may alter plasma LH concentration in a manner which might impair reproductive activity, and provide indirect evidence for a cholinergic component in the regulation of LH secretion in quail.

  9. [Enzymatic degradation of organophosphorus insecticide chlorpyrifos by fungus WZ-I].

    PubMed

    Xie, Hui; Zhu, Lu-sheng; Wang, Jun; Wang, Xiu-guo; Liu, Wei; Qian, Bo; Wang, Qian

    2005-11-01

    Degradation characteristics of chlorpyrifos insecticides was determined by the crude enzyme extracted from the isolated strain WZ-I ( Fusarium LK. ex Fx). The best separating condition and the degrading characteristic of chlorpyrifos were studied. Rate of degradation for chlorpyrifos by its intracellular enzyme, extracellular enzyme and cell fragment was 60.8%, 11.3% and 48%, respectively. The degrading enzyme was extracted after this fungus was incubated for 8 generations in the condition of noninducement, and its enzymic activity lost less, the results show that this enzyme is an intracellular and connatural enzyme. The solubility protein of the crude enzyme was determined with Albumin (bovine serum) as standard protein and the solubility protein of the crude enzyme was 3.36 mg x mL(-1). The pH optimum for crude enzyme was 6.8 for enzymatic degradation of chlorpyrifos, and it had comparatively high activity in the range of pH 6.0 - 9.0. The optimum temperature for enzymatic activity was at 40 degrees C, it still had comparatively high activity in the range of temperature 20-50 degrees C, the activity of enzyme rapidly reduced at 55 degrees C, its activity was 41% of the maximal activity. The crude enzyme showed Km value for chlorpyrifos of 1.049 26 mmol x L(-1), and the maximal enzymatic degradation rate was 0.253 5 micromol x (mg x min)(-1). Additional experimental evidence suggests that the enzyme had the stability of endure for temperature and pH, the crude enzyme of fungus WZ-I could effectively degrade chlorpyrifos.

  10. Alkylation of an active-site cysteinyl residue during substrate-dependent inactivation of Escherichia coli S-adenosylmethionine decarboxylase.

    PubMed

    Diaz, E; Anton, D L

    1991-04-23

    S-Adenosylmethionine decarboxylase from Escherichia coli is a member of a small class of enzymes that uses a pyruvoyl prosthetic group. The pyruvoyl group is proposed to form a Schiff base with the substrate and then act as an electron sink facilitating decarboxylation. We have previously shown that once every 6000-7000 turnovers the enzyme undergoes an inactivation that results in a transaminated pyruvoyl group and the formation of an acrolein-like species from the methionine moiety. The acrolein then covalently alkylates the enzyme [Anton, D. L., & Kutny, R. (1987) Biochemistry 26, 6444]. After reduction of the alkylated enzyme with NaBH4, a tryptic peptide with the sequence Ala-Asp-Ile-Glu-Val-Ser-Thr-[S-(3-hydroxypropyl)Cys]-Gly-Val-Ile-Ser-Pro - Leu-Lys was isolated. This corresponds to acrolein alkylation of a cysteine residue in the second tryptic peptide from the NH2 terminal of the alpha-subunit [Anton, D. L., & Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822]. The modified residue derived is from Cys-140 of the proenzyme [Tabor, C. W., & Tabor, H. (1987) J. Biol. Chem. 262, 16037-16040] and lies in the only sequence conserved between rat liver and E. coli S-adenosylmethionine decarboxylase [Pajunen et al. (1988) J. Biol. Chem. 263, 17040-17049]. We suggest that the alkylated Cys residue could have a role in the catalytic mechanism.

  11. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides.

    PubMed

    Wang, Zhiling; Zhao, Zhong; Cheng, Xiaofei; Liu, Suqi; Wei, Qin; Scott, Ian M

    2016-02-01

    Detoxification by glutathione S-transferases (GSTs) and esterases are important mechanisms associated with insecticide resistance. Discovery of novel GST and esterase inhibitors from phytochemicals could provide potential new insecticide synergists. Conifer tree species contain flavonoids, such as taxifolin, that inhibit in vitro GST activity. The objectives were to test the relative effectiveness of taxifolin as an enzyme inhibitor and as an insecticide synergist in combination with the organophosphorous insecticide, Guthion (50% azinphos-methyl), and the botanical insecticide, pyrethrum, using an insecticide-resistant Colorado potato beetle (CPB) Leptinotarsa decemlineata (Say) strain. Both taxifolin and its isomer, quercetin, increased the mortality of 1(st) instar CPB larvae after 48h when combined with Guthion, but not pyrethrum. Taxifolin had greater in vitro esterase inhibition compared with the commonly used esterase inhibitor, S, S, S-tributyl phosphorotrithioate (DEF). An in vivo esterase and GST inhibition effect after ingestion of taxifolin was measured, however DEF caused a greater suppression of esterase activity. This study demonstrated that flavonoid compounds have both in vitro and in vivo esterase inhibition, which is likely responsible for the insecticide synergism observed in insecticide-resistant CPB. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  12. Non-aqueous electrolyte for lithium-ion battery

    DOEpatents

    Amine, Khalil; Zhang, Lu; Zhang, Zhengcheng

    2016-01-26

    A substantially non-aqueous electrolyte solution includes an alkali metal salt, a polar aprotic solvent, and an organophosphorus compound of Formula IA, IB, or IC: ##STR00001## where R.sup.1, R.sup.2, R.sup.3 and R.sup.4 are each independently hydrogen, halogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, alkoxy, alkenoxy, alkynoxy, cycloalkoxy, aryloxy, heterocyclyloxy, heteroaryloxy, siloxyl, silyl, or organophosphatyl; R.sup.5 and R.sup.6 are each independently alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl; R.sup.7 is ##STR00002## and R.sup.8, R.sup.9 and R.sup.10 are each independently alkyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl; provided that if the organophosphorus compound is of Formula IB, then at least one of R.sup.5, and R.sup.6 are other than hydrogen, alkyl, or alkenyl; and if the organophosphorus compound is of Formula IC, then the electrolyte solution does not include 4-methylene-1,3-dioxolan-2-one or 4,5-dimethylene-1,3-dioxolan-2-one.

  13. IN VITRO EFFECTS OF CHLORPYRIFOS, PARATHION, METHYL PARATHION AND THEIR OXONS ON CARDIAC MUSCARINIC RECEPTOR BINDING IN NEONATAL AND ADULT RATS. (R825811)

    EPA Science Inventory

    Organophosphorus insecticides elicit toxicity by inhibiting acetylcholinesterase. Young animals are generally more sensitive than adults to these toxicants. A number of studies reported that some organophosphorus agents also bind directly to muscarinic receptors, in particular...

  14. Method for purifying bidentate organophosphorus compounds

    DOEpatents

    Schulz, Wallace W.

    1977-01-01

    Bidentate organophosphorus compounds useful for extracting actinide elements from acidic nuclear waste solutions are purified of undesirable acidic impurities by contacting the compounds with ethylene glycol which preferentially extracts the impurities found in technical grade bidentate compounds.

  15. Subchronic organophosphorus ester-induced delayed neurotoxicity in mallards

    USGS Publications Warehouse

    Hoffman, D.J.; Sileo, L.; Murray, H.C.

    1984-01-01

    Eighteen-week-old mallard hens received 0, 10, 30, 90, or 270 ppm technical grade EPN (phenylphosphonothioic acid O-ethyl-O-4-nitrophenyl ester) in the diet for 90 days. Ataxia was first observed in the 270-ppm group after 16 days, in the 90-ppm group after 20 days, in the 30-ppm group after 38 days; 10 ppm failed to produce ataxia. By the end of 90 days all 6 birds in the 270-ppm group exhibited ataxia or paralysis whereas 5 of 6 birds in the 90-ppm group and 2 of 6 birds in the 30-ppm group were visibly affected. Treatment with 30 ppm or more resulted in a significant reduction in body weight. Brain neurotoxic esterase activity was inhibited by averages of 16, 69, 73, and 74% in the 10-, 30-, 90-, and 270-ppm groups, respectively. Brain acetylcholinesterase, plasma cholinesterase, and plasma alkaline phosphatase were significantly inhibited as well. Distinct histopathological effects were seen in the 30-, 90-, and 270-ppm groups which included demyelination and degeneration of axons of the spinal cord. Additional ducks were exposed in a similar manner to 60-, 270-, or 540-ppm leptophos (phosphonothioic acid O-4-bromo-2,5-dichlorophenyl-O-methylphenyl ester) which resulted in similar behavioral, biochemical, and histopathological alterations. These findings indicate that adult mallards are probably somewhat less sensitive than chickens to subchronic dietary exposure to organophosphorus insecticides that induce delayed neurotoxicity.

  16. Alkyl–Alkyl Suzuki Cross-Couplings of Unactivated Secondary Alkyl Chlorides**

    PubMed Central

    Lu, Zhe; Fu, Gregory C.

    2010-01-01

    The first method for achieving alkyl–alkyl Suzuki reactions of unactivated secondary alkyl chlorides has been developed. Carbon–carbon bond formation occurs under mild conditions (at room temperature) with the aid of commercially available catalyst components. This method has proved to be versatile: without modification, it can be applied to Suzuki reactions of secondary and primary alkyl bromides and iodides, as well as primary alkyl chlorides. Mechanistic investigations suggest that oxidative addition is not the turnover-limiting step of the catalytic cycle for unactivated secondary alkyl iodides and bromides, whereas it may be (partially) for chlorides. PMID:20715038

  17. Modeling Alkyl p-Methoxy Cinnamate (APMC) as UV absorber based on electronic transition using semiempirical quantum mechanics ZINDO/s calculation

    NASA Astrophysics Data System (ADS)

    Salmahaminati; Azis, Muhlas Abdul; Purwiandono, Gani; Arsyik Kurniawan, Muhammad; Rubiyanto, Dwiarso; Darmawan, Arif

    2017-11-01

    In this research, modeling several alkyl p-methoxy cinnamate (APMC) based on electronic transition by using semiempirical mechanical quantum ZINDO/s calculation is performed. Alkyl cinnamates of C1 (methyl) up to C7 (heptyl) homolog with 1-5 example structures of each homolog are used as materials. Quantum chemistry-package software Hyperchem 8.0 is used to simulate the drawing of the structure, geometry optimization by a semiempirical Austin Model 1 algorithm and single point calculation employing a semiempirical ZINDO/s technique. ZINDO/s calculations use a defined criteria that singly excited -Configuration Interaction (CI) where a gap of HOMO-LUMO energy transition and maximum degeneracy level are 7 and 2, respectively. Moreover, analysis of the theoretical spectra is focused on the UV-B (290-320 nm) and UV-C (200-290 nm) area. The results show that modeling of the compound can be used to predict the type of UV protection activity depends on the electronic transition in the UV area. Modification of the alkyl homolog relatively does not change the value of wavelength absorption to indicate the UV protection activity. Alkyl cinnamate compounds are predicted as UV-B and UV-C sunscreen.

  18. Activity-Based Protein Profiling of Organophosphorus and Thiocarbamate Pesticides Reveals Multiple Serine Hydrolase Targets in Mouse Brain

    PubMed Central

    NOMURA, DANIEL K.; CASIDA, JOHN E.

    2010-01-01

    Organophosphorus (OP) and thiocarbamate (TC) agrochemicals are used worldwide as insecticides, herbicides, and fungicides, but their safety assessment in terms of potential off-targets remains incomplete. In this study, we used a chemoproteomic platform, termed activity-based protein profiling, to broadly define serine hydrolase targets in mouse brain of a panel of 29 OP and TC pesticides. Among the secondary targets identified, enzymes involved in degradation of endocannabinoid signaling lipids, monoacylglycerol lipase and fatty acid amide hydrolase, were inhibited by several OP and TC pesticides. Blockade of these two enzymes led to elevations in brain endocannabinoid levels and dysregulated brain arachidonate metabolism. Other secondary targets include enzymes thought to also play important roles in the nervous system and unannotated proteins. This study reveals a multitude of secondary targets for OP and TC pesticides and underscores the utility of chemoproteomic platforms in gaining insights into biochemical pathways that are perturbed by these toxicants. PMID:21341672

  19. Stereocontrolled Alkylative Construction of Quaternary Carbon Centers

    PubMed Central

    Kummer, David A.; Chain, William J.; Morales, Marvin R.; Quiroga, Olga; Myers, Andrew G.

    2009-01-01

    Protocols for the stereodefined formation of α,α-disubstituted enolates of pseudoephedrine amides are presented followed by the implementation of these in diastereoselective alkylation reactions. Direct alkylation of α,α-disubstituted pseudoephedrine amide substrates is demonstrated to be both efficient and diastereoselective across a range of substrates, as exemplified by alkylation of the diastereomeric pseudoephedrine α-methylbutyramides, where both substrates are found to undergo stereospecific replacement of the α-C-H bond with α-C-alkyl, with retention of stereochemistry. This is shown to arise by sequential stereospecific enolization and alkylation reactions, with the alkyl halide attacking a common π-face of the E- and Z-enolates, proposed to be that opposite the pseudoephedrine alkoxide side-chain. Pseudoephedrine α-phenylbutyramides are found to undergo highly stereoselective but not stereospecific α-alkylation reactions, which evidence suggests is due to facile enolate isomerization. Also, we show that α, α-disubstituted pseudoephedrine amide enolates can be generated in a highly stereocontrolled fashion by conjugate addition of an alkyllithium reagent to the s-cis-conformer of an α-alkyl-α,β-unsaturated pseudoephedrine amide, providing α,α-disubstituted enolate substrates that undergo alkylation in the same sense as those formed by direct deprotonation. Methods are presented to transform the α-quaternary pseudoephedrine amide products into optically active carboxylic acids, ketones, primary alcohols, and aldehydes. PMID:18788739

  20. Polymerization of Conducting Polymers Confined to Free Surfaces: A comparison of the Langmuir-Blodgett Polymerization of 3-Alkyl Pyrroles and 2- Alkyl Anilines

    DTIC Science & Technology

    1992-05-19

    Confined to Free Surfaces: A Comparison of the Langmuir-Blodgett Polymerization of 3- Alkyl Pyrroles and 2- Alkyl Anilines Submitted for Publication in...Surfaces: A Comparison of the Langmuir Blodgett Polymerizations of 3- alkyl pyrroles and 2- alkyl anilines R. S. Duran and H.C. Zhou Dept. of Chemistry...polymerization reactions in more detail and compare them. To do this, the polymerization reactions were run under two conditions. In the first case

  1. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  2. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  3. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  4. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  5. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  6. CUMULATIVE RISK ANALYSIS FOR ORGANOPHOSPHORUS PESTICIDES

    EPA Science Inventory

    Cumulative Risk Analysis for Organophosphorus Pesticides
    R. Woodrow Setzer, Jr. NHEERL MD-74, USEPA, RTP, NC 27711

    The US EPA has recently completed a risk assessment of the effects of exposure to 33 organophosphorous pesticides (OPs) through the diet, water, and resi...

  7. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  8. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  9. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  10. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  11. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  12. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil.

    PubMed

    Cycoń, Mariusz; Wójcik, Marcin; Piotrowska-Seget, Zofia

    2009-07-01

    An enrichment culture technique was used for the isolation of bacteria responsible for biodegradation of diazinon in soil. Three bacterial strains were screened and identified by MIDI-FAME profiling as Serratia liquefaciens, Serratia marcescens and Pseudomonas sp. All isolates were able to grow in mineral salt medium (MSM) supplemented with diazinon (50 mgL(-1)) as a sole carbon source, and within 14d 80-92% of the initial dose of insecticide was degraded by the isolates and their consortium. Degradation of diazinon was accelerated when MSM was supplemented with glucose. However, this process was linked with the decrease of pH values, after glucose utilization. Studies on biodegradation in sterilized soil showed that isolates and their consortium exhibited efficient degradation of insecticide (100mg kg(-1) soil) with a rate constant of 0.032-0.085d(-1), and DT(50) for diazinon was ranged from 11.5d to 24.5d. In contrast, degradation of insecticide in non-sterilized soil, non-supplemented earlier with diazinon, was characterized by a rate constant of 0.014d(-1) and the 7-d lag phase, during which only 2% of applied dose was degraded. The results suggested a strong correlation between microbial activity and chemical processes during diazinon degradation. Moreover, isolated bacterial strains may have potential for use in bioremediation of diazinon-contaminated soils.

  13. PROTEIN ADDUCTS AS BIOMAKERS OF EXPOSURE TO ORGANOPHOSPHORUS COMPOUNDS

    PubMed Central

    Marsillach, Judit; Costa, Lucio G.; Furlong, Clement E.

    2013-01-01

    Exposure to organophosphorus (OP) compounds can lead to serious neurological damage or death. Following bioactivation by the liver cytochromes P450, the OP metabolites produced are potent inhibitors of serine active-site enzymes including esterases, proteases and lipases. OPs may form adducts on other cellular proteins. Blood cholinesterases (ChEs) have long served as biomarkers of OP exposure in humans. However, the enzymatic assays used for biomonitoring OP exposures have several drawbacks. A more useful approach will focus on multiple biomarkers and avoid problems with the enzymatic activity assays. OP inhibitory effects result from a covalent bond with the active-site serine of the target enzymes. The serine OP adducts become irreversible following a process referred to as aging where one alkyl group dissociates over variable lengths of time depending on the OP adduct. The OP-adducted enzyme then remains in circulation until it is degraded, allowing for a longer window of detection compared with direct analysis of OPs or their metabolites. Mass spectrometry (MS) provides a very sensitive method for identification of post-translational protein modifications. MS analyses of the percentage adduction of the active-site serine of biomarker proteins such as ChEs will eliminate the need for basal activity levels of the individual and will provide for a more accurate determination of OP exposure. MS analysis of biomarker proteins also provides information about the OP that has caused inhibition. Other useful biomarker proteins include other serine hydrolases, albumin, tubulin and transferrin. PMID:23261756

  14. N-acetylcysteine in Acute Organophosphorus Pesticide Poisoning: A Randomized, Clinical Trial.

    PubMed

    El-Ebiary, Ahmad A; Elsharkawy, Rasha E; Soliman, Nema A; Soliman, Mohammed A; Hashem, Ahmed A

    2016-08-01

    Organophosphorus poisoning is a major global health problem with hundreds of thousands of deaths each year. Research interest in N-acetylcysteine has grown among increasing evidence of the role of oxidative stress in organophosphorus poisoning. We aimed to assess the safety and efficacy of N-acetylcysteine as an adjuvant treatment in patients with acute organophosphorus poisoning. This was a randomized, controlled, parallel-group trial on 30 patients suffering from acute organophosphorus poisoning, who were admitted to the Poison Control Center of Tanta University Emergency Hospital, Tanta, Egypt, between April and September 2014. Interventions included oral N-acetylcysteine (600 mg three times daily for 3 days) as an added treatment to the conventional measures versus only the conventional treatment. Outcome measures included mortality, total dose of atropine administered, duration of hospitalization and the need for ICU admission and/or mechanical ventilation. A total of 46 patients were screened and 30 were randomized. No significant difference was found between both groups regarding demographic characteristics and the nature or severity of baseline clinical manifestations. No major adverse effects to N-acetylcysteine therapy were reported. Malondialdehyde significantly decreased and reduced glutathione significantly increased only in the NAC-treated patients. The patients on NAC therapy required less atropine doses than those who received only the conventional treatment; however, the length of hospital stay showed no significant difference between both groups. The study concluded that the use of N-acetylcysteine as an added treatment was apparently safe, and it reduced atropine requirements in patients with acute organophosphorus pesticide poisoning. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  15. Staggered larval time-to-hatch and insecticide resistance in the major malaria vector Anopheles gambiae S form.

    PubMed

    Kaiser, Maria L; Koekemoer, Lizette L; Coetzee, Maureen; Hunt, Richard H; Brooke, Basil D

    2010-12-14

    Anopheles gambiae is a major vector of malaria in the West African region. Resistance to multiple insecticides has been recorded in An. gambiae S form in the Ahafo region of Ghana. A laboratory population (GAH) established using wild material from this locality has enabled a mechanistic characterization of each resistance phenotype as well as an analysis of another adaptive characteristic - staggered larval time-to-hatch. Individual egg batches obtained from wild caught females collected from Ghana and the Republic of the Congo were monitored for staggered larval time-to-hatch. In addition, early and late larval time-to-hatch sub-colonies were selected from GAH. These selected sub-colonies were cross-mated and their hybrid progeny were subsequently intercrossed and back-crossed to the parental strains. The insecticide susceptibilities of the GAH base colony and the time-to-hatch selected sub-colonies were quantified for four insecticide classes using insecticide bioassays. Resistance phenotypes were mechanistically characterized using insecticide-synergist bioassays and diagnostic molecular assays for known reduced target-site sensitivity mutations. Anopheles gambiae GAH showed varying levels of resistance to all insecticide classes. Metabolic detoxification and reduced target-site sensitivity mechanisms were implicated. Most wild-caught families showed staggered larval time-to-hatch. However, some families were either exclusively early hatching or late hatching. Most GAH larvae hatched early but many egg batches contained a proportion of late hatching larvae. Crosses between the time-to-hatch selected sub-colonies yielded ambiguous results that did not fit any hypothetical models based on single-locus Mendelian inheritance. There was significant variation in the expression of insecticide resistance between the time-to-hatch phenotypes. An adaptive response to the presence of multiple insecticide classes necessarily involves the development of multiple resistance

  16. High lethality and minimal variation after acute self-poisoning with carbamate insecticides in Sri Lanka - implications for global suicide prevention.

    PubMed

    Lamb, Thomas; Selvarajah, Liza R; Mohamed, Fahim; Jayamanne, Shaluka; Gawarammana, Indika; Mostafa, Ahmed; Buckley, Nicholas A; Roberts, Michael S; Eddleston, Michael

    2016-09-01

    Highly hazardous organophosphorus (OP) insecticides are responsible for most pesticide poisoning deaths. As they are removed from agricultural practice, they are often replaced by carbamate insecticides of perceived lower toxicity. However, relatively little is known about poisoning with these insecticides. We prospectively studied 1288 patients self-poisoned with carbamate insecticides admitted to six Sri Lankan hospitals. Clinical outcomes were recorded for each patient and plasma carbamate concentration measured in a sample to confirm the carbamate ingested. Patients had ingested 3% carbofuran powder (719), carbosulfan EC25 liquid (25% w/v, 389), or fenobucarb EC50 liquid (50% w/v, 127) formulations, carbamate insecticides of WHO Toxicity Classes Ib, II, and II, respectively. Intubation and ventilation was required for 183 (14.2%) patients while 71 (5.5%) died. Compared with carbofuran, poisoning with carbosulfan or fenobucarb was associated with significantly higher risk of death [carbofuran 2.2%; carbosulfan 11.1%, OR 5.5 (95% CI 3.0-9.8); fenobucarb 6.3%, OR 3.0 (1.2-7.1)] and intubation [carbofuran 6.1%; carbosulfan 27.0%, OR 5.7 (3.9-8.3); fenobucarb 18.9%, OR 3.6 (2.1-6.1)]. The clinical presentation and cause of death did not differ markedly between carbamates. Median time to death was similar: carbofuran 42.3 h (IQR 5.5-67.3), carbosulfan 21.3 h (11.5-71.3), and fenobucarb 25.3 h (17.3-72.1) (p = 0.99); no patients showed delayed onset of toxicity akin to the intermediate syndrome seen after OP insecticide poisoning. For survivors, median duration of intubation was 67.8 h (IQR 27.5-118.8) with no difference in duration between carbamates. Reduced GCS at presentation was associated with worse outcome although some patients with carbosulfan died after presentation with normal GCS. We did not find carbamate insecticide self-poisoning to vary markedly according to the carbamate ingested although the case fatality varied according to the

  17. Changes in Pest Infestation Levels, Self-Reported Pesticide Use, and Permethrin Exposure during Pregnancy after the 2000–2001 U.S. Environmental Protection Agency Restriction of Organophosphates

    PubMed Central

    Williams, Megan K.; Rundle, Andrew; Holmes, Darrell; Reyes, Marilyn; Hoepner, Lori A.; Barr, Dana B.; Camann, David E.; Perera, Frederica P.; Whyatt, Robin M.

    2008-01-01

    Background Widespread residential pesticide use throughout the United States has resulted in ubiquitous, low-level pesticide exposure. The mix of active pesticide ingredients is changing in response to 2000–2001 regulations restricting use of the organophosphorus insecticides chlorpyrifos and diazinon. Objectives We aimed to determine the impact of U.S. Environmental Protection Agency regulations on pest infestation levels, pesticide use, and pesticides measured in indoor air samples. METHODOLOGY: 511 pregnant women from innercity New York were enrolled between 2000 and 2006. Permethrin, a pyrethroid insecticide; piperonyl butoxide (PBO), a pyrethroid synergist; chlorpyrifos; and diazinon were measured in 48-hr prenatal personal air samples. Data on pest infestation and pesticide use were collected via questionnaire. Results Eighty-eight percent of women reported using pesticides during pregnancy; 55% reported using higher-exposure pesticide applications (spray cans, pest bombs and/or professional pesticide applicators). Self-reported pest sightings and use of higher-exposure applications increased significantly after the regulations were implemented (p < 0.001). PBO, cis-, and trans-permethrin were detected in 75, 19, and 18% of personal air samples, respectively. Detection frequencies of PBO and cis- and trans-permethrin increased significantly over time (p < 0.05 controlling for potential confounders). Levels and/or detection frequencies of these compounds were significantly higher among mothers reporting use of high exposure pesticide applications (p ≤ 0.05). Chlorpyrifos and diazinon levels decreased significantly over time (p < 0.001). Conclusion In this cohort, pest infestations, use of pesticides, and use of permethrin appear to increase after the residential restriction of organophosphorus insecticides. This is one of the first studies to document widespread residential exposure to PBO. PMID:19079720

  18. Is oxygen required before atropine administration in organophosphorus or carbamate pesticide poisoning? – A cohort study

    PubMed Central

    Konickx, L. A.; Bingham, K.

    2014-01-01

    Background Early and adequate atropine administration in organophosphorus (OP) or carbamate insecticide poisoning improves outcome. However, some authors advise that oxygen must be given before atropine due to the risk of inducing ventricular dysrhythmias in hypoxic patients. Because oxygen is frequently unavailable in district hospitals of rural Asia, where the majority of patients with insecticide poisoning present, this guidance has significant implications for patient care. The published evidence for this advice is weak. We therefore performed a patient cohort analysis to look for early cardiac deaths in patients poisoned by anticholinesterase pesticides. Methods We analysed a prospective Sri Lankan cohort of OP or carbamate-poisoned patients treated with early atropine without the benefit of oxygen for evidence of early deaths. The incidence of fatal primary cardiac arrests within 3 h of admission was used as a sensitive (but non-specific) marker of possible ventricular dysrhythmias. Results The cohort consisted of 1957 patients. The incidence of a primary cardiac death within 3 h of atropine administration was 4 (0.2%) of 1957 patients. The majority of deaths occurred at a later time point from respiratory complications of poisoning. Conclusion We found no evidence of a high number of early deaths in an observational study of 1957 patients routinely given atropine before oxygen that might support guidance that oxygen must be given before atropine. The published literature indicates that early and rapid administration of atropine during resuscitation is life-saving. Therefore, whether oxygen is available or not, early atropinisation of OP- and carbamate-poisoned patients should be performed. PMID:24810796

  19. Insecticide solvents: interference with insecticidal action.

    PubMed

    Brattsten, L B; Wilkinson, C F

    1977-06-10

    Several commercial solvent mixtures commonly used as insecticide carriers in spray formulations increase by more than threefold the microsomal N-demethylation of p-chloro N-methylaniline in midgut preparations of southern army-worm (Spodoptera eridania) larvae exposed orally to the test solvents. Under laboratory conditions, the same solvent mixtures exhibit a protective action against the in vivo toxicity of the insecticide carbaryl to the larvae. The data are discussed with respect to possible solvent-insecticide interactions occurring under field conditions and, more broadly, to potential toxicological hazards of these solvents to humans.

  20. In vitro sensitivity of cholinesterases and [3H]oxotremorine-M binding in heart and brain of adult and aging rats to organophosphorus anticholinesterases.

    PubMed

    Mirajkar, Nikita; Pope, Carey N

    2008-10-15

    Organophosphorus (OP) insecticides elicit toxicity via acetylcholinesterase inhibition, allowing acetylcholine accumulation and excessive stimulation of cholinergic receptors. Some OP insecticides bind to additional macromolecules including butyrylcholinesterase and cholinergic receptors. While neurotoxicity from OP anticholinesterases has been extensively studied, effects on cardiac function have received less attention. We compared the in vitro sensitivity of acetylcholinesterase, butyrylcholinesterase and [(3)H]oxotremorine-M binding to muscarinic receptors in the cortex and heart of adult (3 months) and aging (18 months) rats to chlorpyrifos, methyl parathion and their active metabolites chlorpyrifos oxon and methyl paraoxon. Using selective inhibitors, the great majority of cholinesterase in brain was defined as acetylcholinesterase, while butyrylcholinesterase was the major cholinesterase in heart, regardless of age. In the heart, butyrylcholinesterase was markedly more sensitive than acetylcholinesterase to inhibition by chlorpyrifos oxon, and butyrylcholinesterase in tissues from aging rats was more sensitive than enzyme from adults, possibly due to differences in A-esterase mediated detoxification. Relatively similar differences were noted in brain. In contrast, acetylcholinesterase was more sensitive than butyrylcholinesterase to methyl paraoxon in both heart and brain, but no age-related differences were noted. Both oxons displaced [(3)H]oxotremorine-M binding in heart and brain of both age groups in a concentration-dependent manner. Chlorpyrifos had no effect but methyl parathion was a potent displacer of binding in heart and brain of both age groups. Such OP and age-related differences in interactions with cholinergic macromolecules may be important because of potential for environmental exposures to insecticides as well as the use of anticholinesterases in age-related neurological disorders.

  1. IN VITRO SENSITIVITY OF CHOLINESTERASES AND [3H]OXOTREMORINE-M BINDING IN HEART AND BRAIN OF ADULT AND AGING RATS TO ORGANOPHOSPHORUS ANTICHOLINESTERASES

    PubMed Central

    Mirajkar, Nikita; Pope, Carey N.

    2008-01-01

    Organophosphorus (OP) insecticides elicit toxicity via acetylcholinesterase inhibition, allowing acetylcholine accumulation and excessive stimulation of cholinergic receptors. Some OP insecticides bind to additional macromolecules including butyrylcholinesterase and cholinergic receptors. While neurotoxicity from OP anticholinesterases has been extensively studied, effects on cardiac function have received less attention. We compared the in vitro sensitivity of acetylcholinesterase, butyrylcholinesterase and [3H]oxotremorine-M binding to muscarinic receptors in the cortex and heart of adult (3 months) and aging (18 months) rats to chlorpyrifos, methyl parathion and their active metabolites chlorpyrifos oxon and methyl paraoxon. Using selective inhibitors, the great majority of cholinesterase in brain was defined as acetylcholinesterase, while butyrylcholinesterase was the major cholinesterase in heart, regardless of age. In the heart, butyrylcholinesterase was markedly more sensitive than acetylcholinesterase to inhibition by chlorpyrifos oxon, and butyrylcholinesterase in tissues from aging rats was more sensitive than enzyme from adults, possibly due to differences in A-esterase mediated detoxification. Relatively similar differences were noted in brain. In contrast, acetylcholinesterase was more sensitive than butyrylcholinesterase to methyl paraoxon in both heart and brain, but no age-related differences were noted. Both oxons displaced [3H]oxotremorine-M binding in heart and brain of both age groups in a concentration-dependent manner. Chlorpyrifos had no effect but methyl parathion was a potent displacer of binding in heart and brain of both age groups. Such OP and age-related differences in interactions with cholinergic macromolecules may be important because of potential for environmental exposures to insecticides as well as the use of anticholinesterases in age-related neurological disorders. PMID:18761328

  2. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity.

    PubMed

    Behl, Mamta; Hsieh, Jui-Hua; Shafer, Timothy J; Mundy, William R; Rice, Julie R; Boyd, Windy A; Freedman, Jonathan H; Hunter, E Sidney; Jarema, Kimberly A; Padilla, Stephanie; Tice, Raymond R

    2015-01-01

    Due to their toxicity and persistence in the environment, brominated flame retardants (BFRs) are being phased out of commercial use, leading to the increased use of alternative chemicals such as the organophosphorus flame retardants (OPFRs). There is, however, limited information on the potential health effects of OPFRs. Due to the structural similarity of the OPFRs to organophosphorus insecticides, there is concern regarding developmental toxicity and neurotoxicity. In response, we evaluated a set of OPFRs (triphenyl phosphate [TPHP]), isopropylated phenyl phosphate [IPP], 2-ethylhexyl diphenyl phosphate [EHDP], tert-butylated phenyl diphenyl phosphate [BPDP], trimethyl phenyl phosphate [TMPP], isodecyl diphenyl phosphate [IDDP], (tris(1,3-dichloroisopropyl) phosphate [TDCIPP], and tris(2-chloroethyl)phosphate [TCEP]) in a battery of cell-based in vitro assays and alternative model organisms and compared the results to those obtained for two classical BFRs (3,3',5,5'-tetrabromobisphenol A [TBBPA] and 2,2'4,4'-brominated diphenyl ether [BDE-47]). The assays used evaluated the effects of chemicals on the differentiation of mouse embryonic stem cells, the proliferation and growth of human neural stem cells, rat neuronal growth and network activity, and development of nematode (Caenorhabditis elegans) and zebrafish (Danio rerio). All assays were performed in a concentration-response format, allowing for the determination of the point of departure (POD: the lowest concentration where a chemically-induced response exceeds background noise). The majority of OPFRs (8/9) were active in multiple assays in the range of 1-10 μM, most of which had comparable activity to the BFRs TBBPA and BDE-47. TCEP was negative in all assays. The results indicate that the replacement OPFRs, with the exception of TCEP, showed comparable activity to the two BFRs in the assays tested. Based on these results, more comprehensive studies are warranted to further characterize the potential hazard

  3. COMPARISON OF THE NON-ADDITIVE INTERACTIONS OF AN ORGANOPHOSPHORUS PESTICIDE MIXTURE IN ADULT AND PREWEANLING RATS.

    EPA Science Inventory

    Critical features of risk assessment include the evaluation of risk following exposure to pesticide mixtures as well as the potential for increased sensitivity of the young. This research tested for interaction(s) using a mixture of five organophosphorus (OP) pesticides (chlorp...

  4. Structure–efficiency relationships of cyclodextrin scavengers in the hydrolytic degradation of organophosphorus compounds

    PubMed Central

    Letort, Sophie; Bosco, Michaël; Cornelio, Benedetta; Brégier, Frédérique; Daulon, Sébastien; Gouhier, Géraldine

    2017-01-01

    New derivatives of cyclodextrins were prepared in order to determine the relative importance of the structural key elements involved in the degradation of organophosphorus nerve agents. To avoid a competitive inclusion between the organophosphorus substrate and the iodosobenzoate group, responsible for its degradation, the latter group had to be covalently bound to the cyclodextrin scaffold. Although the presence of the α nucleophile iodosobenzoate was a determinant in the hydrolysis process, an imidazole group was added to get a synergistic effect towards the degradation of the agents. The degradation efficiency was found to be dependent on the relative position of the heterocycle towards the reactive group as well as on the nature of the organophosphorus derivative. PMID:28382180

  5. Structure-efficiency relationships of cyclodextrin scavengers in the hydrolytic degradation of organophosphorus compounds.

    PubMed

    Letort, Sophie; Bosco, Michaël; Cornelio, Benedetta; Brégier, Frédérique; Daulon, Sébastien; Gouhier, Géraldine; Estour, François

    2017-01-01

    New derivatives of cyclodextrins were prepared in order to determine the relative importance of the structural key elements involved in the degradation of organophosphorus nerve agents. To avoid a competitive inclusion between the organophosphorus substrate and the iodosobenzoate group, responsible for its degradation, the latter group had to be covalently bound to the cyclodextrin scaffold. Although the presence of the α nucleophile iodosobenzoate was a determinant in the hydrolysis process, an imidazole group was added to get a synergistic effect towards the degradation of the agents. The degradation efficiency was found to be dependent on the relative position of the heterocycle towards the reactive group as well as on the nature of the organophosphorus derivative.

  6. Alkylation sensitivity screens reveal a conserved cross-species functionome

    PubMed Central

    Svilar, David; Dyavaiah, Madhu; Brown, Ashley R.; Tang, Jiang-bo; Li, Jianfeng; McDonald, Peter R.; Shun, Tong Ying; Braganza, Andrea; Wang, Xiao-hong; Maniar, Salony; St Croix, Claudette M.; Lazo, John S.; Pollack, Ian F.; Begley, Thomas J.; Sobol, Robert W.

    2013-01-01

    To identify genes that contribute to chemotherapy resistance in glioblastoma, we conducted a synthetic lethal screen in a chemotherapy-resistant glioblastoma derived cell line with the clinical alkylator temozolomide (TMZ) and an siRNA library tailored towards “druggable” targets. Select DNA repair genes in the screen were validated independently, confirming the DNA glycosylases UNG and MYH as well as MPG to be involved in the response to high dose TMZ. The involvement of UNG and MYH is likely the result of a TMZ-induced burst of reactive oxygen species. We then compared the human TMZ sensitizing genes identified in our screen with those previously identified from alkylator screens conducted in E. coli and S. cerevisiae. The conserved biological processes across all three species composes an Alkylation Functionome that includes many novel proteins not previously thought to impact alkylator resistance. This high-throughput screen, validation and cross-species analysis was then followed by a mechanistic analysis of two essential nodes: base excision repair (BER) DNA glycosylases (UNG, human and mag1, S. cerevisiae) and protein modification systems, including UBE3B and ICMT in human cells or pby1, lip22, stp22 and aim22 in S. cerevisiae. The conserved processes of BER and protein modification were dual targeted and yielded additive sensitization to alkylators in S. cerevisiae. In contrast, dual targeting of BER and protein modification genes in human cells did not increase sensitivity, suggesting an epistatic relationship. Importantly, these studies provide potential new targets to overcome alkylating agent resistance. PMID:23038810

  7. An examination of the effect of aerosolized Permanone insecticide on zebra finch susceptibility to West Nile virus.

    PubMed

    Jankowski, Mark D; Moore, Murray E; Hofmeister, Erik K

    2017-12-01

    West Nile virus (WNV) is maintained cryptically primarily in avian (passerine) populations, where it is transmitted by Culex spp. mosquitoes. Mosquito-control measures currently include physical activities to reduce mosquito-breeding sites and the application of mosquito larvicides or aerosolized insecticides to kill adults (adulticides) when arboviral diseases such as WNV or Zika virus are detected in mosquito populations. Organochlorine, organophosphorus, carbamate, and pyrethroid insecticides are often used. Previous work suggests an effect of pyrethroids on the immune system in a variety of vertebrates. We examined the effects of exposure to aerosolized Permanone® 30:30 insecticide (permethrin and piperonyl butoxide in soy oil vehicle) at approximately 10 3 to 10 6 times potential environmental concentrations on the response of captive zebra finches (Taeniopygia guttata) to experimental challenge with WNV. Compared to vehicle control birds, WNV outcome was unchanged (65% of birds produced a viremia) in the "low" exposure (9.52 ± 3.13 mg/m 3 standard deviation [SD] permethrin) group but reduced in the "high" exposure (mean 376.5 ± 27.9 mg/m 3 SD permethrin) group (30% were viremic; p < 0.05). After clearing WNV infection, birds treated with Permanone regained less body mass than vehicle-treated birds (p < 0.001). The present study suggests that exposure to aerosolized Permanone insecticide at levels exceeding typical application rates has the potential to not change or to mildly enhance a bird's resistance to WNV. Environ Toxicol Chem 2017;36:3376-3386. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  8. CUMULATIVE EFFECTS OF ORGANOPHOSPHORUS OR CARBAMATE PESTICIDES.

    EPA Science Inventory

    This book chapter strives to summarize the body of literature exploring the toxic interaction of organophosphorus and carbamate pesticides in mixtures. This review represents one of the only reviews of the subject that has been published within the last 20 years. Specifically, th...

  9. DETERMINATION OF ORGANOPHOSPHORUS COMPOUNDS BY GC-ICPMS

    EPA Science Inventory

    Accidental or intentional release of neurotoxic organophosphorus (OP) pesticides and OP chemical warfare agents (CWAs) are potential threats to public health and the environment. Such a release could involve any number of a large suite of OP chemicals. These compounds, as well a...

  10. [Alkylating agents].

    PubMed

    Pourquier, Philippe

    2011-11-01

    With the approval of mechlorethamine by the FDA in 1949 for the treatment of hematologic malignancies, alkylating agents are the oldest class of anticancer agents. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in specific indications and sometimes represent the unique option for the treatment of refractory diseases. Here, we are reviewing the major classes of alkylating agents and their mechanism of action, with a particular emphasis for the new generations of alkylating agents. As for most of the chemotherapeutic agents used in the clinic, these compounds are derived from natural sources. With a complex but original mechanism of action, they represent new interesting alternatives for the clinicians, especially for tumors that are resistant to conventional DNA damaging agents. We also briefly describe the different strategies that have been or are currently developed to potentiate the use of classical alkylating agents, especially the inhibition of pathways that are involved in the repair of DNA lesions induced by these agents. In this line, the development of PARP inhibitors is a striking example of the recent regain of interest towards the "old" alkylating agents.

  11. Influence of N-P base fiber reactive organophosphorus flame retardant on cotton thermal behavior

    USDA-ARS?s Scientific Manuscript database

    An efficient synergistic effect between a nitrogen-containing organophosphorus compound in the presence of a catalytic amount of chlorine is proposed based on the cyanuric chloride-linked organophosphorus flame retardant, tetraethyl-2,2'-(6-chloro-1,3,5-triazine-2,4-diyl)bis(azanediyl)bis(ethane-2,1...

  12. Acute organo-phosphorus pesticide poisoning in North Karnataka, India: oxidative damage, haemoglobin level and total leukocyte.

    PubMed

    Hundekari, I A; Suryakar, A N; Rathi, D B

    2013-03-01

    Pesticide poisoning is an important cause of morbidity and mortality in India. To assess the oxidative damage, hemoglobin level and leukocyte count in acute organophosphorus pesticide poisoning. Plasma cholinesterase was assessed as a toxicity marker. Oxidative damage was assessed by estimating serum malondialdehyde (MDA) levels, plasma total antioxidant capacity (TAC), erythrocyte superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels. Progressive and significant decline (p< 0.001) in plasma cholinesterase in correlation with the severity of organophosphorus poisoning was observed. Serum MDA levels significantly increased (p< 0.001) in all grades of organophosphorus poisoning cases as compared to controls. Erythrocyte SOD, CAT and GPx were significantly increased (p< 0.05) in earlier grade and (p< 0.001) in later grades of organophosphorus poisoning cases as compared to controls. While plasma TAC (p<0.001) was significantly decreased in all grades of organophosphorus poisoning cases as compared to controls. Leucocytosis observed in these cases signifies the activation of defense mechanism which could be a positive response for survival. Organophosphorus compounds inhibit cholinesterase action leading to cholinergic hyperactivity. Increased MDA level may lead to peroxidative damages deteriorating the structural and functional integrity of neuronal membrane. Increased erythrocyte SOD, CAT and GPx activities suggest an adaptive measure to tackle the pesticide accumulation. Hence it is concluded that cholinesterase inhibition may initiate cellular dysfunction leading to acetylcholine induced oxidative damage.

  13. ORGANOPHOSPHORUS HYDROLASE-BASED ASSAY FOR ORGANOPHOSPHATE PESTICIDES

    EPA Science Inventory

    We report a rapid and versatile Organophosphorus hydrolase (OPH)-based method for measurement of organophosphates. This assay is based on a substrate-dependent change in pH at the local vicinity of the enzyme. The pH change is monitored using fluorescein isothiocyanate (FITC), ...

  14. Expression of recombinant organophosphorus hydrolase in the original producer of the enzyme, Sphingobium fuliginis ATCC 27551.

    PubMed

    Nakayama, Kosuke; Ohmori, Takeshi; Ishikawa, Satoshi; Iwata, Natsumi; Seto, Yasuo; Kawahara, Kazuyoshi

    2016-05-01

    The plasmid encoding His-tagged organophosphorus hydrolase (OPH) cloned from Sphingobium fuliginis was modified to be transferred back to this bacterium. The replication function of S. amiense plasmid was inserted at downstream of OPH gene, and S. fuliginis was transformed with this plasmid. The transformant produced larger amount of active OPH with His-tag than E. coli.

  15. Evidence of carbamate resistance in urban populations of Anopheles gambiae s.s. mosquitoes resistant to DDT and deltamethrin insecticides in Lagos, South-Western Nigeria

    PubMed Central

    2012-01-01

    Background Resistance monitoring is essential in ensuring the success of insecticide based vector control programmes. This study was carried out to assess the susceptibility status of urban populations of Anopheles gambiae to carbamate insecticide being considered for vector control in mosquito populations previously reported to be resistant to DDT and permethrin. Methods Two – three day old adult female Anopheles mosquitoes reared from larval collections in 11 study sites from Local Government Areas of Lagos were exposed to test papers impregnated with DDT 4%, deltamethrin 0.05% and propoxur 0.1% insecticides. Additional tests were carried out to determine the susceptibility status of the Anopheles gambiae population to bendiocarb insecticide. Members of the A. gambiae complex, the molecular forms, were identified by PCR assays. The involvement of metabolic enzymes in carbamate resistance was assessed using Piperonyl butoxide (PBO) synergist assays. The presence of kdr-w/e and ace-1R point mutations responsible for DDT-pyrethroid and carbamate resistance mechanisms was also investigated by PCR. Results Propoxur resistance was found in 10 out of the 11 study sites. Resistance to three classes of insecticides was observed in five urban localities. Mortality rates in mosquitoes exposed to deltamethrin and propoxur did not show any significant difference (P > 0.05) but was significantly higher (P < 0.05) in populations exposed to DDT. All mosquitoes tested were identified as A. gambiae s.s (M form). The kdr -w point mutation at allelic frequencies between 45%-77% was identified as one of the resistant mechanisms responsible for DDT and pyrethroid resistance. Ace-1R point mutation was absent in the carbamate resistant population. However, the possible involvement of metabolic resistance was confirmed by synergistic assays conducted. Conclusion Evidence of carbamate resistance in A. gambiae populations already harbouring resistance to DDT and permethrin is a

  16. Different approaches to acute organophosphorus poison treatment.

    PubMed

    Nurulain, Syed Muhammad

    2012-07-01

    Organophosphorus compounds (OPCs) have a wide variety of applications and are a serious threat for self-poisoning, unintentional misuse, terrorist attack, occupational hazard and warfare attack. The present standard treatment has been reported to be unsatisfactory. Many novel approaches are being used and tested for acute organophosphorus (OP) poison treatment. The bioscavenger concept captured high attention among the scientific community during the last few decades. Other approaches like alkalinisation of blood plasma/serum and use of weak inhibitors against strong inhibitors, though it showed promising results, did not get such wide attention. The introduction of a novel broad-spectrum oxime has also been in focus. In this mini-review, an update of the overview of four different approaches has been discussed. The standard therapy that is atropine+oxime+benzodiazepine along with supportive measures will continue to be the best option with only the replacement of a single oxime to improve its broad-spectrum efficacy.

  17. Sorption of Organophosphorus Flame Retardants on Settled Dust

    EPA Science Inventory

    Organophosphorus flame retardants (OPFRs) are widely used as additives in industrial and consumer products such as electrical and electronic products, furniture, plastics, textiles, and building/construction materials. Due to human exposure and potential health effects, OPFRs inc...

  18. Sorption of Organophosphorus Flame-Retardants on Settled Dust

    EPA Science Inventory

    Dust is an important sink for indoor air pollutants, such as organophosphorus flame-retardants (OPFRs) that are used as additives in industrial and consumer products including electrical and electronic products, furniture, plastics, textile, and building/construction materials. T...

  19. Annotated Differentially Expressed Salivary Proteins of Susceptible and Insecticide-Resistant Mosquitoes of Anopheles stephensi

    PubMed Central

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun

    2015-01-01

    Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito—parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins

  20. Annotated differentially expressed salivary proteins of susceptible and insecticide-resistant mosquitoes of Anopheles stephensi.

    PubMed

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun

    2015-01-01

    Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito-parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins

  1. Comparison of the Developmental and Acute Neurotoxicity of a Library of Organophosphorus Pesticides Using a Vertebrate Behavioral Assay

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize organophosphorus pesticides for neurotoxicity using behavioral tests in an in vivo, vertebrate, medium-throughput model (zebrafish; Danio rerio). Our behavioral testing paradigm assesses the e...

  2. Habitat availability is a more plausible explanation than insecticide acute toxicity for U.S. grassland bird species declines

    USGS Publications Warehouse

    Hill, Jason M.; Egan, J. Franklin; Stauffer, Glenn E.; Diefenbach, Duane R.

    2014-01-01

    Grassland bird species have experienced substantial declines in North America. These declines have been largely attributed to habitat loss and degradation, especially from agricultural practices and intensification (the habitat-availability hypothesis). A recent analysis of North American Breeding Bird Survey (BBS) “grassland breeding” bird trends reported the surprising conclusion that insecticide acute toxicity was a better correlate of grassland bird declines in North America from 1980–2003 (the insecticide-acute-toxicity hypothesis) than was habitat loss through agricultural intensification. In this paper we reached the opposite conclusion. We used an alternative statistical approach with additional habitat covariates to analyze the same grassland bird trends over the same time frame. Grassland bird trends were positively associated with increases in area of Conservation Reserve Program (CRP) lands and cropland used as pasture, whereas the effect of insecticide acute toxicity on bird trends was uncertain. Our models suggested that acute insecticide risk potentially has a detrimental effect on grassland bird trends, but models representing the habitat-availability hypothesis were 1.3–21.0 times better supported than models representing the insecticide-acute-toxicity hypothesis. Based on point estimates of effect sizes, CRP area and agricultural intensification had approximately 3.6 and 1.6 times more effect on grassland bird trends than lethal insecticide risk, respectively. Our findings suggest that preserving remaining grasslands is crucial to conserving grassland bird populations. The amount of grassland that has been lost in North America since 1980 is well documented, continuing, and staggering whereas insecticide use greatly declined prior to the 1990s. Grassland birds will likely benefit from the de-intensification of agricultural practices and the interspersion of pastures, Conservation Reserve Program lands, rangelands and other grassland

  3. Habitat availability is a more plausible explanation than insecticide acute toxicity for U.S. grassland bird species declines.

    PubMed

    Hill, Jason M; Egan, J Franklin; Stauffer, Glenn E; Diefenbach, Duane R

    2014-01-01

    Grassland bird species have experienced substantial declines in North America. These declines have been largely attributed to habitat loss and degradation, especially from agricultural practices and intensification (the habitat-availability hypothesis). A recent analysis of North American Breeding Bird Survey (BBS) "grassland breeding" bird trends reported the surprising conclusion that insecticide acute toxicity was a better correlate of grassland bird declines in North America from 1980-2003 (the insecticide-acute-toxicity hypothesis) than was habitat loss through agricultural intensification. In this paper we reached the opposite conclusion. We used an alternative statistical approach with additional habitat covariates to analyze the same grassland bird trends over the same time frame. Grassland bird trends were positively associated with increases in area of Conservation Reserve Program (CRP) lands and cropland used as pasture, whereas the effect of insecticide acute toxicity on bird trends was uncertain. Our models suggested that acute insecticide risk potentially has a detrimental effect on grassland bird trends, but models representing the habitat-availability hypothesis were 1.3-21.0 times better supported than models representing the insecticide-acute-toxicity hypothesis. Based on point estimates of effect sizes, CRP area and agricultural intensification had approximately 3.6 and 1.6 times more effect on grassland bird trends than lethal insecticide risk, respectively. Our findings suggest that preserving remaining grasslands is crucial to conserving grassland bird populations. The amount of grassland that has been lost in North America since 1980 is well documented, continuing, and staggering whereas insecticide use greatly declined prior to the 1990s. Grassland birds will likely benefit from the de-intensification of agricultural practices and the interspersion of pastures, Conservation Reserve Program lands, rangelands and other grassland habitats into

  4. Habitat Availability Is a More Plausible Explanation than Insecticide Acute Toxicity for U.S. Grassland Bird Species Declines

    PubMed Central

    Hill, Jason M.; Egan, J. Franklin; Stauffer, Glenn E.; Diefenbach, Duane R.

    2014-01-01

    Grassland bird species have experienced substantial declines in North America. These declines have been largely attributed to habitat loss and degradation, especially from agricultural practices and intensification (the habitat-availability hypothesis). A recent analysis of North American Breeding Bird Survey (BBS) “grassland breeding” bird trends reported the surprising conclusion that insecticide acute toxicity was a better correlate of grassland bird declines in North America from 1980–2003 (the insecticide-acute-toxicity hypothesis) than was habitat loss through agricultural intensification. In this paper we reached the opposite conclusion. We used an alternative statistical approach with additional habitat covariates to analyze the same grassland bird trends over the same time frame. Grassland bird trends were positively associated with increases in area of Conservation Reserve Program (CRP) lands and cropland used as pasture, whereas the effect of insecticide acute toxicity on bird trends was uncertain. Our models suggested that acute insecticide risk potentially has a detrimental effect on grassland bird trends, but models representing the habitat-availability hypothesis were 1.3–21.0 times better supported than models representing the insecticide-acute-toxicity hypothesis. Based on point estimates of effect sizes, CRP area and agricultural intensification had approximately 3.6 and 1.6 times more effect on grassland bird trends than lethal insecticide risk, respectively. Our findings suggest that preserving remaining grasslands is crucial to conserving grassland bird populations. The amount of grassland that has been lost in North America since 1980 is well documented, continuing, and staggering whereas insecticide use greatly declined prior to the 1990s. Grassland birds will likely benefit from the de-intensification of agricultural practices and the interspersion of pastures, Conservation Reserve Program lands, rangelands and other grassland

  5. ORGANOPHOSPHORUS PESTICIDE DEGRADATION PATHWAYS DURING DRINKING WATER TREATMENT

    EPA Science Inventory

    The objective of this work was to investigate organophosphorus (OP) pesticide transformation pathways as a class in the presence of aqueous chlorine. Seven priority OP pesticides were examined for their reactivity with aqueous chlorine: chlorpyrifos (CP), parathion (PA), diazino...

  6. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation.

    PubMed

    Almeida, Luis Gustavo de; Moraes, Luiz Alberto Beraldo de; Trigo, José Roberto; Omoto, Celso; Cônsoli, Fernando Luis

    2017-01-01

    The exploration of new niches for microorganisms capable of degrading recalcitrant molecules is still required. We hypothesized the gut microbiota associated with insect-resistant lines carry pesticide degrading bacteria, and predicted they carry bacteria selected to degrade pesticides they were resistant to. We isolated and accessed the pesticide-degrading capacity of gut bacteria from the gut of fifth instars of Spodoptera frugiperda strains resistant to lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, spinosad and lufenuron, using insecticide-selective media. Sixteen isolates belonging to 10 phylotypes were obtained, from which four were also associated with the susceptible strain. However, growth of gut bacteria associated with larvae from the susceptible strain was not obtained in any of the insecticide-based selective media tested. Growth of isolates was affected by the concentration of insecticides in the media, and all grew well up to 40 μg/ml. The insecticide-degrading capacity of selected isolates was assessed by GC or LC-MS/MS analyses. In conclusion, resistant strains of S. frugiperda are an excellent reservoir of insecticide-degrading bacteria with bioremediation potential. Moreover, gut-associated bacteria are subjected to the selection pressure imposed by insecticides on their hosts and may influence the metabolization of pesticides in insects.

  7. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation

    PubMed Central

    de Almeida, Luis Gustavo; de Moraes, Luiz Alberto Beraldo; Trigo, José Roberto; Omoto, Celso

    2017-01-01

    The exploration of new niches for microorganisms capable of degrading recalcitrant molecules is still required. We hypothesized the gut microbiota associated with insect-resistant lines carry pesticide degrading bacteria, and predicted they carry bacteria selected to degrade pesticides they were resistant to. We isolated and accessed the pesticide-degrading capacity of gut bacteria from the gut of fifth instars of Spodoptera frugiperda strains resistant to lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, spinosad and lufenuron, using insecticide-selective media. Sixteen isolates belonging to 10 phylotypes were obtained, from which four were also associated with the susceptible strain. However, growth of gut bacteria associated with larvae from the susceptible strain was not obtained in any of the insecticide-based selective media tested. Growth of isolates was affected by the concentration of insecticides in the media, and all grew well up to 40 μg/ml. The insecticide-degrading capacity of selected isolates was assessed by GC or LC-MS/MS analyses. In conclusion, resistant strains of S. frugiperda are an excellent reservoir of insecticide-degrading bacteria with bioremediation potential. Moreover, gut-associated bacteria are subjected to the selection pressure imposed by insecticides on their hosts and may influence the metabolization of pesticides in insects. PMID:28358907

  8. Insecticide Control of Vector-Borne Diseases: When Is Insecticide Resistance a Problem?

    PubMed Central

    Rivero, Ana; Vézilier, Julien; Weill, Mylène; Read, Andrew F.; Gandon, Sylvain

    2010-01-01

    Many of the most dangerous human diseases are transmitted by insect vectors. After decades of repeated insecticide use, all of these vector species have demonstrated the capacity to evolve resistance to insecticides. Insecticide resistance is generally considered to undermine control of vector-transmitted diseases because it increases the number of vectors that survive the insecticide treatment. Disease control failure, however, need not follow from vector control failure. Here, we review evidence that insecticide resistance may have an impact on the quality of vectors and, specifically, on three key determinants of parasite transmission: vector longevity, competence, and behaviour. We argue that, in some instances, insecticide resistance is likely to result in a decrease in vector longevity, a decrease in infectiousness, or in a change in behaviour, all of which will reduce the vectorial capacity of the insect. If this effect is sufficiently large, the impact of insecticide resistance on disease management may not be as detrimental as previously thought. In other instances, however, insecticide resistance may have the opposite effect, increasing the insect's vectorial capacity, which may lead to a dramatic increase in the transmission of the disease and even to a higher prevalence than in the absence of insecticides. Either way—and there may be no simple generality—the consequence of the evolution of insecticide resistance for disease ecology deserves additional attention. PMID:20700451

  9. Insecticide-degrading Burkholderia symbionts of the stinkbug naturally occupy various environments of sugarcane fields in a Southeast island of Japan.

    PubMed

    Tago, Kanako; Okubo, Takashi; Itoh, Hideomi; Kikuchi, Yoshitomo; Hori, Tomoyuki; Sato, Yuya; Nagayama, Atsushi; Hayashi, Kentaro; Ikeda, Seishi; Hayatsu, Masahito

    2015-01-01

    The stinkbug Cavelerius saccharivorus, which harbors Burkholderia species capable of degrading the organophosphorus insecticide, fenitrothion, has been identified on a Japanese island in farmers' sugarcane fields that have been exposed to fenitrothion. A clearer understanding of the ecology of the symbiotic fenitrothion degraders of Burkholderia species in a free-living environment is vital for advancing our knowledge on the establishment of degrader-stinkbug symbiosis. In the present study, we analyzed the composition and abundance of degraders in sugarcane fields on the island. Degraders were recovered from field samples without an enrichment culture procedure. Degrader densities in the furrow soil in fields varied due to differences in insecticide treatment histories. Over 99% of the 659 isolated degraders belonged to the genus Burkholderia. The strains related to the stinkbug symbiotic group predominated among the degraders, indicating a selection for this group in response to fenitrothion. Degraders were also isolated from sugarcane stems, leaves, and rhizosphere in fields that were continuously exposed to fenitrothion. Their density was lower in the plant sections than in the rhizosphere. A phylogenetic analysis of 16S rRNA gene sequences demonstrated that most of the degraders from the plants and rhizosphere clustered with the stinkbug symbiotic group, and some were identical to the midgut symbionts of C. saccharivorus collected from the same field. Our results confirmed that plants and the rhizosphere constituted environmental reservoirs for stinkbug symbiotic degraders. To the best of our knowledge, this is the first study to investigate the composition and abundance of the symbiotic fenitrothion degraders of Burkholderia species in farmers' fields.

  10. Non-Hodgkin Lymphoma and Occupational Exposure to Agricultural Pesticide Chemical Groups and Active Ingredients: A Systematic Review and Meta-Analysis

    PubMed Central

    Schinasi, Leah; Leon, Maria E.

    2014-01-01

    This paper describes results from a systematic review and a series of meta-analyses of nearly three decades worth of epidemiologic research on the relationship between non-Hodgkin lymphoma (NHL) and occupational exposure to agricultural pesticide active ingredients and chemical groups. Estimates of associations of NHL with 21 pesticide chemical groups and 80 active ingredients were extracted from 44 papers, all of which reported results from analyses of studies conducted in high-income countries. Random effects meta-analyses showed that phenoxy herbicides, carbamate insecticides, organophosphorus insecticides and the active ingredient lindane, an organochlorine insecticide, were positively associated with NHL. In a handful of papers, associations between pesticides and NHL subtypes were reported; B cell lymphoma was positively associated with phenoxy herbicides and the organophosphorus herbicide glyphosate. Diffuse large B-cell lymphoma was positively associated with phenoxy herbicide exposure. Despite compelling evidence that NHL is associated with certain chemicals, this review indicates the need for investigations of a larger variety of pesticides in more geographic areas, especially in low- and middle-income countries, which, despite producing a large portion of the world’s agriculture, were missing in the literature that were reviewed. PMID:24762670

  11. ANDROGEN RECEPTOR ANTAGONISM BY THE ORGANOPHOSPHATE INSECTICIDE FENITROTHION

    EPA Science Inventory

    Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Tamura, H., Maness, S.C., Reischmann, K. Dorman, D.C., Gray, L.E., and Gaido, K.W. (2000). Toxicol. Sci.

    Organophosphate insecticides represent one of the most widely used classes of pesticide...

  12. The first evidence of cholinesterases in skin mucus of carps and its applicability as biomarker of organophosphate exposure.

    PubMed

    Nigam, Ashwini Kumar; Srivastava, Nidhi; Rai, Amita Kumari; Kumari, Usha; Mittal, Ajay Kumar; Mittal, Swati

    2014-05-01

    The presence of cholinesterase (ChE) activity in skin mucus of three carps, Cirrhinus mrigala, Labeo rohita, and Catla catla and its applicability as biomarker of the organophosphorus insecticide exposure were investigated. Biochemical characterization, using specific substrates and inhibitors, indicated that measured esterase activity in skin mucus was mainly owing to ChEs. Significant difference in the proportion of acetylcholinesterase and butyrylcholinesterase activities was observed in skin mucus of three carps. Enzyme kinetic analysis, using the substrate acetylthiocholine iodide revealed significantly high Vmax value in C. catla compared to that in L. rohita and C. mrigala. In contrast, Vmax value using the substrate butyrylthiocholine iodide was significantly high in C. mrigala than in L. rohita and C. catla. In vitro treatment of skin mucus of three carps, with the organophosphorus insecticide Nuvan®, showed strong inhibition of ChE activities. In vivo experiments conducted using C. mrigala and exposing the fish to the sublethal test concentrations (5 and 15 mg/L) of the insecticide also revealed significant inhibition of ChE activity in mucus. In C. mrigala, exposed to the sublethal test concentrations of the insecticide for 4 days and then kept for recovery for 16 days, mucus ChE activity recovered to the control level. Thus, ChE activity in skin mucus could be considered a good biomarker of the organophosphorus insecticide exposure to fish and a useful tool in monitoring environmental toxicity. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  13. High lethality and minimal variation after acute self-poisoning with carbamate insecticides in Sri Lanka – implications for global suicide prevention

    PubMed Central

    Lamb, Thomas; Selvarajah, Liza R.; Mohamed, Fahim; Jayamanne, Shaluka; Gawarammana, Indika; Mostafa, Ahmed; Buckley, Nicholas A.; Roberts, Michael S.; Eddleston, Michael

    2016-01-01

    Abstract Background: Highly hazardous organophosphorus (OP) insecticides are responsible for most pesticide poisoning deaths. As they are removed from agricultural practice, they are often replaced by carbamate insecticides of perceived lower toxicity. However, relatively little is known about poisoning with these insecticides. Methods: We prospectively studied 1288 patients self-poisoned with carbamate insecticides admitted to six Sri Lankan hospitals. Clinical outcomes were recorded for each patient and plasma carbamate concentration measured in a sample to confirm the carbamate ingested. Findings: Patients had ingested 3% carbofuran powder (719), carbosulfan EC25 liquid (25% w/v, 389), or fenobucarb EC50 liquid (50% w/v, 127) formulations, carbamate insecticides of WHO Toxicity Classes Ib, II, and II, respectively. Intubation and ventilation was required for 183 (14.2%) patients while 71 (5.5%) died. Compared with carbofuran, poisoning with carbosulfan or fenobucarb was associated with significantly higher risk of death [carbofuran 2.2%; carbosulfan 11.1%, OR 5.5 (95% CI 3.0–9.8); fenobucarb 6.3%, OR 3.0 (1.2–7.1)] and intubation [carbofuran 6.1%; carbosulfan 27.0%, OR 5.7 (3.9–8.3); fenobucarb 18.9%, OR 3.6 (2.1–6.1)]. The clinical presentation and cause of death did not differ markedly between carbamates. Median time to death was similar: carbofuran 42.3 h (IQR 5.5–67.3), carbosulfan 21.3 h (11.5–71.3), and fenobucarb 25.3 h (17.3–72.1) (p = 0.99); no patients showed delayed onset of toxicity akin to the intermediate syndrome seen after OP insecticide poisoning. For survivors, median duration of intubation was 67.8 h (IQR 27.5–118.8) with no difference in duration between carbamates. Reduced GCS at presentation was associated with worse outcome although some patients with carbosulfan died after presentation with normal GCS. Conclusions: We did not find carbamate insecticide self-poisoning to vary markedly according to the carbamate

  14. Glycemic Status in Organophosphorus Poisoning.

    PubMed

    Panda, S; Nanda, R; Mangaraj, M; Rathod, P K; Mishra, P K

    2015-01-01

    Organophosphorus(OP) poisoning, in addition to its cholinergic manifestations shows metabolic derangements leading to hyperglycemia. Apart from inhibiting acetylcholinesterase it also induces oxidative stress to exhibit this manifestation. The present study aims to assess the glycemic status of OP poisoned patients and its association with various factors in OP poisoning like oxidative stress and dose of atropine. This is a prospective study which recruited 102 patients above 18 years of age with history of OP poisoning. They were categorized into 3 grades-mild, moderate and severe based on the Peradeniya Organophosphorus Poisining Scale. The routine biochemical parameters along with serum malondialdehyde (MDA) and cholinesterase were estimated in the study group. Hyperglycemia and glycosuria were observed, with majority cases of hyperglycemia (57%) noticed in the severe group. There was a rise in the random plasma glucose (RPG), serum malondialdehyde (MDA), total dose of atropine across the groups along with a fall in the serum cholinesterase with increase in severity of poisoning. The fall in plasma glucose at the time of discharge was significant in all three groups when compared to the admission random plasma glucose(RPG) level. This transient hyperglycemia exhibited a significant positive association with serum MDA and dose of atropine administered during treatment (p<0.05). Glycemic status in OP poisoning may play a role in identifying the severity of poisoning at the time of admission.

  15. Development of Diagnostic Insecticide Concentrations and Assessment of Insecticide Susceptibility in German Cockroach (Dictyoptera: Blattellidae) Field Strains Collected From Public Housing

    PubMed Central

    Fardisi, Mahsa; Gondhalekar, Ameya D.

    2017-01-01

    Abstract Insecticide resistance in German cockroaches (Blattella germanica (L.)) has been a barrier to effective control since its first documentation in the 1950s. A necessary first step toward managing resistance is to understand insecticide susceptibility profiles in field-collected strains so that active ingredients (AIs) with lowest resistance levels can be identified. As a first step in this study, diagnostic concentrations (DCs) were determined for 14 insecticide AIs based on lethal concentrations that killed 99% or 90% of the individuals from a susceptible lab strain (JWax-S). Next, cockroaches were collected from two low-income multifamily housing complexes in Danville, IL, and Indianapolis, IN, and used to establish laboratory strains. These strains were screened against the 14 AI-DCs in vial bioassays, and susceptibility profiles were determined by comparing percent mortalities between the field strains relative to the JWax-S strain. Results revealed lowest resistance of field strains to boric acid, abamectin, dinotefuran, clothianidin, thiamethoxam, and chlorfenapyr. For the AIs hydramethylnon and imidacloprid, field strains did not display survivorship different than the lab strain, but >90% mortality was never achieved. Lastly, both field strains displayed resistance to indoxacarb, fipronil, acetamiprid, beta-cyfluthrin, bifenthrin, and lambda-cyhalothrin, but at varying levels. These results satisfy two objectives. First, baseline monitoring DCs were established for 14 insecticides presently registered for use against cockroaches, which represents a useful resource. Second, our findings reveal insecticide AIs with lowest resistance levels for use in forthcoming field studies that will investigate impacts of different insecticide deployment strategies on resistance management and evolution in cockroach field populations. PMID:28334270

  16. Modulation of Immune Response by Organophosphorus Pesticides: Fishes as a Potential Model in Immunotoxicology

    PubMed Central

    Díaz-Resendiz, K. J. G.; Toledo-Ibarra, G. A.; Girón-Pérez, M. I.

    2015-01-01

    Immune response is modulated by different substances that are present in the environment. Nevertheless, some of these may cause an immunotoxic effect. In this paper, the effect of organophosphorus pesticides (frequent substances spilled in aquatic ecosystems) on the immune system of fishes and in immunotoxicology is reviewed. Furthermore, some cellular and molecular mechanisms that might be involved in immunoregulation mechanisms of organophosphorus pesticides are discussed. PMID:25973431

  17. Toward antibody-catalyzed hydrolysis of organophosphorus poisons

    PubMed Central

    Vayron, Philippe; Renard, Pierre-Yves; Taran, Frédéric; Créminon, Christophe; Frobert, Yveline; Grassi, Jacques; Mioskowski, Charles

    2000-01-01

    We report here our preliminary results on the use of catalytic antibodies as an approach to neutralizing organophosphorus chemical weapons. A first-generation hapten, methyl-α-hydroxyphosphinate Ha, was designed to mimic the approach of an incoming water molecule for the hydrolysis of exceedingly toxic methylphosphonothioate VX (1a). A moderate protective activity was first observed on polyclonal antibodies raised against Ha. The results were further confirmed by using a mAb PAR 15 raised against phenyl-α-hydroxyphosphinate Hb, which catalyzes the hydrolysis of PhX (1b), a less toxic phenylphosphonothioate analog of VX with a rate constant of 0.36 M−1⋅min−1 at pH 7.4 and 25°C, which corresponds to a catalytic proficiency of 14,400 M−1 toward the rate constant for the uncatalyzed hydrolysis of 1b. This is a demonstration on the organophosphorus poisons themselves that mAbs can catalytically hydrolyze nerve agents, and a significant step toward the production of therapeutically active abzymes to treat poisoning by warfare agents. PMID:10860971

  18. Chloramination of Organophosphorus Pesticides Found in Drinking Water Sources

    EPA Science Inventory

    The degradation of commonly detected organophosphorus (OP) pesticides, in drinking water sources, was investigated under simulated chloramination conditions. Due to monochloramine autodecomposition, it is difficult to observe the direct reaction of monochloramine with each OP pe...

  19. The Scarlet Letter of Alkylation: A Mini Review of Selective Alkylating Agents

    PubMed Central

    Oronsky, Bryan T; Reid, Tony; Knox, Susan J; Scicinski, Jan J

    2012-01-01

    If there were a stigma scale for chemotherapy, alkylating agents would be ranked at the top of the list. The chemical term alkylation is associated with nonselective toxicity, an association that dates back to the use of nitrogen mustards during World War I as chemical warfare agents. That this stigma persists and extends to compounds that, through selectivity, attempt to “tame” the indiscriminate destructive potential of alkylation is the subject of this review. Selective alkylation, as it is referred to herein, constitutes an extremely nascent and dynamic field in oncology. The pharmacodynamic response to this selective strategy depends on a delicate kinetic balance between specificity and the rate and extent of binding. Three representative compounds are presented: RRx-001, 3-bromopyruvate, and TH-302. The main impetus for the development of these compounds has been the avoidance of the serious complications of traditional alkylating agents; therefore, it is the thesis of this review that they should not experience stigma by association. PMID:22937173

  20. Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: A universal strategy for ratiometric detection of organophosphorus pesticides.

    PubMed

    Tang, Tingting; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu

    2016-01-01

    Based on the highly sensitivity and stable-fluorescence of water-soluble CdTe/CdS core-shell quantum dots (QDs) with broad-specificity DNA aptamers, a novel ratiometric detection strategy was proposed for the sensitive detection of organophosphorus pesticides by capillary electrophoresis with laser-induced fluorescence (CE-LIF). The as-prepared QDs were first conjugated with the amino-modified oligonucleotide (AMO) by amidation reaction, which is partial complementary to the DNA aptamer of organophosphorus pesticides. Then QD-labeled AMO (QD-AMO) was incubated with the DNA aptamer to form QD-AMO-aptamer duplex. When the target organophosphorus pesticides were added, they could specifically bind the DNA aptamer, leading to the cleavage of QD-AMO-aptamer duplex, accompany with the release of QD-AMO. As a result, the ratio of peak height between QD-AMO and QD-AMO-aptamer duplex changed in the detection process of CE-LIF. This strategy was subsequently applied for the detection of phorate, profenofos, isocarbophos, and omethoate with the detection limits of 0.20, 0.10, 0.17, and 0.23μM, respectively. This is the first report about using QDs as the signal indicators for organophosphorus pesticides detection based on broad-specificity DNA aptamers by CE-LIF, thus contributing to extend the scope of application of QDs in different fields. The proposed method has great potential to be a universal strategy for rapid detection of aptamer-specific small molecule targets by simply changing the types of aptamer sequences. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Hydrolysis of VX and related compounds by organophosphorus hydrolase. Final report, Februray-December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolakowski, J.E.; DeFrank, J.J.; Lai, K.

    1995-11-01

    Organophosphorus Hydrolase (OPH) is a fully characterized and cloned enzyme, derived from Pseudomonas diminuta, consisting of 365 amino acids with a total molecular weight of 38,0(X). The enzyme has a leader sequence of 29 amino acids which has been removed in the construction used in this study. OPH was evaluated for its effectiveness in catalyzing the S-(2-diisopwpylaminoethyl) methylphosphonothioate (VX) and its analogs.

  2. Synthesis of methyl (13(2)R/S)-alkyl-pyropheophorbide a and a non-epimerized chlorophyll a mimic.

    PubMed

    Ogasawara, Shin; Tamiaki, Hitoshi

    2015-10-15

    The (13(2)R/S)-methoxycarbonyl group of methyl pheophorbides a/a' (chlorophyll a/a' derivatives) was converted to methyl, ethyl, propyl, and isopropyl groups through the C13(2)-alkylation under basic conditions followed by pyrolysis in 2,4,6-collidine with lithium iodide. All the resulting products, methyl 13(2)-alkyl-pyropheophorbides a, predominantly gave the (13(2)R)-stereoisomers with about one tenth of the (13(2)S)-epimers. Their stereochemistry was determined by 1D/2D NMR and their optical properties were characterized by visible absorption and circular dichroism spectroscopy. Methyl (13(2)R)-propyl-pyropheophorbide a was converted to (13(2)R)-propyl-pyrochlorophyll a by ester exchanging and magnesium chelating reactions. The synthetic chlorophyll a analogue showed non-epimerization at the 13(2)-position in pyridine-d5 at 40°C, while naturally occurring chlorophyll a was easily epimerized under the same conditions to give its epimeric mixture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Sorption of Organophosphorus Flame Retardants (OPFRs) on Settled Dust

    EPA Science Inventory

    Organophosphorus flame retardants (OPFRs) are widely used as additives in industrial and consumer products such as electrical and electronic products, furniture, plastics, textiles, and building/construction materials. Due to human exposure and potential health effects, OPFRs inc...

  4. Development of Diagnostic Insecticide Concentrations and Assessment of Insecticide Susceptibility in German Cockroach (Dictyoptera: Blattellidae) Field Strains Collected From Public Housing.

    PubMed

    Fardisi, Mahsa; Gondhalekar, Ameya D; Scharf, Michael E

    2017-06-01

    Insecticide resistance in German cockroaches (Blattella germanica (L.)) has been a barrier to effective control since its first documentation in the 1950s. A necessary first step toward managing resistance is to understand insecticide susceptibility profiles in field-collected strains so that active ingredients (AIs) with lowest resistance levels can be identified. As a first step in this study, diagnostic concentrations (DCs) were determined for 14 insecticide AIs based on lethal concentrations that killed 99% or 90% of the individuals from a susceptible lab strain (JWax-S). Next, cockroaches were collected from two low-income multifamily housing complexes in Danville, IL, and Indianapolis, IN, and used to establish laboratory strains. These strains were screened against the 14 AI-DCs in vial bioassays, and susceptibility profiles were determined by comparing percent mortalities between the field strains relative to the JWax-S strain. Results revealed lowest resistance of field strains to boric acid, abamectin, dinotefuran, clothianidin, thiamethoxam, and chlorfenapyr. For the AIs hydramethylnon and imidacloprid, field strains did not display survivorship different than the lab strain, but >90% mortality was never achieved. Lastly, both field strains displayed resistance to indoxacarb, fipronil, acetamiprid, beta-cyfluthrin, bifenthrin, and lambda-cyhalothrin, but at varying levels. These results satisfy two objectives. First, baseline monitoring DCs were established for 14 insecticides presently registered for use against cockroaches, which represents a useful resource. Second, our findings reveal insecticide AIs with lowest resistance levels for use in forthcoming field studies that will investigate impacts of different insecticide deployment strategies on resistance management and evolution in cockroach field populations. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  5. Parenteral organophosphorus poisoning in a rural emergency department: a case report

    PubMed Central

    2013-01-01

    Background Poisoning is a common presentation in the emergency department. Oral exposures to organophosphorus compounds are especially frequent in rural and agricultural regions of South Asia and throughout the developing world. Case presentation Here we report a case of deliberate self-harm with an organophosphorus pesticide via the relatively uncommon parenteral route. A young woman injected herself with chlorpyriphos. Although the cholinergic effects were mild, cellulitis and abscess development were noted as a result. Conclusion Resource limited agricultural countries like Nepal present health care workers with numerous challenges in poisoning management. This case represents a rare but potentially morbid method of agrochemical poison exposure. PMID:24321121

  6. Molecular Engineering of Liquid Crystalline Polymers by Living Polymerization. 8. Influence of Molecular Weight on the Phase Behavior pf Poly(Omega-((4-cyano-4’Biphenyl)oxy)alkyl Vinyl Ether)s with Ethyl, Propyl and Butyl Alkyl Groups

    DTIC Science & Technology

    1990-10-16

    methanol (15 ml). The mixture was refluxed for 12 hr. After cooling and filtration (to remove the catalyst ) the solvent was distilled in a rotavapor and...was controlled by the monomer/initiator ([M]/[I]0 ) ratio. After quenching the polymerization with ammoniacal methanol , the reaction mixture was...The Phase Behavior of Poly(co-[(4-cyano-4’- biphenyl)oxy] alkyl Vinyl Ether]s with Ethyl, Propyl and Butyl Alkyl Groups Acc,--.o ,; ., x .... V

  7. Dramatic Differences in Organophosphorus Hydrolase Activity between Human and Chimeric Recombinant Mammalian Paraoxonase-1 Enzymes

    DTIC Science & Technology

    2009-01-01

    Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Dramatic Differences in Organophosphorus Hydrolase Activity between Human and 5a... activity , V-agents, VX, bioscavenger, medical countermeasures 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...Organophosphorus Hydrolase Activity between Human and Chimeric Recombinant Mammalian Paraoxonase-1 Enzymes† Tamara C. Otto,‡ Christina K. Harsch,§ David T

  8. Particulate matter formation from photochemical degradation of organophosphorus pesticides

    NASA Astrophysics Data System (ADS)

    Borrás, E.; Ródenas, M.; Vera, T.; Muñoz, A.

    2015-12-01

    Several experiments were performed in the European Photo-reactor - EUPHORE - for studying aerosol formation from organophosphorus pesticides such as diazinon, chlorpyrifos, chlorpyrifos-methyl and pirimiphos-methyl. The mass concentration yields obtained (Y) were in the range 5 - 44% for the photo-oxidation reactions in the presence and the absence of NOx. These results confirm the importance of studying pesticides as significant precursors of atmospheric particulate matter due to the serious risks associated to them. The studies based on the use of EUPHORE photoreactor provide useful data about atmospheric degradation processes of organophosphorus pesticides to the atmosphere. Knowledge of the specific degradation products, including the formation of secondary particulate matter, could complete the assessment of their potential impact, since the formation of those degradation products plays a significant role in the atmospheric chemistry, global climate change, radiative force, and are related to health effects.

  9. Hazard evaluation of ten organophosphorous insecticides against the midge, Chironomus riparius via QSAR

    USGS Publications Warehouse

    Landrum, Peter F.; Fisher, Susan W.; Hwang, Haejo; Hickey, James P.

    1999-01-01

    Toxicities of ten organophosphorus (OP) insecticides were measured against midge larvae (Chironomus riparius) under varying temperature (11, 18, and 25°C) and pH (6, 7, and 8) conditions and with and without sediment. Toxicity usually increased with increasing temperature and was greater in the absence of sediment. No trend was found with varying pH. A series of unidimensional parameters and multidimensional models were used to describe the changes in toxicity. Log Kow was able to explain about 40–60% of the variability in response data for aqueous exposures while molecular volume and aqueous solubility were less predictive. Likewise, the linear solvation energy relationship (LSER) model only explained 40–70% of the response variability, suggesting that factors other than solubility were most important for producing the observed response. Molecular connectivity was the most useful for describing the variability in the response. In the absence of sediment, 1χv and 3κ were best able to describe the variation in response among all compounds at each pH (70–90%). In the presence of sediment, even molecular connectivity could not describe the variability until the partitioning potential to sediment was accounted for by assuming equilibrium partitioning. After correcting for partitioning, the same molecular connectivity terms as in the aqueous exposures described most of the variability, 61–87%, except for the 11°C data where correlations were not significant. Molecular connectivity was a better tool than LSER or the unidimensional variables to explain the steric fitness of OP insecticides which was crucial to the toxicity.

  10. Characterizing the insecticide resistance of Anopheles gambiae in Mali.

    PubMed

    Cisse, Moussa B M; Keita, Chitan; Dicko, Abdourhamane; Dengela, Dereje; Coleman, Jane; Lucas, Bradford; Mihigo, Jules; Sadou, Aboubacar; Belemvire, Allison; George, Kristen; Fornadel, Christen; Beach, Raymond

    2015-08-22

    The impact of indoor residual spraying (IRS) and long-lasting insecticide nets (LLINs), key components of the national malaria control strategy of Mali, is threatened by vector insecticide resistance. The objective of this study was to assess the level of insecticide resistance in Anopheles gambiae sensu lato populations from Mali against four classes of insecticide recommended for IRS: organochlorines (OCs), pyrethroids (PYs), carbamates (CAs) and organophosphates (OPs). Characterization of resistance was done in 13 sites across southern Mali and assessed presence and distribution of physiological mechanisms that included target-site modifications: knockdown resistance (kdr) and altered acetycholinesterase (AChE), and/or metabolic mechanisms: elevated esterases, glutathione S-transferases (GSTs), and monooxygenases. The World Health Organization (WHO) tube test was used to determine phenotypic resistance of An. gambiae s.l. to: dichlorodiphenyltrichloroethane (DDT) (OC), deltamethrin (PY), lambda-cyhalothrin (PY), bendiocarb (CA), and fenitrothion (OP). Identification of sibling species and presence of the ace-1 (R) and Leu-Phe kdr, resistance-associated mutations, were determined using polymerase chain reaction (PCR) technology. Biochemical assays were conducted to detect increased activity of GSTs, oxidases and esterases. Populations tested showed high levels of resistance to DDT in all 13 sites, as well as increased resistance to deltamethrin and lambda-cyhalothrin in 12 out of 13 sites. Resistance to fenitrothion and bendiocarb was detected in 1 and 4 out of 13 sites, respectively. Anopheles coluzzii, An. gambiae sensu stricto and Anopheles arabiensis were identified with high allelic frequencies of kdr in all sites where each of the species were found (13, 12 and 10 sites, respectively). Relatively low allelic frequencies of ace-1 (R) were detected in four sites where this assessment was conducted. Evidence of elevated insecticide metabolism, based on oxidase

  11. Helical Poly(5-alkyl-2,3-thiophene)s: Controlled Synthesis and Structure Characterization

    DOE PAGES

    Zhang, Hong-Hai; Ma, Chuanxu; Bonnesen, Peter V.; ...

    2016-07-12

    Whereas Poly(3-alkyl-2,5-thiophene)s (P3AT), with many potential applications, have been extensively investigated, their ortho-connected isomers, poly(5-alkyl-2,3-thiophene)s (P5AT), have never been reported because of the difficulty in their syntheses. We herein present the first synthesis of regioregular P5AT via controlled Suzuki cross-coupling polymerization with PEPPSI-IPr as catalyst, affording the polymers with tunable molecular weight, narrow polydispersity (PDI) and well-defined functional end groups at the gram scale. The helical geometry of P5AT was studied by a combination of NMR, small angle x-ray scattering (SAXS) and scanning tunneling microscopy (STM). Particularly, the single polymer chain of poly(5- 2 butyl-2,3-thiophene) (P5BT) on highly oriented pyrolyticmore » graphite (HOPG) substrates with either M or P helical conformation was directly observed by STM. The comparison of UV-vis absorption between poly(5-hexyl-2,3-thiophene) (P5HT) (λ = 345 nm) and poly(3-hexyl-2,5- thiophene) (P3HT) (λ = 450 nm) indicated that the degree of conjugation of the backbone in P5HT is less than in P3HT, which may be a consequence of the helical geometry of the former compared to the more planar geometry of the latter. Moreover, we found that P5HT can emit green fluorescence under UV (λ = 360 nm) irradiation« less

  12. Vector-control personnel’s knowledge, perceptions and practices towards insecticides used for indoor residual spraying in Limpopo Province, South Africa

    PubMed Central

    2013-01-01

    Background Contradictory arguments regarding the benefits and harm of insecticides, especially DDT, have caused concerns in different societal circles, threatening to undermine the achievements of the indoor residual spraying (IRS) programme in South Africa. These concerns were exacerbated by the screening of a documentary on South African Broadcasting Corporation (SABC) Television with anti-DDT sentiments. Consequently, Limpopo Malaria Control Programme (LMCP) Management advocated for an investigation to determine the potential effect of such campaigns on vector-control personnel’s knowledge and perceived effects of insecticides on human health, with a view to improving the educational materials designed for use in training vector-control personnel. Methods The study was a cross-sectional descriptive survey using a structured field-piloted questionnaire, administered to 233 randomly selected vector-control personnel. Ethical clearance was granted by the University of KwaZulu-Natal. Approval for the study was granted by the Department of Health, Limpopo. Participation in the study was voluntary and all respondents signed informed consent. Descriptive statistics were used to analyse the collected data. Results Most respondents (96.6%) had a positive perception of IRS as a method to control malaria. Despite their positive perception, 93.6% viewed IRS insecticides to be potentially harmful to the users. DDT was perceived to cause long-term reproductive and respiratory effects, whereas alpha-cypermethrin and deltamethrin were largely associated with skin irritation/itchiness and skin burn. Study participants were more worried about DDT’s potential effects on their reproductive system, including poor sexual performance, decline in libido, miscarriage and bearing children with genetic defects. However, none reported personal experience of bearing a child with genetic defects or miscarriage. Most anti-insecticide messages, especially relating to DDT, emanated from

  13. Differential expression of glutathione s-transferase enzyme in different life stages of various insecticide-resistant strains of Anopheles stephensi: a malaria vector.

    PubMed

    Sanil, D; Shetty, V; Shetty, N J

    2014-06-01

    Interest in insect glutathione s-transferases (GSTs) has primarily focused on their role in insecticide resistance. These play an important role in biotransformation and detoxification of many different xenobiotic and endogenous substances including insecticides. The GST activity among 10 laboratory selected insecticide resistant and susceptible/control strains of Anopheles stephensi was compared using the substrates 1-chloro-2,4-dinitrobenzene (CDNB). The difference in the GST activities of different life stages of diverse insecticide resistant strains was compared and presented. About 100 larvae, pupae, adult males, adult females and eggs (100 μg in total weight) were collected and used for the experiment. The extracts were prepared from each of the insecticide-resistant strains and control. Protein contents of the enzyme homogenate and GST activities were determined. Deltamethrin and cyfluthrin-resistant strains of An. stephensi showed significantly higher GST activity. Larvae and pupae of DDT-resistant strain showed peak GST activity followed by the propoxur-resistant strain. On contrary, the GST activity was found in reduced quantity in alphamethrin, bifenthrin, carbofuran and chloropyrifos resistant strains. Adults of either sexes showed higher GST activity in mosquito strain resistant to organophosphate group of insecticides namely, temephos and chloropyrifos. The GST activity was closely associated with almost all of the insecticides used in the study, strengthening the fact that one of the mechanisms associated with resistance includes an increase of GST activity. This comparative data on GST activity in An. stephensi can be useful database to identify possible underlying mechanisms governing insecticide-resistance by GSTs.

  14. Potential Uses of Biomonitoring Data: A Case Study Using the Organophosphorus Pesticides Chlorpyrifos and Malathion

    PubMed Central

    Barr, Dana B.; Angerer, Jürgen

    2006-01-01

    Background Organophosphorus pesticides such as chlorpyrifos and malathion are widely used insecticides. They do not bioaccumulate appreciably in humans and are rapidly metabolized and excreted in the urine. In nonoccupational settings, exposures to these pesticides are typically sporadic and short-lived because the pesticides tend to degrade in the environment over time; however, dietary exposures may be more chronic. Biologic monitoring has been widely used to assess exposures, susceptibility, and effects of chlorpyrifos and malathion; thus, the information base on these compounds is data rich. For biomonitoring of exposure, chlorpyrifos and malathion have been measured in blood, but most typically their urinary metabolites have been measured. For assessing early effects and susceptibility, cholinesterase and microsomal esterase activities, respectively, have been measured. Objectives Although many biologic monitoring data have been generated and published on these chemicals, their interpretation is not straightforward. For example, exposure to environmental degradates of chlorpyrifos and malathion may potentially increase f urinary metabolite levels, thus leading to overestimation of exposure. Also, the temporal nature of the exposures makes the evaluation of both exposure and effects difficult. We present an overview of the current biomonitoring and other relevant data available on exposure to chlorpyrifos and malathion and the use of these data in various environmental public health applications. PMID:17107865

  15. Underpinning Sustainable Vector Control through Informed Insecticide Resistance Management

    PubMed Central

    Hemmings, Kay; Hughes, Angela J.; Chanda, Emmanuel; Musapa, Mulenga; Kamuliwo, Mulakwa; Phiri, Faustina N.; Muzia, Lucy; Chanda, Javan; Kandyata, Alister; Chirwa, Brian; Poer, Kathleen; Hemingway, Janet; Wondji, Charles S.; Ranson, Hilary; Coleman, Michael

    2014-01-01

    Background There has been rapid scale-up of malaria vector control in the last ten years. Both of the primary control strategies, long-lasting pyrethroid treated nets and indoor residual spraying, rely on the use of a limited number of insecticides. Insecticide resistance, as measured by bioassay, has rapidly increased in prevalence and has come to the forefront as an issue that needs to be addressed to maintain the sustainability of malaria control and the drive to elimination. Zambia's programme reported high levels of resistance to the insecticides it used in 2010, and, as a result, increased its investment in resistance monitoring to support informed resistance management decisions. Methodology/Principal Findings A country-wide survey on insecticide resistance in Zambian malaria vectors was performed using WHO bioassays to detect resistant phenotypes. Molecular techniques were used to detect target-site mutations and microarray to detect metabolic resistance mechanisms. Anopheles gambiae s.s. was resistant to pyrethroids, DDT and carbamates, with potential organophosphate resistance in one population. The resistant phenotypes were conferred by both target-site and metabolic mechanisms. Anopheles funestus s.s. was largely resistant to pyrethroids and carbamates, with potential resistance to DDT in two locations. The resistant phenotypes were conferred by elevated levels of cytochrome p450s. Conclusions/Significance Currently, the Zambia National Malaria Control Centre is using these results to inform their vector control strategy. The methods employed here can serve as a template to all malaria-endemic countries striving to create a sustainable insecticide resistance management plan. PMID:24932861

  16. Insecticide resistance resulting from sequential selection of houseflies in the field by organophosphorus compounds*

    PubMed Central

    Georghiou, George P.; Hawley, Marilyn K.

    1971-01-01

    Although cross-resistance in houseflies to the organophosphates has eliminated numerous potentially useful compounds from field use, the ”subgroup” specificity of this phenomenon has permitted housefly control to be carried out for nearly a quarter of a century by changing from one toxicant to another within this class of insecticides. A question of considerable importance in insect control is whether the development of resistance to one subgroup of organophosphates will be at the expense of resistance to a subgroup applied previously. The development over several years of resistance in a field population selected sequentially by a number of organophosphates was studied. It was observed that the resistance spectrum expanded progressively to include, finally, organophosphates originally thought to belong to more than one subgroup—namely, malathion (resistance greater than 100 times), fenchlorphos (114 times), diazinon (163 times), coumaphos (greater than 100 times), Ciodrin (greater than 100 times), fenthion (18 times) and naled (9.3 times). Resistance to each compound continued to rise to levels considerably higher than those achieved at the time when the field use of the compound ended. The possible coexistence of subgroup cross-resistance in a population is discussed in the light of these results. PMID:5316852

  17. G119S ace-1 mutation conferring insecticide resistance detected in the Culex pipiens complex in Morocco.

    PubMed

    Bkhache, Meriem; Tmimi, Fatim-Zohra; Charafeddine, Omar; Benabdelkrim Filali, Oumama; Lemrani, Meryem; Labbé, Pierrick; Sarih, M'hammed

    2018-06-09

    Arboviruses are controlled through insecticide control of their mosquito vector. However, inconsiderate use of insecticides often results in the selection of resistance in treated populations, so that monitoring is required to optimize their usage. Here, Culex pipiens (West Nile and Rift Valley Fever virus vector) specimens were collected from four Moroccan cities. Levels of susceptibility to the organophosphate (OP) insecticide malathion were assessed using WHO-recommended bioassays. Individual mosquitoes were tested for the presence of the G119S mutation in the ace-1 gene, the main OP-target resistance mutation. Bioassays showed that mosquitoes from Mohammedia were significantly more resistant to malathion than those from Marrakech. Analyzing the ace-1 genotypes in dead and surviving individuals suggested that other resistance mechanisms may be present in Mohammedia. The ace-1 resistance allele frequencies were relatively moderate (<0.4). Their analyses in three Moroccan cities (Tangier, Casablanca and Marrakech) however showed disparities between two coexisting Cx. pipiens forms and revealed that the G119S mutation tends to be more frequent in urban than in rural collections sites. These findings provide a reference assessment of OP resistance in Morocco and should help the health authorities to develop informed and sustainable vector control programs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Safety Assessment of Alkyl PEG/PPG Ethers as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-07-01

    The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of 131 alkyl polyethylene glycol (PEG)/polypropylene glycol ethers as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonirritating. Most of the alkyl PEG/PPG ethers included in this review are reported to function in cosmetics as surfactants, skin-conditioning agents, and/or emulsifying agents. The alkyl PEG/PPG ethers share very similar physiochemical properties as the alkyl PEG ethers, which were reviewed previously by the CIR Expert Panel and found safe when formulated to be nonirritating. The alkyl PEG ethers differ by the inclusion of PPG repeat units, which are used to fine-tune the surfactant properties of this group. The Panel relied heavily on data on analogous ingredients, extracted from the alkyl PEG ethers and PPG reports, when making its determination of safety. © The Author(s) 2016.

  19. Method of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  20. Environmental Fate of Organophosphorus Compounds Related to Chemical Weapons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davisson, M L; Love, A H; Vance, A

    2005-02-08

    Man-made organophosphorus compounds have been widely distributed throughout our environment as pesticides since their development during and after WWII. Many important studies have documented their relative persistence and toxicity. Development and use of some organophosphorus compounds as nerve agents gave rise to a separate but parallel effort to understand environmental persistence. In this latter case, the experiments have focused mainly on evaporation rates and first-order reaction kinetics. However, because organophosphorus compounds are easily polarized, the ionic content of a surrounding media directly factors into these reaction rates, but limited work in this regard has been done under environmentally relevant conditions.more » Furthermore, limited experiments investigating persistence of these agents on soil has resulted in widely varying degradation rates. Not surprisingly, no studies have investigated affinities of organophosphorus nerve agents to mineral or organic matter typically found in soil. As a result, we initiated laboratory experiments on dilute concentrations of nerve agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX) to quantify persistence in simulated environmental aqueous conditions. A quantitative analytical method was developed for VX and its degradation products using High Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS). VX hydrolysis rate is known to have a pH-dependency, however, the type of buffer and the relative proportion of different nucleophiles in solution significantly affect the overall rate and mechanism of degradation. For example, dissolved carbonate, a weak nucleophile dominating natural water, yielded pseudo-first order rate constants of {approx} 8 x 10{sup -3}/hr at pH 5 and 2 x 10{sup -2}/hr at pH 11. This small pH-dependent variation departs significantly from widely accepted rates at this pH range (4 x 10{sup -4}/hr to 8 x 10{sup -2}/hr) that were

  1. Stereoconvergent Amine-Directed Alkyl–Alkyl Suzuki Reactions of Unactivated Secondary Alkyl Chlorides

    PubMed Central

    Lu, Zhe; Wilsily, Ashraf; Fu, Gregory C.

    2011-01-01

    A new family of stereoconvergent cross-couplings of unactivated secondary alkyl electrophiles has been developed, specifically, arylamine-directed alkyl–alkyl Suzuki reactions. This represents the first such investigation to be focused on the use of alkyl chlorides as substrates. Structure-enantioselectivity studies are consistent with the nitrogen, not the aromatic ring, serving as the primary site of coordination of the arylamine to the catalyst. The rate law for this asymmetric cross-coupling is compatible with transmetalation being the turnover-limiting step of the catalytic cycle. PMID:21553917

  2. Induction of plasma acetylcholinesterase activity in mice challenged with organophosphorus poisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duysen, Ellen G.; Lockridge, Oksana, E-mail: olockrid@unmc.edu

    2011-09-01

    The restoration of plasma acetylcholinesterase activity in mice following inhibition by organophosphorus pesticides and nerve agents has been attributed to synthesis of new enzyme. It is generally assumed that activity levels return to normal, are stable and do not exceed the normal level. We have observed over the past 10 years that recovery of acetylcholinesterase activity levels in mice treated with organophosphorus agents (OP) exceeds pretreatment levels and remains elevated for up to 2 months. The most dramatic case was in mice treated with tri-cresyl phosphate and tri-ortho-cresyl phosphate, where plasma acetylcholinesterase activity rebounded to a level 250% higher thanmore » the pretreatment activity. The present report summarizes our observations on plasma acetylcholinesterase activity in mice treated with chlorpyrifos, chlorpyrifos oxon, diazinon, tri-ortho-cresyl phosphate, tri-cresyl phosphate, tabun thiocholine, parathion, dichlorvos, and diisopropylfluorophosphate. We have developed a hypothesis to explain the excess acetylcholinesterase activity, based on published observations. We hypothesize that acetylcholinesterase activity is induced when cells undergo apoptosis and that consequently there is a rise in the level of plasma acetylcholinesterase. - Highlights: > Acetylcholinesterase activity is induced by organophosphorus agents. > AChE induction is related to apoptosis. > Induction of AChE activity by OP is independent of BChE.« less

  3. Development of a Non-Invasive Biomonitoring Approach to Determine Exposure to the Organophosphorus Insecticide Chlorpyrifos in Rat Saliva

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Chuck; Campbell, James A.; Liu, Guodong

    2007-03-01

    Abstract Non-invasive biomonitoring approaches are being developed using reliable portable analytical systems to quantify dosimetry utilizing readily obtainable body fluids, such as saliva. In the current study, rats were given single oral gavage doses (1, 10 or 50 mg/kg) of the insecticide chlorpyrifos (CPF), saliva and blood were collected from groups of animals (4/time-point) at 3, 6, and 12 hr post-dosing, and the samples were analyzed for the CPF metabolite trichlorpyridinol (TCP). Trichlorpyridinol was detected in both blood and saliva at all doses and the TCP concentration in blood exceeded saliva, although the kinetics in blood and saliva were comparable.more » A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for CPF incorporated a compartment model to describe the time-course of TCP in blood and saliva. The model adequately simulated the experimental results over the dose ranges evaluated. A rapid and sensitive sequential injection (SI) electrochemical immunoassay was developed to monitor TCP, and the reported detection limit for TCP in water was 6 ng/L. Computer model simulation in the range of the Allowable Daily Intake (ADI) or Reference Dose (RfD) for CPF (0.01-0.003 mg/kg/day) suggest that the electrochemical immunoassay had adequate sensitivity to detect and quantify TCP in saliva at these low exposure levels. To validate this approach further studies are needed to more fully understand the pharmacokinetics of CPF and TCP excretion in saliva. The utilization of saliva as a biomonitoring matrix, coupled to real-time quantitation and PBPK/PD modeling represents a novel approach with broad application for evaluating both occupational and environmental exposures to insecticides.« less

  4. Copper(II)-catalyzed enantioselective hydrosilylation of halo-substituted alkyl aryl and heteroaryl ketones: asymmetric synthesis of (R)-fluoxetine and (S)-duloxetine.

    PubMed

    Zhou, Ji-Ning; Fang, Qiang; Hu, Yi-Hu; Yang, Li-Yao; Wu, Fei-Fei; Xie, Lin-Jie; Wu, Jing; Li, Shijun

    2014-02-14

    A set of reaction conditions has been established to facilitate the non-precious copper-catalyzed enantioselective hydrosilylation of a number of structurally diverse β-, γ- or ε-halo-substituted alkyl aryl ketones and α-, β- or γ-halo-substituted alkyl heteroaryl ketones under air to afford a broad spectrum of halo alcohols in high yields and good to excellent enantioselectivities (up to 99% ee). The developed procedure has been successfully applied to the asymmetric synthesis of antidepressant drugs (R)-fluoxetine and (S)-duloxetine, which highlighted its synthetic utility.

  5. Derivatization of organophosphorus nerve agent degradation products for gas chromatography with ICPMS and TOF-MS detection.

    PubMed

    Richardson, Douglas D; Caruso, Joseph A

    2007-06-01

    Separation and detection of seven V-type (venomous) and G-type (German) organophosphorus nerve agent degradation products by gas chromatography with inductively coupled plasma mass spectrometry (GC-ICPMS) is described. The nonvolatile alkyl phosphonic acid degradation products of interest included ethyl methylphosphonic acid (EMPA, VX acid), isopropyl methylphosphonic acid (IMPA, GB acid), ethyl hydrogen dimethylamidophosphate sodium salt (EDPA, GA acid), isobutyl hydrogen methylphosphonate (IBMPA, RVX acid), as well as pinacolyl methylphosphonic acid (PMPA), methylphosphonic acid (MPA), and cyclohexyl methylphosphonic acid (CMPA, GF acid). N-(tert-Butyldimethylsilyl)-N-methyltrifluroacetamide with 1% TBDMSCl was utilized to form the volatile TBDMS derivatives of the nerve agent degradation products for separation by GC. Exact mass confirmation of the formation of six of the TBDMS derivatives was obtained by GC-time of flight mass spectrometry (TOF-MS). The method developed here allowed for the separation and detection of all seven TBDMS derivatives as well as phosphate in less than ten minutes. Detection limits for the developed method were less than 5 pg with retention times and peak area precisions of less than 0.01 and 6%, respectively. This method was successfully applied to river water and soil matrices. To date this is the first work describing the analysis of chemical warfare agent (CWA) degradation products by GC-ICPMS.

  6. Alkylation of enolates: An electrophilicity perspective

    NASA Astrophysics Data System (ADS)

    Elango, M.; Parthasarathi, R.; Subramanian, V.; Chattaraj, P. K.

    Enolates are ambient nucleophiles, and alkylation can occur either at a carbon or at an oxygen site. It is known that the ratio of C/O alkylation depends significantly on various factors, including the type of enolate, alkylating agent, site of alkylation, and solvent environment. Analysis of regioselectivity and solvent effects on alkylation of lithium enolates is investigated using various reactivity descriptors, including generalized philicity. These results point out the reliability of both global and local reactivity descriptors in providing significant information about site selectivity and chemical reactivity of lithium enolates.

  7. Organophosphorus pesticide poisonings in humans: determination of residues and metabolites in tissues and urine.

    PubMed

    Lores, E M; Bradway, D E; Moseman, R F

    1978-01-01

    The analyses of four organophosphorus pesticide poisoning cases, three of which resulted in death, are reported. The case histories of the subjects, along with the analysis of tissues, urine, and blood for the levels of pesticides and metabolites are given. The pesticides involved include dicrotophos, chlorpyrifos, malathion, and parathion. The methods of analysis were adapted from previously published methods that provide a very rapid means of identification of organophosphorus pesticides in the tissues or in the blood of poisoned patients.

  8. Interactions of transgenic Bacillus thuringiensis insecticidal crops with spiders (Araneae)

    USDA-ARS?s Scientific Manuscript database

    Genetically modified crops expressing insecticidal proteins from Bacillus thuringiensis (Bt) have dramatically increased in acreage since their introduction in the mid-1990’s. Although the insecticidal mechanisms of Bt target specific pests, concerns persist regarding direct and indirect effects on...

  9. Alkylation Induced DNA Repair and Mutagenesis in Escherichia coli.

    DTIC Science & Technology

    1987-11-23

    III (Gates and inn, 1977), Micrococcus luteus UV endo- nuclease (Grossman et al, 1978) and bacteriophage T UV endonuclease (Warner et al, 1980) have DNA...34, Garland Publishing, Inc. New York & London USA. Ather, A., Z. Ahmed and S. Riazxxddin, 1984. Adaptive response of Micrococcus luteus to alkylating...Laval, J., 3. Pierre and F. Laval. 1981. Release of 7-nmthylguanine residues frain alkylated ENA by extracts of Micrococcus luteus and Escherichia

  10. Comparison of house spraying and insecticide-treated nets for malaria control.

    PubMed Central

    Curtis, C. F.; Mnzava, A. E.

    2000-01-01

    The efficacies of using residual house spraying and insecticide-treated nets against malaria vectors are compared, using data from six recent comparisons in Africa, Asia and Melanesia. By all the entomological and malariological criteria recorded, pyrethroid-treated nets were at least as efficacious as house spraying with dichlorodiphenyltrichloroethane (DDT), malathion or a pyrethroid. However, when data from carefully monitored house spraying projects carried out between the 1950s and 1970s at Pare-Taveta and Zanzibar (United Republic of Tanzania), Kisumu (Kenya) and Garki (Nigeria) are compared with recent insecticide-treated net trials with apparently similar vector populations, the results with the insecticide-treated nets were much less impressive. Possible explanations include the longer duration of most of the earlier spraying projects and the use of non-irritant insecticides. Non-irritant insecticides may yield higher mosquito mortalities than pyrethroids, which tend to make insects leave the site of treatment (i.e. are excito-repellent). Comparative tests with non-irritant insecticides, including their use on nets, are advocated. The relative costs and sustainability of spraying and of insecticide-treated net operations are briefly reviewed for villages in endemic and epidemic situations and in camps for displaced populations. The importance of high population coverage is emphasized, and the advantages of providing treatment free of charge, rather than charging individuals, are pointed out. PMID:11196486

  11. Contrasting Plasmodium infection rates and insecticide susceptibility profiles between the sympatric sibling species Anopheles parensis and Anopheles funestus s.s: a potential challenge for malaria vector control in Uganda

    PubMed Central

    2014-01-01

    Background Although the An. funestus group conceals one of the major malaria vectors in Africa, little is known about the dynamics of members of this group across the continent. Here, we investigated the species composition, infection rate and susceptibility to insecticides of this species group in Uganda. Methods Indoor resting blood-fed Anopheles adult female mosquitoes were collected from 3 districts in Uganda. Mosquitoes morphologically belonging to the An. funestus group were identified to species by PCR. The sporozoite infection rates were determined by TaqMan and a nested PCR. Susceptibility to major insecticides was assessed using WHO bioassays. The potential role of four candidate resistance genes was assessed using qRT-PCR. Results An. funestus s.s. and An. parensis, were the only members of the An. funestus group identified. Both species were sympatric in Masindi (North-West), whereas only An. parensis was present in Mityana (Central) and Ntungamo (South-West). The Plasmodium falciparum infection detected in An. parensis (4.2%) by TaqMan could not be confirmed by nested PCR, whereas the 5.3% infection in An. funestus s.s. was confirmed. An. parensis was susceptible to most insecticides, however, a moderate resistance was observed against deltamethrin and DDT. In the sympatric population of Masindi, resistance was observed to pyrethroids (permethrin and deltamethrin) and DDT, but all the resistant mosquitoes belonged to An. funestus s.s. No significant over-expression was observed for the four P450 candidate genes CYP6M7, CYP9K1, CYP6P9 and CYP6AA4 between deltamethrin resistant and control An. parensis. However, when compared with the susceptible FANG An. funestus s.s strain, the CYP9K1 is significantly over-expressed in An. parensis (15-fold change; P < 0.001), suggesting it could play a role in the deltamethrin resistance. Conclusion The contrasting infection rates and insecticide susceptibility profiles of both species highlights the importance of

  12. In vitro induction of micronuclei by monofunctional methanesulphonic acid esters: possible role of alkylation mechanisms.

    PubMed

    Eder, Erwin; Kütt, Wolfgang; Deininger, Christoph

    2006-12-01

    Six monofunctional alkylating methanesulphonates of widely varying structures were investigated in the in vitro micronucleus assay with Syrian hamster embryo fibroblast cells. The results were compared with the alkylating activities measured in the 4-(nitrobenzyl)pyridine test (NBP-test) and the N-methyl mercaptoimidazole (MMI-test) as measures for S(N)2 reactivity as well as in the triflouoroacetic acid (TFA) solvolysis and the hydrolysis reaction as measures for S(N)1 reactivity in order to provide insights into the role of alkylation mechanisms on induction of micronuclei. Moreover we compared the results of micronucleus assay with those of the Ames tests in strain TA 100 and TA1535 and with those of the SOS chromotest with the strains PQ37, PQ243, PM21 and GC 4798. The potency of methanesulphonates to induce micronuclei depended only to a certain degree, on the total alkylating activity (S(N)1 and S(N)2 reactivity). An inverse, significant correlation between the Ames test and the micronucleus assay was observed and an inverse correlation between the micronucleus assay and the SOS chromotest with the different strains. The results indicate that the primary mechanism leading to induction of micronuclei is not O-alkylation in DNA as it is the case in the Ames test with the hisG46 strains TA1535 and TA100 and not N-alkylation as with the SOS chromotest. There is evidence that protein alkylation, e.g. in the spindle apparatus in mitosis is decisive for induction of micronuclei by alkylating compounds. The structurally voluminous methanesulphonates 2-phenyl ethyl methanesulphonate and 1-phenyl-2-propyl methanesulphonate show a clear higher micronuclei inducing potency than the other tested though the bulky methanesulphonates possess a lower total alkylating activity than the others. This effect can be explained by a higher disturbance during mitosis after alkylation of the spindle apparatus with the structurally more bulky methanesulphonates.

  13. A novel immunochromatographic electrochemical biosensor for highly sensitive and selective detection of trichloropyridinol, a biomarker of exposure to chlorpyrifos.

    PubMed

    Wang, Limin; Lu, Donglai; Wang, Jun; Du, Dan; Zou, Zhexiang; Wang, Hua; Smith, Jordan N; Timchalk, Charles; Liu, Fengquan; Lin, Yuehe

    2011-02-15

    We present a novel portable immunochromatographic electrochemical biosensor (IEB) for simple, rapid, and sensitive biomonitoring of trichloropyridinol (TCP), a metabolite biomarker of exposure to organophosphorus insecticides. Our new approach takes the advantage of immunochromatographic test strip for a rapid competitive immunoreaction and a disposable screen-printed carbon electrode for a rapid and sensitive electrochemical analysis of captured HRP labeling. Several key experimental parameters (e.g. immunoreaction time, the amount of HRP labeled TCP, concentration of the substrate for electrochemical measurements, and the blocking agents for the nitrocellulose membrane) were optimized to achieve a high sensitivity, selectivity and stability. Under optimal conditions, the IEB has demonstrated a wide linear range (0.1-100 ng/ml) with a detection limit as low as 0.1 ng/ml TCP. Furthermore, the IEB has been successfully applied for biomonitoring of TCP in the rat plasma samples with in vivo exposure to organophosphorus insecticides like Chlorpyrifos-oxon (CPF-oxon). The IEB thus opens up new pathways for designing a simple, rapid, clinically accurate, and quantitative tool for TCP detection, as well as holds a great promise for in-field screening of metabolite biomarkers, e.g., TCP, for humans exposed to organophosphorus insecticides. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Sorption of triazine and organophosphorus pesticides on soil and biochar

    USDA-ARS?s Scientific Manuscript database

    Although a large number of reports are available on sorption and degradation of triazine and organophosphorus pesticides in soils, systematic studies are lacking to directly compare and predict the fate of agrochemicals having different susceptibilities for hydrolysis and other degradation pathways....

  15. Insecticide resistance status in Anopheles gambiae in southern Benin

    PubMed Central

    2010-01-01

    Background The emergence of pyrethroid resistance in Anopheles gambiae has become a serious concern to the future success of malaria control. In Benin, the National Malaria Control Programme has recently planned to scaling up long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) for malaria prevention. It is, therefore, crucial to monitor the level and type of insecticide resistance in An. gambiae, particularly in southern Benin where reduced efficacy of insecticide-treated nets (ITNs) and IRS has previously been reported. Methods The protocol was based on mosquito collection during both dry and rainy seasons across forty districts selected in southern Benin. Bioassay were performed on adults collected from the field to assess the susceptibility of malaria vectors to insecticide-impregnated papers (permethrin 0.75%, delthamethrin 0.05%, DDT 4%, and bendiocarb 0.1%) following WHOPES guidelines. The species within An. gambiae complex, molecular form and presence of kdr and ace-1 mutations were determined by PCR. Results Strong resistance to permethrin and DDT was found in An. gambiae populations from southern Benin, except in Aglangandan where mosquitoes were fully susceptible (mortality 100%) to all insecticides tested. PCR showed the presence of two sub-species of An. gambiae, namely An. gambiae s.s, and Anopheles melas, with a predominance for An. gambiae s.s (98%). The molecular M form of An. gambiae was predominant in southern Benin (97%). The kdr mutation was detected in all districts at various frequency (1% to 95%) whereas the Ace-1 mutation was found at a very low frequency (≤ 5%). Conclusion This study showed a widespread resistance to permethrin in An. gambiae populations from southern Benin, with a significant increase of kdr frequency compared to what was observed previously in Benin. The low frequency of Ace-1 recorded in all populations is encouraging for the use of bendiocarb as an alternative insecticide to pyrethroids for IRS

  16. Organophosphorus pesticide mixture removal from environmental matrices by a soil Streptomyces mixed culture.

    PubMed

    Briceño, Gabriela; Vergara, Karen; Schalchli, Heidi; Palma, Graciela; Tortella, Gonzalo; Fuentes, María Soledad; Diez, María Cristina

    2017-07-26

    The current study aimed to evaluate the removal of a pesticide mixture composed of the insecticides chlorpyrifos (CP) and diazinon (DZ) from liquid medium, soil and a biobed biomixture by a Streptomyces mixed culture. Liquid medium contaminated with 100 mg L -1 CP plus DZ was inoculated with the Streptomyces mixed culture. Results indicated that microorganisms increased their biomass and that the inoculum was viable. The inoculum was able to remove the pesticide mixture with a removal rate of 0.036 and 0.015 h -1 and a half-life of 19 and 46 h -1 for CP and DZ, respectively. The sterilized soil and biobed biomixture inoculated with the mixed culture showed that Streptomyces was able to colonize the substrates, exhibiting an increase in population determined by quantitative polymerase chain reaction (q-PCR), enzymatic activity dehydrogenase (DHA) and acid phosphatase (APP). In both the soil and biomixture, limited CP removal was observed (6-14%), while DZ exhibited a removal rate of 0.024 and 0.060 day -1 and a half-life of 29 and 11 days, respectively. Removal of the organophosphorus pesticide (OP) mixture composed of CP and DZ from different environmental matrices by Streptomyces spp. is reported here for the first time. The decontamination strategy using a Streptomyces mixed culture could represent a promising alternative to eliminate CP and DZ residues from liquids as well as to eliminate DZ from soil and biobed biomixtures.

  17. Departments of Defense and Agriculture Team Up to Develop New Insecticides for Mosquito Control

    DTIC Science & Technology

    2010-01-01

    archives of insecticide data by quantita- tive structure-activity relationship ( QSAR ) modeling to predict and synthesize new insecticides. This...blood- sucking arthropods. The key thrust of IIBBL’s approach involves QSAR -based modeling of fast-acting pyrethroid insecticides to predict and

  18. Toxicity of carbamates for mammals

    PubMed Central

    Vandekar, M.; Pleština, R.; Wilhelm, K.

    1971-01-01

    Toxicity studies have been carried out with a number of monomethylcarbamates, most of which reached an advanced stage in the World Health Organization insecticide evaluation programme. Both quantitative and qualitative distinctions have been found between the carbamates studied, and certain common characteristics that distinguish them in several important aspects from organophosphorus insecticides have been demonstrated. PMID:4999482

  19. Transition-Metal-Catalyzed C-H Alkylation Using Alkenes.

    PubMed

    Dong, Zhe; Ren, Zhi; Thompson, Samuel J; Xu, Yan; Dong, Guangbin

    2017-07-12

    Alkylation reactions represent an important organic transformation to form C-C bonds. In addition to conventional approaches with alkyl halides or sulfonates as alkylating agents, the use of unactivated olefins for alkylations has become attractive from both cost and sustainability viewpoints. This Review summarizes transition-metal-catalyzed alkylations of various carbon-hydrogen bonds (addition of C-H bonds across olefins) using regular olefins or 1,3-dienes up to May 2016. According to the mode of activation, the Review is divided into two sections: alkylation via C-H activation and alkylation via olefin activation.

  20. Photoinduced, copper-catalyzed alkylation of amides with unactivated secondary alkyl halides at room temperature.

    PubMed

    Do, Hien-Quang; Bachman, Shoshana; Bissember, Alex C; Peters, Jonas C; Fu, Gregory C

    2014-02-05

    The development of a mild and general method for the alkylation of amides with relatively unreactive alkyl halides (i.e., poor substrates for SN2 reactions) is an ongoing challenge in organic synthesis. We describe herein a versatile transition-metal-catalyzed approach: in particular, a photoinduced, copper-catalyzed monoalkylation of primary amides. A broad array of alkyl and aryl amides (as well as a lactam and a 2-oxazolidinone) couple with unactivated secondary (and hindered primary) alkyl bromides and iodides using a single set of comparatively simple and mild conditions: inexpensive CuI as the catalyst, no separate added ligand, and C-N bond formation at room temperature. The method is compatible with a variety of functional groups, such as an olefin, a carbamate, a thiophene, and a pyridine, and it has been applied to the synthesis of an opioid receptor antagonist. A range of mechanistic observations, including reactivity and stereochemical studies, are consistent with a coupling pathway that includes photoexcitation of a copper-amidate complex, followed by electron transfer to form an alkyl radical.

  1. Polyimides with pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1982-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  2. Computational protein design and protein-ligand interaction studies for the improvement of organophosphorus degrading potential of Deinococcus radiodurans.

    PubMed

    Manoharan, Prabu; Sridhar, J

    2018-05-01

    The organophosphorus hydrolase enzyme is involved in the catalyzing reaction that involve hydrolysis of organophosphate toxic compounds. An enzyme from Deinococcus radiodurans reported as homologous to phosphotriesterase and show activity against organophosphate. In the past activity of this enzyme is low and efforts made to improve the activity by experimental mutation study. However only very few organophosphates tested against very few catalytic site mutations. In order to improve the catalytic power of the organophosphorus hydrolase enzyme, we carried out systematic functional hotspot based protein engineering strategy. The mutants tested against 46 know organophosphate compounds using molecular docking study. Finally, we carried out an extensive molecular docking study to predict the binding of 46 organophosphate compounds to wild-type protein and mutant organophosphorus hydrolase enzyme. At the end we are able to improve the degrading potential of organophosphorus hydrolase enzyme against organophosphate toxic compounds. This preliminary study and the outcome would be useful guide for the experimental scientist involved in the bioremediation of toxic organophosphate compounds. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. HPLC SEPARATION OF CHIRAL ORGANOPHOSPHORUS PESTICIDES ON POLYSACCHARIDE CHIRAL STATIONARY PHASES

    EPA Science Inventory

    High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) were obtained on polysaccharide chiral HPLC columns using an alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, dyfonate, fenamiphos, ...

  4. Visual detection of organophosphorus pesticides represented by mathamidophos using Au nanoparticles as colorimetric probe.

    PubMed

    Li, Hongkun; Guo, Jiajia; Ping, Hong; Liu, Lurui; Zhang, Minwei; Guan, Fengrui; Sun, Chunyan; Zhang, Qian

    2011-12-15

    With citrate-coated Au nanoparticles as colorimetric probe, a novel visual method for rapid assay of organophosphorus pesticides has been developed. The assay principle is based on catalytic hydrolysis of acetylthiocholine into thiocholine by acetylcholinesterase, which induces the aggregation of Au nanoparticles and the color change from claret-red to purple or even grey. The original plasmon absorption of Au nanoparticles at 522 nm decreases, and simultaneously, a new absorption band appears at 675 nm. The irreversible inhibition of organophosphorus pesticides on acetylcholinesterase prevents aggregation of Au nanoparticles. Under optimum conditions, the absorbance at 522 nm of Au nanoparticles is related linearly to the concentration of mathamidophos in the range of 0.02-1.42 μg/mL with a detection limit of 1.40 ng/mL. This colorimetric method has been successfully utilized to detect mathamidophos in vegetables with satisfactory results. The proposed colorimetric assay exhibits good reproducibility and accuracy, providing a simple and rapid method for the analysis of organophosphorus pesticides. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Metaflumizone is a novel sodium channel blocker insecticide.

    PubMed

    Salgado, V L; Hayashi, J H

    2007-12-15

    Metaflumizone is a novel semicarbazone insecticide, derived chemically from the pyrazoline sodium channel blocker insecticides (SCBIs) discovered at Philips-Duphar in the early 1970s, but with greatly improved mammalian safety. This paper describes studies confirming that the insecticidal action of metaflumizone is due to the state-dependent blockage of sodium channels. Larvae of the moth Spodoptera eridania injected with metaflumizone became paralyzed, concomitant with blockage of all nerve activity. Furthermore, tonic firing of abdominal stretch receptor organs from Spodoptera frugiperda was blocked by metaflumizone applied in the bath, consistent with the block of voltage-dependent sodium channels. Studies on native sodium channels, in primary-cultured neurons isolated from the CNS of the larvae of the moth Manduca sexta and on Para/TipE sodium channels heterologously expressed in Xenopus (African clawed frog) oocytes, confirmed that metaflumizone blocks sodium channels by binding selectively to the slow-inactivated state, which is characteristic of the SCBIs. The results confirm that metaflumizone is a novel sodium channel blocker insecticide.

  6. Chlorinated hydrocarbon insecticides

    USGS Publications Warehouse

    Friend, M.; Franson, J.C.

    1999-01-01

    Chlorinated hydrocarbon insecticides (OCs) are diverse synthetic chemicals that belong to several groups, based on chemical structure. DDT is the best known of these insecticides. First synthesized in 1874, DDT remained obscure until its insecticidal properties became known in 1939, a discovery that earned a Nobel Prize in 1948. The means of synthesizing the cyclodiene group, the most toxic of the OCs, was discovered in 1928 and resulted in a Nobel Prize in 1950. The insecticidal properties of cyclodienes, which include aldrin, dieldrin, and endrin (Table 40.1), were discovered about 1945. OCs became widely used in the United States following World War II. Their primary uses included broad spectrum applications for agricultural crops and forestry and, to a lesser extent, human health protection by spraying to destroy mosquitoes and other potential disease carriers. These compounds also became widely used to combat insect carriers of domestic animal diseases.

  7. Molecular design of sequence specific DNA alkylating agents.

    PubMed

    Minoshima, Masafumi; Bando, Toshikazu; Shinohara, Ken-ichi; Sugiyama, Hiroshi

    2009-01-01

    Sequence-specific DNA alkylating agents have great interest for novel approach to cancer chemotherapy. We designed the conjugates between pyrrole (Py)-imidazole (Im) polyamides and DNA alkylating chlorambucil moiety possessing at different positions. The sequence-specific DNA alkylation by conjugates was investigated by using high-resolution denaturing polyacrylamide gel electrophoresis (PAGE). The results showed that polyamide chlorambucil conjugates alkylate DNA at flanking adenines in recognition sequences of Py-Im polyamides, however, the reactivities and alkylation sites were influenced by the positions of conjugation. In addition, we synthesized conjugate between Py-Im polyamide and another alkylating agent, 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI). DNA alkylation reactivies by both alkylating polyamides were almost comparable. In contrast, cytotoxicities against cell lines differed greatly. These comparative studies would promote development of appropriate sequence-specific DNA alkylating polyamides against specific cancer cells.

  8. Mass spectral analysis of long chain alkyl aromatic compounds synthesized from alpha-olefin alkylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, M.T.; Hudson, J.D.

    1994-12-31

    Long chain alkyl aromatic compounds are important petrochemicals with many applications. They are generally synthesized by alkylating the corresponding aromatic nucleus. In this report, the authors will describe the mass spectral fragmentation of alkylphenols and alkylsalicylates.

  9. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under this...

  10. Nitrated Fatty Acids Reverse Cigarette Smoke-Induced Alveolar Macrophage Activation and Inhibit Protease Activity via Electrophilic S-Alkylation.

    PubMed

    Reddy, Aravind T; Lakshmi, Sowmya P; Muchumarri, Ramamohan R; Reddy, Raju C

    2016-01-01

    Nitrated fatty acids (NFAs), endogenous products of nonenzymatic reactions of NO-derived reactive nitrogen species with unsaturated fatty acids, exhibit substantial anti-inflammatory activities. They are both reversible electrophiles and peroxisome proliferator-activated receptor γ (PPARγ) agonists, but the physiological implications of their electrophilic activity are poorly understood. We tested their effects on inflammatory and emphysema-related biomarkers in alveolar macrophages (AMs) of smoke-exposed mice. NFA (10-nitro-oleic acid or 12-nitrolinoleic acid) treatment downregulated expression and activity of the inflammatory transcription factor NF-κB while upregulating those of PPARγ. It also downregulated production of inflammatory cytokines and chemokines and of the protease cathepsin S (Cat S), a key mediator of emphysematous septal destruction. Cat S downregulation was accompanied by decreased AM elastolytic activity, a major mechanism of septal destruction. NFAs downregulated both Cat S expression and activity in AMs of wild-type mice, but only inhibited its activity in AMs of PPARγ knockout mice, pointing to a PPARγ-independent mechanism of enzyme inhibition. We hypothesized that this mechanism was electrophilic S-alkylation of target Cat S cysteines, and found that NFAs bind directly to Cat S following treatment of intact AMs and, as suggested by in silico modeling and calculation of relevant parameters, elicit S-alkylation of Cys25 when incubated with purified Cat S. These results demonstrate that NFAs' electrophilic activity, in addition to their role as PPARγ agonists, underlies their protective effects in chronic obstructive pulmonary disease (COPD) and support their therapeutic potential in this disease.

  11. Nitrated Fatty Acids Reverse Cigarette Smoke-Induced Alveolar Macrophage Activation and Inhibit Protease Activity via Electrophilic S-Alkylation

    PubMed Central

    Reddy, Aravind T.; Lakshmi, Sowmya P.; Muchumarri, Ramamohan R.; Reddy, Raju C.

    2016-01-01

    Nitrated fatty acids (NFAs), endogenous products of nonenzymatic reactions of NO-derived reactive nitrogen species with unsaturated fatty acids, exhibit substantial anti-inflammatory activities. They are both reversible electrophiles and peroxisome proliferator-activated receptor γ (PPARγ) agonists, but the physiological implications of their electrophilic activity are poorly understood. We tested their effects on inflammatory and emphysema-related biomarkers in alveolar macrophages (AMs) of smoke-exposed mice. NFA (10-nitro-oleic acid or 12-nitrolinoleic acid) treatment downregulated expression and activity of the inflammatory transcription factor NF-κB while upregulating those of PPARγ. It also downregulated production of inflammatory cytokines and chemokines and of the protease cathepsin S (Cat S), a key mediator of emphysematous septal destruction. Cat S downregulation was accompanied by decreased AM elastolytic activity, a major mechanism of septal destruction. NFAs downregulated both Cat S expression and activity in AMs of wild-type mice, but only inhibited its activity in AMs of PPARγ knockout mice, pointing to a PPARγ-independent mechanism of enzyme inhibition. We hypothesized that this mechanism was electrophilic S-alkylation of target Cat S cysteines, and found that NFAs bind directly to Cat S following treatment of intact AMs and, as suggested by in silico modeling and calculation of relevant parameters, elicit S-alkylation of Cys25 when incubated with purified Cat S. These results demonstrate that NFAs’ electrophilic activity, in addition to their role as PPARγ agonists, underlies their protective effects in chronic obstructive pulmonary disease (COPD) and support their therapeutic potential in this disease. PMID:27119365

  12. Toxicity of parathion to captive European starlings (Sturnus vulgaris)-absence of seasonal effects

    USGS Publications Warehouse

    Rattner, B.A.; Grue, C.E.

    1990-01-01

    The effects of season on the toxicity of the prototypic organophosphorus insecticide parathion was evaluated using adult European starlings (Sturnus vulgaris) housed in outdoor pens. Groups of birds received oral doses of parathion in the fall, winter, spring and summer. Median lethal dosage, and brain and plasma cholinesterase inhibition, were found to be quite similar among seasons. Parathion may have been more toxic during hot weather (winter vs. summer LD50 estimate: 160 vs. 118 mg/kg; p < 0.1). In view of previous reports in which ambient temperature extremes and harsh weather have enhanced organophosphorus insecticide toxicity to birds, it is concluded that circannual toxicity studies should include measures of sensitivity (acute oral exposure) and vulnerability (dietary exposure) to better predict responses of free-ranging birds.

  13. Determination of Organophosphate Pesticides at a Carbon Nanotube/Organophosphorus Hydrolase Electrochemical Biosensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deo, R P.; Wang, Joseph; Block, I

    2005-02-08

    An amperometric biosensor for organophosphorus (OP) pesticides based on a carbon-nanotube (CNT) modified transducer and an organophosphorus hydrolase (OPH) biocatalyst is described. A bilayer approach with the OPH layer atop of the CNT film was used for preparing the CNT/OPH biosensor. The CNT layer leads to a greatly improved anodic detection of the enzymatically-generated p-nitrophenol product, including higher sensitivity and stability. The sensor performance was optimized with respect to the surface modification and operating conditions. Under the optimal conditions the biosensor was used to measure as low as 0.15 {micro}M paraoxon and 0.8 {micro}M methyl parathion with sensitivities of 25more » and 6 nA/{micro}M, respectively.« less

  14. Prophylactic and Treatment Drugs for Organophosphorus Poisoning

    DTIC Science & Technology

    1990-08-01

    Synthesis of e-Mercapto-a- aminocaproic Acid and Its S- Alkyl and N-Sulfanilyl Derivatives." Yuan C.E.; Shchukina, M.N. Zhur. Obshchei Khim, 1957, 27... acids , carbamates, 07 0 1,AT( Isynthes is. 19. BSTACT(Continue on rveberl of newcesary and odentify by block number) The program is directed at the...cis-4-chlorobuten-l-ol and 4-chlorobutanol, one alicylaryl disulfide, two chlo’oalky(aryl) carboxylic acids , i,3.5-tris-2’-chloroethylbernzene I and d

  15. Relieving Mipafox Inhibition in Organophosphorus Acid Anhydrolase by Rational Design

    DTIC Science & Technology

    2013-03-01

    acid anhydrolase (OPAA, EC 3.1.8.2) was purified from halophilic Alteromonas sp. bacteria. OPPA displayed hydrolysis activity against several highly...2010, 49, 547–559. 3. DeFrank, J.J.; Cheng, T.-C. Purification and Properties of Organophosphorus Acid Anhydrolase from a Halophilic Bacterial

  16. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides.

    PubMed

    Long, Qian; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2015-06-15

    This paper reports a novel nanosensor for organophosphorus pesticides based on the fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs). The detection mechanism is based on the facts that AuNPs quench the fluorescence of UCNPs and organophosphorus pesticides (OPs) inhibit the activity of acetylcholinesterase (AChE) which catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine. Under the optimized conditions, the logarithm of the pesticides concentration was proportional to the inhibition efficiency. The detection limits of parathion-methyl, monocrotophos and dimethoate reached 0.67, 23, and 67 ng/L, respectively. Meanwhile, the biosensor shows good sensitivity, stability, and could be successfully applied to detection of OPs in real food samples, suggesting the biosensor has potentially extensive application clinic diagnoses assays. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management.

    PubMed

    Mougabure-Cueto, Gastón; Picollo, María Inés

    2015-09-01

    Chagas disease is a chronic parasitic infection restricted to America. The disease is caused by the protozoa Trypanosoma cruzi, which is transmitted to human through the feces of infected triatomine insects. Because no treatment is available for the chronic forms of the disease, vector chemical control represents the best way to reduce the incidence of the disease. Chemical control has been based principally on spraying dwellings with insecticide formulations and led to the reduction of triatomine distribution and consequent interruption of disease transmission in several areas from endemic region. However, in the last decade it has been repeatedly reported the presence triatomnes, mainly Triatoma infestans, after spraying with pyrethroid insecticides, which was associated to evolution to insecticide resistance. In this paper the evolution of insecticide resistance in triatomines is reviewed. The insecticide resistance was detected in 1970s in Rhodnius prolixus and 1990s in R. prolixus and T. infestans, but not until the 2000s resistance to pyrthroids in T. infestans associated to control failures was described in Argentina and Bolivia. The main resistance mechanisms (i.e. enhanced metabolism, altered site of action and reduced penetration) were described in the T. infestans resistant to pyrethrods. Different resistant profiles were demonstrated suggesting independent origin of the different resistant foci of Argentina and Bolivia. The deltamethrin resistance in T. infestans was showed to be controlled by semi-dominant, autosomally inherited factors. Reproductive and developmental costs were also demonstrated for the resistant T. infestans. A discussion about resistance and tolerance concepts and the persistence of T. infestans in Gran Chaco region are presented. In addition, theoretical concepts related to toxicological, evolutionary and ecological aspects of insecticide resistance are discussed in order to understand the particular scenario of pyrethroid

  18. Neighbor-Directed Histidine N (s)–Alkylation: A Route to Imidazolium-Containing Phosphopeptide Macrocycles-Biopolymers | Center for Cancer Research

    Cancer.gov

    Our recently discovered, selective, on-resin route to N(s)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. Interestingly, these cationic moieties subsequently

  19. Clinical analysis of penehyclidine hydrochloride combined with hemoperfusion in the treatment of acute severe organophosphorus pesticide poisoning.

    PubMed

    Liang, M J; Zhang, Y

    2015-05-11

    This study aimed to observe the clinical curative effect of penehyclidine hydrochloride (PHC) combined with hemoperfusion in treating acute severe organophosphorus pesticide poisoning. We randomly divided 61 patients with severe organophosphorus pesticide poisoning into an experimental group (N = 31) and a control group (N = 30), and we compared the coma-recovery time, mechanical ventilation time, healing time, hospital expenses, and mortality between the two groups. The coma-recovery time, mechanical ventilation time, and healing time were lower in the experimental group than in the control group (P < 0.05), while the hospitalization expenses were higher in the experimental group than in the control group (P < 0.01); moreover, no significant difference was observed in the mortality rate between the two groups. Thus, PHC combined with hemoperfusion exerts a better therapeutic effect in acute severe organophosphorus pesticide poisoning than PHC alone.

  20. Comparative transcriptome analysis of Sogatella furcifera (Horváth) exposed to different insecticides.

    PubMed

    Zhou, Cao; Yang, Hong; Wang, Zhao; Long, Gui-Yun; Jin, Dao-Chao

    2018-06-08

    White-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), one of the main agricultural insect pests in China, is resistant to a wide variety of insecticides. We used transcriptome analysis to compare the expression patterns of resistance- and stress-response genes in S. furcifera subjected to imidacloprid, deltamethrin, and triazophos stress, to determine the molecular mechanisms of resistance to these insecticides. A comparative analysis of gene expression under imidacloprid, deltamethrin, and triazophos stress revealed 1,123, 841, and 316 upregulated unigenes, respectively, compared to the control. These upregulated genes included seven P450s (two CYP2 clade, three CYP3 clade, and two CYP4 clade), one GST, one ABC transporter (ABCF), and seven Hsps (one 90 and six Hsp70s) under imidacloprid stress; one P450 (CYP3 clade), two ABC transporters (one ABCF and one ABCD), and one Hsp (Hsp90) under deltamethrin stress; one P450 (CYP3 clade) and one ABC transporter (ABCF) under triazophos stress. In addition, 80 genes were commonly upregulated in response to the three insecticide treatments, including laminin, larval cuticle protein, and fasciclin, which are associated with epidermal formation. These results provide a valuable resource for the molecular characterisation of insecticide action in S. furcifera, especially the molecular characteristics of insecticide cross resistance.

  1. INFLUENCE OF ENVIRONMENTAL CHANGES ON DEGRADATION OF CHIRAL POLLUTANTS IN SOILS

    EPA Science Inventory

    Numerous anthropogenic chemicals of environmental concern- including some phenoxy acid herbicides, organophosphorus insecticides, polychlorinated biphenyls, phthalates, freon substi- tutes and some DDT derivatives- are chiral. Their potential biological effects, such as toxicity,...

  2. Isolatable organophosphorus(III)-tellurium heterocycles.

    PubMed

    Nordheider, Andreas; Chivers, Tristram; Schön, Oliver; Karaghiosoff, Konstantin; Athukorala Arachchige, Kasun S; Slawin, Alexandra M Z; Woollins, J Derek

    2014-01-13

    A new structural arrangement Te3 (RP(III) )3 and the first crystal structures of organophosphorus(III)-tellurium heterocycles are presented. The heterocycles can be stabilized and structurally characterized by the appropriate choice of substituents in Tem (P(III) R)n (m=1: n=2, R=OMes* (Mes*=supermesityl or 2,4,6-tri-tert-butylphenyl); n=3, R=adamantyl (Ad); n=4, R=ferrocene (Fc); m=n=3: R=trityl (Trt), Mesor by the installation of a P(V) 2 N2 anchor in RP(III) [TeP(V) (tBuN)(μ-NtBu)]2 (R=Ad, tBu). Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effects of chlorpyrifos on life cycle parameters, cytochrome P450S expression, and antioxidant systems in the monogonont rotifer Brachionus koreanus.

    PubMed

    Kim, Ryeo-Ok; Kim, Bo-Mi; Jeong, Chang-Bum; Lee, Jae-Seong; Rhee, Jae-Sung

    2016-06-01

    Chlorpyrifos is a widely used organophosphorus insecticide for controlling diverse insect pests of crops. In the monogonont rotifer Brachionus koreanus, population growth retardation with the inhibition of lifespan, fecundity, and individual body size of ovigerous females was shown over 10 d in response to chlorpyrifos exposure. At the molecular and biochemical levels, the rotifer B. koreanus defensome, composed of cytochrome P450 complements, heat shock protein 70, and antioxidant enzymatic systems (i.e., glutathione, glutathione peroxidase, glutathione reductase, and glutathione S-transferase), was significantly induced in response to different concentrations of chlorpyrifos. Thus, chlorpyrifos strongly induced a defensome system to mitigate the deleterious effects of chlorpyrifos at in vivo and in vitro levels as a trade-off in fitness costs. Environ Toxicol Chem 2016;35:1449-1457. © 2015 SETAC. © 2015 SETAC.

  4. CADDIS Volume 2. Sources, Stressors and Responses: Insecticides

    EPA Pesticide Factsheets

    Introduction to the insecticides module, when to list insecticides as a candidate cause, ways to measure insecticides, simple and detailed conceptual diagrams for insecticides, insecticides module references and literature reviews.

  5. Photoinduced, Copper-Catalyzed Carbon-Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature.

    PubMed

    Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C

    2015-11-04

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride.

  6. Deaths from pesticide poisoning in England and Wales: 1945-1989.

    PubMed

    Casey, P; Vale, J A

    1994-02-01

    1. Data on deaths from pesticide poisoning occurring in England and Wales between 1945 and 1989 (no data are available for 1954) have been collated; pesticides were responsible for only 1012 (1.1%) of the 87,385 deaths from poisoning (excluding those due to carbon monoxide) occurring over this 44 year period. At least 73% of all pesticide fatalities were due to suicide and overall there was a predominance of males (male:female ratio 2.4:1). No deaths from pesticide poisoning in children under 10 years have been reported since 1974 although almost 50% of suspected pesticide poisoning incidents involve this age group. 2. Herbicides were responsible for 787 (78%) fatal poisonings, 110 (11%) were caused by insecticides, 69 (6.8%) by rodenticides, 30 (3.0%) by wood preservatives and 16 (1.6%) by other pesticides. 3. The herbicide, paraquat, was responsible for 570 of 1012 (56%) deaths and, although there has been a progressive decline in the annual number of deaths from paraquat poisoning since 1982, paraquat remains the most common cause of fatal pesticide poisoning in England and Wales. 4. Sodium chlorate caused 113 (11.2%) deaths, most of these fatalities occurring between 1965 and 1983; only one death has been recorded since 1984. The phenoxyacetate herbicides resulted in 50 deaths; 2,4-D was implicated most commonly. Sixty-eight deaths were due to organophosphorus insecticides; demeton-S-methyl, malathion and mevinphos were involved most frequently. Only eight deaths resulted from organochlorine insecticides and two of these also involved an organophosphorus insecticide.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Safety Assessment of Alkyl PEG Sulfosuccinates as Used in Cosmetics.

    PubMed

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of alkyl polyethylene glycol (PEG) sulfosuccinates, which function in cosmetics mostly as surfactants/cleansing agents. Although these ingredients may cause ocular and skin irritation, dermal penetration is unlikely because of the substantial polarity and molecular size of these ingredients. The Panel considered the negative oral carcinogenicity and reproductive and developmental toxicity data on chemically related laureths (PEG lauryl ethers) and negative repeated dose toxicity and skin sensitization data on disodium laureth sulfosuccinate supported the safety of these alkyl PEG sulfosuccinates in cosmetic products, but. The CIR Expert Panel concluded that the alkyl PEG sulfosuccinates are safe in the present practices of use and concentration when formulated to be nonirritating. © The Author(s) 2015.

  8. Enzyme-based electrochemical biosensors for determination of organophosphorus and carbamate pesticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everett, W.R.; Rechnitz, G.A.

    1999-01-01

    A mini review of enzyme-based electrochemical biosensors for inhibition analysis of organophosphorus and carbamate pesticides is presented. Discussion includes the most recent literature to present advances in detection limits, selectivity and real sample analysis. Recent reviews on the monitoring of pesticides and their residues suggest that the classical analytical techniques of gas and liquid chromatography are the most widely used methods of detection. These techniques, although very accurate in their determinations, can be quite time consuming and expensive and usually require extensive sample clean up and pro-concentration. For these and many other reasons, the classical techniques are very difficult tomore » adapt for field use. Numerous researchers, in the past decade, have developed and made improvements on biosensors for use in pesticide analysis. This mini review will focus on recent advances made in enzyme-based electrochemical biosensors for the determinations of organophosphorus and carbamate pesticides.« less

  9. Safety Assessment of Alkyl Ethylhexanoates as Used in Cosmetics.

    PubMed

    Fiume, Monice; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of 16 alkyl ethylhexanoates for use in cosmetics, concluding that these ingredients are safe in cosmetic formulations in the present practices of use and concentrations when formulated to be nonirritating. The alkyl ethylhexanoates primarily function as skin-conditioning agents in cosmetics. The highest concentration of use reported for any of the alkyl ethylhexanoates is 77.3% cetyl ethylhexanoate in rinse-off formulations used near the eye, and the highest leave-on use reported is 52% cetyl ethylhexanoate in lipstick formulations. The Panel reviewed available animal and clinical data related to these ingredients, and the similarities in structure, properties, functions, and uses of ingredients from previous CIR assessments on constituent alcohols that allowed for extrapolation of the available toxicological data to assess the safety of the entire group. © The Author(s) 2015.

  10. Insecticide resistance status of three malaria vectors, Anopheles gambiae (s.l.), An. funestus and An. mascarensis, from the south, central and east coasts of Madagascar.

    PubMed

    Rakotoson, Jean-Desire; Fornadel, Christen M; Belemvire, Allison; Norris, Laura C; George, Kristen; Caranci, Angela; Lucas, Bradford; Dengela, Dereje

    2017-08-23

    Insecticide-based vector control, which comprises use of insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS), is the key method to malaria control in Madagascar. However, its effectiveness is threatened as vectors become resistant to insecticides. This study investigated the resistance status of malaria vectors in Madagascar to various insecticides recommended for use in ITNs and/or IRS. WHO tube and CDC bottle bioassays were performed on populations of Anopheles gambiae (s.l.), An. funestus and An. mascarensis. Adult female An. gambiae (s.l.) mosquitoes reared from field-collected larvae and pupae were tested for their resistance to DDT, permethrin, deltamethrin, alpha-cypermethrin, lambda-cyhalothrin, bendiocarb and pirimiphos-methyl. Resting An. funestus and An. mascarensis female mosquitoes collected from unsprayed surfaces were tested against permethrin, deltamethrin and pirimiphos-methyl. The effect on insecticide resistance of pre-exposure to the synergists piperonyl-butoxide (PBO) and S,S,S-tributyl phosphorotrithioate (DEF) also was assessed. Molecular analyses were done to identify species and determine the presence of knock-down resistance (kdr) and acetylcholinesterase resistance (ace-1 R ) gene mutations. Anopheles funestus and An. mascarensis were fully susceptible to permethrin, deltamethrin and pirimiphos-methyl. Anopheles gambiae (s.l.) was fully susceptible to bendiocarb and pirimiphos-methyl. Among the 17 An. gambiae (s.l.) populations tested for deltamethrin, no confirmed resistance was recorded, but suspected resistance was observed in two sites. Anopheles gambiae (s.l.) was resistant to permethrin in four out of 18 sites (mortality 68-89%) and to alpha-cypermethrin (89% mortality) and lambda-cyhalothrin (80% and 85%) in one of 17 sites, using one or both assay methods. Pre-exposure to PBO restored full susceptibility to all pyrethroids tested except in one site where only partial restoration to permethrin was observed. DEF

  11. Exploration of Novel Botanical Insecticide Leads: Synthesis and Insecticidal Activity of β-Dihydroagarofuran Derivatives.

    PubMed

    Zhao, Ximei; Xi, Xin; Hu, Zhan; Wu, Wenjun; Zhang, Jiwen

    2016-02-24

    The discovery of novel leads and new mechanisms of action is of vital significance to the development of pesticides. To explore lead compounds for botanical insecticides, 77 β-dihydroagarofuran derivatives were designed and synthesized. Their structures were mainly confirmed by (1)H NMR, (13)C NMR, DEPT-135°, IR, MS, and HRMS. Their insecticidal activity was evaluated against the third-instar larvae of Mythimna separata Walker, and the results indicated that, of these derivatives, eight exhibited more promising insecticidal activity than the positive control, celangulin-V. Particularly, compounds 5.7, 6.6, and 6.7 showed LD50 values of 37.9, 85.1, and 21.1 μg/g, respectively, which were much lower than that of celangulin-V (327.6 μg/g). These results illustrated that β-dihydroagarofuran ketal derivatives can be promising lead compounds for developing novel mechanism-based and highly effective botanical insecticides. Moreover, some newly discovered structure-activity relationships are discussed, which may provide some important guidance for insecticide development.

  12. Synergistic Actions of Pyridostigmine Bromide and Insecticides on Muscle and Vascular Nociceptors

    DTIC Science & Technology

    2013-07-01

    RAND); 2000. Flannigan, S. A., S. B. Tucker, et al. (1985). "Primary irritant contact dermatitis from synthetic pyrethroid insecticide exposure...synthetic pyrethroid insecticides. Contact Dermatitis . 1985;13:140-7. Ginsburg K, Narahashi T. Time course and temperature dependence of allethrin...organophosphates with which they had voluntary and/or involuntary contact (Fricker et al., 2000; Haley et al., 2012; see Binns et al., 2008). Chronic

  13. Synergistic Actions of Pyridostigmine Bromide and Insecticides on Muscle and Vascular Nociceptors

    DTIC Science & Technology

    2014-01-01

    2000. Flannigan, S. A., S. B. Tucker, et al. (1985). "Primary irritant contact dermatitis from synthetic pyrethroid insecticide exposure." Arch...between synthetic pyrethroid insecticides. Contact Dermatitis . 1985;13:140-7. Ginsburg K, Narahashi T. Time course and temperature dependence of...and other carbamates or organophosphates with which they had voluntary and/or involuntary contact (Fricker et al., 2000; Haley et al., 2012; see

  14. Field studies on health effects from the application of two organophosphorus insecticide formulations by hand-held ULV to cotton.

    PubMed

    Kummer, R; van Sittert, N J

    1986-10-01

    Two field studies to assess the health implications for farmers applying two different formulations containing organophosphorus (OP) pesticides to cotton by hand-held ULV are described. The first study, carried out in the Ivory Coast, involved the application of an endrin/DDT/methylparathion (MEP) formulation in an aromatic hydrocarbon solvent. The second study took place in Indonesia with a 20% monocrotophos formulation in a mixture of a glycol and a glycol ether. Both studies were carried out under actual field conditions. The purpose of the studies was to get a good assessment of the health hazards of the particular formulation, used under the specific circumstances and agronomic requirements of the area of application and taking into account all local, climatic and cultural conditions that could be of possible influence. The results showed that in both studies skin exposures took place during application and especially during handling, filling and cleaning, and that inhalation of spray mist was negligible. Absorption was confirmed by the presence in urine of metabolites of endrin and methylparathion in the Ivory Coast study, and of dimethyl phosphate in the Indonesia study. No clinical signs or symptoms of intoxication were discovered in either study, nor were inhibitions of cholinesterase (ChE) activity of health significance established under the conditions of the studies. In addition, various practical aspects such as choice of apparatus, of formulation, the application procedures etc. are discussed.

  15. Mechanism of the Reaction between Alkyl- and Aryl Grignard Reagents and Hexachlorocyclotriphosphazene: An Explanation of Bi(Cyclophosphazene Formation).

    DTIC Science & Technology

    1982-06-24

    ADAI& "I PENNSYLVANIA STATE UNIV UNIVERSITY PARK DEPT OF CHEMISTRY F/S 7/3 ADA MECHANISM OF THE REACTION BETWEEN ALKYL - AND ARYL GRIGNARD REMG-ETC (U...TITLE (and Subliflo) S. TYPE OF REPORT A PERIOD COVERED MECHANISM OF THE REACTION BETWEEN ALKYL - AND ARYL GRIGNARD REAGENTS AND HEXACHLOROCYCLOTRIPHOS...Report No. 27 MECHANISM OF THE REACTION BETWEEN ALKYL - AND ARYL GRIGNARD REAGENTS AND HEXACHLOROCYCLOTRIPHOSPHAZENE: AN EXPLANATION OF BI(CYCLOPHOSPHAZENE

  16. Characterization of organophosphorus flame retardants' sorption on building materials and consumer products

    EPA Science Inventory

    Better understanding the transport mechanisms of organophosphorus flame-retardants (OPFRs) in the residential environment is important to more accurately estimate their indoor exposure and develop risk management strategies that protect human health. This study describes an impro...

  17. The current insecticide resistance status of Anopheles gambiae (s.l.) (Culicidae) in rural and urban areas of Bouaké, Côte d'Ivoire.

    PubMed

    Zoh, Dounin Danielle; Ahoua Alou, Ludovic Phamien; Toure, Mahama; Pennetier, Cédric; Camara, Soromane; Traore, Dipomin François; Koffi, Alphonsine Amanan; Adja, Akré Maurice; Yapi, Ahoua; Chandre, Fabrice

    2018-03-02

    Several studies were carried out in experimental hut station in areas surrounding the city of Bouaké, after the crisis in Côte d'Ivoire. They reported increasing resistance levels to insecticide for malaria transmiting mosquitoes. The present work aims to evaluate the current resistance level of An. gambiae (s.l.) in rural and urban areas in the city of Bouaké. Larvae of Anopheles gambiae (s.l.) were collected from five different study sites and reared to adult stages. The resistance status was assessed using the WHO bioassay test kits for adult mosquitoes, with eight insecticides belonging to pyrethroids, organochlorines, carbamates and organophosphates classes. Molecular assays were performed to identify the molecular forms of An. gambiae (s.l.), the L1014F kdr and the ace-1R alleles in individual mosquitoes. The synergist PBO was used to investigate the role of enzymes in resistance. Biochemical assays were performed to detect potential increased activities in mixed function oxidase (MFO) levels, non-specific esterases (NSE) and glutathione S-transferases (GST). High resistance levels to pyrethroids, organochlorines, and carbamates were observed in Anopheles gambiae (s.l.) from Bouaké. Mortalities ranged between 0 and 73% for the eight tested insecticides. The pre-exposure to PBO restored full or partial susceptibility to pyrethroids in the different sites. The same trend was observed with the carbamates in five sites, but to a lesser extent. With DDT, pre-exposure to PBO did not increase the mortality rate of An. gambiae (s.l.) from the same sites. Tolerance to organophosphates was observed. An increased activity of NSE and higher level of MFO were found compared to the Kisumu susceptible reference strain. Two molecular forms, S form [(An. gambiae (s.s)] and M form (An. coluzzi) were identified. The kdr allele frequencies vary from 85.9 to 99.8% for An. gambiae (s.s.) and from 81.7 to 99.6% for An. coluzzii. The ace-1R frequencies vary between 25.6 and 38

  18. Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides.

    PubMed

    Poupardin, Rodolphe; Reynaud, Stéphane; Strode, Clare; Ranson, Hilary; Vontas, John; David, Jean-Philippe

    2008-05-01

    The effect of exposure of Aedes aegypti larvae to sub-lethal doses of the pyrethroid insecticide permethrin, the organophosphate temephos, the herbicide atrazine, the polycyclic aromatic hydrocarbon fluoranthene and the heavy metal copper on their subsequent tolerance to insecticides, detoxification enzyme activities and expression of detoxification genes was investigated. Bioassays revealed a moderate increase in larval tolerance to permethrin following exposure to fluoranthene and copper while larval tolerance to temephos increased moderately after exposure to atrazine, copper and permethrin. Cytochrome P450 monooxygenases activities were induced in larvae exposed to permethrin, fluoranthene and copper while glutathione S-transferase activities were induced after exposure to fluoranthene and repressed after exposure to copper. Microarray screening of the expression patterns of all detoxification genes following exposure to each xenobiotic with the Aedes Detox Chip identified multiple genes induced by xenobiotics and insecticides. Further expression studies using real-time quantitative PCR confirmed the induction of multiple CYP genes and one carboxylesterase gene by insecticides and xenobiotics. Overall, this study reveals the potential of xenobiotics found in polluted mosquito breeding sites to affect their tolerance to insecticides, possibly through the cross-induction of particular detoxification genes. Molecular mechanisms involved and impact on mosquito control strategies are discussed.

  19. Insecticide cytotoxicology in China: Current status and challenges.

    PubMed

    Zhong, Guohua; Cui, Gaofeng; Yi, Xin; Sun, Ranran; Zhang, Jingjing

    2016-09-01

    The insecticide cytotoxicology, as a new branch of toxicology, has rapidly developed in China. During the past twenty years, thousands of investigations have sprung up to evaluate the damages and clarify the mechanisms of insecticidal chemical substances to insect cells in vivo or in vitro. The mechanisms of necrosis, apoptosis or autophagy induced by synthetic or biogenic pesticides and virus infections have been systematically illuminated in many important models, including S2, BmN, SL-1, Sf21 and Sf9 cell lines. In addition, a variety of methods have also been applied to examine the effects of insecticides and elaborate the modes of action. As a result, many vital factors and pathways, such as cytochrome c, the Bcl-2 family and caspases, in mitochondrial signaling pathways, intracellular free calcium and lysosome signal pathways have been illuminated and drawn much attention. Benefiting from the application of insecticide cytotoxicology, natural products purifications, biological activities assessments of synthetic compounds and high throughput screening models have been accelerated in China. However, many questions remained, and there exist great challenges, especially in theory system, evaluation criterion, evaluation model, relationship between activity in vitro and effectiveness in vivo, and the toxicological mechanism. Fortunately, the generation of "omics" could bring opportunities for the development of insecticide cytotoxicology. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. [Exposure to organophosphate insecticides among greenhouse workers in the Basque Country].

    PubMed

    Alvarez, E; Aurrekoetxea, J J; Santa Marina, L; Marzana, I

    1993-11-27

    This study was conducted with the aim of evaluating the impact on health produced by the use of organophosphorus pesticides in greenhouses. A representative sample of workers with high exposure to organophosphorus pesticides was taken in Vizcaya and Guipúzcoa, provinces where cultures under plastic are very extended. Forty four workers were interviewed to collect information about symptoms and signs related to past exposures. Blood samples were taken from 36 of these workers to measure the level of cholinesterase activity, before and after exposure to these pesticides. Fifty two per cent referred some signs and symptoms after use of pesticides. Nevertheless, no significant decrease in cholinesterase activity was observed, nor could any significant relationship between cholinesterase activity and the way to apply the pesticides. The exposure to organophosphorus pesticides, at the range studied in this group of workers, does not constitute today an important health risk.

  1. Marker-free transgenic rice expressing the vegetative insecticidal protein (Vip) of Bacillus thuringiensis shows broad insecticidal properties.

    PubMed

    Pradhan, Subrata; Chakraborty, Anirban; Sikdar, Narattam; Chakraborty, Saikat; Bhattacharyya, Jagannath; Mitra, Joy; Manna, Anulina; Dutta Gupta, Snehasish; Sen, Soumitra Kumar

    2016-10-01

    Genetically engineered rice lines with broad insecticidal properties against major lepidopteran pests were generated using a synthetic, truncated form of vegetative insecticidal protein (Syn vip3BR) from Bacillus thuringiensis. The selectable marker gene and the redundant transgene(s) were eliminated through Cre/ lox mediated recombination and genetic segregation to make consumer friendly Bt -rice. For sustainable resistance against lepidopteran insect pests, chloroplast targeted synthetic version of bioactive core component of a vegetative insecticidal protein (Syn vip3BR) of Bacillus thuringiensis was expressed in rice under the control of green-tissue specific ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene promoter. The transgenic plants (in Oryza sativa indica Swarna cultivar) showed high insect mortality rate in vitro against major rice pests, yellow stem borer (Scirpophaga incertulas), rice leaf folder (Cnaphalocrocis medinalis) and rice horn caterpillar (Melanitis leda ismene) in T1 generation, indicating insecticidal potency of Syn vip3BR. Under field conditions, the T1 plants showed considerable resistance against leaf folders and stem borers. The expression cassette (vip-lox-hpt-lox) as well as another vector with chimeric cre recombinase gene under constitutive rice ubiquitin1 gene promoter was designed for the elimination of selectable marker hygromycin phosphotransferase (hptII) gene. Crossing experiments were performed between T1 plants with single insertion site of vip-lox-hpt-lox T-DNA and one T1 plant with moderate expression of cre recombinase with linked bialaphos resistance (syn bar) gene. Marker gene excision was achieved in hybrids with up to 41.18 % recombination efficiency. Insect resistant transgenic lines, devoid of selectable marker and redundant transgene(s) (hptII + cre-syn bar), were established in subsequent generation through genetic segregation.

  2. Palladium-Catalyzed Borylation of Primary Alkyl Bromides

    PubMed Central

    Joshi-Pangu, Amruta; Ma, Xinghua; Diane, Mohamed; Iqbal, Sidra; Kribs, Robert J.; Huang, Richard; Wang, Chao-Yuan

    2012-01-01

    A mild Pd-catalyzed process for the borylation of alkyl bromides has been developed using bis(pinacolato)diboron as a boron source. This process accommodates the use of a wide range of functional groups on the alkyl bromide substrate. Primary bromides react with complete selectivity in the presence of a secondary bromide. The generality of this approach is demonstrated by its extension to the use of alkyl iodides and alkyl tosylates, as well as borylation reactions employing bis(neopentyl glycolato)diboron as the boron source. PMID:22774861

  3. Fluorescent Chemosensors for Toxic Organophosphorus Pesticides: A Review

    PubMed Central

    Obare, Sherine O.; De, Chandrima; Guo, Wen; Haywood, Tajay L.; Samuels, Tova A.; Adams, Clara P.; Masika, Noah O.; Murray, Desmond H.; Anderson, Ginger A.; Campbell, Keith; Fletcher, Kenneth

    2010-01-01

    Many organophosphorus (OP) based compounds are highly toxic and powerful inhibitors of cholinesterases that generate serious environmental and human health concerns. Organothiophosphates with a thiophosphoryl (P=S) functional group constitute a broad class of these widely used pesticides. They are related to the more reactive phosphoryl (P=O) organophosphates, which include very lethal nerve agents and chemical warfare agents, such as, VX, Soman and Sarin. Unfortunately, widespread and frequent commercial use of OP-based compounds in agricultural lands has resulted in their presence as residues in crops, livestock, and poultry products and also led to their migration into aquifers. Thus, the design of new sensors with improved analyte selectivity and sensitivity is of paramount importance in this area. Herein, we review recent advances in the development of fluorescent chemosensors for toxic OP pesticides and related compounds. We also discuss challenges and progress towards the design of future chemosensors with dual modes for signal transduction. PMID:22163587

  4. Fluorescent chemosensors for toxic organophosphorus pesticides: a review.

    PubMed

    Obare, Sherine O; De, Chandrima; Guo, Wen; Haywood, Tajay L; Samuels, Tova A; Adams, Clara P; Masika, Noah O; Murray, Desmond H; Anderson, Ginger A; Campbell, Keith; Fletcher, Kenneth

    2010-01-01

    Many organophosphorus (OP) based compounds are highly toxic and powerful inhibitors of cholinesterases that generate serious environmental and human health concerns. Organothiophosphates with a thiophosphoryl (P=S) functional group constitute a broad class of these widely used pesticides. They are related to the more reactive phosphoryl (P=O) organophosphates, which include very lethal nerve agents and chemical warfare agents, such as, VX, Soman and Sarin. Unfortunately, widespread and frequent commercial use of OP-based compounds in agricultural lands has resulted in their presence as residues in crops, livestock, and poultry products and also led to their migration into aquifers. Thus, the design of new sensors with improved analyte selectivity and sensitivity is of paramount importance in this area. Herein, we review recent advances in the development of fluorescent chemosensors for toxic OP pesticides and related compounds. We also discuss challenges and progress towards the design of future chemosensors with dual modes for signal transduction.

  5. Tolerance of ARPE 19 cells to organophosphorus pesticide chlorpyrifos is limited to concentration and time of exposure.

    PubMed

    Gomathy, Narayanan; Sumantran, Venil N; Shabna, A; Sulochana, K N

    2015-01-01

    Age related macular degeneration is a blinding disease common in elder adults. The prevalence of age related macular degeneration has been found to be 1.8% in the Indian population. Organophosphates are widely used insecticides with well documented neurological effects, and the persistent nature of these compounds in the body results in long term health effects. Farmers exposed to organophosphorus pesticides in USA had an earlier onset of age related macular degeneration when compared to unexposed controls. A recent study found significant levels of an organophosphate, termed chlorpyrifos, in the blood samples of Indian farmers. Therefore, in understanding the link between age related macular degeneration and chlorpyrifos, the need for investigation is important. Our data show that ARPE-19 (retinal pigment epithelial cells) exhibit a cytoprotective response to chlorpyrifos as measured by viability, mitochondrial membrane potential, superoxide dismutase activity, and increased levels of glutathione peroxidase and reduced glutathione, after 24 h exposure to chlorpyrifos. However, this cytoprotective response was absent in ARPE-19 cells exposed to the same range of concentrations of chlorpyrifos for 48 h. These results have physiological significance, since HPLC analysis showed that effects of chlorpyrifos were mediated through its entry into ARPE-19 cells. HPLC analysis also showed that chlorpyrifos remained stable, as we recovered up to 80% of the chlorpyrifos added to 6 different ocular tissues. Copyright © 2014. Published by Elsevier Inc.

  6. Integrated microwave processing system for the extraction of organophosphorus pesticides in fresh vegetables.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-03-01

    A simple and efficient integrated microwave processing system (IMPS) was firstly assembled and validated for the extraction of organophosphorus pesticides in fresh vegetables. Two processes under microwave irradiation, dynamic microwave-assisted extraction (DMAE) and microwave-accelerated solvent elution (MASE), were integrated for simplifying the pretreatment of the sample. Extraction, separation, enrichment and elution were finished in a simple step. The organophosphorus pesticides were extracted from the fresh vegetables into hexane with DMAE, and then the extract was directly introduced into the enrichment column packed with active carbon fiber (ACF). Subsequently, the organophosphorus pesticides trapped on the ACF were eluted with ethyl acetate under microwave irradiation. No further filtration or cleanup was required before analysis of the eluate by gas chromatography-mass spectrometry. Some experimental parameters affecting extraction efficiency were investigated and optimized, such as microwave output power, kind and volume of extraction solvent, extraction time, amount of sorbent, elution microwave power, kind and volume of elution solvent, elution solvent flow rate. Under the optimized conditions, the recoveries were in the range of 71.5-105.2%, and the relative standard deviations were lower than 11.6%. The experiment results prove that the present method is a simple and effective sample preparation method for the determination of pesticides in solid samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Developmental neurotoxicity of succeeding generations of insecticides

    PubMed Central

    Abreu-Villaça, Yael; Levin, Edward D.

    2016-01-01

    Insecticides are by design toxic. They must be toxic to effectively kill target species of insects. Unfortunately, they also have off-target toxic effects that can harm other species, including humans. Developmental neurotoxicity is one of the most prominent off-target toxic risks of insecticides. Over the past seven decades several classes of insecticides have been developed, each with their own mechanisms of effect and toxic side effects. This review covers the developmental neurotoxicity of the succeeding generations of insecticides including organochlorines, organophosphates, pyrethroids, carbamates and neonicotinoids. The goal of new insecticide development is to more effectively kill target species with fewer toxic side effects on non-target species. From the experience with the developmental neurotoxicity caused by the generations of insecticides developed in the past advice is offered how to proceed with future insecticide development to decrease neurotoxic risk. PMID:27908457

  8. Aryl sulfonate based anticancer alkylating agents.

    PubMed

    Sheikh, Hamdullah Khadim; Arshad, Tanzila; Kanwal, Ghazala

    2018-05-01

    This research work revolves around synthesis of antineoplastic alkylating sulfonate esters with dual alkylating sites for crosslinking of the DNA strands. These molecules were evaluated as potential antineoplastic cross linking alkylating agents by reaction with the nucleoside of Guanine DNA nucleobase at both ends of the synthesized molecule. Synthesis of the alkylating molecules and the crosslinking with the guanosine nucleoside was monitored by MALDITOF mass spectroscopy. The synthesized molecule's crosslinking or adduct forming rate with the nucleoside was compared with that of 1,4 butane disulfonate (busulfan), in form of time taken for the appearance of [M+H] + . It was found that aryl sulfonate leaving group was causing higher rate of nucleophilic attack by the Lewis basic site of the nucleobase. Furthermore, the rate was also found to be a function of electron withdrawing or donating nature of the substituent on the aryl ring. Compound with strong electron withdrawing substituent on the para position of the ring reacted fastest. Hence, new alkylating agents were synthesized with optimized or desired reactivity.

  9. MALATHION EXPOSURE DURING LICE TREATMENT: USE OF EXPOSURE RELATED DOSE ESTIMATING MODEL (ERDEM) AND FACTORS RELATING TO THE EVALUATION OF RISK

    EPA Science Inventory

    This report is a product of this collaboration as it relates to the exposure assessment of organophosphorus (OP) insecticide, malathion, (O,O-dimethyl phosphorodithioate diethyl mercaptosuccinate; CAS 121-75-5) labeled for use as a pediculicide.

  10. MODELING OF CHLORPYRIFOS EXPOSURE, DOSE, AND BIOMARKER USING NHEXAS MINNESOTA CHILDREN'S DATA

    EPA Science Inventory


    Data from the National Human Exposure Assessment Survey (NHEXAS) are now becoming available. For the organophosphorus insecticide chlorpyrifos, available data for NHEXAS Minnesota children include concentrations in air, food, beverages, water, house dust (transferable surf...

  11. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M [Idaho Falls, ID; Petkovic, Lucia [Idaho Falls, ID

    2009-09-22

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  12. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  13. Repeated Exposure to Sublethal Doses of the Organophosphorus Compound VX Activates BDNF Expression in Mouse Brain

    DTIC Science & Technology

    2012-01-01

    NUMBER activates BDNF expression in mouse brain 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Pizarro, JM, Chang, WE, Bah, MJ...of the Organophosphorus Compound VX Activates BDNF Expression in Mouse Brain Jose M. Pizarro,*,† Wenling E. Chang,†,‡ Mariama J. Bah,† Linnzi K. M...triphosphate and UTP, and 2 ll modified cytidine triphosphate solution [2mM]), 33P-UTP (specific activity of 5 3 109 cpm/lg), 2 ll RNA polymerase, 2 ll of

  14. Household use of insecticide consumer products in a dengue endemic area in México

    PubMed Central

    Loroño-Pino, María Alba; Chan-Dzul, Yamili N.; Zapata-Gil, Rocio; Carrillo-Solís, Claudia; Uitz-Mena, Ana; García-Rejón, Julián E.; Keefe, Thomas J.; Beaty, Barry J.; Eisen, Lars

    2014-01-01

    Objectives To evaluate household use of insecticide consumer products to kill mosquitoes and other insect pests, as well as the expenditures for using these products, in a dengue endemic area in México. Methods A questionnaire was administered to 441 households in Mérida City or other communities in Yucatán State to assess household use of insecticide consumer products. Results Most (86.6%) households took action to kill insect pests with consumer products. Among those households, the most commonly used product types were insecticide aerosol spray cans (73.6%), electric plug-in insecticide emitters (37.4%), and mosquito coils (28.3%). Mosquitoes were targeted by 89.7% of households using insecticide aerosol spray cans and >99% of households using electric plug-in insecticide emitters or mosquito coils. During the part of the year when a given product type was used, the frequency of use was daily or every 2 days in most of the households for insecticide aerosol spray cans (61.4%), electric plug-in insecticide emitters (76.2%), and mosquito coils (82.1%). For all products used to kill insect pests, the median annual estimated expenditure per household that took action was 408 Mexican pesos ($MXN), which corresponded to ∼31 $U.S. These numbers are suggestive of an annual market in excess of 75 million $MXN (>5.7 million $U.S.) for Mérida City alone. Conclusion Mosquitoes threaten human health and are major nuisances in homes in the study area in México. Households were found to have taken vigorous action to kill mosquitoes and other insect pests and spent substantial amounts of money on insecticide consumer products. PMID:25040259

  15. 31P-edited diffusion-ordered 1H NMR spectroscopy for the spectral isolation and identification of organophosphorus compounds related to chemical weapons agents and their degradation products.

    PubMed

    Mayer, Brian P; Valdez, Carlos A; Hok, Saphon; Chinn, Sarah C; Hart, Bradley R

    2012-12-04

    Organophosphorus compounds represent a large class of molecules that include pesticides, flame-retardants, biologically relevant molecules, and chemical weapons agents (CWAs). The detection and identification of organophosphorus molecules, particularly in the cases of pesticides and CWAs, are paramount to the verification of international treaties by various organizations. To that end, novel analytical methodologies that can provide additional support to traditional analyses are important for unambiguous identification of these compounds. We have developed an NMR method that selectively edits for organophosphorus compounds via (31)P-(1)H heteronuclear single quantum correlation (HSQC) and provides an additional chromatographic-like separation based on self-diffusivities of the individual species via (1)H diffusion-ordered spectroscopy (DOSY): (1)H-(31)P HSQC-DOSY. The technique is first validated using the CWA VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) by traditional two-dimensional DOSY spectra. We then extend this technique to a complex mixture of VX degradation products and identify all the main phosphorus-containing byproducts generated after exposure to a zinc-cyclen organometallic homogeneous catalyst.

  16. A Novel Insecticidal Peptide SLP1 Produced by Streptomyces laindensis H008 against Lipaphis erysimi.

    PubMed

    Xu, Lijian; Liang, Kangkang; Duan, Bensha; Yu, Mengdi; Meng, Wei; Wang, Qinggui; Yu, Qiong

    2016-08-22

    Aphids are major insect pests for crops, causing damage by direct feeding and transmission of plant diseases. This paper was completed to discover and characterize a novel insecticidal metabolite against aphids from soil actinobacteria. An insecticidal activity assay was used to screen 180 bacterial strains from soil samples against mustard aphid, Lipaphis erysimi. The bacterial strain H008 showed the strongest activity, and it was identified by the phylogenetic analysis of the 16S rRNA gene and physiological traits as a novel species of genus Streptomyces (named S. laindensis H008). With the bioassay-guided method, the insecticidal extract from S. laindensis H008 was subjected to chromatographic separations. Finally, a novel insecticidal peptide was purified from Streptomyces laindensis H008 against L. erysimi, and it was determined to be S-E-P-A-Q-I-V-I-V-D-G-V-D-Y-W by TOF-MS and amino acid analysis.

  17. Insecticide Use and Breast Cancer Risk among Farmers’ Wives in the Agricultural Health Study

    PubMed Central

    Werder, Emily; Satagopan, Jaya; Blair, Aaron; Hoppin, Jane A.; Koutros, Stella; Lerro, Catherine C.; Sandler, Dale P.; Alavanja, Michael C.; Beane Freeman, Laura E.

    2017-01-01

    Background: Some epidemiologic and laboratory studies suggest that insecticides are related to increased breast cancer risk, but the evidence is inconsistent. Women engaged in agricultural work or who reside in agricultural areas may experience appreciable exposures to a wide range of insecticides. Objective: We examined associations between insecticide use and breast cancer incidence among wives of pesticide applicators (farmers) in the prospective Agricultural Health Study. Methods: Farmers and their wives provided information on insecticide use, demographics, and reproductive history at enrollment in 1993–1997 and in 5-y follow-up interviews. Cancer incidence was determined via cancer registries. Among 30,594 wives with no history of breast cancer before enrollment, we examined breast cancer risk in relation to the women’s and their husbands’ insecticide use using Cox proportional hazards regression to estimate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs). Results: During an average 14.7-y follow-up, 39% of the women reported ever using insecticides, and 1,081 were diagnosed with breast cancer. Although ever use of insecticides overall was not associated with breast cancer risk, risk was elevated among women who had ever used the organophosphates chlorpyrifos [HR=1.4 (95% CI: 1.0, 2.0)] or terbufos [HR=1.5 (95% CI: 1.0, 2.1)], with nonsignificantly increased risks for coumaphos [HR=1.5 (95% CI: 0.9, 2.5)] and heptachlor [HR=1.5 (95% CI: 0.7, 2.9)]. Risk in relation to the wives’ use was associated primarily with premenopausal breast cancer. We found little evidence of differential risk by tumor estrogen receptor status. Among women who did not apply pesticides, the husband’s use of fonofos was associated with elevated risk, although no exposure–response trend was observed. Conclusion: Use of several organophosphate insecticides was associated with elevated breast cancer risk. However, associations for the women’s and husbands

  18. A Two-Locus Model of the Evolution of Insecticide Resistance to Inform and Optimise Public Health Insecticide Deployment Strategies

    PubMed Central

    2017-01-01

    We develop a flexible, two-locus model for the spread of insecticide resistance applicable to mosquito species that transmit human diseases such as malaria. The model allows differential exposure of males and females, allows them to encounter high or low concentrations of insecticide, and allows selection pressures and dominance values to differ depending on the concentration of insecticide encountered. We demonstrate its application by investigating the relative merits of sequential use of insecticides versus their deployment as a mixture to minimise the spread of resistance. We recover previously published results as subsets of this model and conduct a sensitivity analysis over an extensive parameter space to identify what circumstances favour mixtures over sequences. Both strategies lasted more than 500 mosquito generations (or about 40 years) in 24% of runs, while in those runs where resistance had spread to high levels by 500 generations, 56% favoured sequential use and 44% favoured mixtures. Mixtures are favoured when insecticide effectiveness (their ability to kill homozygous susceptible mosquitoes) is high and exposure (the proportion of mosquitoes that encounter the insecticide) is low. If insecticides do not reliably kill homozygous sensitive genotypes, it is likely that sequential deployment will be a more robust strategy. Resistance to an insecticide always spreads slower if that insecticide is used in a mixture although this may be insufficient to outperform sequential use: for example, a mixture may last 5 years while the two insecticides deployed individually may last 3 and 4 years giving an overall ‘lifespan’ of 7 years for sequential use. We emphasise that this paper is primarily about designing and implementing a flexible modelling strategy to investigate the spread of insecticide resistance in vector populations and demonstrate how our model can identify vector control strategies most likely to minimise the spread of insecticide resistance

  19. Mesoionic insecticides: a novel class of insecticides that modulate nicotinic acetylcholine receptors.

    PubMed

    Holyoke, Caleb W; Cordova, Daniel; Zhang, Wenming; Barry, James D; Leighty, Robert M; Dietrich, Robert F; Rauh, James J; Pahutski, Thomas F; Lahm, George P; Tong, My-Hanh Thi; Benner, Eric A; Andreassi, John L; Smith, Rejane M; Vincent, Daniel R; Christianson, Laurie A; Teixeira, Luis A; Singh, Vineet; Hughes, Kenneth A

    2017-04-01

    As the world population grows towards 9 billion by 2050, it is projected that food production will need to increase by 60%. A critical part of this growth includes the safe and effective use of insecticides to reduce the estimated 20-49% loss of global crop yields owing to pests. The development of new insecticides will help to sustain this protection and overcome insecticide resistance. A novel class of mesoionic compounds has been discovered, with exceptional insecticidal activity on a range of Hemiptera and Lepidoptera. These compounds bind to the orthosteric site of the nicotinic acetylcholine receptor and result in a highly potent inhibitory action at the receptor with minimal agonism. The synthesis, biological activity, optimization and mode of action will be discussed. Triflumezopyrim insect control will provide a powerful tool for control of hopper species in rice throughout Asia. Dicloromezotiaz can provide a useful control tool for lepidopteran pests, with an underexploited mode of action among these pests. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Social marketing of insecticide-treated bednets: the case for Pakistan.

    PubMed

    Qazi, S; Shaikh, B T

    2007-01-01

    With an estimated half a million cases of malaria annually in Pakistan, and drug resistant cases on the increase, more practical preventive measures such as insecticide-treated bednets are essential. Social marketing through commercial channels has become an important cost-effective means to deliver health products and services to low income people and to motivate them to use these services. It has been demonstrated that social marketing of insecticide-treated bednets has saved the lives of millions of people in malaria-endemic regions at a cost as low as U.S. $2 per person. Social marketing could be an effective strategy for getting insecticide-treated nets to poor communities in Pakistan who are most vulnerable to malaria.

  1. GC X GCTOFMS OF SYNTHETIC PYRETHROIDS IN FOODS SAMPLES

    EPA Science Inventory

    Pyrethrins are natural insecticides in the extract of chrysanthemum flowers1. Pyrethroids are synthetic forms of pyrethrins, and many are halogenated (F, Cl, Br). Synthetic pyrethroids have become popular replacements for organophosphorus pesticides, which have become increasin...

  2. Electrostatic coating enhances bioavailability of insecticides and breaks pyrethroid resistance in mosquitoes

    PubMed Central

    Andriessen, Rob; Snetselaar, Janneke; Suer, Remco A.; Osinga, Anne J.; Deschietere, Johan; Lyimo, Issa N.; Mnyone, Ladslaus L.; Brooke, Basil D.; Ranson, Hilary; Knols, Bart G. J.; Farenhorst, Marit

    2015-01-01

    Insecticide resistance poses a significant and increasing threat to the control of malaria and other mosquito-borne diseases. We present a novel method of insecticide application based on netting treated with an electrostatic coating that binds insecticidal particles through polarity. Electrostatic netting can hold small amounts of insecticides effectively and results in enhanced bioavailability upon contact by the insect. Six pyrethroid-resistant Anopheles mosquito strains from across Africa were exposed to similar concentrations of deltamethrin on electrostatic netting or a standard long-lasting deltamethrin-coated bednet (PermaNet 2.0). Standard WHO exposure bioassays showed that electrostatic netting induced significantly higher mortality rates than the PermaNet, thereby effectively breaking mosquito resistance. Electrostatic netting also induced high mortality in resistant mosquito strains when a 15-fold lower dose of deltamethrin was applied and when the exposure time was reduced to only 5 s. Because different types of particles adhere to electrostatic netting, it is also possible to apply nonpyrethroid insecticides. Three insecticide classes were effective against strains of Aedes and Culex mosquitoes, demonstrating that electrostatic netting can be used to deploy a wide range of active insecticides against all major groups of disease-transmitting mosquitoes. Promising applications include the use of electrostatic coating on walls or eave curtains and in trapping/contamination devices. We conclude that application of electrostatically adhered particles boosts the efficacy of WHO-recommended insecticides even against resistant mosquitoes. This innovative technique has potential to support the use of unconventional insecticide classes or combinations thereof, potentially offering a significant step forward in managing insecticide resistance in vector-control operations. PMID:26324912

  3. The molecular genetics of insecticide resistance.

    PubMed

    Ffrench-Constant, Richard H

    2013-08-01

    The past 60 years have seen a revolution in our understanding of the molecular genetics of insecticide resistance. While at first the field was split by arguments about the relative importance of mono- vs. polygenic resistance and field- vs. laboratory-based selection, the application of molecular cloning to insecticide targets and to the metabolic enzymes that degrade insecticides before they reach those targets has brought out an exponential growth in our understanding of the mutations involved. Molecular analysis has confirmed the relative importance of single major genes in target-site resistance and has also revealed some interesting surprises about the multi-gene families, such as cytochrome P450s, involved in metabolic resistance. Identification of the mutations involved in resistance has also led to parallel advances in our understanding of the enzymes and receptors involved, often with implications for the role of these receptors in humans. This Review seeks to provide an historical perspective on the impact of molecular biology on our understanding of resistance and to begin to look forward to the likely impact of rapid advances in both sequencing and genome-wide association analysis.

  4. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    PubMed

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  5. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions

    PubMed Central

    Ismail, Hanafy M.; O’Neill, Paul M.; Hong, David W.; Finn, Robert D.; Henderson, Colin J.; Wright, Aaron T.; Cravatt, Benjamin F.; Hemingway, Janet; Paine, Mark J. I.

    2013-01-01

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or “pyrethrome.” Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450–insecticide interactions and aiding the development of unique tools for disease control. PMID:24248381

  6. In vitro effect of fenthion on human lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, M.V.U.; Rao, M.S.

    1991-08-01

    Fenthion is an organophosphorus insecticide which is extensively used in control of leaf hoppers, cutworms, mites on vegetable crops. It has been reported that organophosphorus pesticides cause a significant increase in sister chromatid exchanges in mammalian cell lines. A significant increase of chromosomal aberrations has been reported in rural population exposed to pesticides. Organosphosphorus pesticides malathion, diazinon, dimethoate, phosdrin and dursban induced sister chromatid exchanges in human lymphoid cells. Exchange type of aberration has been reported in fluoriculturist who were exposed to organophosphorus, organochlorine pesticides. In the present investigation an attempt has been made to evaluate the cytogenetic effect ofmore » fenthion in human lymphocyte cultures in vitro.« less

  7. Insecticide-induced hormesis and arthropod pest management.

    PubMed

    Guedes, Raul Narciso C; Cutler, G Christopher

    2014-05-01

    Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide-induced hormesis within entomology and acarology. Hormesis describes a biphasic dose-response relationship that is characterized by a reversal of response between low and high doses of a stressor (e.g. insecticides). Although the concept of insecticide-induced hormesis often does not receive sufficient attention, or has been subject to semantic confusion, it has been reported in many arthropod pest species and natural enemies, and has been linked to pest outbreaks and potential problems with insecticide resistance. The study of hormesis remains largely neglected in entomology and acarology. Here, we examined the concept of insecticide-induced hormesis in arthropods, its functional basis and potential fitness consequences, and its importance in arthropod pest management and other areas. © 2013 Society of Chemical Industry.

  8. Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, Nilaparvata lugens (Stål).

    PubMed

    Vontas, J G; Small, G J; Hemingway, J

    2000-12-01

    Organophosphorus and carbamate insecticide resistance in Nilaparvata lugens is based on amplification of a carboxylesterase gene, Nl-EST1. An identical gene occurs in susceptible insects. Quantitative real-time PCR was used to demonstrate that Nl-EST1 is amplified 3-7-fold in the genome of resistant compared to susceptible planthoppers. Expression levels were similar to amplification levels, with 1-15-fold more Nl-EST1 mRNA in individual insects and 5-11-fold more Nl-EST1 mRNA in mass whole body homogenates of resistant females compared to susceptibles. These values corresponded to an 8-10-fold increase in esterase activity in the head and thorax of individual resistant insects. Although amplification, expression and activity levels of Nl-EST1 in resistant N. lugens were similar, the correlation between esterase activity and Nl-EST1 mRNA levels in resistant individuals was not linear.

  9. Weevil x Insecticide: Does 'Personality' Matter?

    PubMed

    Morales, Juliana A; Cardoso, Danúbia G; Della Lucia, Terezinha Maria C; Guedes, Raul Narciso C

    2013-01-01

    An insect's behavior is the expression of its integrated physiology in response to external and internal stimuli, turning insect behavior into a potential determinant of insecticide exposure. Behavioral traits may therefore influence insecticide efficacy against insects, compromising the validity of standard bioassays of insecticide activity, which are fundamentally based on lethality alone. By extension, insect 'personality' (i.e., an individual's integrated set of behavioral tendencies that is inferred from multiple empirical measures) may also be an important determinant of insecticide exposure and activity. This has yet to be considered because the behavioral studies involving insects and insecticides focus on populations rather than on individuals. Even among studies of animal 'personality', the relative contributions of individual and population variation are usually neglected. Here, we assessed behavioral traits (within the categories: activity, boldness/shyness, and exploration/avoidance) of individuals from 15 populations of the maize weevil (Sitophilus zeamais), an important stored-grain pest with serious problems of insecticide resistance, and correlated the behavioral responses with the activity of the insecticide deltamethrin. This analysis was performed at both the population and individual levels. There was significant variation in weevil 'personality' among individuals and populations, but variation among individuals within populations accounted for most of the observed variation (92.57%). This result emphasizes the importance of individual variation in behavioral and 'personality' studies. When the behavioral traits assessed were correlated with median lethal time (LT50) at the population level and with the survival time under insecticide exposure, activity traits, particularly the distance walked, significantly increased survival time. Therefore, behavioral traits are important components of insecticide efficacy, and individual variation should be

  10. GESTATIONAL EXPOSURE TO CHLORPYRIFOS: QUALITATIVE AND QUANTITATIVE NEUROPATHOLOGICAL CHANGES IN THE FETAL NEOCORTEX.

    EPA Science Inventory

    This study investigated the qualitative and quantitative neuropathological changes that occur in the fetal brain following gestational exposure to chlorpyrifos [(O,O'diethyl O-3,5,6-trichloro-2-pyridyl) phosphorothionate], a commonly used organophosphorus insecticide. Two cohort...

  11. Pesticides.

    ERIC Educational Resources Information Center

    Sherma, Joseph

    1989-01-01

    This review is devoted to methods for the determination of residues of pesticides and some related industrial chemicals. Topics include: residue methods, sampling, chromatography, organochlorine pesticides, organophosphorus pesticides, carbamate insecticides, herbicides, fungicides, pyrethrins, fumigants, and related chemicals. (MVL)

  12. Development of a passive air sampler to measure airborne organophosphorus pesticides and oxygen analogs in an agricultural community.

    PubMed

    Armstrong, Jenna L; Yost, Michael G; Fenske, Richard A

    2014-09-01

    Organophosphorus pesticides are some of the most widely used insecticides in the US, and spray drift may result in human exposures. We investigate sampling methodologies using the polyurethane foam passive air sampling device to measure cumulative monthly airborne concentrations of OP pesticides chlorpyrifos, azinphos-methyl, and oxygen analogs. Passive sampling rates (m(3)d(-1)) were determined using calculations using chemical properties, loss of depuration compounds, and calibration with side-by-side active air sampling in a dynamic laboratory exposure chamber and in the field. The effects of temperature, relative humidity, and wind velocity on outdoor sampling rates were examined at 23 sites in Yakima Valley, Washington. Indoor sampling rates were significantly lower than outdoors. Outdoor rates significantly increased with average wind velocity, with high rates (>4m(3)d(-1)) observed above 8ms(-1). In exposure chamber studies, very little oxygen analog was observed on the PUF-PAS, yet substantial amounts chlorpyrifos-oxon and azinphos methyl oxon were measured in outdoor samples. PUF-PAS is a practical and useful alternative to AAS because it results in little artificial transformation to the oxygen analog during sampling, it provides cumulative exposure estimates, and the measured sampling rates were comparable to rates for other SVOCs. It is ideal for community based participatory research due to low subject burden and simple deployment in remote areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Possible mechanisms for sensitivity to organophosphorus and carbamate insecticides in eastern screech-owls and American kestrels.

    PubMed

    Vyas, N B; Thiele, L A; Garland, S C

    1998-07-01

    Effects of a single dietary exposure to fenthion and carbofuran on the survival, feeding behavior and brain ChE activity of eastern screech-owls, Otus asio and American kestrels, Falco sparverius, were evaluated. Birds were exposed to fenthion (23.6-189.0 ppm) or carbofuran (31.7-253.6 ppm) via meatballs. Carbofuran-exposed owls ate either < or = 10% or > or = 80% of the meatball whereas all kestrels ate < or = 10% of the meatball before exhibiting acute signs of toxicity. Fenthion-exposed owls and kestrels displayed a wide spectrum of meatball consumption (< 10-100%). Significant brain ChE inhibition was observed in dead and surviving kestrels exposed to fenthion and carbofuran and dead owls exposed to fenthion (P < 0.0001). Brain ChE activity of owls exposed to carbofuran that survived was not different from that of controls (P = 0.25). Data suggest: (1) slow feeding on a carbamate-contaminated item may provide limited protection from the toxicity of the chemical at certain rates of exposure; (2) the degree of ChE inhibition at neuromuscular junctions may be critical in determining the sensitivity of a species to a carbamate insecticide; (3) sensitivity may be a function of the ChE affinity for the carbamate inhibitor; and (4) the importance of neuromuscular junction ChE depression in determining the sensitivity of an animal may be species-specific.

  14. Possible mechanisms for sensitivity to organophosphorus and carbamate insecticides in eastern screech-owls and American kestrels

    USGS Publications Warehouse

    Vyas, N.B.; Thiele, L.A.; Garland, S.C.

    1998-01-01

    Effects of a single dietary exposure to fenthion and carbofuran on the survival, feeding behavior and brain ChE activity of eastern screech-owls, Otus asio and American kestrels, Falco sparverius, were evaluated. Birds were exposed to fenthion (23.6–189.0 ppm) or carbofuran (31.7–253.6 ppm) via meatballs. Carbofuran-exposed owls ate either ≤10% or ≥80% of the meatball whereas all kestrels ate ≤10% of the meatball before exhibiting acute signs of toxicity. Fenthion-exposed owls and kestrels displayed a wide spectrum of meatball consumption (<10–100%). Significant brain ChE inhibition was observed in dead and surviving kestrels exposed to fenthion and carbofuran and dead owls exposed to fenthion (P<0.0001). Brain ChE activity of owls exposed to carbofuran that survived was not different from that of controls (P=0.25). Data suggest: (1) slow feeding on a carbamate-contaminated item may provide limited protection from the toxicity of the chemical at certain rates of exposure; (2) the degree of ChE inhibition at neuromuscular junctions may be critical in determining the sensitivity of a species to a carbamate insecticide; (3) sensitivity may be a function of the ChE affinity for the carbamate inhibitor; and (4) the importance of neuromuscular junction ChE depression in determining the sensitivity of an animal may be species-specific.

  15. Toxicity of nine insecticides on four natural enemies of Spodoptera exigua

    PubMed Central

    Liu, Yongqiang; Li, Xiangying; Zhou, Chao; Liu, Feng; Mu, Wei

    2016-01-01

    Spodoptera exigua, which feeds on various crops worldwide, has natural enemies that are susceptible to the insecticides used against S. exigua. We investigate the toxicity and residue risk of 9 insecticides on the development of H. axyridis, C. sinica, S. manilae and T. remus. S. manilae and T. remus adults were sensitive to all 9 insecticides (LC50 less than 2.75 mg a.i. liter−1), while H. axyridis and C. sinica adults were less sensitive (LC50 between 6 × 10−5 mg a.i. liter−1 and 78.95 mg a.i. liter−1). Emamectin benzoate, spinosad, indoxacarb, alpha-cypermethrin, chlorfenapyr and chlorantraniliprole showed no toxicity on H. axyridis, C. sinica, S. manilae and T. remus pupae with the recommended field concentrations. The risk analysis indicated that chlorantraniliprole is harmless to larvae of four natural enemies and adult of H. axyridis, C. sinica and S. manilae. Emamectin benzoate and spinosad had higher safety to the development of H. axyridis, C. sinica, S. manilae and T. remus with the risk duration less than 4d. Indoxacarb, tebufenozide, chlorfenapyr, methomyl, alpha-cypermethrin and chlorpyrifos showed dangerously toxic and long risk duration on S. manilae and T. remus adults. PMID:27958333

  16. Expression of organophosphorus-degradation gene ( opd) in aggregating and non-aggregating filamentous nitrogen-fixing cyanobacteria

    NASA Astrophysics Data System (ADS)

    Li, Qiong; Tang, Qing; Xu, Xudong; Gao, Hong

    2010-11-01

    Genetic engineering in filamentous N2-fixing cyanobacteria usually involves Anabaena sp. PCC 7120 and several other non-aggregating species. Mass culture and harvest of such species are more energy consuming relative to aggregating species. To establish a gene transfer system for aggregating species, we tested many species of Anabaena and Nostoc, and identified Nostoc muscorum FACHB244 as a species that can be genetically manipulated using the conjugative gene transfer system. To promote biodegradation of organophosphorus pollutants in aquatic environments, we introduced a plasmid containing the organophosphorus-degradation gene ( opd) into Anabaena sp. PCC 7120 and Nostoc muscorum FACHB244 by conjugation. The opd gene was driven by a strong promoter, P psbA . From both species, we obtained transgenic strains having organophosphorus-degradation activities. At 25°C, the whole-cell activities of the transgenic Anabaena and Nostoc strains were 0.163±0.001 and 0.289±0.042 unit/μg Chl a, respectively. However, most colonies resulting from the gene transfer showed no activity. PCR and DNA sequencing revealed deletions or rearrangements in the plasmid in some of the colonies. Expression of the green fluorescent protein gene from the same promoter in Anabaena sp. PCC 7120 showed similar results. These results suggest that there is the potential to promote the degradation of organophosphorus pollutants with transgenic cyanobacteria and that selection of high-expression transgenic colonies is important for genetic engineering of Anabaena and Nostoc species. For the first time, we established a gene transfer and expression system in an aggregating filamentous N2-fixing cyanobacterium. The genetic manipulation system of Nostoc muscorum FACHB244 could be utilized in the elimination of pollutants and large-scale production of valuable proteins or metabolites.

  17. Insecticide susceptibility of Anopheles stephensi to DDT and current insecticides in an elimination area in Iran.

    PubMed

    Zare, Mehdi; Soleimani-Ahmadi, Moussa; Davoodi, Sayed Hossein; Sanei-Dehkordi, Alireza

    2016-11-04

    Iran has recently initiated a malaria elimination program with emphasis on vector control strategies which are heavily reliant on indoor residual spraying and long-lasting insecticidal nets. Insecticide resistance seriously threatens the efficacy of vector control strategies. This study was conducted to determine the insecticide susceptibility of Anopheles stephensi to DDT and current insecticides in Jask county as an active malaria focus in southeastern Iran. In this study, the anopheline larvae were collected from different aquatic habitats in Jask county and transported to insectarium, fed with sugar and then 3-day-old adults were used for susceptibility tests. WHO insecticide susceptibility tests were performed with DDT (4 %), malathion (5 %), lambda-cyhalothrin (0.05 %), deltamethrin (0.05 %) and permethrin (0.75 %). The field strain of An. stephensi was found resistant to DDT and lambda-cyhalothrin. The LT 50 values for DDT and lambda-cyhalothrin in this species were 130.25, and 37.71 min, respectively. Moreover, An. stephensi was completely susceptible to malathion and permethrin and tolerant to deltamethrin. The present study results confirm the resistance of the major malaria vector, An. stephensi, to DDT and lambda-cyhalothrin, and tolerance to deltamethrin, which could gradually increase and spread into other malaria endemic areas. Thus, there is a need for regular monitoring of insecticide resistance in order to select suitable insecticides for vector control interventions towards malaria elimination.

  18. A comparative assessment of cytotoxicity of commonly used agricultural insecticides to human and insect cells.

    PubMed

    Yun, Xinming; Huang, Qingchun; Rao, Wenbing; Xiao, Ciying; Zhang, Tao; Mao, Zhifan; Wan, Ziyi

    2017-03-01

    The cytotoxic potential of 13 commonly used agricultural insecticides was examined using cell-based systems with three human HepG2, Hek293, HeLa cells and three insect Tn5B1-4, Sf-21, and Drosophila S2 cells. Data showed that (1) an enhancement of some insecticides (e.g. pyrethroids) on cells proliferation; (2) an inhibition of some insecticides on cells viability; (3) various levels of susceptibility of different cells to the same insecticide; and (4) the cell type dependent sensitivity to different insecticides. The degree of cytotoxicity of insecticides on human cells was significantly lower than that on insect cells (P<0.05). Methomyl, even 20μg/ml, showed little cytotoxicity at 24h exposure whereas emamectin benzoate possessed the strongest cytotoxic potential in a dose-dependent fashion. The results revealed comparable cytotoxic property of agricultural insecticides against intact cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Sorbate-nitrite interactions: acetonitrile oxide as an alkylating agent.

    PubMed

    Pérez-Prior, M Teresa; Gómez-Bombarelli, Rafael; González-Pérez, Marina; Manso, José A; García-Santos, M Pilar; Calle, Emilio; Casado, Julio

    2009-07-01

    Because chemical species with DNA-damaging and mutagenic activity are formed in sorbate-nitrite mixtures and because sorbic acid sometimes coexists with nitrite occurring naturally or incorporated as a food additive, the study of sorbate-nitrite interactions is important. Here, the alkylating potential of the products resulting from such interactions was investigated. Drawn were the following conclusions: (i) Acetonitrile oxide (ACNO) is the compound responsible for the alkylating capacity of sorbate-nitrite mixtures; (ii) ACNO alkylates 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilic characteristics similar to those of DNA bases, forming an adduct (AD; epsilon = 1.4 x 10(4) M(-1) cm(-1); lambda = 519 nm); (iii) the NBP alkylation reaction complies with the rate equation, r = d[AD]/dt = k(alk)(ACNO)[ACNO][NBP]-k(hyd)(AD)[AD], k(alk)(ACNO) being the NBP alkylation rate constant for ACNO and k(hyd)(AD) the rate constant for the adduct hydrolysis reaction; (iv) the small fraction of ACNO forming the adduct with NBP, as well as the small magnitude of the quotient (k(alk) (ACNO)/k(hyd)(ACNO)) as compared with those reported for other alkylating agents, such as some lactones and N-alkyl-N-nitrosoureas, reveals the ACNO effective alkylating capacity to be less significant; (v) the low value of the NBP-ACNO adduct life (defined as the total amount of adduct present along the progression of the NBP alkylation per unit of alkylating agent concentration) points to the high instability of this adduct; and (vi) the obtained results are in accordance with the low carcinogenicity of ACNO.

  20. AGE-RELATED EFFECTS OF CHLORPYRIFOS ON ACETYLCHOLINE RELEASE IN RAT BRAIN. (R825811)

    EPA Science Inventory

    Chlorpyrifos (CPF) is an organophosphorus insecticide that elicits toxicity through inhibition of acetylcholinesterase (AChE). Young animals are markedly more sensitive than adults to the acute toxicity of CPF. We evaluated acetylcholine (ACh) release and its muscarinic recept...

  1. Photodegradation of neonicotinoid insecticides in water by semiconductor oxides.

    PubMed

    Fenoll, José; Garrido, Isabel; Hellín, Pilar; Flores, Pilar; Navarro, Simón

    2015-10-01

    The photocatalytic degradation of three neonicotinoid insecticides (NIs), thiamethoxam (TH), imidacloprid (IM) and acetamiprid (AC), in pure water has been studied using zinc oxide (ZnO) and titanium dioxide (TiO2) as photocatalysts under natural sunlight and artificial light irradiation. Photocatalytic experiments showed that the addition of these chalcogenide oxides in tandem with the electron acceptor (Na2S2O8) strongly enhances the degradation rate of these compounds in comparison with those carried out with ZnO and TiO2 alone and photolytic tests. Comparison of catalysts showed that ZnO is the most efficient for the removal of such insecticides in optimal conditions and at constant volumetric rate of photon absorption. Thus, the complete disappearance of all the studied compounds was achieved after 10 and 30 min of artificial light irradiation, in the ZnO/Na2S2O8 and TiO2/Na2S2O8 systems, respectively. The highest degradation rate was noticed for IM, while the lowest rate constant was obtained for AC under artificial light irradiation. In addition, solar irradiation was more efficient compared to artificial light for the removal of these insecticides from water. The main photocatalytic intermediates detected during the degradation of NIs were identified.

  2. Effects of Foliar Insecticides on Leaf-Level Spectral Reflectance of Soybean.

    PubMed

    Alves, Tavvs M; Marston, Zachary P; MacRae, Ian V; Koch, Robert L

    2017-12-05

    Pest-induced changes in plant reflectance are crucial for the development of pest management programs using remote sensing. However, it is unknown if plant reflectance data is also affected by foliar insecticides applied for pest management. Our study assessed the effects of foliar insecticides on leaf reflectance of soybean. A 2-yr field trial and a greenhouse trial were conducted using randomized complete block and completely randomized designs, respectively. Treatments consisted of an untreated check, a new systemic insecticide (sulfoxaflor), and two representatives of the most common insecticide classes used for soybean pest management in the north-central United States (i.e., λ-cyhalothrin and chlorpyrifos). Insecticides were applied at labeled rates recommended for controlling soybean aphid; the primary insect pest in the north-central United States. Leaf-level reflectance was measured using ground-based spectroradiometers. Sulfoxaflor affected leaf reflectance at some red and blue wavelengths but had no effect at near-infrared or green wavelengths. Chlorpyrifos affected leaf reflectance at some green, red, and near-infrared wavelengths but had no effect at blue wavelengths. λ-cyhalothrin had the least effect on spectral reflectance among the insecticides, with changes to only a few near-infrared wavelengths. Our results showing immediate and delayed effects of foliar insecticides on soybean reflectance indicate that application of some insecticides may confound the use of remote sensing for detection of not only insects but also plant diseases, nutritional and water deficiencies, and other crop stressors. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. The formation of quasi-alicyclic rings in alkyl-aromatic compounds

    NASA Astrophysics Data System (ADS)

    Straka, Pavel; Buryan, Petr; Bičáková, Olga

    2018-02-01

    The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.

  4. Clinical emergency treatment of 68 critical patients with severe organophosphorus poisoning and prognosis analysis after rescue.

    PubMed

    Dong, Hui; Weng, Yi-Bing; Zhen, Gen-Shen; Li, Feng-Jie; Jin, Ai-Chun; Liu, Jie

    2017-06-01

    This study reports the clinical emergency treatment of 68 critical patients with severe organophosphorus poisoning, and analyzes the prognosis after rescue.The general data of 68 patients with severe organophosphorus poisoning treated in our hospital were retrospectively analyzed. These patients were divided into 2 groups: treatment group, and control group. Patients in the control group received routine emergency treatment, while patients in the treatment group additionally received hemoperfusion plus hemodialysis on the basis of routine emergency treatment. The curative effects in these 2 groups and the prognosis after rescue were compared.Compared with the control group, atropinization time, recovery time of cholinesterase activity, recovery time of consciousness, extubation time, and length of hospital stay were shorter (P < .05); the total usage of atropine was significantly lower (P < .05); Glasgow Coma Score was significantly higher (P < .05); acute physiology and chronic health score (APACHE II) was significantly lower (P < .05); and mortality and poisoning rebound rate was significantly lower (P < .05) in the treatment group.Hemoperfusion and hemodialysis on the basis of routine emergency treatment for critical patients with organophosphorus poisoning can improve rescue outcomes and improve the prognosis of patients, which should be popularized.

  5. Alkylsilyl Peroxides as Alkylating Agents in the Copper-Catalyzed Selective Mono-N-Alkylation of Primary Amides and Arylamines.

    PubMed

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-07-06

    The copper-catalyzed selective mono-N-alkylation of primary amides or arylamines using alkylsilyl peroxides as alkylating agents is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the alkylsilyl peroxides, as well as to the primary amides and arylamines. Mechanistic studies suggest that the present reaction should proceed through a free-radical process that includes alkyl radicals generated from the alkylsilyl peroxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Malaria Vector Control Still Matters despite Insecticide Resistance.

    PubMed

    Alout, Haoues; Labbé, Pierrick; Chandre, Fabrice; Cohuet, Anna

    2017-08-01

    Mosquito vectors' resistance to insecticides is usually considered a major threat to the recent progresses in malaria control. However, studies measuring the impact of interventions and insecticide resistance reveal inconsistencies when using entomological versus epidemiological indices. First, evaluation tests that do not reflect the susceptibility of mosquitoes when they are infectious may underestimate insecticide efficacy. Moreover, interactions between insecticide resistance and vectorial capacity reveal nonintuitive outcomes of interventions. Therefore, considering ecological interactions between vector, parasite, and environment highlights that the impact of insecticide resistance on the malaria burden is not straightforward and we suggest that vector control still matters despite insecticide resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Reactions of Tributylstannyl Anioniods with Alkyl Bromides.

    DTIC Science & Technology

    1981-09-28

    g (12 mmol) of cesium tert-butoxide was added to the reaction vessel before the addition of n-butyllithium. Alkylation of Tributylstannyl Anionoids...Dry reaction vessels were purged with argon. The desired alkyl halide (1.0 mmol unless noted) and any desired additive were added to the reaction ...OFFICE OF NAVAL RESEARCH Contract N00014-79-C-0584 Task No. NR 053-714 TECHNICAL REPORT No. 2 Reactions of Tributylstannyl Anionoids with Alkyl

  8. Immobilization of Enzymes in Nanoporous Host Materials: A Nanobiotechnological Approach to Decontamination and Demilitarization of Chemical and Biological Warfare Agents

    DTIC Science & Technology

    2002-05-06

    Organophosphorus compounds (OPs) are highly toxic and found extensive use as pesticides , insecticides and potential chemical warfare (CW) agents . Recently...commonly used substrate, the serine protease inhibitor diisopropyl fluorophosphates (DFP), and different fluoride-containing G-type nerve agents such as...

  9. CHARACTERIZATION OF THE IN VITRO KINETIC INTERACTION OF CHLORPYRIFOS-OXON WITH RAT SALIVARY CHOLINESTERASE: A POTENTIAL BIOMONITORING MATRIX. (R828608)

    EPA Science Inventory

    The primary mechanism of action for organophosphorus (OP) insecticides such as chlorpyrifos (CPF) involves the inhibition of acetylcholinesterase (AChE) by their active oxon metabolites resulting in a wide range of neurotoxic effects. These oxons also inhibit other cholinester...

  10. Toxicity of selected insecticides and insecticide mixtures to adult brown stink bug (Heteroptera: Pentatomidae)

    USDA-ARS?s Scientific Manuscript database

    Glass vial bioassay were conducted to evaluate the toxicity of selected insecticides and insecticide mixtures to the brown stink bug (BSB), Euschistus servus (Say) collected from blacklight traps, cotton plants and weeds in farming areas in the Brazos Valley of Texas. Dicrotophos was 5- and 18-fold...

  11. Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems*

    PubMed Central

    Codreanu, Simona G.; Ullery, Jody C.; Zhu, Jing; Tallman, Keri A.; Beavers, William N.; Porter, Ned A.; Marnett, Lawrence J.; Zhang, Bing; Liebler, Daniel C.

    2014-01-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions. PMID:24429493

  12. Reductive alkylation of ribosomes as a probe to the topography of ribosomal proteins*

    PubMed Central

    Moore, Graham; Crichton, Robert R.

    1974-01-01

    Escherichia coli ribosomes were treated with a number of different aldehydes of various sizes in the presence of NaBH4. After incorporation of either 3H or 14C, the ribosomal proteins were separated by two-dimensional polyacrylamide-gel electrophoresis and the extent of alkylation of the lysine residues in each protein was measured. The same pattern of alkylation was observed with the four reagents used, namely formaldehyde, acetone, benzaldehyde and 3,4,5-trimethoxybenzaldehyde. Every protein in 30S and 50S subunits was modified, although there was considerable variation in the degree of alkylation of individual proteins. A topographical classification of ribosomal proteins is presented, based on the degree of exposure of lysine residues. The data indicate that every protein of the ribosome has at least one lysine residue exposed at or near the surface of the ribonucleo-protein complex. PMID:4462744

  13. Alkylating agents for Waldenstrom's macroglobulinaemia.

    PubMed

    Yang, Kun; Tan, Jianlong; Wu, Taixiang

    2009-01-21

    Waldenstrom's macroglobulinaemia (WM) is an uncommon B-cell lymphoproliferative disorder characterized by bone marrow infiltration and production of monoclonal immunoglobulin. Uncertainty remains if alkylating agents, such as chlorambucil, melphalan or cyclophosphamide, are an effective form of management. To assess the effects and safety of the alkylating agents on Waldenstrom's macroglobulinaemia (WM). We searched the Cochrane Central Register of Controlled Trials (Issue 1, 2008), MEDLINE (1966 to 2008), EMBASE (1980 to 2008), the Chinese Biomedical Base (1982 to 2008) and reference lists of articles.We also handsearched relevant conference proceedings from 1990 to 2008. Randomised controlled trials (RCTs) comparing alkylating agents given concomitantly with radiotherapy, splenectomy, plasmapheresis, stem-cell transplantation in patients with a confirmed diagnosis of WM. Two authors independently assessed trial quality and extracted data. We contacted study authors for additional information. We collected adverse effects information from the trials. One trial involving 92 participants with pretreated/relapsed WM compared the effect of fludarabine versus the combination of cyclophosphamide (the alkylating agent), doxorubicin and prednisone (CAP). Compared to CAP, the Hazard ratio (HR) for deaths of treatment with fludarabine was estimated to be 1.04, with a standard error of 0.30 (95% CI 0.58 to 1.48) and it indicated that the mean difference of median survival time was -4.00 months, and 16.00 months for response duration. The relative risks (RR) of response rate was 2.80 (95% CI 1.10 to 7.12). There were no statistically difference in overall survival rate and median survival months, while on the basis of response rate and response duration, fludarabine seemed to be superior to CAP for pretreated/relapsed patients with macroglobulinaemia. Although alkylating agents have been used for decades they have never actually been tested in a proper randomised trial. This

  14. Insecticides biomarker responses on a freshwater fish Corydoras paleatus (Pisces: Callichthyidae).

    PubMed

    Guiloski, Izonete Cristina; Rossi, Stéfani Cibele; da Silva, Cesar Aparecido; de Assis, Helena Cristina Silva

    2013-01-01

    This study was undertaken to investigate the effects of sublethal concentration of three different classes of insecticides (carbamate, organophosphate, and pyrethroid compounds) on the freshwater fish Corydoras paleatus. For this purpose, fish were exposed for 96 hours to commercial pesticides. Different biomarkers were analyzed as levels of lipid peroxidation (LPO), piscine micronucleus test, and enzymatic activities of catalase (CAT), glutathione S-transferase (GST), and acetylcholinesterase (AChE). The brain AChE was inhibited with carbaryl and methyl parathion, but no inhibition was observed with deltamethrin. The insecticides did not cause oxidative stress or genotoxic effects at the tested concentrations. Further studies are needed to elucidate the biotransformation of Corydoras paleatus insecticides and a possible resistance mechanism.

  15. Review of the evolution of insecticide resistance in main malaria vectors in Cameroon from 1990 to 2017.

    PubMed

    Antonio-Nkondjio, Christophe; Sonhafouo-Chiana, N; Ngadjeu, C S; Doumbe-Belisse, P; Talipouo, A; Djamouko-Djonkam, L; Kopya, E; Bamou, R; Awono-Ambene, P; Wondji, Charles S

    2017-10-10

    Malaria remains a major public health threat in Cameroon and disease prevention is facing strong challenges due to the rapid expansion of insecticide resistance in vector populations. The present review presents an overview of published data on insecticide resistance in the main malaria vectors in Cameroon to assist in the elaboration of future and sustainable resistance management strategies. A systematic search on mosquito susceptibility to insecticides and insecticide resistance in malaria vectors in Cameroon was conducted using online bibliographic databases including PubMed, Google and Google Scholar. From each peer-reviewed paper, information on the year of the study, mosquito species, susceptibility levels, location, insecticides, data source and resistance mechanisms were extracted and inserted in a Microsoft Excel datasheet. The data collected were then analysed for assessing insecticide resistance evolution. Thirty-three scientific publications were selected for the analysis. The rapid evolution of insecticide resistance across the country was reported from 2000 onward. Insecticide resistance was highly prevalent in both An. gambiae (s.l.) and An. funestus. DDT, permethrin, deltamethrin and bendiocarb appeared as the most affected compounds by resistance. From 2000 to 2017 a steady increase in the prevalence of kdr allele frequency was noted in almost all sites in An. gambiae (s.l.), with the L1014F kdr allele being the most prevalent. Several detoxification genes (particularly P450 monooxygenase) were associated with DDT, pyrethroids and bendiocarb resistance. In An. funestus, resistance to DDT and pyrethroids was mainly attributed to the 119F-GSTe2 metabolic resistance marker and over-expression of P450 genes whereas the 296S-RDL mutation was detected in dieldrin-resistant An. funestus. The review provides an update of insecticide resistance status in malaria vector populations in Cameroon and stresses the need for further actions to reinforce malaria

  16. [Analysis on influencing factors of prognosis of patients with acute organophosphorus pesticide poisoning].

    PubMed

    Guo, C F; Wang, Y; Liu, J H; Shen, P; Wang, H; Wei, Y J; Shi, X F; Zhou, X J; Wang, W W

    2016-05-20

    To analyze the relationship between risk factors and prognosis of acute organophosphorus pesticide poisoning (AOPP). The clinical data including APACHEⅡ, D-dimer, C-reactive protein, procalcitonin, lactic acid of the 67 cases of acute organophosphorus pesticide poisoning which respectively divided into survival group and death group by the outcome were collected. The independent influcing factors were got by logistic regression analysis. The analysis showed that APACHEⅡ, D-dimer、C-reactive protein and Procalcitonin were influencing factors to evaluate prognosis of AOPP (P<0.05) .Meanwhile, APACHEⅡ and CRP were the independent influencing factors to evaluate prognosis of AOPP (P<0.05). APACHEⅡ26was the optimum thresholds to acess the prognosis of AOPP and its Youden index was largest. APACHEⅡ and CRP played an important role in the assessment of prognosis on AOPP. When APACHEⅡwas more than 26, it suggested the patient of AOPP will have a bad prognosis.

  17. [Determination of 44 organophosphorus pesticides in food by SPE disk extraction-capillary gas chromatography with pulsed flame photometric detection].

    PubMed

    Luo, Xiao-Fei; Yang, Yuan; Sun, Cheng-Jun

    2012-01-01

    To develop a method for the simultaneous determination of 44 organophosphorus pesticides in food by SPE disk extraction-capillary gas chromatography with pulsed flame photometric detection. Organophosphorus pesticides in food were extracted ultrasonically with water. Then the extract was cleaned-up with SPE disk and eluted with ethyl acetate. Finally the eluent was condensed to 1mL under N2 at 55 degrees C. Gas chromatography was applied for quantitative detection of the organophosphorus pesticides in the sample. The linear range of the method for all the pesticides were in the range of 0.01-0.5 mg/kg with correlation coefficients of 0.992-1.000. The detection limits of the method were in the range of 0.0005-0.01 mg/kg. The recoveries for most pesticides were 60%-120% with relative standard deviations of less than 15%. The method is simple, sensitive, environmentally friendly and suitable for the determination of organophosphorous pesticides in food.

  18. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  19. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae).

    PubMed

    Dang, Kai; Doggett, Stephen L; Veera Singham, G; Lee, Chow-Yang

    2017-06-29

    The worldwide resurgence of bed bugs [both Cimex lectularius L. and Cimex hemipterus (F.)] over the past two decades is believed in large part to be due to the development of insecticide resistance. The transcriptomic and genomic studies since 2010, as well as morphological, biochemical and behavioral studies, have helped insecticide resistance research on bed bugs. Multiple resistance mechanisms, including penetration resistance through thickening or remodelling of the cuticle, metabolic resistance by increased activities of detoxification enzymes (e.g. cytochrome P450 monooxygenases and esterases), and knockdown resistance by kdr mutations, have been experimentally identified as conferring insecticide resistance in bed bugs. Other candidate resistance mechanisms, including behavioral resistance, some types of physiological resistance (e.g. increasing activities of esterases by point mutations, glutathione S-transferase, target site insensitivity including altered AChEs, GABA receptor insensitivity and altered nAChRs), symbiont-mediated resistance and other potential, yet undiscovered mechanisms may exist. This article reviews recent studies of resistance mechanisms and the genes governing insecticide resistance, potential candidate resistance mechanisms, and methods of monitoring insecticide resistance in bed bugs. This article provides an insight into the knowledge essential for the development of both insecticide resistance management (IRM) and integrated pest management (IPM) strategies for successful bed bug management.

  20. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  1. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  2. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  3. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  4. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  5. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  6. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  7. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  8. 21 CFR 176.120 - Alkyl ketene dimers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section. (a) The alkyl ketene dimers are manufactured by the dehydrohalogenation of the acyl halides derived from the fatty acids of animal or vegetable fats and oils. (b) The alkyl ketene dimers are used as...

  9. Evidence of man-vector contact in torn long-lasting insecticide-treated nets

    PubMed Central

    2013-01-01

    Background Studies indicate that physical damage to long-lasting insecticide-treated nets (LLINs) occurs at a surprisingly rapid rate following net distribution. To what extent does such damage affect the impact of LLINs? Can vectors pass a compromised LLIN barrier to bite? Do more resistant vectors enter the insecticide-treated nets (ITNs) through holes? Methods The study was carried out in three geo-locations. Two types of LLINs (polyester and polyethylene) with ‘standardized’ physical damage were compared with similarly damaged, but non-insecticidal (control) nets. The proportionate Holes Index (pHI) of each net was 276. Mosquitoes were captured inside the nets, identified taxonomically, and subjected to molecular analysis to estimate Knock-down resistance (Kdr) frequency. Results The most commonly observed species was Anopheles gambiae, accounting for approximately 70% (1,076/1,550) of the total mosquitoes collected both in LLINs and non-insecticidal nets. When compared with controls, number of vectors captured in torn LLINs was significantly reduced. Nonetheless in a night, an average of 5 An. gambiae s.l could enter the damaged LLINs to bite. Similar numbers of resistant mosquitoes were collected in both LLINs and non-insecticidal (control) nets (p > 0.05). Conclusions At a pHI of 276, man-vector contact was observed in torn LLINs. The insecticide at the surface of LLINs could only reduce the number of vectors. Resistant mosquitoes have opportunity to enter both non-insecticidal (control) nets and LLINs to bite. PMID:23941585

  10. Divergent effects of postmortem ambient temperature on organophosphorus- and carbamate-inhibited brain cholinesterase activity in birds

    USGS Publications Warehouse

    Hill, E.F.

    1989-01-01

    Time- and temperature-dependent postmortem changes in inhibited brain cholinesterase (ChE) activity may confound diagnosis of field poisoning of wildlife by anticholinesterase pesticide. Carbamate-inhibited ChE activity may return to normal within 1 to 2 days of exposure of intact carcass to moderate ambient temperature (18-32C). Organophosphorus-inhibited ChE activity becomes more depressed over the same time. Uninhibited ChE activity was resilient to above freezing temperature to 32C for 1 day and 25C for 3 days. Carbamate- and organophosphorus-inhibited ChE can be separated by incubation of homogenate for 1 hour at physiological temperatures; carbamylated ChE can be readily reactivated while phosphorylated ChE cannot.

  11. Bacterial insecticides and inert materials

    USDA-ARS?s Scientific Manuscript database

    The term “novel insecticides” can be regarded as a category that includes the insecticides with novel mode of action, but also insecticides that are novel in terms of their low mammalian toxicity and environmental-friendly profiles. Under this context, it is difficult to identify active ingredients ...

  12. Insecticide Resistance in Fleas.

    PubMed

    Rust, Michael K

    2016-03-17

    Fleas are the major ectoparasite of cats, dogs, and rodents worldwide and potential vectors of animal diseases. In the past two decades the majority of new control treatments have been either topically applied or orally administered to the host. Most reports concerning the development of insecticide resistance deal with the cat flea, Ctenocephalides felis felis. Historically, insecticide resistance has developed to many of the insecticides used to control fleas in the environment including carbamates, organophosphates, and pyrethroids. Product failures have been reported with some of the new topical treatments, but actual resistance has not yet been demonstrated. Failures have often been attributed to operational factors such as failure to adequately treat the pet and follow label directions. With the addition of so many new chemistries additional monitoring of flea populations is needed.

  13. Insecticides against headlice in Glasgow.

    PubMed

    Lindsay, S W; Peock, S

    1993-08-01

    A postal questionnaire for describing current practices of insecticide usage for the prevention and treatment of pediculosis was sent to 53 pharmacists in Glasgow. 91% returned completed questionnaires. Between 19,000 to 36,000 bottles of insecticide against headlice were bought by the public in Glasgow in 1991. Most of these were sold in small volumes (less than 100 ml) and sales were highest during the autumn. Although pharmacists sold a range of different classes of insecticide, the most popular were those that contained malathion, the treatment for pediculosis recommended by the Health Board. Choice of treatment was probably influenced by advice given to the public by pharmacists and general practitioners. Clients preferred shampoo formulations. There was evidence that treatments were used prophylactically against headlice. However, there was little indication of large scale resistance to insecticides in the louse population. The results indicate that headlice remain a persistent problem in Glasgow, despite the public adhering to the advice of health professionals.

  14. Comparative Toxicities of Newer and Conventional Insecticides: Against Four Generalist Predator Species.

    PubMed

    Prabhaker, Nilima; Naranjo, Steven; Perring, Thomas; Castle, Steven

    2017-12-05

    Generalist insect predators play an essential role in regulating the populations of Bemisia tabaci and other pests in agricultural systems, but may be affected negatively by insecticides applied for pest management. Evaluation of insecticide compatibility with specific predator species can provide a basis for making treatment decisions with the aim of conserving natural enemies. Eleven insecticides representing six modes of action groups were evaluated for toxicity against four predator species and at different developmental stages. Full-concentration series bioassays were conducted on laboratory-reared or insectary-supplied predators using Petri dish and systemic uptake bioassay techniques. Highest toxicities were observed with imidacloprid and clothianidin against first and second instar nymphs of Geocoris punctipes (Say) (Hemiptera: Geocoridae). Later instar nymphs were less susceptible to neonicotinoid treatments based on higher LC50s observed with imidacloprid, thiamethoxam, and dinotefuran against third or fourth instar nymphs. The pyrethroid insecticide bifenthrin was highly toxic against adults of G. punctipes and Orius insidiosus (Say) (Hemiptera: Anthocoridae). Standard concentration/mortality evaluation of nonacute toxicity insecticides, including buprofezin, pyriproxyfen, spirotetramat, and spiromesifen, was inconclusive in terms of generating probit statistics. However, low mortality levels of insects exposed for up to 120 h suggested minimal lethality with the exception of pyriproxyfen that was mildly toxic to Chrysoperla rufilabris (Burmeister) (Neuroptera: Chrysopidae). Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... are: (i) Industrial, commercial, and consumer activities. Requirements as specified in § 721.80(s... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl phosphine oxide (generic). 721.10087 Section 721.10087 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  16. A Concentration-Dependent Insulin Immobilization Behavior of Alkyl-Modified Silica Vesicles: The Impact of Alkyl Chain Length.

    PubMed

    Zhang, Jun; Zhang, Long; Lei, Chang; Huang, Xiaodan; Yang, Yannan; Yu, Chengzhong

    2018-05-01

    The insulin immobilization behaviors of silica vesicles (SV) before and after modification with hydrophobic alkyl -C 8 and -C 18 groups have been studied and correlated to the grafted alkyl chain length. In order to minimize the influence from the other structural parameters, monolayered -C 8 or -C 18 groups are grafted onto SV with controlled density. The insulin immobilization capacity of SV is dependent on the initial insulin concentrations (IIC). At high IIC (2.6-3.0 mg/mL), the trend of insulin immobilization capacity of SV is SV-OH > SV-C 8 > SV-C 18 , which is determined mainly by the surface area of SV. At medium IIC (0.6-1.9 mg/mL), the trend changes to SV-C 8 ≥ SV-C 18 > SV-OH as both the surface area and alkyl chain length contribute to the insulin immobilization. At an extremely low IIC, the hydrophobic-hydrophobic interaction between the alkyl group and insulin molecules plays the most significant role. Consequently, SV-C 18 with longer alkyl groups and the highest hydrophobicity show the best insulin enrichment performance compared to SV-C 8 and SV-OH, as evidenced by an insulin detection limit of 0.001 ng/mL in phosphate buffered saline (PBS) and 0.05 ng/mL in artficial urine determined by mass spectrometry (MS).

  17. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    EPA Science Inventory

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  18. Diagnostic Doses of Insecticides for Adult Aedes aegypti to Assess Insecticide Resistance in Cuba.

    PubMed

    Rodríguez, María Magdalena; Crespo, Ariel; Hurtado, Daymi; Fuentes, Ilario; Rey, Jorge; Bisset, Juan Andrés

    2017-06-01

    The objective of this study was to determine diagnostic doses (DDs) of 5 insecticides for the Rockefeller susceptible strain of Aedes aegypti , using the Centers for Disease Control and Prevention (CDC) bottle bioassay as a tool for monitoring insecticide resistance in the Cuban vector control program. The 30-min DD values determined in this study were 13.5 μg/ml, 6.5 μg/ml, 6 μg/ml, 90.0 μg/ml, and 15.0 μg/ml for cypermethrin, deltamethrin, lambda-cyhalothrin, chlorpyrifos, and propoxur, respectively. To compare the reliability of CDC bottle bioassay with the World Health Organization susceptible test, 3 insecticide-resistant strains were evaluated for deltamethrin and lambda-cyhalothrin. Results showed that the bottles can be used effectively from 21 to 25 days after treatment and reused up to 4 times, depending on the storage time. The CDC bottle bioassay is an effective tool to assess insecticide resistance in field populations of Ae. aegypti in Cuba and can be incorporated into vector management programs using the diagnostic doses determined in this study.

  19. A mild hand cleanser, alkyl ether sulphate supplemented with alkyl ether carboxylic acid and alkyl glucoside, improves eczema on the hand and prevents the growth of Staphylococcus aureus on the skin surface.

    PubMed

    Fukui, S; Morikawa, T; Hirahara, M; Terada, Y; Shimizu, M; Takeuchi, K; Takagi, Y

    2016-12-01

    Washing the hands using cleansers with antiseptic materials is the most popular method for hand hygiene and helps maintain health by preventing food poisoning and bacterial infections. However, repeated hand washing tends to induce eczema of the hand, such as dryness, cracking and erythema. Moreover, eczema on the hand leads to increased levels in Staphylococcus aureus (S. aureus) on the skin surface in contrast to expectations. Thus, mild hand cleansers which induce less eczema even with repeated washings are desired. Here, we evaluated the efficacy of a hand cleanser formulated with alkyl ether sulphate (AES), alkyl ether carboxylic acid (AEC) and alkyl glucoside (AG) that contains isopropyl methylphenol (IPMP) on skin symptoms and S. aureus levels. Eczema of the hand and the presence of S. aureus on the skin surface were analysed prior to and following 4 weeks of usage of the hand cleanser. A soap-based hand cleanser with IPMP was used as a reference cleanser. Eczema and cutaneous conditions were evaluated by visual grading, transepidermal water loss (TEWL), stratum corneum moisture-retention ability (MRA) and skin surface pH. The repeated use of the soap-based hand cleanser significantly worsened the hand dryness, scaling and cracks on the tips of the fingers and significantly increased the TEWL and decreased the MRA. In contrast, usage of the test cleanser only induced a significant increase in skin dryness but did not induce skin scaling or cracking and did not increase TEWL or decrease the MRA. Corresponding to these changes in skin symptoms, the presence of S. aureus increased the following use of the reference cleanser but not the test cleanser. There was no significant difference in skin surface pH between the two cleansers. Moreover, the increase in S. aureus was significantly correlated to the worsening of skin dryness and scaling. These results suggest that not only antimicrobial activity but also the mildness, which minimizes cutaneous effects

  20. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study.

    PubMed

    Kleinschmidt, Immo; Bradley, John; Knox, Tessa Bellamy; Mnzava, Abraham Peter; Kafy, Hmooda Toto; Mbogo, Charles; Ismail, Bashir Adam; Bigoga, Jude D; Adechoubou, Alioun; Raghavendra, Kamaraju; Cook, Jackie; Malik, Elfatih M; Nkuni, Zinga José; Macdonald, Michael; Bayoh, Nabie; Ochomo, Eric; Fondjo, Etienne; Awono-Ambene, Herman Parfait; Etang, Josiane; Akogbeto, Martin; Bhatt, Rajendra M; Chourasia, Mehul Kumar; Swain, Dipak K; Kinyari, Teresa; Subramaniam, Krishanthi; Massougbodji, Achille; Okê-Sopoh, Mariam; Ogouyemi-Hounto, Aurore; Kouambeng, Celestin; Abdin, Mujahid Sheikhedin; West, Philippa; Elmardi, Khalid; Cornelie, Sylvie; Corbel, Vincent; Valecha, Neena; Mathenge, Evan; Kamau, Luna; Lines, Jonathan; Donnelly, Martin James

    2018-04-09

    year in Kenya; and an average infection prevalence in net users of 0·8% [0·5-1·3] in India to an average infection prevalence of 50·8% [43·4-58·2] in Benin). Irrespective of resistance, populations in malaria endemic areas should continue to use long-lasting insecticidal nets to reduce their risk of infection. As nets provide only partial protection, the development of additional vector control tools should be prioritised to reduce the unacceptably high malaria burden. Bill & Melinda Gates Foundation, UK Medical Research Council, and UK Department for International Development. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  1. Insecticidal activity of proteinous venom from tentacle of jellyfish Rhopilema esculentum Kishinouye.

    PubMed

    Yu, Huahua; Liu, Xiguang; Dong, Xiangli; Li, Cuiping; Xing, Ronge; Liu, Song; Li, Pengcheng

    2005-11-15

    Insecticidal activity of proteinous venom from tentacle of jellyfish Rhopilema esculentum Kishinouye was determined against three pest species, Stephanitis pyri Fabriciusa, Aphis medicaginis Koch, and Myzus persicae Sulzer. R. esculentum full proteinous venom had different insecticidal activity against S. pyri Fabriciusa, A. medicaginis Koch, and M. persicae Sulzer. The 48 h LC50 values were 123.1, 581.6, and 716.3 microg/mL, respectively. Of the three pests, R. esculentum full proteinous venom had the most potent toxicity against S. pyri Fabriciusa, and the corrected mortality recorded at 48 h was 97.86%. So, S. pyri Fabriciusa could be a potential target pest of R. esculentum full proteinous venom.

  2. Insecticide poisoning

    MedlinePlus

    Cannon RD, Ruha A-M. Insecticides, herbicides, and rodenticides. In: Adams JG, ed. Emergency Medicine . 2nd ed. Philadelphia, PA: Elsevier Saunders; 2013:chap 146. Welker K, Thompson TM. Pesticides. ...

  3. Investigation of insecticide-resistance status of Cydia pomonella in Chinese populations.

    PubMed

    Yang, X-Q; Zhang, Y-L

    2015-06-01

    The codling moth Cydia pomonella (L.) is an economically important fruit pest and it has been directly targeted by insecticides worldwide. Serious resistance to insecticides has been reported in many countries. As one of the most serious invasive pest, the codling moth has populated several areas in China. However, resistance to insecticides has not been reported in China. We investigated the insecticide-resistance status of four field populations from Northwestern China by applying bioassays, enzyme activities, and mutation detections. Diagnostic concentrations of lambda-cyhalothrin, chlorpyrifos-ethyl, carbaryl, and imidacloprid were determined and used in bioassays. Field populations were less susceptible to chlorpyrifos-ethyl and carbaryl than laboratory strain. Insensitive populations displayed an elevated glutathione S-transferases (GSTs) activity. Reduced carboxylesterase (CarE) activity was observed in some insecticide insensitive populations and reduced acetylcholinesterase activity was observed only in the Wuw population. The cytochrome P450 polysubstrate monooxygenases activities in four field populations were not found to be different from susceptible strains. Neither the known-resistance mutation F399V in the acetylcholinesterase (AChE) gene, ace1, nor mutations in CarE gene CpCE-1 were found in adult individuals from our field populations. Native-PAGE revealed that various CarE isozymes and AChE insensitivity were occurring among Chinese populations. Our results indicate that codling moth populations from Northwestern China were insensitivity to chlorpyrifos-ethyl and carbaryl. Increased GST activity was responsible for insecticides insensitivity. Decreased CarE activity, as well as the presence of CarE and AChE polymorphisms might also be involved in insecticides insensitivity. New management strategies for managing this pest are discussed.

  4. Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae) from Argentina.

    PubMed

    Montagna, Cristina Mónica; Gauna, Lidia Ester; D'Angelo, Ana Pechen de; Anguiano, Olga Liliana

    2012-06-01

    Black flies, a non-target species of the insecticides used in fruit production, represent a severe medical and veterinary problem. Large increases in the level of resistance to the pyrethroids fenvalerate (more than 355-fold) and deltamethrin (162-fold) and a small increase in resistance to the organophosphate azinphos methyl (2-fold) were observed between 1996-2008 in black fly larvae under insecticide pressure. Eventually, no change or a slight variation in insecticide resistance was followed by a subsequent increase in resistance. The evolution of pesticide resistance in a field population is a complex and stepwise process that is influenced by several factors, the most significant of which is the insecticide selection pressure, such as the dose and frequency of application. The variation in insecticide susceptibility within a black fly population in the productive area may be related to changes in fruit-pest control. The frequency of individuals with esterase activities higher than the maximum value determined in the susceptible population increased consistently over the sampling period. However, the insecticide resistance was not attributed to glutathione S-transferase activity. In conclusion, esterase activity in black flies from the productive area is one mechanism underlying the high levels of resistance to pyrethroids, which have been recently used infrequently. These enzymes may be reselected by currently used pesticides and enhance the resistance to these insecticides.

  5. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  6. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  7. Extended 3{beta}-alkyl steranes and 3-alkyl triaromatic steroids in crude oils and rock extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, J.; Moldowan, J.M.; Summons, R.E.

    1995-09-01

    In oils and Precambian- to Miocene-age source rocks from varying depositional environments, we have conclusively identified several novel 3-alkyl sterane and triaromatic steroid series, including (1) 3{beta}-n-pentyl steranes, (2) 3{beta}-isopentyl steranes, (3) 3{beta}-n-hexyl steranes, (4) 3{beta}-n-hepatyl steranes, (5) 3,4-dimethyl steranes, (6) 3{beta}-butyl,4-methyl steranes, (7) triaromatic 3-n-pentyl steroids, and (8) triaromatic 3-isopentyl steroids. We have also tentatively identified additional homologs with 3-alkyl substituents as large as C{sub 11}. The relative abundances of these compounds vary substantially between samples, as indicated by (1) the ratio of 3{beta}-n-pentyl steranes to 3{beta}-isopentyl steranes and (2) the ratio of 3-n-pentyl triaromatic steroids to 3-isopentyl triaromaticmore » steroids. These data suggest possible utility for these parameters as tools for oil-source rock correlations and reconstruction of depositional environments. Although no 3-alkyl steroid natural products are currently known, several lines of evidence suggest that 3{beta}-alkyl steroids result from bacterial side-chain additions to diagenetic {delta}{sup 2}-sterenes.« less

  8. Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: a systematic review and meta-analysis.

    PubMed

    Schinasi, Leah; Leon, Maria E

    2014-04-23

    This paper describes results from a systematic review and a series of meta-analyses of nearly three decades worth of epidemiologic research on the relationship between non-Hodgkin lymphoma (NHL) and occupational exposure to agricultural pesticide active ingredients and chemical groups. Estimates of associations of NHL with 21 pesticide chemical groups and 80 active ingredients were extracted from 44 papers, all of which reported results from analyses of studies conducted in high-income countries. Random effects meta-analyses showed that phenoxy herbicides, carbamate insecticides, organophosphorus insecticides and the active ingredient lindane, an organochlorine insecticide, were positively associated with NHL. In a handful of papers, associations between pesticides and NHL subtypes were reported; B cell lymphoma was positively associated with phenoxy herbicides and the organophosphorus herbicide glyphosate. Diffuse large B-cell lymphoma was positively associated with phenoxy herbicide exposure. Despite compelling evidence that NHL is associated with certain chemicals, this review indicates the need for investigations of a larger variety of pesticides in more geographic areas, especially in low- and middle-income countries, which, despite producing a large portion of the world's agriculture, were missing in the literature that were reviewed.

  9. Reversed enantioselectivity of diisopropyl fluorophosphatase against organophosphorus nerve agents by rational design.

    PubMed

    Melzer, Marco; Chen, Julian C-H; Heidenreich, Anne; Gäb, Jürgen; Koller, Marianne; Kehe, Kai; Blum, Marc-Michael

    2009-12-02

    Diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris is an efficient and robust biocatalyst for the hydrolysis of a range of highly toxic organophosphorus compounds including the nerve agents sarin, soman, and cyclosarin. In contrast to the substrate diisopropyl fluorophosphate (DFP) the nerve agents possess an asymmetric phosphorus atom, which leads to pairs of enantiomers that display markedly different toxicities. Wild-type DFPase prefers the less toxic stereoisomers of the substrates which leads to slower detoxification despite rapid hydrolysis. Enzyme engineering efforts based on rational design yielded two quadruple enzyme mutants with reversed enantioselectivity and overall enhanced activity against tested nerve agents. The reversed stereochemical preference is explained through modeling studies and the crystal structures of the two mutants. Using the engineered mutants in combination with wild-type DFPase leads to significantly enhanced activity and detoxification, which is especially important for personal decontamination. Our findings may also be of relevance for the structurally related enzyme human paraoxonase (PON), which is of considerable interest as a potential catalytic in vivo scavenger in case of organophosphorus poisoning.

  10. A SAW-based chemical sensor for detecting sulfur-containing organophosphorus compounds using a two-step self-assembly and molecular imprinting technology.

    PubMed

    Pan, Yong; Yang, Liu; Mu, Ning; Shao, Shengyu; Wang, Wen; Xie, Xiao; He, Shitang

    2014-05-19

    This paper presents a new effective approach for the sensitive film deposition of surface acoustic wave (SAW) chemical sensors for detecting organophosphorus compounds such as O-ethyl-S-2-diisopropylaminoethyl methylphosphonothiolate (VX) containing sulfur at extremely low concentrations. To improve the adsorptive efficiency, a two-step technology is proposed for the sensitive film preparation on the SAW delay line utilizing gold electrodes. First, mono[6-deoxy-6-[(mercaptodecamethylene)thio

  11. A SAW-Based Chemical Sensor for Detecting Sulfur-Containing Organophosphorus Compounds Using a Two-Step Self-Assembly and Molecular Imprinting Technology

    PubMed Central

    Pan, Yong; Yang, Liu; Mu, Ning; Shao, Shengyu; Wang, Wen; Xie, Xiao; He, Shitang

    2014-01-01

    This paper presents a new effective approach for the sensitive film deposition of surface acoustic wave (SAW) chemical sensors for detecting organophosphorus compounds such as O-ethyl-S-2-diisopropylaminoethyl methylphosphonothiolate (VX) containing sulfur at extremely low concentrations. To improve the adsorptive efficiency, a two-step technology is proposed for the sensitive film preparation on the SAW delay line utilizing gold electrodes. First, mono[6-deoxy-6-[(mercaptodecamethylene)thio

  12. Identification of insecticidal constituents of the essential oils of Dahlia pinnata Cav. against Sitophilus zeamais and Sitophilus oryzae.

    PubMed

    Wang, Da-Cheng; Qiu, Da-Ren; Shi, Li-Na; Pan, Hong-Yu; Li, Ya-Wei; Sun, Jin-Zhu; Xue, Ying-Jie; Wei, Dong-Sheng; Li, Xiang; Zhang, Ya-Mei; Qin, Jian-Chun

    2015-01-01

    The aim of this research was to determine the chemical composition of the essential oils of Dahlia pinnata, their insecticidal activity against Sitophilus zeamais and Sitophilusoryzae and to isolate insecticidal constituents. Based on bioactivity-guided fractionation, active constituents were isolated and identified as D-limonene, 4-terpineol and α-terpineol. Essential oils and active compounds tested exhibited contact toxicity, with LD50 values ranging from 132.48 to 828.79 μg/cm(2) against S. zeamais and S. oryzae. Essential oils possessed fumigant toxicity against S. zeamais and S. oryzae with LC50 from 14.10 to 73.46 mg/L. d-Limonene (LC50 = 4.55 and 7.92 mg/L) showed stronger fumigant toxicity against target insects. 4-Terpineol (88 ± 8%) and d-limonene (87 ± 5%) showed the strongest repellency against S. zeamais and S. oryzae, respectively. The results indicate that essential oils and insecticidal constituents have potential for development into natural fumigants, insecticides or repellents for control of the stored-product insect pests.

  13. Polyimide characterization studies - Effect of pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1984-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  14. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length

    PubMed Central

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.; Du, Yang; Nielsen, Anne K.; Byrne, Bernadette; Kobilka, Brian K.; Loland, Claus J.; Guan, Lan

    2017-01-01

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile–lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. PMID:27981750

  15. Insecticide Resistance and Management Strategies in Urban Ecosystems

    PubMed Central

    Zhu, Fang; Lavine, Laura; O’Neal, Sally; Lavine, Mark; Foss, Carrie; Walsh, Douglas

    2016-01-01

    The increased urbanization of a growing global population makes imperative the development of sustainable integrated pest management (IPM) strategies for urban pest control. This emphasizes pests that are closely associated with the health and wellbeing of humans and domesticated animals. Concurrently there are regulatory requirements enforced to minimize inadvertent exposures to insecticides in the urban environment. Development of insecticide resistance management (IRM) strategies in urban ecosystems involves understanding the status and mechanisms of insecticide resistance and reducing insecticide selection pressure by combining multiple chemical and non-chemical approaches. In this review, we will focus on the commonly used insecticides and molecular and physiological mechanisms underlying insecticide resistance in six major urban insect pests: house fly, German cockroach, mosquitoes, red flour beetle, bed bugs and head louse. We will also discuss several strategies that may prove promising for future urban IPM programs. PMID:26751480

  16. Formulation Effects and the Off-target Transport of Pyrethroid Insecticides from Urban Hard Surfaces

    PubMed Central

    Jorgenson, Brant C.; Young, Thomas M.

    2010-01-01

    Controlled rainfall experiments utilizing drop forming rainfall simulators were conducted to study various factors contributing to off-target transport of off-the-shelf formulated pyrethroid insecticides from concrete surfaces. Factors evaluated included active ingredient, product formulation, time between application and rainfall (set time), and rainfall intensity. As much as 60% and as little as 0.8% of pyrethroid applied could be recovered in surface runoff depending primarily on product formulation, and to a lesser extent on product set time. Resulting wash-off profiles during one-hour storm simulations could be categorized based on formulation, with formulations utilizing emulsifying surfactants rather than organic solvents resulting in unique wash-off profiles with overall higher wash-off efficiency. These higher wash-off efficiency profiles were qualitatively replicated by applying formulation-free neat pyrethroid in the presence of independently applied linear alkyl benzene sulfonate (LAS) surfactant, suggesting that the surfactant component of some formulated products may be influential in pyrethroid wash-off from urban hard surfaces. PMID:20524665

  17. Insecticide resistance status of Aedes aegypti (L.) from Colombia.

    PubMed

    Fonseca-González, Idalyd; Quiñones, Martha L; Lenhart, Audrey; Brogdon, William G

    2011-04-01

    To evaluate the insecticide susceptibility status of Aedes aegypti (L.) in Colombia, and as part of the National Network of Insecticide Resistance Surveillance, 12 mosquito populations were assessed for resistance to pyrethroids, organophosphates and DDT. Bioassays were performed using WHO and CDC methodologies. The underlying resistance mechanisms were investigated through biochemical assays and RT-PCR. All mosquito populations were susceptible to malathion, deltamethrin and cyfluthrin, and highly resistant to DDT and etofenprox. Resistance to lambda-cyhalothrin, permethrin and fenitrothion ranged from moderate to high in some populations from Chocó and Putumayo states. In Antioquia state, the Santa Fe population was resistant to fenitrothion. Biochemical assays showed high levels of both cytochrome P450 monooxygenases (CYP) and non-specific esterases (NSE) in some of the fenitrothion- and pyrethroid-resistant populations. All populations showed high levels of glutathione-S-transferase (GST) activity. GSTe2 gene was found overexpressed in DDT-resistant populations compared with Rockefeller susceptible strain. Differences in insecticide resistance status were observed between insecticides and localities. Although the biochemical assay results suggest that CYP and NSE could play an important role in the pyrethroid and fenitrothion resistance detected, other mechanisms remain to be investigated, including knockdown resistance. Resistance to DDT was high in all populations, and GST activity is probably the main enzymatic mechanism associated with this resistance. The results of this study provide baseline data on insecticide resistance in Colombian A. aegypti populations, and will allow comparison of changes in susceptibility status in this vector over time. Copyright © 2011 Society of Chemical Industry.

  18. PERSISTENCE AND DISTRIBUTION OF AZINPHOS-METHYL FOLLOWING APPLICATION TO LITTORAL ENCLOSURE MESOCOSMS

    EPA Science Inventory

    The organophosphorus insecticide azinphos-methyl was applied once to the surface of 12 of 18 littoral enclosure mesocosms (5 x 10m) constructed in a 2-ha pond near Duluth, Minnesota. Water, sediment, macrophytes, and adult fathead minnows were analyzed for residue to determine th...

  19. FEASIBILITY STUDY OF THE POTENTIAL FOR HUMAN EXPOSURE TO PET-BORNE DIAZINON RESIDUES FOLLOWING LAWN APPLICATIONS

    EPA Science Inventory

    Diazinon (O,O-diethyl-O-[2-isopropyl-6-methylpyrimidin-4-yl]phosphorothioate) is a broad spectrum organophosphorus insecticide commonly used to control a variety of pest insects (ticks, grubs, ants, and fleas) on lawns (Earl et al. 1971; Tomlin, 1994). Recently, Stout II (1998)...

  20. Use of butterflies as nontarget insect test species and the acute toxicity and hazard of mosquito control insecticides.

    PubMed

    Hoang, Tham C; Pryor, Rachel L; Rand, Gary M; Frakes, Robert A

    2011-04-01

    Honeybees are the standard insect test species used for toxicity testing of pesticides on nontarget insects for the U.S. Environmental Protection Agency (U.S. EPA) under the Federal Insecticide Fungicide and Rodenticide Act (FIFRA). Butterflies are another important insect order and a valued ecological resource in pollination. The current study conducted acute toxicity tests with naled, permethrin, and dichlorvos on fifth larval instar (caterpillars) and adults of different native Florida, USA, butterfly species to determine median lethal doses (24-h LD50), because limited acute toxicity data are available with this major insect group. Thorax- and wing-only applications of each insecticide were conducted. Based on LD50s, thorax and wing application exposures were acutely toxic to both caterpillars and adults. Permethrin was the most acutely toxic insecticide after thorax exposure to fifth instars and adult butterflies. However, no generalization on acute toxicity (sensitivity) of the insecticides could be concluded based on exposures to fifth instars versus adult butterflies or on thorax versus wing exposures of adult butterflies. A comparison of LD50s of the butterflies from this study (caterpillars and adults) with honeybee LD50s for the adult mosquito insecticides on a µg/organism or µg/g basis indicates that several butterfly species are more sensitive to these insecticides than are honeybees. A comparison of species sensitivity distributions for all three insecticides shows that permethrin had the lowest 10th percentile. Using a hazard quotient approach indicates that both permethrin and naled applications in the field may present potential acute hazards to butterflies, whereas no acute hazard of dichlorvos is apparent in butterflies. Butterflies should be considered as potential test organisms when nontarget insect testing of pesticides is suggested under FIFRA. Copyright © 2011 SETAC.

  1. Insecticide-treated nets provide protection against malaria to children in an area of insecticide resistance in Southern Benin.

    PubMed

    Bradley, John; Ogouyèmi-Hounto, Aurore; Cornélie, Sylvie; Fassinou, Jacob; de Tove, Yolande Sissinto Savi; Adéothy, Adicath Adéola; Tokponnon, Filémon T; Makoutode, Patrick; Adechoubou, Alioun; Legba, Thibaut; Houansou, Telesphore; Kinde-Gazard, Dorothée; Akogbeto, Martin C; Massougbodji, Achille; Knox, Tessa Bellamy; Donnelly, Martin; Kleinschmidt, Immo

    2017-05-26

    Malaria control is heavily reliant on insecticides, especially pyrethroids. Resistance of mosquitoes to insecticides may threaten the effectiveness of insecticide-based vector control and lead to a resurgence of malaria in Africa. In 21 villages in Southern Benin with high levels of insecticide resistance, the resistance status of local vectors was measured at the same time as the prevalence of malaria infection in resident children. Children who used LLINs had lower levels of malaria infection [odds ratio = 0.76 (95% CI 0.59, 0.98, p = 0.033)]. There was no evidence that the effectiveness of nets was different in high and low resistance locations (p = 0.513). There was no association between village level resistance and village level malaria prevalence (p = 0.999). LLINs continue to offer individual protection against malaria infection in an area of high resistance. Insecticide resistance is not a reason to stop efforts to increase coverage of LLINs in Africa.

  2. Safety Assessment of Alkyl Esters as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart A; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of 237 alkyl esters for use in cosmetics. The alkyl esters included in this assessment have a variety of reported functions in cosmetics, with skin-conditioning agent being the most common function. The Panel reviewed available animal and clinical data in making its determination of safety on these ingredients, and where there were data gaps, similarity in structure, properties, functions, and uses of these ingredients allowed for extrapolation of the available toxicological data to assess the safety of the entire group. The Panel concluded that these ingredients are safe in cosmetic formulations in the present practices of use and concentration when formulated to be nonirritating. © The Author(s) 2015.

  3. Biodegradation of brominated and organophosphorus flame retardants.

    PubMed

    Waaijers, Susanne L; Parsons, John R

    2016-04-01

    Brominated flame retardants account for about 21% of the total production of flame retardants and many of these have been identified as persistent, bioaccumulative and toxic. Nevertheless, debromination of these chemicals under anaerobic conditions is well established, although this can increase their toxicity. Consequently, the production and use of these chemicals has been restricted and alternative products have been developed. Many of these are brominated compounds and share some of the disadvantages of the chemicals they are meant to replace. Therefore, other, nonbrominated, flame retardants such as organophosphorus compounds are also being used in increasing quantities, despite the fact that knowledge of their biodegradation and environmental fate is often lacking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Insecticidal components from field pea extracts: sequences of some variants of pea albumin 1b.

    PubMed

    Taylor, Wesley G; Sutherland, Daniel H; Olson, Douglas J H; Ross, Andrew R S; Fields, Paul G

    2004-12-15

    Methanol soluble insecticidal peptides with masses of 3752, 3757, and 3805 Da, isolated from crude extracts (C8 extracts) derived from the protein-enriched flour of commercial field peas [Pisum sativum (L.)], were purified by reversed phase chromatography and, after reduction and alkylation, were sequenced by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry with the aid of various peptidases. These major peptides were variants of pea albumin 1b (PA1b) with methionine sulfoxide rather than methionine at position 12. Peptide 3752 showed additional variations at positions 29 (valine for isoleucine) and 34 (histidine for asparagine). A minor, 37 amino acid peptide with a molecular mass of 3788 Da was also sequenced and differed from a known PA1b variant at positions 1, 25, and 31. Sequence variants of PA1b with their molecular masses were compiled, and variants that matched the accurate masses of the experimental peptides were used to narrow the search. MALDI postsource decay experiments on pronase fragments helped to confirm the sequences. Whole and dehulled field peas gave insecticidal C8 extracts in the laboratory that were enriched in peptides with masses of 3736, 3741, and 3789 Da, as determined by high-performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry. It was therefore concluded that oxidation of the methionine residues to methionine sulfoxide occurred primarily during the processing of dehulled peas in a mill.

  5. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    PubMed Central

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  6. Anti-biofilm action of nitric oxide-releasing alkyl-modified poly(amidoamine) dendrimers against Streptococcus mutans.

    PubMed

    Backlund, Christopher J; Worley, Brittany V; Schoenfisch, Mark H

    2016-01-01

    The effect of nitric oxide (NO)-releasing dendrimer hydrophobicity on Streptococcus mutans killing and biofilm disruption was examined at pH 7.4 and 6.4, the latter relevant to dental caries. Generation 1 (G1) poly(amidoamine) (PAMAM) dendrimers were modified with alkyl epoxides to generate propyl-, butyl-, hexyl-, octyl-, and dodecyl-functionalized dendrimers. The resulting secondary amines were reacted with NO to form N-diazeniumdiolate NO donor-modified dendrimer scaffolds (total NO ∼1μmol/mg). The bactericidal action of the NO-releasing dendrimers against both planktonic and biofilm-based S. mutans proved greatest with increasing alkyl chain length and at lower pH. Improved bactericidal efficacy at pH 6.4 was attributed to increased scaffold surface charge that enhanced dendrimer-bacteria association and ensuing membrane damage. For shorter alkyl chain (i.e., propyl and butyl) dendrimer modifications, increased antibacterial action at pH 6.4 was due to faster NO-release kinetics from proton-labile N-diazeniumdiolate NO donors. Octyl- and dodecyl-modified PAMAM dendrimers proved most effective for eradicating S. mutans biofilms with NO release mitigating dendrimer scaffold cytotoxicity. We report the antibacterial and anti-biofilm efficacy of dual-action nitric oxide (NO)-releasing dendrimers against S. mutans, an etiological agent in dental caries. This work was undertaken to enhance the anti-biofilm action of these scaffolds by employing various alkyl chain modifications. Furthermore, we evaluated the ability of NO to eradicate cariogenic biofilms. We found that at the lower pH associated with dental caries (pH ∼6.4), NO has a more pronounced antibacterial effect for alkyl modifications less capable of biofilm penetration and membrane disruption. Of greatest significance, we introduce dendrimers as a new macromolecular antibacterial agent against the cariogenic bacteria S. mutans. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All

  7. CADDIS Volume 2. Sources, Stressors and Responses: Insecticides - Simple Conceptual Diagram

    EPA Pesticide Factsheets

    Introduction to the insecticides module, when to list insecticides as a candidate cause, ways to measure insecticides, simple and detailed conceptual diagrams for insecticides, insecticides module references and literature reviews.

  8. CADDIS Volume 2. Sources, Stressors and Responses: Insecticides - Detailed Conceptual Diagram

    EPA Pesticide Factsheets

    Introduction to the insecticides module, when to list insecticides as a candidate cause, ways to measure insecticides, simple and detailed conceptual diagrams for insecticides, insecticides module references and literature reviews.

  9. Extensive hydrolysis of phosphonates as unexpected behaviour of the known His6-organophosphorus hydrolase.

    PubMed

    Lyagin, Ilya V; Andrianova, Mariia S; Efremenko, Elena N

    2016-07-01

    The catalytic activity of hexahistidine-tagged organophosphorus hydrolase (His6-OPH) in hydrolytic reactions of methylphosphonic acid (MPA) and its monoesters and diesters being decomposition products of R-VX was demonstrated for the first time. The catalytic constants of enzyme in such reactions were determined. The mechanism of C-P bond cleavage in the MPA by His6-OPH was proposed. Such reaction was estimated to be carried out with the soluble and nanocapsulated forms of His6-OPH. His6-OPH was demonstrated to be capable of degrading the key organophosphorus components of reaction masses (RMs) that are produced by the chemical detoxification of R-VX and RMs are multi-substrate mixtures for this enzyme. The kinetic model describing the behaviour of His6-OPH in RMs was proposed and was shown to adequately fit experimental points during degradation of the real samples of RMs.

  10. Composition of the Essential Oil of Salvia ballotiflora (Lamiaceae) and Its Insecticidal Activity.

    PubMed

    Cárdenas-Ortega, Norma Cecilia; González-Chávez, Marco Martín; Figueroa-Brito, Rodolfo; Flores-Macías, Antonio; Romo-Asunción, Diana; Martínez-González, Diana Elizabeth; Pérez-Moreno, Víctor; Ramos-López, Miguel Angel

    2015-05-05

    Essential oils can be used as an alternative to using synthetic insecticides for pest management. Therefore, the insectistatic and insecticidal activities of the essential oil of aerial parts of Salvia ballotiflora (Lamiaceae) were tested against the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). The results demonstrated insecticidal and insectistatical activities against this insect pest with concentrations at 80 µg·mL(-1) resulting in 20% larval viability and 10% pupal viability. The larval viability fifty (LV50) corresponded to a concentration of 128.8 µg·mL(-1). This oil also increased the duration of the larval phase by 5.5 days and reduced the pupal weight by 29.2% withrespect to the control. The GC-MS analysis of the essential oil of S. ballotiflora showed its main components to be caryophyllene oxide (15.97%), and β-caryophyllene (12.74%), which showed insecticidal and insectistatical activities against S. frugiperda. The insecticidal activity of β-caryophyllene began at 80 µg·mL(-1), giving a larval viability of 25% and viability pupal of 20%. The insectistatic activity also started at 80 µg·mL(-1) reducing the pupal weight by 22.1% with respect to control. Caryophyllene oxide showed insecticidal activity at 80 µg·mL(-1) giving a larval viability of 35% and viability pupal of 20%.The insectistatic activity started at 400 µg·mL(-1) and increased the larval phase by 8.8% days with respect to control. The LV50 values for these compounds were 153.1 and 146.5 µg·mL(-1), respectively.

  11. Insecticide exposure and farm history in relation to risk of lymphomas and leukemias in the Women’s Health Initiative (WHI) observational study cohort

    PubMed Central

    Schinasi, L; De Roos, AJ; Ray, RM; Edlefsen, KL; Parks, CG; Howard, BV; Meliker; Bonner, MR; Wallace, RB; LaCroix, AZ

    2017-01-01

    Purpose Relationships of farm history and insecticide exposure at home or work with lymphohematopoietic (LH) neoplasm risk were investigated in a large prospective cohort of United States women. Methods In questionnaires, women self-reported history living or working on a farm, personally mixing or applying insecticides, insecticide application in the home or workplace by a commercial service, and treating pets with insecticides. Relationships with non-Hodgkin lymphoma (NHL), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, plasma cell neoplasms, and myeloid leukemia were investigated using Cox proportional hazard models. Age and farming history were explored as effect modifiers. Results The analysis included 76,493 women and 822 NHL cases. Women who ever lived or worked on a farm had 1.12 times the risk of NHL (95% CI: 0.95–1.32) compared to those who did not. Women who reported that a commercial service ever applied insecticides in their immediate surroundings had 65% higher risk of CLL/SLL (95% CI: 1.15–2.38). Women younger than 65 who ever applied insecticides had 87% higher risk of DLBCL (95% CI: 1.13–3.09). Conclusions Insecticide exposures may contribute to risk of CLL/SLL and DLBCL. Future studies should examine relationships of LH subtypes with specific types of household insecticides. PMID:26365305

  12. 40 CFR 721.10677 - Alkyl phosphonate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10677 Alkyl phosphonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl phosphonate (PMN P-12-584...

  13. An Operational Framework for Insecticide Resistance Management Planning

    PubMed Central

    Chanda, Emmanuel; Thomsen, Edward K.; Musapa, Mulenga; Kamuliwo, Mulakwa; Brogdon, William G.; Norris, Douglas E.; Masaninga, Freddie; Wirtz, Robert; Sikaala, Chadwick H.; Muleba, Mbanga; Craig, Allen; Govere, John M.; Ranson, Hilary; Hemingway, Janet; Seyoum, Aklilu; Macdonald, Michael B.

    2016-01-01

    Arthropod vectors transmit organisms that cause many emerging and reemerging diseases, and their control is reliant mainly on the use of chemical insecticides. Only a few classes of insecticides are available for public health use, and the increased spread of insecticide resistance is a major threat to sustainable disease control. The primary strategy for mitigating the detrimental effects of insecticide resistance is the development of an insecticide resistance management plan. However, few examples exist to show how to implement such plans programmatically. We describe the formulation and implementation of a resistance management plan for mosquito vectors of human disease in Zambia. We also discuss challenges, steps taken to address the challenges, and directions for the future. PMID:27089119

  14. An Operational Framework for Insecticide Resistance Management Planning.

    PubMed

    Chanda, Emmanuel; Thomsen, Edward K; Musapa, Mulenga; Kamuliwo, Mulakwa; Brogdon, William G; Norris, Douglas E; Masaninga, Freddie; Wirtz, Robert; Sikaala, Chadwick H; Muleba, Mbanga; Craig, Allen; Govere, John M; Ranson, Hilary; Hemingway, Janet; Seyoum, Aklilu; Macdonald, Michael B; Coleman, Michael

    2016-05-01

    Arthropod vectors transmit organisms that cause many emerging and reemerging diseases, and their control is reliant mainly on the use of chemical insecticides. Only a few classes of insecticides are available for public health use, and the increased spread of insecticide resistance is a major threat to sustainable disease control. The primary strategy for mitigating the detrimental effects of insecticide resistance is the development of an insecticide resistance management plan. However, few examples exist to show how to implement such plans programmatically. We describe the formulation and implementation of a resistance management plan for mosquito vectors of human disease in Zambia. We also discuss challenges, steps taken to address the challenges, and directions for the future.

  15. Status of insecticide resistance in high-risk malaria provinces in Afghanistan.

    PubMed

    Ahmad, Mushtaq; Buhler, Cyril; Pignatelli, Patricia; Ranson, Hilary; Nahzat, Sami Mohammad; Naseem, Mohammad; Sabawoon, Muhammad Farooq; Siddiqi, Abdul Majeed; Vink, Martijn

    2016-02-18

    Insecticide resistance seriously threatens the efficacy of vector control interventions in malaria endemic countries. In Afghanistan, the status of insecticide resistance is largely unknown while distribution of long-lasting insecticidal nets has intensified in recent years. The main objective of this study was thus to measure the level of resistance to four classes of insecticides in provinces with medium to high risk of malaria transmission. Adult female mosquitoes were reared from larvae successively collected in the provinces of Nangarhar, Kunar, Badakhshan, Ghazni and Laghman from August to October 2014. WHO insecticide susceptibility tests were performed with DDT (4 %), malathion (5 %), bendiocarb (0.1 %), permethrin (0.75 %) and deltamethrin (0.05 %). In addition, the presence of kdr mutations was investigated in deltamethrin resistant and susceptible Anopheles stephensi mosquitoes collected in the eastern provinces of Nangarhar and Kunar. Analyses of mortality rates revealed emerging resistance against all four classes of insecticides in the provinces located east and south of the Hindu Kush mountain range. Resistance is observed in both An. stephensi and Anopheles culicifacies, the two dominant malaria vectors in these provinces. Anopheles superpictus in the northern province of Badakhshan shows a different pattern of susceptibility with suspected resistance observed only for deltamethrin and bendiocarb. Genotype analysis of knock down resistance (kdr) mutations at the voltage-gated channel gene from An. stephensi mosquitoes shows the presence of the known resistant alleles L1014S and L1014F. However, a significant fraction of deltamethrin-resistant mosquitoes were homozygous for the 1014L wild type allele indicating that other mechanisms must be considered to account for the observed pyrethroid resistance. This study confirms the importance of monitoring insecticide resistance for the development of an integrated vector management in Afghanistan. The

  16. Baseline susceptibility of Planococcus ficus (Hemiptera: Pseudococcidae) from California to select insecticides.

    PubMed

    Prabhaker, Nilima; Gispert, Carmen; Castle, Steven J

    2012-08-01

    Between 2006 and 2008, 20 populations of Planococcus ficus (Signoret), from Coachella and San Joaquin Valleys of California were measured in the laboratory for susceptibility to buprofezin, chlorpyrifos, dimethoate, methomyl, and imidacloprid. Toxicity was assessed using a petri dish bioassay technique for contact insecticides and by a systemic uptake technique for imidacloprid. Mixed life stages were tested for susceptibility to all insecticides except for buprofezin, which was measured against early and late instars (first, second, and third). Dose-response regression lines from the mortality data established LC50 and LC99 values by both techniques. Responses of populations from the two geographical locations to all five insecticides varied, in some cases significantly. Variations in susceptibility to each insecticide among sample sites showed a sevenfold difference for buprofezin, 11-fold to chlorpyrifos, ninefold to dimethoate, 24-fold to methomyl, and 8.5-fold to imidacloprid. In spite of susceptibility differences between populations, baseline toxicity data revealed that all five insecticides were quite effective based on low LC50s. Chlorpyrifos was the most toxic compound to Planococcus ficus populations as shown by lowest LC50s. Buprofezin was toxic to all immature stages but was more potent to first instars. The highest LC99 estimated by probit analysis of the bioassay data of all 20 populations for each compound was selected as a candidate discriminating dose for use in future resistance monitoring efforts. Establishment of baseline data and development of resistance monitoring tools such as bioassay methods and discriminating doses are essential elements of a sustainable management program for Planococcus ficus.

  17. Insecticide Resistance: Challenge to Pest Management and Basic Research

    NASA Astrophysics Data System (ADS)

    Brattsten, L. B.; Holyoke, C. W.; Leeper, J. R.; Raffa, K. F.

    1986-03-01

    The agricultural use of synthetic insecticides usually protects crops but imposes strong selection pressures that can result in the development of resistance. The most important resistance mechanisms are enhancement of the capacity to metabolically detoxify insecticides and alterations in target sites that prevent insecticides from binding to them. Insect control methods must incorporate strategies to minimize resistance development and preserve the utility of the insecticides. The most promising approach, integrated pest management, includes the use of chemical insecticides in combination with improved cultural and biologically based techniques.

  18. PREPARATION OF ALKYL PYROPHOSPHATE EXTRACTANTS

    DOEpatents

    Levine, C.A.; Skiens, W.E.; Moore, G.R.

    1960-08-01

    A process for providing superior solvent extractants for metal recovery processes is given wherein the extractant comprises an alkyl pyrophosphoric acid ester dissolved in an organic solvent diluent. Finely divided solid P/sub 2/O/ sub 5/ is slurried in an organic solvent-diluent selected from organic solvents such as kerosene, benzene, chlorobenzene, toluene, etc. An alcohol selected from the higher alcohols having 4 to 17 carbon atoms. e.g.. hexanol-1. heptanol-3, octanol-1. 2.6-dimethyl-heptanol-4, and decanol-1, is rapidly added to the P/sub 2/O/sub 5/ slurry in the amount of about 2 moles of alcohol to 1 mole of P/sub 2/ O/sub 5/. The temperature is maintained below about 110 deg C during the course of the P/sub 2/O/sub 5/-alcohol reaction. An alkyl pyrophosphate extractant compound is formed as a consequence of the reaction process. The alkyl pyrophosphate solvent-diluent extractant phase is useful in solvent extraction metal recovery processes.

  19. Antioxidant activity of alkyl gallates and glycosyl alkyl gallates in fish oil in water emulsions: relevance of their surface active properties and of the type of emulsifier.

    PubMed

    González, María J; Medina, Isabel; Maldonado, Olivia S; Lucas, Ricardo; Morales, Juan C

    2015-09-15

    The antioxidant activity of gallic acid and a series of alkyl gallates (C4-C18) and glycosylated alkyl gallates (C4-C18) on fish oil-in-water emulsions was studied. Three types of emulsifiers, lecithin, Tween-20 and sodium dodecyl sulphate (SDS) were tested. A nonlinear behavior of the antioxidant activity of alkyl gallates when increasing alkyl chain length was observed for emulsions prepared with lecithin. Medium-size alkyl gallates (C6-C12) were the best antioxidants. In contrast, for emulsions prepared with Tween-20, the antioxidants seem to follow the polar paradox. Glucosyl alkyl gallates were shown previously to be better surfactants than alkyl gallates. Nevertheless, they exhibited a worse antioxidant capacity than their corresponding alkyl gallates, in emulsions prepared with lecithin or Tween-20, indicating the greater relevance of having three OH groups at the polar head in comparison with having improved surfactant properties but just a di-ortho phenolic structure in the antioxidant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Insecticide Resistance and Metabolic Mechanisms Involved in Larval and Adult Stages of Aedes aegypti Insecticide-Resistant Reference Strains from Cuba.

    PubMed

    Bisset, Juan Andrés; Rodríguez, María Magdalena; French, Leydis; Severson, David W; Gutiérrez, Gladys; Hurtado, Daymi; Fuentes, Ilario

    2014-12-01

    Studies were conducted to compare levels of insecticide resistance and to determine the metabolic resistance mechanisms in larval and adult stages of Aedes aegypti from Cuba. Three insecticide-resistant reference strains of Ae. aegypti from Cuba were examined. These strains were derived from a Santiago de Cuba strain isolated in 1997; it was previously subjected to a strong selection for resistance to temephos (SAN-F6), deltamethrin (SAN-F12), and propoxur (SAN-F13) and routinely maintained in the laboratory under selection pressure up to the present time, when the study was carried out. In addition, an insecticide-susceptible strain was used for comparison. The insecticide resistance in larvae and adults was determined using standard World Health Organization methodologies. Insecticide resistance mechanisms were determined by biochemical assays. The esterases (α EST and β EST) and mixed function oxidase (MFO) activities were significantly higher in adults than in the larvae of the three resistant strains studied. The association of resistance level with the biochemical mechanism for each insecticide was established for each stage. The observed differences between larval and adult stages of Ae. aegypti in their levels of insecticide resistance and the biochemical mechanisms involved should be included as part of monitoring and surveillance activities in Ae. aegypti vector control programs.

  1. When intensity of deltamethrin resistance in Anopheles gambiae s.l. leads to loss of Long Lasting Insecticidal Nets bio-efficacy: a case study in north Cameroon.

    PubMed

    Etang, Josiane; Pennetier, Cédric; Piameu, Michael; Bouraima, Aziz; Chandre, Fabrice; Awono-Ambene, Parfait; Marc, Coosemans; Corbel, Vincent

    2016-03-08

    In Cameroon, insecticide resistance in Anopheles (An.) gambiae s.l. has been reported in several foci, prompting further investigations on associated patterns of Long-Lasting Insecticidal Nets (LLINs) bio-efficacy. The current study, conducted from June to August 2011, explored the intensity of deltamethrin resistance in An. gambiae s.l. from Pitoa and its impact on the residual bio-efficacy of LifeNet, a LLIN with deltamethrin incorporated into polypropylene nets (PND). Two-four days old females An. gambiae s.l. reared from larval collections in Pitoa were tested for susceptibility to DDT, permethrin and deltamethrin, using standard World Health Organization (WHO) tube assays. Intensity of deltamethrin resistance was explored using WHO tube assays, but across six working concentrations from 0.001 % to 0.5 %. Bio-efficacy of unwashed and washed PND was assessed using WHO cone test. Species identification and kdr 1014 genotyping were performed on mosquito samples that were not exposed to insecticides, using PCR-RFLP and HOLA methods respectively. The Kisumu reference susceptible strain of An. gambiae s.s. was used for comparisons. A total of 1895 An. gambiae s.l. specimens from Pitoa were used for resistance and PND bio-efficacy testing. This mosquito population was resistant to DDT, permethrin and deltamethrin, with 18-40 min knockdown times for 50 % of tested mosquitoes and 59-77 % mortality. Deltamethrin Resistance Ratio compared with the Kisumu strain was estimated at ≥500 fold. LifeNets were effective against the susceptible Kisumu (100 % knockdown (KD60min) and mortality) and the resistant Pitoa samples (95 % KD60min, 83-95 % mortality). However, the bio-efficacy gradually dropped against the Pitoa samples when nets were washed (X (2) = 35.887, df = 8, p < 0.001), and fell under the WHO efficacy threshold (80 % mortality and/or 95 % KD60min) between 10 and 15 washes. The Pitoa samples were composed of three sibling species: An. arabiensis (132

  2. Associated patterns of insecticide resistance in field populations of malaria vectors across Africa.

    PubMed

    Hancock, Penelope A; Wiebe, Antoinette; Gleave, Katherine A; Bhatt, Samir; Cameron, Ewan; Trett, Anna; Weetman, David; Smith, David L; Hemingway, Janet; Coleman, Michael; Gething, Peter W; Moyes, Catherine L

    2018-06-05

    The development of insecticide resistance in African malaria vectors threatens the continued efficacy of important vector control methods that rely on a limited set of insecticides. To understand the operational significance of resistance we require quantitative information about levels of resistance in field populations to the suite of vector control insecticides. Estimation of resistance is complicated by the sparsity of observations in field populations, variation in resistance over time and space at local and regional scales, and cross-resistance between different insecticide types. Using observations of the prevalence of resistance in mosquito species from the Anopheles gambiae complex sampled from 1,183 locations throughout Africa, we applied Bayesian geostatistical models to quantify patterns of covariation in resistance phenotypes across different insecticides. For resistance to the three pyrethroids tested, deltamethrin, permethrin, and λ-cyhalothrin, we found consistent forms of covariation across sub-Saharan Africa and covariation between resistance to these pyrethroids and resistance to DDT. We found no evidence of resistance interactions between carbamate and organophosphate insecticides or between these insecticides and those from other classes. For pyrethroids and DDT we found significant associations between predicted mean resistance and the observed frequency of kdr mutations in the Vgsc gene in field mosquito samples, with DDT showing the strongest association. These results improve our capacity to understand and predict resistance patterns throughout Africa and can guide the development of monitoring strategies. Copyright © 2018 the Author(s). Published by PNAS.

  3. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Hanafy M.; O'Neill, Paul M.; Hong, David

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the targetmore » tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.« less

  4. DEVELOPMENT OF RISK ASSESSMENT TECHNIQUES FOR SOIL BIOAVAILABILITY AND BIOACCUMULATION OF AN ORGANOPHOSPHORUS PESTICIDE

    EPA Science Inventory

    There is increased concern about the effects of organophosphorus (OP) pesticides on human and animal health. This class of chemicals has been shown to affect the immune function of macrophages and lymphocytes. Malathion, an OP compound, is one of the most widely used pesticides...

  5. Monoclonal antibody-based broad-specificity immunoassay for monitoring organophosphorus pesticides in environmental water samples

    USDA-ARS?s Scientific Manuscript database

    The extensive use of organophosphorus pesticides (OPs) in agriculture and domestic settings can result in widespread water contamination. The development of easy-to-use and rapid-screening immunoassay methods in a class-selective manner is a topic of considerable environmental interest. In this wo...

  6. Insecticide Mixtures Could Enhance the Toxicity of Insecticides in a Resistant Dairy Population of Musca domestica L

    PubMed Central

    Khan, Hafiz Azhar Ali; Akram, Waseem; Shad, Sarfraz Ali; Lee, Jong-Jin

    2013-01-01

    House flies, Musca domestica L., are important pests of dairy operations worldwide, with the ability to adapt wide range of environmental conditions. There are a number of insecticides used for their management, but development of resistance is a serious problem. Insecticide mixtures could enhance the toxicity of insecticides in resistant insect pests, thus resulting as a potential resistance management tool. The toxicity of bifenthrin, cypermethrin, deltamethrin, chlorpyrifos, profenofos, emamectin benzoate and fipronil were assessed separately, and in mixtures against house flies. A field-collected population was significantly resistant to all the insecticides under investigation when compared with a laboratory susceptible strain. Most of the insecticide mixtures like one pyrethroid with other compounds evaluated under two conditions (1∶1-“A” and LC50: LC50-“B”) significantly increased the toxicity of pyrethroids in the field population. Under both conditions, the combination indices of pyrethroids with other compounds, in most of the cases, were significantly below 1, suggesting synergism. The enzyme inhibitors, PBO and DEF, when used in combination with insecticides against the resistant population, toxicities of bifenthrin, cypermethrin, deltamethrin and emamectin were significantly increased, suggesting esterase and monooxygenase based resistance mechanism. The toxicities of bifenthrin, cypermethrin and deltamethrin in the resistant population of house flies could be enhanced by the combination with chlorpyrifos, profenofos, emamectin and fipronil. The findings of the present study might have practical significance for resistance management in house flies. PMID:23613758

  7. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana.

    PubMed

    Mitchell, Sara N; Stevenson, Bradley J; Müller, Pie; Wilding, Craig S; Egyir-Yawson, Alexander; Field, Stuart G; Hemingway, Janet; Paine, Mark J I; Ranson, Hilary; Donnelly, Martin James

    2012-04-17

    In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a unique whole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P < 0.0001) belonged to the cytochrome P450 gene CYP6M2. This gene is associated with pyrethroid resistance in wild A. gambiae s.s. populations) and can metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate.

  8. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana

    PubMed Central

    Mitchell, Sara N.; Stevenson, Bradley J.; Müller, Pie; Wilding, Craig S.; Egyir-Yawson, Alexander; Field, Stuart G.; Hemingway, Janet; Paine, Mark J. I.; Ranson, Hilary; Donnelly, Martin James

    2012-01-01

    In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a unique whole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P < 0.0001) belonged to the cytochrome P450 gene CYP6M2. This gene is associated with pyrethroid resistance in wild A. gambiae s.s. populations) and can metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate. PMID:22460795

  9. Susceptibility of Anopheles gambiae to insecticides used for malaria vector control in Rwanda.

    PubMed

    Hakizimana, Emmanuel; Karema, Corine; Munyakanage, Dunia; Iranzi, Gad; Githure, John; Tongren, Jon Eric; Takken, Willem; Binagwaho, Agnes; Koenraadt, Constantianus J M

    2016-12-01

    The widespread emergence of resistance to pyrethroids is a major threat to the gains made in malaria control. To monitor the presence and possible emergence of resistance against a variety of insecticides used for malaria control in Rwanda, nationwide insecticide resistance surveys were conducted in 2011 and 2013. Larvae of Anopheles gambiae sensu lato mosquitoes were collected in 12 sentinel sites throughout Rwanda. These were reared to adults and analysed for knock-down and mortality using WHO insecticide test papers with standard diagnostic doses of the recommended insecticides. A sub-sample of tested specimens was analysed for the presence of knockdown resistance (kdr) mutations. A total of 14,311 mosquitoes were tested and from a sample of 1406 specimens, 1165 (82.9%) were identified as Anopheles arabiensis and 241 (17.1%) as Anopheles gambiae sensu stricto. Mortality results indicated a significant increase in resistance to lambda-cyhalothrin from 2011 to 2013 in 83% of the sites, permethrin in 25% of the sites, deltamethrin in 25% of the sites and DDT in 50% of the sites. Mosquitoes from 83% of the sites showed full susceptibility to bendiocarb and 17% of sites were suspected to harbour resistance that requires further confirmation. No resistance was observed to fenitrothion in all study sites during the entire survey. The kdr genotype results in An. gambiae s.s. showed that 67 (50%) possessed susceptibility (SS) alleles, while 35 (26.1%) and 32 (23.9%) mosquitoes had heterozygous (RS) and homozygous (RR) alleles, respectively. Of the 591 An. arabiensis genotyped, 425 (71.9%) possessed homozygous (SS) alleles while 158 (26.7%) and 8 (1.4%) had heterozygous (RS) and homozygous (RR) alleles, respectively. Metabolic resistance involving oxidase enzymes was also detected using the synergist PBO. This is the first nationwide study of insecticide resistance in malaria vectors in Rwanda. It shows the gradual increase of insecticide resistance to pyrethroids (lambda

  10. Effect of the C-2 hydroxyl group on the mesomorphism of alkyl glycosides: synthesis and thermotropic behavior of alkyl 2-deoxy-D-arabino-hexopyranosides.

    PubMed

    Singh, Madan Kumar; Jayaraman, Narayanaswamy; Rao, D S Shankar; Prasad, S Krishna

    2008-10-01

    A homologous series of alkyl 2-deoxy-alpha-d-arabino-hexopyranosides and alkyl 2-deoxy-beta-d-arabino-hexopyranosides were synthesized, upon glycosylation of 1-alkanols (from C8 to C18 alkanols) with ethyl 2-deoxy-3,4,6-tri-O-acetyl-1-thio-d-arabino-hexopyranoside, followed by a deprotection. The thermotropic behavior of these new types of alkyl glycosides was investigated. It was observed that the beta-anomers of these alkyl glycosides, bearing nonyl to tetradecyl alkyl chain are mesomorphic, exhibiting monotropic smectic A phase. In contrast, the alpha-anomers are all non-mesomorphic. An effort to identify the liquid crystalline behavior of binary mixtures of the alpha- and beta-anomers was undertaken and it was found that mixtures containing equimolar amounts of the anomers exhibited mesomorphic behavior. A fine balance of the hydrophilic and hydrophobic components within the molecule is also found to be important for the alkyl 2-deoxy glycosides to form the mesophase.

  11. Direct N-alkylation of unprotected amino acids with alcohols

    PubMed Central

    Yan, Tao; Feringa, Ben L.; Barta, Katalin

    2017-01-01

    N-alkyl amino acids find widespread application as highly valuable, renewable building blocks. However, traditional synthesis methodologies to obtain these suffer from serious limitations, providing a major challenge to develop sustainable alternatives. We report the first powerful catalytic strategy for the direct N-alkylation of unprotected α-amino acids with alcohols. This method is highly selective, produces water as the only side product leading to a simple purification procedure, and a variety of α-amino acids are mono- or di-N-alkylated, in most cases with excellent retention of optical purity. The hydrophobicity of the products is tunable, and even simple peptides are selectively alkylated. An iron-catalyzed route to mono-N-alkyl amino acids using renewable fatty alcohols is also described that represents an ideal green transformation for obtaining fully bio-based surfactants. PMID:29226249

  12. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length.

    PubMed

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S; Du, Yang; Nielsen, Anne K; Byrne, Bernadette; Kobilka, Brian K; Loland, Claus J; Guan, Lan; Chae, Pil Seok

    2016-12-14

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C 12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile-lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Salvage of failed protein targets by reductive alkylation.

    PubMed

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.

  14. Salvage of Failed Protein Targets by Reductive Alkylation

    PubMed Central

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719

  15. Atmospheric influence on the distribution of organic pollutants in the Guadalquivir River estuary, SW Spain.

    PubMed

    Fernández-Gómez, Cristal; López-López, José Antonio; Matamoros, Victor; Díez, Sergi; García-Vargas, Manuel; Moreno, Carlos

    2013-04-01

    In the lower Guadalquivir river basin, a system stressed by a wide variety of anthropogenic activities, eight pesticides (four triazines, two chloroacetanilide herbicides, one organochlorine, and one organophosphorus insecticide); and four emerging pollutants (two personal care products, one organophosphorous flame retardant, and one xanthine alkaloid) were analyzed in river water during a 2-year monitoring program, and after rain episodes. Samples were extracted using the solid phase extraction (SPE) technique prior to determination of compounds using gas chromatograph coupled to a mass spectrometer detector. Except for caffeine, recoveries were mostly above 80 %, while limits of detection and quantification were in the low nanograms per liter level (except for dimethoate). Terbuthylazine, simazine (triazine herbicides), and dimethoate (organophosphorus insecticide), present in agrochemicals, were predominant in the river water, although concentrations were below the quality standards established by the EU Water-Framework-Directive. A general trend to increase concentration was observed after rain events, in particular for pesticides, possibly as a consequence of surface runoff.

  16. MOVEMENT AND DEPOSITION OF TWO ORGANOPHOSPHORUS PESTICIDES WITHIN A RESIDENCE AFTER INTERIOR AND EXTERIOR APPLICATIONS

    EPA Science Inventory

    Post-application temporal and spatial distributions of two organophosphorus pesticides, diazinon and chlorpyrifos, were monitored after homeowner applications for indoor and outdoor insect control. Samples were taken before and up to 12 days after treatments in the family room...

  17. Insecticide resistance in bedbugs in Thailand and laboratory evaluation of insecticides for the control of Cimex hemipterus and Cimex lectularius (Hemiptera: Cimicidae).

    PubMed

    Tawatsin, Apiwat; Thavara, Usavadee; Chompoosri, Jakkrawarn; Phusup, Yutthana; Jonjang, Nisarat; Khumsawads, Chayada; Bhakdeenuan, Payu; Sawanpanyalert, Pathom; Asavadachanukorn, Preecha; Mulla, Mir S; Siriyasatien, Padet; Debboun, Mustapha

    2011-09-01

    Bedbugs are found in many countries around the world, and in some regions they are resistant to numerous insecticides. This study surveyed bedbugs in Thailand and determined their resistance to insecticides. The surveys were carried out in six provinces that attract large numbers of foreign tourists: Bangkok, Chonburi, Chiang Mai, Ubon Ratchathani, Phuket, and Krabi. Bedbugs were collected from hotels and colonized in the laboratory to evaluate their resistance to insecticides. Cimex hemipterus (F.) was found in some hotels in Bangkok, Chonburi, Phuket, and Krabi, whereas Cimex lectularius L. was found only in hotels in Chiang Mai. No bedbugs were found in Ubon Ratchathani. The colonized bedbugs showed resistance to groups of insecticides, including organochlorines (dichlorodiphenyl trichloroethane, dieldrin), carbamates (bendiocarb, propoxur), organophosphates (malathion, fenitrothion), and pyrethroids (cyfluthrin, deltamethrin, permethrin, lambda-cyhalothrin, etofenprox) in tests using World Health Organization insecticide-impregnated papers. The new insecticides imidacloprid (neonicotinoid group), chlorfenapyr (pyrrole group), and fipronil (phenylpyrazole group) were effective against the bedbugs; however, organophosphate (diazinon), carbamates (fenobucarb, propoxur), and pyrethroids (bifenthrin, cypermethrin, esfenvalerate, etofenprox) were ineffective. Aerosols containing various pyrethroid insecticides with two to four different active ingredients were effective against the bedbugs. The results obtained from this study suggested that both species of bedbugs in Thailand have developed marked resistance to various groups of insecticides, especially those in the pyrethroid group, which are the most common insecticides used for pest control. Therefore, an integrated pest management should be implemented for managing bedbugs in Thailand.

  18. Balancing repair and tolerance of DNA damage caused by alkylating agents.

    PubMed

    Fu, Dragony; Calvo, Jennifer A; Samson, Leona D

    2012-01-12

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

  19. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  20. Micellar catalyzed degradation of fenitrothion, an organophosphorus pesticide, in solution and soils.

    PubMed

    Balakrishnan, Vimal K; Buncel, Erwin; Vanloon, Gary W

    2005-08-01

    We report on a study of the decomposition of fenitrothion (an organophosphorus pesticide that is a persistent contaminant in soils and groundwater) as catalyzed by cetyltrimethylammonium (CTA+) micelles. The CTA micelles were associated with two types of counterions: (1) inert counterions (e.g. CTABr) and (2) reactive counterions (e.g. CTAOH). The reactive counterion surfactants used were hydroxide anion (HO-) as a normal nucleophile and hydroperoxide anion (HOO-) and the anion of pyruvaldehyde oxime (MINA-) as two alpha-nucleophiles. The reactivity order followed: CTABr < CTAOH < CTAMINA < CTAOOH. Treatment of the rate data using the Pseudo-Phase Ion Exchange (PPIE) model of micellar catalysis showed the ratio k2M/k2w to be less than unity for all the surfactants employed. Rather than arising from a "true catalysis", we attributed the observed rate enhancements to a "concentration effect", where both pesticide and nucleophile were incorporated into the small micellar phase volume. Furthermore, the CTAOOH/CTAOH pair gave an alpha-effect of 57, showing that the alpha-effect can play an important role in micellar systems. We further investigated the effectiveness of reactive counterion surfactants in decontaminating selected environmental solids that were spiked with 27 ppb fenitrothion. The solids were as follows: the clay mineral montmorillonite and SO-1 and S0-2 soils (obtained from the Canadian Certified Reference Materials Project). The reactive counterion surfactant solutions significantly enhanced the rate of fenitrothion degradation in the spiked solids over that obtained when the spiked solid was placed in contact with either 0.02 M KOH or water. The rate enhancements followed the order CTAOOH > CTAMINA approximately CTAOH > KOH > water. We conclude that reactive counterion surfactants, especially with alpha-nucleophiles, hold great potential in terms of remediating soils contaminated by toxic organophosphorus esters.

  1. Environmental Fate of Soil Applied Neonicotinoid Insecticides in an Irrigated Potato Agroecosystem

    PubMed Central

    Huseth, Anders S.; Groves, Russell L.

    2014-01-01

    Since 1995, neonicotinoid insecticides have been a critical component of arthropod management in potato, Solanum tuberosum L. Recent detections of neonicotinoids in groundwater have generated questions about the sources of these contaminants and the relative contribution from commodities in U.S. agriculture. Delivery of neonicotinoids to crops typically occurs as a seed or in-furrow treatment to manage early season insect herbivores. Applied in this way, these insecticides become systemically mobile in the plant and provide control of key pest species. An outcome of this project links these soil insecticide application strategies in crop plants with neonicotinoid contamination of water leaching from the application zone. In 2011 and 2012, our objectives were to document the temporal patterns of neonicotinoid leachate below the planting furrow following common insecticide delivery methods in potato. Leaching loss of thiamethoxam from potato was measured using pan lysimeters from three at-plant treatments and one foliar application treatment. Insecticide concentration in leachate was assessed for six consecutive months using liquid chromatography-tandem mass spectrometry. Findings from this study suggest leaching of neonicotinoids from potato may be greater following crop harvest in comparison to other times during the growing season. Furthermore, this study documented recycling of neonicotinoid insecticides from contaminated groundwater back onto the crop via high capacity irrigation wells. These results document interactions between cultivated potato, different neonicotinoid delivery methods, and the potential for subsurface water contamination via leaching. PMID:24823765

  2. HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC SEPARATION OF THE ENANTIOMERS OF ORGANOPHOSPHORUS PESTICIDES ON POLYSACCHARIDE CHIRAL STATIONARY PHASES

    EPA Science Inventory

    High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) was obtained on polysaccharide enantioselective HPLC columns using alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, fonofos, fenamiph...

  3. Identification of alkyl carbazoles and alkyl benzocarbazoles in Brazilian petroleum derivatives.

    PubMed

    Oliveira, Eniz Conceição; Vaz de Campos, Maria Cecília; Rodrigues, Maria Regina Alves; Pérez, Valéria Flores; Melecchi, Maria Inês Soares; Vale, Maria Goreti Rodrigues; Zini, Cláudia Alcaraz; Caramão, Elina Bastos

    2006-02-10

    Carbozoles are important compounds in crude oils, as they may be used as geochemical tracers, being the major type of nitrogen compounds in petroleum. At the same time, they are regarded as undesirable due to the problems they may cause in the refining process, such as catalyst poisoning, corrosion, gum or color formation in final products. As separation and identification of carbazoles are challenging goals, this work presents a chromatographic method, made of a pre-fractionation on neutral alumina followed by the separation and identification of two classes of carbazoles using FeCl(3)/Chromossorb W and gas chromatograph with mass spectrometer (GC/MS) (SIM-single ion monitoring mode) analysis. For the first time, a series of alkyl carbazoles and alkyl benzocarbazoles were identified in heavy gas oil (HGO) and atmospheric residue of distillation (ARD) obtained from Brazilian petroleum.

  4. EFFECTS OF TEMPERATURE AND SOLVENT COMPOSITION ON THE CHIRALCEL OJ SEPARATION OF CHIRAL ORGANOPHOSPHORUS PESTICIDES

    EPA Science Inventory

    The separation of the enantiomers of twelve organophosphorus pesticides (OPs) was investigated on the CHIRALCEL?OJ column to determine whether the mobile phase composition, flow rate and column temperature could be optimized to yield at least partial separation of the enantiomers...

  5. Synergistic Combinations of a Pyrethroid Insecticide and an Emulsifiable Oil Formulation of Beauveria bassiana to Overcome Insecticide Resistance in Listronotus maculicollis (Coleoptera: Curculionidae).

    PubMed

    Wu, Shaohui; Kostromytska, Olga S; Koppenhöfer, Albrecht M

    2017-08-01

    The annual bluegrass weevil, Listronotus maculicollis (Kirby), is a major pest of golf course turf in eastern North America and has become particularly problematic owing to widespread development of insecticide resistance. As an alternative option to manage resistant adult L. maculicollis, we explored combinations of the pyrethroid insecticide bifenthrin with an emulsifiable oil formulation of the entomopathogenic fungus Beauveria bassiana strain GHA (Bb ES). Combinations synergistically enhanced mortality in both insecticide-susceptible and insecticide-resistant L. maculicollis adults in the laboratory when bifenthrin was used at LC50s for each population. To determine the component behind the synergism, technical spores of B. bassiana GHA and the emulsifiable oil carrier in the fungal formulation were tested separately or in combination with bifenthrin. In both separate and combined applications, the emulsifiable oil carrier was responsible for high mortality within 3 d after treatment and interacted synergistically with bifenthrin, whereas fungus-induced mortality started later. Strong synergism was also observed in three field experiments with a relatively resistant L. maculicollis population. Combinations of Bb ES and bifenthrin hold promise as an effective L. maculicollis management tool, particularly of pyrethroid-resistant populations. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum.

    PubMed

    Meriga, Balaji; Mopuri, Ramgopal; MuraliKrishna, T

    2012-05-01

    To evaluate the insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum (A. sativum). Dried bulbs of A. sativum were extracted with different solvents and evaluated for insecticidal, antimicrobial and antioxidant activities. Aqueous and methanol extracts showed highest insecticidal activity (mortality rate of 81% and 64% respectively) against the larvae of Spodoptera litura (S. litura) at a concentration of 1 000 ppm. With regard to antimicrobial activity, aqueous extract exhibited antibacterial activity against gram positive (Bacillus subtilis, Staphylococcus aureu,) and gram negative (Escherichia coli and Klebsiella pneumonia) strains and antifungal activity against Candida albicans. While methanol extract showed antimicrobial activity against all the tested micro organisms except two (Staphylococcus aureus and Candida albicans), the extracts of hexane, chloroform and ethyl acetate did not show any anti microbial activity. Minimum inhibitory concentration of aqueous and methanol extracts against tested bacterial and fungal strains was 100-150 μg/mL. Antioxidant activity of the bulb extracts was evaluated in terms of inhibition of free radicals by 2, 2'-diphenly-1-picrylhydrazyl. Aqueous and methanol extracts exhibited strong antioxidant activity (80%-90% of the standard). Antioxidant and antimicrobial activity of A. sativum against the tested organisms therefore, provides scientific basis for its utilization in traditional and folk medicine. Also, our results demonstrated the insecticidal efficacy of A. sativum against S. litura, a polyphagous insect. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  7. Radioligand Recognition of Insecticide Targets.

    PubMed

    Casida, John E

    2018-04-04

    Insecticide radioligands allow the direct recognition and analysis of the targets and mechanisms of toxic action critical to effective and safe pest control. These radioligands are either the insecticides themselves or analogs that bind at the same or coupled sites. Preferred radioligands and their targets, often in both insects and mammals, are trioxabicyclooctanes for the γ-aminobutyric acid (GABA) receptor, avermectin for the glutamate receptor, imidacloprid for the nicotinic receptor, ryanodine and chlorantraniliprole for the ryanodine receptor, and rotenone or pyridaben for NADH + ubiquinone oxidoreductase. Pyrethroids and other Na + channel modulator insecticides are generally poor radioligands due to lipophilicity and high nonspecific binding. For target site validation, the structure-activity relationships competing with the radioligand in the binding assays should be the same as that for insecticidal activity or toxicity except for rapidly detoxified or proinsecticide analogs. Once the radioligand assay is validated for relevance, it will often help define target site modifications on selection of resistant pest strains, selectivity between insects and mammals, and interaction with antidotes and other chemicals at modulator sites. Binding assays also serve for receptor isolation and photoaffinity labeling to characterize the interactions involved.

  8. Insecticidal and repellent activities of insecticide-sucrose solutions to Culex pipiens molestus (Diptera: Culicidae) under laboratory and field conditions.

    PubMed

    Shin, Ehyun; Park, Chan; Ahn, Young-Joon; Lee, Dong-Kyu; Chang, Kyu-Sik

    2011-06-01

    Culex pipiens molestus Forskal has been reported as a dominant species in underground structures of urban areas in the Republic of Korea (ROK) during all seasons and becomes bothersome to humans in late autumn and winter. Most Cx. pipiens molestus in septic tanks are controlled in the ROK using larvicides such as Bt and IGR. However, there are a number of problems associated with larvicides, such as high cost and requirement for frequent use. In the present work, a new control method for Cx. pipiens molestus in septic tanks by using mixtures of sucrose solution with insecticides was investigated. The insecticidal and repellent activities of ten insecticides were evaluated for best control of Cx. pipiens molestus in septic tanks. Firstly, differences in susceptibilities to insecticides were evaluated in topical assays by forced direct contact bioassay and in a screened wire cage by free direct contact bioassay. The difference in insecticide susceptibility in the mosquitoes was the result of repellency by the insecticides. In three septic tanks, the density of Culex mosquitoes was sharply reduced by a deltamethrin-sucrose solution kit. The results demonstrated the potential for mosquito control by deltamethrin-sucrose solution, and the study offers basic information related to mosquito control in septic tanks. Copyright © 2011 Society of Chemical Industry.

  9. 40 CFR 721.10548 - Mixed alkyl phosphate esters alkoxylated (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed alkyl phosphate esters... Specific Chemical Substances § 721.10548 Mixed alkyl phosphate esters alkoxylated (generic). (a) Chemical... as mixed alkyl phosphate esters alkoxylated (PMN P-04-624) is subject to reporting under this section...

  10. 40 CFR 721.10548 - Mixed alkyl phosphate esters alkoxylated (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed alkyl phosphate esters... Specific Chemical Substances § 721.10548 Mixed alkyl phosphate esters alkoxylated (generic). (a) Chemical... as mixed alkyl phosphate esters alkoxylated (PMN P-04-624) is subject to reporting under this section...

  11. Status of pyrethroid resistance in Anopheles gambiae s. s. M form prior to the scaling up of Long Lasting Insecticidal Nets (LLINs) in Adzopé, Eastern Côte d’Ivoire

    PubMed Central

    2012-01-01

    Background The growing development of pyrethroid resistance constitutes a serious threat to malaria control programmes and if measures are not taken in time, resistance may compromise control efforts in the foreseeable future. Prior to Long Lasting Insecticidal Nets (LLINs) distribution in Eastern Cote d’Ivoire, we conducted bioassays to inform the National Malaria Control Programme of the resistance status of the main malaria vector, Anopheles gambiae s. s. and the need for close surveillance of resistance. Methods Larvae of An. gambiae s. s. were collected in two areas of Adzopé (Port-Bouët and Tsassodji) and reared to adults. WHO susceptibility tests with impregnated filter papers were carried out to detect resistance to three pyrethroids commonly used to develop LLINs: permethrin 1%, deltamethrin 0.05% and lambda-cyhalothrin 0.05%. Molecular assays were conducted to detect M and S forms and the L1014F kdr allele in individual mosquitoes. Results Resistance, at various degrees was detected in both areas of Adzopé. Overall, populations of An. gambiae at both sites surveyed showed equivalent frequency of the L1014F kdr allele (0.67) but for all tested pyrethroids, there were significantly higher survival rates for mosquitoes from Tsassodji (32–58%) than those from Port-Bouët (3–32%) (p < 0.001), indicating the implication of resistance mechanisms other than kdr alone. During the survey period (May–June) in this forested area of Côte d’Ivoire, An. gambiae s. s. found were exclusively of the M form and were apparently selected for pyrethroid resistance through agricultural and household usage of insecticides. Conclusion Prior to LLINs scaling up in Eastern Côte d’Ivoire, resistance was largely present at various levels in An. gambiae. Underlying mechanisms included the high frequency of the L1014F kdr mutation and other unidentified components, probably metabolic detoxifiers. Their impact on the efficacy of the planned strategy (LLINs) in the

  12. Insecticide Exposures on Commercial Aircraft: A Literature Review and Screening Level Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena, Randy I.; McKone, Thomas E.

    2008-10-01

    The objective of this project was to provide initial estimates of the relationship between insecticide use on passenger aircraft and exposure levels present in the cabin environment. The work was initially divided into three tasks including 1) a review of insecticide application practices in commercial aircraft, 2) exploratory measurements of insecticide concentrations in treated aircraft and 3) screening level exposure modeling. Task 1 gathered information that is needed to assess the time-concentration history of insecticides in the airline cabin. The literature review focused on application practices, information about the cabin environment and existing measurements of exposure concentrations following treatment. Informationmore » from the airlines was not available for estimating insecticide application rates in the U.S. domestic fleet or for understanding how frequently equipment rotate into domestic routes following insecticide treatment. However, the World Health Organization (WHO) recommends several methods for treating aircraft with insecticide. Although there is evidence that these WHO guidelines may not always be followed, and that practices vary by airline, destination, and/or applicator company, the guidelines in combination with information related to other indoor environments provides a plausible basis for estimating insecticide loading rates on aircraft. The review also found that while measurements of exposure concentrations following simulated aerosol applications are available, measurements following residual treatment of aircraft or applications in domestic aircraft are lacking. Task 2 focused on developing an approach to monitor exposure concentrations in aircraft using a combination of active and passive sampling methods. An existing active sampling approach was intended to provide data immediately following treatment while a passive sampler was developed to provide wider coverage of the fleet over longer sampling periods. The passive

  13. Hormonal enhancement of insecticide efficacy in Tribolium castaneum: oxidative stress and metabolic aspects.

    PubMed

    Plavšin, Ivana; Stašková, Tereza; Šerý, Michal; Smýkal, Vlastimil; Hackenberger, Branimir K; Kodrík, Dalibor

    2015-04-01

    Insect anti-stress responses, including those induced by insecticides, are controlled by adipokinetic hormones (AKHs). We examined the physiological consequences of Pyrap-AKH application on Tribolium castaneum adults (AKH-normal and AKH-deficient prepared by the RNAi technique) treated by two insecticides, pirimiphos-methyl and deltamethrin. Co-application of pirimiphos-methyl and/or deltamethrin with AKH significantly increased beetle mortality compared with application of the insecticides alone. This co-treatment was accompanied by substantial stimulation of general metabolism, as monitored by carbon dioxide production. Further, the insecticide treatment alone affected some basic markers of oxidative stress: it lowered total antioxidative capacity as well as the activity of superoxide dismutase in the beetle body; in addition, it enhanced the activity of catalase and glutathione-S-transferase. However, these discrepancies in oxidative stress markers were eliminated/reduced by co-application with Pyrap-AKH. We suggest that the elevation of metabolism, which is probably accompanied with faster turnover of toxins, might be responsible for the higher mortality that results after AKH and insecticide co-application. Changes in oxidative stress markers are probably not included in the mechanisms responsible for increased mortality. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Separating esterase targets of organophosphorus compounds in the brain by preparative chromatography.

    PubMed

    Mangas, I; Vilanova, E; Benabent, M; Estévez, J

    2014-02-10

    Low level exposure to organophosphorus esters (OPs) may cause long-term neurological effects and affect specific cognition domains in experimental animals and humans. Action on known targets cannot explain most of these effects by. Soluble carboxylesterases (EC 3.1.1.1) of chicken brain have been kinetically discriminated using paraoxon, mipafox and phenylmethyl sulfonylfluoride as inhibitors and phenyl valerate as a substrate. Three different enzymatic components were discriminated and called Eα, Eβ and Eγ. In this work, a fractionation procedure with various steps was developed using protein native separation methods by preparative HPLC. Gel permeation chromatography followed by ion exchange chromatography allowed enriched fractions with different kinetic behaviors. The soluble chicken brain fraction was fractionated, while total esterase activity, proteins and enzymatic components Eα, Eβ and Eγ were monitored in each subfraction. After the analysis, 13 fractions were pooled and conserved. Preincubation of the soluble chicken brain fraction of with the organophosphorus mipafox gave rise to a major change in the ion exchange chromatography profile, but not in the molecular exchanged chromatography profile, which suggest that mipafox permanently modifies the ionic properties of numerous proteins. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Toxicity of five forest insecticides to cutthroat trout and two species of aquatic invertebrates

    USGS Publications Warehouse

    Woodward, D.F.; Mauck, W.L.

    1980-01-01

    The Northern Rocky Mountain region has had scattered infestation of the western spruce budworm Christoneura occidentalis since the early 1900's (U.S. DEPARTMENT OF AGRICULTURE (USDA) 1976b). On the basis of aerial surveys in 1975, TUNNOCK et al. (1976), estimated that budworm defoliation occurred on 2,278,804 acres of six National Forests in Montana. Since the use of DDT was banned in 1972, there has been a need to develop alternative insecticides with the efficacy of DDT but without its environmental risk. These insecticides must be effective in controlling the budworm, but should not persist in the environment or be toxic to other organisms. The organophosphate and carbamate insecticides are relatively nonpersistent and generally present only a moderate hazard to fish when applied according to label recommendations. The USDA Forest Service has been investigating the effectiveness of these two classes of insecticides against the budworm, and the Columbia National Fisheries Research Laboratory of the U.S. Fish and Wildlife Service has been cooperating with the Forest Service conducted pilot control projects in eastern Montana in 1975 and 1976 to determine the efficacy and environmental impact of acephate, carbaryl, and trichlorfon in controlling the western budworm (USDA 1976 b). In 1975, a similar type project was carried out in Maine with aminocarb, fenitrothion, and trichlorfon (USDA 1976 a).Acephate, fenitrothion, and trichlorfon (organophosphate insecticides) and aminocarb and carbaryl (carbamate insecticides) were selected for toxicity tests against cutthroat trout (Salmo clarki), a stonefly (Pteronarcella badia), and a freshwater amphipod (Gammarus pseudolimnaeus) edemic in streams of the northern Rocky Mountains. Populations of cutthroat trout inhabit lakes and streams in the Rocky Mountains which include some of the most pristine habitat and fisheries in North America. Pteronarcella and Gammarus provide forage for cutthroat trout and feed on decaying

  16. Degradation of Insecticides in Poultry Manure: Determining the Insecticidal Treatment Interval for Managing House Fly (Diptera: Muscidae) Populations in Poultry Farms.

    PubMed

    Ong, Song-Quan; Ab Majid, Abdul Hafiz; Ahmad, Hamdan

    2016-04-01

    It is crucial to understand the degradation pattern of insecticides when designing a sustainable control program for the house fly, Musca domestica (L.), on poultry farms. The aim of this study was to determine the half-life and degradation rates of cyromazine, chlorpyrifos, and cypermethrin by spiking these insecticides into poultry manure, and then quantitatively analyzing the insecticide residue using ultra-performance liquid chromatography. The insecticides were later tested in the field in order to study the appropriate insecticidal treatment intervals. Bio-assays on manure samples were later tested at 3, 7, 10, and 15 d for bio-efficacy on susceptible house fly larvae. Degradation analysis demonstrated that cyromazine has the shortest half-life (3.01 d) compared with chlorpyrifos (4.36 d) and cypermethrin (3.75 d). Cyromazine also had a significantly greater degradation rate compared with chlorpyrifos and cypermethrin. For the field insecticidal treatment interval study, 10 d was the interval that had been determined for cyromazine due to its significantly lower residue; for ChCy (a mixture of chlorpyrifos and cypermethrin), the suggested interval was 7 d. Future work should focus on the effects of insecticide metabolites on targeted pests and the poultry manure environment.

  17. Effects of the amphibian chytrid fungus and four insecticides on Pacific treefrogs (Pseudacris regilla)

    USGS Publications Warehouse

    Kleinhez, Peter; Boone, Michelle D.; Fellers, Gary

    2012-01-01

    Chemical contamination may influence host-pathogen interactions, which has implications for amphibian population declines. We examined the effects of four insecticides alone or as a mixture on development and metamorphosis of Pacific Treefrogs (Pseudacris regilla) in the presence or absence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Bd exposure had a negative impact on tadpole activity, survival to metamorphosis, time to metamorphosis, and time of tail absorption (with a marginally negative effect on mass at metamorphosis); however, no individuals tested positive for Bd at metamorphosis. The presence of sublethal concentrations of insecticides alone or in a mixture did not impact Pacific Treefrog activity as tadpoles, survival to metamorphosis, or time and size to metamorphosis. Insecticide exposure did not influence the effect of Bd exposure. Our study did not support our prediction that effects of Bd would be greater in the presence of expected environmental concentrations of insecticide(s), but it did show that Bd had negative effects on responses at metamorphosis that could reduce the quality of juveniles recruited into the population.

  18. Isolation of the opdE gene that encodes for a new hydrolase of Enterobacter sp. capable of degrading organophosphorus pesticides.

    PubMed

    Chino-Flores, Concepción; Dantán-González, Edgar; Vázquez-Ramos, Alejandra; Tinoco-Valencia, Raunel; Díaz-Méndez, Rafael; Sánchez-Salinas, Enrique; Castrejón-Godínez, Maria Luisa; Ramos-Quintana, Fernando; Ortiz-Hernández, Maria Laura

    2012-06-01

    Microbial enzymes that can hydrolyze organophosphorus compounds have been isolated, identified and characterized from different microbial species in order to use them in biodegradation of organophosphorus compounds. We isolated a bacterial strain Cons002 from an agricultural soil bacterial consortium, which can hydrolyze methyl-parathion (MP) and other organophosphate pesticides. HPLC analysis showed that strain Cons002 is capable of degrading pesticides MP, parathion and phorate. Pulsed-field gel electrophoresis and 16S rRNA amplification were performed for strain characterization and identification, respectively, showing that the strain Cons002 is related to the genus Enterobacter sp. which has a single chromosome of 4.6 Mb and has no plasmids. Genomic library was constructed from DNA of Enterobacter sp. Cons002. A gene called opdE (Organophosphate Degradation from Enterobacter) consists of 753 bp and encodes a protein of 25 kDa, which was isolated using activity methods. This gene opdE had no similarity to any genes reported to degrade organophosphates. When kanamycin-resistance cassette was placed in the gene opdE, hydrolase activity was suppressed and Enterobacter sp. Cons002 had no growth with MP as a nutrients source.

  19. The Pesticide Malathion Disrupts "Xenopus" and Zebrafish Embryogenesis: An Investigative Laboratory Exercise in Developmental Toxicology

    ERIC Educational Resources Information Center

    Chemotti, Diana C.; Davis, Sarah N.; Cook, Leslie W.; Willoughby, Ian R.; Paradise, Christopher J.; Lom, Barbara

    2006-01-01

    Malathion is an organophosphorus insecticide, which is often sprayed to control mosquitoes. When applied to aquatic habitats, malathion can also influence the embryogenesis of non-target organisms such as frogs and fish. We modified the frog embryo teratogen assay in "Xenopus" (FETAX), a standard toxicological assay, into an investigative…

  20. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  1. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  2. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  3. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  4. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  5. 40 CFR 721.10493 - Tris-alkyl-alkoxy melamine polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tris-alkyl-alkoxy melamine polymer... Specific Chemical Substances § 721.10493 Tris-alkyl-alkoxy melamine polymer (generic). (a) Chemical... as tris-alkyl-alkoxy melamine polymer (PMN P-05-417) is subject to reporting under this section for...

  6. 40 CFR 721.10493 - Tris-alkyl-alkoxy melamine polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tris-alkyl-alkoxy melamine polymer... Specific Chemical Substances § 721.10493 Tris-alkyl-alkoxy melamine polymer (generic). (a) Chemical... as tris-alkyl-alkoxy melamine polymer (PMN P-05-417) is subject to reporting under this section for...

  7. Selective alkylation of T–T mismatched DNA using vinyldiaminotriazine–acridine conjugate

    PubMed Central

    Onizuka, Kazumitsu; Usami, Akira; Yamaoki, Yudai; Kobayashi, Tomohito; Hazemi, Madoka E; Chikuni, Tomoko; Sato, Norihiro; Sasaki, Kaname; Katahira, Masato

    2018-01-01

    Abstract The alkylation of the specific higher-order nucleic acid structures is of great significance in order to control its function and gene expression. In this report, we have described the T–T mismatch selective alkylation with a vinyldiaminotriazine (VDAT)–acridine conjugate. The alkylation selectively proceeded at the N3 position of thymidine on the T–T mismatch. Interestingly, the alkylated thymidine induced base flipping of the complementary base in the duplex. In a model experiment for the alkylation of the CTG repeats DNA which causes myotonic dystrophy type 1 (DM1), the observed reaction rate for one alkylation increased in proportion to the number of T–T mismatches. In addition, we showed that primer extension reactions with DNA polymerase and transcription with RNA polymerase were stopped by the alkylation. The alkylation of the repeat DNA will efficiently work for the inhibition of replication and transcription reactions. These functions of the VDAT–acridine conjugate would be useful as a new biochemical tool for the study of CTG repeats and may provide a new strategy for the molecular therapy of DM1. PMID:29309639

  8. PAH phototoxicity: Identification of sensitive marine infaunal crustaceans and the effects of alkylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boese, B.; Swartz, R.; Lamberson, J.

    1995-12-31

    The toxicity of some polycyclic aromatic hydrocarbons (PAHs) has been shown to be greatly enhanced in the presence of UV light. The objectives of the research were to: (1) test for PAH phototoxicity using seven marine infaunal crustacean species, (2) determine if the sensitivity to PAH phototoxicity was related to their potential exposure to sunlight in nature, and (3) determine if alkylation alters PAH phototoxicity. The first objective was accomplished by exposing test species to fluoranthene in 4-day, water-only bioassays. Survivors of the tests were then exposed to UV light in an exposure chamber for one hour. The differences betweenmore » EC50s (the ability to bury in sediment) before and after UV exposure were used to access phototoxicity. The results indicated that species having the greatest potential for natural exposure to sunlight were the least sensitive UV-enhanced fluoranthene toxicity. The amphipod, Rhepoxynius abronius, which in nature has the least potential for exposure to sunlight among the organisms tested, was the most sensitive. Rhepoxynius abronius was subsequently used in a series of tests to determine if alkylation of PAHs alters phototoxicity. This was done by conducting standard 10-day sediment bioassay using alkylated and unalkylated PAHs. As in the water-only tests, EC{sub 50}s were determined before and after UV light exposures. The results indicated that alkylation of PAHs, in general, did not alter phototoxicity.« less

  9. Genetics, Synergists, and Age Affect Insecticide Sensitivity of the Honey Bee, Apis mellifera

    PubMed Central

    Rinkevich, Frank D.; Margotta, Joseph W.; Pittman, Jean M.; Danka, Robert G.; Tarver, Matthew R.; Ottea, James A.; Healy, Kristen B.

    2015-01-01

    The number of honey bee colonies in the United States has declined to half of its peak level in the 1940s, and colonies lost over the winter have reached levels that are becoming economically unstable. While the causes of these losses are numerous and the interaction between them is very complex, the role of insecticides has garnered much attention. As a result, there is a need to better understand the risk of insecticides to bees, leading to more studies on both toxicity and exposure. While much research has been conducted on insecticides and bees, there have been very limited studies to elucidate the role that bee genotype and age has on the toxicity of these insecticides. The goal of this study was to determine if there are differences in insecticide sensitivity between honey bees of different genetic backgrounds (Carniolan, Italian, and Russian stocks) and assess if insecticide sensitivity varies with age. We found that Italian bees were the most sensitive of these stocks to insecticides, but variation was largely dependent on the class of insecticide tested. There were almost no differences in organophosphate bioassays between honey bee stocks (<1-fold), moderate differences in pyrethroid bioassays (1.5 to 3-fold), and dramatic differences in neonicotinoid bioassays (3.4 to 33.3-fold). Synergism bioassays with piperonyl butoxide, amitraz, and coumaphos showed increased phenothrin sensitivity in all stocks and also demonstrated further physiological differences between stocks. In addition, as bees aged, the sensitivity to phenothrin significantly decreased, but the sensitivity to naled significantly increased. These results demonstrate the variation arising from the genetic background and physiological transitions in honey bees as they age. This information can be used to determine risk assessment, as well as establishing baseline data for future comparisons to explain the variation in toxicity differences for honey bees reported in the literature. PMID

  10. Alkyl chitosan film-high strength, functional biomaterials.

    PubMed

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  11. Evaluation of Chemically-Sensitive Field-Effect Transistors for Detection of Organophosphorus Compounds

    DTIC Science & Technology

    1989-12-05

    during past decade. In order to understand the basic operation of these sensors, especially of the CHEMFET, the appropriate background information will...during the past decade for detecting organophosphorus compounds, the chemically- sensitive thin films investigated in this thesis, and finally, the...reactivate the phosphorylated cholinesterase enzyme. Solid State Chemical Sensors During the past decade, a number of solid state chemical sensors have been

  12. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  13. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  14. Detection and identification of alkylating agents by using a bioinspired "chemical nose".

    PubMed

    Hertzog-Ronen, Carmit; Borzin, Elena; Gerchikov, Yulia; Tessler, Nir; Eichen, Yoav

    2009-10-12

    Alkylating agents are simple and reactive molecules that are commonly used in many and diverse fields such as organic synthesis, medicine, and agriculture. Some highly reactive alkylating species are also being used as blister chemical-warfare agents. The detection and identification of alkylating agents is not a trivial issue because of their high reactivity and simple structure. Herein, we report on a new multispot luminescence-based approach to the detection and identification of alkylating agents. In order to demonstrate the potential of the approach, seven pi-conjugated oligomers and polymers bearing nucleophilic pyridine groups, 1-7, were adsorbed onto a solid support and exposed to vapors of alkylators 8-15. The alkylation-induced color-shift patterns of the seven-spot array allow clear discrimination of the different alkylators. The spots are sensitive to minute concentrations of alkylators and, because the detection is based on the formation of new covalent bonds, these spots saturate at about 50 ppb.

  15. DETOXIFICATION OF ORGANOPHOSPHATE PESTICIDES BY IMMOBILIZED ESCHERICHIA COLI EXPRESSING ORGANOPHOSPHORUS HYDROLASE ON CELL SURFACE. (R823663)

    EPA Science Inventory

    An improved whole-cell technology for detoxifying organophosphate nerve agents was recently developed based on genetically engineered Escherichia coli with organophosphorus hydrolase anchored on the surface. This article reports the immobilization of these novel biocatalys...

  16. Structure-biocompatibility and transfection activity relationships of cationic polyaspartamides with (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups.

    PubMed

    Salakhieva, Diana; Shevchenko, Vesta; Németh, Csaba; Gyarmati, Benjámin; Szilágyi, András; Abdullin, Timur

    2017-01-30

    A series of 14 cationic derivatives of poly(aspartic acid) i.e. cationic polyaspartamides with different (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups was synthesized by nucleophilic addition on polysuccinimide. The resulting polyaspartamides have moderate amphiphilic properties. Relationships between the structure and ratio of side groups and in vitro properties of polyaspartamides, including their cytotoxic and membrane-damaging activity towards human cell lines, primary skin fibroblasts and erythrocytes, were established and discussed. Cationic polyaspartamides vary in their DNA-binding, condensing and nuclease-protecting characteristics depending on the concentration ratio of (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups. Effective cell transfection was achieved upon polyaspartamide-mediated plasmid DNA delivery in serum-free medium in the presence of chloroquine. Effect of serum proteins adsorption onto polyaspartamide based polyplexes, and the role of concentration of polyplexes in culture medium in their colloidal stability and transfection process were demonstrated. Synthesized polyaspartamides are biocompatible and long-acting gene carriers, which are applied to cells after dilution and without washing, thus providing transfection level comparable to that of commercial transfection reagent. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mechanisms of chemoresistance to alkylating agents in malignant glioma.

    PubMed

    Sarkaria, Jann N; Kitange, Gaspar J; James, C David; Plummer, Ruth; Calvert, Hilary; Weller, Michael; Wick, Wolfgang

    2008-05-15

    Intrinsic or acquired chemoresistance to alkylating agents is a major cause of treatment failure in patients with malignant brain tumors. Alkylating agents, the mainstay of treatment for brain tumors, damage the DNA and induce apoptosis, but the cytotoxic activity of these agents is dependent on DNA repair pathways. For example, O6-methylguanine DNA adducts can cause double-strand breaks, but this is dependent on a functional mismatch repair pathway. Thus, tumor cell lines deficient in mismatch repair are resistant to alkylating agents. Perhaps the most important mechanism of resistance to alkylating agents is the DNA repair enzyme O6-methylguanine methyltransferase, which can eliminate the cytotoxic O6-methylguanine DNA adduct before it causes harm. Another mechanism of resistance to alkylating agents is the base excision repair (BER) pathway. Consequently, efforts are ongoing to develop effective inhibitors of BER. Poly(ADP-ribose)polymerase plays a pivotal role in BER and is an important therapeutic target. Developing effective strategies to overcome chemoresistance requires the identification of reliable preclinical models that recapitulate human disease and which can be used to facilitate drug development. This article describes the diverse mechanisms of chemoresistance operating in malignant glioma and efforts to develop reliable preclinical models and novel pharmacologic approaches to overcome resistance to alkylating agents.

  18. Alcohols as alkylating agents in heteroarene C-H functionalization

    NASA Astrophysics Data System (ADS)

    Jin, Jian; MacMillan, David W. C.

    2015-09-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of `spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  19. Alcohols as alkylating agents in heteroarene C-H functionalization.

    PubMed

    Jin, Jian; MacMillan, David W C

    2015-09-03

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of 'spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  20. Potential exposure of pollinators to neonicotinoid insecticides from the use of insecticide seed treatments in the mid-southern United States.

    PubMed

    Stewart, Scott D; Lorenz, Gus M; Catchot, Angus L; Gore, Jeff; Cook, Don; Skinner, John; Mueller, Thomas C; Johnson, Donald R; Zawislak, Jon; Barber, Jonathan

    2014-08-19

    Research was done during 2012 to evaluate the potential exposure of pollinators to neonicotinoid insecticides used as seed treatments on corn, cotton, and soybean. Samples were collected from small plot evaluations of seed treatments and from commercial fields in agricultural production areas in Arkansas, Mississippi, and Tennessee. In total, 560 samples were analyzed for concentrations of clothianidin, imidacloprid, thiamethoxam, and their metabolites. These included pollen from corn and cotton, nectar from cotton, flowers from soybean, honey bees, Apis mellifera L., and pollen carried by foragers returning to hives, preplanting and in-season soil samples, and wild flowers adjacent to recently planted fields. Neonicotinoid insecticides were detected at a level of 1 ng/g or above in 23% of wild flower samples around recently planted fields, with an average detection level of about 10 ng/g. We detected neonicotinoid insecticides in the soil of production fields prior to planting at an average concentration of about 10 ng/g, and over 80% of the samples having some insecticide present. Only 5% of foraging honey bees tested positive for the presence of neonicotinoid insecticides, and there was only one trace detection (< 1 ng/g) in pollen being carried by those bees. Soybean flowers, cotton pollen, and cotton nectar contained little or no neonicotinoids resulting from insecticide seed treatments. Average levels of neonicotinoid insecticides in corn pollen ranged from less than 1 to 6 ng/g. The highest neonicotinoid concentrations were found in soil collected during early flowering from insecticide seed treatment trials. However, these levels were generally not well correlated with neonicotinoid concentrations in flowers, pollen, or nectar. Concentrations in flowering structures were well below defined levels of concern thought to cause acute mortality in honey bees. The potential implications of our findings are discussed.

  1. 40 CFR 721.10711 - Alkyl substituted catechol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10711 Alkyl substituted catechol (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  2. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrocarbons. 721.840 Section 721.840 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this section...

  3. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrocarbons. 721.840 Section 721.840 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this section...

  4. Effect of alkyl chain length on the rotational diffusion of nonpolar and ionic solutes in 1-alkyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imides.

    PubMed

    Gangamallaiah, V; Dutt, G B

    2013-10-10

    Rotational diffusion of a nonpolar solute 9-phenylanthracene (9-PA) and a cationic solute rhodamine 110 (R110) has been examined in a series of 1-alkyl-3-methylimidazolium (alkyl = octyl, decyl, dodecyl, tetradecyl, hexadecyl, and octadecyl) bis(trifluoromethylsulfonyl)imides to understand the influence of alkyl chain length on solute rotation. In this study, reorientation times (τr) have been measured as a function of viscosity (η) by varying the temperature (T) of the solvents. These results have been analyzed using the Stokes-Einstein-Debye (SED) hydrodynamic theory along with the ones obtained for the same solutes in 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides (Gangamallaiah and Dutt, J. Phys. Chem. B 2012, 116, 12819-12825). It has been noticed that the data for 9-PA and R110 follows the relation τr = A(η/T)(n) with A being the ratio of hydrodynamic volume of the solute to the Boltzmann constant and n = 1 as envisaged by the SED theory. However, upon increasing the alkyl chain length from methyl to octadecyl significant deviations from the SED theory have been observed especially from the octyl derivative onward. From methyl to octadecyl derivatives, the value of A decreases by a factor of 3 for both the solutes and n by a factor of 1.4 and 1.6 for 9-PA and R110, respectively. These observations have been rationalized by taking into consideration the organized structure of the ionic liquids, whose influence appears to be pronounced when the number of carbon atoms in the alkyl chain attached to the imidazolium cation exceeds eight.

  5. Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.

    PubMed

    Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen

    2015-01-01

    A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Lithium perchlorate-nitromethane-promoted alkylation of anilines with arylmethanols.

    PubMed

    Zhou, Jun; Mao, Hai-Feng; Wang, Lu; Zou, Jian-Ping; Zhang, Wei

    2011-11-01

    A new application of lithium perchlorate-nitromethane (LPNM) for the formation of aromatic C-N and C-C bonds is introduced. LPNM-promoted reactions of anilines with diarylmethanols selectively generate N-alkylated anilines or mono and double Friedel-Crafts alkylation products under different conditions by changing the reaction time, reaction temperature, and the ratio of the reactants. This method does not require the use of transition metal catalysts to prepare alkylated aniline derivatives.

  7. Effects of Organophosphorus Flame Retardants on Spontaneous Activity in Neuronal Networks Grown on Microelectrode Arrays

    EPA Science Inventory

    EFFECTS OF ORGANOPHOSPHORUS FLAME RETARDANTS ON SPONTANEOUS ACTIVITY IN NEURONAL NETWORKS GROWN ON MICROELECTRODE ARRAYS TJ Shafer1, K Wallace1, WR Mundy1, M Behl2,. 1Integrated Systems Toxicology Division, NHEERL, USEPA, RTP, NC, USA, 2National Toxicology Program, NIEHS, RTP, NC...

  8. Monitoring changes in Bemisia tabaci (Hemiptera: Aleyrodidae) susceptibility to neonicotinoid insecticides in Arizona and California.

    PubMed

    Castle, S J; Prabhaker, N

    2013-06-01

    Bemisia tabaci (Gennadius) biotype B is a highly prolific and polyphagous whitefly that established in much of North America during the 1980s. Neonicotinoid insecticides have been fundamental in regaining control over outbreak populations of B. tabaci, but resistance threatens their sustainability. Susceptibility of B. tabaci in the southwestern United States to four neonicotinoid insecticides varied considerably across populations within each year over a 3 yr period. Using a variability ratio of highest LC50 to lowest LC50 in field-collected whitefly adults from Arizona and California, the ranges of LC50(s) across all tests within compounds were highest to imidacloprid and lowest to thiamethoxam. Patterns of susceptibility were similar among all four neonicotinoid insecticides, but the greater variability in responses to imidacloprid and significantly higher LC50(s) attained indicated higher resistance levels to imidacloprid in all field populations. Further evidence of differential toxicities of neonicotinoids was observed in multiple tests of dinotefuran against imidacloprid-resistant lab strains that yielded significant differences in the LC50(s) of dinotefuran and imidacloprid in simultaneous bioassays. To test the possibility that resistance expression in field-collected insects was sometimes masked by stressful conditions, field strains cultured in a greenhouse without insecticide exposure produced significantly higher LC50(s) to all neonicotinoids compared with LC50(s) attained directly from the field. In harsh climates such as the American southwest, resistance expression in field-collected test insects may be strongly influenced by environmental stresses such as high temperatures, overcrowding, and declining host plant quality.

  9. Chiral Brønsted Base-Promoted Nitroalkane Alkylation: Enantioselective Synthesis of sec-Alkyl-3-Substituted Indoles

    PubMed Central

    Dobish, Mark C.; Johnston, Jeffrey N.

    2010-01-01

    A Brønsted base-catalyzed reaction of nitroalkanes with alkyl electrophiles provides indole heterocycles substituted at C3 bearing a sec-alkyl group with good enantioselectivity (up to 90% ee). Denitration by hydrogenolysis provides a product with equally high ee. An indolenine intermediate is implicated in the addition step, and surprisingly, water cosolvent was found to have a beneficial effect in this step, leading to a one-pot protocol for elimination/enantioselective addition using PBAM, a bis(amidine) chiral nonracemic base. PMID:21090654

  10. Insecticide Recommendations for Arkansas. MP 144.

    ERIC Educational Resources Information Center

    Jones, Bill F.; Barnes, Gordon

    This publication gives, in chart form, insecticides for use on animals, field crops, fruits, flowers, trees and shrubs, household pests, recreation areas, lawn and turf grass, pecans, stored grain, and vegetables. Included in the charts are the insecticides recommended for each insect, formulation to be used, amount, time to apply, and other…

  11. Mechanistic modeling of insecticide risks to breeding birds in ...

    EPA Pesticide Factsheets

    Insecticide usage in the United States is ubiquitous in urban, suburban, and rural environments. In evaluating data for an insecticide registration application and for registration review, scientists at the United States Environmental Protection Agency (USEPA) assess the fate of the insecticide and the risk the insecticide poses to the environment and non-target wildlife. At the present time, current USEPA risk assessments do not include population-level endpoints. In this paper, we present a new mechanistic model, which allows risk assessors to estimate the effects of insecticide exposure on the survival and seasonal productivity of birds known to use agricultural fields during their breeding season. The new model was created from two existing USEPA avian risk assessment models, the Terrestrial Investigation Model (TIM v.3.0) and the Markov Chain Nest Productivity model (MCnest). The integrated TIM/MCnest model has been applied to assess the relative risk of 12 insecticides used to control corn pests on a suite of 31 avian species known to use cornfields in midwestern agroecosystems. The 12 insecticides that were assessed in this study are all used to treat major pests of corn (corn root worm borer, cutworm, and armyworm). After running the integrated TIM/MCnest model, we found extensive differences in risk to birds among insecticides, with chlorpyrifos and malathion (organophosphates) generally posing the greatest risk, and bifenthrin and ë-cyhalothrin (

  12. Actions of insecticides on the insect GABA receptor complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bermudez, I.; Hawkins, C.A.; Taylor, A.M.

    1991-01-01

    The actions of insecticides on the insect gamma-aminobutyric acid (GABA) receptor were investigated using (35S)t-butylbicyclophosphorothionate (( 35S)TBPS) binding and voltage-clamp techniques. Specific binding of (35S)TBPS to a membrane homogenate derived from the brain of Locusta migratoria locusts is characterised by a Kd value of 79.3 {plus minus} 2.9 nM and a Bmax value of 1770 {plus minus} 40 fmol/mg protein. (35S)TBPS binding is inhibited by mM concentrations of barbiturates and benzodiazepines. In contrast dieldrin, ivermectin, lindane, picrotoxin and TBPS are inhibitors of (35S)TBPS binding at the nanomolar range. Bicuculline, baclofen and pyrethroid insecticides have no effect on (35S)TBPS binding. Thesemore » results are similar to those obtained in electrophysiological studies of the current elicited by GABA in both Locusta and Periplaneta americana central neurones. Noise analysis of the effects of lindane, TBPS, dieldrin and picrotoxin on the cockroach GABA responses reveals that these compounds decrease the variance of the GABA-induced current but have no effect on its mean open time. All these compounds, with the exception of dieldrin, significantly decrease the conductance of GABA-evoked single current.« less

  13. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology

    PubMed Central

    Čolović, Mirjana B; Krstić, Danijela Z; Lazarević-Pašti, Tamara D; Bondžić, Aleksandra M; Vasić, Vesna M

    2013-01-01

    Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer’s disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases. PMID:24179466

  14. Tris(thioimidazolyl)borate-zinc-thiolate complexes for the modeling of biological thiolate alkylations.

    PubMed

    Ibrahim, Mohamed M; Seebacher, Jan; Steinfeld, Gunther; Vahrenkamp, Heinrich

    2005-11-14

    The S3Zn-SR coordination of thiolate-alkylating enzymes such as the Ada DNA repair protein was reproduced in tris(thioimidazolyl)borate-zinc-thiolate complexes Tti(R)Zn-SR'. Four different Tti(R) ligands and nine different thiolates were employed, yielding a total of 12 new complexes. In addition, one Tti(R)Zn-SH complex and two thiolate-bridged [Tti(R)-SEt-Tti(R)]+ complexes were obtained. A selection of six thiolate complexes was converted with methyl iodide to the corresponding methyl thioethers and Tti(R)Zn-I. According to a kinetic analysis these reactions are second-order processes, which implies that the alkylations are likely to occur at the zinc-bound thiolates. They are much faster than the alkylations of zinc thiolates with N3 or N2S tripod ligands. The most reactive thiolate, Tti(Xyl)Zn-SEt, reacts slowly with trimethyl phosphate in a nonpolar medium at room temperature, yielding methyl-ethyl-thioether and Tti(Xyl)Zn-OPO(OMe)2 which can be converted back to the thiolate complex with NaSEt. This is the closest reproduction of the Ada repair process so far.

  15. Production and characterization of a single-chain variable fragment linked alkaline phosphatase fusion protein for detection of O,O-diethyl organophosphorus pesticides in a one-step enzyme-linked immunosorbent assay

    USDA-ARS?s Scientific Manuscript database

    A single-chain variable fragment (scFv) and alkaline phosphatase (AP) fusion protein for detection of O, O-diethyl organophosphorus pesticides (OPs) was produced and characterized. The scFv gene was prepared by cloning VL and VH genes from a hybridoma cell secreting monoclonal antibody with broad-s...

  16. Unravelling the Molecular Determinants of Bee Sensitivity to Neonicotinoid Insecticides.

    PubMed

    Manjon, Cristina; Troczka, Bartlomiej J; Zaworra, Marion; Beadle, Katherine; Randall, Emma; Hertlein, Gillian; Singh, Kumar Saurabh; Zimmer, Christoph T; Homem, Rafael A; Lueke, Bettina; Reid, Rebecca; Kor, Laura; Kohler, Maxie; Benting, Jürgen; Williamson, Martin S; Davies, T G Emyr; Field, Linda M; Bass, Chris; Nauen, Ralf

    2018-04-02

    The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to the insect pests they target. However, this is not the case for all neonicotinoids, with honeybees orders of magnitude less sensitive to N-cyanoamidine compounds such as thiacloprid [2]. Although previous work has suggested that this is due to rapid metabolism of these compounds [2-5], the specific gene(s) or enzyme(s) involved remain unknown. Here, we show that the sensitivity of the two most economically important bee species to neonicotinoids is determined by cytochrome P450s of the CYP9Q subfamily. Radioligand binding and inhibitor assays showed that variation in honeybee sensitivity to N-nitroguanidine and N-cyanoamidine neonicotinoids does not reside in differences in their affinity for the receptor but rather in divergent metabolism by P450s. Functional expression of the entire CYP3 clade of P450s from honeybees identified a single P450, CYP9Q3, that metabolizes thiacloprid with high efficiency but has little activity against imidacloprid. We demonstrate that bumble bees also exhibit profound differences in their sensitivity to different neonicotinoids, and we identify CYP9Q4 as a functional ortholog of honeybee CYP9Q3 and a key metabolic determinant of neonicotinoid sensitivity in this species. Our results demonstrate that bee pollinators are equipped with biochemical defense systems that define their sensitivity to insecticides and this knowledge can be leveraged to safeguard bee health. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Newer insecticides for plant virus disease management.

    PubMed

    Castle, Steven; Palumbo, John; Prabhaker, Nilima

    2009-05-01

    Effective management of insect and mite vectors of plant pathogens is of crucial importance to minimize vector-borne diseases in crops. Pesticides play an important role in managing vector populations by reducing the number of individuals that can acquire and transmit a virus, thereby potentially lowering disease incidence. Certain insecticides exhibit properties other than lethal toxicity that affect feeding behaviours or otherwise interfere with virus transmission. To evaluate the potential of various treatments against the Bemisia tabaci-transmitted Cucurbit yellow stunting disorder virus (CYSDV), insecticide field trials were conducted in Yuma, AZ, USA, during spring and autumn growing seasons. Differences in vector-intensity each season led to mixed results, but at least five insecticide treatments showed promise in limiting virus spread during spring 2008. Increasing concern among growers in this region regarding recent epidemics of CYSDV is leading to more intensive use of insecticides that threatens to erupt into unmanageable resistance. Sustainability of insecticides is an important goal of pest management and more specifically resistance management, especially for some of the most notorious vector species such as B. tabaci and Myzus persiscae that are likely to develop resistance.

  18. Sleep-inducing N-alkyl-5-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinones and N-alkyl-3-(trifluoromethyl)cinnamamides.

    PubMed

    Houlihan, W J; Gogerty, J H; Ryan, E A; Schmitt, G

    1985-01-01

    A series of N-alkyl-3-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinones and N-alkyl-3-(trifluoromethyl)-cinnamamides were prepared and screened in a series of tests designed to detect potential sleep inducers. The more active members of the series were evaluated for their ability to induce sleep in Cebus monkeys. The most active compound, N-methyl-5-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinone, was equal to methaqualone.

  19. Use of Alternative Assays to Identify and Prioritize Organophosphorus Flame Retardants for Potential Developmental and Neurotoxicity

    EPA Science Inventory

    Due to their toxicity and persistence in the environment, brominated flame retardants (BFRs) are being phased out of commercial use, leading to the increased use of alternative chemicals such as the organophosphorus flame retardants (OPFRs). There is, however, limited information...

  20. Compound-Specific Effects of Mutations at Val787 in DII-S6 of Nav1.4 Sodium Channels on the Action of Sodium Channel Inhibitor Insecticides

    PubMed Central

    von Stein, Richard T.; Soderlund, David M.

    2012-01-01

    Sodium channel inhibitor (SCI) insecticides are hypothesized to inhibit voltage-gated sodium channels by binding selectively to the slow-inactivated state. Replacement of valine at position 787 in the S6 segment of homology domain II of the rat Nav1.4 sodium channel by lysine (V787K) enchances slow inactivation of this channel whereas replacement by alanine or cysteine (V787A, V787C) inhibits slow inactivation. To test the hypothesis that SCI insecticides bind selectively to the slow-inactivated state, we constructed mutated Nav1.4/V787A, Nav1.4/V787C, and Nav1.4/V787K cDNAs, expressed wildtype and mutated channels with the auxiliary β1 subunit in Xenopus oocytes, and used the two-electrode voltage clamp technique to examine the effects of these mutations on channel inhibition by four SCI insecticides (indoxacarb, its bioactivated metabolite DCJW, metaflumizone, and RH3421). Mutations at Val787 affected SCI insecticide sensitivity in a manner that was independent of mutation-induced changes in slow inactivation gating. Sensitivity to inhibition by 10 μM indoxacarb was significantly increased in all three mutated channels, whereas sensitivity to inhibition by 10 μM metaflumizone was significantly reduced in Nav1.4/V787A channels and completely abolished in Nav1.4/V787K channels. The effects of Val787 mutations on metaflumizone were correlated with the hydrophobicity of the substituted amino acid rather than the extent of slow inactivation. None of the mutations at Val787 significantly affected the sensitivity to inhibition by DCJW or RH3421. These results demonstrate that the impact of mutations at Val787 on sodium channel inhibition by SCI insecticides depends on the specific insecticide examined and is independent of mutation-induced changes in slow inactivation gating. We propose that Val787 may be a unique determinant of metaflumizone binding. PMID:22983119

  1. Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania

    PubMed Central

    2014-01-01

    Background Resistance of mosquitoes to insecticides is a growing concern in Africa. Since only a few insecticides are used for public health and limited development of new molecules is expected in the next decade, maintaining the efficacy of control programmes mostly relies on resistance management strategies. Developing such strategies requires a deep understanding of factors influencing resistance together with characterizing the mechanisms involved. Among factors likely to influence insecticide resistance in mosquitoes, agriculture and urbanization have been implicated but rarely studied in detail. The present study aimed at comparing insecticide resistance levels and associated mechanisms across multiple Anopheles gambiae sensu lato populations from different environments. Methods Nine populations were sampled in three areas of Tanzania showing contrasting agriculture activity, urbanization and usage of insecticides for vector control. Insecticide resistance levels were measured in larvae and adults through bioassays with deltamethrin, DDT and bendiocarb. The distribution of An. gambiae sub-species and pyrethroid target-site mutations (kdr) were investigated using molecular assays. A microarray approach was used for identifying transcription level variations associated to different environments and insecticide resistance. Results Elevated resistance levels to deltamethrin and DDT were identified in agriculture and urban areas as compared to the susceptible strain Kisumu. A significant correlation was found between adult deltamethrin resistance and agriculture activity. The subspecies Anopheles arabiensis was predominant with only few An. gambiae sensu stricto identified in the urban area of Dar es Salaam. The L1014S kdr mutation was detected at elevated frequency in An gambiae s.s. in the urban area but remains sporadic in An. arabiensis specimens. Microarrays identified 416 transcripts differentially expressed in any area versus the susceptible reference

  2. Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania.

    PubMed

    Nkya, Theresia E; Akhouayri, Idir; Poupardin, Rodolphe; Batengana, Bernard; Mosha, Franklin; Magesa, Stephen; Kisinza, William; David, Jean-Philippe

    2014-01-25

    Resistance of mosquitoes to insecticides is a growing concern in Africa. Since only a few insecticides are used for public health and limited development of new molecules is expected in the next decade, maintaining the efficacy of control programmes mostly relies on resistance management strategies. Developing such strategies requires a deep understanding of factors influencing resistance together with characterizing the mechanisms involved. Among factors likely to influence insecticide resistance in mosquitoes, agriculture and urbanization have been implicated but rarely studied in detail. The present study aimed at comparing insecticide resistance levels and associated mechanisms across multiple Anopheles gambiae sensu lato populations from different environments. Nine populations were sampled in three areas of Tanzania showing contrasting agriculture activity, urbanization and usage of insecticides for vector control. Insecticide resistance levels were measured in larvae and adults through bioassays with deltamethrin, DDT and bendiocarb. The distribution of An. gambiae sub-species and pyrethroid target-site mutations (kdr) were investigated using molecular assays. A microarray approach was used for identifying transcription level variations associated to different environments and insecticide resistance. Elevated resistance levels to deltamethrin and DDT were identified in agriculture and urban areas as compared to the susceptible strain Kisumu. A significant correlation was found between adult deltamethrin resistance and agriculture activity. The subspecies Anopheles arabiensis was predominant with only few An. gambiae sensu stricto identified in the urban area of Dar es Salaam. The L1014S kdr mutation was detected at elevated frequency in An gambiae s.s. in the urban area but remains sporadic in An. arabiensis specimens. Microarrays identified 416 transcripts differentially expressed in any area versus the susceptible reference strain and supported the impact

  3. Treatment of Perfluorinated Alkyl Substances in Wash Water ...

    EPA Pesticide Factsheets

    Report The U.S. Environmental Protection Agency’s (EPA) National Homeland Security Research Center partnered with the Idaho National Laboratory (INL) to build the Water Security Test Bed (WSTB) at the INL test site outside of Idaho Falls, Idaho. This report summarizes the results from testing conducted to evaluate the treatment of large volumes of water containing perfluorinated alkyl substances (PFAS). This summary of conclusions and observations about the performance and implementation of adsorptive treatment of AFFF contaminated water, based on the testing performed at the INL WSTB.

  4. Synthesis and characterization of chitosan alkyl urea.

    PubMed

    Wang, Jing; Jiang, Ji-Zhou; Chen, Wei; Bai, Zheng-Wu

    2016-07-10

    Chitosan is a versatile material employed for various purposes in many fields including the development of chiral stationary phases for enantioseparation. Chitosan alkyl urea is a kind of intermediate used to prepare enantioseparation materials. In order to synthesize the intermediates, in the present work, a new way to prepare chitosan alkyl urea has been established: chitosan was first reacted with methyl chloroformate yielding N-methoxyformylated chitosan, which was then converted to chitosan alkyl urea through amine-ester exchange reaction. With a large excess of methyl chloroformate and primary amine of low stereohindrance, the amino group in chitosan could be almost completely converted to ureido group. The as-prepared chitosan alkyl urea derivatives were characterized by IR, (1)H NMR, (13)C NMR,(1)H-(1)H COSY and (1)H-(13)C HSQC NMR spectra. The chemical shifts of hydrogen and carbon atoms of glucose unit were assigned. It was found that the degree of substitution was obviously lower if cyclopropyl amine, aniline, tert-butyl amine and diethyl amine were used as reactants for the amine-ester exchange reaction. The reason was explained with the aid of theoretical calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Alcohols as alkylating agents in heteroarene C–H functionalization

    PubMed Central

    Jin, Jian; MacMillan, David W. C.

    2015-01-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage1. One of the core principles that underlies DNA biosynthesis is the radical-mediated elimnation of H2O to deoxygenate ribonucleotides, an example of ‘spin-center shift’ (SCS)2, during which an alcohol C–O bond is cleaved, resulting in a carbon-centered radical intermediate. While SCS is a well-understood biochemical process, it is underutilized by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylations using alcohols as radical precursors. Considering traditional radical-based alkylation methods require the use of stoichiometric oxidants, elevated temperatures, or peroxides3–7, the development of a mild protocol using simple and abundant alkylating agents would have significant utility in the synthesis of diversely functionalized pharmacophores. In this manuscript, we describe the successful execution of this idea via the development of a dual catalytic alkylation of heteroarenes using alcohols as mild alkylating reagents. This method represents the first broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer (HAT) catalysis. The utility of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone. PMID:26308895

  6. Adding yeasts with sugar to increase the number of effective insecticide classes to manage Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in cherry.

    PubMed

    Knight, Alan L; Basoalto, Esteban; Yee, Wee; Hilton, Rick; Kurtzman, Cletus P

    2016-08-01

    Drosophila suzukii is a major pest of cherry in the western United States. We evaluated whether the addition of sugary baits could improve the efficacy of two classes of insecticides not considered to be sufficiently effective for this pest, diamides and spinosyns, in laboratory and field trials in cherry. Adding cane sugar alone or in combination with the yeasts Saccharomyces cerevisiae or Aureobasidium pullulans significantly improved insecticide efficacy. However, the significance of adding yeasts to the sugar plus insecticide on fly mortality varied with respect to both the insecticide and yeast species. The addition of S. cerevisiae to sugar also did not significantly reduce egg densities in fruit compared with sugar alone. The addition of a yeast plus sugar significantly reduced egg densities in three field trials with cyantraniliprole and in two out of three trials with spinosad. The addition of cane sugar with or without yeast can improve the effectiveness of diamide and spinosyn insecticides for D. suzukii in cherry. Inclusion of these two insecticides in D. suzukii management programs may alleviate the strong selection pressure currently being imposed on a few mode-of-action insecticide classes used by growers to maintain fly suppression over long continuous harvest periods of mixed cultivars. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  7. Insecticide discovery: an evaluation and analysis.

    PubMed

    Sparks, Thomas C

    2013-09-01

    There is an on-going need for the discovery and development of new insecticides due to the loss of existing products through the development of resistance, the desire for products with more favorable environmental and toxicological profiles, shifting pest spectrums, and changing agricultural practices. Since 1960, the number of research-based companies in the US and Europe involved in the discovery of new insecticidal chemistries has been declining. In part this is a reflection of the increasing costs of the discovery and development of new pesticides. Likewise, the number of compounds that need to be screened for every product developed has, until recently, been climbing. In the past two decades the agrochemical industry has been able to develop a range of new products that have more favorable mammalian vs. insect selectivity. This review provides an analysis of the time required for the discovery, or more correctly the building process, for a wide range of insecticides developed during the last 60 years. An examination of the data around the time requirements for the discovery of products based on external patents, prior internal products, or entirely new chemistry provides some unexpected observations. In light of the increasing costs of discovery and development, coupled with fewer companies willing or able to make the investment, insecticide resistance management takes on greater importance as a means to preserve existing and new insecticides. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Detection of Alkylating Agents using Electrical and Mechanical Means

    NASA Astrophysics Data System (ADS)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Tal, Shay; Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir; Eichen, Yoav

    2011-08-01

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  9. [On necessity to modify biochemical methods for detecting organophosphorus componds in chemical weapons extinction objects (review of literature)].

    PubMed

    Prokofieva, D S; Shmurak, V I; Sadovnikov, S V; Gontcharov, N V

    2015-01-01

    The article covers problems of biochemical methods assessing organophosphorus toxic compounds in objects of chemical weapons extinction. The authors present results of works developing new, more specific and selective biochemical methods.

  10. Insecticide resistance in Culex quinquefasciatus mosquitoes after the introduction of insecticide-treated bed nets in Macha, Zambia

    PubMed Central

    Norris, Douglas E.

    2014-01-01

    Culex quinquefasciatus , an arboviral and filarial vector, is present in high numbers throughout sub-Saharan Africa, and insecticide-resistant populations have been reported worldwide. In order to determine the insecticide resistance status of Cx. quinquefasciatus in Macha, Zambia, adult mosquitoes reared from eggs collected from oviposition traps were tested by bioassay. High levels of resistance to DDT, pyrethroids, malathion, and deltamethrin-treated net material were detected, and molecular assays revealed that the knockdown resistance (kdr) allele was frequent in the Cx. quinquefasciatus population, with 7.0% homozygous for the kdr L1014 allele and 38.5% heterozygous (0.263 kdr frequency). The kdr frequency was significantly higher in mosquitoes that had successfully fed on human hosts, and screening archived specimens revealed that kdr was present at lower frequency prior to the introduction of ITNs, indicating that ITNs might be a selective force in this population. Additionally, metabolic detoxification enzyme activity assays showed upregulated glutathione S-transferases, α-esterases, and β-esterases. Continued monitoring and assessment of the Cx. quinquefasciatus population is necessary to determine levels of resistance. PMID:22129413

  11. Gene expression profiles of Drosophila melanogaster exposed to an insecticidal extract of Piper nigrum.

    PubMed

    Jensen, Helen R; Scott, Ian M; Sims, Steve; Trudeau, Vance L; Arnason, John Thor

    2006-02-22

    Black pepper, Piper nigrum L. (Piperaceae), has insecticidal properties and could potentially be utilized as an alternative to synthetic insecticides. Piperine extracted from P. nigrum has a biphasic effect upon cytochrome P450 monooxygenase activity with an initial suppression followed by induction. In this study, an ethyl acetate extract of P. nigrum seeds was tested for insecticidal activity toward adult Musca domestica and Drosophila melanogaster. The effect of this same P. nigrum extract upon differential gene expression in D. melanogaster was investigated using cDNA microarray analysis of 7380 genes. Treatment of D. melanogaster with P. nigrum extract led to a greater than 2-fold upregulation of transcription of the cytochrome P450 phase I metabolism genes Cyp 6a8, Cyp 9b2, and Cyp 12d1 as well as the glutathione-S-transferase phase II metabolism gene Gst-S1. These data suggests a complex effect of P. nigrum upon toxin metabolism.

  12. Transformation of Organophosphorus Pesticides in the Presence of Aqueous Chlorine: Kinetics, Pathways, and Structure-Activity Relationships

    EPA Science Inventory

    The fate of organophosphorus (OP) pesticides in the presence of aqueous chlorine was investigated under simulated drinking water treatment conditions. Intrinsic rate coefficients were found for the reaction of hypochlorous acid (kHOCl,OP) and hypochlorite ion (kOCl,OP) for eight...

  13. Structure of an Insecticide Sequestering Carboxylesterase from the Disease Vector Culex quinquefasciatus: What Makes an Enzyme a Good Insecticide Sponge?

    PubMed

    Hopkins, Davis H; Fraser, Nicholas J; Mabbitt, Peter D; Carr, Paul D; Oakeshott, John G; Jackson, Colin J

    2017-10-17

    Carboxylesterase (CBE)-mediated metabolic resistance to organophosphate and carbamate insecticides is a major problem for the control of insect disease vectors, such as the mosquito. The most common mechanism involves overexpression of CBEs that bind to the insecticide with high affinity, thereby sequestering them before they can interact with their target. However, the absence of any structure for an insecticide-sequestering CBE limits our understanding of the molecular basis for this process. We present the first structure of a CBE involved in sequestration, Cqestβ2 1 , from the mosquito disease vector Culex quinquefasciatus. Lysine methylation was used to obtain the crystal structure of Cqestβ2 1 , which adopts a canonical α/β-hydrolase fold that has high similarity to the target of organophosphate and carbamate insecticides, acetylcholinesterase. Sequence similarity networks of the insect carboxyl/cholinesterase family demonstrate that CBEs associated with metabolic insecticide resistance across many species share a level of similarity that distinguishes them from a variety of other classes. This is further emphasized by the structural similarities and differences in the binding pocket and active site residues of Cqestβ2 1 and other insect carboxyl/cholinesterases. Stopped-flow and steady-state inhibition studies support a major role for Cqestβ2 1 in organophosphate resistance and a minor role in carbamate resistance. Comparison with another isoform associated with insecticide resistance, Cqestβ1, showed both enzymes have similar affinity to insecticides, despite 16 amino acid differences between the two proteins. This provides a molecular understanding of pesticide sequestration by insect CBEs and could facilitate the design of CBE-specific inhibitors to circumvent this resistance mechanism in the future.

  14. Vectorial status and insecticide resistance of Anopheles funestus from a sugar estate in southern Mozambique.

    PubMed

    Kloke, R Graham; Nhamahanga, Eduardo; Hunt, Richard H; Coetzee, Maureen

    2011-02-09

    The dual problems of rising insecticide resistance in the malaria vectors and increasing human malaria cases since 2001 in southern Mozambique are cause for serious concern. The selection of insecticides for use in indoor residual spraying (IRS) programmes is highly dependent on the extent to which local mosquitoes are susceptible to the approved classes of insecticides. The insecticide resistance status and role in malaria transmission of Anopheles funestus was evaluated at the Maragra Sugar Estate in southern Mozambique where an IRS vector control programme has been in operation for seven years using the carbamate insecticide bendiocarb. No Anopheles species were captured inside the sugar estate control area. Anopheles funestus group captured outside of the estate represented 90% (n = 475) of the total collections. Of the specimens identified to species by PCR (n = 167), 95% were An. funestus s.s. One An. rivulorum was identified and seven specimens did not amplify. The Anopheles gambiae complex was less abundant (n = 53) and of those identified (n = 33) 76% were An. arabiensis and 24% An. merus. Insecticide susceptibility tests showed that wild-caught and F-1 family An. funestus were resistant to deltamethrin (32.5% mortality) and lambda-cyhalothrin (14.6% mortality), less so to bendiocarb (71.5% mortality) and fully susceptible to both malathion and DDT (100%). Bendiocarb and pyrethroid resistance was nullified using 4% piperonyl butoxide (Pbo), strongly suggesting that both are mediated by P450 monooxygenase detoxification. ELISA tests of An. funestus for Plasmodium falciparum, gave a sporozoite rate of 6.02% (n = 166). One unidentified member of the An. gambiae complex tested positive for P. falciparum sporozoites. Anopheles funestus was found to be the most abundant and principle vector of malaria in this area, with members of the An. gambiae complex being secondary vectors. Despite the continual use of bendiocarb within the estate for seven years and the

  15. Insecticide assays against the brown stink bug feeding on pecan

    USDA-ARS?s Scientific Manuscript database

    The brown stink bug, Euschistus servus (Say) (Hemiptera: Pentatomidae), is an economic pest of pecan, Carya illinoinensis (Wangenh) K. Koch (Juglandaceae), and other agronomic crops across the southeastern U.S. Management of this pest is mainly via insecticides. Many commercial products indicate o...

  16. Nitric oxide donors attenuate clongenic potential in rat C6 glioma cells treated with alkylating chemotherapeutic agents.

    PubMed

    Yang, Jir-Jei; Yin, Jiu-Haw; Yang, Ding-I

    2007-05-11

    1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) kills tumor cells via multiple actions including alkylation and carbamoylation. Previously, we have reported that formation of S-nitrosoglutathione (GSNO) in glioma cells overexpressing inducible nitric oxide synthase (iNOS) contributed to nitric oxide (NO)-dependent carbamoylating chemoresistance against BCNU. To further characterize the effects of NO on alkylating cytotoxicity, colony formation assay was applied to evaluate the effects of various NO donors on rat C6 glioma cells challenged with alkylating agents. We demonstrate that NO donors including GSNO, diethylamine NONOate (DEA/NO), and sodium nitroprusside (SNP) substantially reduced the extent of colony formation in glioma cells treated with alkylating agents, namely methyl methanesulfonate (MMS), N-methyl-N-nitrosourea (MNU), and N-ethyl-N-nitrosourea (ENU). Without alkylating agents these NO-releasing agents alone had no effects on clongenic potential of rat C6 glioma cells. Among these three NO donors used, the effectiveness in potentiating alkylating cytotoxicity is in the order of "GSNO>DEA/NO>SNP" when applied at the same dosages. GSNO also exerted similar synergistic actions reducing the extents of colony formation when co-administrated with 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-hydrazine (compound #1), another alkylating agent that mimics the chloroethylating action of BCNU. Together with our previous findings, we propose that NO donors may be used as adjunct chemotherapy with alkylating agents for such malignant brain tumors as glioblastoma multiforme (GBM). In contrast, production of NO as a result of iNOS induction, such as that occurring after surgical resection of brain tumors, may compromise the efficacy of carbamoylating chemotherapy.

  17. Trifluoromethylphenyl amides as novel insecticides and fungicides

    USDA-ARS?s Scientific Manuscript database

    Because of increased resistance to insecticides in arthropods, it is necessary to identify new chemicals that may have novel modes of action. Following an extensive literature search for compounds with insecticidal and mosquito repellent activity, we have designed and synthesized a set of 20 trif...

  18. Trifluoromethylphenyl amides as novel insecticides and fungicides

    USDA-ARS?s Scientific Manuscript database

    Because of increased resistance to insecticides in arthropods, it is necessary to identify new chemicals that may have novel modes of action. Following an extensive literature search for compounds with insecticidal and mosquito repellent activity, we have designed and synthesized a set of 20 trifluo...

  19. Trifluoromethylphenyl amides as novel insecticides and fungicides

    USDA-ARS?s Scientific Manuscript database

    Because of increased resistance to insecticides in arthropods, it is necessary to identify new chemicals that may have novel modes of action. Following an extensive literature search for compounds with insecticidal and mosquito repellent activity, we have designed and synthesized a set of 20 triflu...

  20. Genetic variation associated with increased insecticide resistance in the malaria mosquito, Anopheles coluzzii.

    PubMed

    Main, Bradley J; Everitt, Amanda; Cornel, Anthony J; Hormozdiari, Fereydoun; Lanzaro, Gregory C

    2018-04-04

    Malaria mortality rates in sub-Saharan Africa have declined significantly in recent years as a result of increased insecticide-treated bed net (ITN) usage. A major challenge to further progress is the emergence and spread of insecticide resistance alleles in the Anopheles mosquito vectors, like An. coluzzii. A non-synonymous mutation in the para voltage-gated sodium channel gene reduces pyrethroid-binding affinity, resulting in knockdown resistance (kdr). Metabolic mechanisms of insecticide resistance involving detoxification genes like cytochrome P450 genes, carboxylesterases, and glutathione S-transferases are also important. As some gene activity is tissue-specific and/or environmentally induced, gene regulatory variation may be overlooked when comparing expression from whole mosquito bodies under standard rearing conditions. We detected complex insecticide resistance in a 2014 An. coluzzii colony from southern Mali using bottle bioassays. Additional bioassays involving recombinant genotypes from a cross with a relatively susceptible 1995 An. coluzzii colony from Mali confirmed the importance of kdr and associated increased permethrin resistance to the CYP9K1 locus on the X chromosome. Significant differential expression of CYP9K1 was not observed among these colonies in Malpighian tubules. However, the P450 gene CYP6Z1 was overexpressed in resistant individuals following sublethal permethrin exposure and the carboxylesterase gene COEAE5G was constitutively overexpressed. The significant P450-related insecticide resistance observed in the 2014 An. coluzzii colony indicates that ITNs treated with the P450 inhibitor piperonyl butoxide (PBO) would be more effective in this region. The known insecticide resistance gene CYP6Z1 was differentially expressed exclusively in the context of sublethal permethrin exposure, highlighting the importance of tissue-specificity and environmental conditions in gene expression studies. The increased activity of the carboxylesterase