Sample records for s-band down-converting digital

  1. FPGA implementation of digital down converter using CORDIC algorithm

    NASA Astrophysics Data System (ADS)

    Agarwal, Ashok; Lakshmi, Boppana

    2013-01-01

    In radio receivers, Digital Down Converters (DDC) are used to translate the signal from Intermediate Frequency level to baseband. It also decimates the oversampled signal to a lower sample rate, eliminating the need of a high end digital signal processors. In this paper we have implemented architecture for DDC employing CORDIC algorithm, which down converts an IF signal of 70MHz (3G) to 200 KHz baseband GSM signal, with an SFDR greater than 100dB. The implemented architecture reduces the hardware resource requirements by 15 percent when compared with other architecture available in the literature due to elimination of explicit multipliers and a quadrature phase shifter for mixing.

  2. Solar energy enhancement using down-converting particles: A rigorous approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrams, Ze’ev R.; Niv, Avi; Zhang, Xiang

    2011-06-01

    The efficiency of a single band-gap solar cell is specified by the Shockley-Queisser limit, which defines the maximal output power as a function of the solar cell’s band-gap. One way to overcome this limit is by using a down-conversion process whereupon a high energy photon is split into two lower energy photons, thereby increasing the current of the cell. Here, we provide a full analysis of the possible efficiency increase when placing a down-converting material on top of a pre-existing solar cell. We show that a total 7% efficiency improvement is possible for a perfectly efficient down-converting material. Our analysismore » covers both lossless and lossy theoretical limits, as well as a thermodynamic evaluation. Finally, we describe the advantages of nanoparticles as a possible choice for a down-converting material.« less

  3. Digital scale converter

    DOEpatents

    Upton, Richard G.

    1978-01-01

    A digital scale converter is provided for binary coded decimal (BCD) conversion. The converter may be programmed to convert a BCD value of a first scale to the equivalent value of a second scale according to a known ratio. The value to be converted is loaded into a first BCD counter and counted down to zero while a second BCD counter registers counts from zero or an offset value depending upon the conversion. Programmable rate multipliers are used to generate pulses at selected rates to the counters for the proper conversion ratio. The value present in the second counter at the time the first counter is counted to the zero count is the equivalent value of the second scale. This value may be read out and displayed on a conventional seven-segment digital display.

  4. All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter.

    PubMed

    Gao, Yongsheng; Wen, Aijun; Chen, Wei; Li, Xiaoyan

    2017-03-15

    An all-optical and ultra-wideband microwave in-phase/quadrature (I/Q) mixer, based on a dual-parallel Mach-Zehnder modulator and a wavelength division multiplexer, is proposed. Due to the simultaneous frequency down-conversion and 360-deg tunable phase shifting in the optical domain, the proposed I/Q mixer has the advantages of high conversion gain and excellent quadrature phase balance (<±1.3 deg⁡) with a wide operating frequency from 10 to 40 GHz. Assisted by an analog or digital intermediate-frequency quadrature coupler, an image-reject frequency down-converter is then implemented, with an image rejection exceeding 50 dB over the working band.

  5. All-optical and broadband microwave fundamental/sub-harmonic I/Q down-converters.

    PubMed

    Gao, Yongsheng; Wen, Aijun; Jiang, Wei; Fan, Yangyu; He, You

    2018-03-19

    Microwave I/Q down-converters are frequently used in image-reject super heterodyne receivers, zero intermediate frequency (zero-IF) receivers, and phase/frequency discriminators. However, due to the electronic bottleneck, conventional microwave I/Q mixers face a serious bandwidth limitation, I/Q imbalance, and even-order distortion. In this paper, photonic microwave fundamental and sub-harmonic I/Q down-converters are presented using a polarization division multiplexing dual-parallel Mach-Zehnder modulator (PDM-DPMZM). Thanks to all-optical manipulation, the proposed system features an ultra-wide operating band (7-40 GHz in the fundamental I/Q down-converter, and 10-40 GHz in the sub-harmonic I/Q down-converter) and an excellent I/Q balance (maximum 0.7 dB power imbalance and 1 degree phase imbalance). The conversion gain, noise figure (NF), even-order distortion, and spurious free dynamic range (SFDR) are also improved by LO power optimization and balanced detection. Using the proposed system, a high image rejection ratio is demonstrated for a super heterodyne receiver, and good EVMs over a wide RF power range is demonstrated for a zero-IF receiver. The proposed broadband photonic microwave fundamental and sub-harmonic I/Q down-converters may find potential applications in multi-band satellite, ultra-wideband radar and frequency-agile electronic warfare systems.

  6. Ka-band to L-band frequency down-conversion based on III-V-on-silicon photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Van Gasse, K.; Wang, Z.; Uvin, S.; De Deckere, B.; Mariën, J.; Thomassen, L.; Roelkens, G.

    2017-12-01

    In this work, we present the design, simulation and characterization of a frequency down-converter based on III-V-on-silicon photonic integrated circuit technology. We first demonstrate the concept using commercial discrete components, after which we demonstrate frequency conversion using an integrated mode-locked laser and integrated modulator. In our experiments, five channels in the Ka-band (27.5-30 GHz) with 500 MHz bandwidth are down-converted to the L-band (1.5 GHz). The breadboard demonstration shows a conversion efficiency of - 20 dB and a flat response over the 500 MHz bandwidth. The simulation of a fully integrated circuit indicates that a positive conversion gain can be obtained on a millimeter-sized photonic integrated circuit.

  7. Development of digital sideband separating down-conversion for Yuan-Tseh Lee Array

    NASA Astrophysics Data System (ADS)

    Li, Chao-Te; Kubo, Derek; Cheng, Jen-Chieh; Kuroda, John; Srinivasan, Ranjani; Ho, Solomon; Guzzino, Kim; Chen, Ming-Tang

    2016-07-01

    This report presents a down-conversion method involving digital sideband separation for the Yuan-Tseh Lee Array (YTLA) to double the processing bandwidth. The receiver consists of a MMIC HEMT LNA front end operating at a wavelength of 3 mm, and sub-harmonic mixers that output signals at intermediate frequencies (IFs) of 2-18 GHz. The sideband separation scheme involves an analog 90° hybrid followed by two mixers that provide down-conversion of the IF signal to a pair of in-phase (I) and quadrature (Q) signals in baseband. The I and Q baseband signals are digitized using 5 Giga sample per second (Gsps) analog-to-digital converters (ADCs). A second hybrid is digitally implemented using field-programmable gate arrays (FPGAs) to produce two sidebands, each with a bandwidth of 1.6 GHz. The 2 x 1.6 GHz band can be tuned to cover any 3.6 GHz window within the aforementioned IF range of the array. Sideband rejection ratios (SRRs) above 20 dB can be obtained across the 3.6 GHz bandwidth by equalizing the power and delay between the I and Q baseband signals. Furthermore, SRRs above 30 dB can be achieved when calibration is applied.

  8. Digital Front End for Wide-Band VLBI Science Receiver

    NASA Technical Reports Server (NTRS)

    Jongeling, Andre; Sigman, Elliott; Navarro, Robert; Goodhart, Charles; Rogstad, Steve; Chandra, Kumar; Finley, Sue; Trinh, Joseph; Soriano, Melissa; White, Les; hide

    2006-01-01

    An upgrade to the very-long-baseline-interferometry (VLBI) science receiver (VSR) a radio receiver used in NASA's Deep Space Network (DSN) is currently being implemented. The current VSR samples standard DSN intermediate- frequency (IF) signals at 256 MHz and after digital down-conversion records data from up to four 16-MHz baseband channels. Currently, IF signals are limited to the 265-to-375-MHz range, and recording rates are limited to less than 80 Mbps. The new digital front end, denoted the Wideband VSR, provides improvements to enable the receiver to process wider bandwidth signals and accommodate more data channels for recording. The Wideband VSR utilizes state-of-the-art commercial analog-to-digital converter and field-programmable gate array (FPGA) integrated circuits, and fiber-optic connections in a custom architecture. It accepts IF signals from 100 to 600 MHz, sampling the signal at 1.28 GHz. The sample data are sent to a digital processing module, using a fiber-optic link for isolation. The digital processing module includes boards designed around an Advanced Telecom Computing Architecture (ATCA) industry-standard backplane. Digital signal processing implemented in FPGAs down-convert the data signals in up to 16 baseband channels with programmable bandwidths from 1 kHz to 16 MHz. Baseband samples are transmitted to a computer via multiple Ethernet connections allowing recording to disk at rates of up to 1 Gbps.

  9. Solar Energy Enhancement Using Down-converting Particles: A Rigorous Approach

    DTIC Science & Technology

    2011-06-06

    Solar energy enhancement using down-converting particles: A rigorous approach Ze’ev R. Abrams,1,2 Avi Niv ,2 and Xiang Zhang2,3,a) 1Applied Science...System 1. 114905-2 Abrams, Niv , and Zhang J. Appl. Phys. 109, 114905 (2011) [This article is copyrighted as indicated in the article. Reuse of AIP...This increase per band-gap is displayed in 114905-3 Abrams, Niv , and Zhang J. Appl. Phys. 109, 114905 (2011) [This article is copyrighted as indicated

  10. All-digital pulse-expansion-based CMOS digital-to-time converter

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chi; Chu, Che-Hsun

    2017-02-01

    This paper presents a new all-digital CMOS digital-to-time converter (DTC) based on pulse expansion. Pulse expansion is achieved using an all-digital pulse-mixing scheme that can effectively improve the timing resolution and enable the DTC to be concise. Without requiring the Vernier principle or a costly digital-to-analog converter, the DTC comprises a pulse generator for generating a pulse, a pulse-expanding circuit (PEC) for programming timing generation, and a time subtractor for removing the time width of the pulse. The PEC comprises only a delay chain composed of proposed pulse-expanding units and a multiplexer. For accuracy enhancement, a pulse neutralization technique is presented to eliminate undesirable pulse variation. A 4-bit converter was fabricated in a 0.35-μ m Taiwan Semiconductor Manufacturing Company CMOS process and had a small area of nearly 0.045 mm2. Six chips were tested, all of which exhibited an improved resolution (approximately 16 ps) and low integral nonlinearity (less than ±0.4 least significant bit). The power consumption was 0.2 mW when the sample rate was 1M samples/s and the voltage supply was 3.3 V. The proposed DTC not only has favorable cost and power but also achieves an acceptable resolution without requiring an advanced CMOS process. This study is the first to use pulse expansion in digital-to-time conversion.

  11. All-digital pulse-expansion-based CMOS digital-to-time converter.

    PubMed

    Chen, Chun-Chi; Chu, Che-Hsun

    2017-02-01

    This paper presents a new all-digital CMOS digital-to-time converter (DTC) based on pulse expansion. Pulse expansion is achieved using an all-digital pulse-mixing scheme that can effectively improve the timing resolution and enable the DTC to be concise. Without requiring the Vernier principle or a costly digital-to-analog converter, the DTC comprises a pulse generator for generating a pulse, a pulse-expanding circuit (PEC) for programming timing generation, and a time subtractor for removing the time width of the pulse. The PEC comprises only a delay chain composed of proposed pulse-expanding units and a multiplexer. For accuracy enhancement, a pulse neutralization technique is presented to eliminate undesirable pulse variation. A 4-bit converter was fabricated in a 0.35-μm Taiwan Semiconductor Manufacturing Company CMOS process and had a small area of nearly 0.045 mm 2 . Six chips were tested, all of which exhibited an improved resolution (approximately 16 ps) and low integral nonlinearity (less than ±0.4 least significant bit). The power consumption was 0.2 mW when the sample rate was 1M samples/s and the voltage supply was 3.3 V. The proposed DTC not only has favorable cost and power but also achieves an acceptable resolution without requiring an advanced CMOS process. This study is the first to use pulse expansion in digital-to-time conversion.

  12. RF digital-to-analog converter

    DOEpatents

    Conway, Patrick H.; Yu, David U. L.

    1995-01-01

    A digital-to analogue converter for producing an RF output signal proportional to a digital input word of N bits from an RF reference input, N being an integer greater or equal to 2. The converter comprises a plurality of power splitters, power combiners and a plurality of mixers or RF switches connected in a predetermined configuration.

  13. RF digital-to-analog converter

    DOEpatents

    Conway, P.H.; Yu, D.U.L.

    1995-02-28

    A digital-to-analog converter is disclosed for producing an RF output signal proportional to a digital input word of N bits from an RF reference input, N being an integer greater or equal to 2. The converter comprises a plurality of power splitters, power combiners and a plurality of mixers or RF switches connected in a predetermined configuration. 18 figs.

  14. Optical analog-to-digital converter

    DOEpatents

    Vawter, G Allen [Corrales, NM; Raring, James [Goleta, CA; Skogen, Erik J [Albuquerque, NM

    2009-07-21

    An optical analog-to-digital converter (ADC) is disclosed which converts an input optical analog signal to an output optical digital signal at a sampling rate defined by a sampling optical signal. Each bit of the digital representation is separately determined using an optical waveguide interferometer and an optical thresholding element. The interferometer uses the optical analog signal and the sampling optical signal to generate a sinusoidally-varying output signal using cross-phase-modulation (XPM) or a photocurrent generated from the optical analog signal. The sinusoidally-varying output signal is then digitized by the thresholding element, which includes a saturable absorber or at least one semiconductor optical amplifier, to form the optical digital signal which can be output either in parallel or serially.

  15. Highly linear, sensitive analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Cox, J.; Finley, W. R.

    1969-01-01

    Analog-to-digital converter converts 10 volt full scale input signal into 13 bit digital output. Advantages include high sensitivity, linearity, low quantitizing error, high resistance to mechanical shock and vibration loads, and temporary data storage capabilities.

  16. Isolated step-down DC -DC converter for electric vehicles

    NASA Astrophysics Data System (ADS)

    Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.

    2018-02-01

    Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.

  17. Analog current mode analog/digital converter

    NASA Technical Reports Server (NTRS)

    Hadidi, Khayrollah (Inventor)

    1996-01-01

    An improved subranging or comparator circuit is provided for an analog-to-digital converter. As a subranging circuit, the circuit produces a residual signal representing the difference between an analog input signal and an analog of a digital representation. This is achieved by subdividing the digital representation into two or more parts and subtracting from the analog input signal analogs of each of the individual digital portions. In another aspect of the present invention, the subranging circuit comprises two sets of differential input pairs in which the transconductance of one differential input pair is scaled relative to the transconductance of the other differential input pair. As a consequence, the same resistor string may be used for two different digital-to-analog converters of the subranging circuit.

  18. IF digitization receiver of wideband digital array radar test-bed

    NASA Astrophysics Data System (ADS)

    Li, Weixing; Zhang, Yue; Lin, Jianzhi; Chen, Zengping

    2014-10-01

    In this paper, an X-band, 8-element wideband digital array radar (DAR) test-bed is presented, which makes use of a novel digital backend coupled with highly-integrated, multi-channel intermediate frequency (IF) digital receiver. Radar returns are received by the broadband antenna and then down-converted to the IF of 0.6GHz-3.0GHz. Four band-pass filters are applied in the front-end to divide the IF returns into four frequency bands with the instantaneous bandwidth of 500MHz. Every four array elements utilize a digital receiver, which is focused in this paper. The digital receivers are designed in a compact and flexible manner to meet the demands of DAR system. Each receiver consists of a fourchannel ADC, a high-performance FPGA, four DDR3 chips and two optical transceivers. With the sampling rate of up to 1.2GHz each channel, the ADC is capable of directly sampling the IF returns of four array elements at 10bits. In addition to serving as FIFO and controller, the onboard FPGA is also utilized for the implementation of various real-time algorithms such as DDC and channel calibration. Data is converted to bit stream and transferred through two low overhead, high data rate and multi-channel optical transceivers. Key technologies such as channel calibration and wideband DOA are studied with the measured data which is obtained in the experiments to illustrate the functionality of the system.

  19. Digital readout for image converter cameras

    NASA Astrophysics Data System (ADS)

    Honour, Joseph

    1991-04-01

    There is an increasing need for fast and reliable analysis of recorded sequences from image converter cameras so that experimental information can be readily evaluated without recourse to more time consuming photographic procedures. A digital readout system has been developed using a randomly triggerable high resolution CCD camera, the output of which is suitable for use with IBM AT compatible PC. Within half a second from receipt of trigger pulse, the frame reformatter displays the image and transfer to storage media can be readily achieved via the PC and dedicated software. Two software programmes offer different levels of image manipulation which includes enhancement routines and parameter calculations with accuracy down to pixel levels. Hard copy prints can be acquired using a specially adapted Polaroid printer, outputs for laser and video printer extend the overall versatility of the system.

  20. Shuttle S-band communications technical concepts

    NASA Technical Reports Server (NTRS)

    Seyl, J. W.; Seibert, W. W.; Porter, J. A.; Eggers, D. S.; Novosad, S. W.; Vang, H. A.; Lenett, S. D.; Lewton, W. A.; Pawlowski, J. F.

    1985-01-01

    Using the S-band communications system, shuttle orbiter can communicate directly with the Earth via the Ground Spaceflight Tracking and Data Network (GSTDN) or via the Tracking and Data Relay Satellite System (TDRSS). The S-band frequencies provide the primary links for direct Earth and TDRSS communications during all launch and entry/landing phases of shuttle missions. On orbit, S-band links are used when TDRSS Ku-band is not available, when conditions require orbiter attitudes unfavorable to Ku-band communications, or when the payload bay doors are closed. the S-band communications functional requirements, the orbiter hardware configuration, and the NASA S-band communications network are described. The requirements and implementation concepts which resulted in techniques for shuttle S-band hardware development discussed include: (1) digital voice delta modulation; (2) convolutional coding/Viterbi decoding; (3) critical modulation index for phase modulation using a Costas loop (phase-shift keying) receiver; (4) optimum digital data modulation parameters for continuous-wave frequency modulation; (5) intermodulation effects of subcarrier ranging and time-division multiplexing data channels; (6) radiofrequency coverage; and (7) despreading techniques under poor signal-to-noise conditions. Channel performance is reviewed.

  1. Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Liu, Yajun; Xia, Song; Shi, Hongyu; Zhang, Anxue; Xu, Zhuo

    2016-06-01

    We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5-20.0 GHz) and Ka (28.8-34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.

  2. An All-Digital Fast Tracking Switching Converter with a Programmable Order Loop Controller for Envelope Tracking RF Power Amplifiers

    PubMed Central

    Anabtawi, Nijad; Ferzli, Rony; Harmanani, Haidar M.

    2017-01-01

    This paper presents a step down, switched mode power converter for use in multi-standard envelope tracking radio frequency power amplifiers (RFPA). The converter is based on a programmable order sigma delta modulator that can be configured to operate with either 1st, 2nd, 3rd or 4th order loop filters, eliminating the need for a bulky passive output filter. Output ripple, sideband noise and spectral emission requirements of different wireless standards can be met by configuring the modulator’s filter order and converter’s sampling frequency. The proposed converter is entirely digital and is implemented in 14nm bulk CMOS process for post layout verification. For an input voltage of 3.3V, the converter’s output can be regulated to any voltage level from 0.5V to 2.5V, at a nominal switching frequency of 150MHz. It achieves a maximum efficiency of 94% at 1.5 W output power. PMID:28919657

  3. Fermilab Recycler Ring BPM Upgrade Based on Digital Receiver Technology

    NASA Astrophysics Data System (ADS)

    Webber, R.; Crisp, J.; Prieto, P.; Voy, D.; Briegel, C.; McClure, C.; West, R.; Pordes, S.; Mengel, M.

    2004-11-01

    Electronics for the 237 BPMs in the Fermilab Recycler Ring have been upgraded from a log-amplifier based system to a commercially produced digitizer-digital down converter based system. The hardware consists of a pre-amplifier connected to a split-plate BPM, an analog differential receiver-filter module and an 8-channel 80-MHz digital down converter VME board. The system produces position and intensity with a dynamic range of 30 dB and a resolution of ±10 microns. The position measurements are made on 2.5-MHz bunched beam and barrier buckets of the un-bunched beam. The digital receiver system operates in one of six different signal processing modes that include 2.5-MHz average, 2.5-MHz bunch-by-bunch, 2.5-MHz narrow band, unbunched average, un-bunched head/tail and 89-kHz narrow band. Receiver data is acquired on any of up to sixteen clock events related to Recycler beam transfers and other machine activities. Data from the digital receiver board are transferred to the front-end CPU for position and intensity computation on an on-demand basis through the VME bus. Data buffers are maintained for each of the acquisition events and support flash, closed orbit and turn-by-turn measurements. A calibration system provides evaluation of the BPM signal path and application programs.

  4. Digital servo control of random sound test excitation. [in reverberant acoustic chamber

    NASA Technical Reports Server (NTRS)

    Nakich, R. B. (Inventor)

    1974-01-01

    A digital servocontrol system for random noise excitation of a test object in a reverberant acoustic chamber employs a plurality of sensors spaced in the sound field to produce signals in separate channels which are decorrelated and averaged. The average signal is divided into a plurality of adjacent frequency bands cyclically sampled by a time division multiplex system, converted into digital form, and compared to a predetermined spectrum value stored in digital form. The results of the comparisons are used to control a time-shared up-down counter to develop gain control signals for the respective frequency bands in the spectrum of random sound energy picked up by the microphones.

  5. Application of digital control techniques for satellite medium power DC-DC converters

    NASA Astrophysics Data System (ADS)

    Skup, Konrad R.; Grudzinski, Pawel; Nowosielski, Witold; Orleanski, Piotr; Wawrzaszek, Roman

    2010-09-01

    The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter bases on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage mode stabilization that was implemented using VHDL. The described controllers are a classical digital PID controller and a bang-bang controller. The used converter for testing is a simple model of 5-20 W, 200 kHz buck power converter. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.

  6. 107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing.

    PubMed

    Shieh, W; Yang, Q; Ma, Y

    2008-04-28

    Coherent optical OFDM (CO-OFDM) has emerged as an attractive modulation format for the forthcoming 100 Gb/s Ethernet. However, even the spectral-efficient implementation of CO-OFDM requires digital-to-analog converters (DAC) and analog-to-digital converters (ADC) to operate at the bandwidth which may not be available today or may not be cost-effective. In order to resolve the electronic bandwidth bottleneck associated with DAC/ADC devices, we propose and elucidate the principle of orthogonal-band-multiplexed OFDM (OBM-OFDM) to subdivide the entire OFDM spectrum into multiple orthogonal bands. With this scheme, the DAC/ADCs do not need to operate at extremely high sampling rate. The corresponding mapping to the mixed-signal integrated circuit (IC) design is also revealed. Additionally, we show the proof-of-concept transmission experiment through optical realization of OBM-OFDM. To the best of our knowledge, we present the first experimental demonstration of 107 Gb/s QPSK-encoded CO-OFDM signal transmission over 1000 km standard-single- mode-fiber (SSMF) without optical dispersion compensation and without Raman amplification. The demonstrated system employs 2x2 MIMO-OFDM signal processing and achieves high electrical spectral efficiency with direct-conversion at both transmitter and receiver.

  7. Digital to synchro converter

    NASA Technical Reports Server (NTRS)

    Predina, Joseph P. (Inventor)

    1989-01-01

    A digital-to-synchro converter is provided where a binary input code specifies a desired shaft angle and where an resolver type position transducer is employed with additional circuitry to generate a shaft position error signal indicative of the angular difference between the desired shaft angle and the actual shaft angle. The additional circuitry corrects for known and calculated errors in the shaft position detection process and equipment.

  8. Dual-band high-efficiency polarization converter using an anisotropic metasurface

    NASA Astrophysics Data System (ADS)

    Lin, Baoqin; Wang, Buhong; Meng, Wen; Da, Xinyu; Li, Wei; Fang, Yingwu; Zhu, Zihang

    2016-05-01

    In this work, a dual-band and high-efficiency reflective cross-polarization converter based on an anisotropic metasurface for linearly polarized electromagnetic waves is proposed. Its unit cell is composed of an elliptical disk-ring mounted on grounded dielectric substrate, which is an anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along ± 45 ° directions with respect to y-axis direction. Both the simulation and measured results show that the polarization converter can convert x- or y-polarized incident wave to its cross polarized wave in the two frequency bands (6.99-9.18 GHz, 11.66-20.40 GHz) with the conversion efficiency higher than 90%; moreover, the higher frequency band is an ultra-wide one with a relative bandwidth of 54.5% for multiple plasmon resonances. In addition, we present a detailed analysis for the polarization conversion of the polarization converter, and derive a formula to calculate the cross- and co-polarization reflections at y-polarized incidence according to the phase differences between the two reflected coefficients at u-polarized and v-polarized incidences. The simulated, calculated, and measured results are all in agreement with the entire frequency regions.

  9. A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter

    NASA Astrophysics Data System (ADS)

    Zhu, Jianfeng; Yang, Yang; Li, Shufang

    2018-04-01

    A new and simple design of photo-excited broadband to dual-band tunable terahertz (THz) metamaterial cross polarization converter is proposed in this paper. The tunable converter is a sandwich structure with the center-cut cross-shaped metallic patterned structure as a resonator, the middle dielectric layer as a spacer and the bottom metallic film as the ground. The conductivity of the photoconductive semiconductor (Silicon) filled in the gap of the cross-shaped metallic resonator can be tuned by the incident pump power, leading to an easy modulation of the electromagnetic response of the proposed converter. The results show that the proposed cross-polarization converter can be tuned from a broadband with polarization conversion ratio (PCR) beyond 95% (1.86-2.94 THz) to dual frequency bands (fl = 1 . 46 THz &fh = 2 . 9 THz). The conversion peaks can reach 99.9% for the broadband and, 99.5% (fl) and 99.7% (fh) for the dual-band, respectively. Most importantly, numerical simulations demonstrate that the broadband/dual-band polarization conversion mechanism of the converter originates from the localized surface plasmon modes, which make the design simple and different from previous designs. With these good features, the proposed broadband to dual-band tunable polarization converter is expected to be used in widespread applications.

  10. Intermediate frequency band digitized high dynamic range radiometer system for plasma diagnostics and real-time Tokamak control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bongers, W. A.; Beveren, V. van; Westerhof, E.

    2011-06-15

    An intermediate frequency (IF) band digitizing radiometer system in the 100-200 GHz frequency range has been developed for Tokamak diagnostics and control, and other fields of research which require a high flexibility in frequency resolution combined with a large bandwidth and the retrieval of the full wave information of the mm-wave signals under investigation. The system is based on directly digitizing the IF band after down conversion. The enabling technology consists of a fast multi-giga sample analog to digital converter that has recently become available. Field programmable gate arrays (FPGA) are implemented to accomplish versatile real-time data analysis. A prototypemore » system has been developed and tested and its performance has been compared with conventional electron cyclotron emission (ECE) spectrometer systems. On the TEXTOR Tokamak a proof of principle shows that ECE, together with high power injected and scattered radiation, becomes amenable to measurement by this device. In particular, its capability to measure the phase of coherent signals in the spectrum offers important advantages in diagnostics and control. One case developed in detail employs the FPGA in real-time fast Fourier transform (FFT) and additional signal processing. The major benefit of such a FFT-based system is the real-time trade-off that can be made between frequency and time resolution. For ECE diagnostics this corresponds to a flexible spatial resolution in the plasma, with potential application in smart sensing of plasma instabilities such as the neoclassical tearing mode (NTM) and sawtooth instabilities. The flexible resolution would allow for the measurement of the full mode content of plasma instabilities contained within the system bandwidth.« less

  11. Dual-band reflective polarization converter based on slotted wire resonators

    NASA Astrophysics Data System (ADS)

    Li, Fengxia; Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Zhao, Rui; Zhou, Yang; Liang, Difei; Lu, Haipeng; Deng, Longjiang

    2018-02-01

    A dual-band and high-efficiency reflective linear polarization converter composed of a layer of slotted metal wires has been proposed. Both the simulated and experimental results indicate that the structure can convert a linearly polarized wave to its cross-polarized state for two distinct frequency bands under normal incidence: 9.8-15.1 and 19.2-25.7 GHz. This phenomenon is attributed to a resonance that corresponds to the "trapped mode" at 15.8 GHz. This mode is stable with structural parameters and incident angle at a relatively wide range, and thus becomes promising for dual-band (also multiband) devices design. By surface current distribution and electric field analysis, the operation mechanism has been illuminated, especially for the "trapped mode", identified by the equally but also oppositely directed currents in each unit cell.

  12. S-NPP VIIRS thermal emissive band gain correction during the blackbody warm-up-cool-down cycle

    NASA Astrophysics Data System (ADS)

    Choi, Taeyoung J.; Cao, Changyong; Weng, Fuzhong

    2016-09-01

    The Suomi National Polar orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) has onboard calibrators called blackbody (BB) and Space View (SV) for Thermal Emissive Band (TEB) radiometric calibration. In normal operation, the BB temperature is set to 292.5 K providing one radiance level. From the NOAA's Integrated Calibration and Validation System (ICVS) monitoring system, the TEB calibration factors (F-factors) have been trended and show very stable responses, however the BB Warm-Up-Cool-Down (WUCD) cycles provide detectors' gain and temperature dependent sensitivity measurements. Since the launch of S-NPP, the NOAA Sea Surface Temperature (SST) group noticed unexpected global SST anomalies during the WUCD cycles. In this study, the TEB Ffactors are calculated during the WUCD cycle on June 17th 2015. The TEB F-factors are analyzed by identifying the VIIRS On-Board Calibrator Intermediate Product (OBCIP) files to be Warm-Up or Cool-Down granules. To correct the SST anomaly, an F-factor correction parameter is calculated by the modified C1 (or b1) values which are derived from the linear portion of C1 coefficient during the WUCD. The F-factor correction factors are applied back to the original VIIRS SST bands showing significantly reducing the F-factor changes. Obvious improvements are observed in M12, M14 and M16, but corrections effects are hardly seen in M16. Further investigation is needed to find out the source of the F-factor oscillations during the WUCD.

  13. Inflight characterization and correction of Planck/HFI analog to digital converter nonlinearity

    NASA Astrophysics Data System (ADS)

    Sauvé, A.; Couchot, F.; Patanchon, G.; Montier, L.

    2016-07-01

    The Planck Satellite launched in 2009 was targeted to observe the anisotropies of the Cosmic Microwave Back-ground (CMB) to an unprecedented sensitivity. While the Analog to Digital Converter of the HFI (High Frequency Instrument) readout electronics had not been properly characterized on ground, it has been shown to add a systematic nonlinearity effect up to 2% of the cosmological signal. This was a limiting factor for CMB science at large angular scale. We will present the in-flight analysis and method used to characterize and correct this effect down to 0.05% level. We also discuss how to avoid this kind of complex issue for future missions.

  14. Miniature L-Band Radar Transceiver

    NASA Technical Reports Server (NTRS)

    McWatters, Dalia; Price, Douglas; Edelstein, Wendy

    2007-01-01

    array. Digital filtering also enables selection among multiple filter parameters as required for different radar operating modes. After digital filtering, data are decimated appropriately in order to minimize the data rate out of an antenna panel. The L-band transceiver (see Figure 2) includes a radio-frequency (RF)-to-baseband down-converter chain and an intermediate- frequency (IF)-to-RF up-converter chain. Transmit/receive (T/R) switches enable the use of a single feed to the antenna for both transmission and reception. The T/R switches also afford a built-in test capability by enabling injection of a calibration signal into the receiver chain. In order of decreasing priority, components of the transceiver were selected according to requirements of radiation hardness, then compactness, then low power. All of the RF components are radiation-hard. The noise figure (NF) was optimized to the extent that (1) a low-noise amplifier (LNA) (characterized by NF < 2 dB) was selected but (2) the receiver front-end T/R switches were selected for a high degree of isolation and acceptably low loss, regardless of the requirement to minimize noise.

  15. Digital Control Technologies for Modular DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Kascak, Peter E.; Lebron-Velilla, Ramon

    2002-01-01

    Recent trends in aerospace Power Management and Distribution (PMAD) systems focus on using commercial off-the-shelf (COTS) components as standard building blocks. This move to more modular designs has been driven by a desire to reduce costs and development times, but is also due to the impressive power density and efficiency numbers achieved by today's commercial DC-DC converters. However, the PMAD designer quickly learns of the hidden "costs" of using COTS converters. The most significant cost is the required addition of external input filters to meet strict electromagnetic interference (MIAMI) requirements for space systems. In fact, the high power density numbers achieved by the commercial manufacturers are greatly due to the lack of necessary input filters included in the COTS module. The NASA Glenn Research Center is currently pursuing a digital control technology that addresses this problem with modular DC-DC converters. This paper presents the digital control technologies that have been developed to greatly reduce the input filter requirements for paralleled, modular DC-DC converters. Initial test result show that the input filter's inductor size was reduced by 75 percent, and the capacitor size was reduced by 94 percent while maintaining the same power quality specifications.

  16. ISM band to U-NII band frequency transverter and method of frequency transversion

    DOEpatents

    Stepp, Jeffrey David [Grandview, MO; Hensley, Dale [Grandview, MO

    2006-04-04

    A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz-6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.

  17. ISM band to U-NII band frequency transverter and method of frequency transversion

    DOEpatents

    Stepp, Jeffrey David [Grandview, MO; Hensley, Dale [Grandview, MO

    2006-09-12

    A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz 6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.

  18. Designed cell consortia as fragrance-programmable analog-to-digital converters.

    PubMed

    Müller, Marius; Ausländer, Simon; Spinnler, Andrea; Ausländer, David; Sikorski, Julian; Folcher, Marc; Fussenegger, Martin

    2017-03-01

    Synthetic biology advances the rational engineering of mammalian cells to achieve cell-based therapy goals. Synthetic gene networks have nearly reached the complexity of digital electronic circuits and enable single cells to perform programmable arithmetic calculations or to provide dynamic remote control of transgenes through electromagnetic waves. We designed a synthetic multilayered gaseous-fragrance-programmable analog-to-digital converter (ADC) allowing for remote control of digital gene expression with 2-bit AND-, OR- and NOR-gate logic in synchronized cell consortia. The ADC consists of multiple sampling-and-quantization modules sensing analog gaseous fragrance inputs; a gas-to-liquid transducer converting fragrance intensity into diffusible cell-to-cell signaling compounds; a digitization unit with a genetic amplifier circuit to improve the signal-to-noise ratio; and recombinase-based digital expression switches enabling 2-bit processing of logic gates. Synthetic ADCs that can remotely control cellular activities with digital precision may enable the development of novel biosensors and may provide bioelectronic interfaces synchronizing analog metabolic pathways with digital electronics.

  19. S-Band propagation measurements

    NASA Technical Reports Server (NTRS)

    Briskman, Robert D.

    1994-01-01

    A geosynchronous satellite system capable of providing many channels of digital audio radio service (DARS) to mobile platforms within the contiguous United States using S-band radio frequencies is being implemented. The system is designed uniquely to mitigate both multipath fading and outages from physical blockage in the transmission path by use of satellite spatial diversity in combination with radio frequency and time diversity. The system also employs a satellite orbital geometry wherein all mobile platforms in the contiguous United States have elevation angles greater than 20 deg to both of the diversity satellites. Since implementation of the satellite system will require three years, an emulation has been performed using terrestrial facilities in order to allow evaluation of DARS capabilities in advance of satellite system operations. The major objective of the emulation was to prove the feasibility of broadcasting from satellites 30 channels of CD quality programming using S-band frequencies to an automobile equipped with a small disk antenna and to obtain quantitative performance data on S-band propagation in a satellite spatial diversity system.

  20. Analog quadrature signal to phase angle data conversion by a quadrature digitizer and quadrature counter

    DOEpatents

    Buchenauer, C.J.

    1981-09-23

    The quadrature phase angle phi (t) of a pair of quadrature signals S/sub 1/(t) and S/sub 2/(t) is digitally encoded on a real time basis by a quadrature digitizer for fractional phi (t) rotational excursions and by a quadrature up/down counter for full phi (t) rotations. The pair of quadrature signals are of the form S/sub 1/(t) = k(t) sin phi (t) and S/sub 2/(t) = k(t) cos phi (t) where k(t) is a signal common to both. The quadrature digitizer and the quadrature up/down counter may be used together or singularly as desired or required. Optionally, a digital-to-analog converter may follow the outputs of the quadrature digitizer and the quadrature up/down counter to provide an analog signal output of the quadrature phase angle phi (t).

  1. Analog quadrature signal to phase angle data conversion by a quadrature digitizer and quadrature counter

    DOEpatents

    Buchenauer, C. Jerald

    1984-01-01

    The quadrature phase angle .phi.(t) of a pair of quadrature signals S.sub.1 (t) and S.sub.2 (t) is digitally encoded on a real time basis by a quadrature digitizer for fractional .phi.(t) rotational excursions and by a quadrature up/down counter for full .phi.(t) rotations. The pair of quadrature signals are of the form S.sub.1 (t)=k(t) sin .phi.(t) and S.sub.2 (t)=k(t) cos .phi.(t) where k(t) is a signal common to both. The quadrature digitizer and the quadrature up/down counter may be used together or singularly as desired or required. Optionally, a digital-to-analog converter may follow the outputs of the quadrature digitizer and the quadrature up/down counter to provide an analog signal output of the quadrature phase angle .phi.(t).

  2. Development of wide band digital receiver for atmospheric radars using COTS board based SDR

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    is used to lock the board, which is essential for deriving Doppler information. Input from the radar analog receiver is given to one channel of USRP B210, which is down converted to baseband. 12-bit ADC present on the board digitizes the signal and produces I (in-phase) and Q (quadrature-phase) data. The maximum sampling rate possible is about 61 MSPS. The I and Q (time series) data is sent to PC via USB 3.0, where the signal processing is carried out. The online processing steps include decimation, range gating, decoding, coherent integration and FFT computation (optional). The processed data is then stored in the hard disk. C++ programming language is used for developing the real time signal processing. Shared memory along with multi threading is used to collect and process data simultaneously. Before implementing the real time operation, stand alone test of the board was carried out through GNU radio software and the base band output data obtained is found satisfactory. Later the board is integrated with the existing Lower Atmospheric Wind Profiling radar at NARL. The radar receive IF output at 70 MHz is given to the board and the real-time radar data is collected. The data is processed off-line and the range-doppler spectrum is obtained. Online processing software is under progress.

  3. Road Tripping down the Digital Preservation Highway: Part IV--Classic Rides

    ERIC Educational Resources Information Center

    Colati, Jessica Branco; Colati, Gregory C.

    2011-01-01

    "Road Tripping Down the Digital Preservation Highway" follows the continuing adventures of Peter Palmer, erstwhile librarian at Bellaluna University and manager of the library's and University's digital content, as he journeys down the Digital Preservation Highway. Palmer's problem this month was somewhat more philosophical. As manager of the…

  4. Parallel Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Sadr, Ramin; Shah, Biren N.; Hinedi, Sami M.

    1995-01-01

    Wide-band microwave receivers of proposed type include digital phase-locked loops in which band-pass filtering and down-conversion of input signals implemented by banks of multirate digital filters operating in parallel. Called "parallel digital phase-locked loops" to distinguish them from other digital phase-locked loops. Systems conceived as cost-effective solution to problem of filtering signals at high sampling rates needed to accommodate wide input frequency bands. Each of M filters process 1/M of spectrum of signal.

  5. Evaluation and Analysis of a Multi-Band Transceiver for Next Generation Telemetry Applications

    DTIC Science & Technology

    2014-06-01

    DDC ) BAND SELECTION Kintex FPGA DIGITAL RADIO RECEIVER DIGITAL RADIO TRANSMITTER ADC Fs < 225 MSPS Fs = 400 MHz RF BW = 36 MHz FREQ TRANSLATION VIA...MANAGER (MMCM) DIGITAL DOWN CONVERSION ( DDC ) BAND SELECTIVE FILTER Kintex FPGA DIGITAL RADIO RECEIVER DIGITAL RADIO TRANSMITTER FIR FINE TRANSLATION

  6. Digital photogrammetry at the U.S. Geological Survey

    USGS Publications Warehouse

    Greve, Clifford W.

    1995-01-01

    The U.S. Geological Survey is converting its primary map production and revision operations to use digital photogrammetric techniques. The primary source of data for these operations is the digital orthophoto quadrangle derived from National Aerial Photography Program images. These digital orthophotos are used on workstations that permit comparison of existing vector and raster data with the orthophoto and interactive collection and revision of the vector data.

  7. Existing methods for improving the accuracy of digital-to-analog converters

    NASA Astrophysics Data System (ADS)

    Eielsen, Arnfinn A.; Fleming, Andrew J.

    2017-09-01

    The performance of digital-to-analog converters is principally limited by errors in the output voltage levels. Such errors are known as element mismatch and are quantified by the integral non-linearity. Element mismatch limits the achievable accuracy and resolution in high-precision applications as it causes gain and offset errors, as well as harmonic distortion. In this article, five existing methods for mitigating the effects of element mismatch are compared: physical level calibration, dynamic element matching, noise-shaping with digital calibration, large periodic high-frequency dithering, and large stochastic high-pass dithering. These methods are suitable for improving accuracy when using digital-to-analog converters that use multiple discrete output levels to reconstruct time-varying signals. The methods improve linearity and therefore reduce harmonic distortion and can be retrofitted to existing systems with minor hardware variations. The performance of each method is compared theoretically and confirmed by simulations and experiments. Experimental results demonstrate that three of the five methods provide significant improvements in the resolution and accuracy when applied to a general-purpose digital-to-analog converter. As such, these methods can directly improve performance in a wide range of applications including nanopositioning, metrology, and optics.

  8. Implementation of high-resolution time-to-digital converter in 8-bit microcontrollers.

    PubMed

    Bengtsson, Lars E

    2012-04-01

    This paper will demonstrate how a time-to-digital converter (TDC) with sub-nanosecond resolution can be implemented into an 8-bit microcontroller using so called "direct" methods. This means that a TDC is created using only five bidirectional digital input-output-pins of a microcontroller and a few passive components (two resistors, a capacitor, and a diode). We will demonstrate how a TDC for the range 1-10 μs is implemented with 0.17 ns resolution. This work will also show how to linearize the output by combining look-up tables and interpolation. © 2012 American Institute of Physics

  9. A Nonlinear Digital Control Solution for a DC/DC Power Converter

    NASA Technical Reports Server (NTRS)

    Zhu, Minshao

    2002-01-01

    A digital Nonlinear Proportional-Integral-Derivative (NPID) control algorithm was proposed to control a 1-kW, PWM, DC/DC, switching power converter. The NPID methodology is introduced and a practical hardware control solution is obtained. The design of the controller was completed using Matlab (trademark) Simulink, while the hardware-in-the-loop testing was performed using both the dSPACE (trademark) rapid prototyping system, and a stand-alone Texas Instruments (trademark) Digital Signal Processor (DSP)-based system. The final Nonlinear digital control algorithm was implemented and tested using the ED408043-1 Westinghouse DC-DC switching power converter. The NPID test results are discussed and compared to the results of a standard Proportional-Integral (PI) controller.

  10. Charge integration successive approximation analog-to-digital converter for focal plane applications using a single amplifier

    NASA Technical Reports Server (NTRS)

    Zhou, Zhimin (Inventor); Pain, Bedabrata (Inventor)

    1999-01-01

    An analog-to-digital converter for on-chip focal-plane image sensor applications. The analog-to-digital converter utilizes a single charge integrating amplifier in a charge balancing architecture to implement successive approximation analog-to-digital conversion. This design requires minimal chip area and has high speed and low power dissipation for operation in the 2-10 bit range. The invention is particularly well suited to CMOS on-chip applications requiring many analog-to-digital converters, such as column-parallel focal-plane architectures.

  11. All-optical analog-to-digital converter based on Kerr effect in photonic crystal

    NASA Astrophysics Data System (ADS)

    Jafari, Dariush; Nurmohammadi, Tofiq; Asadi, Mohammad Javad; Abbasian, Karim

    2018-05-01

    In this paper, a novel all-optical analog-to-digital converter (AOADC) is proposed and simulated for proof of principle. This AOADC is designed to operate in the range of telecom wavelength (1550 nm). A cavity made of nonlinear Kerr material in photonic crystal (PhC), is designed to achieve an optical analog-to-digital conversion with 1 Tera sample per second (TS/s) and the total footprint of 42 μm2 . The simulation is done using finite-difference time domain (FDTD) method.

  12. Capacitance-digital and impedance converter as electrical tomography measurement system for biological tissue

    NASA Astrophysics Data System (ADS)

    Ikhsanti, Mila Izzatul; Bouzida, Rana; Wijaya, Sastra Kusuma; Rohmadi, Muttakin, Imamul; Taruno, Warsito P.

    2017-02-01

    This research aims to explore the feasibility of capacitance-digital converter and impedance converter for measurement module in electrical capacitance tomography (ECT) system. ECT sensor used was a cylindrical sensor having 8 electrodes. Absolute capacitance measurement system based on Sigma Delta Capacitance-to-Digital-Converter AD7746 has been shown to produce measurement with high resolution. Whereas, capacitance measurement with wide range of frequency is possible using Impedance Converter AD5933. Comparison of measurement accuracy by both AD7746 and AD5933 with reference of LCR meter was evaluated. Biological matters represented in water and oil were treated as object reconstructed into image using linear back projection (LBP) algorithm.

  13. Static and Dynamic Characteristics of DC-DC Converter Using a Digital Filter

    NASA Astrophysics Data System (ADS)

    Kurokawa, Fujio; Okamatsu, Masashi

    This paper presents the regulation and dynamic characteristics of the dc-dc converter with digital PID control, the minimum phase FIR filter or the IIR filter, and then the design criterion to improve the dynamic characteristics is discussed. As a result, it is clarified that the DC-DC converter using the IIR filter method has superior performance characteristics. The regulation range is within 1.3%, the undershoot against the step change of the load is less than 2% and the transient time is less than 0.4ms with the IIR filter method. In this case, the switching frequency is 100kHz and the step change of the load R is from 50 Ω to 10 Ω. Further, the superior characteristics are obtained when the first gain, the second gain and the second cut-off frequency are relatively large, and the first cut-off frequency and the passing frequency are relatively low. Moreover, it is important that the gain strongly decreases at the second cut-off frequency because the upper band pass frequency range must be always less than half of the sampling frequency based on the sampling theory.

  14. CMOS based capacitance to digital converter circuit for MEMS sensor

    NASA Astrophysics Data System (ADS)

    Rotake, D. R.; Darji, A. D.

    2018-02-01

    Most of the MEMS cantilever based system required costly instruments for characterization, processing and also has large experimental setups which led to non-portable device. So there is a need of low cost, highly sensitive, high speed and portable digital system. The proposed Capacitance to Digital Converter (CDC) interfacing circuit converts capacitance to digital domain which can be easily processed. Recent demand microcantilever deflection is part per trillion ranges which change the capacitance in 1-10 femto farad (fF) range. The entire CDC circuit is designed using CMOS 250nm technology. Design of CDC circuit consists of a D-latch and two oscillators, namely Sensor controlled oscillator (SCO) and digitally controlled oscillator (DCO). The D-latch is designed using transmission gate based MUX for power optimization. A CDC design of 7-stage, 9-stage and 11-stage tested for 1-18 fF and simulated using mentor graphics Eldo tool with parasitic. Since the proposed design does not use resistance component, the total power dissipation is reduced to 2.3621 mW for CDC designed using 9-stage SCO and DCO.

  15. A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications.

    PubMed

    Pérez Sanjurjo, Javier; Prefasi, Enrique; Buffa, Cesare; Gaggl, Richard

    2017-06-07

    The use of MEMS sensors has been increasing in recent years. To cover all the applications, many different readout circuits are needed. To reduce the cost and time to market, a generic capacitance-to-digital converter (CDC) seems to be the logical next step. This work presents a configurable CDC designed for capacitive MEMS sensors. The sensor is built with a bridge of MEMS, where some of them function with pressure. Then, the capacitive to digital conversion is realized using two steps. First, a switched-capacitor (SC) preamplifier is used to make the capacitive to voltage (C-V) conversion. Second, a self-oscillated noise-shaping integrating dual-slope (DS) converter is used to digitize this magnitude. The proposed converter uses time instead of amplitude resolution to generate a multibit digital output stream. In addition it performs noise shaping of the quantization error to reduce measurement time. This article shows the effectiveness of this method by measurements performed on a prototype, designed and fabricated using standard 0.13 µm CMOS technology. Experimental measurements show that the CDC achieves a resolution of 17 bits, with an effective area of 0.317 mm², which means a pressure resolution of 1 Pa, while consuming 146 µA from a 1.5 V power supply.

  16. A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications

    PubMed Central

    Pérez Sanjurjo, Javier; Prefasi, Enrique; Buffa, Cesare; Gaggl, Richard

    2017-01-01

    The use of MEMS sensors has been increasing in recent years. To cover all the applications, many different readout circuits are needed. To reduce the cost and time to market, a generic capacitance-to-digital converter (CDC) seems to be the logical next step. This work presents a configurable CDC designed for capacitive MEMS sensors. The sensor is built with a bridge of MEMS, where some of them function with pressure. Then, the capacitive to digital conversion is realized using two steps. First, a switched-capacitor (SC) preamplifier is used to make the capacitive to voltage (C-V) conversion. Second, a self-oscillated noise-shaping integrating dual-slope (DS) converter is used to digitize this magnitude. The proposed converter uses time instead of amplitude resolution to generate a multibit digital output stream. In addition it performs noise shaping of the quantization error to reduce measurement time. This article shows the effectiveness of this method by measurements performed on a prototype, designed and fabricated using standard 0.13 µm CMOS technology. Experimental measurements show that the CDC achieves a resolution of 17 bits, with an effective area of 0.317 mm2, which means a pressure resolution of 1 Pa, while consuming 146 µA from a 1.5 V power supply. PMID:28590425

  17. Laser-to-electricity energy converter for short wavelengths

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M.

    1975-01-01

    Short-wavelength energy converter can be made using Schottky barrier structure. It has wider band gap than p-n junction silicon semiconductors, and thus it has improved response at wavelengths down to and including ultraviolet region.

  18. Microwave Imaging Radar Reflectometer System Utilizing Digital Beam Forming

    NASA Astrophysics Data System (ADS)

    Hu, Fengqi; Li, Meijiao; Domier, Calvin W.; Liu, Xiaoguang; Luhmann, Neville C., Jr.

    2016-10-01

    Microwave Imaging Reflectometry is a radar-like technique developed to measure the electron density fluctuations in fusion plasmas. Phased Antenna Arrays can serve as electronically controlled ``lenses'' that can generate the required wavefronts by phase shifting and amplitude scaling, which is being realized in the digital domain with higher flexibility and faster processing speed. In the transmitter, the resolution of the phase control is 1.4 degrees and the amplitude control is 0.5 dB/ step. A V-band double-sided, printed bow tie antenna which exhibits 49% bandwidth (46 - 76 GHz) is employed. The antenna is fed by a microstrip transmission line for easy impedance matching. The simple structure and the small antenna are suitable for low cost fabrication, easy circuit integration, and phased antenna array multi-frequency applications. In the receiver part, a sub-array of 32 channels with 200 mil spacing is used to collect the scattered reflected signal from one unit spot on the plasma cutoff surface. Pre-amplification is used to control the noise level of the system and wire bondable components are used to accommodate the small spacing between each channel. After down converting, base band signals are digitized and processed in an FPGA module. U.S. Department of Energy Grant No. DE-FG02-99ER54531.

  19. An 11-bit and 39 ps resolution time-to-digital converter for ADPLL in digital television

    NASA Astrophysics Data System (ADS)

    Liu, Wei; (Ruth) Li, Wei; Ren, P.; Lin, C. L.; Zhang, Shengdong; Wang, Yangyuan

    2010-04-01

    We propose and demonstrate an 11-bit time-to-digital converter (TDC) for all-digital phase-locked loops (ADPLLs) in digital television. The proposed TDC converts the width of the input pulse into digital output with the tap space of the outputs of a free-running ring oscillator (FRO) being the conversion resolution. The FRO is in a structure of coiled cell array and the TDC core is symmetrical in the input structure. This leads to equally spaced taps in the reference clocks and thereby a high TDC conversion linearity. The TDC is fabricated in 0.13 μm CMOS process and the chip area is 0.025 mm2. The measurement results show that the TDC has a conversion resolution of 39 ps at 1.2 V power supply and a 4.5 ns dead time in the 11-bits output case. Both the differential non-linearity (DNL) and integral non-linearity (INL) are below 0.5 LSB. The power consumption of the whole circuit is 4.2 mW.

  20. Weather satellite picture receiving stations, APT digital scan converter

    NASA Technical Reports Server (NTRS)

    Vermillion, C. H.; Kamowski, J. C.

    1975-01-01

    The automatic picture transmission digital scan converter is used at ground stations to convert signals received from scanning radiometers to data compatible with ground equipment designed to receive signals from vidicons aboard operational meteorological satellites. Information necessary to understand the circuit theory, functional operation, general construction and calibration of the converter is provided. Brief and detailed descriptions of each of the individual circuits are included, accompanied by a schematic diagram contained at the end of each circuit description. Listings of integral parts and testing equipment required as well as an overall wiring diagram are included. This unit will enable the user to readily accept and process weather photographs from the operational meteorological satellites.

  1. Implantable digital hearing aid

    NASA Technical Reports Server (NTRS)

    Kissiah, A. M., Jr.

    1979-01-01

    Hearing aid converts analog output of microphone into digital pulses in about 10 channels of audiofrequencies. Each pulse band could be directly connected to portion of auditory nerve most sensitive to that range.

  2. Breaking down number syntax: spared comprehension of multi-digit numbers in a patient with impaired digit-to-word conversion.

    PubMed

    Dotan, Dror; Friedmann, Naama; Dehaene, Stanislas

    2014-10-01

    Can the meaning of two-digit Arabic numbers be accessed independently of their verbal-phonological representations? To answer this question we explored the number processing of ZN, an aphasic patient with a syntactic deficit in digit-to-verbal transcoding, who could hardly read aloud two-digit numbers, but could read them as single digits ("four, two"). Neuropsychological examination showed that ZN's deficit was neither in the digit input nor in the phonological output processes, as he could copy and repeat two-digit numbers. His deficit thus lied in a central process that converts digits to abstract number words and sends this information to phonological retrieval processes. Crucially, in spite of this deficit in number transcoding, ZN's two-digit comprehension was spared in several ways: (1) he could calculate two-digit additions; (2) he showed good performance in a two-digit comparison task, and a continuous distance effect; and (3) his performance in a task of mapping numbers to positions on an unmarked number line showed a logarithmic (nonlinear) factor, indicating that he represented two-digit Arabic numbers as holistic two-digit quantities. Thus, at least these aspects of number comprehension can be performed without converting the two-digit number from digits to verbal representation.

  3. A high performance cost-effective digital complex correlator for an X-band polarimetry survey.

    PubMed

    Bergano, Miguel; Rocha, Armando; Cupido, Luís; Barbosa, Domingos; Villela, Thyrso; Boas, José Vilas; Rocha, Graça; Smoot, George F

    2016-01-01

    The detailed knowledge of the Milky Way radio emission is important to characterize galactic foregrounds masking extragalactic and cosmological signals. The update of the global sky models describing radio emissions over a very large spectral band requires high sensitivity experiments capable of observing large sky areas with long integration times. Here, we present the design of a new 10 GHz (X-band) polarimeter digital back-end to map the polarization components of the galactic synchrotron radiation field of the Northern Hemisphere sky. The design follows the digital processing trends in radio astronomy and implements a large bandwidth (1 GHz) digital complex cross-correlator to extract the Stokes parameters of the incoming synchrotron radiation field. The hardware constraints cover the implemented VLSI hardware description language code and the preliminary results. The implementation is based on the simultaneous digitized acquisition of the Cartesian components of the two linear receiver polarization channels. The design strategy involves a double data rate acquisition of the ADC interleaved parallel bus, and field programmable gate array device programming at the register transfer mode. The digital core of the back-end is capable of processing 32 Gbps and is built around an Altera field programmable gate array clocked at 250 MHz, 1 GSps analog to digital converters and a clock generator. The control of the field programmable gate array internal signal delays and a convenient use of its phase locked loops provide the timing requirements to achieve the target bandwidths and sensitivity. This solution is convenient for radio astronomy experiments requiring large bandwidth, high functionality, high volume availability and low cost. Of particular interest, this correlator was developed for the Galactic Emission Mapping project and is suitable for large sky area polarization continuum surveys. The solutions may also be adapted to be used at signal processing

  4. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    NASA Astrophysics Data System (ADS)

    Tamborini, D.; Portaluppi, D.; Villa, F.; Tisa, S.; Tosi, A.

    2014-11-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  5. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs.

    PubMed

    Tamborini, D; Portaluppi, D; Villa, F; Tisa, S; Tosi, A

    2014-11-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  6. BPSK Demodulation Using Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Garcia, Thomas R.

    1996-01-01

    A digital communications signal is a sinusoidal waveform that is modified by a binary (digital) information signal. The sinusoidal waveform is called the carrier. The carrier may be modified in amplitude, frequency, phase, or a combination of these. In this project a binary phase shift keyed (BPSK) signal is the communication signal. In a BPSK signal the phase of the carrier is set to one of two states, 180 degrees apart, by a binary (i.e., 1 or 0) information signal. A digital signal is a sampled version of a "real world" time continuous signal. The digital signal is generated by sampling the continuous signal at discrete points in time. The rate at which the signal is sampled is called the sampling rate (f(s)). The device that performs this operation is called an analog-to-digital (A/D) converter or a digitizer. The digital signal is composed of the sequence of individual values of the sampled BPSK signal. Digital signal processing (DSP) is the modification of the digital signal by mathematical operations. A device that performs this processing is called a digital signal processor. After processing, the digital signal may then be converted back to an analog signal using a digital-to-analog (D/A) converter. The goal of this project is to develop a system that will recover the digital information from a BPSK signal using DSP techniques. The project is broken down into the following steps: (1) Development of the algorithms required to demodulate the BPSK signal; (2) Simulation of the system; and (3) Implementation a BPSK receiver using digital signal processing hardware.

  7. Digital control of a direct current converter for a hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Hernandez, Juan Manuel

    The nonlinear feedback loops permitting the large signal control of pulse width modulators in direct current converters are discussed. A digital feedback loop on a converter controlling the coupling of a direct current machine is described. It is used in the propulsion of a hybrid vehicle (thermal-electric) with regenerative braking. The protection of the power switches is also studied. An active protection of the MOST bipolar transistor association is proposed.

  8. Digitized synchronous demodulator

    NASA Technical Reports Server (NTRS)

    Woodhouse, Christopher E. (Inventor)

    1990-01-01

    A digitized synchronous demodulator is constructed entirely of digital components including timing logic, an accumulator, and means to digitally filter the digital output signal. Indirectly, it accepts, at its input, periodic analog signals which are converted to digital signals by traditional analog-to-digital conversion techniques. Broadly, the input digital signals are summed to one of two registers within an accumulator, based on the phase of the input signal and medicated by timing logic. At the end of a predetermined number of cycles of the inputted periodic signals, the contents of the register that accumulated samples from the negative half cycle is subtracted from the accumulated samples from the positive half cycle. The resulting difference is an accurate measurement of the narrow band amplitude of the periodic input signal during the measurement period. This measurement will not include error sources encountered in prior art synchronous demodulators using analog techniques such as offsets, charge injection errors, temperature drift, switching transients, settling time, analog to digital converter missing code, and linearity errors.

  9. Nonlinearity-aware 200  Gbit/s DMT transmission for C-band short-reach optical interconnects with a single packaged electro-absorption modulated laser.

    PubMed

    Zhang, Lu; Hong, Xuezhi; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Schatz, Richard; Guo, Changjian; Zhang, Junwei; Nordwall, Fredrik; Engenhardt, Klaus M; Westergren, Urban; Popov, Sergei; Jacobsen, Gunnar; Xiao, Shilin; Hu, Weisheng; Chen, Jiajia

    2018-01-15

    We experimentally demonstrate the transmission of a 200 Gbit/s discrete multitone (DMT) at the soft forward error correction limit in an intensity-modulation direct-detection system with a single C-band packaged distributed feedback laser and traveling-wave electro absorption modulator (DFB-TWEAM), digital-to-analog converter and photodiode. The bit-power loaded DMT signal is transmitted over 1.6 km standard single-mode fiber with a net rate of 166.7 Gbit/s, achieving an effective electrical spectrum efficiency of 4.93 bit/s/Hz. Meanwhile, net rates of 174.2 Gbit/s and 179.5 Gbit/s are also demonstrated over 0.8 km SSMF and in an optical back-to-back case, respectively. The feature of the packaged DFB-TWEAM is presented. The nonlinearity-aware digital signal processing algorithm for channel equalization is mathematically described, which improves the signal-to-noise ratio up to 3.5 dB.

  10. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamborini, D., E-mail: davide.tamborini@polimi.it; Portaluppi, D.; Villa, F.

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically usefulmore » for time-correlated single-photon counting application) through an independent serial link.« less

  11. Micromechanical torsional digital-to-analog converter for open-loop angular positioning applications

    NASA Astrophysics Data System (ADS)

    Zhou, Guangya; Tay, Francis E. H.; Chau, Fook Siong; Zhao, Yi; Logeeswaran, VJ

    2004-05-01

    This paper reports a novel micromechanical torsional digital-to-analog converter (MTDAC), operated in open-loop with digitally controlled precise multi-level tilt angles. The MTDAC mechanism presented is analogous to that of an electrical binary-weighted-input digital-to-analog converter (DAC). It consists of a rigid tunable platform, an array of torsional microactuators, each operating in a two-state (on/off) mode, and a set of connection beams with binary-weighted torsional stiffnesses that connect the actuators to the platform. The feasibility of the proposed MTDAC mechanism was verified numerically by finite element simulations and experimentally with a commercial optical phase-shifting interferometric system. A prototype 2-bit MTDAC was implemented using the poly-MUMPS process achieving a full-scale output tilt angle of 1.92° with a rotation step of 0.64°. This mechanism can be configured for many promising applications, particularly in beam steering-based OXC switches.

  12. Ultra Small Aperture Terminal for Ka-Band SATCOM

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto; Reinhart, Richard; Lee, Richard; Simons, Rainee

    1997-01-01

    An ultra small aperture terminal (USAT) at Ka-band frequency has been developed by Lewis Research Center (LeRC) for data rates up to 1.5 Mbps in the transmit mode and 40 Mbps in receive mode. The terminal consists of a 35 cm diameter offset-fed parabolic antenna which is attached to a solid state power amplifier and low noise amplifier. A single down converter is used to convert the Ka-band frequency to 70 MHz intermediate frequency (IF). A variable rate (9.6 Kbps to 10 Mbps) commercial modem with a standard RS-449/RS-232 interface is used to provide point-to-point digital services. The terminal has been demonstrated numerous times using the Advanced Communications Technology Satellite (ACTS) and the 4.5 in Link Evaluation Terminal (LET) in Cleveland. A conceptual design for an advanced terminal has also been developed. This advanced USAT utilizes Microwave Monolithic Integrated Circuit (MMIC) and flat plate array technologies. This terminal will be self contained in a single package which will include a 1 watt solid state amplifier (SSPA), low noise amplifier (LNA) and a modem card located behind the aperture of the array. The advanced USAT will be light weight, transportable, low cost and easy to point to the satellite. This paper will introduce designs for the reflector based and array based USAT's.

  13. W-band six-port network analyzer for two-port characterization of millimeter wave transistors

    NASA Technical Reports Server (NTRS)

    Moeller, Karl J.; Schaffner, James H.; Fetterman, Harold R.

    1989-01-01

    A W-band (75-100 GHz) six-port junction network analyzer was constructed from commercially available descrete waveguide components and was used for the direct two-port S-parameter measurement of active three-terminal devices. A comparison between the six-port and a down-converter-type frequency extender for a conventional network analyzer revealed the superior performance of the six-port. The application of the six-port to characterize a 0.1-micron gate-length HEMT at W-band is described, and representative results are presented.

  14. Road Tripping Down the Digital Preservation Highway: Part III. Rolls Royce, Ford, or Dune Buggy?

    ERIC Educational Resources Information Center

    Colati, Jessica Branco; Colati, Gregory C.

    2011-01-01

    "Road Tripping Down the Digital Preservation Highway" follows the continuing adventures of Peter Palmer, erstwhile librarian at Bellaluna University and manager of the library's and University's digital content, as he journeys down the Digital Preservation Highway. In this article, Palmer is put in charge of a task force to determine…

  15. Quantization noise in digital speech. M.S. Thesis- Houston Univ.

    NASA Technical Reports Server (NTRS)

    Schmidt, O. L.

    1972-01-01

    The amount of quantization noise generated in a digital-to-analog converter is dependent on the number of bits or quantization levels used to digitize the analog signal in the analog-to-digital converter. The minimum number of quantization levels and the minimum sample rate were derived for a digital voice channel. A sample rate of 6000 samples per second and lowpass filters with a 3 db cutoff of 2400 Hz are required for 100 percent sentence intelligibility. Consonant sounds are the first speech components to be degraded by quantization noise. A compression amplifier can be used to increase the weighting of the consonant sound amplitudes in the analog-to-digital converter. An expansion network must be installed at the output of the digital-to-analog converter to restore the original weighting of the consonant sounds. This technique results in 100 percent sentence intelligibility for a sample rate of 5000 samples per second, eight quantization levels, and lowpass filters with a 3 db cutoff of 2000 Hz.

  16. VHDL Implementation of Sigma-Delta Analog To Digital Converter

    NASA Astrophysics Data System (ADS)

    Chavan, R. N.; Chougule, D. G.

    2010-11-01

    Sigma-Delta modulation techniques provide a range of opportunities in a signal processing system for both increasing performance and data path optimization along the silicon area axis in the design space. One of the most challenging tasks in Analog to Digital Converter (ADC) design is to adapt the circuitry to ever new CMOS process technology. For digital circuits the number of gates per square mm app. doubles per chip generation. Integration of analog parts in newer deep submicron technologies is much more tough and additionally complicated because the usable voltage ranges are decreasing with every new integration step. This paper shows an approach which only uses 2 resistors and 1 capacitor which are located outside a pure digital chip. So all integration advantages of pure digital chips are preserved, there is no design effort for a new chip generation and the ADC also can be used for FPGAs. Resolutions of up to 16 bit are achievable. Sample rates in the 1 MHz region are feasible so that the approach is also useful for ADCs for xDSL technologies.

  17. Digital Base Band Converter As Radar Vlbi Backend / Dbbc Kā Ciparošanas Sistēma Radara Vlbi Novērojumiem

    NASA Astrophysics Data System (ADS)

    Tuccari, G.; Bezrukovs, Vl.; Nechaeva, M.

    2012-12-01

    A digital base band converter (DBBC) system has been developed by the Istituto di Radioastronomia (Noto, Italy) for increasing the sensitivity of European VLBI Network (EVN) by expanding the full observed bandwidth using numerical methods. The output data rate of this VLBI-backend is raised from 1 to 4 Gbps for each radiotelescope. All operations related to the signal processing (frequency translation, amplification, frequency generation with local oscillators, etc.) are transferred to the digital domain, which allows - in addition to well-known advantages coming from digital technologies - achieving better repeatability, precision, simplicity, etc. The maximum input band of DBBC system is 3.5 GHz, and the instantaneous bandwidth is up to 1 GHz for each radio frequency/intermediate frequency (RF/IF) out of the eight possible. This backend is a highly powerful platform for other radioastronomy applications, and a number of additional so-called personalities have been developed and used. This includes PFB (polyphase filter bank) receivers and Spectra for high resolution spectroscopy. An additional new development with the same aim - to use the DBBC system as a multi-purpose backend - is related to the bi-static radar observations including Radar VLBI. In such observations it is possible to study the population of space debris, with detection of even centimetre class fragments. A powerful transmitter is used to illuminate the sky region to be analyzed, and the echoes coming from known or unknown objects are reflected to one or more groundbased telescopes thus producing a single-dish or interferometric detection. The DBBC Radar VLBI personality is able to realize a high-resolution spectrum analysis, maintaining in the central area the echo signal at the expected frequency including the Doppler shift of frequency. For extremely weak signals a very large integration time is needed, so for this personality different input parameters are provided. The realtime information

  18. Active-Pixel Image Sensor With Analog-To-Digital Converters

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.

    1995-01-01

    Proposed single-chip integrated-circuit image sensor contains 128 x 128 array of active pixel sensors at 50-micrometer pitch. Output terminals of all pixels in each given column connected to analog-to-digital (A/D) converter located at bottom of column. Pixels scanned in semiparallel fashion, one row at time; during time allocated to scanning row, outputs of all active pixel sensors in row fed to respective A/D converters. Design of chip based on complementary metal oxide semiconductor (CMOS) technology, and individual circuit elements fabricated according to 2-micrometer CMOS design rules. Active pixel sensors designed to operate at video rate of 30 frames/second, even at low light levels. A/D scheme based on first-order Sigma-Delta modulation.

  19. New technologies for radiation-hardening analog to digital converters

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.

    1982-01-01

    Surveys of available Analog to Digital Converters (ADC) suitable for precision applications showed that none have the proper combination of accuracy and radiation hardness to meet space and/or strategic weapon requirements. A development program which will result in an ADC device which will serve a number of space and strategic applications. Emphasis was placed on approaches that could be integrated onto a single chip within three to five years.

  20. Resonant Tunneling Analog-To-Digital Converter

    NASA Technical Reports Server (NTRS)

    Broekaert, T. P. E.; Seabaugh, A. C.; Hellums, J.; Taddiken, A.; Tang, H.; Teng, J.; vanderWagt, J. P. A.

    1995-01-01

    As sampling rates continue to increase, current analog-to-digital converter (ADC) device technologies will soon reach a practical resolution limit. This limit will most profoundly effect satellite and military systems used, for example, for electronic countermeasures, electronic and signal intelligence, and phased array radar. New device and circuit concepts will be essential for continued progress. We describe a novel, folded architecture ADC which could enable a technological discontinuity in ADC performance. The converter technology is based on the integration of multiple resonant tunneling diodes (RTD) and hetero-junction transistors on an indium phosphide substrate. The RTD consists of a layered semiconductor hetero-structure AlAs/InGaAs/AlAs(2/4/2 nm) clad on either side by heavily doped InGaAs contact layers. Compact quantizers based around the RTD offer a reduction in the number of components and a reduction in the input capacitance Because the component count and capacitance scale with the number of bits N, rather than by 2 (exp n) as in the flash ADC, speed can be significantly increased, A 4-bit 2-GSps quantizer circuit is under development to evaluate the performance potential. Circuit designs for ADC conversion with a resolution of 6-bits at 25GSps may be enabled by the resonant tunneling approach.

  1. A miniature high-efficiency fully digital adaptive voltage scaling buck converter

    NASA Astrophysics Data System (ADS)

    Li, Hangbiao; Zhang, Bo; Luo, Ping; Zhen, Shaowei; Liao, Pengfei; He, Yajuan; Li, Zhaoji

    2015-09-01

    A miniature high-efficiency fully digital adaptive voltage scaling (AVS) buck converter is proposed in this paper. The pulse skip modulation with flexible duty cycle (FD-PSM) is used in the AVS controller, which simplifies the circuit architecture (<170 gates) and greatly saves the die area and the power consumption. The converter is implemented in a 0.13-μm one-poly-eight-metal (1P8 M) complementary metal oxide semiconductor process and the active on-chip area of the controller is only 0.003 mm2, which is much smaller. The measurement results show that when the operating frequency of the digital load scales dynamically from 25.6 MHz to 112.6 MHz, the supply voltage of which can be scaled adaptively from 0.84 V to 1.95 V. The controller dissipates only 17.2 μW, while the supply voltage of the load is 1 V and the operating frequency is 40 MHz.

  2. A Methodology to Teach Advanced A/D Converters, Combining Digital Signal Processing and Microelectronics Perspectives

    ERIC Educational Resources Information Center

    Quintans, C.; Colmenar, A.; Castro, M.; Moure, M. J.; Mandado, E.

    2010-01-01

    ADCs (analog-to-digital converters), especially Pipeline and Sigma-Delta converters, are designed using complex architectures in order to increase their sampling rate and/or resolution. Consequently, the learning of ADC devices also encompasses complex concepts such as multistage synchronization, latency, oversampling, modulation, noise shaping,…

  3. A Digital Radio Receiver for Ionospheric Research

    DTIC Science & Technology

    2006-06-01

    amplification, the signals are digitized and then processed by a digital down converter ( DDC ) and decimating low-pass filter. The resultant digital...images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 41 19a. NAME OF...the University of Calgary under a Contributions Agreement contract awarded by the Canadian Space Agency. The present paper follows an earlier article

  4. Shuttle Ku-band and S-band communications implementations study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.; Nessibou, T.; Nilsen, P. W.; Simon, M. K.; Weber, C. L.

    1979-01-01

    The interfaces between the Ku-band system and the TDRSS, between the S-band system and the TDRSS, GSTDN and SGLS networks, and between the S-band payload communication equipment and the other Orbiter avionic equipment were investigated. The principal activities reported are: (1) performance analysis of the payload narrowband bent-pipe through the Ku-band communication system; (2) performance evaluation of the TDRSS user constraints placed on the S-band and Ku-band communication systems; (3) assessment of the shuttle-unique S-band TDRSS ground station false lock susceptibility; (4) development of procedure to make S-band antenna measurements during orbital flight; (5) development of procedure to make RFI measurements during orbital flight to assess the performance degradation to the TDRSS S-band communication link; and (6) analysis of the payload interface integration problem areas.

  5. A 41 ps ASIC time-to-digital converter for physics experiments

    NASA Astrophysics Data System (ADS)

    Russo, Stefano; Petra, Nicola; De Caro, Davide; Barbarino, Giancarlo; Strollo, Antonio G. M.

    2011-12-01

    We present a novel Time-to-Digital (TDC) converter for physics experiments. Proposed TDC is based on a synchronous counter and an asynchronous fine interpolator. The fine part of the measurement is obtained using NORA inverters that provide improved resolution. A prototype IC was fabricated in 180 nm CMOS technology. Experimental measurements show that proposed TDC features 41 ps resolution associated with 0.35LSB differential non-linearity, 0.77LSB integral non-linearity and a negligible single shot precision. The whole dynamic range is equal to 18 μs. The proposed TDC is designed using a flash architecture that reduces dead time. Data reported in the paper show that our design is well suited for present and future particle physics experiments.

  6. Digital image film generation: from the photoscientist's perspective

    USGS Publications Warehouse

    Boyd, John E.

    1982-01-01

    The technical sophistication of photoelectronic transducers, integrated circuits, and laser-beam film recorders has made digital imagery an alternative to traditional analog imagery for remote sensing. Because a digital image is stored in discrete digital values, image enhancement is possible before the data are converted to a photographic image. To create a special film-reproduction curve - which can simulate any desired gamma, relative film speed, and toe/shoulder response - the digital-to-analog transfer function of the film recorder is uniquely defined and implemented by a lookup table in the film recorder. Because the image data are acquired in spectral bands, false-color composites also can be given special characteristics by selecting a reproduction curve tailored for each band.

  7. Subnanosecond time-to-digital converter implemented in a Kintex-7 FPGA

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Horii, Y.; Ikeno, M.; Sasaki, O.; Tomoto, M.; Uchida, T.

    2017-12-01

    Time-to-digital converters (TDCs) are used in various fields, including high-energy physics. One advantage of implementing TDCs in field-programmable gate arrays (FPGAs) is the flexibility on the modification of the logics, which is useful to cope with the changes in the experimental conditions. Recent FPGAs make it possible to implement TDCs with a time resolution less than 10 ps. On the other hand, various drift chambers require a time resolution of O(0.1) ns, and a simple and easy-to-implement TDC is useful for a robust operation. Herein an eight-channel TDC with a variable bin size down to 0.28 ns is implemented in a Xilinx Kintex-7 FPGA and tested. The TDC is based on a multisampling scheme with quad phase clocks synchronised with an external reference clock. Calibration of the bin size is unnecessary if a stable reference clock is available, which is common in high-energy physics experiments. Depending on the channel, the standard deviation of the differential nonlinearity for a 0.28 ns bin size is 0.13-0.31. The performance has a negligible dependence on the temperature. The power consumption and the potential to extend the number of channels are also discussed.

  8. Step-by-Step Design of an FPGA-Based Digital Compensator for DC/DC Converters Oriented to an Introductory Course

    ERIC Educational Resources Information Center

    Zumel, P.; Fernandez, C.; Sanz, M.; Lazaro, A.; Barrado, A.

    2011-01-01

    In this paper, a short introductory course to introduce field-programmable gate array (FPGA)-based digital control of dc/dc switching power converters is presented. Digital control based on specific hardware has been at the leading edge of low-medium power dc/dc switching converters in recent years. Besides industry's interest in this topic, from…

  9. The LLRF System for the S-Band RF Plants of the FERMI Linac

    NASA Astrophysics Data System (ADS)

    Fabris, A.; Byrd, J.; D'Auria, G.; Doolittle, L.; Gelmetti, F.; Huang, G.; Jones, J.; Milloch, M.; Predonzani, M.; Ratti, A.; Rohlev, T.; Salom, A.; Serrano, C.; Stettler, M.

    2016-04-01

    Specifications on electron beam quality for the operation of a linac-based free-electron laser (FEL), as FERMI in Trieste (Italy), impose stringent requirements on the stability of the electromagnetic fields of the accelerating sections. These specifications can be met only with state-of-the-art low-level RF (LLRF) systems based on advanced digital technologies. Design considerations, construction, and performance results of the FERMI digital LLRF are presented in this paper. The stability requirements derived by simulations are better than 0.1% in amplitude and 0.1° S-band in phase. The system installed in the FERMI Linac S-band RF plants has met these specifications and is in operation on a 24-h basis as a user facility. Capabilities of the system allow planning for new developments that are also described here.

  10. Digital computer simulation of inductor-energy-storage dc-to-dc converters with closed-loop regulators

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Owen, H. A.; Wilson, T. G.; Rodriguez, G. E.

    1974-01-01

    The simulation of converter-controller combinations by means of a flexible digital computer program which produces output to a graphic display is discussed. The procedure is an alternative to mathematical analysis of converter systems. The types of computer programming involved in the simulation are described. Schematic diagrams, state equations, and output equations are displayed for four basic forms of inductor-energy-storage dc to dc converters. Mathematical models are developed to show the relationship of the parameters.

  11. Road Tripping down the Digital Preservation Highway, Part I: Hitting the Road

    ERIC Educational Resources Information Center

    Colati, Jessica Branco; Colati, Gregory C.

    2011-01-01

    In this inaugural column, the authors introduce Peter Palmer, erstwhile librarian at Bellaluna University who is being tasked with managing the library's and university's digital content as he begins his journey down the Digital Highway. As head of access services at Bellaluna University, Peter had been, by default, made responsible for managing…

  12. Top-Down Beta Enhances Bottom-Up Gamma

    PubMed Central

    Thompson, William H.

    2017-01-01

    Several recent studies have demonstrated that the bottom-up signaling of a visual stimulus is subserved by interareal gamma-band synchronization, whereas top-down influences are mediated by alpha-beta band synchronization. These processes may implement top-down control of stimulus processing if top-down and bottom-up mediating rhythms are coupled via cross-frequency interaction. To test this possibility, we investigated Granger-causal influences among awake macaque primary visual area V1, higher visual area V4, and parietal control area 7a during attentional task performance. Top-down 7a-to-V1 beta-band influences enhanced visually driven V1-to-V4 gamma-band influences. This enhancement was spatially specific and largest when beta-band activity preceded gamma-band activity by ∼0.1 s, suggesting a causal effect of top-down processes on bottom-up processes. We propose that this cross-frequency interaction mechanistically subserves the attentional control of stimulus selection. SIGNIFICANCE STATEMENT Contemporary research indicates that the alpha-beta frequency band underlies top-down control, whereas the gamma-band mediates bottom-up stimulus processing. This arrangement inspires an attractive hypothesis, which posits that top-down beta-band influences directly modulate bottom-up gamma band influences via cross-frequency interaction. We evaluate this hypothesis determining that beta-band top-down influences from parietal area 7a to visual area V1 are correlated with bottom-up gamma frequency influences from V1 to area V4, in a spatially specific manner, and that this correlation is maximal when top-down activity precedes bottom-up activity. These results show that for top-down processes such as spatial attention, elevated top-down beta-band influences directly enhance feedforward stimulus-induced gamma-band processing, leading to enhancement of the selected stimulus. PMID:28592697

  13. Converting Topographic Maps into Digital Form to Aid in Archeological Research in the Peten, Guatemala

    NASA Technical Reports Server (NTRS)

    Aldrich, Serena R.

    1999-01-01

    The purpose of my project was to convert a topographical map into digital form so that the data can be manipulated and easily accessed in the field. With the data in this particular format, Dr. Sever and his colleagues can highlight the specific features of the landscape that they require for their research of the ancient Mayan civilization. Digital elevation models (DEMs) can also be created from the digitized contour features adding another dimension to their research.

  14. Road Tripping Down the Digital Preservation Highway, Part II: Road Signs, Billboards, and Rest Stops along the Way

    ERIC Educational Resources Information Center

    Colati, Jessica Branco; Colati, Gregory C.

    2011-01-01

    In this second of a two-part article on road tripping down the Digital Preservation Highway, the authors follow the continuing adventures of Peter Palmer, erstwhile librarian at Bellaluna University and manager of the library's and University's digital content, as he journeys down the Digital Preservation Highway. In the authors' last visit with…

  15. SEM analysis of ionizing radiation effects in an analog to digital converter /AD571/

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Perret, J.; Evans, K. C.

    1981-01-01

    The considered investigation is concerned with the study of the total-dose degradation mechanisms in an IIL analog to digital (A/D) converter. The A/D converter is a 10 digit device having nine separate functional units on the chip which encompass several hundred transistors and circuit elements. It was the objective of the described research to find the radiation sensitive elements by a systematic search of the devices on the LSI chip. The employed technique using a scanning electron microscope to determine the functional blocks of an integrated circuit which are sensitive to ionizing radiation and then progressively zeroing in on the soft components within those blocks, proved extremely successful on the AD571. Four functional blocks were found to be sensitive to radiation, including the Voltage Reference, DAC, IIL Clock, and IIL SAR.

  16. Digital Detection and Processing of Multiple Quadrature Harmonics for EPR Spectroscopy

    PubMed Central

    Ahmad, R.; Som, S.; Kesselring, E.; Kuppusamy, P.; Zweier, J.L.; Potter, L.C.

    2010-01-01

    A quadrature digital receiver and associated signal estimation procedure are reported for L-band electron paramagnetic resonance (EPR) spectroscopy. The approach provides simultaneous acquisition and joint processing of multiple harmonics in both in-phase and out-of-phase channels. The digital receiver, based on a high-speed dual-channel analog-to-digital converter, allows direct digital down-conversion with heterodyne processing using digital capture of the microwave reference signal. Thus, the receiver avoids noise and nonlinearity associated with analog mixers. Also, the architecture allows for low-Q anti-alias filtering and does not require the sampling frequency to be time-locked to the microwave reference. A noise model applicable for arbitrary contributions of oscillator phase noise is presented, and a corresponding maximum-likelihood estimator of unknown parameters is also reported. The signal processing is applicable for Lorentzian lineshape under nonsaturating conditions. The estimation is carried out using a convergent iterative algorithm capable of jointly processing the in-phase and out-of-phase data in the presence of phase noise and unknown microwave phase. Cramér-Rao bound analysis and simulation results demonstrate a significant reduction in linewidth estimation error using quadrature detection, for both low and high values of phase noise. EPR spectroscopic data are also reported for illustration. PMID:20971667

  17. Dual-polarization multi-band optical OFDM transmission and transceiver limitations for up to 500 Gb/s uncompensated long-haul links.

    PubMed

    Giacoumidis, E; Jarajreh, M A; Sygletos, S; Le, S T; Farjady, F; Tsokanos, A; Hamié, A; Pincemin, E; Jaouën, Y; Ellis, A D; Doran, N J

    2014-05-05

    A number of critical issues for dual-polarization single- and multi-band optical orthogonal-frequency division multiplexing (DP-SB/MB-OFDM) signals are analyzed in dispersion compensation fiber (DCF)-free long-haul links. For the first time, different DP crosstalk removal techniques are compared, the maximum transmission-reach is investigated, and the impact of subcarrier number and high-level modulation formats are explored thoroughly. It is shown, for a bit-error-rate (BER) of 10(-3), 2000 km of quaternary phase-shift keying (QPSK) DP-MB-OFDM transmission is feasible. At high launched optical powers (LOP), maximum-likelihood decoding can extend the LOP of 40 Gb/s QPSK DP-SB-OFDM at 2000 km by 1.5 dB compared to zero-forcing. For a 100 Gb/s DP-MB-OFDM system, a high number of subcarriers contribute to improved BER but at the cost of digital signal processing computational complexity, whilst by adapting the cyclic prefix length the BER can be improved for a low number of subcarriers. In addition, when 16-quadrature amplitude modulation (16QAM) is employed the digital-to-analogue/analogue-to-digital converter (DAC/ADC) bandwidth is relaxed with a degraded BER; while the 'circular' 8QAM is slightly superior to its 'rectangular' form. Finally, the transmission of wavelength-division multiplexing DP-MB-OFDM and single-carrier DP-QPSK is experimentally compared for up to 500 Gb/s showing great potential and similar performance at 1000 km DCF-free G.652 line.

  18. Exploration of strategies for implementation of screen-printed mercuric iodide converters in direct detection AMFPIs for digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao

    2017-03-01

    Digital breast tomosynthesis (DBT) has become an increasingly important tool in the diagnosis of breast disease. For those DBT imaging systems based on active matrix, flat-panel imager (AMFPI) arrays, the incident radiation is detected directly or indirectly by means of an a-Se or CsI:Tl x-ray converter, respectively. While all AMFPI DBT devices provide clinically useful volumetric information, their performance is limited by the relatively modest average signal generated per interacting X ray by present converters compared to the electronic additive noise of the system. To address this constraint, we are pursuing the development of a screen-printed form of mercuric iodide (SP HgI2) which has demonstrated considerably higher sensitivities (i.e., larger average signal per interacting X ray) than those of conventional a-Se and CsI:Tl converters, as well as impressive DQE and MTF performance under mammographic irradiation conditions. A converter offering such enhanced sensitivity would greatly improve signal-to-noise performance and facilitate quantum-limited imaging down to significantly lower exposures than present AMFPI DBT systems. However, before this novel converter material can be implemented practically, challenges associated with SP HgI2 must be addressed. Most significantly, high levels of charge trapping (which lead to image lag as well as fall-off in DQE at higher exposures) need to be reduced - while improving the uniformity in pixel-to-pixel signal response as well as maintaining low dark current and otherwise favorable DQE performance. In this paper, a pair of novel strategies for overcoming the challenge of charge trapping in SP HgI2 converters are described, and initial results from empirical and calculational studies of these strategies are reported.

  19. Note: All-digital CMOS MOS-capacitor-based pulse-shrinking mechanism suitable for time-to-digital converters

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chi; Hwang, Chorng-Sii; Lin, You-Ting; Liu, Keng-Chih

    2015-12-01

    This paper presents an all-digital CMOS pulse-shrinking mechanism suitable for time-to-digital converters (TDCs). A simple MOS capacitor is used as a pulse-shrinking cell to perform time attenuation for time resolving. Compared with a previous pulse-shrinking mechanism, the proposed mechanism provides an appreciably improved temporal resolution with high linearity. Furthermore, the use of a binary-weighted pulse-shrinking unit with scaled MOS capacitors is proposed for achieving a programmable resolution. A TDC involving the proposed mechanism was fabricated using a TSMC (Taiwan Semiconductor Manufacturing Company) 0.18-μm CMOS process, and it has a small area of nearly 0.02 mm2 and an integral nonlinearity error of ±0.8 LSB for a resolution of 24 ps.

  20. A digital correlator upgrade for the Arcminute MicroKelvin Imager

    NASA Astrophysics Data System (ADS)

    Hickish, Jack; Razavi-Ghods, Nima; Perrott, Yvette C.; Titterington, David J.; Carey, Steve H.; Scott, Paul F.; Grainge, Keith J. B.; Scaife, Anna M. M.; Alexander, Paul; Saunders, Richard D. E.; Crofts, Mike; Javid, Kamran; Rumsey, Clare; Jin, Terry Z.; Ely, John A.; Shaw, Clive; Northrop, Ian G.; Pooley, Guy; D'Alessandro, Robert; Doherty, Peter; Willatt, Greg P.

    2018-04-01

    The Arcminute Microkelvin Imager (AMI) telescopes located at the Mullard Radio Astronomy Observatory near Cambridge have been significantly enhanced by the implementation of a new digital correlator with 1.2 MHz spectral resolution. This system has replaced a 750-MHz resolution analogue lag-based correlator, and was designed to mitigate the effects of radio frequency interference, particularly that from geostationary satellites which are visible from the AMI site when observing at low declinations. The upgraded instrument consists of 18 ROACH2 Field Programmable Gate Array platforms used to implement a pair of real-time FX correlators - one for each of AMI's two arrays. The new system separates the down-converted RF baseband signal from each AMI receiver into two sub-bands, each of which are filtered to a width of 2.3 GHz and digitized at 5-Gsps with 8 bits of precision. These digital data streams are filtered into 2048 frequency channels and cross-correlated using FPGA hardware, with a commercial 10 Gb Ethernet switch providing high-speed data interconnect. Images formed using data from the new digital correlator show over an order of magnitude improvement in dynamic range over the previous system. The ability to observe at low declinations has also been significantly improved.

  1. MMIC linear-phase and digital modulators for deep space spacecraft X-band transponder applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Ali, Fazal

    1991-01-01

    The design concepts, analyses, and development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of space-borne communications systems are summarized. The design approach uses a compact lumped element quadrature hybrid and Metal Semiconductor Field Effect Transistors (MESFET)-varactors to provide low loss and well-controlled phase performance for deep space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters were modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/- 2.5 radians of peak phase deviation. The modulator will accommodate downlink signal modulation with composite telemetry and ranging data, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 8 +/- 0.5 dB. The MMIC digital modulator is designed to provide greater than 10 Mb/s of bi-phase modulation at X-band.

  2. Digital signal processor and processing method for GPS receivers

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1989-01-01

    A digital signal processor and processing method therefor for use in receivers of the NAVSTAR/GLOBAL POSITIONING SYSTEM (GPS) employs a digital carrier down-converter, digital code correlator and digital tracking processor. The digital carrier down-converter and code correlator consists of an all-digital, minimum bit implementation that utilizes digital chip and phase advancers, providing exceptional control and accuracy in feedback phase and in feedback delay. Roundoff and commensurability errors can be reduced to extremely small values (e.g., less than 100 nanochips and 100 nanocycles roundoff errors and 0.1 millichip and 1 millicycle commensurability errors). The digital tracking processor bases the fast feedback for phase and for group delay in the C/A, P.sub.1, and P.sub.2 channels on the L.sub.1 C/A carrier phase thereby maintaining lock at lower signal-to-noise ratios, reducing errors in feedback delays, reducing the frequency of cycle slips and in some cases obviating the need for quadrature processing in the P channels. Simple and reliable methods are employed for data bit synchronization, data bit removal and cycle counting. Improved precision in averaged output delay values is provided by carrier-aided data-compression techniques. The signal processor employs purely digital operations in the sense that exactly the same carrier phase and group delay measurements are obtained, to the last decimal place, every time the same sampled data (i.e., exactly the same bits) are processed.

  3. Radiation-hard analog-to-digital converters for space and strategic applications

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Dantas, A. R. V.

    1985-01-01

    During the course of the Jet Propulsion Laboratory's program to study radiation-hardened analog-to-digital converters (ADCs), numerous milestones have been reached in manufacturers' awareness and technology development and transfer, as well as in user awareness of these developments. The testing of ADCs has also continued with twenty different ADCs from seven manufacturers, all tested for total radiation dose and three tested for neutron effects. Results from these tests are reported.

  4. Research of digital controlled DC/DC converter based on STC12C5410AD

    NASA Astrophysics Data System (ADS)

    Chen, Dan-Jiang; Jin, Xin; Xiao, Zhi-Hong

    2010-02-01

    In order to study application of digital control technology on DC/DC converter, principle of increment mode PID control algorithm was analyzed in the paper. Then, a SCM named STC12C5410AD was introduced with its internal resources and characteristics. The PID control algorithm can be implemented easily based on it. The output of PID control was used to change the value of a variable that is 255 times than duty cycle, and this reduced the error of calculation. The valid of the presented algorithm was verified by an experiment for a BUCK DC/DC converter. The experimental results indicated that output voltage of the BUCK converter is stable with low ripple.

  5. Shuttle Ku-band and S-band communications implementation study

    NASA Technical Reports Server (NTRS)

    Dodds, J. G.; Huth, G. K.; Nilsen, P. W.; Polydoros, A.; Simon, M. K.; Weber, C. L.

    1980-01-01

    Various aspects of the shuttle orbiter S-band network communication system, the S-band payload communication system, and the Ku-band communication system are considered. A method is proposed for obtaining more accurate S-band antenna patterns of the actual shuttle orbiter vehicle during flight because the preliminary antenna patterns using mock-ups are not realistic that they do not include the effects of additional appendages such as wings and tail structures. The Ku-band communication system is discussed especially the TDRS antenna pointing accuracy with respect to the orbiter and the modifications required and resulting performance characteristics of the convolutionally encoded high data rate return link to maintain bit synchronizer lock on the ground. The TDRS user constraints on data bit clock jitter and data asymmetry on unbalanced QPSK with noisy phase references are included. The S-band payload communication system study is outlined including the advantages and experimental results of a peak regulator design built and evaluated by Axiomatrix for the bent-pipe link versus the existing RMS-type regulator. The nominal sweep rate for the deep-space transponder of 250 Hz/s, and effects of phase noise on the performance of a communication system are analyzed.

  6. Ultra-deep K S-band Imaging of the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel B.; Marchesini, Danilo; Labbé, Ivo; Spitler, Lee; Lange-Vagle, Daniel; Barker, Elizbeth A.; Tanaka, Masayuki; Fontana, Adriano; Galametz, Audrey; Ferré-Mateu, Anna; Kodama, Tadayuki; Lundgren, Britt; Martis, Nicholas; Muzzin, Adam; Stefanon, Mauro; Toft, Sune; van der Wel, Arjen; Vulcani, Benedetta; Whitaker, Katherine E.

    2016-09-01

    We present an overview of the “KIFF” project, which provides ultra-deep K s -band imaging of all six of the Hubble Frontier Fields clusters, Abell 2744, MACS-0416, Abell S1063, Abell 370, MACS-0717, and MACS-1149. All of these fields have recently been observed with large allocations of Directors’ Discretionary Time with the Hubble and Spitzer telescopes, covering 0.4\\lt λ \\lt 1.6 μ {{m}} and 3.6-4.5 μ {{m}}, respectively. VLT/HAWK-I integrations of the first four fields reach 5σ limiting depths of {K}s˜ 26.0 (AB, point sources) and have excellent image quality (FWHM ˜ 0.″4). The MACS-0717 and MACS-1149 fields are observable from the northern hemisphere, and shorter Keck/MOSFIRE integrations on those fields reach limiting depths of K s = 25.5 and 25.1, with a seeing FWHM of ˜ 0.″4 and 0\\buildrel{\\prime\\prime}\\over{.} 5. In all cases the K s -band mosaics cover the primary cluster and parallel HST/ACS+WFC3 fields. The total area of the K s -band coverage is 490 arcmin2. The K s -band at 2.2 μ {{m}} crucially fills the gap between the reddest HST filter (1.6 μ {{m}} ˜ H band) and the IRAC 3.6 μ {{m}} passband. While reaching the full depths of the space-based imaging is not currently feasible from the ground, the deep K s -band images provide important constraints on both the redshifts and the stellar population properties of galaxies extending well below the characteristic stellar mass across most of the age of the universe, down to and including the redshifts of the targeted galaxy clusters (z≲ 0.5). Reduced, aligned mosaics of all six survey fields are provided.

  7. A linear-to-circular polarization converter based on a second-order band-pass frequency selective surface

    NASA Astrophysics Data System (ADS)

    Lin, Baoqin; Wu, Jia-liang; Da, Xin-yu; Li, Wei; Ma, Jia-jun

    2017-01-01

    In this work, we propose a linear-to-circular transmission polarization converter based on a second-order band-pass frequency selective surface (FSS). The FSS is composed of a three-layer aperture-coupled-patch structure, it can be interpreted as an array of antenna-filter-antenna modules, wherein the antenna is just a circularly polarized corner-truncated square microstrip antenna. A prototype of the proposed polarization converter is analyzed, fabricated and tested. Both simulation and experimental results show that the 3-dB axial ratio relative bandwidth of the polarization converter is over 30%, and the maximum insertion loss is only 1.87 dB; in addition, it can maintain good performance over a wide angular bandwidth at TE incidence.

  8. Mixed Linear/Square-Root Encoded Single Slope Ramp Provides a Fast, Low Noise Analog to Digital Converter with Very High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Christopher James (Inventor); Hancock, Bruce R. (Inventor); Cunningham, Thomas J. (Inventor); Newton, Kenneth W. (Inventor)

    2014-01-01

    An analog-to-digital converter (ADC) converts pixel voltages from a CMOS image into a digital output. A voltage ramp generator generates a voltage ramp that has a linear first portion and a non-linear second portion. A digital output generator generates a digital output based on the voltage ramp, the pixel voltages, and comparator output from an array of comparators that compare the voltage ramp to the pixel voltages. A return lookup table linearizes the digital output values.

  9. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures

    PubMed Central

    Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe

    2015-01-01

    We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young’s modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system. PMID:26343682

  10. Evaluation of quadrature-phase-shift-keying signal characteristics in W-band radio-over-fiber transmission using direct in-phase/quadrature-phase conversion technique

    NASA Astrophysics Data System (ADS)

    Suzuki, Meisaku; Kanno, Atsushi; Yamamoto, Naokatsu; Sotobayashi, Hideyuki

    2016-02-01

    The effects of in-phase/quadrature-phase (IQ) imbalances are evaluated with a direct IQ down-converter in the W-band (75-110 GHz). The IQ imbalance of the converter is measured within a range of +/-10 degrees in an intermediate frequency of DC-26.5 GHz. 1-8-G-baud quadrature phase-shift keying (QPSK) signals are transmitted successfully with observed bit error rates within a forward error correction limit of 2×10-3 using radio over fiber (RoF) techniques. The direct down-conversion technique is applicable to next-generation high-speed wireless access communication systems in the millimeter-wave band.

  11. Temperature dependence of terahertz optical properties of LBO and perspectives of applications in down-converters

    NASA Astrophysics Data System (ADS)

    Nikolaev, N. A.; Andreev, Yu. M.; Kononova, N. G.; Lanskii, G. V.; Mamrashev, A. A.; Antsygin, V. D.; Kokh, K. A.; Kokh, A. E.

    2018-01-01

    Lithium triborate LiB3O5 (LBO) crystals are widely used for frequency conversion of the near-IR lasers within main transparency windows. Their optical properties at these wavelengths are well studied. However, very little work has been published on the properties in the terahertz (THz) range. There was a lack of data on the refractive indices, the absorption coefficients spectra and their temperature dispersions. There are no reports of THz applications. Present work reveals all these topics including the prospects for use LBO crystals as down-converters of the near-IR lasers radiation. Optically finished samples of flux-grown LBO crystals were studied by THz-TDS. The refractive index dispersions were recorded and then approximated in the form of Sellmeier equations for the temperatures of 300 and 81 K. The phase-matching curves for the IR-THz and THz-THz frequency conversions were calculated. It was found that the absorption coefficients of LBO decrease significantly with cooling to cryogenic temperatures, but the overall character of optical properties changes is intricated. Experimental results are discussed in detail considering potential characteristics of THz down-converters.

  12. Digital detection and processing of multiple quadrature harmonics for EPR spectroscopy.

    PubMed

    Ahmad, R; Som, S; Kesselring, E; Kuppusamy, P; Zweier, J L; Potter, L C

    2010-12-01

    A quadrature digital receiver and associated signal estimation procedure are reported for L-band electron paramagnetic resonance (EPR) spectroscopy. The approach provides simultaneous acquisition and joint processing of multiple harmonics in both in-phase and out-of-phase channels. The digital receiver, based on a high-speed dual-channel analog-to-digital converter, allows direct digital down-conversion with heterodyne processing using digital capture of the microwave reference signal. Thus, the receiver avoids noise and nonlinearity associated with analog mixers. Also, the architecture allows for low-Q anti-alias filtering and does not require the sampling frequency to be time-locked to the microwave reference. A noise model applicable for arbitrary contributions of oscillator phase noise is presented, and a corresponding maximum-likelihood estimator of unknown parameters is also reported. The signal processing is applicable for Lorentzian lineshape under nonsaturating conditions. The estimation is carried out using a convergent iterative algorithm capable of jointly processing the in-phase and out-of-phase data in the presence of phase noise and unknown microwave phase. Cramér-Rao bound analysis and simulation results demonstrate a significant reduction in linewidth estimation error using quadrature detection, for both low and high values of phase noise. EPR spectroscopic data are also reported for illustration. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. A 12-bit high-speed column-parallel two-step single-slope analog-to-digital converter (ADC) for CMOS image sensors.

    PubMed

    Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao

    2014-11-17

    A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors.

  14. Ultra-Broad-Band Optical Parametric Amplifier or Oscillator

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatolly; Maleki, Lute

    2009-01-01

    A concept for an ultra-broad-band optical parametric amplifier or oscillator has emerged as a by-product of a theoretical study in fundamental quantum optics. The study was originally intended to address the question of whether the two-photon temporal correlation function of light [in particular, light produced by spontaneous parametric down conversion (SPDC)] can be considerably narrower than the inverse of the spectral width (bandwidth) of the light. The answer to the question was found to be negative. More specifically, on the basis of the universal integral relations between the quantum two-photon temporal correlation and the classical spectrum of light, it was found that the lower limit of two-photon correlation time is set approximately by the inverse of the bandwidth. The mathematical solution for the minimum two-photon correlation time also provides the minimum relative frequency dispersion of the down-converted light components; in turn, the minimum relative frequency dispersion translates to the maximum bandwidth, which is important for the design of an ultra-broad-band optical parametric oscillator or amplifier. In the study, results of an analysis of the general integral relations were applied in the case of an optically nonlinear, frequency-dispersive crystal in which SPDC produces collinear photons. Equations were found for the crystal orientation and pump wavelength, specific for each parametric-down-converting crystal, that eliminate the relative frequency dispersion of collinear degenerate (equal-frequency) signal and idler components up to the fourth order in the frequency-detuning parameter

  15. Empirical conversion of the vertical profile of reflectivity from Ku-band to S-band frequency

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Hong, Yang; Qi, Youcun; Wen, Yixin; Zhang, Jian; Gourley, Jonathan J.; Liao, Liang

    2013-02-01

    ABSTRACT This paper presents an empirical method for converting reflectivity from Ku-band (13.8 GHz) to S-band (2.8 GHz) for several hydrometeor species, which facilitates the incorporation of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measurements into quantitative precipitation estimation (QPE) products from the U.S. Next-Generation Radar (NEXRAD). The development of empirical dual-frequency relations is based on theoretical simulations, which have assumed appropriate scattering and microphysical models for liquid and solid hydrometeors (raindrops, snow, and ice/hail). Particle phase, shape, orientation, and density (especially for snow particles) have been considered in applying the T-matrix method to compute the scattering amplitudes. Gamma particle size distribution (PSD) is utilized to model the microphysical properties in the ice region, melting layer, and raining region of precipitating clouds. The variability of PSD parameters is considered to study the characteristics of dual-frequency reflectivity, especially the variations in radar dual-frequency ratio (DFR). The empirical relations between DFR and Ku-band reflectivity have been derived for particles in different regions within the vertical structure of precipitating clouds. The reflectivity conversion using the proposed empirical relations has been tested using real data collected by TRMM-PR and a prototype polarimetric WSR-88D (Weather Surveillance Radar 88 Doppler) radar, KOUN. The processing and analysis of collocated data demonstrate the validity of the proposed empirical relations and substantiate their practical significance for reflectivity conversion, which is essential to the TRMM-based vertical profile of reflectivity correction approach in improving NEXRAD-based QPE.

  16. A 30 Gb/s full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band.

    PubMed

    Tang, Chanjuan; Yu, Jianjun; Li, Xinying; Chi, Nan; Xiao, Jiangnan; Tian, Yumin; Zhang, Junwen

    2014-01-13

    We propose and experimentally demonstrate a full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band (75-100 GHz) with the speed up to 15 Gb/s for both 95.4 GHz link and 88.6 GHz link for the first time. The generation of millimeter-wave (mm-wave) wireless signal is based on the photonic technique by heterodyne mixing of an optical quadrature-phase-shift-keying (QPSK) signal with a free-running light at different wavelength. After 20 km fiber transmission, up to 30 Gb/s mm-wave signal is delivered over 2 m wireless link, and then converted to the optical signal for another 20 km fiber transmission. At the wireless receiver, coherent detection and advanced digital signal processing (DSP) are introduced to improve receiver sensitivity and system performance. With the OSNR of 15 dB, the bit error ratios (BERs) for 10 Gb/s signal transmission at 95.4 GHz and 88.6 GHz are below the forward-error-correction (FEC) threshold of 3.8 × 10(-3) whether post filter is used or not, while the BER for 15 Gb/s QPSK signal employing post filter in the link of 95.4 GHz is 2.9 × 10(-3).

  17. Design Challenges in Converting a Paper Checklist to Digital Format for Dynamic Medical Settings

    PubMed Central

    Sarcevic, Aleksandra; Rosen, Brett J.; Kulp, Leah J.; Marsic, Ivan; Burd, Randall S.

    2016-01-01

    We describe a mobile digital checklist that we designed and developed for trauma resuscitation—a dynamic, fast-paced medical process of treating severely injured patients. The checklist design was informed by our analysis of user interactions with a paper checklist that was introduced to improve team performance during resuscitations. The design process followed an iterative approach and involved several medical experts. We discuss design challenges in converting a paper checklist to its digital counterpart, as well as our approaches for addressing those challenges. While we show that using a digital checklist during a fast-paced medical event is feasible, we also recognize several design constraints, including limited display size, difficulties in entering notes about the medical process and patient, and difficulties in replicating user experience with paper checklists. PMID:28480116

  18. Instantly Converting Atrial Fibrillation into Sinus Rhythm by a Digital Rectal Exam on a 29-year-Old Male

    PubMed Central

    Ruan, Cheng-Huai

    2010-01-01

    Vagal maneuvers cause increase in vagal tone, which has been shown to slow many types supraventricular tachycardia, such as atrial fibrillation (AF). However, the conversion of AF to sinus rhythm is usually not associated with vagal manuvers. Thus, AF is classically treated with medication and electrical cardioversion. Here, we present a 29-year-old male with no cardiovascular history and a low atherosclerotic risk profile who developed AF which converted into sinus rhythm immediately after a digital rectal exam. The patient remained asymptomatic after a 3-month follow-up. This implies that the digital rectal exam can be considered as an additional attempt to convert AF to sinus rhythm in AF patients. PMID:21769254

  19. Occipitoparietal alpha-band responses to the graded allocation of top-down spatial attention.

    PubMed

    Dombrowe, Isabel; Hilgetag, Claus C

    2014-09-15

    The voluntary, top-down allocation of visual spatial attention has been linked to changes in the alpha-band of the electroencephalogram (EEG) signal measured over occipital and parietal lobes. In the present study, we investigated how occipitoparietal alpha-band activity changes when people allocate their attentional resources in a graded fashion across the visual field. We asked participants to either completely shift their attention into one hemifield, to balance their attention equally across the entire visual field, or to attribute more attention to one-half of the visual field than to the other. As expected, we found that alpha-band amplitudes decreased stronger contralaterally than ipsilaterally to the attended side when attention was shifted completely. Alpha-band amplitudes decreased bilaterally when attention was balanced equally across the visual field. However, when participants allocated more attentional resources to one-half of the visual field, this was not reflected in the alpha-band amplitudes, which just decreased bilaterally. We found that the performance of the participants was more strongly reflected in the coherence between frontal and occipitoparietal brain regions. We conclude that low alpha-band amplitudes seem to be necessary for stimulus detection. Furthermore, complete shifts of attention are directly reflected in the lateralization of alpha-band amplitudes. In the present study, a gradual allocation of visual attention across the visual field was only indirectly reflected in the alpha-band activity over occipital and parietal cortexes. Copyright © 2014 the American Physiological Society.

  20. Compendium of Single-Event Latchup and Total Ionizing Dose Test Results of Commercial Analog to Digital Converters

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Agarwal, Shri G.

    2012-01-01

    This paper reports single-event latchup and total dose results for a variety of analog to digital converters targeted for possible use in NASA spacecraft's. The compendium covers devices tested over the last 15 years.

  1. An Analysis of Offset, Gain, and Phase Corrections in Analog to Digital Converters

    NASA Astrophysics Data System (ADS)

    Cody, Devin; Ford, John

    2015-01-01

    Many high-speed analog to digital converters (ADCs) use interwoven ADCs to greatly boost their sample rate. This interwoven architecture can introduce problems if the low speed ADCs do not have identical outputs. These errors are manifested as phantom frequencies that appear in the digitized signal although they never existed in the analog domain. Through the application of offset, gain, and phase (OGP) corrections to the ADC, this problem can be reduced. Here we report on an implementation of such a correction in a high speed ADC chip used for radio astronomy. While the corrections could not be implemented in the ADCs themselves, a partial solution was devised and implemented digitally inside of a signal processing field programmable gate array (FPGA). Positive results to contrived situations are shown, and null results are presented for implementation in an ADC083000 card with minimal error. Lastly, we discuss the implications of this method as well as its mathematical basis.

  2. The Digital Data Acquisition System for the Russian VLBI Network of New Generation

    NASA Technical Reports Server (NTRS)

    Fedotov, Leonid; Nosov, Eugeny; Grenkov, Sergey; Marshalov, Dmitry

    2010-01-01

    The system consists of several identical channels of 1024 MHz bandwidth each. In each channel, the RF band is frequency-translated to the intermediate frequency range 1 - 2 GHz. Each channel consists of two parts: the digitizer and Mark 5C recorder. The digitizer is placed on the antenna close to the corresponding Low-Noise Amplifier output and consists of the analog frequency converter, ADC, and a device for digital processing of the signals using FPGA. In the digitizer the subdigitization on frequency of 2048 MHz is used. For producing narrow-band channels and to interface with existing data acquisition systems, the polyphase filtering with FPGA can be used. Digital signals are re-quantized to 2-bits in the FPGA and are transferred to an input of Mark 5C through a fiber line. The breadboard model of the digitizer is being tested, and the data acquisition system is being designed.

  3. Picosecond Resolution Time-to-Digital Converter Using Gm-C Integrator and SAR-ADC

    NASA Astrophysics Data System (ADS)

    Xu, Zule; Miyahara, Masaya; Matsuzawa, Akira

    2014-04-01

    A picosecond resolution time-to-digital converter (TDC) is presented. The resolution of a conventional delay chain TDC is limited by the delay of a logic buffer. Various types of recent TDCs are successful in breaking this limitation, but they require a significant calibration effort to achieve picosecond resolution with a sufficient linear range. To address these issues, we propose a simple method to break the resolution limitation without any calibration: a Gm-C integrator followed by a successive approximation register analog-to-digital converter (SAR-ADC). This translates the time interval into charge, and then the charge is quantized. A prototype chip was fabricated in 90 nm CMOS. The measurement results reveal a 1 ps resolution, a -0.6/0.7 LSB differential nonlinearity (DNL), a -1.1/2.3 LSB integral nonlinearity (INL), and a 9-bit range. The measured 11.74 ps single-shot precision is caused by the noise of the integrator. We analyze the noise of the integrator and propose an improved front-end circuit to reduce this noise. The proposal is verified by simulations showing the maximum single-shot precision is less than 1 ps. The proposed front-end circuit can also diminish the mismatch effects.

  4. Fast collimated neutron flux measurement using stilbene scintillator and flashy analog-to-digital converter in JT-60U

    NASA Astrophysics Data System (ADS)

    Ishikawa, M.; Itoga, T.; Okuji, T.; Nakhostin, M.; Shinohara, K.; Hayashi, T.; Sukegawa, A.; Baba, M.; Nishitani, T.

    2006-10-01

    A line-integrated neutron emission profile is routinely measured using the radial neutron collimator system in JT-60U tokamak. Stilbene neuron detectors (SNDs), which combine a stilbene organic crystal scintillation detector (SD) with an analog neutron-gamma pulse shape discrimination (PSD) circuit, have been used to measure collimated neutron flux. Although the SND has many advantages as a neutron detector, the maximum count rate is limited up to ˜1×105counts/s due to the analog PSD circuit. To overcome this issue, a digital signal processing system (DSPS) using a flash analog-to-digital converter (Acqiris DC252, 8GHz, 10bits) has been developed at Cyclotron and Radioisotope Center in Tohoku University. In this system anode signals from photomultiplier of the SD are directory stored and digitized. Then, the PSD between neutrons and gamma rays is performed using software. The DSPS has been installed in the vertical neutron collimator system in JT-60U and applied to deuterium experiments. It is confirmed that the PSD is sufficiently performed and collimated neutron flux is successfully measured with count rate up to ˜5×105counts/s without the effect of pileup of detected pulses. The performance of the DSPS as a neutron detector, which supersedes the SND, is demonstrated.

  5. High fidelity, radiation tolerant analog-to-digital converters

    NASA Technical Reports Server (NTRS)

    Wang, Charles Chang-I (Inventor); Linscott, Ivan Richard (Inventor); Inan, Umran S. (Inventor)

    2012-01-01

    Techniques for an analog-to-digital converter (ADC) using pipeline architecture includes a linearization technique for a spurious-free dynamic range (SFDR) over 80 deciBels. In some embodiments, sampling rates exceed a megahertz. According to a second approach, a switched-capacitor circuit is configured for correct operation in a high radiation environment. In one embodiment, the combination yields high fidelity ADC (>88 deciBel SFDR) while sampling at 5 megahertz sampling rates and consuming <60 milliWatts. Furthermore, even though it is manufactured in a commercial 0.25-.mu.m CMOS technology (1 .mu.m=12.sup.-6 meters), it maintains this performance in harsh radiation environments. Specifically, the stated performance is sustained through a highest tested 2 megarad(Si) total dose, and the ADC displays no latchup up to a highest tested linear energy transfer of 63 million electron Volts square centimeters per milligram at elevated temperature (131 degrees C.) and supply (2.7 Volts, versus 2.5 Volts nominal).

  6. Single-Stage Step up/down Driver for Permanent-Magnet Synchronous Machines

    NASA Astrophysics Data System (ADS)

    Chen, T. R.; Juan, Y. L.; Huang, C. Y.; Kuo, C. T.

    2017-11-01

    The two-stage circuit composed of a step up/down dc converter and a three-phase voltage source inverter is usually adopted as the electric vehicle’s motor driver. The conventional topology is more complicated. Additional power loss resulted from twice power conversion would also cause lower efficiency. A single-stage step up/down Permanent-Magnet Synchronous Motor driver for Brushless DC (BLDC) Motor is proposed in this study. The number components and circuit complexity are reduced. The low frequency six-step square-wave control is used to reduce the switching losses. In the proposed topology, only one active switch is gated with a high frequency PWM signal for adjusting the rotation speed. The rotor position signals are fed back to calculate the motor speed for digital close-loop control in a MCU. A 600W prototype circuit is constructed to drive a BLDC motor with rated speed 3000 rpm, and can control the speed of six sections.

  7. Design of a Single Channel Modulated Wideband Converter for Wideband Spectrum Sensing: Theory, Architecture and Hardware Implementation

    PubMed Central

    Liu, Weisong; Huang, Zhitao; Wang, Xiang; Sun, Weichao

    2017-01-01

    In a cognitive radio sensor network (CRSN), wideband spectrum sensing devices which aims to effectively exploit temporarily vacant spectrum intervals as soon as possible are of great importance. However, the challenge of increasingly high signal frequency and wide bandwidth requires an extremely high sampling rate which may exceed today’s best analog-to-digital converters (ADCs) front-end bandwidth. Recently, the newly proposed architecture called modulated wideband converter (MWC), is an attractive analog compressed sensing technique that can highly reduce the sampling rate. However, the MWC has high hardware complexity owing to its parallel channel structure especially when the number of signals increases. In this paper, we propose a single channel modulated wideband converter (SCMWC) scheme for spectrum sensing of band-limited wide-sense stationary (WSS) signals. With one antenna or sensor, this scheme can save not only sampling rate but also hardware complexity. We then present a new, SCMWC based, single node CR prototype System, on which the spectrum sensing algorithm was tested. Experiments on our hardware prototype show that the proposed architecture leads to successful spectrum sensing. And the total sampling rate as well as hardware size is only one channel’s consumption of MWC. PMID:28471410

  8. ANALOG-TO-DIGITAL DATA CONVERTER

    DOEpatents

    Rodgers, G.W.; Althouse, J.E.; Anderson, D.P.; Bussey, G.R.; Minnear, L.H.

    1960-09-01

    Electrical apparatus is described, particularly useful in telemetry work, for converting analog signals into electrical pulses and recording them. An electronic editor commands the taking of signal readings at a frequency which varies according to linearity of the analog signal being converted. Readings of information signals are recorded, along with time base readings and serial numbering, if desired, on magnetic tape and the latter may be used to operate a computer or the like. Magnetic tape data may be transferred to punched cards.

  9. Digitally generated excitation and near-baseband quadrature detection of rapid scan EPR signals.

    PubMed

    Tseitlin, Mark; Yu, Zhelin; Quine, Richard W; Rinard, George A; Eaton, Sandra S; Eaton, Gareth R

    2014-12-01

    The use of multiple synchronized outputs from an arbitrary waveform generator (AWG) provides the opportunity to perform EPR experiments differently than by conventional EPR. We report a method for reconstructing the quadrature EPR spectrum from periodic signals that are generated with sinusoidal magnetic field modulation such as continuous wave (CW), multiharmonic, or rapid scan experiments. The signal is down-converted to an intermediate frequency (IF) that is less than the field scan or field modulation frequency and then digitized in a single channel. This method permits use of a high-pass analog filter before digitization to remove the strong non-EPR signal at the IF, that might otherwise overwhelm the digitizer. The IF is the difference between two synchronized X-band outputs from a Tektronix AWG 70002A, one of which is for excitation and the other is the reference for down-conversion. To permit signal averaging, timing was selected to give an exact integer number of full cycles for each frequency. In the experiments reported here the IF was 5kHz and the scan frequency was 40kHz. To produce sinusoidal rapid scans with a scan frequency eight times IF, a third synchronized output generated a square wave that was converted to a sine wave. The timing of the data acquisition with a Bruker SpecJet II was synchronized by an external clock signal from the AWG. The baseband quadrature signal in the frequency domain was reconstructed. This approach has the advantages that (i) the non-EPR response at the carrier frequency is eliminated, (ii) both real and imaginary EPR signals are reconstructed from a single physical channel to produce an ideal quadrature signal, and (iii) signal bandwidth does not increase relative to baseband detection. Spectra were obtained by deconvolution of the reconstructed signals for solid BDPA (1,3-bisdiphenylene-2-phenylallyl) in air, 0.2mM trityl OX63 in water, 15 N perdeuterated tempone, and a nitroxide with a 0.5G partially-resolved proton

  10. A high-resolution time-to-digital converter using a three-level resolution

    NASA Astrophysics Data System (ADS)

    Dehghani, Asma; Saneei, Mohsen; Mahani, Ali

    2016-08-01

    In this article, a three-level resolution Vernier delay line time-to-digital converter (TDC) was proposed. The proposed TDC core was based on the pseudo-differential digital architecture that made it insensitive to nMOS and pMOS transistor mismatches. It also employed a Vernier delay line (VDL) in conjunction with an asynchronous read-out circuitry. The time interval resolution was equal to the difference of delay between buffers of upper and lower chains. Then, via the extra chain included in the lower delay line, resolution was controlled and power consumption was reduced. This method led to high resolution and low power consumption. The measurement results of TDC showed a resolution of 4.5 ps, 12-bit output dynamic range, and integral nonlinearity of 1.5 least significant bits. This TDC achieved the consumption of 68.43 µW from 1.1-V supply.

  11. Converting analog interpretive data to digital formats for use in database and GIS applications

    USGS Publications Warehouse

    Flocks, James G.

    2004-01-01

    There is a growing need by researchers and managers for comprehensive and unified nationwide datasets of scientific data. These datasets must be in a digital format that is easily accessible using database and GIS applications, providing the user with access to a wide variety of current and historical information. Although most data currently being collected by scientists are already in a digital format, there is still a large repository of information in the literature and paper archive. Converting this information into a format accessible by computer applications is typically very difficult and can result in loss of data. However, since scientific data are commonly collected in a repetitious, concise matter (i.e., forms, tables, graphs, etc.), these data can be recovered digitally by using a conversion process that relates the position of an attribute in two-dimensional space to the information that the attribute signifies. For example, if a table contains a certain piece of information in a specific row and column, then the space that the row and column occupies becomes an index of that information. An index key is used to identify the relation between the physical location of the attribute and the information the attribute contains. The conversion process can be achieved rapidly, easily and inexpensively using widely available digitizing and spreadsheet software, and simple programming code. In the geological sciences, sedimentary character is commonly interpreted from geophysical profiles and descriptions of sediment cores. In the field and laboratory, these interpretations were typically transcribed to paper. The information from these paper archives is still relevant and increasingly important to scientists, engineers and managers to understand geologic processes affecting our environment. Direct scanning of this information produces a raster facsimile of the data, which allows it to be linked to the electronic world. But true integration of the content with

  12. Multi-DSP and FPGA based Multi-channel Direct IF/RF Digital receiver for atmospheric radar

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Kamaraj, Pandian; Durga rao, Meka; Thriveni, A.

    2016-07-01

    to DDC block, which down converts the data to base-band. The DDC block has NCO, mixer and two chains of Bessel filters (fifth order cascaded integration comb filter, two FIR filters, two half band filters and programmable FIR filters) for in-phase (I) and Quadrature phase (Q) channels. The NCO has 32 bits and is set to match the output frequency of ADC. Further, DDC down samples (decimation) the data and reduces the data rate to 16 MSPS. This data is further decimated and the data rate is reduced down to 4/2/1/0.5/0.25/0.125/0.0625 MSPS for baud lengths 0.25/0.5/1/2/4/8/16 μs respectively. The down sampled data is then fed to decoding block, which performs cross correlation to achieve pulse compression of the binary-phase coded data to obtain better range resolution with maximum possible height coverage. This step improves the signal power by a factor equal to the length of the code. Coherent integration block integrates the decoded data coherently for successive pulses, which improves the signal to noise ratio and reduces the data volume. DDC, decoding and coherent integration blocks are implemented in Xilinx vertex5 FPGA. Till this point, function of all six channels is same for DBS mode and multi-receiver modes. Data from vertex5 FPGA is transferred to PC via GbE-1 interface for multi-modes or to two Analog devices make ADSP-TS201 DSP chips (A and B), via link port for DBS mode. ADSP-TS201 chips perform the normalization, DC removal, windowing, FFT computation and spectral averaging on the data, which is transferred to storage/display PC via GbE-2 interface for real-time data display and data storing. Physical layer of GbE interface is implemented in an external chip (Marvel 88E1111) and MAC layer is implemented internal to vertex5 FPGA. The MCDRx has total 4 GB of DDR2 memory for data storage. Spartan6 FPGA is used for generating timing signals, required for basic operation of the radar and testing of the MCDRx.

  13. The performance of DC restoration function for MODIS thermal emissive bands

    NASA Astrophysics Data System (ADS)

    Wang, Zhipeng; Xiong, Xiaoxiong Jack; Shrestha, Ashish

    2017-09-01

    The DC restore (DCR) process of MODIS instrument maintains the output of a detector at focal plane assembly (FPA) within the dynamic range of subsequent analog-to-digital converter, by adding a specific offset voltage to the output. The DCR offset value is adjusted per scan, based on the comparison of the detector response in digital number (DN) collected from the blackbody (BB) view with target DN saved as an on-board look-up table. In this work, the MODIS DCR mechanism is revisited, with the trends of DCR offset being provided for thermal emissive bands (TEB). Noticeable changes have been occasionally found which coincide with significant detector gain change due to various instrumental events such as safe-mode anomaly or FPA temperature fluctuation. In general, MODIS DCR functionality has been effective and the change of DCR offset has no impact to the quality of MODIS data. One exception is the Earth view (EV) data saturation of Aqua MODIS LWIR bands 33, 35 ad 36 during BB warm-up cool-down (WUCD) cycle which has been observed since 2008. The BB view of their detectors saturate when the BB temperature is above certain threshold so the DCR cannot work as designed. Therefore, the dark signal DN fluctuates with the cold FPA (CFPA) temperature and saturate for a few hours per WUCD cycle, which also saturate the EV data sector within the scan. The CFPA temperature fluctuation peaked in 2012 and has been reduced in recent years and the saturation phenomenon has been easing accordingly. This study demonstrates the importance of DCR to data generation.

  14. New down-converter for UV-stable perovskite solar cells: Phosphor-in-glass

    NASA Astrophysics Data System (ADS)

    Roh, Hee-Suk; Han, Gill Sang; Lee, Seongha; Kim, Sanghyun; Choi, Sungwoo; Yoon, Chulsoo; Lee, Jung-Kun

    2018-06-01

    Degradation of hybrid lead halide perovskite by UV light is a crucial issue that limits the commercialization of lead halide perovskite solar cells (PSCs). To address this problem, phosphor-in-glass (PiG) is used to convert UV to visible light. Down-conversion of UV light by PiG dramatically increases UV-stability of PSCs and enables PSCs to harvest UV light that is currently wasted. Performance of PSCs with PiG layer does not change significantly during 100 h-long UV-irradiation, while conventional PSCs degrade quickly by 1 h-long UV-irradiation. After 100 h long UV-irradiation, power conversion efficiency of PSCs with PiG is 440% larger than that of conventional PSCs. This result points a direction toward PSCs which are very stable and highly efficient under UV light.

  15. Atomic-Monolayer MoS2 Band-to-Band Tunneling Field-Effect Transistor.

    PubMed

    Lan, Yann-Wen; Torres, Carlos M; Tsai, Shin-Hung; Zhu, Xiaodan; Shi, Yumeng; Li, Ming-Yang; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L

    2016-11-01

    The experimental observation of band-to-band tunneling in novel tunneling field-effect transistors utilizing a monolayer of MoS 2 as the conducting channel is demonstrated. Our results indicate that the strong gate-coupling efficiency enabled by two-dimensional materials, such as monolayer MoS 2 , results in the direct manifestation of a band-to-band tunneling current and an ambipolar transport. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Band alignment of ZnO/multilayer MoS{sub 2} interface determined by x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xinke, E-mail: xkliu@szu.edu.cn, E-mail: liuwj@szu.edu.cn; He, Jiazhu; Chen, Le

    2016-08-15

    The energy band alignment between ZnO and multilayer (ML)-MoS{sub 2} was characterized using high-resolution x-ray photoelectron spectroscopy. The ZnO film was deposited using an atomic layer deposition tool, and ML-MoS{sub 2} was grown by chemical vapor deposition. A valence band offset (VBO) of 3.32 eV and a conduction band offset (CBO) of 1.12 eV were obtained for the ZnO/ML-MoS{sub 2} interface without any treatment. With CHF{sub 3} plasma treatment, a VBO and a CBO across the ZnO/ML-MoS{sub 2} interface were found to be 3.54 eV and 1.34 eV, respectively. With the CHF{sub 3} plasma treatment, the band alignment of the ZnO/ML-MoS{sub 2} interface hasmore » been changed from type II or staggered band alignment to type III or misaligned one, which favors the electron-hole pair separation. The band alignment difference is believed to be dominated by the down-shift in the core level of Zn 2p or the interface dipoles, which is caused by the interfacial layer rich in F.« less

  17. Transportation Systems Center/U.S. Coast Guard L-Band Maritime Satellite Test Program : Test Summary: September - November 1974

    DOT National Transportation Integrated Search

    1975-06-01

    Several L-band satellite communications tests with the NASA ATS-6 spacecraft and the U.S. Coast Guard Cutter SHERMAN are described. The tests included 1200 bit per second digital data, voice, simultaneous data and voice, ranging, multipath and antenn...

  18. Design evaluation: S-band exciters

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A design evaluation study was conducted to produce S-band exciter (SBE) system to provide a highly stable phase or modulated carrier for transmission to spacecraft. The exciter is part of an S-band receiver/exciter/ranging system at Spaceflight Tracking and Data Network (STDN) ground stations. The major features of the system are defined. Circuit diagrams of the electronic components are provided.

  19. Generation of optical OFDM signals using 21.4 GS/s real time digital signal processing.

    PubMed

    Benlachtar, Yannis; Watts, Philip M; Bouziane, Rachid; Milder, Peter; Rangaraj, Deepak; Cartolano, Anthony; Koutsoyannis, Robert; Hoe, James C; Püschel, Markus; Glick, Madeleine; Killey, Robert I

    2009-09-28

    We demonstrate a field programmable gate array (FPGA) based optical orthogonal frequency division multiplexing (OFDM) transmitter implementing real time digital signal processing at a sample rate of 21.4 GS/s. The QPSK-OFDM signal is generated using an 8 bit, 128 point inverse fast Fourier transform (IFFT) core, performing one transform per clock cycle at a clock speed of 167.2 MHz and can be deployed with either a direct-detection or a coherent receiver. The hardware design and the main digital signal processing functions are described, and we show that the main performance limitation is due to the low (4-bit) resolution of the digital-to-analog converter (DAC) and the 8-bit resolution of the IFFT core used. We analyze the back-to-back performance of the transmitter generating an 8.36 Gb/s optical single sideband (SSB) OFDM signal using digital up-conversion, suitable for direct-detection. Additionally, we use the device to transmit 8.36 Gb/s SSB OFDM signals over 200 km of uncompensated standard single mode fiber achieving an overall BER<10(-3).

  20. 670-GHz Down- and Up-Converting HEMT-Based Mixers

    NASA Technical Reports Server (NTRS)

    Schlecht, Enrich T.; Chattopadhyay, Goutam; Lin, Robert H.; Sin, Seth; Deal, William; Rodriquez, Bryan; Bayuk, Brian; Leong, Kevin; Mei, Gerry

    2012-01-01

    A large category of scientific investigation takes advantage of the interactions of signals in the frequency range from 300 to 1,000 GHz and higher. This includes astronomy and atmospheric science, where spectral observations in this frequency range give information about molecular abundances, pressures, and temperatures of small-sized molecules such as water. Additionally, there is a minimum in the atmospheric absorption at around 670 GHz that makes this frequency useful for terrestrial imaging, radar, and possibly communications purposes. This is because 670 GHz is a good compromise for imaging and radar applications between spatial resolution (for a given antenna size) that favors higher frequencies, and atmospheric losses that favor lower frequencies. A similar trade-off applies to communications link budgets: higher frequencies allow smaller antennas, but incur a higher loss. All of these applications usually require converting the RF (radio frequency) signal at 670 GHz to a lower IF (intermediate frequency) for processing. Further, transmitting for communication and radar generally requires up-conversion from IF to the RF. The current state-of-the-art device for performing the frequency conversion is based on Schottky diode mixers for both up and down conversion in this frequency range for room-temperature operation. Devices that can operate at room temperature are generally required for terrestrial, military, and planetary applications that cannot tolerate the mass, bulk, and power consumption of cryogenic cooling. The technology has recently advanced to the point that amplifiers in the region up to nearly 1,000 GHz are feasible. Almost all of these have been based on indium phosphide pseudomorphic high-electron mobility transistors (pHEMTs), in the form of monolithic microwave integrated circuits (MMICs). Since the processing of HEMT amplifiers is quite differ en t from that of Schottky diodes, use of Schottky mixers requires separate MMICs for the mixers

  1. A PWM Buck Converter With Load-Adaptive Power Transistor Scaling Scheme Using Analog-Digital Hybrid Control for High Energy Efficiency in Implantable Biomedical Systems.

    PubMed

    Park, Sung-Yun; Cho, Jihyun; Lee, Kyuseok; Yoon, Euisik

    2015-12-01

    We report a pulse width modulation (PWM) buck converter that is able to achieve a power conversion efficiency (PCE) of > 80% in light loads 100 μA) for implantable biomedical systems. In order to achieve a high PCE for the given light loads, the buck converter adaptively reconfigures the size of power PMOS and NMOS transistors and their gate drivers in accordance with load currents, while operating at a fixed frequency of 1 MHz. The buck converter employs the analog-digital hybrid control scheme for coarse/fine adjustment of power transistors. The coarse digital control generates an approximate duty cycle necessary for driving a given load and selects an appropriate width of power transistors to minimize redundant power dissipation. The fine analog control provides the final tuning of the duty cycle to compensate for the error from the coarse digital control. The mode switching between the analog and digital controls is accomplished by a mode arbiter which estimates the average of duty cycles for the given load condition from limit cycle oscillations (LCO) induced by coarse adjustment. The fabricated buck converter achieved a peak efficiency of 86.3% at 1.4 mA and > 80% efficiency for a wide range of load conditions from 45 μA to 4.1 mA, while generating 1 V output from 2.5-3.3 V supply. The converter occupies 0.375 mm(2) in 0.18 μm CMOS processes and requires two external components: 1.2 μF capacitor and 6.8 μH inductor.

  2. Bandwidth Efficient Wireless Digital Modem Developed

    NASA Technical Reports Server (NTRS)

    Kifle, Muli

    1999-01-01

    NASA Lewis Research Center has developed a digital approach for broadcasting highfidelity audio (nearly compact disk (CD) quality sound) in the commercial frequencymodulated (FM) broadcast band. This digital approach provides a means of achieving high data transmission rates with low hardware complexity--including low mass, size, and power consumption. Lewis has completed the design and prototype development of a bandwidth-efficient digital modem (modulator and demodulator) that uses a spectrally efficient modulation scheme: 16-ary rectangular quadrature amplitude modulation, or 16- ary QAM. The digital implementation is based strictly on inexpensive, commercial off-theshelf digital signal processing (DSP) hardware to perform up and down conversions and pulse shaping. The digital modem transmits data at rates up to 76 kilobits per second (kbps), which is almost 3 times faster than standard 28.8-kbps telephone modems. In addition, the modem offers improved power and spectral performance, flexible operation, and low-cost implementation.

  3. Note: Wide band amplifier for quartz tuning fork sensors with digitally controlled stray capacitance compensation.

    PubMed

    Peng, Ping; Hao, Lifeng; Ding, Ning; Jiao, Weicheng; Wang, Qi; Zhang, Jian; Wang, Rongguo

    2015-11-01

    We presented a preamplifier design for quartz tuning fork (QTF) sensors in which the stray capacitance is digitally compensated. In this design, the manually controlled variable capacitor is replaced by a pair of varicap diodes, whose capacitance could be accurately tuned by a bias voltage. A tuning circuit including a single side low power operational amplifier, a digital-to-analog converter, and a microprocessor is also described, and the tuning process can be conveniently carried out on a personal computer. For the design, the noise level was investigated experimentally.

  4. DESDynI Quad First Stage Processor - A Four Channel Digitizer and Digital Beam Forming Processor

    NASA Technical Reports Server (NTRS)

    Chuang, Chung-Lun; Shaffer, Scott; Smythe, Robert; Niamsuwan, Noppasin; Li, Samuel; Liao, Eric; Lim, Chester; Morfopolous, Arin; Veilleux, Louise

    2013-01-01

    The proposed Deformation, Eco-Systems, and Dynamics of Ice Radar (DESDynI-R) L-band SAR instrument employs multiple digital channels to optimize resolution while keeping a large swath on a single pass. High-speed digitization with very fine synchronization and digital beam forming are necessary in order to facilitate this new technique. The Quad First Stage Processor (qFSP) was developed to achieve both the processing performance as well as the digitizing fidelity in order to accomplish this sweeping SAR technique. The qFSP utilizes high precision and high-speed analog to digital converters (ADCs), each with a finely adjustable clock distribution network to digitize the channels at the fidelity necessary to allow for digital beam forming. The Xilinx produced FX130T Virtex 5 part handles the processing to digitally calibrate each channel as well as filter and beam form the receive signals. Demonstrating the digital processing required for digital beam forming and digital calibration is instrumental to the viability of the proposed DESDynI instrument. The qFSP development brings this implementation to Technology Readiness Level (TRL) 6. This paper will detail the design and development of the prototype qFSP as well as the preliminary results from hardware tests.

  5. Phase and group delay of S-band megawatt Cassegrain diplexer and S-band megawatt transmit filter

    NASA Technical Reports Server (NTRS)

    Lay, R.

    1977-01-01

    The phase characteristics and group delay of the S-band Megawatt Cassegrain Diplexer (MCD) and S-band Megawatt Transmit Filter (MTF) are reported. These phase measurements on the MCD and MTF were done in response to the need to obtain the total DSS hardware ground delay required for very long baseline interferometry and ranging radio metric measurements.

  6. Digital spiral-slit for bi-photon imaging

    NASA Astrophysics Data System (ADS)

    McLaren, Melanie; Forbes, Andrew

    2017-04-01

    Quantum ghost imaging using entangled photon pairs has become a popular field of investigation, highlighting the quantum correlation between the photon pairs. We introduce a technique using spatial light modulators encoded with digital holograms to recover both the amplitude and the phase of the digital object. Down-converted photon pairs are entangled in the orbital angular momentum basis, and are commonly measured using spiral phase holograms. Consequently, by encoding a spiral ring-slit hologram into the idler arm, and varying it radially we can simultaneously recover the phase and amplitude of the object in question. We demonstrate that a good correlation between the encoded field function and the reconstructed images exists.

  7. A 780 × 800 μm2 Multichannel Digital Silicon Photomultiplier With Column-Parallel Time-to-Digital Converter and Basic Characterization

    NASA Astrophysics Data System (ADS)

    Mandai, Shingo; Jain, Vishwas; Charbon, Edoardo

    2014-02-01

    This paper presents a digital silicon photomultiplier (SiPM) partitioned in columns, whereas each column is connected to a column-parallel time-to-digital converter (TDC), in order to improve the timing resolution of single-photon detection. By reducing the number of pixels per TDC using a sharing scheme with three TDCs per column, the pixel-to-pixel skew is reduced. We report the basic characterization of the SiPM, comprising 416 single-photon avalanche diodes (SPADs); the characterization includes photon detection probability, dark count rate, afterpulsing, and crosstalk. We achieved 264-ps full-width at half maximum timing resolution of single-photon detection using a 48-fold column-parallel TDC with a temporal resolution of 51.8 ps (least significant bit), fully integrated in standard complementary metal-oxide semiconductor technology.

  8. Current Controller for Multi-level Front-end Converter and Its Digital Implementation Considerations on Three-level Flying Capacitor Topology

    NASA Astrophysics Data System (ADS)

    Tekwani, P. N.; Shah, M. T.

    2017-10-01

    This paper presents behaviour analysis and digital implementation of current error space phasor based hysteresis controller applied to three-phase three-level flying capacitor converter as front-end topology. The controller is self-adaptive in nature, and takes the converter from three-level to two-level mode of operation and vice versa, following various trajectories of sector change with the change in reference dc-link voltage demanded by the load. It keeps current error space phasor within the prescribed hexagonal boundary. During the contingencies, the proposed controller takes the converter in over modulation mode to meet the load demand, and once the need is satisfied, controller brings back the converter in normal operating range. Simulation results are presented to validate behaviour of controller to meet the said contingencies. Unity power factor is assured by proposed controller with low current harmonic distortion satisfying limits prescribed in IEEE 519-2014. Proposed controller is implemented using TMS320LF2407 16-bit fixed-point digital signal processor. Detailed analysis of numerical format to avoid overflow of sensed variables in processor, and per-unit model implementation in software are discussed and hardware results are presented at various stages of signal conditioning to validate the experimental setup. Control logic for the generation of reference currents is implemented in TMS320LF2407A using assembly language and experimental results are also presented for the same.

  9. Ka-Band Transponder for Deep-Space Radio Science

    NASA Technical Reports Server (NTRS)

    Dennis, Matthew S.; Mysoor, Narayan R.; Folkner, William M.; Mendoza, Ricardo; Venkatesan, Jaikrishna

    2008-01-01

    A one-page document describes a Ka-band transponder being developed for use in deep-space radio science. The transponder receives in the Deep Space Network (DSN) uplink frequency band of 34.2 to 34.7 GHz, transmits in the 31.8- to 32.3 GHz DSN downlink band, and performs regenerative ranging on a DSN standard 4-MHz ranging tone subcarrier phase-modulated onto the uplink carrier signal. A primary consideration in this development is reduction in size, relative to other such transponders. The transponder design is all-analog, chosen to minimize not only the size but also the number of parts and the design time and, thus, the cost. The receiver features two stages of frequency down-conversion. The receiver locks onto the uplink carrier signal. The exciter signal for the transmitter is derived from the same source as that used to generate the first-stage local-oscillator signal. The ranging-tone subcarrier is down-converted along with the carrier to the second intermediate frequency, where the 4-MHz tone is demodulated from the composite signal and fed into a ranging-tone-tracking loop, which regenerates the tone. The regenerated tone is linearly phase-modulated onto the downlink carrier.

  10. Comparison between DMSP-OLS and S-NPP Day-Night Band in Correlating with Regional Socio-economic Variables

    NASA Astrophysics Data System (ADS)

    Jing, X.; Shao, X.; Cao, C.; Fu, X.

    2013-12-01

    Night-time light imagery offers a unique view of the Earth's surface. In the past, the nighttime light data collected by the DMSP-OLS sensors have been used as efficient means to correlate with the global socio-economic activities. With the launch of Suomi National Polar-orbiting Partnership (S-NPP) satellite in October 2011, the Day Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard S-NPP represents a major advancement in night time imaging capabilities because it surpassed its predecessor DMSP-OLS in radiometric accuracy, spatial resolution, and geometric quality. In this paper, we compared the performance of DNB image and DMSP image in correlating regional socio-economic activities and analyzed the leading causes for the differences. The correlation coefficients between the socio-economic variables such as population, regional GDP etc. and the characteristic variables derived from the night time light images of DNB and DMSP at provincial level in China were computed as performance metrics for comparison. In general, the correlation between DNB data and socio-economic data is better than that of DMSP data. To explain the difference in the correlation, we further analyzed the effects of several factors such as radiometric saturation and quantization of DMSP data, low spatial resolution, different data acquisition times between DNB and DMSP images, and difference in the transformation used in converting digital number (DN) value to radiance.

  11. Rotorcraft convertible engines for the 1980s

    NASA Technical Reports Server (NTRS)

    Eisenberg, J. D.

    1982-01-01

    Two rotorcraft studies were executed. The goal was to identify attractive techniques for implementing convertible powerplants for the ABC, Folded Tilt Rotor, and X-wing type high speed, high-L/D rotorcraft; to determine the DOC and fuel savings benefits achieved thereby; and to define research required to bring these powerplants into existence by the 1990's. These studies are reviewed herein and the different methods of approach are pointed out as well as the key findings. Fan shaft engines using variable inlet guide vanes or torque converters, and turboprop powerplants appear attractive. Savings in DOC and fuel consumption of over 15 percent are predicted in some cases as a result of convertible engine use rather than using separate engines for the thrust and the shaft functions. Areas of required research are fan performance (including noise), integrated engine/rotorcraft control, torque converters, turbine design, airflow for rotorcraft torque control, bleed for lift flow, and transmissions and clutches.

  12. Time-to-digital converter card for multichannel time-resolved single-photon counting applications

    NASA Astrophysics Data System (ADS)

    Tamborini, Davide; Portaluppi, Davide; Tisa, Simone; Tosi, Alberto

    2015-03-01

    We present a high performance Time-to-Digital Converter (TDC) card that provides 10 ps timing resolution and 20 ps (rms) timing precision with a programmable full-scale-range from 160 ns to 10 μs. Differential Non-Linearity (DNL) is better than 1.3% LSB (rms) and Integral Non-Linearity (INL) is 5 ps rms. Thanks to the low power consumption (400 mW) and the compact size (78 mm x 28 mm x 10 mm), this card is the building block for developing compact multichannel time-resolved instrumentation for Time-Correlated Single-Photon Counting (TCSPC). The TDC-card outputs the time measurement results together with the rates of START and STOP signals and the number of valid TDC conversions. These additional information are needed by many TCSPC-based applications, such as: Fluorescence Lifetime Imaging (FLIM), Time-of-Flight (TOF) ranging measurements, time-resolved Positron Emission Tomography (PET), single-molecule spectroscopy, Fluorescence Correlation Spectroscopy (FCS), Diffuse Optical Tomography (DOT), Optical Time-Domain Reflectometry (OTDR), quantum optics, etc.

  13. LANDSAT 4 band 6 data evaluation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Satellite data collected over Lake Ontario were processed to observed surface temperature values. This involved computing apparent radiance values for each point where surface temperatures were known from averaged digital count values. These radiance values were then converted by using the LOWTRAN 5A atmospheric propagation model. This model was modified by incorporating a spectral response function for the LANDSAT band 6 sensors. A downwelled radiance term derived from LOWTRAN was included to account for reflected sky radiance. A blackbody equivalent source radiance was computed. Measured temperatures were plotted against the predicted temperature. The RMS error between the data sets is 0.51K.

  14. Method of improving a digital image

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J. (Inventor); Woodell, Glenn A. (Inventor); Rahman, Zia-ur (Inventor)

    1999-01-01

    A method of improving a digital image is provided. The image is initially represented by digital data indexed to represent positions on a display. The digital data is indicative of an intensity value I.sub.i (x,y) for each position (x,y) in each i-th spectral band. The intensity value for each position in each i-th spectral band is adjusted to generate an adjusted intensity value for each position in each i-th spectral band in accordance with ##EQU1## where S is the number of unique spectral bands included in said digital data, W.sub.n is a weighting factor and * denotes the convolution operator. Each surround function F.sub.n (x,y) is uniquely scaled to improve an aspect of the digital image, e.g., dynamic range compression, color constancy, and lightness rendition. The adjusted intensity value for each position in each i-th spectral band is filtered with a common function and then presented to a display device. For color images, a novel color restoration step is added to give the image true-to-life color that closely matches human observation.

  15. Anti-aliasing filter design on spaceborne digital receiver

    NASA Astrophysics Data System (ADS)

    Yu, Danru; Zhao, Chonghui

    2009-12-01

    In recent years, with the development of satellite observation technologies, more and more active remote sensing technologies are adopted in spaceborne system. The spaceborne precipitation radar will depend heavily on high performance digital processing to collect meaningful rain echo data. It will increase the complexity of the spaceborne system and need high-performance and reliable digital receiver. This paper analyzes the frequency aliasing in the intermediate frequency signal sampling of digital down conversion in spaceborne radar, and gives an effective digital filter. By analysis and calculation, we choose reasonable parameters of the half-band filters to suppress the frequency aliasing on DDC. Compared with traditional filter, the FPGA resources cost in our system are reduced by over 50%. This can effectively reduce the complexity in the spaceborne digital receiver and improve the reliability of system.

  16. Development of NASA's Next Generation L-Band Digital Beamforming Synthetic Aperture Radar (DBSAR-2)

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung-Kuk; Ranson, K. Jon; Marrero, Victor; Yeary, Mark

    2014-01-01

    NASA's Next generation Digital Beamforming SAR (DBSAR-2) is a state-of-the-art airborne L-band radar developed at the NASA Goddard Space Flight Center (GSFC). The instrument builds upon the advanced architectures in NASA's DBSAR-1 and EcoSAR instruments. The new instrument employs a 16-channel radar architecture characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instrument has been design to support several disciplines in Earth and Planetary sciences. The instrument was recently completed, and tested and calibrated in a anechoic chamber.

  17. Measuring Down: Evaluating Digital Storytelling as a Process for Narrative Health Promotion.

    PubMed

    Gubrium, Aline C; Fiddian-Green, Alice; Lowe, Sarah; DiFulvio, Gloria; Del Toro-Mejías, Lizbeth

    2016-05-15

    Digital storytelling (DST) engages participants in a group-based process to create and share narrative accounts of life events. We present key evaluation findings of a 2-year, mixed-methods study that focused on effects of participating in the DST process on young Puerto Rican Latina's self-esteem, social support, empowerment, and sexual attitudes and behaviors. Quantitative results did not show significant changes in the expected outcomes. However, in our qualitative findings we identified several ways in which the DST made positive, health-bearing effects. We argue for the importance of "measuring down" to reflect the locally grounded, felt experiences of participants who engage in the process, as current quantitative scales do not "measure up" to accurately capture these effects. We end by suggesting the need to develop mixed-methods, culturally relevant, and sensitive evaluation tools that prioritize process effects as they inform intervention and health promotion. © The Author(s) 2016.

  18. The characterization and application of a low resource FPGA-based time to digital converter

    NASA Astrophysics Data System (ADS)

    Balla, Alessandro; Mario Beretta, Matteo; Ciambrone, Paolo; Gatta, Maurizio; Gonnella, Francesco; Iafolla, Lorenzo; Mascolo, Matteo; Messi, Roberto; Moricciani, Dario; Riondino, Domenico

    2014-03-01

    Time to Digital Converters (TDCs) are very common devices in particles physics experiments. A lot of "off-the-shelf" TDCs can be employed but the necessity of a custom DAta acQuisition (DAQ) system makes the TDCs implemented on the Field-Programmable Gate Arrays (FPGAs) desirable. Most of the architectures developed so far are based on the tapped delay lines with precision down to 10 ps, obtained with high FPGA resources usage and non-linearity issues to be managed. Often such precision is not necessary; in this case TDC architectures with low resources occupancy are preferable allowing the implementation of data processing systems and of other utilities on the same device. In order to reconstruct γγ physics events tagged with High Energy Tagger (HET) in the KLOE-2 (K LOng Experiment 2), we need to measure the Time Of Flight (TOF) of the electrons and positrons from the KLOE-2 Interaction Point (IP) to our tagging stations (11 m apart). The required resolution must be better than the bunch spacing (2.7 ns). We have developed and implemented on a Xilinx Virtex-5 FPGA a 32 channel TDC with a precision of 255 ps and low non-linearity effects along with an embedded data acquisition system and the interface to the online FARM of KLOE-2. The TDC is based on a low resources occupancy technique: the 4×Oversampling technique which, in this work, is pushed to its best resolution and its performances were exhaustively measured.

  19. Selected area growth integrated wavelength converter based on PD-EAM optical logic gate

    NASA Astrophysics Data System (ADS)

    Bin, Niu; Jifang, Qiu; Daibing, Zhou; Can, Zhang; Song, Liang; Dan, Lu; Lingjuan, Zhao; Jian, Wu; Wei, Wang

    2014-09-01

    A selected area growth wavelength converter based on a PD-EAM optical logic gate for WDM application is presented, integrating an EML transmitter and a SOA-PD receiver. The design, fabrication, and DC characters were analyzed. A 2 Gb/s NRZ signal based on the C-band wavelength converted to 1555 nm with the highest extinction ratio of 7 dB was achieved and wavelength converted eye diagrams with eyes opened were presented.

  20. Efficient evaluation of epitaxial MoS2 on sapphire by direct band structure imaging

    NASA Astrophysics Data System (ADS)

    Kim, Hokwon; Dumcenco, Dumitru; Fregnaux, Mathieu; Benayad, Anass; Kung, Yen-Cheng; Kis, Andras; Renault, Olivier; Lanes Group, Epfl Team; Leti, Cea Team

    The electronic band structure evaluation of two-dimensional metal dichalcogenides is critical as the band structure can be greatly influenced by the film thickness, strain, and substrate. Here, we performed a direct measurement of the band structure of as-grown monolayer MoS2 on single crystalline sapphire by reciprocal-space photoelectron emission microscopy with a conventional laboratory ultra-violet He I light source. Arrays of gold electrodes were deposited onto the sample in order to avoid charging effects due to the insulating substrate. This allowed the high resolution mapping (ΔE = 0.2 eV Δk = 0.05 Å-1) of the valence states in momentum space down to 7 eV below the Fermi level. The high degree of the epitaxial alignment of the single crystalline MoS2 nuclei was verified by the direct momentum space imaging over a large area containing multiple nuclei. The derived values of the hole effective mass were 2.41 +/-0.05 m0 and 0.81 +/-0.05 m0, respectively at Γ and K points, consistent with the theoretical values of the freestanding monolayer MoS2 reported in the literature. HK acknowledges the french CEA Basic Technological Research program (RTB) for funding.

  1. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    DOEpatents

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  2. Experiences on developing digital down conversion algorithms using Xilinx system generator

    NASA Astrophysics Data System (ADS)

    Xu, Chengfa; Yuan, Yuan; Zhao, Lizhi

    2013-07-01

    The Digital Down Conversion (DDC) algorithm is a classical signal processing method which is widely used in radar and communication systems. In this paper, the DDC function is implemented by Xilinx System Generator tool on FPGA. System Generator is an FPGA design tool provided by Xilinx Inc and MathWorks Inc. It is very convenient for programmers to manipulate the design and debug the function, especially for the complex algorithm. Through the developing process of DDC function based on System Generator, the results show that System Generator is a very fast and efficient tool for FPGA design.

  3. NASA Pioneer: Venus reverse playback telemetry program TR 78-2

    NASA Technical Reports Server (NTRS)

    Modestino, J. W.; Daut, D. G.; Vickers, A. L.; Matis, K. R.

    1978-01-01

    During the entry of the Pioneer Venus Atmospheric Probes into the Venus atmosphere, there were several events (RF blackout and data rate changes) which caused the ground receiving equipment to lose lock on the signal. This caused periods of data loss immediately following each one of these disturbing events which lasted until all the ground receiving units (receiver, subcarrier demodulator, symbol synchronizer, and sequential decoder) acquired lock once more. A scheme to recover these data by off-line data processing was implemented. This scheme consisted of receiving the S band signals from the probes with an open loop reciever (requiring no lock up on the signal) in parallel with the closed loop receivers of the real time receiving equipment, down converting the signals to baseband, and recording them on an analog recorder. The off-line processing consisted of playing the analog recording in the reverse direction (starting with the end of the tape) up, converting the signal to S-band, feeding the signal into the "real time" receiving system and recording on digital tape, the soft decisions from the symbol synchronizer.

  4. Broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface

    NASA Astrophysics Data System (ADS)

    Mao, Chenyang; Yang, Yang; He, Xiaoxiang; Zheng, Jingming; Zhou, Chun

    2017-12-01

    In this paper, a broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface is proposed. The proposed metasurface can effectively convert linear-polarized (TE/TM) incident wave into the reflected wave with three different polarizations within the frequency bands of 5.5-22.75 GHz. Based on the electric and magnetic resonant features of the double-L-shaped structure, the proposed metasurface can convert linearly polarized waves into cross-polarized waves at three resonant frequency bands. Furthermore, the incident linearly polarized waves can be effectively converted into left/right handed circular-polarized (LHCP and RHCP) waves at other four non-resonance frequency bands. Thus, the proposed metasurface can be regarded as a seven-band multi-polarization converter. The prototype of the proposed polarization converter is analyzed and measured. Both simulated and measured results show the 3-dB axis ratio bandwidth of circular polarization bands and the high polarization conversion efficiency of cross-polarization bands when the incident wave changes from 0° to 30° at both TE and TM modes.

  5. Design of a delay-locked-loop-based time-to-digital converter

    NASA Astrophysics Data System (ADS)

    Zhaoxin, Ma; Xuefei, Bai; Lu, Huang

    2013-09-01

    A time-to-digital converter (TDC) based on a reset-free and anti-harmonic delay-locked loop (DLL) circuit for wireless positioning systems is discussed and described. The DLL that generates 32-phase clocks and a cycle period detector is employed to avoid “false locking". Driven by multiphase clocks, an encoder detects pulses and outputs the phase of the clock when the pulse arrives. The proposed TDC was implemented in SMIC 0.18 μm CMOS technology, and its core area occupies 0.7 × 0.55 mm2. The reference frequency ranges from 20 to 150 MHz. An LSB resolution of 521 ps can be achieved by using a reference clock of 60 MHz and the DNL is less than ±0.75 LSB. It dissipates 31.5 mW at 1.8 V supply voltage.

  6. Comparative hybrid and digital simulation studies of the behaviour of a wind generator equipped with a static frequency converter

    NASA Astrophysics Data System (ADS)

    Dube, B.; Lefebvre, S.; Perocheau, A.; Nakra, H. L.

    1988-01-01

    This paper describes the comparative results obtained from digital and hybrid simulation studies on a variable speed wind generator interconnected to the utility grid. The wind generator is a vertical-axis Darrieus type coupled to a synchronous machine by a gear-box; the synchronous machine is connected to the AC utility grid through a static frequency converter. Digital simulation results have been obtained using CSMP software; these results are compared with those obtained from a real-time hybrid simulator that in turn uses a part of the IREQ HVDC simulator. The agreement between hybrid and digital simulation results is generally good. The results demonstrate that the digital simulation reproduces the dynamic behavior of the system in a satisfactory manner and thus constitutes a valid tool for the design of the control systems of the wind generator.

  7. Photonically enabled Ka-band radar and infrared sensor subscale testbed

    NASA Astrophysics Data System (ADS)

    Lohr, Michele B.; Sova, Raymond M.; Funk, Kevin B.; Airola, Marc B.; Dennis, Michael L.; Pavek, Richard E.; Hollenbeck, Jennifer S.; Garrison, Sean K.; Conard, Steven J.; Terry, David H.

    2014-10-01

    A subscale radio frequency (RF) and infrared (IR) testbed using novel RF-photonics techniques for generating radar waveforms is currently under development at The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to study target scenarios in a laboratory setting. The linearity of Maxwell's equations allows the use of millimeter wavelengths and scaled-down target models to emulate full-scale RF scene effects. Coupled with passive IR and visible sensors, target motions and heating, and a processing and algorithm development environment, this testbed provides a means to flexibly and cost-effectively generate and analyze multi-modal data for a variety of applications, including verification of digital model hypotheses, investigation of correlated phenomenology, and aiding system capabilities assessment. In this work, concept feasibility is demonstrated for simultaneous RF, IR, and visible sensor measurements of heated, precessing, conical targets and of a calibration cylinder. Initial proof-of-principle results are shown of the Ka-band subscale radar, which models S-band for 1/10th scale targets, using stretch processing and Xpatch models.

  8. Latency study of the High Performance Time to Digital Converter for the ATLAS Muon Spectrometer trigger upgrade

    NASA Astrophysics Data System (ADS)

    Meng, X. T.; Levin, D. S.; Chapman, J. W.; Li, D. C.; Yao, Z. E.; Zhou, B.

    2017-02-01

    The High Performance Time to Digital Converter (HPTDC), a multi-channel ASIC designed by the CERN Microelectronics group, has been proposed for the digitization of the thin-Resistive Plate Chambers (tRPC) in the ATLAS Muon Spectrometer Phase-1 upgrade project. These chambers, to be staged for higher luminosity LHC operation, will increase trigger acceptance and reduce or eliminate the fake muon trigger rates in the barrel-endcap transition region, corresponding to pseudo-rapidity range 1<|η|<1.3. Low level trigger candidates must be flagged within a maximum latency of 1075 ns, thus imposing stringent signal processing time performance requirements on the readout system in general, and on the digitization electronics in particular. This paper investigates the HPTDC signal latency performance based on a specially designed evaluation board coupled with an external FPGA evaluation board, when operated in triggerless mode, and under hit rate conditions expected in Phase-I. This hardware based study confirms previous simulations and demonstrates that the HPTDC in triggerless operation satisfies the digitization timing requirements in both leading edge and pair modes.

  9. Digital Geologic Map of the Rosalia 1:100,000 Quadrangle, Washington and Idaho: A Digital Database for the 1990 S.Z. Waggoner Map

    USGS Publications Warehouse

    Derkey, Pamela D.; Johnson, Bruce R.; Lackaff, Beatrice B.; Derkey, Robert E.

    1998-01-01

    The geologic map of the Rosalia 1:100,000-scale quadrangle was compiled in 1990 by S.Z. Waggoner of the Washington state Division of Geology and Earth Resources. This data was entered into a geographic information system (GIS) as part of a larger effort to create regional digital geology for the Pacific Northwest. The intent was to provide a digital geospatial database for a previously published black and white paper geologic map. This database can be queried in many ways to produce a variety of geologic maps. Digital base map data files are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000) as it has been somewhat generalized to fit the 1:100,000 scale map. The map area is located in eastern Washington and extends across the state border into western Idaho. This open-file report describes the methods used to convert the geologic map data into a digital format, documents the file structures, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. We wish to thank J. Eric Schuster of the Washington Division of Geology and Earth Resources for providing the original stable-base mylar and the funding for it to be scanned. We also thank Dick Blank and Barry Moring of the U.S. Geological Survey for reviewing the manuscript and digital files, respectively.

  10. Unity-Efficiency Parametric Down-Conversion via Amplitude Amplification.

    PubMed

    Niu, Murphy Yuezhen; Sanders, Barry C; Wong, Franco N C; Shapiro, Jeffrey H

    2017-03-24

    We propose an optical scheme, employing optical parametric down-converters interlaced with nonlinear sign gates (NSGs), that completely converts an n-photon Fock-state pump to n signal-idler photon pairs when the down-converters' crystal lengths are chosen appropriately. The proof of this assertion relies on amplitude amplification, analogous to that employed in Grover search, applied to the full quantum dynamics of single-mode parametric down-conversion. When we require that all Grover iterations use the same crystal, and account for potential experimental limitations on crystal-length precision, our optimized conversion efficiencies reach unity for 1≤n≤5, after which they decrease monotonically for n values up to 50, which is the upper limit of our numerical dynamics evaluations. Nevertheless, our conversion efficiencies remain higher than those for a conventional (no NSGs) down-converter.

  11. Development and Performance Analysis of a Photonics-Assisted RF Converter for 5G Applications

    NASA Astrophysics Data System (ADS)

    Borges, Ramon Maia; Muniz, André Luiz Marques; Sodré Junior, Arismar Cerqueira

    2017-03-01

    This article presents a simple, ultra-wideband and tunable radiofrequency (RF) converter for 5G cellular networks. The proposed optoelectronic device performs broadband photonics-assisted upconversion and downconversion using a single optical modulator. Experimental results demonstrate RF conversion from DC to millimeter waves, including 28 and 38 GHz that are potential frequency bands for 5G applications. Narrow linewidth and low phase noise characteristics are observed in all generated RF carriers. An experimental digital performance analysis using different modulation schemes illustrates the applicability of the proposed photonics-based device in reconfigurable optical wireless communications.

  12. Mariner Venus Mercury 1973 S/X-band experiment

    NASA Technical Reports Server (NTRS)

    Levy, G. S.

    1977-01-01

    The S/X-band experiment on the Mariner Venus/Mercury 1973 spacecraft constituted a unique opportunity to demonstrate the capability of an X-band downlink coherent with the normal S-band downlink. This was both a technological and scientific experiment, and the results indicated that it was successful in both cases. Analysis of the tracking data shows that the new S/X data type was capable of reducing the miss distance at the planet Mercury by 80% (post-processed data). The use of S/X electron content was demonstrated by comparison with Faraday rotation data. An X-band turnaround telemetry experiment showed the feasibility of a planetary X-band link. In the science area, the model atmospheric environment of Venus was refined. The ionosphere of the planet was measured to a higher accuracy than before, and the value of the dual-frequency link for measuring the scale size of turbulence was demonstrated. The estimate of the scale size was increased from 100 m to above 5 km.

  13. Comparison of Model Prediction with Measurements of Galactic Background Noise at L-Band

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, Willam J.; Skou, Niels; Sobjaerg, S.

    2004-01-01

    The spectral window at L-band (1.413 GHz) is important for passive remote sensing of surface parameters such as soil moisture and sea surface salinity that are needed to understand the hydrological cycle and ocean circulation. Radiation from celestial (mostly galactic) sources is strong in this window and an accurate accounting for this background radiation is often needed for calibration. Modem radio astronomy measurements in this spectral window have been converted into a brightness temperature map of the celestial sky at L-band suitable for use in correcting passive measurements. This paper presents a comparison of the background radiation predicted by this map with measurements made with several modem L-band remote sensing radiometers. The agreement validates the map and the procedure for locating the source of down-welling radiation.

  14. TDRSS multimode transponder program S-band modification

    NASA Technical Reports Server (NTRS)

    Mackey, J. E.

    1975-01-01

    The S-Band TDRS multimode transponder and its associated ground support equipment is described. The transponder demonstrates candidate modulation techniques to provide the required information for the design of an eventual S-band transponder suitable for installation in a user satellite, capable of operating as part of a Tracking and Data Relay Satellite (TDRS) system.

  15. Multi-speed multi-phase resolver converter

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean (Inventor); Howard, David (Inventor)

    1994-01-01

    A multiphase converter circuit generates a plurality of sinusoidal outputs of displaced phase and given speed value from the output of an angular resolver system attachable to a motor excited by these multi-phase outputs, the resolver system having a lower speed value than that of the motor. The angular resolver system provides in parallel format sequential digital numbers indicative of the amount of rotation of the shaft of an angular position sensor associated with the angular resolver system. These numbers are used to excite simultaneously identical addresses of a plurality of addressable memory systems, each memory system having stored therein at sequential addresses sequential values of a sinusoidal wavetrain of a given number of sinusoids. The stored wavetrain values represent sinusoids displaced from each other in phase according to the number of output phases desired. A digital-to-analog converter associated with each memory system converts each accessed word to a corresponding analog value to generate attendant to rotation of the angular resolver a sinusoidal wave of proper phase at each of the plurality of outputs. By properly orienting the angular resolver system with respect to the rotor of the motor, essentially ripple-free torque is supplied to the rotor. The angular resolver system may employ an analog resolver feeding an integrated circuit resolver-to-digital converter to produce the requisite digital values serving as addresses. Alternative versions employing incremental or absolute encoders are also described.

  16. Multi-speed multi-phase resolver converter

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor)

    1995-01-01

    A multiphase converter circuit generates a plurality of sinusoidal outputs of displaced phase and given speed value from the output of an angular resolver system attachable to a motor excited by these multi-phase outputs, the resolver system having a lower speed value than that of the motor. The angular resolver system provides in parallel format sequential digital numbers indicative of the amount of rotation of the shaft of an angular position sensor associated with the angular resolver system. These numbers are used to excite simultaneously identical addresses of a plurality of addressable memory systems, each memory system having stored therein at sequential addresses sequential values of a sinusoidal wavetrain of a given number of sinusoids. The stored wavetrain values represent sinusoids displaced from each other in phase according to the number of output phases desired. A digital-to-analog converter associated with each memory system converts each accessed word to a corresponding analog value to generate attendant to rotation of the angular resolver a sinusoidal wave of proper phase at each of the plurality of outputs. By properly orienting the angular resolver system with respect to the rotor of the motor, essentially ripple-free torque is supplied to the rotor. The angular resolver system may employ an analog resolver feeding an integrated circuit resolver-to-digital converter to produce the requisite digital values serving as addresses. Alternative versions employing incremental or absolute encoders are also described.

  17. Design challenges of EO polymer based leaky waveguide deflector for 40 Gs/s all-optical analog-to-digital converters

    NASA Astrophysics Data System (ADS)

    Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.

    2016-08-01

    Design challenges and performance optimization of an all-optical analog-to-digital converter (AOADC) is presented here. The paper addresses both microwave and optical design of a leaky waveguide optical deflector using electro-optic (E-O) polymer. The optical deflector converts magnitude variation of the applied RF voltage into variation of deflection angle out of a leaky waveguide optical beam using the linear E-O effect (Pockels effect) as part of the E-O polymer based optical waveguide. This variation of deflection angle as result of the applied RF signal is then quantized using optical windows followed by an array of high-speed photodetectors. We optimized the leakage coefficient of the leaky waveguide and its physical length to achieve the best trade-off between bandwidth and the deflected optical beam resolution, by improving the phase velocity matching between lightwave and microwave on one hand and using pre-emphasis technique to compensate for the RF signal attenuation on the other hand. In addition, for ease of access from both optical and RF perspective, a via-hole less broad bandwidth transition is designed between coplanar pads and coupled microstrip (CPW-CMS) driving electrodes. With the best reported E-O coefficient of 350 pm/V, the designed E-O deflector should allow an AOADC operating over 44 giga-samples-per-seconds with an estimated effective resolution of 6.5 bits on RF signals with Nyquist bandwidth of 22 GHz. The overall DC power consumption of all components used in this AOADC is of order of 4 W and is dominated by power consumption in the power amplifier to generate a 20 V RF voltage in 50 Ohm system. A higher sampling rate can be achieved at similar bits of resolution by interleaving a number of this elementary AOADC at the expense of a higher power consumption.

  18. Analysis of 2ν3 Band of Hto

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaori; Maki, Hiroki; Yamamoto, Takuya; Hara, Masanori; Hatano, Yuji; Ozeki, Hiroyuki

    2014-06-01

    Tritium is a radioactive isotope of hydrogen. Tritium released into natural enviroment is said to be converted into mostly HTO. The detection of HTO is important from the viewpoint of basic science as well as its radioactivity. Spectroscopy is a good tool for detection, however, high-resolution spectroscopy studies are still limited. The microwave study were carried out and the molecular constants of the ground state were determined. All fundamental ν_1, ν_2 and the ν_3 bands of HTO were reported. At 1.38 micron region, overtone and combination bands are expected. In this study, we prepared a new double wall cell for safe handling of highly concentrated tritiated water and carried out the near-infrared measurement. More than 100 transitions were observed and most of them were assigned to belong to the 2ν_3 band based on the previous quantum chemical calculations. We will report the current status of the analysis. P. Helminger, F. C. De Lucia, W. Gordy, P. A. Staats and H. W. Morgan, Phys. Rev. A, 10, 1072 (1974). S. D. Cope, D. K. Russell, H. A. Fry, L. H. Jones, and J. E. Barefield, J. Mol. Spectrosc., 127, 464 (1988). P. P. Cherrier, P. H. Beckwith, and J. Reid, J. Mol. Spectrosc., 121, 69 (1987). M. Tine, D. Kobor, I. Sakho, and L. H. Coudert, J. Mod. Phys., 3, 1945 (2012). M. J. Down, J. Tennyson, M. Hara, Y. Hatano, and K. Kobayashi, J. Mol. Spectrosc., 289, 35 (2013).

  19. Development of a digital solar simulator based on full-bridge converter

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Feng, Jian; Liu, Zhilong; Tong, Weichao; Ji, Yibo

    2014-02-01

    With the development of solar photovoltaic, distribution schemes utilized in power grid had been commonly application, and photovoltaic (PV) inverter is an essential equipment in grid. In this paper, a digital solar simulator based on full-bridge structure is presented. The output characteristic curve of system is electrically similar to silicon solar cells, which can greatly simplify research methods of PV inverter, improve the efficiency of research and development. The proposed simulator consists on a main control board based on TM320F28335, phase-shifted zero-voltage-switching (ZVS) DC-DC full-bridge converter and voltage and current sampling circuit, that allows emulating the voltage-current curve with the open-circuit voltage (Voc) of 900V and the short-circuit current (Isc) of 18A .When the system connected to a PV inverter, the inverter can quickly track from the open-circuit to the maximum power point and keep stability.

  20. CMOS time-to-digital converter based on a pulse-mixing scheme

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chi; Hwang, Chorng-Sii; Liu, Keng-Chih; Chen, Guan-Hong

    2014-11-01

    This paper proposes a new pulse-mixing scheme utilizing both pulse-shrinking and pulse-stretching mechanisms to improve the performance of time-to-digital converters (TDCs). The temporal resolution of the conventional pulse-shrinking mechanism is determined by the size ratio between homogeneous and inhomogeneous elements. The proposed scheme which features double-stage operation derives its resolution according to the time difference between pulse-shrinking and pulse-stretching amounts. Thus, it can achieve greater immunity against temperature and ambient variations than that of the single-stage scheme. The circuit area also can be reduced by the proposed pulse-mixing scheme. In addition, this study proposes an improved cyclic delay line to eliminate the undesirable shift in the temporal resolution successfully. Therefore, the effective resolution can be controlled completely by the pulse-mixing unit to improve accuracy. The proposed TDC composed of only one cyclic delay line and one counter is fabricated in a TSMC CMOS 0.35-μm DPQM process. The chip core occupies an extremely small area of 0.02 mm2, which is the best among the related works. The experimental result shows that an effective resolution of around 53 ps within ±13% variation over a 0-100 °C temperature range is achieved. The power consumption is 90 μW at a sample rate of 1000 samples/s. In addition to the reduced area, the proposed TDC circuit achieves its resolution with less thermal-sensitivity and better fluctuations caused by process variations.

  1. Digital optical conversion module

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.

    1991-02-26

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

  2. Satellite analog FDMA/FM to digital TDMA conversion

    NASA Technical Reports Server (NTRS)

    Driggers, T.; Nguyen, T.; Kolavennu, V.

    1987-01-01

    The results of a study which investigated design issues regarding the use of analog to digital (A/D) conversion on board a satellite are presented. The need for A/D, and of course D/A as well, conversion arose from a satellite design which required analog FDMA/FM up and down links to/from a digitally modulated intersatellite link. There are also some advantages when one must interconnect a large number of various spot beams which are using analog, and therefore cannot take advantage of SS/TDMA switching among the beams, thus resulting in low fill factors. Various tradeoffs were performed regarding the implementation of on-board A/D processing, including mass, power, and costs. The various technologies which were considered included flash ADCs, surface acoustic wave (SAW) devices, and digital signal processing (DSP) chips. Impact analyses were also performed to determine the effect on ground stations to convert to digital if the A/D approach were not implemented.

  3. A switchable digital microfluidic droplet dye-laser.

    PubMed

    Kuehne, Alexander J C; Gather, Malte C; Eydelnant, Irwin A; Yun, Seok-Hyun; Weitz, David A; Wheeler, Aaron R

    2011-11-07

    Digital microfluidic devices allow the manipulation of droplets between two parallel electrodes. These electrodes can act as mirrors generating a micro-cavity, which can be exploited for a droplet dye-laser. Three representative laser-dyes with emission wavelengths spanning the whole visible spectrum are chosen to show the applicability of this concept. Sub-microlitre droplets of laser-dye solution are moved in and out of a lasing site on-chip to down-convert the UV-excitation light into blue, green and red laser-pulses. This journal is © The Royal Society of Chemistry 2011

  4. Space shuttle engineering and operations support. Isolation between the S-band quad antenna and the S-band payload antenna. Engineering systems analysis

    NASA Technical Reports Server (NTRS)

    Lindsey, J. F.

    1976-01-01

    The isolation between the upper S-band quad antenna and the S-band payload antenna on the shuttle orbiter is calculated using a combination of plane surface and curved surface theories along with worst case values. A minimum value of 60 db isolation is predicted based on recent antenna pattern data, antenna locations on the orbiter, curvature effects, dielectric covering effects and edge effects of the payload bay. The calculated value of 60 db is significantly greater than the baseline value of 40 db. Use of the new value will result in the design of smaller, lighter weight and less expensive filters for S-band transponder and the S-band payload interrogator.

  5. Quasiparticle band structures and interface physics of SnS and GeS

    NASA Astrophysics Data System (ADS)

    Malone, Brad; Kaxiras, Efthimios

    2013-03-01

    Orthorhombic SnS and GeS are layered materials made of earth-abundant elements which have the potential to play a useful role in the massive scale up of renewable power necessary by 2050 to avoid unmanageable levels of climate change. We report on first principles calculations of the quasiparticle spectra of these two materials, predicting the type and magnitude of the fundamental band gap, a quantity which shows a strong degree of scatter in the experimental literature. Additionally, in order to evaluate the possible role of GeS as an electron-blocking layer in a SnS-based photovoltaic device, we investigate the band offsets of the interfaces between these materials along the three principle crystallographic directions. We find that while the valence-band offsets are similar along the three principle directions, the conduction-band offsets display a substantial amount of anisotropy.

  6. Deep Cryogenic Low Power 24 Bits Analog to Digital Converter with Active Reverse Cryostat

    NASA Astrophysics Data System (ADS)

    Turqueti, Marcos; Prestemon, Soren; Albright, Robert

    LBNL is developing an innovative data acquisition module for superconductive magnets where the front-end electronics and digitizer resides inside the cryostat. This electronic package allows conventional electronic technologies such as enhanced metal-oxide-semiconductor to work inside cryostats at temperatures as low as 4.2 K. This is achieved by careful management of heat inside the module that keeps the electronic envelop at approximately 85 K. This approach avoids all the difficulties that arise from changes in carrier mobility that occur in semiconductors at deep cryogenic temperatures. There are several advantages in utilizing this system. A significant reduction in electrical noise from signals captured inside the cryostat occurs due to the low temperature that the electronics is immersed in, reducing the thermal noise. The shorter distance that signals are transmitted before digitalization reduces pickup and cross-talk between channels. This improved performance in signal-to-noise rate by itself is a significant advantage. Another important advantage is the simplification of the feedthrough interface on the cryostat head. Data coming out of the cryostat is digital and serial, dramatically reducing the number of lines going through the cryostat feedthrough interface. It is important to notice that all lines coming out of the cryostat are digital and low voltage, reducing the possibility of electric breakdown inside the cryostat. This paper will explain in details the architecture and inner workings of this data acquisition system. It will also provide the performance of the analog to digital converter when the system is immersed in liquid helium, and in liquid nitrogen. Parameters such as power dissipation, integral non-linearity, effective number of bits, signal-to-noise and distortion, will be presented for both temperatures.

  7. Deep Cryogenic Low Power 24 Bits Analog to Digital Converter with Active Reverse Cryostat

    DOE PAGES

    Turqueti, Marcos; Prestemon, Soren; Albright, Robert

    2015-07-15

    LBNL is developing an innovative data acquisition module for superconductive magnets where the front-end electronics and digitizer resides inside the cryostat. This electronic package allows conventional electronic technologies such as enhanced metal–oxide–semiconductor to work inside cryostats at temperatures as low as 4.2 K. This is achieved by careful management of heat inside the module that keeps the electronic envelop at approximately 85 K. This approach avoids all the difficulties that arise from changes in carrier mobility that occur in semiconductors at deep cryogenic temperatures. There are several advantages in utilizing this system. A significant reduction in electrical noise from signalsmore » captured inside the cryostat occurs due to the low temperature that the electronics is immersed in, reducing the thermal noise. The shorter distance that signals are transmitted before digitalization reduces pickup and cross-talk between channels. This improved performance in signal-to-noise rate by itself is a significant advantage. Another important advantage is the simplification of the feedthrough interface on the cryostat head. Data coming out of the cryostat is digital and serial, dramatically reducing the number of lines going through the cryostat feedthrough interface. It is important to notice that all lines coming out of the cryostat are digital and low voltage, reducing the possibility of electric breakdown inside the cryostat. This paper will explain in details the architecture and inner workings of this data acquisition system. It will also provide the performance of the analog to digital converter when the system is immersed in liquid helium, and in liquid nitrogen. Parameters such as power dissipation, integral non-linearity, effective number of bits, signal-to-noise and distortion, will be presented for both temperatures.« less

  8. Superconducting analog-to-digital converter with a triple-junction reversible flip-flop bidirectional counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, G.S.

    1993-07-13

    A high-performance superconducting analog-to-digital converter is described, comprising: a bidirectional binary counter having n stages of triple-junction reversible flip-flops connected together in a cascade arrangement from the least significant bit (LSB) to the most significant bit (MSB) where n is the number of bits of the digital output, each triple-junction reversible flip-flop including first, second and third shunted Josephson tunnel junctions and a superconducting inductor connected in a bridge circuit, the Josephson junctions and the inductor forming upper and lower portions of the flip-flop, each reversible flip-flop being a bistable logic circuit in which the direction of the circulating currentmore » determines the state of the circuit; and means for applying an analog input current to the bidirectional counter; wherein the bidirectional counter algebraically counts incremental changes in the analog input current, increasing the binary count for positive incremental changes in the analog current and decreasing the binary count for negative incremental changes in the current, and wherein the counter does not require a gate bias, thus minimizing power dissipation.« less

  9. Digital optical conversion module

    DOEpatents

    Kotter, D.K.; Rankin, R.A.

    1988-07-19

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  10. Simultaneous chromatic dispersion, polarization-mode-dispersion and OSNR monitoring at 40Gbit/s.

    PubMed

    Baker-Meflah, Lamia; Thomsen, Benn; Mitchell, John; Bayvel, Polina

    2008-09-29

    A novel method for independent and simultaneous monitoring of chromatic dispersion (CD), first-order PMD and OSNR in 40Gbit/s systems is proposed and demonstrated. This is performed using in-band tone monitoring of 5GHz, optically down-converted to a low intermediate-frequency (IF) of 10kHz. The measurement provides a large monitoring range with good accuracies for CD (4742+/-100ps/nm), differential group delay (DGD) (200+/-4ps) and OSNR (23+/-1dB), independently of the bit-rate. In addition, the use of electro-absorption modulators (EAM) for the simultaneous down-conversion of all channels and the use of low-speed detectors makes it cost effective for multi-channel operation.

  11. Bidirectional converter for high-efficiency fuel cell powertrain

    NASA Astrophysics Data System (ADS)

    Fardoun, Abbas A.; Ismail, Esam H.; Sabzali, Ahmad J.; Al-Saffar, Mustafa A.

    2014-03-01

    In this paper, a new wide conversion ratio step-up and step-down converter is presented. The proposed converter is derived from the conventional Single Ended Primary Inductor Converter (SEPIC) topology and it is integrated with a capacitor-diode voltage multiplier, which offers a simple structure, reduced electromagnetic interference (EMI), and reduced semiconductors' voltage stresses. Other advantages include: continuous input and output current, extended step-up and step-down voltage conversion ratio without extreme low or high duty-cycle, simple control circuitry, and near-zero input and output ripple currents compared to other converter topologies. The low charging/discharging current ripple and wide gain features result in a longer life-span and lower cost of the energy storage battery system. In addition, the "near-zero" ripple capability improves the fuel cell durability. Theoretical analysis results obtained with the proposed structure are compared with other bi-direction converter topologies. Simulation and experimental results are presented to verify the performance of the proposed bi-directional converter.

  12. Digital Audio Radio Field Tests

    NASA Technical Reports Server (NTRS)

    Hollansworth, James E.

    1997-01-01

    Radio history continues to be made at the NASA Lewis Research Center with the beginning of phase two of Digital Audio Radio testing conducted by the Consumer Electronic Manufacturers Association (a sector of the Electronic Industries Association and the National Radio Systems Committee) and cosponsored by the Electronic Industries Association and the National Association of Broadcasters. The bulk of the field testing of the four systems should be complete by the end of October 1996, with results available soon thereafter. Lewis hosted phase one of the testing process, which included laboratory testing of seven proposed digital audio radio systems and modes (see the following table). Two of the proposed systems operate in two modes, thus making a total of nine systems for testing. These nine systems are divided into the following types of transmission: in-band on channel (IBOC), in-band adjacent channel (IBAC), and new bands - the L-band (1452 to 1492 MHz) and the S-band (2310 to 2360 MHz).

  13. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures.

    PubMed

    Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe

    2015-08-28

    We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young's modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system.

  14. PIC microcontroller based external fast analog to digital converter to acquire wide-lined solid NMR spectra by BRUKER DRX and Avance-I spectrometers.

    PubMed

    Koczor, Bálint; Rohonczy, János

    2015-01-01

    Concerning many former liquid or hybrid liquid/solid NMR consoles, the built in Analog-to-Digital Converters (ADCs) are incapable of digitizing the fids at sampling rates in the MHz range. Regarding both strong anisotropic interactions in the solid state and wide chemical shift dispersion nuclei in solution phase such as (195)Pt, (119)Sn, (207)Pb etc., the spectrum range of interest might be in the MHz range. As determining the informative tensor components of anisotropic NMR interactions requires nonlinear fitting over the whole spectrum including the asymptotic baseline, it is prohibited by low sampling rates of the ADCs. Wide spectrum width is also useful in solution NMR, since windowing of wide chemical shift ranges is avoidable. We built an external analog to digital converter with 10 MHz maximal sampling rate, which can work simultaneously with the built in ADC of the spectrometer. The ADC was tested on both Bruker DRX and Avance-I NMR consoles. In addition to the analog channels it only requires three external digital lines of the NMR console. The ADC sends data to PC via USB. The whole process is controlled by software written in JAVA which is implemented under TopSpin. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Simulation of the High Performance Time to Digital Converter for the ATLAS Muon Spectrometer trigger upgrade

    NASA Astrophysics Data System (ADS)

    Meng, X. T.; Levin, D. S.; Chapman, J. W.; Zhou, B.

    2016-09-01

    The ATLAS Muon Spectrometer endcap thin-Resistive Plate Chamber trigger project compliments the New Small Wheel endcap Phase-1 upgrade for higher luminosity LHC operation. These new trigger chambers, located in a high rate region of ATLAS, will improve overall trigger acceptance and reduce the fake muon trigger incidence. These chambers must generate a low level muon trigger to be delivered to a remote high level processor within a stringent latency requirement of 43 bunch crossings (1075 ns). To help meet this requirement the High Performance Time to Digital Converter (HPTDC), a multi-channel ASIC designed by CERN Microelectronics group, has been proposed for the digitization of the fast front end detector signals. This paper investigates the HPTDC performance in the context of the overall muon trigger latency, employing detailed behavioral Verilog simulations in which the latency in triggerless mode is measured for a range of configurations and under realistic hit rate conditions. The simulation results show that various HPTDC operational configurations, including leading edge and pair measurement modes can provide high efficiency (>98%) to capture and digitize hits within a time interval satisfying the Phase-1 latency tolerance.

  16. Using a Distant Abdominal Skin Flap to Treat Digital Constriction Bands: A Case Report for Vohwinkel Syndrome.

    PubMed

    Zhang, Mingzi; Song, Kexin; Ding, Ning; Shu, Chang; Wang, Youbin

    2016-02-01

    In this study, a Vohwinkel syndrome case is presented where in 5th digit constriction bands in the right hand were reconstructed using a distant abdominal skin flap. Vohwinkel syndrome, or keratoderma hereditarium mutilans, is a rare, autosomal dominant genetic skin condition that causes palmoplantar hyperkeratosis and constricts finger and/or toe bands. In a typical manifestation, the finger and toe constriction bands lead to progressive strangulation and autoamputation, which requires immediate clinical treatment. Topical keratolytics and systemic retinoids have been used to treat hyperkeratosis but without consistent results. Only 1 effective approach for autoamputation has been accepted, reconstructive surgery.Applying a distant abdominal skin flap produced satisfying postoperative effects at the 18-month follow-up.

  17. Flexible Data Link

    DTIC Science & Technology

    2015-04-01

    DDC ) results in more complicated digital (FPGA) processing, yet simplifies the analog design significantly while improving the quality of the...Interleaved CP Cyclic Prefix DAC Digital to Analog Converter DDC Digital Down Converter DDR Double Data Rate DUC Digital Up Converter ENOB Effective

  18. Validation and Refinement of a Lunar Irradiance Model for Suomi NPP VIIRS Day-Night Band Quantitative Nighttime Applications

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Combs, C.; Wagner, S.; Viticchiè, B.; Walther, A.; Solbrig, J.

    2014-12-01

    The VIIRS Day-Night Band provides the first calibrated observations of nocturnal low-light visible/near-infrared (~500-900 nm response, 710 nm central wavelength) radiances, including reflected moonlight down to values of 3 × 10-5 W·m-2·sr-1. These novel measurements afford the first opportunity to attempt nighttime retrievals of optical depth for optically thick clouds when moonlight is available, thereby advancing our ability to observe the diurnal cycle of such structures as marine stratocumuli which are thought to play an important role in determining climate and climate feedbacks. In order to leverage the Day-Night Band measurements in this capacity, we must first convert the upwelling top-of-atmosphere radiances to equivalent values of reflectance. Doing so requires a detailed knowledge of the down-welling top-of-atmosphere lunar spectral irradiance which, unlike sunlight, varies significantly over the course of the ~29.5 day lunar cycle. This research summarizes the ongoing development, validation, and refinement of a lunar irradiance model designed to convert Day-Night Band radiances to equivalent lunar reflectance. Comparisons between daytime and nighttime Day-Night Band reflectance for vicarious calibration targets offering radiometric stability (e.g., White Sands, Salar de Uyuni, Dome-C, and snow fields) confirms the model's performance to within an expected ~10% uncertainty. An observed lunar-phase-dependent trend associated with the model's assumption of a disk-averaged albedo was addressed via analysis of a version of the model adapted for comparison against Meteosat Second Generation SEVIRI lunar measurements. The analysis resulted in a phase-dependent 6th order polynomial correction to the model and expected model uncertainty improvements to within ~5%. Examples of lunar reflectance imagery for operational applications and the provisional quantitative application of Day-Night Band lunar reflectance to nighttime cloud optical property retrievals

  19. Measurement of atmospheric ozone by cavity ring-down spectroscopy.

    PubMed

    Washenfelder, R A; Wagner, N L; Dube, W P; Brown, S S

    2011-04-01

    Ozone plays a key role in both the Earth's radiative budget and photochemistry. Accurate, robust analytical techniques for measuring its atmospheric abundance are of critical importance. Cavity ring-down spectroscopy has been successfully used for sensitive and accurate measurements of many atmospheric species. However, this technique has not been used for atmospheric measurements of ozone, because the strongest ozone absorption bands occur in the ultraviolet spectral region, where Rayleigh and Mie scattering cause significant cavity losses and dielectric mirror reflectivities are limited. Here, we describe a compact instrument that measures O3 by chemical conversion to NO2 in excess NO, with subsequent detection by cavity ring-down spectroscopy. This method provides a simple, accurate, and high-precision measurement of atmospheric ozone. The instrument consists of two channels. The sum of NO2 and converted O3 (defined as Ox) is measured in the first channel, while NO2 alone is measured in the second channel. NO2 is directly detected in each channel by cavity ring-down spectroscopy with a laser diode light source at 404 nm. The limit of detection for O3 is 26 pptv (2 sigma precision) at 1 s time resolution. The accuracy of the measurement is ±2.2%, with the largest uncertainty being the effective NO2 absorption cross-section. The linear dynamic range of the instrument has been verified from the detection limit to above 200 ppbv (r2>99.99%). The observed precision on signal (2 sigma) with 41 ppbv O3 is 130 pptv in 1 s. Comparison of this instrument to UV absorbance instruments for ambient O3 concentrations shows linear agreement (r2=99.1%) with slope of 1.012±0.002.

  20. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  1. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2000-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor Integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  2. Design of integrated all optical digital to analog converter (DAC) using 2D photonic crystals

    NASA Astrophysics Data System (ADS)

    Moniem, Tamer A.; El-Din, Eman S.

    2017-11-01

    A novel design of all optical 3 bit digital to analog (DAC) converter will be presented in this paper based on 2 Dimension photonic crystals (PhC). The proposed structure is based on the photonic crystal ring resonators (PCRR) with combining the nonlinear Kerr effect on the PCRR. The total size of the proposed optical 3 bit DAC is equal to 44 μm × 37 μm of 2D square lattice photonic crystals of silicon rods with refractive index equal to 3.4. The finite different time domain (FDTD) and Plane Wave Expansion (PWE) methods are used to back the overall operation of the proposed optical DAC.

  3. Model predictive controller design for boost DC-DC converter using T-S fuzzy cost function

    NASA Astrophysics Data System (ADS)

    Seo, Sang-Wha; Kim, Yong; Choi, Han Ho

    2017-11-01

    This paper proposes a Takagi-Sugeno (T-S) fuzzy method to select cost function weights of finite control set model predictive DC-DC converter control algorithms. The proposed method updates the cost function weights at every sample time by using T-S type fuzzy rules derived from the common optimal control engineering knowledge that a state or input variable with an excessively large magnitude can be penalised by increasing the weight corresponding to the variable. The best control input is determined via the online optimisation of the T-S fuzzy cost function for all the possible control input sequences. This paper implements the proposed model predictive control algorithm in real time on a Texas Instruments TMS320F28335 floating-point Digital Signal Processor (DSP). Some experimental results are given to illuminate the practicality and effectiveness of the proposed control system under several operating conditions. The results verify that our method can yield not only good transient and steady-state responses (fast recovery time, small overshoot, zero steady-state error, etc.) but also insensitiveness to abrupt load or input voltage parameter variations.

  4. Down on the farm

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. Department of Energy (DOE) on August 17 put money down on one of these energy sector innovations, with $8 million in funding over the next 3 years for a dozen projects to encourage the U.S. bio-based products industry. The agency will fund 6 graduate-level university programs to support training in bio-based products.In addition, 6 research and development projects use biomass—crops, trees, and agricultural residues—for the manufacture of plastics, paints, and adhesives. One project is a joint program of Pittsburg State University in Kansas and B. F. Goodrich to convert vegetable oils into functionalized oils for high-performance plastics.

  5. Resonant enhancement of band-to-band tunneling in in-plane MoS2/WS2 heterojunctions

    NASA Astrophysics Data System (ADS)

    Kuroda, Tatsuya; Mori, Nobuya

    2018-04-01

    The band-to-band (BTB) tunneling current J through in-plane MoS2/WS2 heterojunctions is calculated by the nonequilibrium Green function method combined with tight-binding approximation. Types A and B of band configurations are considered. For type-A (type-B) heterojunctions, a potential notch exists (or is absent) at the heterointerface. Both type-A and type-B MoS2/WS2 heterojunctions can support a higher BTB current than MoS2 and WS2 homojunctions. For type-A heterojunctions, the resonant enhancement of J occurs resulting in a significantly higher BTB tunneling current.

  6. Can We Afford These Affordances? GarageBand and the Double-Edged Sword of the Digital Audio Workstation

    ERIC Educational Resources Information Center

    Bell, Adam Patrick

    2015-01-01

    The proliferation of computers, tablets, and smartphones has resulted in digital audio workstations (DAWs) such as GarageBand in being some of the most widely distributed musical instruments. Positing that software designers are dictating the music education of DAW-dependent music-makers, I examine the fallacy that music-making applications such…

  7. Shuttle Ku-band bent-pipe implementation considerations. [for Space Shuttle digital communication systems

    NASA Technical Reports Server (NTRS)

    Batson, B. H.; Seyl, J. W.; Huth, G. K.

    1977-01-01

    This paper describes an approach for relay of data-modulated subcarriers from Shuttle payloads through the Shuttle Ku-band communications subsystem (and subsequently through a tracking and data relay satellite system to a ground terminal). The novelty is that a channel originally provided for baseband digital data is shown to be suitable for this purpose; the resulting transmission scheme is referred to as a narrowband bent-pipe scheme. Test results demonstrating the validity of the narrowband bent-pipe mode are presented, and limitations on system performance are described.

  8. High-Speed Digital Scan Converter for High-Frequency Ultrasound Sector Scanners

    PubMed Central

    Chang, Jin Ho; Yen, Jesse T.; Shung, K. Kirk

    2008-01-01

    This paper presents a high-speed digital scan converter (DSC) capable of providing more than 400 images per second, which is necessary to examine the activities of the mouse heart whose rate is 5–10 beats per second. To achieve the desired high-speed performance in cost-effective manner, the DSC developed adopts a linear interpolation algorithm in which two nearest samples to each object pixel of a monitor are selected and only angular interpolation is performed. Through computer simulation with the Field II program, its accuracy was investigated by comparing it to that of bilinear interpolation known as the best algorithm in terms of accuracy and processing speed. The simulation results show that the linear interpolation algorithm is capable of providing an acceptable image quality, which means that the difference of the root mean square error (RMSE) values of the linear and bilinear interpolation algorithms is below 1 %, if the sample rate of the envelope samples is at least four times higher than the Nyquist rate for the baseband component of echo signals. The designed DSC was implemented with a single FPGA (Stratix EP1S60F1020C6, Altera Corporation, San Jose, CA) on a DSC board that is a part of a high-speed ultrasound imaging system developed. The temporal and spatial resolutions of the implemented DSC were evaluated by examining its maximum processing time with a time stamp indicating when an image is completely formed and wire phantom testing, respectively. The experimental results show that the implemented DSC is capable of providing images at the rate of 400 images per second with negligible processing error. PMID:18430449

  9. Ultra-High Gradient S-band Linac for Laboratory and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Faillace, L.; Agustsson, R.; Dolgashev, V.; Frigola, P.; Murokh, A.; Rosenzweig, J.; Yakimenko, V.

    2010-11-01

    A strong demand for high gradient structures arises from the limited real estate available for linear accelerators. RadiaBeam Technologies is developing a Doubled Energy Compact Accelerator (DECA) structure: an S-band standing wave electron linac designed to operate at accelerating gradients of up to 50 MV/m. In this paper, we present the radio-frequency design of the DECA S-band accelerating structure, operating at 2.856 GHz in the π-mode. The structure design is heavily influenced by NLC collaboration experience with ultra high gradient X-band structures; S-band, however, is chosen to take advantage of commonly available high power S-band klystrons.

  10. Probing the band structure and local electronic properties of low-dimensional semiconductor structures

    NASA Astrophysics Data System (ADS)

    Walrath, Jenna Cherie

    Low-dimensional semiconductor structures are important for a wide variety of applications, and recent advances in nanoscale fabrication are paving the way for increasingly precise nano-engineering of a wide range of materials. It is therefore essential that the physics of materials at the nanoscale are thoroughly understood to unleash the full potential of nanotechnology, requiring the development of increasingly sophisticated instrumentation and modeling. Of particular interest is the relationship between the local density of states (LDOS) of low-dimensional structures and the band structure and local electronic properties. This dissertation presents the investigation of the band structure, LDOS, and local electronic properties of nanostructures ranging from zero-dimensional (0D) quantum dots (QDs) to two-dimensional (2D) thin films, synthesizing computational and experimental approaches including Poisson-Schrodinger band structure calculations, scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and scanning thermoelectric microscopy (SThEM). A method is presented for quantifying the local Seebeck coefficient (S) with SThEM, using a quasi-3D conversion matrix approach to directly convert temperature gradient-induced voltages S. For a GaAs p-n junction, the resulting S-profile is consistent with that computed using the free carrier concentration profile. This combined computational-experimental approach is expected to enable nanoscale measurements of S across a wide variety of heterostructure interfaces. The local carrier concentration, n, is profiled across epitaxial InAs/GaAs QDs, where SThEM is used to profile the temperature gradient-induced voltage, which is converted to a profile of the local S and finally to an n profile. The S profile is converted to a conduction band-edge profile and compared with Poisson-Schrodinger band-edge simulations. The combined computational-experimental approach suggests a reduced n in the QD center in

  11. Behavioral modeling and digital compensation of nonlinearity in DFB lasers for multi-band directly modulated radio-over-fiber systems

    NASA Astrophysics Data System (ADS)

    Li, Jianqiang; Yin, Chunjing; Chen, Hao; Yin, Feifei; Dai, Yitang; Xu, Kun

    2014-11-01

    The envisioned C-RAN concept in wireless communication sector replies on distributed antenna systems (DAS) which consist of a central unit (CU), multiple remote antenna units (RAUs) and the fronthaul links between them. As the legacy and emerging wireless communication standards will coexist for a long time, the fronthaul links are preferred to carry multi-band multi-standard wireless signals. Directly-modulated radio-over-fiber (ROF) links can serve as a lowcost option to make fronthaul connections conveying multi-band wireless signals. However, directly-modulated radioover- fiber (ROF) systems often suffer from inherent nonlinearities from directly-modulated lasers. Unlike ROF systems working at the single-band mode, the modulation nonlinearities in multi-band ROF systems can result in both in-band and cross-band nonlinear distortions. In order to address this issue, we have recently investigated the multi-band nonlinear behavior of directly-modulated DFB lasers based on multi-dimensional memory polynomial model. Based on this model, an efficient multi-dimensional baseband digital predistortion technique was developed and experimentally demonstrated for linearization of multi-band directly-modulated ROF systems.

  12. Time-domain digital pre-equalization for band-limited signals based on receiver-side adaptive equalizers.

    PubMed

    Zhang, Junwen; Yu, Jianjun; Chi, Nan; Chien, Hung-Chang

    2014-08-25

    We theoretically and experimentally investigate a time-domain digital pre-equalization (DPEQ) scheme for bandwidth-limited optical coherent communication systems, which is based on feedback of channel characteristics from the receiver-side blind and adaptive equalizers, such as least-mean-squares (LMS) algorithm and constant or multi- modulus algorithms (CMA, MMA). Based on the proposed DPEQ scheme, we theoretically and experimentally study its performance in terms of various channel conditions as well as resolutions for channel estimation, such as filtering bandwidth, taps length, and OSNR. Using a high speed 64-GSa/s DAC in cooperation with the proposed DPEQ technique, we successfully synthesized band-limited 40-Gbaud signals in modulation formats of polarization-diversion multiplexed (PDM) quadrature phase shift keying (QPSK), 8-quadrature amplitude modulation (QAM) and 16-QAM, and significant improvement in both back-to-back and transmission BER performances are also demonstrated.

  13. The application of digital signal processing techniques to a teleoperator radar system

    NASA Technical Reports Server (NTRS)

    Pujol, A.

    1982-01-01

    A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.

  14. Full-duplex bidirectional transmission of 10-Gb/s millimeter-wave QPSK signal in E-band optical wireless link.

    PubMed

    Fang, Yuan; Yu, Jianjun; Chi, Nan; Xiao, Jiangnan

    2014-01-27

    We experimentally demonstrated full-duplex bidirectional transmission of 10-Gb/s millimeter-wave (mm-wave) quadrature phase shift keying (QPSK) signal in E-band (71-76 GHz and 81-86 GHz) optical wireless link. Single-mode fibers (SMF) are connected at both sides of the antenna for uplink and downlink which realize 40-km SMF and 2-m wireless link for bidirectional transmission simultaneously. We utilized multi-level modulation format and coherent detection in such E-band optical wireless link for the first time. Mm-wave QPSK signal is generated by photonic technique to increase spectrum efficiency and received signal is coherently detected to improve receiver sensitivity. After the coherent detection, digital signal processing is utilized to compensate impairments of devices and transmission link.

  15. An evaluation of the Intel 2920 digital signal processing integrated circuit

    NASA Technical Reports Server (NTRS)

    Heller, J.

    1981-01-01

    The circuit consists of a digital to analog converter, accumulator, read write memory and UV erasable read only memory. The circuit can convert an analog signal to a digital representation, perform mathematical operations on the digital signal and subsequently convert the digital signal to an analog output. Development software tailored for programming the 2920 is presented.

  16. Top-Down Processes Override Bottom-Up Interference in the Flanker Task.

    PubMed

    Avital-Cohen, Rotem; Tsal, Yehoshua

    2016-05-01

    Distractor interference in the flanker task is commonly viewed as an outcome of unintentional, involuntary processing, a by-product of attention-controlled processing of the target. An important implication of this notion is that the distractors are not subjected to top-down processing of their own. We tested this idea in a modified version of the flanker task, in which letter targets (S or O) were sometimes flanked by ambiguous distractors (a character that could be S or 5 or one that could be O or 0). Distractor interference was dependent on participants' expectations regarding the category of the distractors (i.e., letters or digits). For example, the O-0 distractor interfered with responding to S when it was perceived as a letter, but not when it was perceived as a digit. Hence, participants applied top-down processing to the peripheral distractors independently of the top-down processing applied to the targets. The fact that to-be-ignored peripheral distractors were processed to such a high level raises questions regarding the fundamental differences between target and distractor processing, and the quality of attentional filtering. © The Author(s) 2016.

  17. S-band antenna phased array communications system

    NASA Technical Reports Server (NTRS)

    Delzer, D. R.; Chapman, J. E.; Griffin, R. A.

    1975-01-01

    The development of an S-band antenna phased array for spacecraft to spacecraft communication is discussed. The system requirements, antenna array subsystem design, and hardware implementation are examined. It is stated that the phased array approach offers the greatest simplicity and lowest cost. The objectives of the development contract are defined as: (1) design of a medium gain active phased array S-band communications antenna, (2) development and test of a model of a seven element planar array of radiating elements mounted in the appropriate cavity matrix, and (3) development and test of a breadboard transmit/receive microelectronics module.

  18. Garage Band or GarageBand[R]? Remixing Musical Futures

    ERIC Educational Resources Information Center

    Vakeva, Lauri

    2010-01-01

    In this paper, I suggest that it is perhaps time to consider the pedagogy of popular music in more extensive terms than conventional rock band practices have to offer. One direction in which this might lead is the expansion of the informal pedagogy based on a "garage band" model to encompass various modes of digital artistry wherever this artistry…

  19. Computerized Experiments Using an A/D Converter.

    ERIC Educational Resources Information Center

    Karl, John H.

    The indroduction of on-line data collection and data processing techniques into an intermediate physics laboratory is described. Using a minimum configuration PDP-8L and a Digital Equipment AD01 analog to digital converter, an interface is developed with two existing experiments. These are a microwave apparatus used to simulate Bragg diffraction…

  20. Integration of an open interface PC scene generator using COTS DVI converter hardware

    NASA Astrophysics Data System (ADS)

    Nordland, Todd; Lyles, Patrick; Schultz, Bret

    2006-05-01

    Commercial-Off-The-Shelf (COTS) personal computer (PC) hardware is increasingly capable of computing high dynamic range (HDR) scenes for military sensor testing at high frame rates. New electro-optical and infrared (EO/IR) scene projectors feature electrical interfaces that can accept the DVI output of these PC systems. However, military Hardware-in-the-loop (HWIL) facilities such as those at the US Army Aviation and Missile Research Development and Engineering Center (AMRDEC) utilize a sizeable inventory of existing projection systems that were designed to use the Silicon Graphics Incorporated (SGI) digital video port (DVP, also known as DVP2 or DD02) interface. To mate the new DVI-based scene generation systems to these legacy projection systems, CG2 Inc., a Quantum3D Company (CG2), has developed a DVI-to-DVP converter called Delta DVP. This device takes progressive scan DVI input, converts it to digital parallel data, and combines and routes color components to derive a 16-bit wide luminance channel replicated on a DVP output interface. The HWIL Functional Area of AMRDEC has developed a suite of modular software to perform deterministic real-time, wave band-specific rendering of sensor scenes, leveraging the features of commodity graphics hardware and open source software. Together, these technologies enable sensor simulation and test facilities to integrate scene generation and projection components with diverse pedigrees.

  1. The ν 3 and 2ν 3 bands of 32S 16O 3, 32S 18O 3, 34S 16O 3, and 34S 18O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, Steven W.; Blake, Thomas A.; Sams, Robert L.

    2003-12-01

    The fifth of a series of publications on the high resolution rotation-vibration spectra of sulfur trioxide reports the results of a systematic study of the v3(é) and 2v3(A1'+E') infrared bands of the four symmetric top isotopomers 32S 16O 3, 34S 16O 3, 32S 18O 3, and 34S 18O 3. An internal coupling between the l = 0 and l = +2 levels of the 2v3 (A1'+E') states was observed. This small perturbation results in a level crossing between K-l = 9 and 12, in consequence of which the band origins of the A1', l=0 “ghost” states could be determined tomore » a high degree of accuracy. Ground and upper state rotational as well as vibrational anharmonicity constants are reported. The constants for the center-of-mass substituted species 32S 16O 3 and 34S 16O 3 vary only slightly, as do the constants for the 32S 18O 3, 34S 18O 3 pair. The S-O bond lengths for the vibrational ground states of the species 32S 16O 3, 34S 16O 3, 32S 18O 3 and 34S 18O 3, are, respectively, 141.981992(6), 141.979412(20), 150.605240(73), and 150.602348(73) pm, where the uncertainties, given in parentheses, are two standard deviations and refer to the last digits of the associated quantity.« less

  2. Automatic detection of artifacts in converted S3D video

    NASA Astrophysics Data System (ADS)

    Bokov, Alexander; Vatolin, Dmitriy; Zachesov, Anton; Belous, Alexander; Erofeev, Mikhail

    2014-03-01

    In this paper we present algorithms for automatically detecting issues specific to converted S3D content. When a depth-image-based rendering approach produces a stereoscopic image, the quality of the result depends on both the depth maps and the warping algorithms. The most common problem with converted S3D video is edge-sharpness mismatch. This artifact may appear owing to depth-map blurriness at semitransparent edges: after warping, the object boundary becomes sharper in one view and blurrier in the other, yielding binocular rivalry. To detect this problem we estimate the disparity map, extract boundaries with noticeable differences, and analyze edge-sharpness correspondence between views. We pay additional attention to cases involving a complex background and large occlusions. Another problem is detection of scenes that lack depth volume: we present algorithms for detecting at scenes and scenes with at foreground objects. To identify these problems we analyze the features of the RGB image as well as uniform areas in the depth map. Testing of our algorithms involved examining 10 Blu-ray 3D releases with converted S3D content, including Clash of the Titans, The Avengers, and The Chronicles of Narnia: The Voyage of the Dawn Treader. The algorithms we present enable improved automatic quality assessment during the production stage.

  3. Digital equalization of time-delay array receivers on coherent laser communications.

    PubMed

    Belmonte, Aniceto

    2017-01-15

    Field conjugation arrays use adaptive combining techniques on multi-aperture receivers to improve the performance of coherent laser communication links by mitigating the consequences of atmospheric turbulence on the down-converted coherent power. However, this motivates the use of complex receivers as optical signals collected by different apertures need to be adaptively processed, co-phased, and scaled before they are combined. Here, we show that multiple apertures, coupled with optical delay lines, combine retarded versions of a signal at a single coherent receiver, which uses digital equalization to obtain diversity gain against atmospheric fading. We found in our analysis that, instead of field conjugation arrays, digital equalization of time-delay multi-aperture receivers is a simpler and more versatile approach to accomplish reduction of atmospheric fading.

  4. Large Ka-Band Slot Array for Digital Beam-Forming Applications

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam; Zawadzki, Mark S.; Hodges, Richard E.

    2011-01-01

    This work describes the development of a large Ka Band Slot Array for the Glacier and Land Ice Surface Topography Interferometer (GLISTIN), a proposed spaceborne interferometric synthetic aperture radar for topographic mapping of ice sheets and glaciers. GLISTIN will collect ice topography measurement data over a wide swath with sub-seasonal repeat intervals using a Ka-band digitally beamformed antenna. For technology demonstration purpose a receive array of size 1x1 m, consisting of 160x160 radiating elements, was developed. The array is divided into 16 sticks, each stick consisting of 160x10 radiating elements, whose outputs are combined to produce 16 digital beams. A transmit array stick was also developed. The antenna arrays were designed using Elliott's design equations with the use of an infinite-array mutual-coupling model. A Floquet wave model was used to account for external coupling between radiating slots. Because of the use of uniform amplitude and phase distribution, the infinite array model yielded identical values for all radiating elements but for alternating offsets, and identical coupling elements but for alternating positive and negative tilts. Waveguide-fed slot arrays are finding many applications in radar, remote sensing, and communications applications because of their desirable properties such as low mass, low volume, and ease of design, manufacture, and deployability. Although waveguide-fed slot arrays have been designed, built, and tested in the past, this work represents several advances to the state of the art. The use of the infinite array model for the radiating slots yielded a simple design process for radiating and coupling slots. Method of moments solution to the integral equations for alternating offset radiating slots in an infinite array environment was developed and validated using the commercial finite element code HFSS. For the analysis purpose, a method of moments code was developed for an infinite array of subarrays. Overall

  5. A digital-type fluxgate magnetometer using a sigma-delta digital-to-analog converter for a sounding rocket experiment

    NASA Astrophysics Data System (ADS)

    Iguchi, Kyosuke; Matsuoka, Ayako

    2014-07-01

    One of the design challenges for future magnetospheric satellite missions is optimizing the mass, size, and power consumption of the instruments to meet the mission requirements. We have developed a digital-type fluxgate (DFG) magnetometer that is anticipated to have significantly less mass and volume than the conventional analog-type. Hitherto, the lack of a space-grade digital-to-analog converter (DAC) with good accuracy has prevented the development of a high-performance DFG. To solve this problem, we developed a high-resolution DAC using parts whose performance was equivalent to existing space-grade parts. The developed DAC consists of a 1-bit second-order sigma-delta modulator and a fourth-order analog low-pass filter. We tested the performance of the DAC experimentally and found that it had better than 17-bits resolution in 80% of the measurement range, and the linearity error was 2-13.3 of the measurement range. We built a DFG flight model (in which this DAC was embedded) for a sounding rocket experiment as an interim step in the development of a future satellite mission. The noise of this DFG was 0.79 nTrms at 0.1-10 Hz, which corresponds to a roughly 17-bit resolution. The results show that the sigma-delta DAC and the DFG had a performance that is consistent with our optimized design, and the noise was as expected from the noise simulation. Finally, we have confirmed that the DFG worked successfully during the flight of the sounding rocket.

  6. Inflatable Antenna for CubeSat: Extension of the Previously Developed S-Band Design to the X-Band

    NASA Technical Reports Server (NTRS)

    Babuscia, Alessandra; Choi, Thomas; Cheung, Kar-Ming; Thangavelautham, Jekan; Ravichandran, Mithun; Chandra, Aman

    2015-01-01

    The inflatable antenna for CubeSat is a 1 meter antenna reflector designed with one side reflective Mylar, another side clear Mylar with a patch antenna at the focus. The development of this technology responds to the increasing need for more capable communication systems to allow CubeSats to operate autonomously in interplanetary missions. An initial version of the antenna for the S-Band was developed and tested in both anechoic chamber and vacuum chamber. Recent developments in transceivers and amplifiers for CubeSat at X-band motivated the extension from the S-Band to the X-Band. This paper describes the process of extending the design of the antenna to the X-Band focusing on patch antenna redesign, new manufacturing challenges and initial results of experimental tests.

  7. Properties of entangled photon pairs generated in one-dimensional nonlinear photonic-band-gap structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perina, Jan Jr.; Centini, Marco; Sibilia, Concita

    We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49more » layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency.« less

  8. Use of the 37-38 GHz and 40-40.5 GHz Ka-bands for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Morabito, David; Hastrup, Rolf

    2004-01-01

    This paper covers a wide variety of issues associated with the implementation and use of these frequency bands for deep space communications. Performance issues, such as ground station pointing stability, ground antenna gain, antenna pattern, and propagation effects such as due to atmospheric, charged-particle and space loss at 37 GHz, will be addressed in comparison to the 32 GHz Ka-band deep space allocation. Issues with the use of and competition for this spectrum also will be covered. The state of the hardware developed (or proposed) for operating in this frequency band will be covered from the standpoint of the prospects for achieving higher data rates that could be accommodated in the available bandwidth. Hardware areas to be explored include modulators, digital-to-analog converters, filters, power amplifiers, receivers, and antennas. The potential users of the frequency band will be explored as well as their anticipated methods to achieve the potential high data rates and the implications of the competition for bandwidth.

  9. Digital implementation of a laser frequency stabilisation technique in the telecommunications band

    NASA Astrophysics Data System (ADS)

    Jivan, Pritesh; van Brakel, Adriaan; Manuel, Rodolfo Martínez; Grobler, Michael

    2016-02-01

    Laser frequency stabilisation in the telecommunications band was realised using the Pound-Drever-Hall (PDH) error signal. The transmission spectrum of the Fabry-Perot cavity was used as opposed to the traditionally used reflected spectrum. A comparison was done using an analogue as well as a digitally implemented system. This study forms part of an initial step towards developing a portable optical time and frequency standard. The frequency discriminator used in the experimental setup was a fibre-based Fabry-Perot etalon. The phase sensitive system made use of the optical heterodyne technique to detect changes in the phase of the system. A lock-in amplifier was used to filter and mix the input signals to generate the error signal. This error signal may then be used to generate a control signal via a PID controller. An error signal was realised at a wavelength of 1556 nm which correlates to an optical frequency of 1.926 THz. An implementation of the analogue PDH technique yielded an error signal with a bandwidth of 6.134 GHz, while a digital implementation yielded a bandwidth of 5.774 GHz.

  10. Note: Increasing dynamic range of digital-to-analog converter using a superconducting quantum interference device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, Masakazu, E-mail: m.nakanishi@aist.go.jp

    Responses of a superconducting quantum interference device (SQUID) are periodically dependent on magnetic flux coupling to its superconducting ring and the period is a flux quantum (Φ{sub o} = h/2e, where h and e, respectively, express Planck's constant and elementary charge). Using this periodicity, we had proposed a digital to analog converter using a SQUID (SQUID DAC) of first generation with linear current output, interval of which corresponded to Φ{sub o}. Modification for increasing dynamic range by interpolating within each interval is reported. Linearity of the interpolation was also based on the quantum periodicity. A SQUID DAC with dynamic rangemore » of about 1.4 × 10{sup 7} was created as a demonstration.« less

  11. A Survey Study of U.S. Collegiate and K-12 Steel Band Directors' Attitudes Relating to Steel Band Curriculum and Pedagogy

    ERIC Educational Resources Information Center

    Haskett, Brandon L.

    2016-01-01

    Steel bands were introduced into U.S. schools and universities during the 1950s and 1960s. There are now more than 600 U.S. school and university steel bands. The range of teaching methods and repertoire choices must be examined to more fully understand the variety of steel band traditions present in K-12 schools and universities. U.S. steel band…

  12. First-Order-hold interpolation digital-to-analog converter with application to aircraft simulation

    NASA Technical Reports Server (NTRS)

    Cleveland, W. B.

    1976-01-01

    Those who design piloted aircraft simulations must contend with the finite size and speed of the available digital computer and the requirement for simulation reality. With a fixed computational plant, the more complex the model, the more computing cycle time is required. While increasing the cycle time may not degrade the fidelity of the simulated aircraft dynamics, the larger steps in the pilot cue feedback variables (such as the visual scene cues), may be disconcerting to the pilot. The first-order-hold interpolation (FOHI) digital-to-analog converter (DAC) is presented as a device which offers smooth output, regardless of cycle time. The Laplace transforms of these three conversion types are developed and their frequency response characteristics and output smoothness are compared. The FOHI DAC exhibits a pure one-cycle delay. Whenever the FOHI DAC input comes from a second-order (or higher) system, a simple computer software technique can be used to compensate for the DAC phase lag. When so compensated, the FOHI DAC has (1) an output signal that is very smooth, (2) a flat frequency response in frequency ranges of interest, and (3) no phase error. When the input comes from a first-order system, software compensation may cause the FOHI DAC to perform as an FOHE DAC, which, although its output is not as smooth as that of the FOHI DAC, has a smoother output than that of the ZOH DAC.

  13. Differential recruitment of brain networks in single-digit addition and multiplication: Evidence from EEG oscillations in theta and lower alpha bands.

    PubMed

    Wang, Lihan; Gan, John Q; Zhang, Li; Wang, Haixian

    2018-06-01

    Previous neuroimaging research investigating dissociation between single-digit addition and multiplication has suggested that the former placed more reliance on the visuo-spatial processing whereas the latter on the verbal processing. However, there has been little exploration into the disassociation in spatio-temporal dynamics of the oscillatory brain activity in specific frequency bands during the two arithmetic operations. To address this issue, the electroencephalogram (EEG) data were recorded from 19 participants engaged in a delayed verification arithmetic task. By analyzing oscillatory EEG activity in theta (5-7 Hz) and lower alpha frequency (9-10 Hz) bands, we found different patterns of oscillatory brain activity between single-digit addition and multiplication during the early processing stage (0-400 ms post-operand onset). Experiment results in this study showed a larger phasic increase of theta-band power for addition than for multiplication in the midline and the right frontal and central regions during the operator and operands presentation intervals, which was extended to the right parietal and the right occipito-temporal regions during the interval immediately after the operands presentation. In contrast, during multiplication higher phase-locking in lower alpha band was evident in the centro-parietal regions during the operator presentation, which was extended to the left fronto-central and anterior regions during the operands presentation. Besides, we found stronger theta phase synchrony between the parietal areas and the right occipital areas for single-digit addition than for multiplication during operands encoding. These findings of oscillatory brain activity extend the previous observations on functional dissociation between the two arithmetic operations. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Capacitance Measurement with a Sigma Delta Converter for 3D Electrical Capacitance Tomography

    NASA Technical Reports Server (NTRS)

    Nurge, Mark

    2005-01-01

    This paper will explore suitability of a newly available capacitance to digital converter for use in a 3D Electrical Capacitance Tomography system. A switch design is presented along with circuitry needed to extend the range of the capacitance to digital converter. Results are then discussed for a 15+ hour drift and noise test.

  15. Down syndrome in diverse populations.

    PubMed

    Kruszka, Paul; Porras, Antonio R; Sobering, Andrew K; Ikolo, Felicia A; La Qua, Samantha; Shotelersuk, Vorasuk; Chung, Brian H Y; Mok, Gary T K; Uwineza, Annette; Mutesa, Leon; Moresco, Angélica; Obregon, María Gabriela; Sokunbi, Ogochukwu Jidechukwu; Kalu, Nnenna; Joseph, Daniel Akinsanya; Ikebudu, Desmond; Ugwu, Christopher Emeka; Okoromah, Christy A N; Addissie, Yonit A; Pardo, Katherine L; Brough, J Joseph; Lee, Ni-Chung; Girisha, Katta M; Patil, Siddaramappa Jagdish; Ng, Ivy S L; Min, Breana Cham Wen; Jamuar, Saumya S; Tibrewal, Shailja; Wallang, Batriti; Ganesh, Suma; Sirisena, Nirmala D; Dissanayake, Vajira H W; Paththinige, C Sampath; Prabodha, L B Lahiru; Richieri-Costa, Antonio; Muthukumarasamy, Premala; Thong, Meow-Keong; Jones, Kelly L; Abdul-Rahman, Omar A; Ekure, Ekanem Nsikak; Adeyemo, Adebowale A; Summar, Marshall; Linguraru, Marius George; Muenke, Maximilian

    2017-01-01

    Down syndrome is the most common cause of cognitive impairment and presents clinically with universally recognizable signs and symptoms. In this study, we focus on exam findings and digital facial analysis technology in individuals with Down syndrome in diverse populations. Photos and clinical information were collected on 65 individuals from 13 countries, 56.9% were male and the average age was 6.6 years (range 1 month to 26 years; SD = 6.6 years). Subjective findings showed that clinical features were different across ethnicities (Africans, Asians, and Latin Americans), including brachycephaly, ear anomalies, clinodactyly, sandal gap, and abundant neck skin, which were all significantly less frequent in Africans (P < 0.001, P < 0.001, P < 0.001, P < 0.05, and P < 0.05, respectively). Evaluation using a digital facial analysis technology of a larger diverse cohort of newborns to adults (n = 129 cases; n = 132 controls) was able to diagnose Down syndrome with a sensitivity of 0.961, specificity of 0.924, and accuracy of 0.943. Only the angles at medial canthus and ala of the nose were common significant findings amongst different ethnicities (Caucasians, Africans, and Asians) when compared to ethnically matched controls. The Asian group had the least number of significant digital facial biometrics at 4, compared to Caucasians at 8 and Africans at 7. In conclusion, this study displays the wide variety of findings across different geographic populations in Down syndrome and demonstrates the accuracy and promise of digital facial analysis technology in the diagnosis of Down syndrome internationally. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. DSP/FPGA Design for a High-Speed Programmable S-Band Space Transceiver

    NASA Technical Reports Server (NTRS)

    Janicik, Jeffrey; Friedman, Assi

    2013-01-01

    Traditional command uplink receivers are very limited in performance capability, take a long time to acquire, cannot operate on both uplink bands (NASA & AFSCN), and only support low-rate communications. As a result, transceivers end up on many programs critical paths, even though they should be a standard purchased spacecraft subsystem. Also, many missions are impacted by the low effective uplink throughput. In order to tackle these challenges, a transceiver was developed that will provide on-site frequency agility, support of high uplink rates, and operation on both NASA and AFSCN frequency bands. The device is a low-power, high-reliability, and high-performance digital signal processing (DSP) demodulator for an on-orbit programmable command receiver.

  17. 500 MHz Analog-to-Digital Converter Development Program

    DTIC Science & Technology

    1972-03-01

    marginal level digital input signals. At these encoding speeds, quasi -stable non -digital voltage levels at their outputs still resulted. Further...OF COMMERCE SPRINGFIELD, VA. 22161 Radar Division AEROSPACE GROUP Hughes Aircraft Company * Culver City, California / .A CONTFNTS Page INTRODUCTION...sec. The experimental data also indicated that the short time stability of the timing reference generator caused most of the time jitter associated

  18. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  19. State of Texas - Highlighting low-lying areas derived from USGS Digital Elevation Data

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation of Texas and a grayscale relief of the surrounding areas. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. The NED source data for this map consists of a mixture of 30-meter- and 10-meter-resolution DEMs. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2002. Shaded relief over Mexico was obtained from the USGS National Atlas.

  20. Digital Ratiometer

    NASA Technical Reports Server (NTRS)

    Beer, R.

    1985-01-01

    Small, low-cost comparator with 24-bit-precision yields ratio signal from pair of analog or digital input signals. Arithmetic logic chips (bit-slice) sample two 24-bit analog-to-digital converters approximately once every millisecond and accumulate them in two 24-bit registers. Approach readily modified to arbitrary precision.

  1. Band-to-band tunneling in Γ valley for Ge source lateral tunnel field effect transistor: Thickness scaling

    NASA Astrophysics Data System (ADS)

    Jain, Prateek; Rastogi, Priyank; Yadav, Chandan; Agarwal, Amit; Chauhan, Yogesh Singh

    2017-07-01

    The direct and indirect valleys in Germanium (Ge) are separated by a very small offset, which opens up the prospect of direct tunneling in the Γ valley of an extended Ge source tunnel field effect transistor (TFET). We explore the impact of thickness scaling of extended Ge source lateral TFET on the band to band tunneling (BTBT) current. The Ge source is extended inside the gate by 2 nm to confine the tunneling in Ge only. We observe that as the thickness is scaled, the band alignment at the Si/Ge heterojunction changes significantly, which results in an increase in Ge to Si BTBT current. Based on density functional calculations, we first obtain the band structure parameters (bandgap, effective masses, etc.) for the Ge and Si slabs of varying thickness, and these are then used to obtain the thickness dependent Kane's BTBT tunneling parameters. We find that electrostatics improves as the thickness is reduced in the ultra-thin Ge film ( ≤ 10 nm). The ON current degrades as we scale down in thickness; however, the subthreshold slope ( S S AVG ) improves remarkably with thickness scaling due to subsurface BTBT. We predict that 8 nm thin devices offer the best option for optimized ON current and S S AVG .

  2. Towards band structure and band offset engineering of monolayer Mo(1-x)W(x)S2 via Strain

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Seok; Ahmad, Rafia; Pandey, Tribhuwan; Rai, Amritesh; Feng, Simin; Yang, Jing; Lin, Zhong; Terrones, Mauricio; Banerjee, Sanjay K.; Singh, Abhishek K.; Akinwande, Deji; Lin, Jung-Fu

    2018-01-01

    Semiconducting transition metal dichalcogenides (TMDs) demonstrate a wide range of optoelectronic properties due to their diverse elemental compositions, and are promising candidates for next-generation optoelectronics and energy harvesting devices. However, effective band offset engineering is required to implement practical structures with desirable functionalities. Here, we explore the pressure-induced band structure evolution of monolayer WS2 and Mo0.5W0.5S2 using hydrostatic compressive strain applied in a diamond anvil cell (DAC) apparatus and theoretical calculations, in order to study the modulation of band structure and explore the possibility of band alignment engineering through different compositions. Higher W composition in Mo(1-x)W(x)S2 contributes to a greater pressure-sensitivity of direct band gap opening, with a maximum value of 54 meV GPa-1 in WS2. Interestingly, while the conduction band minima (CBMs) remains largely unchanged after the rapid gap increase, valence band maxima (VBMs) significantly rise above the initial values. It is suggested that the pressure- and composition-engineering could introduce a wide variety of band alignments including type I, type II, and type III heterojunctions, and allow to construct precise structures with desirable functionalities. No structural transition is observed during the pressure experiments, implying the pressure could provide selective modulation of band offset.

  3. Radio Frequency Compatibility Evaluation of S Band Navigation Signals for Future BeiDou.

    PubMed

    Sun, Yanbo; Xue, Rui; Zhao, Danfeng; Wang, Dun

    2017-05-05

    With L band frequency allocations for satellite navigation getting more crowded, S band (2483.5-2500 MHz) is already allocated for navigation services, where Globalstar broadcasts downlink communications to user terminals. The Indian Regional Navigation Satellite System (IRNSS) is transmitting navigation signals and Galileo exploits some potential signals in S band. Also, several candidate S band signals based on binary offset carrier (BOC), binary phase shift keying (BPSK), continuous phase modulation (CPM) and minimum shift keying-BOC (MSK-BOC) are suggested for BeiDou system (BDS). In quite narrow S band, mutual interference among these systems is inevitable, thus the compatibility issue is particularly significant for S band signal design. To explore desired S band signals for BDS, the paper firstly describes a comprehensive compatibility evaluation methods based on effective carrier-to-noise ratio degradation for acquisition and code tracking. Then a real simulation is established using space constellations, modulation schemes and received power. Finally, the worst mutual interference of BDS candidate signals with Galileo, IRNSS and Globalstar is calculated and compared. The results indicate that CPM signal is easier to allow peaceful coexistence of other systems with minimal mutual interference in S band compared to other BDS candidates.

  4. The Noisiness of Low-Frequency One-Third Octave Bands of Noise. M.S. Thesis - Southampton Univ.

    NASA Technical Reports Server (NTRS)

    Lawton, B. W.

    1975-01-01

    This study examined the relative noisiness of low frequency one-third octave bands of noise bounded by the bands centered at 25 Hz and 200 Hz, with intensities ranging from 50 db sound pressure level (SPL) to 95 db SPL. The thirty-two subjects used a method-of-adjustment technique, producing comparison-band intensities as noisy as standard bands centered at 100 Hz and 200 Hz with intensities of 60 db SPL and 72 db SPL. Four contours of equal noisiness were developed for one-third octave bands, extending down to 25 Hz and ranging in intensity from approximately 58 db SPL to 86 db SPL. These curves were compared with the contours of equal noisiness of Kryter and Pearsons. In the region of overlap (between 50 Hz and 200 Hz) the agreement was good.

  5. Design of an S band narrow-band bandpass BAW filter

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Zhao, Kun-li; Han, Chao

    2017-11-01

    An S band narrowband bandpass filter BAW with center frequency 2.460 GHz, bandwidth 41MHz, band insertion loss - 1.154 dB, the passband ripple 0.9 dB, the out of band rejection about -42.5dB@2.385 GHz; -45.5dB@2.506 GHz was designed for potential UAV measurement and control applications. According to the design specifications, the design is as follows: each FBAR's stack was designed in BAW filter by using Mason model. Each FBAR's shape was designed with the method of apodization electrode. The layout of BAW filter was designed. The acoustic-electromagnetic cosimulation model was built to validate the performance of the designed BAW filter. The presented design procedure is a common one, and there are two characteristics: 1) an A and EM co-simulation method is used for the final BAW filter performance validation in the design stage, thus ensures over-optimistic designs by the bare 1D Mason model are found and rejected in time; 2) An in-house developed auto-layout method is used to get compact BAW filter layout, which simplifies iterative error-and-try work here and output necessary in-plane geometry information to the A and EM cosimulation model.

  6. The ALMA Band 9 receiver. Design, construction, characterization, and first light

    NASA Astrophysics Data System (ADS)

    Baryshev, A. M.; Hesper, R.; Mena, F. P.; Klapwijk, T. M.; van Kempen, T. A.; Hogerheijde, M. R.; Jackson, B. D.; Adema, J.; Gerlofsma, G. J.; Bekema, M. E.; Barkhof, J.; de Haan-Stijkel, L. H. R.; van den Bemt, M.; Koops, A.; Keizer, K.; Pieters, C.; Koops van het Jagt, J.; Schaeffer, H. H. A.; Zijlstra, T.; Kroug, M.; Lodewijk, C. F. J.; Wielinga, K.; Boland, W.; de Graauw, M. W. M.; van Dishoeck, E. F.; Jager, H.; Wild, W.

    2015-05-01

    Aims: We describe the design, construction, and characterization of the Band 9 heterodyne receivers (600-720 GHz) for the Atacama Large Millimeter/submillimeter Array (ALMA). First-light Band 9 data, obtained during ALMA commissioning and science verification phases, are presented as well. Methods: The ALMA Band 9 receiver units (so-called "cartridges"), which are installed in the telescope's front end, have been designed to detect and down-convert two orthogonal linear polarization components of the light collected by the ALMA antennas. The light entering the front end is refocused with a compact arrangement of mirrors, which is fully contained within the cartridge. The arrangement contains a grid to separate the polarizations and two beam splitters to combine each resulting beam with a local oscillator signal. The combined beams are fed into independent double-sideband mixers, each with a corrugated feedhorn coupling the radiation by way of a waveguide with backshort cavity into an impedance-tuned superconductor-insulator-superconductor (SIS) junction that performs the heterodyne down-conversion. Finally, the generated intermediate frequency (IF) signals are amplified by cryogenic and room-temperature HEMT amplifiers and exported to the telescope's IF back end for further processing and, finally, correlation. Results: The receivers have been constructed and tested in the laboratory and they show an excellent performance, complying with ALMA requirements. Performance statistics on all 73 Band 9 receivers are reported. Importantly, two different tunnel-barrier technologies (necessitating different tuning circuits) for the SIS junctions have been used, namely conventional AlOx barriers and the more recent high-current-density AlN barriers. On-sky characterization and tests of the performance of the Band 9 cartridges are presented using commissioning data. Continuum and line images of the low-mass protobinary IRAS 16293-2422 are presented which were obtained as part

  7. 40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission.

    PubMed

    Kanno, Atsushi; Inagaki, Keizo; Morohashi, Isao; Sakamoto, Takahide; Kuri, Toshiaki; Hosako, Iwao; Kawanishi, Tetsuya; Yoshida, Yuki; Kitayama, Ken-ichi

    2011-12-12

    The generation of a 40-Gb/s 16-QAM radio-over-fiber (RoF) signal and its demodulation of the wireless signal transmitted over free space of 30 mm in W-band (75-110 GHz) is demonstrated. The 16-QAM signal is generated by a coherent polarization synthesis method using a dual-polarization QPSK modulator. A combination of the simple RoF generation and the versatile digital receiver technique is suitable for the proposed coherent optical/wireless seamless network. © 2011 Optical Society of America

  8. A low-power inverter-based CMOS level-crossing analog-to-digital converter for low-frequency biosignal sensing

    NASA Astrophysics Data System (ADS)

    Tanaka, Suiki; Niitsu, Kiichi; Nakazato, Kazuo

    2016-03-01

    Low-power analog-to-digital conversion is a key technique for power-limited biomedical applications such as power-limited continuous glucose monitoring. However, a conventional uniform-sampling analog-to-digital converter (ADC) is not suitable for nonuniform biosignals. A level-crossing ADC (LC-ADC) is a promising candidate for low-power biosignal processing because of its event-driven properties. The LC-ADC acquires data by level-crossing sampling. When an input signal crosses the threshold level, the LC-ADC samples the signal. The conventional LC-ADC employs a power-hungry comparator. In this paper, we present a low-power inverter-based LC-ADC. By adjusting the threshold level of the inverter, it can be used as a threshold-fixed window comparator. By using the inverter as an alternative to a comparator, power consumption can be markedly reduced. As a result, the total power consumption is successfully reduced by 90% of that of previous LC-ADC. The inverter-based LC-ADC was found to be very suitable for use in power-limited biomedical devices.

  9. Performance of high-temperature superconducting band-pass filters with high selectivity for base transceiver applications of digital cellular communication systems

    NASA Astrophysics Data System (ADS)

    Kwak, J. S.; Lee, J. H.; Kim, C. O.; Hong, J. P.; Han, S. K.; Char, K.

    2002-07-01

    Highly selective high-temperature superconducting band-pass filters based on spiral meander line structures have been developed for base transceiver station applications of digital cellular communication systems. The filter comprised 12-pole microstrip line resonators with a circuit size of 0.5 × 17 × 41 mm3. The filter was designed to have a bandwidth of 25 MHz at a centre frequency of 834 MHz. Particularly, the physical size of each resonator was chosen not only to reduce far-field radiation, but also to have reasonable tunability in the filter. Device characteristics exhibited a low insertion loss of 0.4 dB with a 0.2 dB ripple and a return loss better than 10 dB in the pass-band at 65 K. The out-of-band signals were attenuated better than 60 dB at about 3.5 MHz from the lower band edge, and 3.8 MHz from the higher band edge.

  10. Noise-Enhanced Measurement of Weak Doublet Spectra with a Fourier-Transform Spectrometer and a 1-Bit Analog-to-Digital Converter.

    PubMed

    Lim, M; Saloma, C

    2001-04-10

    We demonstrate an efficient noise dithering procedure for measuring the power spectrum of a weak spectral doublet with a Fourier-transform spectrometer in which the subthreshold interferogram is measured by a 1-bit analog-to-digital converter without oversampling. In the absence of noise, no information is obtained regarding the doublet spectrum because the modulation term s(x) of its interferogram is below the instrumental detection limit B, i.e., |s(x)| < B, for all path difference x values. Extensive numerical experiments are carried out concerning the recovery of the doublet power spectrum that is represented by s(x) = (s(0)/2)exp(-pi(2)x(2)/beta)[cos(2pif(1)x) + cos(2pif(2)x)], where s(0) is a constant, beta is the linewidth factor, and ?f? = (f(1) + f(2))/2. Different values of ?f?, s(0), and beta are considered to evaluate thoroughly the accuracy of the procedure to determine the unknown values of f(1) and f(2), the spectral linewidth, and the peak values of the spectral profiles. Our experiments show that, even for short observation times, the resonant frequencies of s(x) could be located with high accuracy over a wide range of ?f? and beta values. Signal-to-noise ratios as high as 50 are also gained for the recovered power spectra. The performance of the procedure is also analyzed with respect to another method that recovers the amplitude values of s(x) directly.

  11. Evaluation of usefulness of Skylab EREP S-190 and S-192 imagery in multistage forest surveys

    NASA Technical Reports Server (NTRS)

    Langley, P. G. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A unique digital timber volume estimation system with digital data for two ERTS-1 MSS bands was tested. The system was tested on a 64-square mile area in Northern California's Trinity Alps. The outcome of a systematic experiment in which possible combinations of the two bands (MSS 5 and 7) were tried, showed than an estimated gain in precision of 50% can be obtained in a multistage sampling design. Especially the difference between the two bands proved to be of major importance for the estimation of biomass in the form of timber volume. Identical tests as the one performed will be conducted with various S-192 bands when the digital data become available.

  12. Radio Frequency Compatibility Evaluation of S Band Navigation Signals for Future BeiDou

    PubMed Central

    Sun, Yanbo; Xue, Rui; Zhao, Danfeng; Wang, Dun

    2017-01-01

    With L band frequency allocations for satellite navigation getting more crowded, S band (2483.5–2500 MHz) is already allocated for navigation services, where Globalstar broadcasts downlink communications to user terminals. The Indian Regional Navigation Satellite System (IRNSS) is transmitting navigation signals and Galileo exploits some potential signals in S band. Also, several candidate S band signals based on binary offset carrier (BOC), binary phase shift keying (BPSK), continuous phase modulation (CPM) and minimum shift keying-BOC (MSK-BOC) are suggested for BeiDou system (BDS). In quite narrow S band, mutual interference among these systems is inevitable, thus the compatibility issue is particularly significant for S band signal design. To explore desired S band signals for BDS, the paper firstly describes a comprehensive compatibility evaluation methods based on effective carrier-to-noise ratio degradation for acquisition and code tracking. Then a real simulation is established using space constellations, modulation schemes and received power. Finally, the worst mutual interference of BDS candidate signals with Galileo, IRNSS and Globalstar is calculated and compared. The results indicate that CPM signal is easier to allow peaceful coexistence of other systems with minimal mutual interference in S band compared to other BDS candidates. PMID:28475142

  13. Serial-to-parallel color-TV converter

    NASA Technical Reports Server (NTRS)

    Doak, T. W.; Merwin, R. B.; Zuckswert, S. E.; Sepper, W.

    1976-01-01

    Solid analog-to-digital converter eliminates flicker and problems with time base stability and gain variation in sequential color TV cameras. Device includes 3-bit delta modulator; two-field memory; timing, switching, and sync network; and three 3-bit delta demodulators

  14. Band structure and orbital character of monolayer MoS2 with eleven-band tight-binding model

    NASA Astrophysics Data System (ADS)

    Shahriari, Majid; Ghalambor Dezfuli, Abdolmohammad; Sabaeian, Mohammad

    2018-02-01

    In this paper, based on a tight-binding (TB) model, first we present the calculations of eigenvalues as band structure and then present the eigenvectors as probability amplitude for finding electron in atomic orbitals for monolayer MoS2 in the first Brillouin zone. In these calculations we are considering hopping processes between the nearest-neighbor Mo-S, the next nearest-neighbor in-plan Mo-Mo, and the next nearest-neighbor in-plan and out-of-plan S-S atoms in a three-atom based unit cell of two-dimensional rhombic MoS2. The hopping integrals have been solved in terms of Slater-Koster and crystal field parameters. These parameters are calculated by comparing TB model with the density function theory (DFT) in the high-symmetry k-points (i.e. the K- and Γ-points). In our TB model all the 4d Mo orbitals and the 3p S orbitals are considered and detailed analysis of the orbital character of each energy level at the main high-symmetry points of the Brillouin zone is described. In comparison with DFT calculations, our results of TB model show a very good agreement for bands near the Fermi level. However for other bands which are far from the Fermi level, some discrepancies between our TB model and DFT calculations are observed. Upon the accuracy of Slater-Koster and crystal field parameters, on the contrary of DFT, our model provide enough accuracy to calculate all allowed transitions between energy bands that are very crucial for investigating the linear and nonlinear optical properties of monolayer MoS2.

  15. Inverted S-Shaped Compact Antenna for X-Band Applications

    PubMed Central

    Samsuzzaman, M.; Islam, M. T.

    2014-01-01

    A novel probe-fed compact inverted S-shaped multifrequency patch antenna is designed. By employing two rectangular slots that change the conventional rectangular patch into an inverted S-shaped patch, the antenna is able to operate in triple frequency in the X-band. The performance criteria of the proposed design have been experimentally verified by fabricating a printed prototype. The measured results show that the −10 dB impedance bandwidth of the proposed antenna at lower band is 5.02% (8.69–9.14 GHz), at middle band is 9.13% (10.47–11.48 GHz), and at upper band is 3.79% (11.53–11.98 GHz). Two elliptical slots are introduced in the ground plane to increase the peak gain. The antenna is excited by a simple probe feeding mechanism. The overall antenna dimension is  0.52λ × 0.60λ × 0.046λ at a lower resonance frequency of 9.08 GHz. The antenna configuration and parametric investigation are conducted with the help of the high frequency structural simulator, and a good agreement is achieved between the simulated and measured data. The stable gain, omnidirectional radiation pattern, and consistent radiation efficiency in the achieved operating band make the proposed antenna a suitable candidate for X-band applications. PMID:24895656

  16. Low-noise quantum frequency down-conversion of indistinguishable photons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kambs, Benjamin; Kettler, Jan; Bock, Matthias; Becker, Jonas; Arend, Carsten; Jetter, Michael; Michler, Peter; Becher, Christoph

    2016-04-01

    telecom regime as a result of the small conversion bandwidth and using a high-performance fiber-Bragg-grating solely left the detector dark counts as the only noise source in our setup. Therefore, we could achieve conversion efficiencies of more than 20 %. In order to test the indistinguishability, sequentially emitted photons were fed into a Mach-Zehnder interferometer and spatially as well as temporally overlapped at the output beam splitter. Cross-correlation measurements between both output-ports of the beam splitter exhibit two-photon interference contrasts of more than 40 % prior to and after the down-conversion step. Accordingly, we demonstrate that the process of quantum frequency conversion preserves photon indistinguishability and can be used to establish a versatile source of indistinguishable single photons at the telecom C-Band. Furthermore our scheme allows for converting photons in a wavelength band from 900 nm to 910 nm to the same telecom target wavelength. This enables us to test indistinguishability of frequency-converted photons, originally stemming from different sources with dinstinguishable wavelengths.

  17. Digital Self-Interference Cancellation for Asynchronous In-Band Full-Duplex Underwater Acoustic Communication.

    PubMed

    Qiao, Gang; Gan, Shuwei; Liu, Songzuo; Ma, Lu; Sun, Zongxin

    2018-05-24

    To improve the throughput of underwater acoustic (UWA) networking, the In-band full-duplex (IBFD) communication is one of the most vital pieces of research. The major drawback of IBFD-UWA communication is Self-Interference (SI). This paper presents a digital SI cancellation algorithm for asynchronous IBFD-UWA communication system. We focus on two issues: one is asynchronous communication dissimilar to IBFD radio communication, the other is nonlinear distortion caused by power amplifier (PA). First, we discuss asynchronous IBFD-UWA signal model with the nonlinear distortion of PA. Then, we design a scheme for asynchronous IBFD-UWA communication utilizing the non-overlapping region between SI and intended signal to estimate the nonlinear SI channel. To cancel the nonlinear distortion caused by PA, we propose an Over-Parameterization based Recursive Least Squares (RLS) algorithm (OPRLS) to estimate the nonlinear SI channel. Furthermore, we present the OPRLS with a sparse constraint to estimate the SI channel, which reduces the requirement of the length of the non-overlapping region. Finally, we verify our concept through simulation and the pool experiment. Results demonstrate that the proposed digital SI cancellation scheme can cancel SI efficiently.

  18. Thermal heat-balance mode flow-to-frequency converter

    NASA Astrophysics Data System (ADS)

    Pawlowski, Eligiusz

    2016-11-01

    This paper presents new type of thermal flow converter with the pulse frequency output. The integrating properties of the temperature sensor have been used, which allowed for realization of pulse frequency modulator with thermal feedback loop, stabilizing temperature of sensor placed in the flowing medium. The system assures balancing of heat amount supplied in impulses to the sensor and heat given up by the sensor in a continuous way to the flowing medium. Therefore the frequency of output impulses is proportional to the heat transfer coefficient from sensor to environment. According to the King's law, the frequency of those impulses is a function of medium flow velocity around the sensor. The special feature of presented solution is total integration of thermal sensor with the measurement signal conditioning system. Sensor and conditioning system are not the separate elements of the measurement circuit, but constitute a whole in form of thermal heat-balance mode flow-to-frequency converter. The advantage of such system is easiness of converting the frequency signal to the digital form, without using any additional analogue-to-digital converters. The frequency signal from the converter may be directly connected to the microprocessor input, which with use of standard built-in counters may convert the frequency into numerical value of high precision. Moreover, the frequency signal has higher resistance to interference than the voltage signal and may be transmitted to remote locations without the information loss.

  19. Modulators for the S-band test linac at DESY

    NASA Astrophysics Data System (ADS)

    Bieler, M.; Choroba, S.; Hameister, J.; Lewin, H.-Ch.

    1995-07-01

    The development of adequate modulators for high peak power klystrons is one of the focus points for linear collider R&D programs. For the DESY/THD S-band linear collider study 150 MW rf-pulse power at 50 Hz repetition rate and 3 μs pulse duration is required [1]. Two different modulator schemes are under investigation. One is the conventional line type pulser, using a pulse forming network and a step up transformer, the other one is a hard tube pulser, using a dc power source at the full klystron voltage and a switch tube. This paper is focused on the modulator development for the S-band Test Linac at DESY. After a short overview over the test linac and a brief description of the 150 MW S-band klystron the circuitry of the line type pulse (LTP) is given. A hard tube pulser (HTP), which switches the high voltage directly from a storage capacitor to the klystron, has been built up at DESY. Circuitry and the results of the commissioning of the switch tube are reported.

  20. Slant path L- and S-Band tree shadowing measurements

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1994-01-01

    This contribution presents selected results from simultaneous L- and S-Band slant-path fade measurements through a pecan, a cottonwood, and a pine tree employing a tower-mounted transmitter and dual-frequency receiver. A single, circularly-polarized antenna was used at each end of the link. The objective was to provide information for personal communications satellite design on the correlation of tree shadowing between frequencies near 1620 and 2500 MHz. Fades were measured along 10 m lateral distance with 5 cm spacing. Instantaneous fade differences between L- and S-Band exhibited normal distribution with means usually near 0 dB and standard deviations from 5.2 to 7.5 dB. The cottonwood tree was an exception, with 5.4 dB higher average fading at S- than at L-Band. The spatial autocorrelation reduced to near zero with lags of about 10 lambda. The fade slope in dB/MHz is normally distributed with zero mean and standard deviation increasing with fade level.

  1. Slant path L- and S-Band tree shadowing measurements

    NASA Astrophysics Data System (ADS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1994-08-01

    This contribution presents selected results from simultaneous L- and S-Band slant-path fade measurements through a pecan, a cottonwood, and a pine tree employing a tower-mounted transmitter and dual-frequency receiver. A single, circularly-polarized antenna was used at each end of the link. The objective was to provide information for personal communications satellite design on the correlation of tree shadowing between frequencies near 1620 and 2500 MHz. Fades were measured along 10 m lateral distance with 5 cm spacing. Instantaneous fade differences between L- and S-Band exhibited normal distribution with means usually near 0 dB and standard deviations from 5.2 to 7.5 dB. The cottonwood tree was an exception, with 5.4 dB higher average fading at S- than at L-Band. The spatial autocorrelation reduced to near zero with lags of about 10 lambda. The fade slope in dB/MHz is normally distributed with zero mean and standard deviation increasing with fade level.

  2. An Ultra-Low Power Charge Redistribution Successive Approximation Register A/D Converter for Biomedical Applications.

    PubMed

    Koppa, Santosh; Mohandesi, Manouchehr; John, Eugene

    2016-12-01

    Power consumption is one of the key design constraints in biomedical devices such as pacemakers that are powered by small non rechargeable batteries over their entire life time. In these systems, Analog to Digital Convertors (ADCs) are used as interface between analog world and digital domain and play a key role. In this paper we present the design of an 8-bit Charge Redistribution Successive Approximation Register (CR-SAR) analog to digital converter in standard TSMC 0.18μm CMOS technology for low power and low data rate devices such as pacemakers. The 8-bit optimized CR-SAR ADC achieves low power of less than 250nW with conversion rate of 1KB/s. This ADC achieves integral nonlinearity (INL) and differential nonlinearity (DNL) less than 0.22 least significant bit (LSB) and less than 0.04 LSB respectively as compared to the standard requirement for the INL and DNL errors to be less than 0.5 LSB. The designed ADC operates at 1V supply voltage converting input ranging from 0V to 250mV.

  3. Superconductor Digital-RF Receiver Systems

    NASA Astrophysics Data System (ADS)

    Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan

    Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.

  4. Solid state, S-band, power amplifier

    NASA Technical Reports Server (NTRS)

    Digrindakis, M.

    1973-01-01

    The final design and specifications for a solid state, S-band, power amplifier is reported. Modifications from a previously proposed design were incorporated to improve efficiency and meet input overdrive and noise floor requirements. Reports on the system design, driver amplifier, power amplifier, and voltage and current limiter are included along with a discussion of the testing program.

  5. Excitonic and band-band transitions of Cu2ZnSiS4 determined from reflectivity spectra

    NASA Astrophysics Data System (ADS)

    Guc, M.; Levcenko, S.; Dermenji, L.; Gurieva, G.; Schorr, S.; Syrbu, N. N.; Arushanov, E.

    2014-07-01

    Exciton spectra of Cu2ZnSiS4 single crystals are investigated by reflection spectroscopy at 10 and 300 K for light polarized perpendicular (E⊥c) and parallel (E∥c) to the optical axis. The parameters of the excitons and dielectric constant are determined. The free carriers effective masses have been estimated. The room temperature reflectivity spectra at photon energies higher than the fundamental band gap in the polarization Е⊥с and E∥с were measured and related to the electronic band structure of Cu2ZnSiS4.

  6. Systems and methods for self-synchronized digital sampling

    NASA Technical Reports Server (NTRS)

    Samson, Jr., John R. (Inventor)

    2008-01-01

    Systems and methods for self-synchronized data sampling are provided. In one embodiment, a system for capturing synchronous data samples is provided. The system includes an analog to digital converter adapted to capture signals from one or more sensors and convert the signals into a stream of digital data samples at a sampling frequency determined by a sampling control signal; and a synchronizer coupled to the analog to digital converter and adapted to receive a rotational frequency signal from a rotating machine, wherein the synchronizer is further adapted to generate the sampling control signal, and wherein the sampling control signal is based on the rotational frequency signal.

  7. The initial characterization of a revised 10-Gsps analog-to-digital converter board for radio telescopes

    NASA Astrophysics Data System (ADS)

    Jiango, Homin; Liuo, Howard; Guzzino, Kim

    2016-07-01

    In this study, the design of a 4 bit, 10-gigasamples-per-second analog-to-digital converter (ADC) printed circuit board assembly (PCBA) was revised, manufactured, and tested. It is used for digitizing radio telescopes. An Adsantec ANST7120-KMA flash ADC chip was used, as in the original design. Associated with the field-programmable gate array platform developed by the Collaboration for Astronomy Signal Processing and Electronics Research community, the developed PCBA provides data acquisition systems with a wider bandwidth and simplifies the intermediate frequency section. The current version of the PCBA exhibits an analog bandwidth of up to 10 GHz (3 dB loss), and the chip exhibits an analog bandwidth of up to 18 GHz. This facilitates second and third Nyquist sampling. The following worstcase performance parameters were obtained from the revised PCBA at over 5 GHz: spurious-free dynamic range of 12 dB, signal-to-noise and distortion ratio of 2 dB, and effective number of bits of 0.7. The design bugs in the ADC chip caused the poor performance. The vendor created a new batch run and confirmed that the ADC chips of the new batch will meet the specifications addressed in its data sheet.

  8. Compaction bands in shale revealed through digital volume correlation of time-resolved X-ray tomography scans

    NASA Astrophysics Data System (ADS)

    McBeck, J.; Kobchenko, M.; Hall, S.; Tudisco, E.; Cordonnier, B.; Renard, F.

    2017-12-01

    Previous studies have identified compaction bands primarily within sandstones, and in fewer instances, within other porous rocks and sediments. Using Digital Volume Correlation (DVC) of X-ray microtomography scans, we find evidence of localized zones of high axial contraction that form tabular structures sub-perpendicular to maximum compression, σ1, in Green River shale. To capture in situ strain localization throughout loading, two shale cores were deformed in the HADES triaxial deformation apparatus installed on the X-ray microtomography beamline ID19 at the European Synchrotron Radiation Facility. In these experiments, we increase σ1 in increments of two MPa, with constant confining pressure (20 MPa), until the sample fails in macroscopic shear. After each stress step, a 3D image of the sample inside the rig is acquired at a voxel resolution of 6.5 μm. The evolution of lower density regions within 3D reconstructions of linear attenuation coefficients reveal the development of fractures that fail with some opening. If a fracture produces negligible dilation, it may remain undetected in image segmentation of the reconstructions. We use the DVC software TomoWarp2 to identify undetected fractures and capture the 3D incremental displacement field between each successive pair of microtomography scans acquired in each experiment. The corresponding strain fields reveal localized bands of high axial contraction that host minimal shear strain, and thus match the kinematic definition of compaction bands. The bands develop sub-perpendicular to σ1 in the two samples in which pre-existing bedding laminations were oriented parallel and perpendicular to σ1. As the shales deform plastically toward macroscopic shear failure, the number of bands and axial contraction within the bands increase, while the spacing between the bands decreases. Compaction band development accelerates the rate of overall axial contraction, increasing the mean axial contraction throughout the sample

  9. Analysis, control and design of a non-inverting buck-boost converter: A bump-less two-level T-S fuzzy PI control.

    PubMed

    Almasi, Omid Naghash; Fereshtehpoor, Vahid; Khooban, Mohammad Hassan; Blaabjerg, Frede

    2017-03-01

    In this paper, a new modified fuzzy Two-Level Control Scheme (TLCS) is proposed to control a non-inverting buck-boost converter. Each level of fuzzy TLCS consists of a tuned fuzzy PI controller. In addition, a Takagi-Sugeno-Kang (TSK) fuzzy switch proposed to transfer the fuzzy PI controllers to each other in the control system. The major difficulty in designing fuzzy TLCS which degrades its performance is emerging unwanted drastic oscillations in the converter output voltage during replacing the controllers. Thereby, the fuzzy PI controllers in each level of TLCS structure are modified to eliminate these oscillations and improve the system performance. Some simulations and digital signal processor based experiments are conducted on a non-inverting buck-boost converter to support the effectiveness of the proposed TLCS in controlling the converter output voltage. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Non-synchronous control of self-oscillating resonant converters

    DOEpatents

    Glaser, John Stanley; Zane, Regan Andrew

    2002-01-01

    A self-oscillating switching power converter has a controllable reactance including an active device connected to a reactive element, wherein the effective reactance of the reactance and the active device is controlled such that the control waveform for the active device is binary digital and is not synchronized with the switching converter output frequency. The active device is turned completely on and off at a frequency that is substantially greater than the maximum frequency imposed on the output terminals of the active device. The effect is to vary the average resistance across the active device output terminals, and thus the effective output reactance, thereby providing converter output control, while maintaining the response speed of the converter.

  11. Development and Observation of the Phase Array Radar at X band

    NASA Astrophysics Data System (ADS)

    Ushio, T.; Shimamura, S.; Wu, T.; Kikuchi, H.; Yoshida, S.; Kawasaki, Z.; Mizutani, F.; Wada, M.; Satoh, S.; Iguchi, T.

    2013-12-01

    A new Phased Array Radar (PAR) system for thunderstorm observation has been developed by Toshiba Corporation and Osaka University under a grant of NICT, and installed in Osaka University, Japan last year. It is now well known that rapidly evolving severe weather phenomena (e.g., microbursts, severe thunderstorms, tornadoes) are a threat to our lives particularly in a densely populated area and is closely related to the production of lightning discharges. Over the past decade, mechanically rotating radar systems at the C-band or S-band have been proved to be effective for weather surveillance especially in a wide area more than 100 km in range. However, severe thunderstorm sometimes develops rapidly on the temporal and spatial scales comparable to the resolution limit (-10 min. and -500m) of typical S-band or C-band radar systems, and cannot be fully resolved with these radar systems. In order to understand the fundamental process and dynamics of such fast changing weather phenomena like lightning and tornado producing thunderstorm, volumetric observations with both high temporal and spatial resolution are required. The phased array radar system developed has the unique capability of scanning the whole sky with 100m and 10 to 30 second resolution up to 60 km. The system adopts the digital beam forming technique for elevation scanning and mechanically rotates the array antenna in azimuth direction within 10 to 30 seconds. The radar transmits a broad beam of several degrees with 24 antenna elements and receives the back scattered signal with 128 elements digitizing at each elements. Then by digitally forming the beam in the signal processor, the fast scanning is realized. After the installation of the PAR system in Osaka University, the initial observation campaign was conducted in Osaka urban area with Ku-band Broad Band Radar (BBR) network, C-band weather radar, and lightning location system. The initial comparison with C band radar system shows that the developed

  12. A digital-receiver for the MurchisonWidefield Array

    NASA Astrophysics Data System (ADS)

    Prabu, Thiagaraj; Srivani, K. S.; Roshi, D. Anish; Kamini, P. A.; Madhavi, S.; Emrich, David; Crosse, Brian; Williams, Andrew J.; Waterson, Mark; Deshpande, Avinash A.; Shankar, N. Udaya; Subrahmanyan, Ravi; Briggs, Frank H.; Goeke, Robert F.; Tingay, Steven J.; Johnston-Hollitt, Melanie; R, Gopalakrishna M.; Morgan, Edward H.; Pathikulangara, Joseph; Bunton, John D.; Hampson, Grant; Williams, Christopher; Ord, Stephen M.; Wayth, Randall B.; Kumar, Deepak; Morales, Miguel F.; deSouza, Ludi; Kratzenberg, Eric; Pallot, D.; McWhirter, Russell; Hazelton, Bryna J.; Arcus, Wayne; Barnes, David G.; Bernardi, Gianni; Booler, T.; Bowman, Judd D.; Cappallo, Roger J.; Corey, Brian E.; Greenhill, Lincoln J.; Herne, David; Hewitt, Jacqueline N.; Kaplan, David L.; Kasper, Justin C.; Kincaid, Barton B.; Koenig, Ronald; Lonsdale, Colin J.; Lynch, Mervyn J.; Mitchell, Daniel A.; Oberoi, Divya; Remillard, Ronald A.; Rogers, Alan E.; Salah, Joseph E.; Sault, Robert J.; Stevens, Jamie B.; Tremblay, S.; Webster, Rachel L.; Whitney, Alan R.; Wyithe, Stuart B.

    2015-03-01

    An FPGA-based digital-receiver has been developed for a low-frequency imaging radio interferometer, the Murchison Widefield Array (MWA). The MWA, located at the Murchison Radio-astronomy Observatory (MRO) in Western Australia, consists of 128 dual-polarized aperture-array elements (tiles) operating between 80 and 300 MHz, with a total processed bandwidth of 30.72 MHz for each polarization. Radio-frequency signals from the tiles are amplified and band limited using analog signal conditioning units; sampled and channelized by digital-receivers. The signals from eight tiles are processed by a single digital-receiver, thus requiring 16 digital-receivers for the MWA. The main function of the digital-receivers is to digitize the broad-band signals from each tile, channelize them to form the sky-band, and transport it through optical fibers to a centrally located correlator for further processing. The digital-receiver firmware also implements functions to measure the signal power, perform power equalization across the band, detect interference-like events, and invoke diagnostic modes. The digital-receiver is controlled by high-level programs running on a single-board-computer. This paper presents the digital-receiver design, implementation, current status, and plans for future enhancements.

  13. Band alignment at the CdS/FeS2 interface based on the first-principles calculation

    NASA Astrophysics Data System (ADS)

    Ichimura, Masaya; Kawai, Shoichi

    2015-03-01

    FeS2 is potentially well-suited for the absorber layer of a thin-film solar cell. Since it usually has p-type conductivity, a pn heterojunction cell can be fabricated by combining it with an n-type material. In this work, the band alignment in the heterostructure based on FeS2 is investigated on the basis of the first-principles calculation. CdS, the most popular buffer-layer material for thin-film solar cells, is selected as the partner in the heterostructure. The results indicate that there is a large conduction band offset (0.65 eV) at the interface, which will hinder the flow of photogenerated electrons from FeS2 to CdS. Thus an n-type material with the conduction band minimum positioned lower than that of CdS will be preferable as the partner in the heterostructure.

  14. Enhanced tunable narrow-band THz emission from laser-modulated electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, D.; Stupakov, G.; /SLAC

    2009-06-19

    We propose and analyze a scheme to generate enhanced narrow-band terahertz (THz) radiation through down-conversion of the frequency of optical lasers using laser-modulated electron beams. In the scheme the electron beam is first energy modulated by two lasers with wave numbers k{sub 1} and k2, respectively. After passing through a dispersion section, the energy modulation is converted to density modulation. Due to the nonlinear conversion process, the beam will have density modulation at wave number k = nk{sub 1} + mk{sub 2}, where n and m are positive or negative integers. By properly choosing the parameters for the lasers andmore » dispersion section, one can generate density modulation at THz frequency in the beam using optical lasers. This density-modulated beam can be used to generate powerful narrow-band THz radiation. Since the THz radiation is in tight synchronization with the lasers, it should provide a high temporal resolution for the optical-pump THz-probe experiments. The central frequency of the THz radiation can be easily tuned by varying the wavelength of the two lasers and the energy chirp of the electron beam. The proposed scheme is in principle able to generate intense narrow-band THz radiation covering the whole THz range and offers a promising way towards the tunable intense narrow-band THz sources.« less

  15. Development of a Comb Limiter Combiner with Sub band Known Interference Cancellation

    DTIC Science & Technology

    2017-10-17

    Juarez, Head 55190 Networks Division ACRONYMS ABSF absorptive bandstop filters ATP applied thin films BAW bulk acoustic waves BPF bandpass filter ...BSF bandstop filters CW continuous wave CWSP Commercial Wideband Satellite Program DAC digital to analog converter DAC digital to analog converter...8 3.2 FREQUENCY AGILE ABSORPTIVE NOTCH FILTERS ................................................. 9 3.3 INTEGRATION OF

  16. Apollo experience report: S-band system signal design and analysis

    NASA Technical Reports Server (NTRS)

    Rosenberg, H. R. (Editor)

    1972-01-01

    A description is given of the Apollo communications-system engineering-analysis effort that ensured the adequacy, performance, and interface compatibility of the unified S-band system elements for a successful lunar-landing mission. The evolution and conceptual design of the unified S-band system are briefly reviewed from a historical viewpoint. A comprehensive discussion of the unified S-band elements includes the salient design features of the system and serves as a basis for a better understanding of the design decisions and analyses. The significant design decisions concerning the Apollo communications-system signal design are discussed providing an insight into the role of systems analysis in arriving at the current configuration of the Apollo communications system. Analyses are presented concerning performance estimation (mathematical-model development through real-time mission support) and system deficiencies, modifications, and improvements.

  17. The Remote Maxwell Demon as Energy Down-Converter

    NASA Astrophysics Data System (ADS)

    Hossenfelder, S.

    2016-04-01

    It is demonstrated that Maxwell's demon can be used to allow a machine to extract energy from a heat bath by use of information that is processed by the demon at a remote location. The model proposed here effectively replaces transmission of energy by transmission of information. For that we use a feedback protocol that enables a net gain by stimulating emission in selected fluctuations around thermal equilibrium. We estimate the down conversion rate and the efficiency of energy extraction from the heat bath.

  18. Digital Audio Radio Broadcast Systems Laboratory Testing Nearly Complete

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Radio history continues to be made at the NASA Lewis Research Center with the completion of phase one of the digital audio radio (DAR) testing conducted by the Consumer Electronics Group of the Electronic Industries Association. This satellite, satellite/terrestrial, and terrestrial digital technology will open up new audio broadcasting opportunities both domestically and worldwide. It will significantly improve the current quality of amplitude-modulated/frequency-modulated (AM/FM) radio with a new digitally modulated radio signal and will introduce true compact-disc-quality (CD-quality) sound for the first time. Lewis is hosting the laboratory testing of seven proposed digital audio radio systems and modes. Two of the proposed systems operate in two modes each, making a total of nine systems being tested. The nine systems are divided into the following types of transmission: in-band on-channel (IBOC), in-band adjacent-channel (IBAC), and new bands. The laboratory testing was conducted by the Consumer Electronics Group of the Electronic Industries Association. Subjective assessments of the audio recordings for each of the nine systems was conducted by the Communications Research Center in Ottawa, Canada, under contract to the Electronic Industries Association. The Communications Research Center has the only CCIR-qualified (Consultative Committee for International Radio) audio testing facility in North America. The main goals of the U.S. testing process are to (1) provide technical data to the Federal Communication Commission (FCC) so that it can establish a standard for digital audio receivers and transmitters and (2) provide the receiver and transmitter industries with the proper standards upon which to build their equipment. In addition, the data will be forwarded to the International Telecommunications Union to help in the establishment of international standards for digital audio receivers and transmitters, thus allowing U.S. manufacturers to compete in the

  19. CPM Signals for Satellite Navigation in the S and C Bands.

    PubMed

    Xue, Rui; Sun, Yanbo; Zhao, Danfeng

    2015-06-05

    Frequency allocations in the L band suitable for global navigation satellite system (GNSS) services are getting crowded and system providers face an ever tougher job when they try to bring in new signals and services while maintaining radio frequency compatibility. With the successive opening of the S and C bands to GNSS service, the multi-band combined navigation is predicted to become a key technology for future high-precision positioning navigation systems, and a single modulation scheme satisfying the requirements in each band is a promising solution for reducing user terminal complexity. A universal modulation scheme based on the continuous phase modulation (CPM) family suitable for the above bands' demands is proposed. Moreover, this paper has put forward two specific CPM signals for the S and C bands, respectively. Then the proposed modulation schemes, together with existing candidates, are comprehensively evaluated. Simulation results show that the proposed CPM signals can not only satisfy the constraint condition of compatibility in different bands well and reduce user terminal complexity, but also provide superior performance in terms of tracking accuracy, multi-path mitigation and anti-jamming compared to other candidate modulation schemes.

  20. U.S. Forest Service's Power-IT-Down Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Case study describes the U.S. Forest Service's Power-IT-Down Program, which strongly encouraged employees to shut off their computers when leaving the office. The U.S. Forest Service first piloted the program on a voluntary basis in one region then implemented it across the agency's 43,000 computers as a joint effort by the Chief Information Office and Sustainable Operations department.

  1. Investigation of a metallic photonic crystal high power microwave mode converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong, E-mail: mr20001@sina.com; Qin, Fen; Xu, Sha

    2015-02-15

    It is demonstrated that an L band metallic photonic crystal TEM-TE{sub 11} mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawattmore » level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO) as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE{sub 11} mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.« less

  2. Advanced digital signal processing for short-haul and access network

    NASA Astrophysics Data System (ADS)

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2016-02-01

    Digital signal processing (DSP) has been proved to be a successful technology recently in high speed and high spectrum-efficiency optical short-haul and access network, which enables high performances based on digital equalizations and compensations. In this paper, we investigate advanced DSP at the transmitter and receiver side for signal pre-equalization and post-equalization in an optical access network. A novel DSP-based digital and optical pre-equalization scheme has been proposed for bandwidth-limited high speed short-distance communication system, which is based on the feedback of receiver-side adaptive equalizers, such as least-mean-squares (LMS) algorithm and constant or multi-modulus algorithms (CMA, MMA). Based on this scheme, we experimentally demonstrate 400GE on a single optical carrier based on the highest ETDM 120-GBaud PDM-PAM-4 signal, using one external modulator and coherent detection. A line rate of 480-Gb/s is achieved, which enables 20% forward-error correction (FEC) overhead to keep the 400-Gb/s net information rate. The performance after fiber transmission shows large margin for both short range and metro/regional networks. We also extend the advanced DSP for short haul optical access networks by using high order QAMs. We propose and demonstrate a high speed multi-band CAP-WDM-PON system on intensity modulation, direct detection and digital equalizations. A hybrid modified cascaded MMA post-equalization schemes are used to equalize the multi-band CAP-mQAM signals. Using this scheme, we successfully demonstrates 550Gb/s high capacity WDMPON system with 11 WDM channels, 55 sub-bands, and 10-Gb/s per user in the downstream over 40-km SMF.

  3. On Valence-Band Splitting in Layered MoS2.

    PubMed

    Zhang, Youwei; Li, Hui; Wang, Haomin; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2015-08-25

    As a representative two-dimensional semiconducting transition-metal dichalcogenide (TMD), the electronic structure in layered MoS2 is a collective result of quantum confinement, interlayer interaction, and crystal symmetry. A prominent energy splitting in the valence band gives rise to many intriguing electronic, optical, and magnetic phenomena. Despite numerous studies, an experimental determination of valence-band splitting in few-layer MoS2 is still lacking. Here, we show how the valence-band maximum (VBM) splits for one to five layers of MoS2. Interlayer coupling is found to contribute significantly to phonon energy but weakly to VBM splitting in bilayers, due to a small interlayer hopping energy for holes. Hence, spin-orbit coupling is still predominant in the splitting. A temperature-independent VBM splitting, known for single-layer MoS2, is, thus, observed for bilayers. However, a Bose-Einstein type of temperature dependence of VBM splitting prevails in three to five layers of MoS2. In such few-layer MoS2, interlayer coupling is enhanced with a reduced interlayer distance, but thermal expansion upon temperature increase tends to decouple adjacent layers and therefore decreases the splitting energy. Our findings that shed light on the distinctive behaviors about VBM splitting in layered MoS2 may apply to other hexagonal TMDs as well. They will also be helpful in extending our understanding of the TMD electronic structure for potential applications in electronics and optoelectronics.

  4. Worldwide survey of direct-to-listener digital audio delivery systems development since WARC-1992

    NASA Technical Reports Server (NTRS)

    Messer, Dion D.

    1993-01-01

    Each country was allocated frequency band(s) for direct-to-listener digital audio broadcasting at WARC-92. These allocations were near 1500, 2300, and 2600 MHz. In addition, some countries are encouraging the development of digital audio broadcasting services for terrestrial delivery only in the VHF bands (at frequencies from roughly 50 to 300 MHz) and in the medium-wave broadcasting band (AM band) (from roughly 0.5 to 1.7 MHz). The development activity increase was explosive. Current development, as of February 1993, as it is known to the author is summarized. The information given includes the following characteristics, as appropriate, for each planned system: coverage areas, audio quality, number of audio channels, delivery via satellite/terrestrial or both, carrier frequency bands, modulation methods, source coding, and channel coding. Most proponents claim that they will be operational in 3 or 4 years.

  5. U.S. Aeronautical L-Band Satellite Technology Test Program : Interim Tests Results

    DOT National Transportation Integrated Search

    1975-06-01

    The U.S. Aeronautical L-Band satellite test program was performed between September 1974 and April 1975 as part of an international ATS-6 L-Band satellite test program. The U.S. program consisted of both technology and ATC communications demonstratio...

  6. Parallax Player: a stereoscopic format converter

    NASA Astrophysics Data System (ADS)

    Feldman, Mark H.; Lipton, Lenny

    2003-05-01

    The Parallax Player is a software application that is, in essence, a stereoscopic format converter. Various formats may be inputted and outputted. In addition to being able to take any one of a wide variety of different formats and play them back on many different kinds of PCs and display screens. The Parallax Player has built into it the capability to produce ersatz stereo from a planar still or movie image. The player handles two basic forms of digital content - still images, and movies. It is assumed that all data is digital, either created by means of a photographic film process and later digitized, or directly captured or authored in a digital form. In its current implementation, running on a number of Windows Operating Systems, The Parallax Player reads in a broad selection of contemporary file formats.

  7. Thumbs down: a molecular-morphogenetic approach to avian digit homology.

    PubMed

    Capek, Daniel; Metscher, Brian D; Müller, Gerd B

    2014-01-01

    Avian forelimb digit homology remains one of the standard themes in comparative biology and EvoDevo research. In order to resolve the apparent contradictions between embryological and paleontological evidence a variety of hypotheses have been presented in recent years. The proposals range from excluding birds from the dinosaur clade, to assignments of homology by different criteria, or even assuming a hexadactyl tetrapod limb ground state. At present two approaches prevail: the frame shift hypothesis and the pyramid reduction hypothesis. While the former postulates a homeotic shift of digit identities, the latter argues for a gradual bilateral reduction of phalanges and digits. Here we present a new model that integrates elements from both hypotheses with the existing experimental and fossil evidence. We start from the main feature common to both earlier concepts, the initiating ontogenetic event: reduction and loss of the anterior-most digit. It is proposed that a concerted mechanism of molecular regulation and developmental mechanics is capable of shifting the boundaries of hoxD expression in embryonic forelimb buds as well as changing the digit phenotypes. Based on a distinction between positional (topological) and compositional (phenotypic) homology criteria, we argue that the identity of the avian digits is II, III, IV, despite a partially altered phenotype. Finally, we introduce an alternative digit reduction scheme that reconciles the current fossil evidence with the presented molecular-morphogenetic model. Our approach identifies specific experiments that allow to test whether gene expression can be shifted and digit phenotypes can be altered by induced digit loss or digit gain. © 2013 Wiley Periodicals, Inc.

  8. Digital rotation measurement unit

    DOEpatents

    Sanderson, S.N.

    1983-09-30

    A digital rotation indicator is disclosed for monitoring the position of a valve member having a movable actuator. The indicator utilizes mercury switches adapted to move in cooperation with the actuator. Each of the switches produces an output as it changes state when the actuator moves. A direction detection circuit is connected to the switches to produce a first digital signal indicative of the direction of rotation of the actuator. A count pulse generating circuit is also connected to the switches to produce a second digital pulse signal having count pulses corresponding to a change of state of any of the mercury switches. A reset pulse generating circuit is provided to generate a reset pulse each time a count pulse is generated. An up/down counter is connected to receive the first digital pulse signal and the second digital pulse signal and to count the pulses of the second digital pulse signal either up or down depending upon the instantaneous digital value of the first digital signal whereby a running count indicative of the movement of the actuator is maintained.

  9. High resolution distributed time-to-digital converter (TDC) in a White Rabbit network

    NASA Astrophysics Data System (ADS)

    Pan, Weibin; Gong, Guanghua; Du, Qiang; Li, Hongming; Li, Jianmin

    2014-02-01

    The Large High Altitude Air Shower Observatory (LHAASO) project consists of a complex detector array with over 6000 detector nodes spreading over 1.2 km2 areas. The arrival times of shower particles are captured by time-to-digital converters (TDCs) in the detectors' frontend electronics, the arrival direction of the high energy cosmic ray are then to be reconstructed from the space-time information of all detector nodes. To guarantee the angular resolution of 0.5°, a time synchronization of 500 ps (RMS) accuracy and 100 ps precision must be achieved among all TDC nodes. A technology enhancing Gigabit Ethernet, called the White Rabbit (WR), has shown the capability of delivering sub-nanosecond accuracy and picoseconds precision of synchronization over the standard data packet transfer. In this paper we demonstrate a distributed TDC prototype system combining the FPGA based TDC and the WR technology. With the time synchronization and data transfer services from a compact WR node, separate FPGA-TDC nodes can be combined to provide uniform time measurement information for correlated events. The design detail and test performance will be described in the paper.

  10. Performance interface document for the S-band diplexer for space users of NASA networks

    NASA Technical Reports Server (NTRS)

    Line, L. G.

    1985-01-01

    This report discusses the test results and interfacing information of the S-band diplexer development program supported by RTOP 310 funding. The program was implemented to reduce the S-band transponder noise figure by minimizing the receive channel insertion loss and to also provide Space Transportation System (STS) compatibility by providing 70-db rejection up to 16 GHz in the receive channel. This compatibility includes rejection of signals from the Shuttle S-band Data Link, the K-band Data Link, and the K-band Rendezvous Radar. The first of many projects to benefit from this accomplishment was the Earth Radiation Budget Satellite (ERBS).

  11. GPU Acceleration of DSP for Communication Receivers.

    PubMed

    Gunther, Jake; Gunther, Hyrum; Moon, Todd

    2017-09-01

    Graphics processing unit (GPU) implementations of signal processing algorithms can outperform CPU-based implementations. This paper describes the GPU implementation of several algorithms encountered in a wide range of high-data rate communication receivers including filters, multirate filters, numerically controlled oscillators, and multi-stage digital down converters. These structures are tested by processing the 20 MHz wide FM radio band (88-108 MHz). Two receiver structures are explored: a single channel receiver and a filter bank channelizer. Both run in real time on NVIDIA GeForce GTX 1080 graphics card.

  12. Radiation tolerant power converter controls

    NASA Astrophysics Data System (ADS)

    Todd, B.; Dinius, A.; King, Q.; Uznanski, S.

    2012-11-01

    The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is the world's most powerful particle collider. The LHC has several thousand magnets, both warm and super-conducting, which are supplied with current by power converters. Each converter is controlled by a purpose-built electronic module called a Function Generator Controller (FGC). The FGC allows remote control of the power converter and forms the central part of a closed-loop control system where the power converter voltage is set, based on the converter output current and magnet-circuit characteristics. Some power converters and FGCs are located in areas which are exposed to beam-induced radiation. There are numerous radiation induced effects, some of which lead to a loss of control of the power converter, having a direct impact upon the accelerator's availability. Following the first long shut down (LS1), the LHC will be able to run with higher intensity beams and higher beam energy. This is expected to lead to significantly increased radiation induced effects in materials close to the accelerator, including the FGC. Recent radiation tests indicate that the current FGC would not be sufficiently reliable. A so-called FGClite is being designed to work reliably in the radiation environment in the post-LS1 era. This paper outlines the concepts of power converter controls for machines such as the LHC, introduces the risks related to radiation and a radiation tolerant project flow. The FGClite is then described, with its key concepts and challenges: aiming for high reliability in a radiation field.

  13. A Time-Domain CMOS Oscillator-Based Thermostat with Digital Set-Point Programming

    PubMed Central

    Chen, Chun-Chi; Lin, Shih-Hao

    2013-01-01

    This paper presents a time-domain CMOS oscillator-based thermostat with digital set-point programming [without a digital-to-analog converter (DAC) or external resistor] to achieve on-chip thermal management of modern VLSI systems. A time-domain delay-line-based thermostat with multiplexers (MUXs) was used to substantially reduce the power consumption and chip size, and can benefit from the performance enhancement due to the scaling down of fabrication processes. For further cost reduction and accuracy enhancement, this paper proposes a thermostat using two oscillators that are suitable for time-domain curvature compensation instead of longer linear delay lines. The final time comparison was achieved using a time comparator with a built-in custom hysteresis to generate the corresponding temperature alarm and control. The chip size of the circuit was reduced to 0.12 mm2 in a 0.35-μm TSMC CMOS process. The thermostat operates from 0 to 90 °C, and achieved a fine resolution better than 0.05 °C and an improved inaccuracy of ± 0.6 °C after two-point calibration for eight packaged chips. The power consumption was 30 μW at a sample rate of 10 samples/s. PMID:23385403

  14. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a digital...

  15. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a digital...

  16. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a digital...

  17. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a digital...

  18. 47 CFR 15.713 - TV bands database.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... authorized services operating in the TV bands. In addition, a TV bands database must also verify that the FCC identifier (FCC ID) of a device seeking access to its services is valid; under this requirement the TV bands... information will come from the official Commission database. These services include: (i) Digital television...

  19. Local digital control of power electronic converters in a dc microgrid based on a-priori derivation of switching surfaces

    NASA Astrophysics Data System (ADS)

    Banerjee, Bibaswan

    In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes

  20. Broad-Bandwidth FPGA-Based Digital Polyphase Spectrometer

    NASA Technical Reports Server (NTRS)

    Jamot, Robert F.; Monroe, Ryan M.

    2012-01-01

    With present concern for ecological sustainability ever increasing, it is desirable to model the composition of Earth s upper atmosphere accurately with regards to certain helpful and harmful chemicals, such as greenhouse gases and ozone. The microwave limb sounder (MLS) is an instrument designed to map the global day-to-day concentrations of key atmospheric constituents continuously. One important component in MLS is the spectrometer, which processes the raw data provided by the receivers into frequency-domain information that cannot only be transmitted more efficiently, but also processed directly once received. The present-generation spectrometer is fully analog. The goal is to include a fully digital spectrometer in the next-generation sensor. In a digital spectrometer, incoming analog data must be converted into a digital format, processed through a Fourier transform, and finally accumulated to reduce the impact of input noise. While the final design will be placed on an application specific integrated circuit (ASIC), the building of these chips is prohibitively expensive. To that end, this design was constructed on a field-programmable gate array (FPGA). A family of state-of-the-art digital Fourier transform spectrometers has been developed, with a combination of high bandwidth and fine resolution. Analog signals consisting of radiation emitted by constituents in planetary atmospheres or galactic sources are downconverted and subsequently digitized by a pair of interleaved analog-to-digital converters (ADCs). This 6-Gsps (gigasample per second) digital representation of the analog signal is then processed through an FPGA-based streaming fast Fourier transform (FFT). Digital spectrometers have many advantages over previously used analog spectrometers, especially in terms of accuracy and resolution, both of which are particularly important for the type of scientific questions to be addressed with next-generation radiometers.

  1. Simulation of continuously logical base cells (CL BC) with advanced functions for analog-to-digital converters and image processors

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.

    2017-10-01

    The paper considers results of design and modeling of continuously logical base cells (CL BC) based on current mirrors (CM) with functions of preliminary analogue and subsequent analogue-digital processing for creating sensor multichannel analog-to-digital converters (SMC ADCs) and image processors (IP). For such with vector or matrix parallel inputs-outputs IP and SMC ADCs it is needed active basic photosensitive cells with an extended electronic circuit, which are considered in paper. Such basic cells and ADCs based on them have a number of advantages: high speed and reliability, simplicity, small power consumption, high integration level for linear and matrix structures. We show design of the CL BC and ADC of photocurrents and their various possible implementations and its simulations. We consider CL BC for methods of selection and rank preprocessing and linear array of ADCs with conversion to binary codes and Gray codes. In contrast to our previous works here we will dwell more on analogue preprocessing schemes for signals of neighboring cells. Let us show how the introduction of simple nodes based on current mirrors extends the range of functions performed by the image processor. Each channel of the structure consists of several digital-analog cells (DC) on 15-35 CMOS. The amount of DC does not exceed the number of digits of the formed code, and for an iteration type, only one cell of DC, complemented by the device of selection and holding (SHD), is required. One channel of ADC with iteration is based on one DC-(G) and SHD, and it has only 35 CMOS transistors. In such ADCs easily parallel code can be realized and also serial-parallel output code. The circuits and simulation results of their design with OrCAD are shown. The supply voltage of the DC is 1.8÷3.3V, the range of an input photocurrent is 0.1÷24μA, the transformation time is 20÷30nS at 6-8 bit binary or Gray codes. The general power consumption of the ADC with iteration is only 50÷100μW, if the

  2. Digital geologic map of the Spokane 1:100,000 quadrangle, Washington and Idaho: a digital database for the 1990 N.L. Joseph map

    USGS Publications Warehouse

    Johnson, Bruce R.; Derkey, Pamela D.

    1998-01-01

    Geologic data from the geologic map of the Spokane 1:100,000-scale quadrangle compiled by Joseph (1990) were entered into a geographic information system (GIS) as part of a larger effort to create regional digital geology for the Pacific Northwest. The map area is located in eastern Washington and extends across the state border into western Idaho (Fig. 1). This open-file report describes the methods used to convert the geologic map data into a digital format, documents the file structures, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet.

  3. Digital test signal generation: An accurate SNR calibration approach for the DSN

    NASA Technical Reports Server (NTRS)

    Gutierrez-Luaces, Benito O.

    1993-01-01

    In support of the on-going automation of the Deep Space Network (DSN) a new method of generating analog test signals with accurate signal-to-noise ratio (SNR) is described. High accuracy is obtained by simultaneous generation of digital noise and signal spectra at the desired bandwidth (base-band or bandpass). The digital synthesis provides a test signal embedded in noise with the statistical properties of a stationary random process. Accuracy is dependent on test integration time and limited only by the system quantization noise (0.02 dB). The monitor and control as well as signal-processing programs reside in a personal computer (PC). Commands are transmitted to properly configure the specially designed high-speed digital hardware. The prototype can generate either two data channels modulated or not on a subcarrier, or one QPSK channel, or a residual carrier with one biphase data channel. The analog spectrum generated is on the DC to 10 MHz frequency range. These spectra may be up-converted to any desired frequency without loss on the characteristics of the SNR provided. Test results are presented.

  4. Fully Polarimetric Passive W-band Millimeter Wave Imager for Wide Area Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedeschi, Jonathan R.; Bernacki, Bruce E.; Sheen, David M.

    2013-09-27

    We describe the design and phenomenology imaging results of a fully polarimetric W-band millimeter wave (MMW) radiometer developed by Pacific Northwest National Laboratory for wide-area search. Operating from 92 - 94 GHz, the W-band radiometer employs a Dicke switching heterodyne design isolating the horizontal and vertical mm-wave components with 40 dB of polarization isolation. Design results are presented for both infinite conjugate off-axis parabolic and finite conjugate off-axis elliptical fore-optics using optical ray tracing and diffraction calculations. The received linear polarizations are down-converted to a microwave frequency band and recombined in a phase-shifting network to produce all six orthogonal polarizationmore » states of light simultaneously, which are used to calculate the Stokes parameters for display and analysis. The resulting system performance produces a heterodyne receiver noise equivalent delta temperature (NEDT) of less than 150m Kelvin. The radiometer provides novel imaging capability by producing all four of the Stokes parameters of light, which are used to create imagery based on the polarization states associated with unique scattering geometries and their interaction with the down welling MMW energy. The polarization states can be exploited in such a way that man-made objects can be located and highlighted in a cluttered scene using methods such as image comparison, color encoding of Stokes parameters, multivariate image analysis, and image fusion with visible and infrared imagery. We also present initial results using a differential imaging approach used to highlight polarization features and reduce common-mode noise. Persistent monitoring of a scene using the polarimetric passive mm-wave technique shows great promise for anomaly detection caused by human activity.« less

  5. Support for an hypothesis linking Alzheimer`s disease and Down syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, L.N.; Benjamin, M.B.; Dressler, D.

    1994-09-01

    A connection between Alzheimer`s disease (AD) and Down syndrome (trisomy 21) is indicated by the fact that Down syndrome individuals develop AD neuropathology by the third or fourth decade of life. One explanation for the connection between AD and Down syndrome would be that the overexpression of a gene or genes on chromosome 21 results in Alzheimer`s disease, the most likely candidate being the amyloid precursor protein (APP) gene. However, mutations in the APP gene have been found to be associated with only a very small percentage of familial AD cases. An alternative cause of some Alzheimer`s disease cases maymore » be sporadic trisomy of chromosome 21, resulting from mutations or toxins that cause chromosome nondisjunction. Several predictions can be made based on this hypothesis. One prediction is that there should be more trisomy 21 in cells from AD individuals than from unaffected controls. Using quantitative fluorescence in situ hybridization to compare the number of trisomy chromosome 21 cells in cultured fibroblasts from AD and unaffected individuals, we have shown that there are a significantly larger number of trisomy 21 cells from AD individuals. Another prediction is that a defect in the mitotic spindle apparatus could be the underlying cause of the aneuploidy. Cultured lymphoblasts from AD and unaffected individuals were briefly exposed to the microtubule-disrupting agent colchicine. As assayed by the subsequent appearance of metaphase chromosomes showing centromere separation, cells from AD patients were significantly more sensitive to colchicine treatment compared to cells from unaffected individuals, supporting the prediction of an altered spindle apparatus. Finally, we would predict that both types of patients should share some physical symptoms. We have also found that AD, like Down`s patients, are hypersensitive to the effect of the cholinergic antagonist, tropicamide, on pupil dilation, which may serve as a diagnostic test for Alzheimer`s

  6. An Optimal Current Observer for Predictive Current Controlled Buck DC-DC Converters

    PubMed Central

    Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao

    2014-01-01

    In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally. PMID:24854061

  7. Solar energy converter using surface plasma waves

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  8. Summary and Analysis of the U.S. Government Bat Banding Program

    USGS Publications Warehouse

    Ellison, Laura E.

    2008-01-01

    This report summarizes the U.S. Government Bat Banding Program (BBP) from 1932 to 1972. More than 2 million bands were issued during the program, of which approximately 1.5 million bands were applied to 36 bat species by scientists in many locations in North America including the U.S., Canada, Mexico, and Central America. Throughout the BBP, banders noticed numerous and deleterious effects on bats, leading to a moratorium on bat banding by the U.S. Fish and Wildlife Service, and a resolution to cease banding by the American Society of Mammalogists in 1973. One of the main points of the memorandum written to justify the moratorium was to conduct a 'detailed evaluation of the files of the bat-banding program.' However, a critical and detailed evaluation of the BBP was never completed. In an effort to satisfy this need, I compiled a detailed history of the BBP by examining the files and conducting a literature review on bat banding activities during the program. I also provided a case study in managing data and applying current mark-recapture theory to estimate survival using the information from a series of bat bands issued to Clyde M. Senger during the BBP. The majority of bands applied by Senger were to Townsend's big-eared bat (Corynorhinus townsendii), a species of special concern for many states within its geographic range. I developed a database management system for the bat banding records and then analyzed and modeled survival of hibernating Townsend's big-eared bats at three main locations in Washington State using Cormack-Jolly-Seber (CJS) open models and the modeling capabilities of Program MARK. This analysis of a select dataset in the BBP files provided relatively precise estimates of survival for wintering Townsend's big-eared bats. However, this dataset is unique due to its well-maintained and complete state and because there were high recapture rates over the course of banding; it is doubtful that other unpublished datasets of the same quality exist

  9. Full Waveform Modelling for Subsurface Characterization with Converted-Wave Seismic Reflection

    NASA Astrophysics Data System (ADS)

    Triyoso, Wahyu; Oktariena, Madaniya; Sinaga, Edycakra; Syaifuddin, Firman

    2017-04-01

    While a large number of reservoirs have been explored using P-waves seismic data, P-wave seismic survey ceases to provide adequate result in seismically and geologically challenging areas, like gas cloud, shallow drilling hazards, strong multiples, highly fractured, anisotropy. Most of these reservoir problems can be addressed using P and PS seismic data combination. Multicomponent seismic survey records both P-wave and S-wave unlike conventional survey that only records compressional P-wave. Under certain conditions, conventional energy source can be used to record P and PS data using the fact that compressional wave energy partly converts into shear waves at the reflector. Shear component can be recorded using down going P-wave and upcoming S-wave by placing a horizontal component geophone on the ocean floor. A synthetic model is created based on real data to analyze the effect of gas cloud existence to PP and PS wave reflections which has a similar characteristic to Sub-Volcanic imaging. The challenge within the multicomponent seismic is the different travel time between P-wave and S-wave, therefore the converted-wave seismic data should be processed with different approach. This research will provide a method to determine an optimum converted point known as Common Conversion Point (CCP) that can solve the Asymmetrical Conversion Point of PS data. The value of γ (Vp/Vs) is essential to estimate the right CCP that will be used in converted-wave seismic processing. This research will also continue to the advanced processing method of converted-wave seismic by applying Joint Inversion to PP&PS seismic. Joint Inversion is a simultaneous model-based inversion that estimates the P&S-wave impedance which are consistent with the PP&PS amplitude data. The result reveals a more complex structure mirrored in PS data below the gas cloud area. Through estimated γ section resulted from Joint Inversion, we receive a better imaging improvement below gas cloud area tribute to

  10. A 12b 200kS/s 0.52mA 0.47mm2 Algorithmic A/D Converter for MEMS Applications

    NASA Astrophysics Data System (ADS)

    Kim, Young-Ju; Choi, Hee-Cheol; Lee, Seung-Hoon; Cho, Dongil “Dan”

    This work describes a 12b 200kS/s 0.52mA 0.47mm2 ADC for sensor applications such as motor control, 3-phase power control, and CMOS image sensors simultaneously requiring ultra-low power and small size. The proposed ADC is based on the conventional algorithmic architecture with a recycling signal path to optimize sampling rate, resolution, chip area, and power consumption. The input SHA with eight input channels employs a folded-cascode amplifier to achieve a required DC gain and a high phase margin. A 3-D fully symmetric layout with critical signal lines shielded reduces the capacitor and device mismatch of the multiplying D/A converter while switched-bias power-reduction circuits minimize the power consumption of analog amplifiers. Current and voltage references are integrated on chip with optional off-chip voltage references for low glitch noise. The down-sampling clock signal selects the sampling rate of 200kS/s and 10kS/s with a further reduced power depending on applications. The prototype ADC in a 0.18μm n-well 1P6M CMOS process demonstrates a maximum measured DNL and INL within 0.40 LSB and 1.97 LSB and shows a maximum SNDR and SFDR of 55dB and 70dB at all sampling frequencies up to 200kS/s, respectively. The ADC occupies an active die area of 0.47mm2 and consumes 0.94mW at 200kS/s and 0.63mW at 10kS/s with a 1.8V supply.

  11. Design and Testing of an Active Heat Rejection Radiator with Digital Turn-Down Capability

    NASA Technical Reports Server (NTRS)

    Sunada, Eric; Birur, Gajanana C.; Ganapathi, Gani B.; Miller, Jennifer; Berisford, Daniel; Stephan, Ryan

    2010-01-01

    NASA's proposed lunar lander, Altair, will be exposed to vastly different external environment temperatures. The challenges to the active thermal control system (ATCS) are compounded by unfavorable transients in the internal waste heat dissipation profile: the lowest heat load occurs in the coldest environment while peak loads coincide with the warmest environment. The current baseline for this fluid is a 50/50 inhibited propylene glycol/water mixture with a freeze temperature around -35 C. While the overall size of the radiator's heat rejection area is dictated by the worst case hot scenario, a turn-down feature is necessary to tolerate the worst case cold scenario. A radiator with digital turn-down capability is being designed as a robust means to maintain cabin environment and equipment temperatures while minimizing mass and power consumption. It utilizes active valving to isolate and render ineffective any number of parallel flow tubes which span across the ATCS radiator. Several options were assessed in a trade-study to accommodate flow tube isolation and how to deal with the stagnant fluid that would otherwise remain in the tube. Bread-board environmental tests were conducted for options to drain the fluid from a turned-down leg as well an option to allow a leg to freeze/thaw. Each drain option involved a positive displacement gear pump with different methods of providing a pressure head to feed it. Test results showed that a start-up heater used to generate vapor at the tube inlet held the most promise for tube evacuation. Based on these test results and conclusions drawn from the trade-study, a full-scale radiator design is being worked for the Altair mission profile.

  12. The effects of an ion-thruster exhaust plume on S-band carrier transmission

    NASA Technical Reports Server (NTRS)

    Ackerknecht, W. E.; Stanton, P. H.

    1976-01-01

    The study reported here was undertaken (1) to develop models of the effects of an ion-thruster exhaust plume on S-band signals, and (2) to measure the effects. The results show that an S-band signal passing through an ion-thruster plume is reduced in amplitude and advanced in phase. The mathematical models gave reasonable estimates of the average signal attenuation and phase shift. Negligible fluctuations in the signal amplitude and phase were measured during steady-state thruster operation. However, large jumps in phase occurred when changes were made in the thruster operating state. This study confirms that the thruster plume can have a significant effect on S-band communication link performance; hence the plume effects must be considered in S-band link calculations when electric thrusters are used for spacecraft propulsion.

  13. DAC-board based X-band EPR spectrometer with arbitrary waveform control

    NASA Astrophysics Data System (ADS)

    Kaufmann, Thomas; Keller, Timothy J.; Franck, John M.; Barnes, Ryan P.; Glaser, Steffen J.; Martinis, John M.; Han, Songi

    2013-10-01

    We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ⩽250 ps resolution. The implications and potential applications of these capabilities will be discussed.

  14. Line intensities of the 30011e - 00001e band of 12C16O2by laser-locked cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Kang, P.; Wang, J.; Liu, G.-L.; Sun, Y. R.; Zhou, Z.-Y.; Liu, A.-W.; Hu, S.-M.

    2018-03-01

    Thirty well isolated ro-vibrational transitions of the 30011e - 00001e band of 12C16O2 at 1.54 μm have been recorded with a laser-locked cavity ring-down spectrometer. The line intensities were obtained with accuracies better than 0.85%. Comparisons of the line intensities determined in this work with literature experimental values and those from HITRAN2016, AMES, UCL-IAO and CDSD-296 line lists are given.

  15. Test strategies for industrial testers for converter controls equipment

    NASA Astrophysics Data System (ADS)

    Oleniuk, P.; Di Cosmo, M.; Kasampalis, V.; Nisbet, D.; Todd, B.; Uznański, S.

    2017-04-01

    Power converters and their controls electronics are key elements for the operation of the CERN accelerator complex, having a direct impact on its availability. To prevent early-life failures and provide means to verify electronics, a set of industrial testers is used throughout the converters controls electronics' life cycle. The roles of the testers are to validate mass production during the manufacturing phase and to provide means to diagnose and repair failed modules that are brought back from operation. In the converter controls electronics section of the power converters group in the technology department of CERN (TE/EPC/CCE), two main test platforms have been adopted: a PXI platform for mixed analogue-digital functional tests and a JTAG Boundary-Scan platform for digital interconnection and functional tests. Depending on the functionality of the device under test, the appropriate test platforms are chosen. This paper is a follow-up to results presented at the TWEPP 2015 conference, adding the boundary scan test platform and the first results from exploitation of the test system. This paper reports on the test software, hardware design and test strategy applied for a number of devices that has resulted in maximizing test coverage and minimizing test design effort.

  16. Band-filling of solution-synthesized CdS nanowires.

    PubMed

    Puthussery, James; Lan, Aidong; Kosel, Thomas H; Kuno, Masaru

    2008-02-01

    The band edge optical characterization of solution-synthesized CdS nanowires (NWs) is described. Investigated wires are made through a solution-liquid-solid approach that entails the use of low-melting bimetallic catalyst particles to seed NW growth. Resulting diameters are approximately 14 nm, and lengths exceed 1 microm. Ensemble diameter distributions are approximately 13%, with corresponding intrawire diameter variations of approximately 5%. High-resolution transmission electron micrographs show that the wires are highly crystalline and have the wurtzite structure with growth along at least two directions: [0001] and [1010]. Band edge emission is observed with estimated quantum yields between approximately 0.05% and 1%. Complementary photoluminescence excitation spectra show structure consistent with the linear absorption. Carrier cooling dynamics are subsequently examined through ensemble lifetime and transient differential absorption measurements. The former reveals unexpectedly long band edge decays that extend beyond tens of nanoseconds. The latter indicates rapid intraband carrier cooling on time scales of 300-400 fs. Subsequent recovery at the band edge contains significant Auger contributions at high intensities which are usurped by other, possibly surface-related, carrier relaxation pathways at lower intensities. Furthermore, an unusual intensity-dependent transient broadening is seen, connected with these long decays. The effect likely stems from band-filling on the basis of an analysis of observed spectral shifts and line widths.

  17. Comparison of MPEG-1 digital videotape with digitized sVHS videotape for quantitative echocardiographic measurements

    NASA Technical Reports Server (NTRS)

    Garcia, M. J.; Thomas, J. D.; Greenberg, N.; Sandelski, J.; Herrera, C.; Mudd, C.; Wicks, J.; Spencer, K.; Neumann, A.; Sankpal, B.; hide

    2001-01-01

    Digital format is rapidly emerging as a preferred method for displaying and retrieving echocardiographic studies. The qualitative diagnostic accuracy of Moving Pictures Experts Group (MPEG-1) compressed digital echocardiographic studies has been previously reported. The goals of the present study were to compare quantitative measurements derived from MPEG-1 recordings with the super-VHS (sVHS) videotape clinical standard. Six reviewers performed blinded measurements from still-frame images selected from 20 echocardiographic studies that were simultaneously acquired in sVHS and MPEG-1 formats. Measurements were obtainable in 1401 (95%) of 1486 MPEG-1 variables compared with 1356 (91%) of 1486 sVHS variables (P <.001). Excellent agreement existed between MPEG-1 and sVHS 2-dimensional linear measurements (r = 0.97; MPEG-1 = 0.95[sVHS] + 1.1 mm; P <.001; Delta = 9% +/- 10%), 2-dimensional area measurements (r = 0.89), color jet areas (r = 0.87, p <.001), and Doppler velocities (r = 0.92, p <.001). Interobserver variability was similar for both sVHS and MPEG-1 readings. Our results indicate that quantitative off-line measurements from MPEG-1 digitized echocardiographic studies are feasible and comparable to those obtained from sVHS.

  18. Frequently Asked Questions about Digital Mammography

    MedlinePlus

    ... in digital cameras, which convert x-rays into electrical signals. The electrical signals are used to produce images of the ... DBT? Digital breast tomosynthesis is a relatively new technology. In DBT, the X-ray tube moves in ...

  19. Calculation reduction method for color digital holography and computer-generated hologram using color space conversion

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Nagahama, Yuki; Kakue, Takashi; Takada, Naoki; Okada, Naohisa; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Ito, Tomoyoshi

    2014-02-01

    A calculation reduction method for color digital holography (DH) and computer-generated holograms (CGHs) using color space conversion is reported. Color DH and color CGHs are generally calculated on RGB space. We calculate color DH and CGHs in other color spaces for accelerating the calculation (e.g., YCbCr color space). In YCbCr color space, a RGB image or RGB hologram is converted to the luminance component (Y), blue-difference chroma (Cb), and red-difference chroma (Cr) components. In terms of the human eye, although the negligible difference of the luminance component is well recognized, the difference of the other components is not. In this method, the luminance component is normal sampled and the chroma components are down-sampled. The down-sampling allows us to accelerate the calculation of the color DH and CGHs. We compute diffraction calculations from the components, and then we convert the diffracted results in YCbCr color space to RGB color space. The proposed method, which is possible to accelerate the calculations up to a factor of 3 in theory, accelerates the calculation over two times faster than the ones in RGB color space.

  20. SIG Galileo final converter technical summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinderman, J.D.

    1979-05-01

    The report is primarily concerned with the work performed for DOE on converter development and fabrication for the NASA Galileo Jupiter mission as a DOE prime contractor with interface primarily with Teledyne Energy Systems. The activities reported on were directed toward design, analysis and testing of modules and converters SN-1 thru SN-7 and attendant Quality Control and Reliability effort. Although assembly and testing of SN-1 was not accomplished due to the stop work order, the design was virtually completed and a significant amount of subcontracting and manufacturing of both module and converter components was underway. These subcontracting and manufacturing activitiesmore » were selectively closed down depending upon degree of completion and material or hardware potential usage in the Technology Program.« less

  1. Photonic harmonic up-converter based on a self-oscillating optical frequency comb using a DP-DPMZM

    NASA Astrophysics Data System (ADS)

    Xiao, Xuedi; Li, Shangyuan; Xie, Zhengyang; Peng, Shaowen; Wu, Dexin; Xue, Xiaoxiao; Zheng, Xiaoping; Zhou, Bingkun

    2018-04-01

    A photonic harmonic up-converter based on a self-oscillating optical frequency comb (OFC) utilizing an integrated dual-polarization dual-parallel Mach-Zehnder Modulator (DP-DPMZM) is proposed and experimentally demonstrated. One DPMZM is used to generate the optoelectronic oscillator (OEO)-based OFC, and the rest one is used to generate the optical-modulated intermediate frequency (IF) signal. Beating these two signals, the up-converted signals at different bands would be obtained. As the OFC is generated based on the OEO loop, phase noise can be very low, ensuring good phase noise properties of the up-converted signals. Moreover, frequency spacing between the combs is dependent on oscillating frequency of the OEO, which can be as large as tens of gigahertz. Thus IF signals with large bandwidth can be up-converted to RF bands without aliasing. Experimentally, the 2.5 GHz IF signal is simultaneously up-converted to 13.3, 24.1, and 34.9 GHz by a self-oscillating 7-line OFC spacing at 10.8 GHz. Owing to good phase noise property of the OEO, the up-converted signals at 13.3 and 24.1 GHz maintain the phase noise of the IF signal from 1 KHz to 100 KHz offset. The results show that the converter is promising for multi-band radar and satellite navigation applications.

  2. Simultaneous S- and X-band uplink-downlink performance at DSS 13

    NASA Technical Reports Server (NTRS)

    Freiley, A. J.

    1988-01-01

    The Deep Space Station 13 26-meter antenna with the second generation S/X feedcone was tested to determine the dual S- and X-band (2.1 to 2.3 GHz and 7.1 to 8.5 GHz) transmit and receive performance. Measurements were conducted using the 20 kW transmitters at S- and X-band while simultaneously receiving S- and X-band. This system proved to be very quiet compared with the other DSN antennas. Under normal tracking configurations, no noise burst or intermodulation product (IMP) activity was detectable to the -175 dBm level. To prove the instrumentation's ability to detect such phenomena, an IMP generator was introduced onto the system with positive, verifiable results. The IMP occurred at the -162 dBm level, accompanied by moderate noise burst activity, and was readily repeatable. The measurement also showed the possible need for additional fourth channel filtering in the system to reduce the effect of the transmitter power on the low noise amplifiers.

  3. Exploration of the Chaotic Behaviour in a Buck-Boost Converter Depending on the Converter and Load Elements

    NASA Astrophysics Data System (ADS)

    Demirbaş, Şevki; Fidanboy, Hikmet; Kurt, Erol

    2016-08-01

    In this paper, detailed analyses of the chaotic behavior observed in a buck-boost converter are presented. Although this basic converter system is already known world-wide for the purpose of dc-dc conversion of the output of renewable energy systems, it indicates certain chaotic regimes where both the output amplitude and frequency change randomly. This chaotic regime can yield an unstable output over the resistive or resistive/inductive electrical loads. This study presents a detailed map for the regular and chaotic regions in terms of material parameters, such as converter capacitance C, resistive load R, and inductive load L. Thus, the stable area of operation for efficient and renewable electricity production will be ascertained for the studied converter system. We emphasize that the material parameters C, R, and L play important roles in generating energy from the solar cell; indeed, the stability increases with higher values of the converter capacitor and load inductance, whereas it decreases according to the resistive load. A number of periodic windows have been observed and the output frequency gives a broad-band spectrum of up to 50 kHz.

  4. Flexible Power Distribution Based on Point of Load Converters

    NASA Astrophysics Data System (ADS)

    Dhallewin, G.; Galiana, D.; Mollard, J. M.; Schaper, W.; Strixner, E.; Tonicello, F.; Triggianese, M.

    2014-08-01

    Present digital electronic loads require low voltages and suffer from high currents. In addition, they need several different voltage levels to supply the different parts of digital devices like the core, the input/output I/F, etc. Distributed Power Architectures (DPA) with point-of- load (POL) converters (synchronous buck type) offer excellent performance in term of efficiency and load step behaviour. They occupy little PCB area and are well suited for very low voltage (VLV) DC conversion (1V to 3.3V). The paper presents approaches to architectural design of POL based supplies including redundancy and protection as well as the requirements on a European hardware implementation. The main driver of the analysis is the flexibility of each element (DC/DC converter, protection, POL core) to cover a wide range of space applications.

  5. Core Levels, Band Alignments, and Valence-Band States in CuSbS 2 for Solar Cell Applications

    DOE PAGES

    Whittles, Thomas J.; Veal, Tim D.; Savory, Christopher N.; ...

    2017-11-10

    The earth-abundant material CuSbS 2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuInxGa (1-x)Se 2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from themore » antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.« less

  6. Core Levels, Band Alignments, and Valence-Band States in CuSbS2 for Solar Cell Applications.

    PubMed

    Whittles, Thomas J; Veal, Tim D; Savory, Christopher N; Welch, Adam W; de Souza Lucas, Francisco Willian; Gibbon, James T; Birkett, Max; Potter, Richard J; Scanlon, David O; Zakutayev, Andriy; Dhanak, Vinod R

    2017-12-06

    The earth-abundant material CuSbS 2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuIn x Ga (1-x) Se 2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from the antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.

  7. MODELING THE MULTI-BAND AFTERGLOW OF GRB 130831A: EVIDENCE FOR A SPINNING-DOWN MAGNETAR DOMINATED BY GRAVITATIONAL WAVE LOSSES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q.; Zong, H. S.; Huang, Y. F., E-mail: zonghs@nju.edu.cn, E-mail: hyf@nju.edu.cn

    2016-06-01

    The X-ray afterglow of GRB 130831A shows an “internal plateau” with a decay slope of ∼0.8, followed by a steep drop at around 10{sup 5} s with a slope of ∼6. After the drop, the X-ray afterglow continues with a much shallower decay. The optical afterglow exhibits two segments of plateaus separated by a luminous optical flare, followed by a normal decay with a slope basically consistent with that of the late-time X-ray afterglow. The decay of the internal X-ray plateau is much steeper than what we expect in the simplest magnetar model. We propose a scenario in which themore » magnetar undergoes gravitational-wave-driven r-mode instability, and the spin-down is dominated by gravitational wave losses up to the end of the steep plateau, so that such a relatively steep plateau can be interpreted as the internal emission of the magnetar wind and the sharp drop can be produced when the magnetar collapses into a black hole. This scenario also predicts an initial X-ray plateau lasting for hundreds of seconds with an approximately constant flux which is compatible with observation. Assuming that the magnetar wind has a negligible contribution in the optical band, we interpret the optical afterglow as the forward shock emission by invoking the energy injection from a continuously refreshed shock following the prompt emission phase. It is shown that our model can basically describe the temporal evolution of the multi-band afterglow of GRB 130831A.« less

  8. Modeling the Multi-band Afterglow of GRB 130831A: Evidence for a Spinning-down Magnetar Dominated by Gravitational Wave Losses?

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, Y. F.; Zong, H. S.

    2016-06-01

    The X-ray afterglow of GRB 130831A shows an “internal plateau” with a decay slope of ˜0.8, followed by a steep drop at around 105 s with a slope of ˜6. After the drop, the X-ray afterglow continues with a much shallower decay. The optical afterglow exhibits two segments of plateaus separated by a luminous optical flare, followed by a normal decay with a slope basically consistent with that of the late-time X-ray afterglow. The decay of the internal X-ray plateau is much steeper than what we expect in the simplest magnetar model. We propose a scenario in which the magnetar undergoes gravitational-wave-driven r-mode instability, and the spin-down is dominated by gravitational wave losses up to the end of the steep plateau, so that such a relatively steep plateau can be interpreted as the internal emission of the magnetar wind and the sharp drop can be produced when the magnetar collapses into a black hole. This scenario also predicts an initial X-ray plateau lasting for hundreds of seconds with an approximately constant flux which is compatible with observation. Assuming that the magnetar wind has a negligible contribution in the optical band, we interpret the optical afterglow as the forward shock emission by invoking the energy injection from a continuously refreshed shock following the prompt emission phase. It is shown that our model can basically describe the temporal evolution of the multi-band afterglow of GRB 130831A.

  9. CMOS Bit-Stream Band-Pass Beamforming

    DTIC Science & Technology

    2016-03-31

    unlimited. with direct IF sampling, most of the signal processing, including digital down-conversion ( DDC ), is carried out in the digital domain, and I/Q...level digitized signals are directly processed without decimation filtering for I/Q DDC and phase shifting. This novel BSP approach replaces bulky...positive feedback. The resonator center frequency of fs/4 (260MHz) simplifies the design of DDC . 4b tunable capacitors adjust the center frequency

  10. Noise reduction and control in mode-locked semiconductor diode lasers for use in next-generation all-optical analog-to-digital converters

    NASA Astrophysics Data System (ADS)

    DePriest, Christopher M.; Abeles, Joseph H.; Braun, Alan; Delfyett, Peter J., Jr.

    2000-07-01

    External-cavity, actively-modelocked semiconductor diode lasers (SDLs) have proven to be attractive candidates for forming the backbone of next-generation analog-to-digital converters (ADCs), which are currently being developed to sample signals at repetition rates exceeding several GHz with up to 12 bits of digital resolution. Modelocked SDLs are capable of producing waveform-sampling pulse trains with very low temporal jitter (phase noise) and very small fluctuations in pulse height (amplitude noise)--two basic conditions that must be met in order for high-speed ADCs to achieve projected design goals. Single-wavelength modelocked operation (at nominal repetition frequencies of 400 MHz) has produced pulse trains with very low amplitude noise (approximately 0.08%), and the implementation of a phase- locked-loop has been effective in reducing the system's low- frequency phase noise (RMS timing jitter for offset frequencies between 10 Hz and 10 kHz has been reduced from 240 fs to 27 fs).

  11. 3. View looking S down West Broad Street sidewalk showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View looking S down West Broad Street sidewalk showing S half of Gate in foreground, Wickersham fence running parallel to West Broad St. and Passenger Station in background. - Central of Georgia Railway, Cotton Yard Gates, West Broad Street, Savannah, Chatham County, GA

  12. First spectra from a new, wide band, hybrid digital correlator spectrometer for the FIRST-HIFI instrument.

    NASA Astrophysics Data System (ADS)

    Cais, P.; Ravera, L.; Lagrange, D.; Giard, M.; Baudry, A.; Mayvial, J. Y.

    1998-11-01

    The authors have designed and built a new, wide band, modulable resolution spectrometer, in view of full astronomical qualifying tests, and to prepare future models for the FIRST satellite's heterodyne instrument. The spectrometer, a hybrid digital autocorrelator, offers flexibility in terms of bandwidth (from 170 MHz to 680 MHz) and resolution (from 700 kHz to 3 MHz). This spectrometer required the development of a dedicated analog filter bank, homemade samplers, and the design of full custom GaAs integrated circuits. Laboratory tests have shown excellent agreement with expected performances and observations performed with the IRAM 30-m radiotelescope have qualified its capabilities. Despite the relatively limited number of channels of the current prototype compared to other spectrometers, the main advantages are its stability (inherent to digital technique), and its spectral versatility. Microelectronics advances and rad-tolerance of the spectrometer components are used to prepare a new, compact, and low power consumption autocorrelator in view of a flight model for HIFI, the heterodyne instrument on the ESA cornerstone mission FIRST.

  13. Fast transient digitizer

    DOEpatents

    Villa, Francesco

    1982-01-01

    Method and apparatus for sequentially scanning a plurality of target elements with an electron scanning beam modulated in accordance with variations in a high-frequency analog signal to provide discrete analog signal samples representative of successive portions of the analog signal; coupling the discrete analog signal samples from each of the target elements to a different one of a plurality of high speed storage devices; converting the discrete analog signal samples to equivalent digital signals; and storing the digital signals in a digital memory unit for subsequent measurement or display.

  14. Band structure and spin texture of Bi2Se3 3 d ferromagnetic metal interface

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Velev, Julian P.; Dang, Xiaoqian; Tsymbal, Evgeny Y.

    2016-07-01

    The spin-helical surface states in a three-dimensional topological insulator (TI), such as Bi2Se3 , are predicted to have superior efficiency in converting charge current into spin polarization. This property is said to be responsible for the giant spin-orbit torques observed in ferromagnetic metal/TI structures. In this work, using first-principles and model tight-binding calculations, we investigate the interface between the topological insulator Bi2Se3 and 3 d -transition ferromagnetic metals Ni and Co. We find that the difference in the work functions of the topological insulator and the ferromagnetic metals shift the topological surface states down about 0.5 eV below the Fermi energy where the hybridization of these surface states with the metal bands destroys their helical spin structure. The band alignment of Bi2Se3 and Ni (Co) places the Fermi energy far in the conduction band of bulk Bi2Se3 , where the spin of the carriers is aligned with the magnetization in the metal. Our results indicate that the topological surface states are unlikely to be responsible for the huge spin-orbit torque effect observed experimentally in these systems.

  15. Regulated dc-to-dc converter for voltage step-up or step-down with input-output isolation

    NASA Technical Reports Server (NTRS)

    Feng, S. Y.; Wilson, T. G. (Inventor)

    1973-01-01

    A closed loop regulated dc-to-dc converter employing an unregulated two winding inductive energy storage converter is provided by using a magnetically coupled multivibrator acting as duty cycle generator to drive the converter. The multivibrator is comprised of two transistor switches and a saturable transformer. The output of the converter is compared with a reference in a comparator which transmits a binary zero until the output exceeds the reference. When the output exceeds the reference, the binary output of the comparator drives transistor switches to turn the multivibrator off. The multivibrator is unbalanced so that a predetermined transistor will always turn on first when the binary feedback signal becomes zero.

  16. Giant frequency down-conversion of the dancing acoustic bubble

    PubMed Central

    Deymier, P. A.; Keswani, M.; Jenkins, N.; Tang, C.; Runge, K.

    2016-01-01

    We have demonstrated experimentally the existence of a giant frequency down-conversion of the translational oscillatory motion of individual submillimeter acoustic bubbles in water in the presence of a high frequency (500 kHz) ultrasonic standing wave. The frequency of the translational oscillations (~170 Hz) is more than three orders of magnitude smaller than that of the driving acoustic wave. We elucidate the mechanism of this very slow oscillation with an analytical model leading to an equation of translational motion of a bubble taking the form of Mathieu’s equation. This equation illuminates the origin of the giant down conversion in frequency as arising from an unstable equilibrium. We also show that bubbles that form chains along the direction of the acoustic standing wave due to radiation interaction forces exhibit also translation oscillations that form a spectral band. This band extends approximately from 130 Hz up to nearly 370 Hz, a frequency range that is still at least three orders of magnitude lower than the frequency of the driving acoustic wave. PMID:27857217

  17. Giant frequency down-conversion of the dancing acoustic bubble

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Keswani, M.; Jenkins, N.; Tang, C.; Runge, K.

    2016-11-01

    We have demonstrated experimentally the existence of a giant frequency down-conversion of the translational oscillatory motion of individual submillimeter acoustic bubbles in water in the presence of a high frequency (500 kHz) ultrasonic standing wave. The frequency of the translational oscillations (~170 Hz) is more than three orders of magnitude smaller than that of the driving acoustic wave. We elucidate the mechanism of this very slow oscillation with an analytical model leading to an equation of translational motion of a bubble taking the form of Mathieu’s equation. This equation illuminates the origin of the giant down conversion in frequency as arising from an unstable equilibrium. We also show that bubbles that form chains along the direction of the acoustic standing wave due to radiation interaction forces exhibit also translation oscillations that form a spectral band. This band extends approximately from 130 Hz up to nearly 370 Hz, a frequency range that is still at least three orders of magnitude lower than the frequency of the driving acoustic wave.

  18. Study of GaN nanorods converted from β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Li, Yuewen; Xiong, Zening; Zhang, Dongdong; Xiu, Xiangqian; Liu, Duo; Wang, Shuang; Hua, Xuemei; Xie, Zili; Tao, Tao; Liu, Bin; Chen, Peng; Zhang, Rong; Zheng, Youdou

    2018-05-01

    We report here high-quality β-Ga2O3 nanorods (NRs) grown on sapphire substrates by hydrothermal method. Ammoniating the β-Ga2O3 NRs results in strain-free wurtzite gallium nitride (GaN) NRs. It was shown by XRD and Raman spectroscopy that β-Ga2O3 was partially converted to GaN/β-Ga2O3 at 1000 °C and then completely converted to GaN NRs at 1050 °C, as confirmed by high-resolution transmission electron microscopy (HRTEM). There is no band-edge emission of β-Ga2O3 in the cathodoluminescence spectrum, and only a deep-level broad emission observed at 3.68-3.73 eV. The band edge emission (3.39 eV) of GaN NRs converted from β-Ga2O3 can also be observed.

  19. State trajectories used to observe and control dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Burns, W. W., III; Wilson, T. G.

    1976-01-01

    State-plane analysis techniques are employed to study the voltage stepup energy-storage dc-to-dc converter. Within this framework, an example converter operating under the influence of a constant on-time and a constant frequency controller is examined. Qualitative insight gained through this approach is used to develop a conceptual free-running control law for the voltage stepup converter which can achieve steady-state operation in one on/off cycle of control. Digital computer simulation data are presented to illustrate and verify the theoretical discussions presented.

  20. DSN 70-meter antenna X- and S-band calibration. Part 1: Gain measurements

    NASA Technical Reports Server (NTRS)

    Richter, P. H.; Slobin, S. D.

    1989-01-01

    Aperture efficiency measurements made during 1988 on the three 70-m stations (DSS-14, DSS-43, and DSS-63) at X-band (8420 MHz) and S-band (2295 MHz) have been analyzed and reduced to yield best estimates of antenna gain versus elevation. The analysis has been carried out by fitting the gain data to a theoretical expression based on the Ruze formula. Newly derived flux density and source-size correction factors for the natural radio calibration sources used in the measurements have been used in the reduction of the data. Peak gains measured at the three stations were 74.18 (plus or minus 0.10) dBi at X-band, and 63.34 (plus or minus 0.03) dBi at S-band, with corresponding peak aperture efficiencies of 0.687 (plus or minus 0.015) and 0.762 (plus or minus 0.006), respectively. The values quoted assume no atmosphere is present, and the estimated absolute accuracy of the gain measurements is approximately plus or minus 0.2 dB at X-band and plus or minus 0.1 dB at S-band (1-sigma values).

  1. Optical band gap of thermally deposited Ge-S-Ga thin films

    NASA Astrophysics Data System (ADS)

    Rana, Anjli; Heera, Pawan; Singh, Bhanu Pratap; Sharma, Raman

    2018-05-01

    Thin films of Ge20S80-xGax glassy alloy, obtained from melt quenching technique, were deposited on the glass substrate by thermal evaporation technique under a high vacuum conditions (˜ 10-5 Torr). Absorption spectrum fitting method (ASF) is employed to obtain the optical band gap from absorption spectra. This method requires only the measurement of the absorption spectrum of the sample. The width of the band tail was also determined. Optical band gap computed from absorption spectra is found to decrease with an increase in Ga content. The evaluated optical band gap (Eg) is in well agreement with the theoretically predicted Eg and obtained from transmission spectra.

  2. A digital transducer and digital microphone using an optical technique

    NASA Astrophysics Data System (ADS)

    Ghelmansarai, F. A.

    1996-09-01

    A transducer is devised to measure pressure, displacements or angles by optical means. This transducer delivers a digital output without relying on interferometry techniques or analogue-to-digital converters. This device is based on an optical scanner and an optical detector. An inter-digital photoconductive detector (IDPC) is employed that delivers a series of pulses, whose number depends on the scan length. A pre-objective scanning configuration is used that allows for the possibility of a flat image plane. The optical scanner provides scanning of IDPC and the generated scan length is proportional to the measurand.

  3. Gulf of Mexico region - Highlighting low-lying areas derived from USGS Digital Elevation Data

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation of the area surrounding the Gulf of Mexico. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s data) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Approximately one-half of the area shown on this map has DEM source data at a 30-meter resolution, with the remaining half consisting of 10-meter contour-derived DEM data or higher-resolution LIDAR data. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2005.

  4. Synchronization sampling method based on delta-sigma analog-digital converter for underwater towed array system.

    PubMed

    Jiang, Jia-Jia; Duan, Fa-Jie; Li, Yan-Chao; Hua, Xiang-Ning

    2014-03-01

    Synchronization sampling is very important in underwater towed array system where every acquisition node (AN) samples analog signals by its own analog-digital converter (ADC). In this paper, a simple and effective synchronization sampling method is proposed to ensure synchronized operation among different ANs of the underwater towed array system. We first present a master-slave synchronization sampling model, and then design a high accuracy phase-locked loop to synchronize all delta-sigma ADCs to a reference clock. However, when the master-slave synchronization sampling model is used, both the time-delay (TD) of messages traveling along the wired transmission medium and the jitter of the clocks will bring out synchronization sampling error (SSE). Therefore, a simple method is proposed to estimate and compensate the TD of the messages transmission, and then another effective method is presented to overcome the SSE caused by the jitter of the clocks. An experimental system with three ANs is set up, and the related experimental results verify the validity of the synchronization sampling method proposed in this paper.

  5. Synchronization sampling method based on delta-sigma analog-digital converter for underwater towed array system

    NASA Astrophysics Data System (ADS)

    Jiang, Jia-Jia; Duan, Fa-Jie; Li, Yan-Chao; Hua, Xiang-Ning

    2014-03-01

    Synchronization sampling is very important in underwater towed array system where every acquisition node (AN) samples analog signals by its own analog-digital converter (ADC). In this paper, a simple and effective synchronization sampling method is proposed to ensure synchronized operation among different ANs of the underwater towed array system. We first present a master-slave synchronization sampling model, and then design a high accuracy phase-locked loop to synchronize all delta-sigma ADCs to a reference clock. However, when the master-slave synchronization sampling model is used, both the time-delay (TD) of messages traveling along the wired transmission medium and the jitter of the clocks will bring out synchronization sampling error (SSE). Therefore, a simple method is proposed to estimate and compensate the TD of the messages transmission, and then another effective method is presented to overcome the SSE caused by the jitter of the clocks. An experimental system with three ANs is set up, and the related experimental results verify the validity of the synchronization sampling method proposed in this paper.

  6. Determination of band offsets at GaN/single-layer MoS{sub 2} heterojunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangi, Malleswararao; Mishra, Pawan; Ng, Tien Khee

    2016-07-18

    We report the band alignment parameters of the GaN/single-layer (SL) MoS{sub 2} heterostructure where the GaN thin layer is grown by molecular beam epitaxy on CVD deposited SL-MoS{sub 2}/c-sapphire. We confirm that the MoS{sub 2} is an SL by measuring the separation and position of room temperature micro-Raman E{sup 1}{sub 2g} and A{sup 1}{sub g} modes, absorbance, and micro-photoluminescence bandgap studies. This is in good agreement with HRTEM cross-sectional analysis. The determination of band offset parameters at the GaN/SL-MoS{sub 2} heterojunction is carried out by high-resolution X-ray photoelectron spectroscopy accompanying with electronic bandgap values of SL-MoS{sub 2} and GaN. Themore » valence band and conduction band offset values are, respectively, measured to be 1.86 ± 0.08 and 0.56 ± 0.1 eV with type II band alignment. The determination of these unprecedented band offset parameters opens up a way to integrate 3D group III nitride materials with 2D transition metal dichalcogenide layers for designing and modeling of their heterojunction based electronic and photonic devices.« less

  7. A flexible 32-channel time-to-digital converter implemented in a Xilinx Zynq-7000 field programmable gate array

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Kuang, Jie; Liu, Chong; Cao, Qiang; Li, Deng

    2017-03-01

    A high performance multi-channel time-to-digital converter (TDC) is implemented in a Xilinx Zynq-7000 field programmable gate array (FPGA). It can be flexibly configured as either 32 TDC channels with 9.9 ps time-interval RMS precision, 16 TDC channels with 6.9 ps RMS precision, or 8 TDC channels with 5.8 ps RMS precision. All TDCs have a 380 M Samples/second measurement throughput and a 2.63 ns measurement dead time. The performance consistency and temperature dependence of TDC channels are also evaluated. Because Zynq-7000 FPGA family integrates a feature-rich dual-core ARM based processing system and 28 nm Xilinx programmable logic in a single device, the realization of high performance TDCs on it will make the platform more widely used in time-measuring related applications.

  8. Negative space charge effects in photon-enhanced thermionic emission solar converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segev, G.; Weisman, D.; Rosenwaks, Y.

    2015-07-06

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionicmore » converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.« less

  9. Analog-to-digital conversion techniques for precision photometry

    NASA Technical Reports Server (NTRS)

    Opal, Chet B.

    1988-01-01

    Three types of analog-to-digital converters are described: parallel, successive-approximation, and integrating. The functioning of comparators and sample-and-hold amplifiers is explained. Differential and integral linearity are defined, and good and bad examples are illustrated. The applicability and relative advantages of the three types of converters for precision astronomical photometric measurements are discussed. For most measurements, integral linearity is more important than differential linearity. Successive-approximation converters should be used with multielement solid state detectors because of their high speed, but dual slope integrating converters may be superior for use with single element solid state detectors where speed of digitization is not a factor. In all cases, the input signal should be tailored so that they occupy the upper part of the converter's dynamic range; this can be achieved by providing adjustable gain, or better by varying the integration time of the observation if possible.

  10. High Peak Power Test and Evaluation of S-band Waveguide Switches

    NASA Astrophysics Data System (ADS)

    Nassiri, A.; Grelick, A.; Kustom, R. L.; White, M.

    1997-05-01

    The injector and source of particles for the Advanced Photon Source is a 2856-MHz S-band electron-positron linear accelerator (linac) which produces electrons with energies up to 650 MeV or positrons with energies up to 450 MeV. To improve the linac rf system availability, an additional modulator-klystron subsystem is being constructed to provide a switchable hot spare unit for each of the five exsisting S-band transmitters. The switching of the transmitters will require the use of SF6-pressurized S-band waveguide switches at a peak operating power of 35 MW. Such rf switches have been successfully operated at other accelerator facilities but at lower peak powers. A test stand has been set up at the Stanford Linear Accelerator Center (SLAC) Klystron Factory to conduct tests comparing the power handling characteristics of two WR-284 and one WR-340 switches. Test results are presented and their implications for the design of the switching system are discussed.

  11. Digital control of diode laser for atmospheric spectroscopy

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Rutledge, C. W. (Inventor)

    1985-01-01

    A system is described for remote absorption spectroscopy of trace species using a diode laser tunable over a useful spectral region of 50 to 200 cm(-1) by control of diode laser temperature over range from 15 K to 100 K, and tunable over a smaller region of typically 0.1 to 10 cm(-1) by control of the diode laser current over a range from 0 to 2 amps. Diode laser temperature and current set points are transmitted to the instrument in digital form and stored in memory for retrieval under control of a microprocessor during measurements. The laser diode current is determined by a digital to analog converter through a field effect transistor for a high degree of ambient temperature stability, while the laser diode temperature is determined by set points entered into a digital to analog converter under control of the microprocessor. Temperature of the laser diode is sensed by a sensor diode to provide negative feedback to the temperature control circuit that responds to the temperature control digital to analog converter.

  12. Band alignment at the Cu2ZnSn(SxSe1-x)4/CdS interface

    NASA Astrophysics Data System (ADS)

    Haight, Richard; Barkhouse, Aaron; Gunawan, Oki; Shin, Byungha; Copel, Matt; Hopstaken, Marinus; Mitzi, David B.

    2011-06-01

    Energy band alignments between CdS and Cu2ZnSn(SxSe1-x)4 (CZTSSe) grown via solution-based and vacuum-based deposition routes were studied as a function of the [S]/[S+Se] ratio with femtosecond laser ultraviolet photoelectron spectroscopy, photoluminescence, medium energy ion scattering, and secondary ion mass spectrometry. Band bending in the underlying CZTSSe layer was measured via pump/probe photovoltage shifts of the photoelectron spectra and offsets were determined with photoemission under flat band conditions. Increasing the S content of the CZTSSe films produces a valence edge shift to higher binding energy and increases the CZTSSe band gap. In all cases, the CdS conduction band offsets were spikes.

  13. A state-trajectory control law for dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Burns, W. W., III; Wilson, T. G.

    1978-01-01

    Mathematical representations of a state-plane switching boundary employed in a state-trajectory control law for dc-to-dc converters are derived. Several levels of approximation to the switching boundary equations are presented, together with an evaluation of the effects of nonideal operating characteristics of converter power stage components on the shape and location of the boundary and the behavior of a system controlled by it. Digital computer simulations of dc-to-dc converters operating in conjunction with each of these levels of control are presented and evaluated with respect to changes in transient and steady-state performance.

  14. Shuttle S-band high gain switched beam breadboard antennas

    NASA Technical Reports Server (NTRS)

    Mullaney, J. J.

    1985-01-01

    The final fabrication and assembly of the S-band five-element, eight-beam breadboard antennas developed for the Space Shuttle program are described. Data summary sheets from component and final assembly testing are presented.

  15. An investigation of down-conversion luminescence properties of rare earth doped CaMoO4 phosphors for solar cell application

    NASA Astrophysics Data System (ADS)

    Verma, Akta; Sharma, S. K.

    2018-05-01

    In the present work, we have synthesized a CaMoO4:(1%)Er3+,(1%)Yb3+ down-converting phosphor by hydrothermal method. The primary goal of studying down-conversion is to enhance the conversion efficiency of Si-solar cell by converting one high energy (UV) photon into two low energy (NIR) photons. The various characterization such as XRD, FESEM and Photoluminescence (PL) were carried out. The X-ray diffraction (XRD) pattern exhibit tetragonal crystal structure and has a space group of I41a (88). The FESEM microphotograph shows surface morphology having a abundance of particles in spherical shape. The PL emission spectra were recorded both in Visible and NIR regions. There is hypertensive emission peak at 555 nm in the visible region due to 4S3/2 → 4I15/2 transition of Er3+ ions and an emission at 980 nm (2F5/2 → 2F7/2) due to Yb3+ ions. The result shows a demand of this down-converting material in the field of solar energy to improve the efficiency of Si-solar-cell.

  16. Decentralized Interleaving of Paralleled Dc-Dc Buck Converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Rodriguez, Miguel; Sinha, Mohit

    We present a decentralized control strategy that yields switch interleaving among parallel-connected dc-dc buck converters. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform and no communication between different controllers is needed. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work presents themore » first fully decentralized strategy for switch interleaving in paralleled dc-dc buck converters.« less

  17. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)

    DOE Data Explorer

    Williams, Christopher

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  18. Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task.

    PubMed

    Haegens, Saskia; Händel, Barbara F; Jensen, Ole

    2011-04-06

    The brain receives a rich flow of information which must be processed according to behavioral relevance. How is the state of the sensory system adjusted to up- or downregulate processing according to anticipation? We used magnetoencephalography to investigate whether prestimulus alpha band activity (8-14 Hz) reflects allocation of attentional resources in the human somatosensory system. Subjects performed a tactile discrimination task where a visual cue directed attention to their right or left hand. The strength of attentional modulation was controlled by varying the reliability of the cue in three experimental blocks (100%, 75%, or 50% valid cueing). While somatosensory prestimulus alpha power lateralized strongly with a fully predictive cue (100%), lateralization was decreased with lower cue reliability (75%) and virtually absent if the cue had no predictive value at all (50%). Importantly, alpha lateralization influenced the subjects' behavioral performance positively: both accuracy and speed of response improved with the degree of alpha lateralization. This study demonstrates that prestimulus alpha lateralization in the somatosensory system behaves similarly to posterior alpha activity observed in visual attention tasks. Our findings extend the notion that alpha band activity is involved in shaping the functional architecture of the working brain by determining both the engagement and disengagement of specific regions: the degree of anticipation modulates the alpha activity in sensory regions in a graded manner. Thus, the alpha activity is under top-down control and seems to play an important role for setting the state of sensory regions to optimize processing.

  19. Multiplexed Oversampling Digitizer in 65 nm CMOS for Column-Parallel CCD Readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grace, Carl; Walder, Jean-Pierre; von der Lippe, Henrik

    2012-04-10

    A digitizer designed to read out column-parallel charge-coupled devices (CCDs) used for high-speed X-ray imaging is presented. The digitizer is included as part of the High-Speed Image Preprocessor with Oversampling (HIPPO) integrated circuit. The digitizer module comprises a multiplexed, oversampling, 12-bit, 80 MS/s pipelined Analog-to-Digital Converter (ADC) and a bank of four fast-settling sample-and-hold amplifiers to instrument four analog channels. The ADC multiplexes and oversamples to reduce its area to allow integration that is pitch-matched to the columns of the CCD. Novel design techniques are used to enable oversampling and multiplexing with a reduced power penalty. The ADC exhibits 188more » ?V-rms noise which is less than 1 LSB at a 12-bit level. The prototype is implemented in a commercially available 65 nm CMOS process. The digitizer will lead to a proof-of-principle 2D 10 Gigapixel/s X-ray detector.« less

  20. 75 FR 59100 - Removal of Regulations That Implement and Administer a Coupon Program for Digital-to-Analog...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Program for Digital-to-Analog Converter Boxes AGENCY: National Telecommunications and Information... the Digital-to-Analog Converter Box Program (Coupon Program). The regulations implemented provisions of section 3005 of the Digital Television Transition and Public Safety Act of 2005, as subsequently...

  1. Comparison between Phase-Shift Full-Bridge Converters with Noncoupled and Coupled Current-Doubler Rectifier

    PubMed Central

    Tsai, Cheng-Tao; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications. PMID:24381521

  2. Comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier.

    PubMed

    Tsai, Cheng-Tao; Su, Jye-Chau; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.

  3. Research on Parallel Three Phase PWM Converters base on RTDS

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Zou, Jianxiao; Li, Kai; Liu, Jingbo; Tian, Jun

    2018-01-01

    Converters parallel operation can increase capacity of the system, but it may lead to potential zero-sequence circulating current, so the control of circulating current was an important goal in the design of parallel inverters. In this paper, the Real Time Digital Simulator (RTDS) is used to model the converters parallel system in real time and study the circulating current restraining. The equivalent model of two parallel converters and zero-sequence circulating current(ZSCC) were established and analyzed, then a strategy using variable zero vector control was proposed to suppress the circulating current. For two parallel modular converters, hardware-in-the-loop(HIL) study based on RTDS and practical experiment were implemented, results prove that the proposed control strategy is feasible and effective.

  4. Photoluminescence properties of aeschynite-type LaNbTiO6:RE3+ (RE = Tb, Dy, Ho) down-converting phosphors.

    PubMed

    Ma, Qian; Lu, Mengkai; Yang, Ping; Zhang, Aiyu; Cao, Yongqiang

    2014-06-01

    In this study, a series of LaNbTiO6:RE(3+) (RE = Tb, Dy, Ho) down-converting phosphors were synthesized using a modified sol-gel combustion method, and their photoluminescence (PL) properties were investigated as a function of activator concentration and annealing temperature. The resultant particles were characterized using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, UV/Vis diffuse reflectance spectroscopy and PL spectra. The highly crystalline LaNbTiO6:RE(3+) (RE = Tb, Dy, Ho) phosphors with an average size of 200-300 nm obtained at 1100°C have an orthorhombic aeschynite-type structure and exhibit the highest luminescent intensity in our study range. The emission spectra of LaNbTiO6:RE(3+) (RE = Tb, Dy, Ho) phosphors under excitations at UV/blue sources are mainly composed of characteristic peaks arising from the f-f transitions of RE(3+), including 489 nm ((5) D4 → (7) F6) and 545 nm ((5) D4 → (7) F5) for Tb(3+), 476 and 482 nm ((4) F9/2 → (6) H15/2) and 571 nm ((4) F9/2 → (6) H13/2) for Dy(3+), and 545 nm ((5) F4 + (5) S2 → (5) I8) for Ho(3+), respectively. The luminescent mechanisms were further investigated. It can be expected that these phosphors are of intense interest and potential importance for many optical applications. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Decentralized Interleaving of Paralleled Dc-Dc Buck Converters: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Rodriguez, Miguel; Sinha, Mohit

    We present a decentralized control strategy that yields switch interleaving among parallel connected dc-dc buck converters without communication. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work represents the first fully decentralized strategy formore » switch interleaving of paralleled dc-dc buck converters.« less

  6. Shuttle orbiter S-band payload communications equipment design evaluation

    NASA Technical Reports Server (NTRS)

    Springett, J. C.; Maronde, R. G.

    1979-01-01

    The analysis of the design, and the performance assessment of the Orbiter S-band communication equipment are reported. The equipment considered include: network transponder, network signal processor, FM transmitter, FM signal processor, payload interrogator, and payload signal processor.

  7. 14/12-GHz-band satellite communication services

    NASA Astrophysics Data System (ADS)

    Hayashi, Kunihiro; Nagaki, Kiyoaki; Mori, Yasuo

    1990-01-01

    Three new systems for integrated TV-relay services have been developed: Satellite Video Comunication Service (SVCS) and Satellite Digital Communication Service (SDCS), with Japan's 14/12-GHz-band commercial communication satellites. These systems have been in commercial use since May 1989. Usually SVCS and SDCS have been provided using Ka-band (30/20 GHz-band) of CS-2 and Cs-3. This paper provides an overview of the design, the performance, and the systems of the new 14/12-GHz-band satellite communication services.

  8. Over-the-air in-band full-duplex system with hybrid RF optical and baseband digital self-interference cancellation

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhao; Li, Longsheng; Bi, Meihua; Xiao, Shilin

    2017-12-01

    In this paper, we propose a hybrid analog optical self-interference cancellation (OSIC) and baseband digital SIC (DSIC) system for over-the-air in-band full-duplex (IBFD) wireless communication. Analog OSIC system is based on optical delay line, electro-absorption modulation lasers (EMLs) and balanced photodetector (BPD), which has the properties of high adjusting precision and broad processing bandwidth. With the help of baseband DSIC, the cancellation depth limitation of OSIC can be mitigated so as to achieve deeper total SIC depth. Experimental results show about 20-dB depth by OSIC and 10-dB more depth by DSIC over 1GHz broad baseband, so that the signal of interest (SOI) overlapped by wideband self-interference (SI) signal is better recovered compared to the IBFD system with OSIC or DSIC only. The hybrid of OSIC and DSIC takes advantages of the merits of optical devices and digital processors to achieve deep cancellation depth over broad bandwidth.

  9. Wheat gliadin: digital imaging and database construction using a 4-band reference system of agarose isoelectric focusing patterns.

    PubMed

    Black, J A; Waggamon, K A

    1992-01-01

    An isoelectric focusing method using thin-layer agarose gel has been developed for wheat gliadin. Using flat-bed units with a third electrode, up to 72 samples per gel may be analyzed. Advantages over traditional acid polyacrylamide gel electrophoresis methodology include: faster run times, nontoxic media, and greater sample capacity. The method is suitable for fingerprinting or purity testing of wheat varieties. Using digital images captured by a flat-bed scanner, a 4-band reference system using isoelectric points was devised. Software enables separated bands to be assigned pI values based upon reference tracks. Precision of assigned isoelectric points is shown to be on the order of 0.02 pH units. Captured images may be stored in a computer database and compared to unknown patterns to enable an identification. Parameters for a match with a stored pattern may be adjusted for pI interval required for a match, and number of best matches.

  10. Digital Beamforming Scatterometer

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Vega, Manuel; Kman, Luko; Buenfil, Manuel; Geist, Alessandro; Hillard, Larry; Racette, Paul

    2009-01-01

    This paper discusses scatterometer measurements collected with multi-mode Digital Beamforming Synthetic Aperture Radar (DBSAR) during the SMAP-VEX 2008 campaign. The 2008 SMAP Validation Experiment was conducted to address a number of specific questions related to the soil moisture retrieval algorithms. SMAP-VEX 2008 consisted on a series of aircraft-based.flights conducted on the Eastern Shore of Maryland and Delaware in the fall of 2008. Several other instruments participated in the campaign including the Passive Active L-Band System (PALS), the Marshall Airborne Polarimetric Imaging Radiometer (MAPIR), and the Global Positioning System Reflectometer (GPSR). This campaign was the first SMAP Validation Experiment. DBSAR is a multimode radar system developed at NASA/Goddard Space Flight Center that combines state-of-the-art radar technologies, on-board processing, and advances in signal processing techniques in order to enable new remote sensing capabilities applicable to Earth science and planetary applications [l]. The instrument can be configured to operate in scatterometer, Synthetic Aperture Radar (SAR), or altimeter mode. The system builds upon the L-band Imaging Scatterometer (LIS) developed as part of the RadSTAR program. The radar is a phased array system designed to fly on the NASA P3 aircraft. The instrument consists of a programmable waveform generator, eight transmit/receive (T/R) channels, a microstrip antenna, and a reconfigurable data acquisition and processor system. Each transmit channel incorporates a digital attenuator, and digital phase shifter that enables amplitude and phase modulation on transmit. The attenuators, phase shifters, and calibration switches are digitally controlled by the radar control card (RCC) on a pulse by pulse basis. The antenna is a corporate fed microstrip patch-array centered at 1.26 GHz with a 20 MHz bandwidth. Although only one feed is used with the present configuration, a provision was made for separate corporate

  11. System noise temperature investigation of the DSN S-band polarization diverse systems for the Galileo S-band Contingency Mission

    NASA Technical Reports Server (NTRS)

    Fernandez, J. E.; Trowbridge, D. L.

    1995-01-01

    This article describes measurements made at all three Deep Space Network 70-m S-band polarization diverse (SPD) systems to determine and eliminate the cause of the 1-K elevation in follow-up noise temperature in the listen-only mode of the SPD systems at DSS 43 and DSS 63. The system noise temperatures obtained after finding and correcting the cause of the elevated follow-up noise temperature are also reported.

  12. Solution of the problem of superposing image and digital map for detection of new objects

    NASA Astrophysics Data System (ADS)

    Rizaev, I. S.; Miftakhutdinov, D. I.; Takhavova, E. G.

    2018-01-01

    The problem of superposing the map of the terrain with the image of the terrain is considered. The image of the terrain may be represented in different frequency bands. Further analysis of the results of collation the digital map with the image of the appropriate terrain is described. Also the approach to detection of differences between information represented on the digital map and information of the image of the appropriate area is offered. The algorithm for calculating the values of brightness of the converted image area on the original picture is offered. The calculation is based on using information about the navigation parameters and information according to arranged bench marks. For solving the posed problem the experiments were performed. The results of the experiments are shown in this paper. The presented algorithms are applicable to the ground complex of remote sensing data to assess differences between resulting images and accurate geopositional data. They are also suitable for detecting new objects in the image, based on the analysis of the matching the digital map and the image of corresponding locality.

  13. Converting the Active Digital Controller for Use in Two Tests

    NASA Technical Reports Server (NTRS)

    Wright, Robert G.

    1995-01-01

    The Active Digital Controller is a system used to control the various functions of wind tunnel models. It has the capability of digitizing and saving of up to sixty-four channels of analog data. It can output up to 16 channels of analog command signals. In addition to its use as a general controller, it can run up to two distinct control laws. All of this is done at a regulated speed of two hundred hertz. The Active Digital Controller (ADC) was modified for use in the Actively Controlled Response of Buffet Affected Tails (ACROBAT) tests and for side-wall pressure data acquisition. The changes included general maintenance and updating of the controller as well as setting up special modes of operation. The ACROBAT tests required that two sets of output signals be available. The pressure data acquisition needed a sampling rate of four hundred hertz, twice the standard ADC rate. These modifications were carried out and the ADC was used during the ACROBAT wind tunnel entry.

  14. High resolution emission Fourier transform infrared spectra of the 4p-5s and 5p-6s bands of ArH.

    PubMed

    Baskakov, O I; Civis, S; Kawaguchi, K

    2005-03-15

    In the 2500-8500 cm(-1) region several strong emission bands of (40)ArH were observed by Fourier transform spectroscopy through a dc glow discharge in a mixture of argon and hydrogen. Rotational-electronic transitions of the two previously unstudied 4p-5s and 5p-6s,v = 0-0, bands of (40)ArH were measured and assigned in the 6060 and 3770 cm(-1) regions, respectively. A simultaneous fit of the emission transitions of the 4p-5s and 5p-6s bands and an extended set of transitions of the 6s-4p band observed by Dabrowski, Tokaryk, and Watson [J. Mol. Spectrosc. 189, 95 (1998)] and remeasured in the present work yielded consistent values of the spectroscopic parameters of the electronic states under investigation. In the branch of the 4p-5s band with transitions of type (Q)Q(f(3)e) we observed a narrowing in the linewidths with increasing rotational quantum number N. The rotational dependence of the linewidth is caused by predissociation of the 5s state by the repulsive ground 4s state through homogeneous coupling and changes in overlap integrals of the vibrational wave functions with the rotational level. Analysis was based on the Fermi's golden rule approximation model. In the 4p-5s band region a vibrational sequence ofv(')-v(")=1-1, 2-2, and 3-3 were recorded and a number of transitions belonging to the strongest (Q)Q(f(3)e) form branch of the 1-1 band were analyzed.

  15. Hardware description ADSP-21020 40-bit floating point DSP as designed in a remotely controlled digital CW Doppler radar

    NASA Astrophysics Data System (ADS)

    Morrison, R. E.; Robinson, S. H.

    A continuous wave Doppler radar system has been designed which is portable, easily deployed, and remotely controlled. The heart of this system is a DSP/control board using Analog Devices ADSP-21020 40-bit floating point digital signal processor (DSP) microprocessor. Two 18-bit audio A/D converters provide digital input to the DSP/controller board for near real time target detection. Program memory for the DSP is dual ported with an Intel 87C51 microcontroller allowing DSP code to be up-loaded or down-loaded from a central controlling computer. The 87C51 provides overall system control for the remote radar and includes a time-of-day/day-of-year real time clock, system identification (ID) switches, and input/output (I/O) expansion by an Intel 82C55 I/O expander.

  16. Music Instruction Goes Digital

    ERIC Educational Resources Information Center

    Demski, Jennifer

    2011-01-01

    Faced with meager enrollment in band, orchestra, and choir programs, schools are using digital technology to excite students about creating music on today's terms. This article discusses how music educators reinvent their profession by acknowledging and incorporating the way students interact with music today--digitally. Bill Evans, a music…

  17. Democratizing LGBTQ History Online: Digitizing Public History in "U.S. Homophile Internationalism".

    PubMed

    de Szegheo Lang, Tamara

    2017-01-01

    This article argues that the online archive and exhibit "U.S. Homophile Internationalism" effectively contributes to the democratizing effects that digital archives and online initiatives are having on the practice of history. "U.S. Homophile Internationalism" is an online archive of over 800 digitized articles, letters, advertisements, and other materials from the U.S. homophile press that reference six non-U.S. regions of the world. It also provides visitors with introductory regional essays, annotated bibliographies, and an interactive map feature. This essay weaves "U.S. Homophile Internationalism" into the debates in community-run LGBTQ archives regarding the digitization of archival materials and the possibilities presented by digital public history. In doing so, it outlines the structure and content of "U.S. Homophile Internationalism," highlighting how it increases the public accessibility of primary sources, encourages historical research on regions of the world that have not been adequately represented in LGBTQ history writing, and creates interactive components to support public engagements with the Web site.

  18. Characterization of HF Propagation for Digital Audio Broadcasting

    NASA Technical Reports Server (NTRS)

    Vaisnys, Arvydas

    1997-01-01

    The purpose of this presentation is to give a brief overview of some propagation measurements in the Short Wave (3-30 MHz) bands, made in support of a digital audio transmission system design for the Voice of America. This task is a follow on to the Digital Broadcast Satellite Radio task, during which several mitigation techniques would be applicable to digital audio in the Short Wave bands as well, in spite of the differences in propagation impairments in these two bands. Two series of propagation measurements were made to quantify the range of impairments that could be expected. An assessment of the performance of a prototype version of the receiver was also made.

  19. Utilization of solvothermally grown InP/ZnS quantum dots as wavelength converters for fabrication of white light-emitting diodes.

    PubMed

    Jang, Eun-Pyo; Yang, Heesun

    2013-09-01

    This work reports on a simple solvothermal synthesis of InP/ZnS core/shell quantum dots (QDs) using a much safer and cheaper phosphorus precursor of tris(dimethylamino)phosphine than the most popularly chosen tris(trimethylsilyl)phosphine. The band gap of InP QDs is facilely controlled by varying the solvothermal core growth time (4 vs. 6 h) with a fixed temperature of 150 degrees C, and the successive solvothermal ZnS shelling at 220 degrees C for 6 h results in green- and yellow-emtting InP/ZnS QD with emission quantum yield of 41-42%. The broad size distribution of as-synthesized InP/ZnS QDs, which appears to be inherent in the current solvothermal approach, is improved by a size-selective sorting procedure, and the emission properties of the resulting size-sorted QD fractions are investigated. To produce white emission for general lighting source, a blue light-emitting diode (LED) is combined with non-size-soroted green or yellow QDs as wavelength converters. Furthermore, the QD-LED that includes a blend of green and yellow QDs is fabricated to generate a white lighting source with an enhanced color rendering performance, and its electroluminescent properties are characterized in detail.

  20. Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending.

    PubMed

    Zhang, Chendong; Johnson, Amber; Hsu, Chang-Lung; Li, Lain-Jong; Shih, Chih-Kang

    2014-05-14

    Using scanning tunneling microscopy and spectroscopy, we probe the electronic structures of single layer MoS2 on graphite. The apparent quasiparticle energy gap of single layer MoS2 is measured to be 2.15 ± 0.06 eV at 77 K, albeit a higher second conduction band threshold at 0.2 eV above the apparent conduction band minimum is also observed. Combining it with photoluminescence studies, we deduce an exciton binding energy of 0.22 ± 0.1 eV (or 0.42 eV if the second threshold is use), a value that is lower than current theoretical predictions. Consistent with theoretical predictions, we directly observe metallic edge states of single layer MoS2. In the bulk region of MoS2, the Fermi level is located at 1.8 eV above the valence band maximum, possibly due to the formation of a graphite/MoS2 heterojunction. At the edge, however, we observe an upward band bending of 0.6 eV within a short depletion length of about 5 nm, analogous to the phenomena of Fermi level pinning of a 3D semiconductor by metallic surface states.

  1. Design Architecture and Initial Results from an FPGA Based Digital Receiver for Multistatic Meteor Measurements

    NASA Astrophysics Data System (ADS)

    Palo, Scott; Vaudrin, Cody

    Defined by a minimal RF front-end followed by an analog-to-digital converter (ADC) and con-trolled by a reconfigurable logic device (FPGA), the digital receiver will replace conventional heterodyning analog receivers currently in use by the COBRA meteor radar. A basic hardware overview touches on the major digital receiver components, theory of operation and data han-dling strategies. We address concerns within the community regarding the implementation of digital receivers in small-scale scientific radars, and outline the numerous benefits with a focus on reconfigurability. From a remote sensing viewpoint, having complete visibility into a band of the EM spectrum allows an experiment designer to focus on parameter estimation rather than hardware limitations. Finally, we show some basic multistatic receiver configurations enabled through GPS time synchronization. Currently, the digital receiver is configured to facilitate range and radial velocity determination of meteors in the MLT region for use with the COBRA meteor radar. Initial measurements from data acquired at Platteville, Colorado and Tierra Del Fuego in Argentina will be presented. We show an improvement in detection rates compared to conventional analog systems. Scientific justification for a digital receiver is clearly made by the presentation of RTI plots created using data acquired from the receiver. These plots reveal an interesting phenomenon concerning vacillating power structures in a select number of meteor trails.

  2. Characterization of a detector chain using a FPGA-based time-to-digital converter to reconstruct the three-dimensional coordinates of single particles at high flux

    NASA Astrophysics Data System (ADS)

    Nogrette, F.; Heurteau, D.; Chang, R.; Bouton, Q.; Westbrook, C. I.; Sellem, R.; Clément, D.

    2015-11-01

    We report on the development of a novel FPGA-based time-to-digital converter and its implementation in a detection chain that records the coordinates of single particles along three dimensions. The detector is composed of micro-channel plates mounted on top of a cross delay line and connected to fast electronics. We demonstrate continuous recording of the timing signals from the cross delay line at rates up to 4.1 × 106 s-1 and three-dimensional reconstruction of the coordinates up to 3.2 × 106 particles per second. From the imaging of a calibrated structure we measure the in-plane resolution of the detector to be 140(20) μm at a flux of 3 × 105 particles per second. In addition, we analyze a method to estimate the resolution without placing any structure under vacuum, a significant practical improvement. While we use UV photons here, the results of this work apply to the detection of other kinds of particles.

  3. Loudness growth in 1/2-octave bands (LGOB)--a procedure for the assessment of loudness.

    PubMed

    Allen, J B; Hall, J L; Jeng, P S

    1990-08-01

    In this paper, a method that has been developed for the assessment and quantification of loudness perception in normal-hearing and hearing-impaired persons is described. The method has been named LGOB, which stands for loudness growth in 1/2-octave bands. The method uses 1/2-octave bands of noise, centered at 0.25, 0.5, 1.0, 2.0, and 4.0 kHz, with subjective levels between a subject's threshold of hearing and the "too loud" level. The noise bands are presented to the subject, randomized over frequency and level, and the subject is asked to respond with a loudness rating (one of: VERY SOFT, SOFT, OK, LOUD, VERY LOUD, TOO LOUD). Subject responses (normal and hearing-impaired) are then compared to the average responses of a group of normal-hearing subjects. This procedure allows one to estimate the subject's loudness growth relative to normals, as a function of frequency and level. The results may be displayed either as isoloudness contours or as recruitment curves. In its present form, the measurements take less than 30 min. The signal presentation and analysis is done using a PC and a PC plug-in board having a digital to analog converter.

  4. Tuning Ferritin’s band gap through mixed metal oxide nanoparticle formation

    NASA Astrophysics Data System (ADS)

    Olsen, Cameron R.; Embley, Jacob S.; Hansen, Kameron R.; Henrichsen, Andrew M.; Peterson, J. Ryan; Colton, John S.; Watt, Richard K.

    2017-05-01

    This study uses the formation of a mixed metal oxide inside ferritin to tune the band gap energy of the ferritin mineral. The mixed metal oxide is composed of both Co and Mn, and is formed by reacting aqueous Co2+ with {{{{MnO}}}4}- in the presence of apoferritin. Altering the ratio between the two reactants allowed for controlled tuning of the band gap energies. All minerals formed were indirect band gap materials, with indirect band gap energies ranging from 0.52 to 1.30 eV. The direct transitions were also measured, with energy values ranging from 2.71 to 3.11 eV. Tuning the band gap energies of these samples changes the wavelengths absorbed by each mineral, increasing ferritin’s potential in solar-energy harvesting. Additionally, the success of using {{{{MnO}}}4}- in ferritin mineral formation opens the possibility for new mixed metal oxide cores inside ferritin.

  5. Ku-band high efficiency GaAs MMIC power amplifiers

    NASA Technical Reports Server (NTRS)

    Tserng, H. Q.; Witkowski, L. C.; Wurtele, M.; Saunier, Paul

    1988-01-01

    The development of Ku-band high efficiency GaAs MMIC power amplifiers is examined. Three amplifier modules operating over the 13 to 15 GHz frequency range are to be developed. The first MMIC is a 1 W variable power amplifier (VPA) with 35 percent efficiency. On-chip digital gain control is to be provided. The second MMIC is a medium power amplifier (MPA) with an output power goal of 1 W and 40 percent power-added efficiency. The third MMIC is a high power amplifier (HPA) with 4 W output power goal and 40 percent power-added efficiency. An output power of 0.36 W/mm with 49 percent efficiency was obtained on an ion implanted single gate MESFET at 15 GHz. On a dual gate MESFET, an output power of 0.42 W/mm with 27 percent efficiency was obtained. A mask set was designed that includes single stage, two stage, and three stage single gate amplifiers. A single stage 600 micron amplifier produced 0.4 W/mm output power with 40 percent efficiency at 14 GHz. A four stage dual gate amplifier generated 500 mW of output power with 20 dB gain at 17 GHz. A four-bit digital-to-analog converter was designed and fabricated which has an output swing of -3 V to +/- 1 V.

  6. The GANDALF 128-Channel Time-to-Digital Converter

    NASA Astrophysics Data System (ADS)

    Büchele, M.; Fischer, H.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.

    The GANDALF 6U-VME64x/VXS module has been designed to cope with a variety of readout tasks in high energy and nuclear physics experiments, in particular the COMPASS experiment at CERN. The exchangeable mezzanine cards allow for an employment of the system in very different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition or fast trigger generation. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In this concept each input signal is continuously sampled by 16 flip-flops using equidistant phase-shifted clocks. Compared to previous FPGA designs, usually based on delay lines and comprising few TDC channels with resolutions in the order of 10 ps, our design permits the implementation of a large number of TDC channels with a resolution of 64 ps in a single FPGA. Predictable placement of logic components and uniform routing inside the FPGA fabric is a particular challenge of this design. We present measurement results for the time resolution and the nonlinearity of the TDC readout system.

  7. Standard interface: Twin-coaxial converter

    NASA Technical Reports Server (NTRS)

    Lushbaugh, W. A.

    1976-01-01

    The network operations control center standard interface has been adopted as a standard computer interface for all future minicomputer based subsystem development for the Deep Space Network. Discussed is an intercomputer communications link using a pair of coaxial cables. This unit is capable of transmitting and receiving digital information at distances up to 600 m with complete ground isolation between the communicating devices. A converter is described that allows a computer equipped with the standard interface to use the twin coaxial link.

  8. Digital sonar system

    DOEpatents

    Young, K.K.; Wilkes, R.J.

    1995-11-21

    A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits a responding multifrequency sonar signal. 4 figs.

  9. Digital sonar system

    DOEpatents

    Young, Kenneth K.; Wilkes, R. Jeffrey

    1995-01-01

    A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits a responding multifrequency sonar signal.

  10. Through-the-earth radio

    DOEpatents

    Reagor, David [Los Alamos, NM; Vasquez-Dominguez, Jose [Los Alamos, NM

    2006-05-09

    A method and apparatus for effective through-the-earth communication involves a signal input device connected to a transmitter operating at a predetermined frequency sufficiently low to effectively penetrate useful distances through-the earth, and having an analog to digital converter receiving the signal input and passing the signal input to a data compression circuit that is connected to an encoding processor, the encoding processor output being provided to a digital to analog converter. An amplifier receives the analog output from the digital to analog converter for amplifying said analog output and outputting said analog output to an antenna. A receiver having an antenna receives the analog output passes the analog signal to a band pass filter whose output is connected to an analog to digital converter that provides a digital signal to a decoding processor whose output is connected to an data decompressor, the data decompressor providing a decompressed digital signal to a digital to analog converter. An audio output device receives the analog output form the digital to analog converter for producing audible output.

  11. A counting-weighted calibration method for a field-programmable-gate-array-based time-to-digital converter

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Ho

    2017-05-01

    In this work, we propose a counting-weighted calibration method for field-programmable-gate-array (FPGA)-based time-to-digital converter (TDC) to provide non-linearity calibration for use in positron emission tomography (PET) scanners. To deal with the non-linearity in FPGA, we developed a counting-weighted delay line (CWD) to count the delay time of the delay cells in the TDC in order to reduce the differential non-linearity (DNL) values based on code density counts. The performance of the proposed CWD-TDC with regard to linearity far exceeds that of TDC with a traditional tapped delay line (TDL) architecture, without the need for nonlinearity calibration. When implemented in a Xilinx Vertix-5 FPGA device, the proposed CWD-TDC achieved time resolution of 60 ps with integral non-linearity (INL) and DNL of [-0.54, 0.24] and [-0.66, 0.65] least-significant-bit (LSB), respectively. This is a clear indication of the suitability of the proposed FPGA-based CWD-TDC for use in PET scanners.

  12. Effect of core quantum-dot size on power-conversion-efficiency for silicon solar-cells implementing energy-down-shift using CdSe/ZnS core/shell quantum dots.

    PubMed

    Baek, Seung-Wook; Shim, Jae-Hyoung; Seung, Hyun-Min; Lee, Gon-Sub; Hong, Jin-Pyo; Lee, Kwang-Sup; Park, Jea-Gun

    2014-11-07

    Silicon solar cells mainly absorb visible light, although the sun emits ultraviolet (UV), visible, and infrared light. Because the surface reflectance of a textured surface with SiNX film on a silicon solar cell in the UV wavelength region (250-450 nm) is higher than ∼27%, silicon solar-cells cannot effectively convert UV light into photo-voltaic power. We implemented the concept of energy-down-shift using CdSe/ZnS core/shell quantum-dots (QDs) on p-type silicon solar-cells to absorb more UV light. CdSe/ZnS core/shell QDs demonstrated clear evidence of energy-down-shift, which absorbed UV light and emitted green-light photoluminescence signals at a wavelength of 542 nm. The implementation of 0.2 wt% (8.8 nm QDs layer) green-light emitting CdSe/ZnS core/shell QDs reduced the surface reflectance of the textured surface with SiNX film on a silicon solar-cell from 27% to 15% and enhanced the external quantum efficiency (EQE) of silicon solar-cells to around 30% in the UV wavelength region, thereby enhancing the power conversion efficiency (PCE) for p-type silicon solar-cells by 5.5%.

  13. KM3NeT Digital Optical Module electronics

    NASA Astrophysics Data System (ADS)

    Real, Diego

    2016-04-01

    The KM3NeT collaboration is currently building of a neutrino telescope with a volume of several cubic kilometres at the bottom of the Mediterranean Sea. The telescope consists of a matrix of Digital Optical Modules that will detect the Cherenkov light originated by the interaction of the neutrinos in the proximity of the detector. This contribution describes the main components of the read-out electronics of the Digital Optical Module: the Power Board, which delivers all the power supply required by the Digital Optical Molule electronics; the Central Logic Board, the main core of the read-out system, hosting 31 Time to Digital Converters with 1 ns resolution and the White Rabbit protocol embedded in the Central Logic Board Field Programmable Gate Array; the Octopus boards, that transfer the Low Voltage Digital Signals from the PMT bases to the Central Logic Board and finally the PMT bases, in charge of converting the analogue signal produced in the 31 3" PMTs into a Low Voltage Digital Signal.

  14. Accumulation of 70S Monoribosomes in Escherichia coli After Energy Source Shift-Down

    PubMed Central

    Ruscetti, Francis W.; Jacobson, Lewis A.

    1972-01-01

    When Escherichia coli is shifted from glucose-minimal to succinate-minimal medium, a transient inhibition of protein synthesis and a time-dependent redistribution of ribosomes from polysomes to 70S monosomes occurs. These processes are reversed by a shift-up with glucose. In a lysate made from a mixture of log-phase and down-shifted cells, the 70S monosomes are derived solely from the down-shifted cells and are therefore not produced by polysome breakage during preparation. This conclusion is supported by the absence of nascent proteins from the 70S peak. The monosomes are not dissociated by NaCl or by a crude ribosome dissociation factor, so they behave as “complexed” rather than “free” particles. When down-shifted cells are incubated with rifampin to block ribonucleic acid (RNA) synthesis, the 70S monosomes disappear with a half-life of 15 min. When glucose is also added this half-life decreases to 3 min. The 70S particles are stable in the presence of rifampin when chloramphenicol is added to block protein synthesis. We interpret these data to mean that the existence of the 70S monosomes depends on the continued synthesis of messenger RNA and their conversion to free ribosomes (which dissociate under our conditions) is a result of their participation in protein synthesis. Finally, a significant fraction of the RNA labeled during a brief pulse of 3H-uracil is found associated with the 70S peak. These results are consistent with the hypothesis that the 70S monosomes are initiation complexes of single ribosomes and messenger RNA, which do not initiate polypeptide synthesis during a shift-down. PMID:4591472

  15. Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study.

    PubMed

    Merkel, Nina; Wibral, Michael; Bland, Gareth; Singer, Wolf

    2018-04-26

    Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal. We found that seven out of ten subjects were able to selectively increase the amplitude of gamma oscillations in the absence of visual stimulation. One subject however failed completely and two subjects succeeded to manipulate the feedback signal by contraction of muscles. In all subjects the attempts to enhance visual gamma oscillations were associated with an increase of beta oscillations over precentral/frontal regions. Only successful subjects exhibited an additional marked increase of theta oscillations over precentral/prefrontal and temporal regions whereas unsuccessful subjects showed an increase of alpha band oscillations over occipital regions. We argue that spatially confined networks in early visual cortex can be entrained to engage in narrow band gamma oscillations not only by visual stimuli but also by top down signals. We interpret the concomitant increase in beta oscillations as indication for an engagement of the fronto-parietal attention network and the increase of theta oscillations as a correlate of imagery. Our finding support the application of NFB in disease conditions associated with impaired gamma synchronization. © 2018 Wiley Periodicals, Inc.

  16. Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure.

    PubMed

    Mehdizadeh, Farhad; Soroosh, Mohammad; Alipour-Banaei, Hamed; Farshidi, Ebrahim

    2017-03-01

    In this paper, we propose what we believe is a novel all-optical analog-to-digital converter (ADC) based on photonic crystals. The proposed structure is composed of a nonlinear triplexer and an optical coder. The nonlinear triplexer is for creating discrete levels in the continuous optical input signal, and the optical coder is for generating a 2-bit standard binary code out of the discrete levels coming from the nonlinear triplexer. Controlling the resonant mode of the resonant rings through optical intensity is the main objective and working mechanism of the proposed structure. The maximum delay time obtained for the proposed structure was about 5 ps and the total footprint is about 1520  μm2.

  17. A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band.

    PubMed

    Albrecht, Boris; Farrera, Pau; Fernandez-Gonzalvo, Xavier; Cristiani, Matteo; de Riedmatten, Hugues

    2014-02-27

    Coherently converting the frequency and temporal waveform of single and entangled photons will be crucial to interconnect the various elements of future quantum information networks. Of particular importance is the quantum frequency conversion of photons emitted by material systems able to store quantum information, so-called quantum memories. There have been significant efforts to implement quantum frequency conversion using nonlinear crystals, with non-classical light from broadband photon-pair sources and solid-state emitters. However, solid state quantum frequency conversion has not yet been achieved with long-lived optical quantum memories. Here we demonstrate an ultra-low-noise solid state photonic quantum interface suitable for connecting quantum memories based on atomic ensembles to the telecommunication fibre network. The interface is based on an integrated-waveguide nonlinear device. We convert heralded single photons at 780 nm from a rubidium-based quantum memory to the telecommunication wavelength of 1,552 nm, showing significant non-classical correlations between the converted photon and the heralding signal.

  18. Supported Housing for People with Down's Syndrome

    ERIC Educational Resources Information Center

    Cumella, Stuart; Heslam, Sheila

    2014-01-01

    There has been limited research on the attitudes of family carers and the part they play in helping people with a learning disability choose accommodation. A postal questionnaire was sent to family carers of people with Down's Syndrome, to identify their attitudes to supported living, their experience of the application process, and the…

  19. Laser heating dynamics and glow spectra of carbon-, titanium- and erbium-containing optothermal fibre converters for laser medicine

    NASA Astrophysics Data System (ADS)

    Belikov, A. V.; Skrypnik, A. V.

    2017-07-01

    Titanium- and erbium-containing optothermal fibre converters of laser radiation mounted at the distal end of quartz-quartz optical fibre are discussed for the first time. Technology of fabricating such converters is described. Carbon-containing converters are also considered. The laser heating dynamics of the converters and the glow spectra are studied by irradiating converters of each type by a 980 ± 10 nm semiconductor laser with an average power up to 4 W. It is shown that alongside with broadband thermal radiation accompanying the laser heating of all three types of converters in the temperature range 600-1100 °C, only in the spectrum of the erbium-containing converter the intense bands with the maxima at wavelengths 493, 523, 544, 660, and 798 nm, corresponding to the erbium radiative transitions 4F7/2 → 4I15/2, 2H11/2 → 4I15/2, 4S3/2 → 4I15/2, 4F9/2 → 4I15/2 and 4I9/2 → 4I15/2, respectively, are present. Such converters can be used in laser medicine for tissue surgery as well as in procedures combining laser, thermal, biostimulation or photodynamic action.

  20. LP01 to LP0m mode converters using all-fiber two-stage tapers

    NASA Astrophysics Data System (ADS)

    Mellah, Hakim; Zhang, Xiupu; Shen, Dongya

    2015-11-01

    A mode converter between LP01 and LP0m modes is proposed using two stages of tapers. The first stage is formed by an adiabatically tapering a circular fiber to excite the desirable LP0m mode. The second stage is formed by inserting an inner core (tapered from both sides) with a refractive index smaller than the original core. This second stage is used to obtain low insertion loss and high extinction ratio of the desired LP0m mode. Three converters between LP01 and LP0m, m=2, 3, and 4, are designed for C-band, and simulation results show that less than 0.24, 0.54 and 0.7 dB insertion loss and higher than 15, 16, and 17.5 dB extinction ratio over the entire band were obtained for the three converters, respectively.

  1. Correlation of S-Band Weather Radar Reflectivity and ACTS Propagation Data in Florida

    NASA Technical Reports Server (NTRS)

    Wolfe, Eric E.; Flikkema, Paul G.; Henning, Rudolf E.

    1997-01-01

    Previous work has shown that Ka-band attenuation due to rainfall and corresponding S-band reflectivity are highly correlated. This paper reports on work whose goal is to determine the feasibility of estimation and, by extension, prediction of one parameter from the other using the Florida ACTS propagation terminal (APT) and the nearby WSR-88D S-band Doppler weather radar facility operated by the National Weather Service. This work is distinguished from previous efforts in this area by (1) the use of a single-polarized radar, preventing estimation of the drop size distribution (e.g., with dual polarization) and (2) the fact that the radar and APT sites are not co-located. Our approach consists of locating the radar volume elements along the satellite slant path and then, from measured reflectivity, estimating the specific attenuation for each associated path segment. The sum of these contributions yields an estimation of the millimeter-wave attenuation on the space-ground link. Seven days of data from both systems are analyzed using this procedure. The results indicate that definite correlation of S-band reflectivity and Ka-band attenuation exists even under the restriciton of this experiment. Based on these results, it appears possible to estimate Ka-band attenuation using widely available operational weather radar data. Conversely, it may be possible to augment current radar reflectivity data and coverage with low-cost attenuation or sky temperature data to improve the estimation of rain rates.

  2. Low-to-Medium Power Single Chip Digital Controlled DC-DC Regulator for Point-of-Load Applications

    NASA Technical Reports Server (NTRS)

    Adell, Philippe C. (Inventor); Bakkaloglu, Bertan (Inventor); Vermeire, Bert (Inventor); Liu, Tao (Inventor)

    2015-01-01

    A DC-DC converter for generating a DC output voltage includes: a digitally controlled pulse width modulator (DPWM) for controlling a switching power stage to supply a varying voltage to an inductor; and a digital voltage feedback circuit for controlling the DPWM in accordance with a feedback voltage corresponding to the DC output voltage, the digital voltage feedback circuit including: a first voltage controlled oscillator for converting the feedback voltage into a first frequency signal and to supply the first frequency signal to a first frequency discriminator; a second voltage controlled oscillator for converting a reference voltage into a second frequency signal and to supply the second frequency signal to a second frequency discriminator; a digital comparator for comparing digital outputs of the first and second frequency discriminators and for outputting a digital feedback signal; and a controller for controlling the DPWM in accordance with the digital feedback signal.

  3. Experience in the installation of a microprocessor system for controlling converter units of the Vyborg substation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusakovskii, K. B.; Zmaznov, E. Yu.; Katantsev, S. V.

    The experience in the installation of modern digital systems for controlling converter units at the Vyborg converter substation on the basis of advanced microprocessor devices is considered. It is shown that debugging of a control and protection system on mathematical and physical models does not guarantee optimum control of actual converter devices. Examples of advancing the control and protection system are described, the necessity for which has become obvious in tests of actual equipment. Comparison of oscillograms of processes before optimization of the control system and after its optimization and adjustment shows that the digital control system makes it possiblemore » to improve substantially the algorithms of control and protection in the short term and without changing the hardware component.« less

  4. Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer

    DOEpatents

    Warburton, W.K.; Hubbard, B.

    1999-02-09

    A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion is disclosed. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner`s operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system. 13 figs.

  5. ESA personal communications and digital audio broadcasting systems based on non-geostationary satellites

    NASA Technical Reports Server (NTRS)

    Logalbo, P.; Benedicto, J.; Viola, R.

    1993-01-01

    Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.

  6. A Low-cost 4 Bit, 10 Giga-samples-per-second Analog-to-digital Converter Printed Circuit Board Assembly for FPGA-based Backends

    NASA Astrophysics Data System (ADS)

    Jiang, Homin; Yu, Chen-Yu; Kubo, Derek; Chen, Ming-Tang; Guzzino, Kim

    2016-11-01

    In this study, a 4 bit, 10 giga-samples-per-second analog-to-digital converter (ADC) printed circuit board assembly (PCBA) was designed, manufactured, and characterized for digitizing radio telescopes. For this purpose, an Adsantec ANST7120A-KMA flash ADC chip was used. Together with the field-programmable gate array platform, developed by the Collaboration for Astronomy Signal Processing and Electronics Research community, the PCBA enables data acquisition with a wide bandwidth and simplifies the intermediate frequency section. In the current version, the PCBA and the chip exhibit an analog bandwidth of 10 GHz (3 dB loss) and 20 GHz, respectively, which facilitates second, third, and even fourth Nyquist sampling. The following average performance parameters were obtained from the first and second Nyquist zones of the three boards: a spurious-free dynamic range of 31.35/30.45 dB, a signal-to-noise and distortion ratio of 22.95/21.83 dB, and an effective number of bits of 3.65/3.43, respectively.

  7. Investigations of DC power supplies with optoelectronic transducers and RF energy converters

    NASA Astrophysics Data System (ADS)

    Guzowski, B.; Gozdur, R.; Bernacki, L.; Lakomski, M.

    2016-04-01

    Fiber Distribution Cabinets (FDC) monitoring systems are increasingly popular. However it is difficult to realize such system in passive FDC, due to lack of source of power supply. In this paper investigation of four different DC power supplies with optoelectronic transducers is described. Two converters: photovoltaic power converter and PIN photodiode can convert the light transmitted through the optical fiber to electric energy. Solar cell and antenna RF-PCB are also tested. Results presented in this paper clearly demonstrate that it is possible to build monitoring system in passive FDC. During the tests maximum obtained output power was 11 mW. However all converters provided enough power to excite 32-bit microcontroller with ARM-cores and digital thermometer.

  8. Digital circuits for computer applications: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The innovations in this updated series of compilations dealing with electronic technology represent a carefully selected collection of digital circuits which have direct application in computer oriented systems. In general, the circuits have been selected as representative items of each section and have been included on their merits of having universal applications in digital computers and digital data processing systems. As such, they should have wide appeal to the professional engineer and scientist who encounter the fundamentals of digital techniques in their daily activities. The circuits are grouped as digital logic circuits, analog to digital converters, and counters and shift registers.

  9. Proposed U.S. Geological Survey standard for digital orthophotos

    USGS Publications Warehouse

    Hooper, David; Caruso, Vincent

    1991-01-01

    The U.S. Geological Survey has added the new category of digital orthophotos to the National Digital Cartographic Data Base. This differentially rectified digital image product enables users to take advantage of the properties of current photoimagery as a source of geographic information. The product and accompanying standard were implemented in spring 1991. The digital orthophotos will be quadrangle based and cast on the Universal Transverse Mercator projection and will extend beyond the 3.75-minute or 7.5-minute quadrangle area at least 300 meters to form a rectangle. The overedge may be used for mosaicking with adjacent digital orthophotos. To provide maximum information content and utility to the user, metadata (header) records exist at the beginning of the digital orthophoto file. Header information includes the photographic source type, date, instrumentation used to create the digital orthophoto, and information relating to the DEM that was used in the rectification process. Additional header information is included on transformation constants from the 1927 and 1983 North American Datums to the orthophoto internal file coordinates to enable the user to register overlays on either datum. The quadrangle corners in both datums are also imprinted on the image. Flexibility has been built into the digital orthophoto format for future enhancements, such as the provision to include the corresponding digital elevation model elevations used to rectify the orthophoto. The digital orthophoto conforms to National Map Accuracy Standards and provides valuable mapping data that can be used as a tool for timely revision of standard map products, for land use and land cover studies, and as a digital layer in a geographic information system.

  10. International Space Station (ISS) S-Band Corona Discharge Anomaly Consultation

    NASA Technical Reports Server (NTRS)

    Kichak, Robert A.; Leidecker, Henning; Battel, Steven; Ruitberg, Arthur; Sank, Victor

    2008-01-01

    The Assembly and Contingency Radio Frequency Group (ACRFG) onboard the International Space Station (ISS) is used for command and control communications and transmits (45 dBm or 32 watts) and receives at S-band. The system is nominally pressurized with gaseous helium (He) and nitrogen (N2) at 8 pounds per square inch absolute (psia). MacDonald, Dettwiler and Associates Ltd. (MDA) was engaged to analyze the operational characteristics of this unit in an effort to determine if the anomalous behavior was a result of a corona event. Based on this analysis, MDA did not recommend continued use of this ACRFG. The NESC was requested to provide expert support in the area of high-voltage corona and multipactoring in an S-Band RF system and to assess the probability of corona occurring in the ACRFG during the planned EVA. The NESC recommended minimal continued use of S/N 002 ACRFG until a replacement unit can be installed. Following replacement, S/N 002 will be subjected to destructive failure analysis in an effort to determine the proximate and root cause(s) of the anomalous behavior.

  11. Optical frequency comb based multi-band microwave frequency conversion for satellite applications.

    PubMed

    Yang, Xinwu; Xu, Kun; Yin, Jie; Dai, Yitang; Yin, Feifei; Li, Jianqiang; Lu, Hua; Liu, Tao; Ji, Yuefeng

    2014-01-13

    Based on optical frequency combs (OFC), we propose an efficient and flexible multi-band frequency conversion scheme for satellite repeater applications. The underlying principle is to mix dual coherent OFCs with one of which carrying the input signal. By optically channelizing the mixed OFCs, the converted signal in different bands can be obtained in different channels. Alternatively, the scheme can be configured to generate multi-band local oscillators (LO) for widely distribution. Moreover, the scheme realizes simultaneous inter- and intra-band frequency conversion just in a single structure and needs only three frequency-fixed microwave sources. We carry out a proof of concept experiment in which multiple LOs with 2 GHz, 10 GHz, 18 GHz, and 26 GHz are generated. A C-band signal of 6.1 GHz input to the proposed scheme is successfully converted to 4.1 GHz (C band), 3.9 GHz (C band) and 11.9 GHz (X band), etc. Compared with the back-to-back (B2B) case measured at 0 dBm input power, the proposed scheme shows a 9.3% error vector magnitude (EVM) degradation at each output channel. Furthermore, all channels satisfy the EVM limit in a very wide input power range.

  12. Transient Performance Improvement Circuit (TPIC)s for DC-DC converter applications

    NASA Astrophysics Data System (ADS)

    Lim, Sungkeun

    of the slow inductor current slew rate which is determined by the input voltage, output voltage, and the inductance. The remaining inductor current in the power delivery path will charge the output capacitors and develop a voltage across the ESR. As a result, large output voltage spikes occur during load current transients. Due to their limited control bandwidth, traditional VRs can not sufficiently respond rapidly to certain load transients. As a result, a large output voltage spike can occur during load transients, hence requiring a large amount of bulk capacitance to decouple the VR from the load [2]. If the remaining inductor current is removed from the power stage or the inductor current slew rate is changed, the output voltage spikes can be clamped, allowing the output capacitance to be reduced. A new design methodology for a Transient Performance Improvement Circuit(TPIC) based on controlling the output impedance of a regulator is presented. The TPIC works in parallel with a voltage regulator (VR)'s ceramic capacitors to achieve faster voltage regulation without the need for a large bulk capacitance, and can serve as a replacement for bulk capacitors. The specific function of the TPIC is to mimic the behavior of the bulk capacitance in a traditional VRM by sinking and sourcing large currents during transients, allowing the VR to respond quickly to current transients without the need for a large bulk capacitance. This will allow fast transient response without the need for a large bulk capacitor. The main challenge in applying the TPIC is creating a design which will not interfere with VR operation. A TPIC for a 4 Switch Buck-Boost (4SBB) converter is presented which functions by con- trolling the inductor current slew rate during load current transients. By increasing the inductor current slew rate, the remaining inductor current can be removed from the 4SBB power delivery path and the output voltage spike can be clamped. A second TPIC is presented which is

  13. S-NPP VIIRS thermal emissive bands on-orbit calibration and performance

    NASA Astrophysics Data System (ADS)

    Efremova, Boryana; McIntire, Jeff; Moyer, David; Wu, Aisheng; Xiong, Xiaoxiong

    2014-09-01

    Presented is an assessment of the on-orbit radiometric performance of the thermal emissive bands (TEB) of the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument based on data from the first 2 years of operations—from 20 January 2012 to 20 January 2014. The VIIRS TEB are calibrated on orbit using a V-grooved blackbody (BB) as a radiance source. Performance characteristics trended over the life of the mission include the F factor—a measure of the gain change of the TEB detectors; the Noise Equivalent differential Temperature (NEdT)—a measure of the detector noise; and the detector offset and nonlinear terms trended at the quarterly performed BB warm-up cool-down cycles. We find that the BB temperature is well controlled and stable within the 30mK requirement. The F factor trends are very stable and showing little degradation (within 0.8%). The offsets and nonlinearity terms are also without noticeable drifts. NEdT is stable and does not show any trend. Other TEB radiometric calibration-related activities discussed include the on-orbit assessment of the response versus scan-angle functions and an approach to improve the M13 low-gain calibration using onboard lunar measurements. We conclude that all the assessed parameters comply with the requirements, and the TEB provide radiometric measurements with the required accuracy.

  14. A firmware-defined digital direct-sampling NMR spectrometer for condensed matter physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikulski, M., E-mail: marekp@ethz.ch; Shiroka, T.; Ott, H.-R.

    2014-09-15

    We report on the design and implementation of a new digital, broad-band nuclear magnetic resonance (NMR) spectrometer suitable for probing condensed matter. The spectrometer uses direct sampling in both transmission and reception. It relies on a single, commercially-available signal processing device with a user-accessible field-programmable gate array (FPGA). Its functions are defined exclusively by the FPGA firmware and the application software. Besides allowing for fast replication, flexibility, and extensibility, our software-based solution preserves the option to reuse the components for other projects. The device operates up to 400 MHz without, and up to 800 MHz with undersampling, respectively. Digital down-conversion with ±10 MHzmore » passband is provided on the receiver side. The system supports high repetition rates and has virtually no intrinsic dead time. We describe briefly how the spectrometer integrates into the experimental setup and present test data which demonstrates that its performance is competitive with that of conventional designs.« less

  15. A firmware-defined digital direct-sampling NMR spectrometer for condensed matter physics.

    PubMed

    Pikulski, M; Shiroka, T; Ott, H-R; Mesot, J

    2014-09-01

    We report on the design and implementation of a new digital, broad-band nuclear magnetic resonance (NMR) spectrometer suitable for probing condensed matter. The spectrometer uses direct sampling in both transmission and reception. It relies on a single, commercially-available signal processing device with a user-accessible field-programmable gate array (FPGA). Its functions are defined exclusively by the FPGA firmware and the application software. Besides allowing for fast replication, flexibility, and extensibility, our software-based solution preserves the option to reuse the components for other projects. The device operates up to 400 MHz without, and up to 800 MHz with undersampling, respectively. Digital down-conversion with ±10 MHz passband is provided on the receiver side. The system supports high repetition rates and has virtually no intrinsic dead time. We describe briefly how the spectrometer integrates into the experimental setup and present test data which demonstrates that its performance is competitive with that of conventional designs.

  16. Remote down-hole well telemetry

    DOEpatents

    Briles, Scott D [Los Alamos, NM; Neagley, Daniel L [Albuquerque, NM; Coates, Don M [Santa Fe, NM; Freund, Samuel M [Los Alamos, NM

    2004-07-20

    The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

  17. The Digital Landmass Simulation Production Overview,

    DTIC Science & Technology

    1987-01-01

    L 187 978 THE DIGITAL LANDMASS SIMULATION PRODUCTION OVERVIEV (U) 1/1 DEFENSE MAPPING AGENCY AEROSPACE CENTER ST LOUIS AFS NO UNCLAS5SIFIED R ABR 97F...ADDRLS , (Ciry, Stile, ind, ZIP C4cJ) 10. SOURCE OF FUNDING NuMuERS ’ PROGRAM PROAtCT TASK VVCRK U’I ELEMENT NO. NO. NO ,-CCE5S GN NO. 1 1 TITLE...transformation program is run for each visual and radar simulation. The purpose of the transformation software is to convert the "raw" DTED and DFAD

  18. Apparatus for converting biomass to a pumpable slurry

    DOEpatents

    Ergun, Sabri; Schaleger, Larry L.; Wrathall, James A.; Yaghoubzadeh, Nasser

    1986-01-01

    An apparatus used in the pretreatment of wood chips in a process for converting biomass to a liquid hydrocarbonaceous fuel. The apparatus functions to break down the wood chips to a size distribution that can be readily handled in a slurry form. Low maintenance operation is obtained by hydrolyzing the chips in a pressure vessel having no moving parts.

  19. Optical domain analog to digital conversion methods and apparatus

    DOEpatents

    Vawter, Gregory A

    2014-05-13

    Methods and apparatus for optical analog to digital conversion are disclosed. An optical signal is converted by mapping the optical analog signal onto a wavelength modulated optical beam, passing the mapped beam through interferometers to generate analog bit representation signals, and converting the analog bit representation signals into an optical digital signal. A photodiode receives an optical analog signal, a wavelength modulated laser coupled to the photodiode maps the optical analog signal to a wavelength modulated optical beam, interferometers produce an analog bit representation signal from the mapped wavelength modulated optical beam, and sample and threshold circuits corresponding to the interferometers produce a digital bit signal from the analog bit representation signal.

  20. Digital sonar system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, K.K.; Wilkes, R.J.

    1995-11-21

    A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits amore » responding multifrequency sonar signal. 4 figs.« less

  1. LANDSAT 4 band 6 data evaluation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A series of images of a portion of a TM frame of Lake Ontario are presented. The top left frame is the TM Band 6 image, the top right image is a conventional contrast stretched image. The bottom left image is a Band 5 to Band 3 ratio image. This image is used to generate a primitive land cover classificaton. Each land cover (Water, Urban, Forest, Agriculture) is assigned a Band 6 emissivity value. The ratio image is then combined with the Band 6 image and atmospheric propagation data to generate the bottom right image. This image represents a display of data whose digital count can be directly related to estimated surface temperature. The resolution appears higher because the process cell is the size of the TM shortwave pixels.

  2. Synthesis and implementation of state-trajectory control law for dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Burns, W. W., III; Huffman, S. D.; Wilson, T. G.; Owen, H. A., Jr.

    1977-01-01

    Mathematical representations of a state-plane switching boundary employed in a state-trajectory control law for dc-to-dc converters are derived. Two approaches to implementing the control law are discussed; one approach employs a digital processor and the other uses analog computational circuits. Performance characteristics of experimental voltage step-up dc-to-dc converters operating under the control of each of these implementations are presented.

  3. Seamless integration of 57.2-Gb/s signal wireline transmission and 100-GHz wireless delivery.

    PubMed

    Li, Xinying; Yu, Jianjun; Dong, Ze; Cao, Zizheng; Chi, Nan; Zhang, Junwen; Shao, Yufeng; Tao, Li

    2012-10-22

    We experimentally demonstrated the seamless integration of 57.2-Gb/s signal wireline transmission and 100-GHz wireless delivery adopting polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) modulation with 400-km single-mode fiber-28 (SMF-28) transmission and 1-m wireless delivery. The X- and Y-polarization components of optical PDM-QPSK baseband signal are simultaneously up-converted to 100 GHz by optical polarization-diversity heterodyne beating, and then independently transmitted and received by two pairs of transmitter and receiver antennas, which make up a 2x2 multiple-input multiple-output (MIMO) wireless link based on microwave polarization multiplexing. At the wireless receiver, a two-stage down conversion is firstly done in analog domain based on balanced mixer and sinusoidal radio frequency (RF) signal, and then in digital domain based on digital signal processing (DSP). Polarization de-multiplexing is realized by constant modulus algorithm (CMA) based on DSP in heterodyne coherent detection. Our experimental results show that more taps are required for CMA when the X- and Y-polarization antennas have different wireless distance.

  4. Determination of band alignment at two-dimensional MoS2/Si van der Waals heterojunction

    NASA Astrophysics Data System (ADS)

    Goel, Neeraj; Kumar, Rahul; Mishra, Monu; Gupta, Govind; Kumar, Mahesh

    2018-06-01

    To understand the different mechanism occurring at the MoS2-silicon interface, we have fabricated a MoS2/Si heterojunction by exfoliating MoS2 on top of the silicon substrate. Raman spectroscopy and atomic force microscopy (AFM) measurement expose the signature of few-layers in the deposited MoS2 flake. Herein, the temperature dependence of the energy barrier and carrier density at the MoS2/Si heterojunction has been extensively investigated. Furthermore, to study band alignment at the MoS2/Si interface, we have calculated a valence band offset of 0.66 ± 0.17 eV and a conduction band offset of 0.42 ± 0.17 eV using X-ray and Ultraviolet photoelectron spectroscopy. We determined a type-II band alignment at the interface which is very conducive for the transport of photoexcited carriers. As a proof-of-concept application, we extend our analysis of the photovoltaic behavior of the MoS2/Si heterojunction. This work provides not only a comparative study between MoS2/p-Si and MoS2/n-Si heterojunctions but also paves the way to engineer the properties of the interface for the future integration of MoS2 with silicon.

  5. An actively mode-locked fiber laser for sampling in a wide-bandwidth opto-electronic analog-to-digital converter

    NASA Astrophysics Data System (ADS)

    Powers, John P.; Pace, Phillip E.

    2008-02-01

    We have designed, built and tested an actively mode-locked fiber laser, operating at 1550 nm, for use as the sampling waveform in an opto-electronic analog-to-digital converter (ADC). Analysis shows that, in order to digitize a 10-GHz signal to 10 bits of resolution, the sampling pulsewidth must be less than 2.44 ps, the RMS timing jitter must be below 31.0 fs, and the RMS amplitude jitter must be below 0.195%. Fiber lasers have proven to have the capability to narrowly exceed these operating requirements. The fiber laser is a "sigma" laser consisting of Er-doped gain medium, dispersion-compensating fiber, nonlinear fiber, a Faraday rotation mirror, polarization-maintaining fiber and components, and diode pump lasers. The active mode-locking is achieved by a Mach-Zehnder interferometer modulator, driven by a frequency synthesizer operating at the desired sampling rate. A piezo-electric element is used in a feedback control loop to stabilize the output PRF against environmental changes. Measurements of the laser output revealed the maximum nominal PRF to be 16 GHz, the nominal pulsewidth to be 7.2 ps, and the nominal RNS timing jitter to be 386 fs. Incorporating this laser into a sampling ADC would allow us to sample a 805-MHz bandwidth signal to a resolution of 10 bits as limited by timing jitter. Techniques to reduce the timing-jitter bottleneck are discussed.

  6. Digital Quantum Simulation of Minimal AdS/CFT.

    PubMed

    García-Álvarez, L; Egusquiza, I L; Lamata, L; Del Campo, A; Sonner, J; Solano, E

    2017-07-28

    We propose the digital quantum simulation of a minimal AdS/CFT model in controllable quantum platforms. We consider the Sachdev-Ye-Kitaev model describing interacting Majorana fermions with randomly distributed all-to-all couplings, encoding nonlocal fermionic operators onto qubits to efficiently implement their dynamics via digital techniques. Moreover, we also give a method for probing nonequilibrium dynamics and the scrambling of information. Finally, our approach serves as a protocol for reproducing a simplified low-dimensional model of quantum gravity in advanced quantum platforms as trapped ions and superconducting circuits.

  7. Digital Quantum Simulation of Minimal AdS /CFT

    NASA Astrophysics Data System (ADS)

    García-Álvarez, L.; Egusquiza, I. L.; Lamata, L.; del Campo, A.; Sonner, J.; Solano, E.

    2017-07-01

    We propose the digital quantum simulation of a minimal AdS /CFT model in controllable quantum platforms. We consider the Sachdev-Ye-Kitaev model describing interacting Majorana fermions with randomly distributed all-to-all couplings, encoding nonlocal fermionic operators onto qubits to efficiently implement their dynamics via digital techniques. Moreover, we also give a method for probing nonequilibrium dynamics and the scrambling of information. Finally, our approach serves as a protocol for reproducing a simplified low-dimensional model of quantum gravity in advanced quantum platforms as trapped ions and superconducting circuits.

  8. Luminescence- and nanoparticle-mediated increase of light absorption by photoreceptor cells: Converting UV light to visible light.

    PubMed

    Li, Lei; Sahi, Sunil K; Peng, Mingying; Lee, Eric B; Ma, Lun; Wojtowicz, Jennifer L; Malin, John H; Chen, Wei

    2016-02-10

    We developed new optic devices - singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light - for improvement of visual system functions. Tb(3+) or Eu(3+) singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb(3+) or Eu(3+) doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases.

  9. Shuttle orbiter S-band communications equipment design evaluation

    NASA Technical Reports Server (NTRS)

    Springett, J. C.

    1979-01-01

    An assessment of S-band communication equipment includes: (1) the review and analysis of the ability of the various subsystem avionic equipment designs to interface with, and operate on signals from/to adjoining equipment; (2) the performance peculiarities of the hardware against the overall specified system requirements; and (3) the evaluation of EMC EMI test results of the various equipment with respect to the possibility of mutual interferences.

  10. Mini-RF S- and X-band Bistatic Observations of the Floor of Cabeus Crater

    NASA Astrophysics Data System (ADS)

    Patterson, Gerald Wesley; Stickle, Angela; Turner, Franklin; Jensen, James; Cahill, Joshua; Mini-RF Team

    2017-10-01

    The Mini-RF instrument aboard NASA’s Lunar Reconnaissance Orbiter (LRO) is a hybrid dual-polarized synthetic aperture radar (SAR) and operates in concert with the Arecibo Observatory (AO) and the Goldstone deep space communications complex 34 meter antenna DSS-13 to collect S- and X-band bistatic radar data of the Moon. Bistatic radar data provide a means to probe the near subsurface for the presence of water ice, which exhibits a strong response in the form of a Coherent Backscatter Opposition Effect (CBOE). This effect has been observed in radar data for the icy surfaces of the Galilean satellites, the polar caps of Mars, polar craters on Mercury, and terrestrial ice sheets in Greenland. Previous work using Mini-RF S-band (12.6 cm) bistatic data suggests the presence of a CBOE associated with the floor of the lunar south polar crater Cabeus. The LRO spacecraft has begun its third extended mission. For this phase of operations Mini-RF is leveraging the existing AO architecture to make S-band radar observations of additional polar craters (e.g., Haworth, Shoemaker, Faustini). The purpose of acquiring these data is to determine whether other polar craters exhibit the response observed for Cabeus. Mini-RF has also initiated a new mode of operation that utilizes the X-band (4.2cm) capability of the instrument receiver and a recently commissioned X/C-band transmitter within the Deep Space Network’s (DSN) Goldstone complex to collect bistatic X-band data of the Moon. The purpose of acquiring these data is to constrain the depth/thickness of materials that exhibit a CBOE response - with an emphasis on observing the floor of Cabeus. Recent Mini-RF X-band observations of the floors of the craters Cabeus do not show evidence for a CBOE. This would suggest that the upper ~0.5 meters of the regolith for the floor of Cabeus do not harber water ice in a form detectable at 4.2 cm wavelengths.

  11. Contradictions in digital health engagement: An activity tracker’s ambiguous influence on vulnerable young adults’ engagement in own health

    PubMed Central

    Bertelsen, Pernille

    2018-01-01

    Objective Activity trackers are designed to support individuals in monitoring and increasing their physical activity. The use of activity trackers among individuals diagnosed with depression and anxiety has not yet been examined. This pilot study investigates how this target group engages with an activity tracker during a 10-week health intervention aimed to increase their physical activity level and improve their physical and mental health. Methods Two groups of 11 young adults (aged 18–29 years) diagnosed with depression or anxiety participated in the digital health intervention. The study used mixed methods to investigate the research question. Quantitative health data were used to assess the intervention’s influence on the participants’ health and qualitative data provided insights into the participants’ digital health experience. Results The study demonstrated an ambiguous influence from the use of an activity tracker with positive physical and mental health results, but a fading and even negative digital health engagement and counterproductive competition. Conclusions The ambiguous results identify a need for (1) developing strategies for health professionals to provide supervised use of activity trackers and support the target groups’ abilities to convert health information about physical activity into positive health strategies, and (2) designing alternatives for health promoting IT targeted users who face challenges and need motivation beyond self-tracking and competition.

  12. Digital Audio Application to Short Wave Broadcasting

    NASA Technical Reports Server (NTRS)

    Chen, Edward Y.

    1997-01-01

    Digital audio is becoming prevalent not only in consumer electornics, but also in different broadcasting media. Terrestrial analog audio broadcasting in the AM and FM bands will be eventually be replaced by digital systems.

  13. Origin of band bending at domain boundaries of MoS2: First-principles study

    NASA Astrophysics Data System (ADS)

    Kaneko, Tomoaki; Saito, Riichiro

    2018-04-01

    Using first-principles calculations based on density functional theory, the energetics and electronic structure of domain boundaries of MoS2, in which the same polar edges face each other, are investigated. We find that the interface model with homoelemental bonds is not energetically preferred in this system. The domain boundaries have defect levels that have wide distributions inside the band gap of MoS2. The upshift (or downshift) of the MoS2 energy band occurs around the domain boundaries when the occupation number of electrons in the defect levels increases (or decreases). The charge transfer of electrons from the graphite substrate plays an important role in band bending, which is observed in the recent experiments by scanning tunneling microscopy/spectroscopy.

  14. State of Louisiana - Highlighting low-lying areas derived from USGS Digital Elevation Data

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation highlighting the State of Louisiana and depicts the surrounding areas using muted elevation colors. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data are a mixture of data and were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Approximately one-half of the area shown on this map has DEM source data at a 30-meter resolution, with the remaining half consisting of mostly 10-meter contour-derived DEM data and some small areas of higher-resolution LIght Detection And Ranging (LIDAR) data along parts of the coastline. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and parish boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2007.

  15. TDRSS S-shuttle unique receiver equipment

    NASA Astrophysics Data System (ADS)

    Weinberg, A.; Schwartz, J. J.; Spearing, R.

    1985-01-01

    Beginning with STS-9, the Tracking and Date Relay Satellite system (TDRSS) will start providing S- and Ku-band communications and tracking support to the Space Shuttle and its payloads. The most significant element of this support takes place at the TDRSS White Sands Ground Terminal, which processes the Shuttle return link S- and Ku-band signals. While Ku-band hardware available to other TDRSS users is also applied to Ku-Shuttle, stringent S-Shuttle link margins have precluded the application of the standard TDRSS S-band processing equipment to S-Shuttle. It was therfore found necessary to develop a unique S-Shuttle Receiver that embodies state-of-the-art digital technology and processing techniques. This receiver, developed by Motorola, Inc., enhances link margins by 1.5 dB relative to the standard S-band equipment and its bit error rate performance is within a few tenths of a dB of theory. An overview description of the Space Shuttle Receiver Equipment (SSRE) is presented which includes the presentation of block diagrams and salient design features. Selected, measured performance results are also presented.

  16. Digitization of Analog Signals using a Field Programmable Gate Array (FPGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilera, Daniel; Rusu, Vadim

    The idea of this research is consolidating the electrical components used for capturing data in the Mu2e Tracker. Ideally, an FPGA will serve as the Time-Division Converters (TDC) and Analog-to-Digital Converters (ADC). The TDC is already being carried out by the FPGA, but we are still using off the shelf ADCs. This poster proposes using Low Voltage Differential Signaling as the basis for analog-to-digital conversion using and FPGA.

  17. Design and analysis of a radio frequency extractor in an S-band relativistic klystron amplifier.

    PubMed

    Zhang, Zehai; Zhang, Jun; Shu, Ting; Qi, Zumin

    2012-09-01

    A radio frequency (RF) extractor converts the energy of a strongly modulated intense relativistic electron beam (IREB) into the energy of high power microwave in relativistic klystron amplifier (RKA). In the aim of efficiently extracting the energy of the modulated IREB, a RF extractor with all round coupling structure is proposed. Due to the all round structure, the operating transverse magnetic mode can be established easily and its resonant property can be investigated with an approach of group delay time. Furthermore, the external quality factor can be low enough. The design and analysis of the extractor applied in an S-band RKA are carried out, and the performance of the extractor is validated with three-dimensional (3D) particle-in-cell simulations. The extraction efficiency reaches 27% in the simulation with a totally 3D model of the whole RKA. The primary experiments are also carried out and the results show that the RF extractor with the external quality factor of 7.9 extracted 22% of the beam power and transformed it into the high power microwave. Better results are expected after the parasitic mode between the input and middle cavities is suppressed.

  18. Design and analysis of a radio frequency extractor in an S-band relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Zehai; Zhang, Jun; Shu, Ting; Qi, Zumin

    2012-09-01

    A radio frequency (RF) extractor converts the energy of a strongly modulated intense relativistic electron beam (IREB) into the energy of high power microwave in relativistic klystron amplifier (RKA). In the aim of efficiently extracting the energy of the modulated IREB, a RF extractor with all round coupling structure is proposed. Due to the all round structure, the operating transverse magnetic mode can be established easily and its resonant property can be investigated with an approach of group delay time. Furthermore, the external quality factor can be low enough. The design and analysis of the extractor applied in an S-band RKA are carried out, and the performance of the extractor is validated with three-dimensional (3D) particle-in-cell simulations. The extraction efficiency reaches 27% in the simulation with a totally 3D model of the whole RKA. The primary experiments are also carried out and the results show that the RF extractor with the external quality factor of 7.9 extracted 22% of the beam power and transformed it into the high power microwave. Better results are expected after the parasitic mode between the input and middle cavities is suppressed.

  19. The Celestial Reference Frame at X/Ka-band (8.4/32 GHz)

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Heflin, M. B.; Skjerve, L. J.; Sovers, O. J.; Garcia-Miro, C.; Moll, V. E.; Horiuchi, S.

    2011-01-01

    A celestial reference frame at X/Ka-band (8.4/32 GHz) has been constructed using fifty-one 24-hour sessions with the Deep Space Network. We report on observations which have detected 436 sources covering the full 24 hours of right ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of 200 micro-arcsec in a cos delta and 290 micro-arcsec in delta. There is evidence for zonal errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of phase calibration, troposphere mismodelling, and limited southern geometry. The motivations for extending the ICRF to frequencies above 8 GHz are to access more compact source morphology for improved frame stability, to provide calibrators for phase referencing, and to support spacecraft navigation at Ka-band.

  20. VIIRS thermal emissive bands on-orbit calibration coefficient performance using vicarious calibration results

    NASA Astrophysics Data System (ADS)

    Moyer, D.; Moeller, C.; De Luccia, F.

    2013-09-01

    The Visible Infrared Imager Radiometer Suite (VIIRS), a primary sensor on-board the Suomi-National Polar-orbiting Partnership (SNPP) spacecraft, was launched October 28, 2011. It has 22 bands: 7 thermal emissive bands (TEBs), 14 reflective solar bands (RSBs) and a Day Night Band (DNB). The TEBs cover the spectral wavelengths between 3.7 to 12 μm and have two 371 m and five 742 m spatial resolution bands. A VIIRS Key Performance Parameter (KPP) is the sea surface temperature (SST) which uses bands M12 (3.7 μm), M15 (10.8 μm) and M16's (12.0 μm) calibrated Science Data Records (SDRs). The TEB SDRs rely on pre-launch calibration coefficients used in a quadratic algorithm to convert the detector's response to calibrated radiance. This paper will evaluate the performance of these prelaunch calibration coefficients using vicarious calibration information from the Cross-track Infrared Sounder (CrIS) also onboard the SNPP spacecraft and the Infrared Atmospheric Sounding Interferometer (IASI) on-board the Meteorological Operational (MetOp) satellite. Changes to the pre-launch calibration coefficients' offset term c0 to improve the SDR's performance at cold scene temperatures will also be discussed.

  1. Bandwidth Extension of an S-band, Fundamental-Mode Eight-Beam Klystron

    DTIC Science & Technology

    2006-04-01

    Extension of an S - band , Fundamental-Mode Eight-Beam Klystron Khanh T. Nguyen Beam-Wave Research, Inc. Bethesda, MD 20814 Dean E. Pershing ATK Mission...of a five-cavity, approximately 18 cm downstream from the center of the broadband, high - power multiple-beam klystron (MBK) first gap - the logical...the circuit generates >550 kW across the band with a peak power of more than 600 kW at -3.27 Keywords: Multiple-beam klystron ; MBK; bandwidth GHz. The 1

  2. Generalized parametric down conversion, many particle interferometry, and Bell's theorem

    NASA Technical Reports Server (NTRS)

    Choi, Hyung Sup

    1992-01-01

    A new field of multi-particle interferometry is introduced using a nonlinear optical spontaneous parametric down conversion (SPDC) of a photon into more than two photons. The study of SPDC using a realistic Hamiltonian in a multi-mode shows that at least a low conversion rate limit is possible. The down converted field exhibits many stronger nonclassical phenomena than the usual two photon parametric down conversion. Application of the multi-particle interferometry to a recently proposed many particle Bell's theorem on the Einstein-Podolsky-Rosen problem is given.

  3. Development of the Low-cost Analog-to-Digital Converter (for nuclear physics experiments) with PC sound card

    NASA Astrophysics Data System (ADS)

    Sugihara, Kenkoh

    2009-10-01

    A low-cost ADC (Analogue-to-Digital Converter) with shaping embedded for undergraduate physics laboratory is developed using a home made circuit and a PC sound card. Even though an ADC is needed as an essential part of an experimental set up, commercially available ones are very expensive and are scarce for undergraduate laboratory experiments. The system that is developed from the present work is designed for a gamma-ray spectroscopy laboratory with NaI(Tl) counters, but not limited. For this purpose, the system performance is set to sampling rate of 1-kHz with 10-bit resolution using a typical PC sound card with 41-kHz or higher sampling rate and 16-bit resolution ADC with an addition of a shaping circuit. Details of the system and the status of development will be presented. Ping circuit and PC soundcard as typical PC sound card has 41.1kHz or heiger sampling rate and 16bit resolution ADCs. In the conference details of the system and the status of development will be presented.

  4. Correlated inter-regional variations in low frequency local field potentials and resting state BOLD signals within S1 cortex of monkeys.

    PubMed

    Wilson, George H; Yang, Pai-Feng; Gore, John C; Chen, Li Min

    2016-08-01

    The hypothesis that specific frequency components of the spontaneous local field potentials (LFPs) underlie low frequency fluctuations of resting state fMRI (rsfMRI) signals was tested. The previous analyses of rsfMRI signals revealed differential inter-regional correlations among areas 3a, 3b, and 1 of primary somatosensory cortex (S1) in anesthetized monkeys (Wang et al. [2013]: Neuron 78:1116-1126). Here LFP band(s) which correlated between S1 regions, and how these inter-regional correlation differences covaried with rsfMRI signals were examined. LFP signals were filtered into seven bands (delta, theta, alpha, beta, gamma low, gamma high, and gamma very high), and then a Hilbert transformation was applied to obtain measures of instantaneous amplitudes and temporal lags between regions of interest (ROI) digit-digit pairs (areas 3b-area 1, area 3a-area 1, area 3a-area 3b) and digit-face pairs (area 3b-face, area 1-face, and area 3a-face). It was found that variations in the inter-regional correlation strengths between digit-digit and digit-face pairs in the delta (1-4 Hz), alpha (9-14 Hz), beta (15-30 Hz), and gamma (31-50 Hz) bands parallel those of rsfMRI signals to varying degrees. Temporal lags between digit-digit area pairs varied across LFP bands, with area 3a mostly leading areas 1/2 and 3b. In summary, the data demonstrates that the low and middle frequency range (1-50 Hz) of spontaneous LFP signals similarly covary with the low frequency fluctuations of rsfMRI signals within local circuits of S1, supporting a neuronal electrophysiological basis of rsfMRI signals. Inter-areal LFP temporal lag differences provided novel insights into the directionality of information flow among S1 areas at rest. Hum Brain Mapp 37:2755-2766, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. A High-Linearity, Ring-Oscillator-Based, Vernier Time-to-Digital Converter Utilizing Carry Chains in FPGAs

    NASA Astrophysics Data System (ADS)

    Cui, Ke; Ren, Zhongjie; Li, Xiangyu; Liu, Zongkai; Zhu, Rihong

    2017-01-01

    Time-to-digital converters (TDCs) using dedicated carry chains of field programmable gate arrays (FPGAs) are usually organized in tapped-delay-line type which are intensively researched in recent years. However this method incurs poor differential nonlinearity (DNL) which arises from the inherent uneven bin granularity. This paper proposes a TDC architecture which utilizes the carry chains in a quite different manner in order to alleviate this long-standing problem. Two independent carry chains working as the delay lines for the fine time interpolation are organized in a ring-oscillator-based Vernier style and the time difference between them is finely adjusted by assigning different number of basic delay cells. A specific design flow is described to obtain the desired delay difference. The TDC was implemented on a Stratix III FPGA. Test results show that the obtained resolution is 31 ps and the DNL\\INL is in the range of (-0.080 LSB, 0.073 LSB)(-0.087 LSB, 0.091 LSB). This demonstrates that the proposed architecture greatly improves linearity compared to previous techniques. Additionally the resource cost is rather low which uses only 319 LUTs and 104 registers per TDC channel.

  6. Frequency-agile, rapid scanning cavity ring-down spectroscopy (FARS-CRDS) measurements of the (30012)←(00001) near-infrared carbon dioxide band

    NASA Astrophysics Data System (ADS)

    Long, D. A.; Wójtewicz, S.; Miller, C. E.; Hodges, J. T.

    2015-08-01

    We present new high accuracy measurements of the (30012)←(00001) CO2 band near 1575 nm recorded with a frequency-agile, rapid scanning cavity ring-down spectrometer. The resulting spectra were fit with the partially correlated, quadratic-speed-dependent Nelkin-Ghatak profile with line mixing. Significant differences were observed between the fitted line shape parameters and those found in existing databases, which are based upon more simplistic line profiles. Absolute transition frequencies, which were referenced to an optical frequency comb, are given, as well as the other line shape parameters needed to model this line profile. These high accuracy measurements should allow for improved atmospheric retrievals of greenhouse gas concentrations by current and future remote sensing missions.

  7. Evidence of significant down-conversion in a Si-based solar cell using CuInS2/ZnS core shell quantum dots

    NASA Astrophysics Data System (ADS)

    Gardelis, Spiros; Nassiopoulou, Androula G.

    2014-05-01

    We report on the increase of up to 37.5% in conversion efficiency of a Si-based solar cell after deposition of light-emitting Cd-free, CuInS2/ZnS core shell quantum dots on the active area of the cell due to the combined effect of down-conversion and the anti- reflecting property of the dots. We clearly distinguished the effect of down-conversion from anti-reflection and estimated an enhancement of up to 10.5% in the conversion efficiency due to down-conversion.

  8. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs

    PubMed Central

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-01-01

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765

  9. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs.

    PubMed

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-12-26

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.

  10. Simultaneous measurements of L- and S-band tree shadowing for space-Earth communications

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.; Lin, Hsin P.

    1995-01-01

    We present results from simultaneous L- and S-Band slant-path fade measurements through trees. One circularly-polarized antenna was used at each end of the dual-frequency link to provide information on the correlation of tree shadowing at 1620 and 2500 MHz. Fades were measured laterally in the shadow region with 5 cm spacing. Fade differences between L- and S-Band had a normal distribution with low means and standard deviations from 5.2 to 7.5 dB. Spatial variations occurred with periods larger than 1-2 wavelengths. Swept measurements over 160 MHz spans showed that the stdv. of power as function of frequency increased from approximately 1-6 dB at locations with mean fades of 4 and 20 dB, respectively. At a 5 dB fade, the central 90% of fade slopes were within a range of 0.7 (1.9) dB/MHz at L-(S-) Band.

  11. Crystallographic and optical properties and band diagrams of CuGaS2 and CuGa5S8 phases in Cu-poor Cu2S-Ga2S3 pseudo-binary system

    NASA Astrophysics Data System (ADS)

    Maeda, Tsuyoshi; Yu, Ying; Chen, Qing; Ueda, Kenta; Wada, Takahiro

    2017-04-01

    We synthesized Cu-poor Cu-Ga-S samples such, as CuGaS2 and CuGa5S8 with the composition of (1 - x)Cu2S-(x)Ga2S3 with 0.5 ≤ x ≤ 1.0, by a mechanochemical process and sequential heating. The crystal structure changes from tetragonal chalcopyrite-type CuGaS2 (0.5 ≤ x ≤ 0.55) to tetragonal stannite-type CuGa5S8 (x = 0.8). For samples with 0.60 ≤ x ≤ 0.75, the diffraction peaks were identified to be those of a mixed phase of the chalcopyrite- and stannite-type structures. The band-gap energies of Cu-poor Cu-Ga-S samples increase in a stepwise manner with increasing x. The band-gap energy of CuGa5S8 (x = 0.8) with the tetragonal stannite-type structure is approximately 2.66 eV, which is wider than that of chalcopyrite-type CuGaS2 (2.45 eV). The energy levels of valence band maxima (VBMs) were estimated from the ionization energies measured by photoemission yield spectroscopy (PYS). The energy levels of the VBM and conduction band minimum (CBM) of the Cu-poor Cu-Ga-S samples decrease significantly with increasing x (decreasing Cu/Ga ratio). The energy level of the VBM of CuGaS2 (-5.8 eV) is considerably deeper than those of CuInSe2 (-5.2 eV) and CuInS2 (-5.5 eV). The VBM of stannite-type CuGa5S8 with x = 0.8 (-6.4 eV) is much deeper than that of chalcopyrite-type CuGaS2 (-5.8 eV) and stannite-type CuIn3Se5 (-5.6 eV). In order to understand the band structures of chalcopyrite-type CuGaS2 and stannite-type CuGa5S8, we performed first-principles calculations using the Heyd-Scuseria-Ernzerhof (HSE06), nonlocal screened hybrid density functional method. The theoretical band-gap energy of stannite-type CuGa5S8 (2.2 eV) is wider than that of chalcopyrite-type CuGaS2 (2.0 eV). Both the theoretical and experimental band gaps of stannite-type CuGa5S8 are about 0.2 eV wider than those of chalcopyrite-type CuGaS2.

  12. Characterization of a detector chain using a FPGA-based time-to-digital converter to reconstruct the three-dimensional coordinates of single particles at high flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogrette, F.; Chang, R.; Bouton, Q.

    We report on the development of a novel FPGA-based time-to-digital converter and its implementation in a detection chain that records the coordinates of single particles along three dimensions. The detector is composed of micro-channel plates mounted on top of a cross delay line and connected to fast electronics. We demonstrate continuous recording of the timing signals from the cross delay line at rates up to 4.1 × 10{sup 6} s{sup −1} and three-dimensional reconstruction of the coordinates up to 3.2 × 10{sup 6} particles per second. From the imaging of a calibrated structure we measure the in-plane resolution of themore » detector to be 140(20) μm at a flux of 3 × 10{sup 5} particles per second. In addition, we analyze a method to estimate the resolution without placing any structure under vacuum, a significant practical improvement. While we use UV photons here, the results of this work apply to the detection of other kinds of particles.« less

  13. Image resolution in the digital era: notion and clinical implications.

    PubMed

    Rakhshan, Vahid

    2014-12-01

    Digital radiographs need additional metadata in order to be accurate when being converted to analog media. Resolution is a major reason of failures in proper printing or digitizing the images. This letter shortly explains the overlooked pitfalls of digital radiography and photography in dental practice, and briefly instructs the reader how to avoid or rectify common problems associated with resolution calibration of digital radiographs.

  14. Dust evolution, a global view: II. Top-down branching, nanoparticle fragmentation and the mystery of the diffuse interstellar band carriers

    PubMed Central

    2016-01-01

    The origin of the diffuse interstellar bands (DIBs), one of the longest-standing mysteries of the interstellar medium (ISM), is explored within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS). The likely nature of the DIB carriers and their evolution is here explored within the framework of the structures and sub-structures inherent to doped hydrogenated amorphous carbon grains in the ISM. Based on the natural aromatic-rich moieties (asphaltenes) recovered from coal and oil, the likely structure of their interstellar analogues is investigated within the context of the diffuse band problem. It is here proposed that the top-down evolution of interstellar carbonaceous grains, and, in particular, a-C(:H) nanoparticles, is at the heart of the formation and evolution of the DIB carriers and their associations with small molecules and radicals, such as C2, C3, CH and CN. It is most probable that the DIBs are carried by dehydrogenated, ionized, hetero-cyclic, olefinic and aromatic-rich moieties that form an integral part of the contiguous structure of hetero-atom-doped hydrogenated amorphous carbon nanoparticles and their daughter fragmentation products. Within this framework, it is proposed that polyene structures in all their variants could be viable DIB carrier candidates. PMID:28083089

  15. Dust evolution, a global view: II. Top-down branching, nanoparticle fragmentation and the mystery of the diffuse interstellar band carriers

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    2016-12-01

    The origin of the diffuse interstellar bands (DIBs), one of the longest-standing mysteries of the interstellar medium (ISM), is explored within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS). The likely nature of the DIB carriers and their evolution is here explored within the framework of the structures and sub-structures inherent to doped hydrogenated amorphous carbon grains in the ISM. Based on the natural aromatic-rich moieties (asphaltenes) recovered from coal and oil, the likely structure of their interstellar analogues is investigated within the context of the diffuse band problem. It is here proposed that the top-down evolution of interstellar carbonaceous grains, and, in particular, a-C(:H) nanoparticles, is at the heart of the formation and evolution of the DIB carriers and their associations with small molecules and radicals, such as C2, C3, CH and CN. It is most probable that the DIBs are carried by dehydrogenated, ionized, hetero-cyclic, olefinic and aromatic-rich moieties that form an integral part of the contiguous structure of hetero-atom-doped hydrogenated amorphous carbon nanoparticles and their daughter fragmentation products. Within this framework, it is proposed that polyene structures in all their variants could be viable DIB carrier candidates.

  16. Optical fiber-fault surveillance for passive optical networks in S-band operation window

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Chi, Sien

    2005-07-01

    An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.

  17. Optical fiber-fault surveillance for passive optical networks in S-band operation window.

    PubMed

    Yeh, Chien-Hung; Chi, Sien

    2005-07-11

    An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.

  18. A standardized way to select, evaluate, and test an analog-to-digital converter for ultrawide bandwidth radiofrequency signals based on user's needs, ideal, published,and actual specifications

    NASA Astrophysics Data System (ADS)

    Chang, Daniel Y.; Rowe, Neil C.

    2012-06-01

    The most important adverse impact on the Electronic Warfare (EW) simulation is that the number of signal sources that can be tested simultaneously is relatively small. When the number of signal sources increases, the analog hardware, complexity and costs grow by the order of N2, since the number of connections among N components is O(N*N) and the signal communication is bi-directional. To solve this problem, digitization of the signal is suggested. In digitizing a radiofrequency signal, an Analog-to-Digital Converter (ADC) is widely used. Most research studies on ADCs are conducted from designer/test engineers' perspective. Some research studies are conducted from market's perspective. This paper presents a generic way to select, evaluate and test ultra high bandwidth COTS ADCs and generate requirements for digitizing continuous time signals from the perspective of user's needs. Based on user's needs, as well as vendor's published, ideal and actual specifications, a decision can be made in selecting a proper ADC for an application. To support our arguments and illustrate the methodology, we evaluate a Tektronix TADC-1000, an 8-bit and 12 gigasamples per second ADC. This project is funded by JEWEL lab, NAWCWD at Point Mugu, CA.

  19. Ultrafast Digital Printing toward 4D Shape Changing Materials.

    PubMed

    Huang, Limei; Jiang, Ruiqi; Wu, Jingjun; Song, Jizhou; Bai, Hao; Li, Bogeng; Zhao, Qian; Xie, Tao

    2017-02-01

    Ultrafast 4D printing (<30 s) of responsive polymers is reported. Visible-light-triggered polymerization of commercial monomers defines digitally stress distribution in a 2D polymer film. Releasing the stress after the printing converts the structure into 3D. An additional dimension can be incorporated by choosing the printing precursors. The process overcomes the speed limiting steps of typical 3D (4D) printing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Shuttle payload S-band communications system

    NASA Technical Reports Server (NTRS)

    Batson, B. H.; Teasdale, W. E.; Pawlowski, J. F.; Schmidt, O. L.

    1985-01-01

    The Shuttle payload S-band communications system design, operational capabilities, and performance are described in detail. System design requirements, overall system and configuration and operation, and laboratory/flight test results are presented. Payload communications requirements development is discussed in terms of evolvement of requirements as well as the resulting technical challenges encountered in meeting the initial requirements. Initial design approaches are described along with cost-saving initiatives that subsequently had to be made. The resulting system implementation that was finally adopted is presented along with a functional description of the system operation. A description of system test results, problems encountered, how the problems were solved, and the system flight experience to date is presented. Finally, a summary of the advancements made and the lessons learned is discussed.

  1. Digital fluxgate magnetometer: design notes

    NASA Astrophysics Data System (ADS)

    Belyayev, Serhiy; Ivchenko, Nickolay

    2015-12-01

    We presented an approach to understanding the performance of a fully digital fluxgate magnetometer. All elements of the design are important for the performance of the instrument, and the presence of the digital feed-back loop introduces certain peculiarities affecting the noise and dynamic performance of the instrument. Ultimately, the quantisation noise of the digital to analogue converter is found to dominate the noise of the current design, although noise shaping alleviates its effect to some extent. An example of magnetometer measurements on board a sounding rocket is presented, and ways to further improve the performance of the instrument are discussed.

  2. Period-dependent source rupture behavior of the 2011 Tohoku earthquake estimated by multi period-band Bayesian waveform inversion

    NASA Astrophysics Data System (ADS)

    Kubo, H.; Asano, K.; Iwata, T.; Aoi, S.

    2014-12-01

    Previous studies for the period-dependent source characteristics of the 2011 Tohoku earthquake (e.g., Koper et al., 2011; Lay et al., 2012) were based on the short and long period source models using different method. Kubo et al. (2013) obtained source models of the 2011 Tohoku earthquake using multi period-bands waveform data by a common inversion method and discussed its period-dependent source characteristics. In this study, to achieve more in detail spatiotemporal source rupture behavior of this event, we introduce a new fault surface model having finer sub-fault size and estimate the source models in multi period-bands using a Bayesian inversion method combined with a multi-time-window method. Three components of velocity waveforms at 25 stations of K-NET, KiK-net, and F-net of NIED are used in this analysis. The target period band is 10-100 s. We divide this period band into three period bands (10-25 s, 25-50 s, and 50-100 s) and estimate a kinematic source model in each period band using a Bayesian inversion method with MCMC sampling (e.g., Fukuda & Johnson, 2008; Minson et al., 2013, 2014). The parameterization of spatiotemporal slip distribution follows the multi-time-window method (Hartzell & Heaton, 1983). The Green's functions are calculated by the 3D FDM (GMS; Aoi & Fujiwara, 1999) using a 3D velocity structure model (JIVSM; Koketsu et al., 2012). The assumed fault surface model is based on the Pacific plate boundary of JIVSM and is divided into 384 subfaults of about 16 * 16 km^2. The estimated source models in multi period-bands show the following source image: (1) First deep rupture off Miyagi at 0-60 s toward down-dip mostly radiating relatively short period (10-25 s) seismic waves. (2) Shallow rupture off Miyagi at 45-90 s toward up-dip with long duration radiating long period (50-100 s) seismic wave. (3) Second deep rupture off Miyagi at 60-105 s toward down-dip radiating longer period seismic waves then that of the first deep rupture. (4) Deep

  3. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  4. Digital ac monitor

    DOEpatents

    Hart, G.W.; Kern, E.C. Jr.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.

  5. Wavefunction Properties and Electronic Band Structures of High-Mobility Semiconductor Nanosheet MoS2

    NASA Astrophysics Data System (ADS)

    Baik, Seung Su; Lee, Hee Sung; Im, Seongil; Choi, Hyoung Joon; Ccsaemp Team; Edl Team

    2014-03-01

    Molybdenum disulfide (MoS2) nanosheet is regarded as one of the most promising alternatives to the current semiconductors due to its significant band-gap and electron-mobility enhancement upon exfoliating. To elucidate such thickness-dependent properties, we have studied the electronic band structures of bulk and monolayer MoS2 by using the first-principles density-functional method as implemented in the SIESTA code. Based on the wavefunction analyses at the conduction band minimum (CBM) points, we have investigated possible origins of mobility difference between bulk and monolayer MoS2. We provide formation energies of substitutional impurities at the Mo and S sites, and discuss feasible electron sources which may induce a significant difference in the carrier lifetime. This work was supported by NRF of Korea (Grant Nos. 2009-0079462 and 2011-0018306), Nano-Material Technology Development Program (2012M3a7B4034985), and KISTI supercomputing center (Project No. KSC-2013-C3-008). Center for Computational Studies of Advanced Electronic Material Properties.

  6. White lighting device from composite films embedded with hydrophilic Cu(In, Ga)S2/ZnS and hydrophobic InP/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Hoon; Yang, Heesun

    2014-06-01

    Two types of non-Cd quantum dots (QDs)—In/Ga ratio-varied, green-to-greenish-yellow fluorescence-tuned Cu-In-Ga-S (CIGS) alloy ones, and red-emitting InP ones—are synthesized for use as down-converters in conjunction with a blue light-emitting diode (LED). Among a series of Ga-rich CI1-xGxS/ZnS core/shell QDs (x = 0.7, 0.8, and 0.9), CI0.2G0.8S/ZnS QD is chosen for the hydrophobic-to-hydrophilic surface modification via an in-situ ligand exchange and then embedded in a water-soluble polyvinyl alcohol (PVA). This free-standing composite film is utilized as a down-converter for the fabrication of a remote-type white QD-LED, but the resulting bi-colored device exhibits a cool white light with a limited color rendering index property. To improve white light qualities, another QD-polymer film of hydrophobic red InP/ZnS QD-embedding polyvinylpyrrolidone is sequentially stacked onto the CI0.2G0.8S/ZnS QD-PVA film, producing a unique dual color-emitting, flexible and transparent bilayered composite film. Tri-colored white QD-LED integrated with the bilayered QD film possesses an exceptional color rendering property through reinforcing a red spectral component and balancing a white spectral distribution.

  7. White lighting device from composite films embedded with hydrophilic Cu(In, Ga)S2/ZnS and hydrophobic InP/ZnS quantum dots.

    PubMed

    Kim, Jong-Hoon; Yang, Heesun

    2014-06-06

    Two types of non-Cd quantum dots (QDs)-In/Ga ratio-varied, green-to-greenish-yellow fluorescence-tuned Cu-In-Ga-S (CIGS) alloy ones, and red-emitting InP ones-are synthesized for use as down-converters in conjunction with a blue light-emitting diode (LED). Among a series of Ga-rich CI1-xGxS/ZnS core/shell QDs (x = 0.7, 0.8, and 0.9), CI0.2G0.8S/ZnS QD is chosen for the hydrophobic-to-hydrophilic surface modification via an in-situ ligand exchange and then embedded in a water-soluble polyvinyl alcohol (PVA). This free-standing composite film is utilized as a down-converter for the fabrication of a remote-type white QD-LED, but the resulting bi-colored device exhibits a cool white light with a limited color rendering index property. To improve white light qualities, another QD-polymer film of hydrophobic red InP/ZnS QD-embedding polyvinylpyrrolidone is sequentially stacked onto the CI0.2G0.8S/ZnS QD-PVA film, producing a unique dual color-emitting, flexible and transparent bilayered composite film. Tri-colored white QD-LED integrated with the bilayered QD film possesses an exceptional color rendering property through reinforcing a red spectral component and balancing a white spectral distribution.

  8. An Optimized Control for LLC Resonant Converter with Wide Load Range

    NASA Astrophysics Data System (ADS)

    Xi, Xia; Qian, Qinsong

    2017-05-01

    This paper presents an optimized control which makes LLC resonant converters operate with a wider load range and provides good closed-loop performance. The proposed control employs two paralleled digital compensations to guarantee the good closed-loop performance in a wide load range during the steady state, an optimized trajectory control will take over to change the gate-driving signals immediately at the load transients. Finally, the proposed control has been implemented and tested on a 150W 200kHz 400V/24V LLC resonant converter and the result validates the proposed method.

  9. Exotic superconductivity with enhanced energy scales in materials with three band crossings

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ping; Nandkishore, Rahul M.

    2018-04-01

    Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.

  10. Development of components for an S-band phased array antenna subsystem

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The system requirements, module test data, and S-band phased array subsystem test data are discussed. Of the two approaches to achieving antenna gain (mechanically steered reflector or electronically steered phased array), the phased array approach offers the greatest simplicity and lowest cost (size, weight, power, and dollars) for this medium gain. A competitive system design is described as well as hardware evaluation which will lead to timely availability of this technology for implementing such a system. The objectives of the study were: to fabricate and test six engineering model transmit/receive microelectronics modules; to design, fabricate, and test one dc and logic multilayer manifold; and to integrate and test an S-band phased array antenna subsystem composed of antenna elements, seven T/R modules, RF manifolds and dc manifold.

  11. A cryogenic DAC operating down to 4.2 K

    NASA Astrophysics Data System (ADS)

    Rahman, M. T.; Lehmann, T.

    2016-04-01

    This paper presents a 10 bit CMOS current steering digital to analog converter (DAC) that operates from room temperature to as low as 4.2 K. It works as the core part of a cryogenic Silicon quantum computer controller circuit producing rapid control gate voltage pulses for quantum bits (qubits) initialization. An improved analog calibration method with a unique unit current cell design is included in the D/A converter structure to overcome the extended cryogenic nonlinear and mismatch effects. The DAC retains its 10 bit linear monotonic behavior over the wide temperature range and it drives a 50 Ω load to 516 mV with a full scale rise time of 10 ns. The differential non-linearity (DNL) of the converter is 0.35LSB while its average power consumption is 32.18 mW from a 3 V power supply. The complete converter is fabricated using a commercial 0.5 μm 1 poly 3 metal Silicon on Sapphire (SOS) CMOS process. He briefly worked as a Lecturer in the Stamford University Bangladesh prior to starting his Ph.D. in 2012 in the School of Electrical Engineering and Telecommunications, UNSW. His Ph.D. research is focused on cryogenic electronics for Quantum Computer Interface. His main research interests are in designing data converters for ultra-low temperature electronics and biomedical applications. He spent two years as a Research Fellow at the University of Edinburgh, U.K., where he worked with biologically inspired artificial neural systems. From 1997 to 2000, he was an Assistant Professor in electronics at the Technical University of Denmark, working with low-power low-noise low-voltage analog and mixed analog-digital integrated circuits. From 2001 to 2003 he was Principal Engineer with Cochlear Ltd., Australia, where he was involved in the design of the world's first fully implantable cochlear implant. Today he is Associate Professor in microelectronics at the University of New South Wales, Australia. He has authored over 100 journal papers, conference papers, book chapters

  12. Observation of energy transfer phenomenon via up and down conversion in Eu3+ ions for BaMoO4:Er3+-Eu3+ nanophosphor

    NASA Astrophysics Data System (ADS)

    Soni, Abhishek Kumar; Ningthoujam, Raghumani Singh

    2018-04-01

    The Er3+-Eu3+ codoped BaMoO4 nanophosphor has been synthesized by using urea hydrolysis in ethylene glycol medium. The tetragonal phase formation of the codoped nanophosphor has been confirmed by the X-ray diffraction analysis. The up and down conversion emission spectra have been recorded via 980 and 270 nm excitation, respectively. The Eu3+ emission arising in the prepared Er3+-Eu3+ codoped BaMoO4 nanophosphor is basically due to the efficient energy transfer process. The energy level diagram has been sketched to show the energy transfer phenomenon in the Eu3+ ion from charge transfer band (host lattice absorption) and excited level of the Er3+ ion (multiphoton absorption). The values of colour co-ordinates suggest that materials can produce the red to yellow. The developed nanophosphor could be useful as an effective up and down converting optical material and lighting device applications.

  13. Ka-Band, Multi-Gigabit-Per-Second Transceiver

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.; Smith, Francis J.; Harris, Johnny M.; Landon, David G.; Haddadin, Osama S.; McIntire, William K.; Sun, June Y.

    2011-01-01

    A document discusses a multi-Gigabit-per-second, Ka-band transceiver with a software-defined modem (SDM) capable of digitally encoding/decoding data and compensating for linear and nonlinear distortions in the end-to-end system, including the traveling-wave tube amplifier (TWTA). This innovation can increase data rates of space-to-ground communication links, and has potential application to NASA s future spacebased Earth observation system. The SDM incorporates an extended version of the industry-standard DVB-S2, and LDPC rate 9/10 FEC codec. The SDM supports a suite of waveforms, including QPSK, 8-PSK, 16-APSK, 32- APSK, 64-APSK, and 128-QAM. The Ka-band and TWTA deliver an output power on the order of 200 W with efficiency greater than 60%, and a passband of at least 3 GHz. The modem and the TWTA together enable a data rate of 20 Gbps with a low bit error rate (BER). The payload data rates for spacecraft in NASA s integrated space communications network can be increased by an order of magnitude (>10 ) over current state-of-practice. This innovation enhances the data rate by using bandwidth-efficient modulation techniques, which transmit a higher number of bits per Hertz of bandwidth than the currently used quadrature phase shift keying (QPSK) waveforms.

  14. Spatial Digital Database for the Geologic Map of Oregon

    USGS Publications Warehouse

    Walker, George W.; MacLeod, Norman S.; Miller, Robert J.; Raines, Gary L.; Connors, Katherine A.

    2003-01-01

    Introduction This report describes and makes available a geologic digital spatial database (orgeo) representing the geologic map of Oregon (Walker and MacLeod, 1991). The original paper publication was printed as a single map sheet at a scale of 1:500,000, accompanied by a second sheet containing map unit descriptions and ancillary data. A digital version of the Walker and MacLeod (1991) map was included in Raines and others (1996). The dataset provided by this open-file report supersedes the earlier published digital version (Raines and others, 1996). This digital spatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information for use in spatial analysis in a geographic information system (GIS). This database can be queried in many ways to produce a variety of geologic maps. This database is not meant to be used or displayed at any scale larger than 1:500,000 (for example, 1:100,000). This report describes the methods used to convert the geologic map data into a digital format, describes the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Scanned images of the printed map (Walker and MacLeod, 1991), their correlation of map units, and their explanation of map symbols are also available for download.

  15. Carbon in down woody materials of eastern U.S. forests

    Treesearch

    David C. Chojnacky; Robert A. Mickler; Linda S. Heath

    2003-01-01

    To better manage global carbon storage and other ecosystem processes, there is a need for accessible carbon data on components of down woody materials (DWM) in forests. We examined the feasibility of linking available data on DWM to the U.S. Department of Agriculture (USDA) Forest Inventory Analysis (FIA) database, which covers the nation's forest lands. We...

  16. An Airborne Programmable Digital to Video Converter Interface and Operation Manual.

    DTIC Science & Technology

    1981-02-01

    Identify by block number) SCAN CONVERTER VIDEO DISPLAY TELEVISION DISPLAY 20. ABSTRACT (Continue on reverse oide If necessary and Identify by block...programmable cathode ray tube (CRT) controller which is accessed by the CPU to permit operation in a wide variety of modes. The Alphanumeric Generator

  17. Device for modular input high-speed multi-channel digitizing of electrical data

    DOEpatents

    VanDeusen, A.L.; Crist, C.E.

    1995-09-26

    A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages. 1 fig.

  18. Device for modular input high-speed multi-channel digitizing of electrical data

    DOEpatents

    VanDeusen, Alan L.; Crist, Charles E.

    1995-09-26

    A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages.

  19. Converting Radiology Operations in a Six-Hospital Healthcare System from Film-Based to Digital: Another Leadership Role for the Diagnostic Medical Physicist

    NASA Astrophysics Data System (ADS)

    Arreola, Manuel M.; Rill, Lynn N.

    2004-09-01

    As medical facilities across the United States continue to convert their radiology operations from film-based to digital environments, partially accomplished and failed endeavors are frequent because of the lack of competent and knowledgeable leadership. The diagnostic medical physicist is, without a doubt, in a privileged position to take such a leadership role, not only because of her/his understanding of the basics principles of new imaging modalities, but also because of her/his inherent participation in workflow design and educational/training activities. A well-structured approach by the physicist will certainly lead the project to a successful completion, opening, in turn, new opportunities for the medical physicist to become an active participant in the decision-making process for an institution.

  20. Superconductor Digital Electronics: -- Current Status, Future Prospects

    NASA Astrophysics Data System (ADS)

    Mukhanov, Oleg

    2011-03-01

    Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The

  1. Digital Object Identifiers (DOI's) usage and adoption in U.S Geological Survey (USGS)

    NASA Astrophysics Data System (ADS)

    Frame, M. T.; Palanisamy, G.

    2013-12-01

    Addressing grand environmental science challenges requires unprecedented access to easily understood data that cross the breadth of temporal, spatial, and thematic scales. From a scientist's perspective, the big challenges lie in discovering the relevant data, dealing with extreme data heterogeneity, large data volumes, and converting data to information and knowledge. Historical linkages between derived products, i.e. Publications, and associated datasets has not existed in the earth science community. The USGS Core Science Analytics and Synthesis, in collaboration with DOE's Oak Ridge National Laboratory (ORNL) Mercury Consortium (funded by NASA, USGS and DOE), established a Digital Object Identifier (DOI) service for USGS data, metadata, and other media. This service is offered in partnership through the University of California Digital Library EZID service. USGS scientists, data managers, and other professionals can generate globally unique, persistent and resolvable identifiers for any kind of digital objects. Additional efforts to assign DOIs to historical data and publications have also been underway. These DOI identifiers are being used to cite data in journal articles, web-accessible datasets, and other media for distribution, integration, and in support of improved data management practices. The session will discuss the current DOI efforts within USGS, including a discussion on adoption, challenges, and future efforts necessary to improve access, reuse, sharing, and discoverability of USGS data and information.

  2. A compact dual-band RF front-end and board design for vehicular platforms

    NASA Astrophysics Data System (ADS)

    Sharawi, Mohammad S.; Aloi, Daniel N.

    2012-03-01

    Modern vehicular platforms include several wireless systems that provide navigation, entertainment and road side assistance, among other services. These systems operate at different frequency bands and thus careful system-level design should be followed to minimise the interference between them. In this study, we present a compact dual-band RF front-end module for global positioning system (GPS) operating in the L1-band (1574.42-1576.42 MHz) and satellite digital audio radio system (SDARS) operating in the S-band (2320-2345 MHz). The module provides more than 26 dB of measured gain in both bands and low noise figure values of 0.9 and 1.2 dB in SDARS and GPS bands, respectively. The front-end has interference suppression capability from the advanced mobile phone system and personal communication service cellular bands. The module is designed on a low-cost FR-4 substrate material and occupies a small size of 62 × 29 × 1.3 mm3. It dissipates 235 mW in the SDARS section and 100 mW in the GPS section. Three prototypes have been built to verify a repeatable performance.

  3. Fast-response free-running dc-to-dc converter employing a state-trajectory control law

    NASA Technical Reports Server (NTRS)

    Huffman, S. D.; Burns, W. W., III; Wilson, T. G.; Owen, H. A., Jr.

    1977-01-01

    A recently proposed state-trajectory control law for a family of energy-storage dc-to-dc converters has been implemented for the voltage step-up configuration. Two methods of realization are discussed; one employs a digital processor and the other uses analog computational circuits. Performance characteristics of experimental voltage step-up converters operating under the control of each of these implementations are reported and compared to theoretical predictions and computer simulations.

  4. Development and fabrication of S-band chip varactor parametric amplifier

    NASA Technical Reports Server (NTRS)

    Kramer, E.

    1974-01-01

    A noncryogenic, S-band parametric amplifier operating in the 2.2 to 2.3 GHz band and having an average input noise temperature of less than 30 K was built and tested. The parametric amplifier module occupies a volume of less than 1-1/4 cubic feet and weighs less than 60 pounds. The module is designed for use in various NASA ground stations to replace larger, more complex cryogenic units which require considerably more maintenance because of the cryogenic refrigeration system employed. The amplifier can be located up to 15 feet from the power supply unit. Optimum performance was achieved through the use of high-quality unpackaged (chip) varactors in the amplifier design.

  5. A new scoring function for top-down spectral deconvolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kou, Qiang; Wu, Si; Liu, Xiaowen

    2014-12-18

    Background: Top-down mass spectrometry plays an important role in intact protein identification and characterization. Top-down mass spectra are more complex than bottom-up mass spectra because they often contain many isotopomer envelopes from highly charged ions, which may overlap with one another. As a result, spectral deconvolution, which converts a complex top-down mass spectrum into a monoisotopic mass list, is a key step in top-down spectral interpretation. Results: In this paper, we propose a new scoring function, L-score, for evaluating isotopomer envelopes. By combining L-score with MS-Deconv, a new software tool, MS-Deconv+, was developed for top-down spectral deconvolution. Experimental results showedmore » that MS-Deconv+ outperformed existing software tools in top-down spectral deconvolution. Conclusions: L-score shows high discriminative ability in identification of isotopomer envelopes. Using L-score, MS-Deconv+ reports many correct monoisotopic masses missed by other software tools, which are valuable for proteoform identification and characterization.« less

  6. Digital radiographic imaging: is the dental practice ready?

    PubMed

    Parks, Edwin T

    2008-04-01

    Digital radiographic imaging is slowly, but surely, replacing film-based imaging. It has many advantages over traditional imaging, but the technology also has some drawbacks. The author presents an overview of the types of digital image receptors available, image enhancement software and the range of costs for the new technology. PRACTICE IMPLICATIONS. The expenses associated with converting to digital radiographic imaging are considerable. The purpose of this article is to provide the clinician with an overview of digital radiographic imaging technology so that he or she can be an informed consumer when evaluating the numerous digital systems in the marketplace.

  7. Adaptive frequency-domain equalization in digital coherent optical receivers.

    PubMed

    Faruk, Md Saifuddin; Kikuchi, Kazuro

    2011-06-20

    We propose a novel frequency-domain adaptive equalizer in digital coherent optical receivers, which can reduce computational complexity of the conventional time-domain adaptive equalizer based on finite-impulse-response (FIR) filters. The proposed equalizer can operate on the input sequence sampled by free-running analog-to-digital converters (ADCs) at the rate of two samples per symbol; therefore, the arbitrary initial sampling phase of ADCs can be adjusted so that the best symbol-spaced sequence is produced. The equalizer can also be configured in the butterfly structure, which enables demultiplexing of polarization tributaries apart from equalization of linear transmission impairments. The performance of the proposed equalization scheme is verified by 40-Gbits/s dual-polarization quadrature phase-shift keying (QPSK) transmission experiments.

  8. Preliminary digital map of cryptocrystalline occurrences in northern Nevada

    USGS Publications Warehouse

    Moyer, Lorre A.

    1999-01-01

    The purpose was to identify potential cryptocrystalline material sources for tools used by indigenous people of the northern Nevada portion of the Great Basin. Cryptocrystalline occurrence data combed from the U.S. Geological Survey's Mineral Resources Data System (MRDS, 1995) were combined with sites described in Nevada rockhound guides and entered into a geographic information system (GIS). The map area encompasses northern Nevada (fig.1). This open-file report describes the methods used to convert cryptocrystalline occurrence data into a digital format, documents the file structures, and explains how to download the digital files from the U.S. Geological Survey's World Wide Web site. Uses of the spatial dataset include, but are not limited to, natural and cultural resource management, interdisciplinary activities, recreational rockhounding, and gold exploration. It is important to note that the accuracy of the spatial data varies widely, and for some purposes, field checks are advised.

  9. Ultrafast transient grating radiation to optical image converter

    DOEpatents

    Stewart, Richard E; Vernon, Stephen P; Steel, Paul T; Lowry, Mark E

    2014-11-04

    A high sensitivity transient grating ultrafast radiation to optical image converter is based on a fixed transmission grating adjacent to a semiconductor substrate. X-rays or optical radiation passing through the fixed transmission grating is thereby modulated and produces a small periodic variation of refractive index or transient grating in the semiconductor through carrier induced refractive index shifts. An optical or infrared probe beam tuned just below the semiconductor band gap is reflected off a high reflectivity mirror on the semiconductor so that it double passes therethrough and interacts with the radiation induced phase grating therein. A small portion of the optical beam is diffracted out of the probe beam by the radiation induced transient grating to become the converted signal that is imaged onto a detector.

  10. Band alignments of different buffer layers (CdS, Zn(O,S), and In{sub 2}S{sub 3}) on Cu{sub 2}ZnSnS{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Chang; Liu, Fangyang; Song, Ning

    2014-04-28

    The heterojunctions of different n-type buffers, i.e., CdS, Zn(O,S), and In{sub 2}S{sub 3} on p-type Cu{sub 2}ZnSnS{sub 4} (CZTS) were investigated using X-ray Photoelectron Spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) Measurements. The band alignment of the heterojunctions formed between CZTS and the buffer materials was carefully measured. The XPS data were used to determine the Valence Band Offsets (VBO) of different buffer/CZTS heterojunctions. The Conduction Band Offset (CBO) was calculated indirectly by XPS data and directly measured by NEXAFS characterization. The CBO of the CdS/CZTS heterojunction was found to be cliff-like with CBO{sub XPS} = −0.24 ± 0.10 eV and CBO{submore » NEXAFS} = −0.18 ± 0.10 eV, whereas those of Zn(O,S) and In{sub 2}S{sub 3} were found to be spike-like with CBO{sub XPS} = 0.92 ± 0.10 eV and CBO{sub NEXAFS} = 0.87 ± 0.10 eV for Zn(O,S)/CZTS and CBO{sub XPS} = 0.41 ± 0.10 eV for In{sub 2}S{sub 3}/CZTS, respectively. The CZTS photovoltaic device using the spike-like In{sub 2}S{sub 3} buffer was found to yield a higher open circuit voltage (Voc) than that using the cliff-like CdS buffer. However, the CBO of In{sub 2}S{sub 3}/CZTS is slightly higher than the optimum level and thus acts to block the flow of light-generated electrons, significantly reducing the short circuit current (Jsc) and Fill Factor (FF) and thereby limiting the efficiency. Instead, the use of a hybrid buffer for optimization of band alignment is proposed.« less

  11. Development of an inherently digital transducer

    NASA Technical Reports Server (NTRS)

    Richard, R. R.

    1972-01-01

    The term digital transducer normally implies the combination of conventional analog sensors with encoders or analog-to-digital converters. Because of the objectionable characteristics of most digital transducers, a program was instituted to investigate the possibility of producing a transducer that is inherently digital, instead of a transducer that is digital in the usual sense. Such a device would have improved accuracy and reliability and would have reduced power and bulk requirements because two processes, sensing and conditioning, would be combined into one processes. A Curie-point-temperature sensor is described that represents realization of the stated goal. Also, a metal-insulator semiconductor is described that does not conform precisely to the program goals but that appears to have applications as a new and interesting transduction device.

  12. S-band 1.4 cell photoinjector design for high brightness beam generation

    NASA Astrophysics Data System (ADS)

    Pirez, E.; Musumeci, P.; Maxson, J.; Alesini, D.

    2017-09-01

    In this paper we study in detail the design of a novel S-band radiofrequency photogun structure to maximize the accelerating field experienced by the particles at injection. This is a critical quantity for electron sources as it has a direct impact on the maximum brightness achievable. The proposed design is based on a modification of the latest generation of S-band RF photoinjectors to include novel fabrication approaches. The gun is designed to operate at a 120 MV/m gradient and at an optimal injection phase of 70° providing the beam quality required to enable novel electron beam applications such as single shot time-resolved transmission electron microscopy and ultrafast electron nanodiffraction.

  13. Noise-shaping gradient descent-based online adaptation algorithms for digital calibration of analog circuits.

    PubMed

    Chakrabartty, Shantanu; Shaga, Ravi K; Aono, Kenji

    2013-04-01

    Analog circuits that are calibrated using digital-to-analog converters (DACs) use a digital signal processor-based algorithm for real-time adaptation and programming of system parameters. In this paper, we first show that this conventional framework for adaptation yields suboptimal calibration properties because of artifacts introduced by quantization noise. We then propose a novel online stochastic optimization algorithm called noise-shaping or ΣΔ gradient descent, which can shape the quantization noise out of the frequency regions spanning the parameter adaptation trajectories. As a result, the proposed algorithms demonstrate superior parameter search properties compared to floating-point gradient methods and better convergence properties than conventional quantized gradient-methods. In the second part of this paper, we apply the ΣΔ gradient descent algorithm to two examples of real-time digital calibration: 1) balancing and tracking of bias currents, and 2) frequency calibration of a band-pass Gm-C biquad filter biased in weak inversion. For each of these examples, the circuits have been prototyped in a 0.5-μm complementary metal-oxide-semiconductor process, and we demonstrate that the proposed algorithm is able to find the optimal solution even in the presence of spurious local minima, which are introduced by the nonlinear and non-monotonic response of calibration DACs.

  14. Energy savings opportunities in the global digital television transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Won Young; Gopal, Anand; Phadke, Amol

    Globally, terrestrial television (TV) broadcasting is in the midst of a complete transition to digital signals. The last analog terrestrial broadcast is expected to be switched off in the early 2020s. This transition presents huge energy savings opportunities that have thus far been ignored. Digital TV switchovers have likely increased energy consumption as countries have completed transitions by providing digital TV converters to analog TV users, which increase energy consumption and extend the life of energy-inefficient analog TVs. We find that if analog TVs were retired at the time of a digital switchover and replaced with super-efficient flat-panel TVs, suchmore » as light-emitting diode (LED) backlit liquid crystal display (LCD) TVs, there is a combined electricity savings potential of 32 terawatt hours [TWh] per year in countries that have not yet completed their digital TV transition. In view of these findings as well as the dramatic drops of super-efficient TV prices and the unique early-retirement opportunity resulting from cessation of terrestrial analog broadcasts, TV-exchange programs would easily and substantially advance energy efficiency.« less

  15. Energy savings opportunities in the global digital television transition

    DOE PAGES

    Park, Won Young; Gopal, Anand; Phadke, Amol

    2016-12-20

    Globally, terrestrial television (TV) broadcasting is in the midst of a complete transition to digital signals. The last analog terrestrial broadcast is expected to be switched off in the early 2020s. This transition presents huge energy savings opportunities that have thus far been ignored. Digital TV switchovers have likely increased energy consumption as countries have completed transitions by providing digital TV converters to analog TV users, which increase energy consumption and extend the life of energy-inefficient analog TVs. We find that if analog TVs were retired at the time of a digital switchover and replaced with super-efficient flat-panel TVs, suchmore » as light-emitting diode (LED) backlit liquid crystal display (LCD) TVs, there is a combined electricity savings potential of 32 terawatt hours [TWh] per year in countries that have not yet completed their digital TV transition. In view of these findings as well as the dramatic drops of super-efficient TV prices and the unique early-retirement opportunity resulting from cessation of terrestrial analog broadcasts, TV-exchange programs would easily and substantially advance energy efficiency.« less

  16. C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate

    NASA Astrophysics Data System (ADS)

    Limeng, Zhang; Dan, Lu; Zhaosong, Li; Biwei, Pan; Lingjuan, Zhao

    2016-12-01

    The design, fabrication and characterization of a fundamental/first-order mode converter based on multimode interference coupler on InP substrate were reported. Detailed optimization of the device parameters were investigated using 3D beam propagation method. In the experiments, the fabricated mode converter realized mode conversion from the fundamental mode to the first-order mode in the wavelength range of 1530-1565 nm with excess loss less than 3 dB. Moreover, LP01 and LP11 fiber modes were successfully excited from a few-mode fiber by using the device. This InP-based mode converter can be a possible candidate for integrated transceivers for future mode-division multiplexing system. Project supported by the National Basic Research Program of China (No. 2014CB340102) and in part by the National Natural Science Foundation of China (Nos. 61274045, 61335009).

  17. Digital image transformation and rectification of spacecraft and radar images

    NASA Technical Reports Server (NTRS)

    Wu, S. S. C.

    1985-01-01

    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  18. The Glacier and Land Ice Surface Topography Interferometer (GLISTIN): A Novel Ka-band Digitally Beamformed Interferometer

    NASA Technical Reports Server (NTRS)

    Moller, Delwyn K.; Heavey, Brandon; Hodges, Richard; Rengarajan, Sembiam; Rignot, Eric; Rogez, Francois; Sadowy, Gregory; Simard, Marc; Zawadzki, Mark

    2006-01-01

    The estimation of the mass balance of ice sheets and glaciers on Earth is a problem of considerable scientific and societal importance. A key measurement to understanding, monitoring and forecasting these changes is ice-surface topography, both for ice-sheet and glacial regions. As such NASA identified 'ice topographic mapping instruments capable of providing precise elevation and detailed imagery data for measurements on glacial scales for detailed monitoring of ice sheet, and glacier changes' as a science priority for the most recent Instrument Incubator Program (IIP) opportunities. Funded under this opportunity is the technological development for a Ka-Band (35GHz) single-pass digitally beamformed interferometric synthetic aperture radar (InSAR). Unique to this concept is the ability to map a significant swath impervious of cloud cover with measurement accuracies comparable to laser altimeters but with variable resolution as appropriate to the differing scales-of-interest over ice-sheets and glaciers.

  19. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    PubMed Central

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.

    2017-01-01

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications. PMID:28508866

  20. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    NASA Astrophysics Data System (ADS)

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.

    2017-05-01

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.