Sample records for s-deficient young barley

  1. Characterization of a Thermo-Inducible Chlorophyll-Deficient Mutant in Barley.

    PubMed

    Wang, Rong; Yang, Fei; Zhang, Xiao-Qi; Wu, Dianxin; Tan, Cong; Westcott, Sharon; Broughton, Sue; Li, Chengdao; Zhang, Wenying; Xu, Yanhao

    2017-01-01

    Leaf color is an important trait for not only controlling crop yield but also monitoring plant status under temperature stress. In this study, a thermo-inducible chlorophyll-deficient mutant, named V-V-Y, was identified from a gamma-radiated population of the barley variety Vlamingh. The leaves of the mutant were green under normal growing temperature but turned yellowish under high temperature in the glasshouse experiment. The ratio of chlorophyll a and chlorophyll b in the mutant declined much faster in the first 7-9 days under heat treatment. The leaves of V-V-Y turned yellowish but took longer to senesce under heat stress in the field experiment. Genetic analysis indicated that a single nuclear gene controlled the mutant trait. The mutant gene ( vvy ) was mapped to the long arm of chromosome 4H between SNP markers 1_0269 and 1_1531 with a genetic distance of 2.2 cM and a physical interval of 9.85 Mb. A QTL for grain yield was mapped to the same interval and explained 10.4% of the yield variation with a LOD score of 4. This QTL is coincident with the vvy gene interval that is responsible for the thermo-inducible chlorophyll-deficient trait. Fine mapping, based on the barley reference genome sequence, further narrowed the vvy gene to a physical interval of 0.428 Mb with 11 annotated genes. This is the first report of fine mapping a thermo-inducible chlorophyll-deficient gene in barley.

  2. Antidepressant-like effects of young green barley leaf (Hordeum vulgare L.) in the mouse forced swimming test.

    PubMed

    Yamaura, Katsunori; Nakayama, Noriyuki; Shimada, Maki; Bi, Yuanyuan; Fukata, Hideki; Ueno, Koichi

    2012-01-01

    Young green barley leaf is one of the richest sources of antioxidants and has been widely consumed for health management in Japan. In this study, we examined whether oral administration of young green barley leaf has an antidepressant effect on the forced swimming test in mice. Mice were individually forced to swim in an open cylindrical container, one hour after oral administration of young green barley leaf (400 or 1000 mg / kg) or imipramine (100 mg / kg). Expression of mRNA for nerve growth factor (NGF), brain-derived neurotrophic factor, and glucocorticoid receptor in the brain was analyzed using real-time quantitative polymerase chain reaction (PCR). There was a significant antidepressant-like effect in the forced swimming test; both 400 and 1000 mg / kg young green barley leaves, as well as the positive control imipramine (100 mg / kg), reduced the immobility duration compared to the vehicle group. The expression of mRNA for NGF detected in the hippocampus immediately after the last swimming test was higher than that in the non-swimming group (Nil). Oral administration of imipramine suppressed this increase to the level of the Nil group. Young green barley leaf (400 and 1000 mg / kg) also showed a moderate decrease in the expression of mRNA for NGF, in a dose-dependent manner. Oral administration of young green barley leaf is able to produce an antidepressant-like effect in the forced swimming test. Consequently it is possible that the antidepressant-like effects of the young green barley leaf are, at least in part, mediated by an inhibition of the increase in the hippocampus levels of NGF.

  3. Optimization of microwave-assisted extraction of flavonoids from young barley leaves

    NASA Astrophysics Data System (ADS)

    Gao, Tian; Zhang, Min; Fang, Zhongxiang; Zhong, Qifeng

    2017-01-01

    A central composite design combined with response surface methodology was utilized to optimise microwave-assisted extraction of flavonoids from young barley leaves. The results showed that using water as solvent, the optimum conditions of microwave-assisted extraction were extracted twice at 1.27 W g-1 microwave power and liquid-solid ratio 34.02 ml g-1 for 11.12 min. The maximum extraction yield of flavonoids (rutin equivalents) was 80.78±0.52%. Compared with conventional extraction method, the microwave-assisted extraction was more efficient as the extraction time was only 6.18% of conventional extraction, but the extraction yield of flavonoids was increased by 5.47%. The main flavonoid components from the young barley leaf extract were probably 33.36% of isoorientin-7-O-glueoside and 54.17% of isovitexin-7-O-glucoside, based on the HPLC-MS analysis. The barley leaf extract exhibited strong reducing power as well as the DPPH radical scavenging capacity.

  4. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley.

    PubMed

    Li, Xiangnan; Tan, Dun-Xian; Jiang, Dong; Liu, Fulai

    2016-10-01

    Melatonin is involved in multiple plant developmental processes and various stress responses. To explore the roles of melatonin played as well as its association with abscisic acid (ABA) in a process of drought priming-induced cold tolerance (DPICT), a wild-type barley and its ABA-deficient mutant Az34 counterpart were selected for comparison, in which the effects of melatonin application (either foliarly or rhizospherically) and/or drought priming on the cold tolerance of both types of barleys were systematically investigated. It was demonstrated that the early drought priming induced an increase of endogenous melatonin production, which is not ABA dependent. In addition, exogenously applied melatonin resulted in higher ABA concentration in the drought-primed plants than in the nonprimed plants when exposed to cold stress, indicating that ABA responded in a drought-dependent manner. The interplay of melatonin and ABA leads to plants maintaining better water status. Drought priming-induced melatonin accumulation enhanced the antioxidant capacity in both chloroplasts and mitochondria, which sustained the photosynthetic electron transport in photosynthetic apparatus of the plants under cold stress. These results suggest that the exogenous melatonin application enhances the DPICT by modulating subcellular antioxidant systems and ABA levels in barley. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Barley

    USDA-ARS?s Scientific Manuscript database

    The U.S. malting and brewing industries are America’s largest consumers of barley, purchasing more than one-half of the U.S. barley grain crop. More than 70% of the hectares seeded to barley are seeded to cultivars recommended by the American Malting Barley Association (AMBA). The malting and brewi...

  6. Latent manganese deficiency increases transpiration in barley (Hordeum vulgare).

    PubMed

    Hebbern, Christopher A; Laursen, Kristian Holst; Ladegaard, Anne H; Schmidt, Sidsel B; Pedas, Pai; Bruhn, Dan; Schjoerring, Jan K; Wulfsohn, Dvoralai; Husted, Søren

    2009-03-01

    To investigate if latent manganese (Mn) deficiency leads to increased transpiration, barley plants were grown for 10 weeks in hydroponics with daily additions of Mn in the low nM range. The Mn-starved plants did not exhibit visual leaf symptoms of Mn deficiency, but Chl a fluorescence measurements revealed that the quantum yield efficiency of PSII (F(v)/F(m)) was reduced from 0.83 in Mn-sufficient control plants to below 0.5 in Mn-starved plants. Leaf Mn concentrations declined from 30 to 7 microg Mn g(-1) dry weight in control and Mn-starved plants, respectively. Mn-starved plants had up to four-fold higher transpiration than control plants. Stomatal closure and opening upon light/dark transitions took place at the same rate in both Mn treatments, but the nocturnal leaf conductance for water vapour was still twice as high in Mn-starved plants compared with the control. The observed increase in transpiration was substantiated by (13)C-isotope discrimination analysis and gravimetric measurement of the water consumption, showing significantly lower water use efficiency in Mn-starved plants. The extractable wax content of leaves of Mn-starved plants was approximately 40% lower than that in control plants, and it is concluded that the increased leaf conductance and higher transpirational water loss are correlated with a reduction in the epicuticular wax layer under Mn deficiency.

  7. Changes in isovitexin-O-glycosylation during the development of young barley plants.

    PubMed

    Brauch, Dominic; Porzel, Andrea; Schumann, Erika; Pillen, Klaus; Mock, Hans-Peter

    2018-04-01

    Phenylpropanoids are a class of plant natural products that have many biological functions, including stress defence. In barley, phenylpropanoids have been described as having protective properties against excess UV-B radiation and have been linked to resistance to pathogens. Although the phenylpropanoid composition of barley has recently been addressed in more detail, the biosynthesis and regulation of this pathway have not been fully established. Barley introgression lines, such as the S42IL-population offer a set of genetically diverse plants that enable the correlation of metabolic data to distinct genetic regions on the barley genome and, subsequently, identification of relevant genes. The phenylpropanoid profiles of the first and third leaf of barley seedlings in Scarlett and four members of the S42IL-population were obtained by LC-MS. Comparison of the leaf profiles revealed a change in the glycosylation pattern of the flavone-6-C-glucoside isovitexin in the elite cultivar Scarlett. The change was characterized by the stepwise decrease in isovitexin-7-O-glucoside (saponarin) and an increase in isovitexin-2″-O-β-D-glucoside content. The lines S42IL-101-, -177 and -178 were completely devoid of isovitexin-2″-O-β-D-glucoside. Parallel glucosyltransferase assays were consistent with the observed metabolic patterns. The genetic region responsible for this metabolic effect was located on chromosome 1H between 0.21 and 15.08 cM, encompassing 505 gene candidates in the genome of the sequenced cultivar Morex. Only one of these genes displayed sequence similarity with glucosyltransferases of plant secondary metabolism that possessed the characteristic PSPG motif. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Antioxidant activity of flavonoids isolated from young green barley leaves toward biological lipid samples.

    PubMed

    Benedet, John A; Umeda, Hisao; Shibamoto, Takayuki

    2007-07-11

    Natural plant flavonoids, saponarin/lutonarin=4.5/1, isolated from young green barley leaves were examined for their antioxidant activity using cod liver oil, omega-3 fatty acids, phospholipids, and blood plasma. The saponarin/lutonarin (S/L) mixture inhibited malonaldehyde (MA) formation from cod liver oil by 76.47+/-0.11% at a level of 1 micromol and 85.88+/-0.12% at a level of 8 micromol. The S/L mixture inhibited MA formation from the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) by 45.60+/-1.08 and 69.24+/-0.24%, respectively, at a level of 8 micromol. The S/L mixture inhibited MA formation from the phospholipids lecithin I and II by 43.08+/-0.72 and 69.16+/-2.92%, respectively, at a level of 8 micromol. It also inhibited MA formation from blood plasma by 62.20+/-0.11% at a level of 8 micromol. The antioxidant activities obtained from the S/L mixture were comparable to those obtained from alpha-tocopherol and butylated hydroxy toluene (BHT) in all lipids tested.

  9. Caregiver perceptions of iron deficiency anemia and iron replacement therapies in young children with nutritional iron deficiency anemia

    USDA-ARS?s Scientific Manuscript database

    In the U.S., approximately 3% of young children develop iron deficiency anemia (IDA), with Hispanic/Latino children disproportionately affected. IDA is associated with inferior neurodevelopmental outcomes. Treatment with oral iron mitigates its consequences yet non-adherence often results in treatme...

  10. Iron Deficiency in Adolescents and Young Adults.

    ERIC Educational Resources Information Center

    Risser, William L.; Risser, Jan M. H.

    1990-01-01

    Reviews the prevalence, natural history, causes, impact on performance, diagnosis, and treatment of iron deficiency in adolescent and young adult athletes. All athletes should be screened and treated. The best diagnosis involves determining serum ferritin and hemoglobin levels. Treatment requires therapeutic doses of oral ferrous iron for several…

  11. Response-based selection of barley cultivars and legume species for complementarity: Root morphology and exudation in relation to nutrient source.

    PubMed

    Giles, Courtney D; Brown, Lawrie K; Adu, Michael O; Mezeli, Malika M; Sandral, Graeme A; Simpson, Richard J; Wendler, Renate; Shand, Charles A; Menezes-Blackburn, Daniel; Darch, Tegan; Stutter, Marc I; Lumsdon, David G; Zhang, Hao; Blackwell, Martin S A; Wearing, Catherine; Cooper, Patricia; Haygarth, Philip M; George, Timothy S

    2017-02-01

    Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants' response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency.

    PubMed

    Scagliola, M; Pii, Y; Mimmo, T; Cesco, S; Ricciuti, P; Crecchio, C

    2016-10-01

    Plant Growth Promoting Bacteria (PGPB) are considered a promising approach to replace the conventional agricultural practices, since they have been shown to affect plant nutrient-acquisition processes by influencing nutrient availability in the rhizosphere and/or those biochemical processes determining the uptake at root level of nitrogen (N), phosphorus (P), and iron (Fe), that represent the major constraints for crop productivity worldwide. We have isolated novel bacterial strains from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) plants, previously grown in hydroponic solution (either Fe deficient or Fe sufficient) and subsequently transferred onto an agricultural calcareous soil. PGPB have been identified by molecular tools and characterized for their capacity to produce siderophores and indole-3-acetic acid (IAA), and to solubilize phosphate. Selected bacterial isolates, showing contemporarily high levels of the three activities investigated, were finally tested for their capacity to induce Fe reduction in cucumber roots two isolates, from barley and tomato plants under Fe deficiency, significantly increased the root Fe-chelate reductase activity; interestingly, another isolate enhanced the reduction of Fe-chelate reductase activity in cucumber plant roots, although grown under Fe sufficiency. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Cytokinin oxidase/dehydrogenase genes in barley and wheat: cloning and heterologous expression.

    PubMed

    Galuszka, Petr; Frébortová, Jitka; Werner, Tomás; Yamada, Mamoru; Strnad, Miroslav; Schmülling, Thomas; Frébort, Ivo

    2004-10-01

    The cloning of two novel genes that encode cytokinin oxidase/dehydrogenase (CKX) in barley is described in this work. Transformation of both genes into Arabidopsis and tobacco showed that at least one of the genes codes for a functional enzyme, as its expression caused a cytokinin-deficient phenotype in the heterologous host plants. Additional cloning of two gene fragments, and an in silico search in the public expressed sequence tag clone databases, revealed the presence of at least 13 more members of the CKX gene family in barley and wheat. The expression of three selected barley genes was analyzed by RT-PCR and found to be organ-specific with peak expression in mature kernels. One barley CKX (HvCKX2) was characterized in detail after heterologous expression in tobacco. Interestingly, this enzyme shows a pH optimum at 4.5 and a preference for cytokinin ribosides as substrates, which may indicate its vacuolar targeting. Different substrate specificities, and the pH profiles of cytokinin-degrading enzymes extracted from different barley tissues, are also presented.

  14. Lower-zone emphysema in young patients without α1-antitrypsin deficiency

    PubMed Central

    Martelli, Nestor A.; Goldman, Ernesto; Roncoroni, Aquiles J.

    1974-01-01

    Martelli, N. A., Goldman, E., and Roncoroni, A. J. (1974).Thorax, 29, 237-244. Lowerzone emphysema in young patients without α1-antitrypsin deficiency. Three young patients with radiographic pulmonary emphysema predominantly in the lower zones are reported. The clinical and physiological features were those observed in severe pulmonary emphysema. Predominance of the main lesions in the lower zones was confirmed in two cases by selective pulmonary angiography. One of the patients died and extensive panlobular emphysema was found at necropsy. Although the similarities between our patients and those with emphysema and α1-antitrypsin deficiency were remarkable, the latter condition was ruled out. Images PMID:4545502

  15. Calculation of Haem Iron Intake and Its Role in the Development of Iron Deficiency in Young Women from the Australian Longitudinal Study on Women’s Health

    PubMed Central

    Reeves, Angela J.; McEvoy, Mark A.; MacDonald-Wicks, Lesley K.; Barker, Daniel; Attia, John; Hodge, Allison M.; Patterson, Amanda J.

    2017-01-01

    Total iron intake is not strongly associated with iron stores, but haem iron intake may be more predictive. Haem iron is not available in most nutrient databases, so experimentally determined haem contents were applied to an Australian Food Frequency Questionnaire (FFQ) to estimate haem iron intake in a representative sample of young women (25–30 years). The association between dietary haem iron intakes and incident self-reported diagnosed iron deficiency over six years of follow-up was examined. Haem iron contents for Australian red meats, fish, and poultry were applied to haem-containing foods in the Dietary Questionnaire for Epidemiological Studies V2 (DQESv2) FFQ. Haem iron intakes were calculated for 9076 women from the Australian Longitudinal Study on Women’s Health (ALSWH) using the DQESv2 dietary data from 2003. Logistic regression was used to examine the association between haem iron intake (2003) and the incidence of iron deficiency in 2006 and 2009. Multiple logistic regression showed baseline haem iron intake was a statistically significant predictor of iron deficiency in 2006 (Odds Ratio (OR): 0.91; 95% Confidence Interval (CI): 0.84–0.99; p-value: 0.020) and 2009 (OR: 0.89; 95% CI: 0.82–0.99; p-value: 0.007). Using the energy-adjusted haem intake made little difference to the associations. Higher haem iron intake is associated with reduced odds of iron deficiency developing in young adult Australian women. PMID:28534830

  16. Photosystem II Functionality in Barley Responds Dynamically to Changes in Leaf Manganese Status

    PubMed Central

    Schmidt, Sidsel B.; Powikrowska, Marta; Krogholm, Ken S.; Naumann-Busch, Bianca; Schjoerring, Jan K.; Husted, Søren; Jensen, Poul E.; Pedas, Pai R.

    2016-01-01

    A catalytic manganese (Mn) cluster is required for the oxidation of water in the oxygen-evolving complex (OEC) of photosystem II (PSII) in plants. Despite this essential role of Mn in generating the electrons driving photosynthesis, limited information is available on how Mn deficiency affects PSII functionality. We have here used parameters derived from measurements of fluorescence induction kinetics (OJIP transients), non-photochemical quenching (NPQ) and PSII subunit composition to investigate how latent Mn deficiency changes the photochemistry in two barley genotypes differing in Mn efficiency. Mn deficiency caused dramatic reductions in the quantum yield of PSII and led to the appearance of two new inflection points, the K step and the D dip, in the OJIP fluorescence transients, indicating severe damage to the OEC. In addition, Mn deficiency decreased the ability to induce NPQ in the light, rendering the plants incapable of dissipating excess energy in a controlled way. Thus, the Mn deficient plants became severely affected in their ability to recover from high light-induced photoinhibition, especially under strong Mn deficiency. Interestingly, the Mn-efficient genotype was able to maintain a higher NPQ than the Mn-inefficient genotype when exposed to mild Mn deficiency. However, during severe Mn deficiency, there were no differences between the two genotypes, suggesting a general loss of the ability to disassemble and repair PSII. The pronounced defects of PSII activity were supported by a dramatic decrease in the abundance of the OEC protein subunits, PsbP and PsbQ in response to Mn deficiency for both genotypes. We conclude that regulation of photosynthetic performance by means of maintaining and inducing NPQ mechanisms contribute to genotypic differences in the Mn efficiency of barley genotypes growing under conditions with mild Mn deficiency. PMID:27933084

  17. Evaluation of triticale dried distillers grains with solubles as a substitute for barley grain and barley silage in feedlot finishing diets.

    PubMed

    Wierenga, K T; McAllister, T A; Gibb, D J; Chaves, A V; Okine, E K; Beauchemin, K A; Oba, M

    2010-09-01

    The objective of this study was to assess the value of triticale dried distillers grains with solubles (DDGS) as a replacement for barley silage in addition to a portion of the dry-rolled barley (DRB) in a grain-based feedlot finishing diet. The trial used 160 crossbred yearling steers: 144 noncannulated (478 +/- 84 kg) in a complete randomized design, and 16 ruminally cannulated (494 +/- 50 kg) in a replicated 4 x 4 Latin square design. The noncannulated steers were assigned to 8 standard pens (10 per pen) and 8 pens equipped with the GrowSafe system (GrowSafe Systems Ltd., Airdrie, Alberta, Canada; 8 per pen). The cannulated steers were placed (2 per pen) in the 8 GrowSafe pens and moved between pens at 28-d intervals. Each of 4 experimental diets was fed in 2 standard and 2 GrowSafe pens. The diets contained (DM basis) 1) 85% DRB and 10% barley silage (CON); 2) 65% DRB, 20% triticale DDGS, and 10% barley silage (D-10S), 3) 65% DRB, 25% triticale DDGS, and 5% barley silage, and 4) 65% DRB, 30% triticale DDGS, and no barley silage. Supplement (5% of dietary DM) was included in all diets. Ruminal pH was measured over four 7-d periods using indwelling electrodes. Replacing barley silage with triticale DDGS linearly decreased mean ruminal pH (P = 0.006), linearly increased duration (P = 0.006 and P = 0.01) and area under the curve (P = 0.02 and P = 0.05) below pH 5.5 and 5.2, and linearly increased the frequency of subacute (P = 0.005) and acute (P = 0.05) bouts of ruminal acidosis. Variation in mean ruminal pH decreased (P = 0.008) in steers fed D-10S compared with CON. Similarly, variation in DMI was less for steers fed triticale DDGS compared with CON. Steers fed D-10S tended to have greater DMI (P = 0.08) but similar ADG and G:F compared with CON steers. Replacing barley silage with triticale DDGS tended to linearly decrease DMI (P = 0.10) and increase (P = 0.06) G:F. Compared with CON, steers fed D-10S tended to have greater backfat thickness (P = 0.10) and

  18. Hulled and hull-less barley grains with the genetic trait for low-phytic acid increased the apparent total-tract digestibility of phosphorus and calcium in diets for young swine.

    PubMed

    Veum, T L; Raboy, V

    2016-03-01

    A 35-d experiment was conducted using 63 crossbred pigs (35 barrows and 28 gilts) with an initial average BW of 7.0 kg and age of 28 d to evaluate the efficacy of the low-phytic acid (LPA) genetic trait in hulled or hull-less barley in isocaloric diets. Hulled barleys were the normal barley (NB) cultivar Harrington and the near-isogenic LPA mutant 955 (M955) with P availabilities of 36 and 95%, respectively. Hull-less lines were produced by crossing NB and the LPA mutant 422 line with a hull-less line, producing hull-less NB (HNB) and hull-less mutant 422 (HM422) with P availabilities of 41 and 66%, respectively. Pigs were in individual metabolism cages or pens for Phase 1 (d 0 to 14) and Phase 2 (d 14 to 35). Diets defined as NB, HNB, HM422, or M955 with no added inorganic P (iP) had available P (aP) concentrations of 0.27, 0.28, 0.35, and 0.40% for Phase 1 and 0.15, 0.17, 0.23, and 0.31% for Phase 2, respectively. Only diet M955 was adequate in aP. Therefore, iP was added to the P-deficient diets to make diets NB + iP, HNB + iP, and HM422 + iP with aP equal to that in diet M955. Overall (d 0 to 35), ADG and G:F were greater ( < 0.01) for pigs fed diet M955 or the diets with added iP than for pigs fed the NB diet. Serum tartrate-resistant acid phosphatase activity on d 34 was greater ( < 0.01) for pigs fed the NB or HNB diets than for pigs fed the other diets. Bone breaking strength and P absorption (g/d) were greater ( < 0.01) for pigs fed diet M955 or the diets with iP than for pigs fed the NB or HNB diets. Pigs fed diet M955 absorbed greater ( < 0.01) percentages of P and Ca and had less ( < 0.01) fecal excretion of P (g/d and %) and Ca (%) than pigs fed the other diets. In conclusion, the LPA genetic trait was effective in hulled and hull-less barley in isocaloric diets fed to young pigs. Pigs fed the diet with LPA M955 consumed 31% less P and excreted 78% less fecal P and 30% less fecal Ca than pigs fed the diet with NB + iP that was equal to diet M955 in a

  19. Bioactive phytochemicals in barley.

    PubMed

    Idehen, Emmanuel; Tang, Yao; Sang, Shengmin

    2017-01-01

    Epidemiological studies have consistently shown that regular consumption of whole grain barley reduces the risk of developing chronic diseases. The presence of barley fiber, especially β-glucan in whole grain barley, has been largely credited for these health benefits. However, it is now widely believed that the actions of the fiber component alone do not explain the observed health benefits associated with the consumption of whole grain barley. Whole grain barley also contains phytochemicals including phenolic acids, flavonoids, lignans, tocols, phytosterols, and folate. These phytochemicals exhibit strong antioxidant, antiproliferative, and cholesterol lowering abilities, which are potentially useful in lowering the risk of certain diseases. Therefore, the high concentration of phytochemicals in barley may be largely responsible for its health benefits. This paper reviews available information regarding barley phytochemicals and their potential to combat common nutrition-related diseases including cancer, cardiovascular disease, diabetes, and obesity. Copyright © 2016. Published by Elsevier B.V.

  20. Mutagenesis of Saccharomyces cerevisiae by sodium azide activated in barley.

    PubMed

    Velemínský, J; Silhánková, L; Smiovská, V; Gichner, T

    1979-07-01

    Concentrated dialysate of the extract prepared from barley seeds treated with sodium azide increased up to 100--200 times the frequency of forward mutations to cycloheximide resistance in the excision-deficient UV-sensitive heploid strain rad2-5 of Saccharomyces cerevisiae, when applied to growing cells in complete medium at pH 4.2. Only a slight increase of mutation frequency (less than 4 times) was found in the haploid RAD+ strain treated in the same way as well as in haploid RAD+ and rad2-5 strains treated directly by sodium azide. In contrast with the barley-activated sodium azide, UV irradiation was more effective in the induction of cycloheximide resistance in the RAD+ strain than in the RAD2-5 mutant. The dialysate from azide-treated barley seeds, applied at both pH 4.2 and pH 9, also significantly increased the frequency of locus-specific suppressor mutations to isoleucine independence and -- to a lesser extent -- reversions and/or gene conversions in the trp5 locus in growing cells of the diploid strain D7. The dialysate was also mutagenic in resting cells of strains D7 and rad2-5 but with lower effectiveness.

  1. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  2. The Barley Phytomer

    PubMed Central

    Forster, Brian P.; Franckowiak, Jerome D.; Lundqvist, Udda; Lyon, Jackie; Pitkethly, Ian; Thomas, William T. B.

    2007-01-01

    Background and Aims Morphological mutants have been useful in elucidating the phytomeric structure of plants. Recently described mutants have shed new light on the ontogeny (development of plant structures) and the phytomeric system of barley (Hordeum vulgare). Since the current model for barley phytomers was not adequate to explain the nature of some mutants, a new model is proposed. Methods New phytomer mutants were detected by visual assessment of mutant families in the Optic barley mutation grid population. This was done at various growth stages using laboratory, glasshouse and field screens. Simple explanations were adopted to account for aberrant phytomer phenotypes and a thesis for a new phytomer model was developed. Key Results and Conclusions A barley phytomer model is presented, in which the origins of vegetative and generative structures can be explained by a single repeating phytomer unit. Organs on the barley plant are divided into two classes, single or paired, depending on their origin. Paired structures are often fused together to create specific organs. The model can be applied to wheat (Triticum aestivum) and related grasses. PMID:17901062

  3. Technical note: In situ ruminal starch disappearance kinetics of hull-less barley, hulled barley, and corn grains.

    PubMed

    Ferreira, G; Yang, Y; Teets, C L; Brooks, W S; Griffey, C A

    2018-07-01

    The objective of this study was to compare ruminal starch disappearance rates of hull-less barley, hulled barley, and corn grains. Five different genotypes were used for each of the 2 barley types. In addition, each of these genotypes was grown in 2 different locations and years, resulting 10 independent barley samples for each of the 2 barley grain types. Five different genotypes of corn grain were obtained from a commercial seed company. After being ground to pass through a 4-mm screen of a cutter mill, 3.6 g of each grain was placed into a porous bag, which was then incubated in the rumen of 2 ruminally cannulated cows for 0, 4, 8, 12, 24, and 48 h. Corn grains had greater instant ruminal starch disappearances than barley grains (22.4 and 8.2%, respectively). Instant ruminal starch disappearances did not differ between hulled and hull-less barley grains. Ruminal starch fractional disappearance rates were greatest for hulled barley grains, moderate for hull-less barley grains, and lowest for corn grains (15.3, 13.9, and 7.1%/h, respectively). Ruminal starch half-life was shortest for hulled and hull-less barley grains (4.4 h) and longest for corn grains (6.6 h). Ruminal starch half-life did not differ between hulled barley and hull-less barley grains. In conclusion, using a holistic experimental design and statistical analysis, this study showed that starch from hull-less barley grains has a ruminal half-life similar to that of hulled barley grains and shorter than that of corn grains. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Nitrate Transport Is Independent of NADH and NAD(P)H Nitrate Reductases in Barley Seedlings 1

    PubMed Central

    Warner, Robert L.; Huffaker, Ray C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings. PMID:11537465

  5. Golgi Localized Barley MTP8 Proteins Facilitate Mn Transport

    PubMed Central

    Pedas, Pai; Schiller Stokholm, Michaela; Hegelund, Josefine Nymark; Ladegård, Anne Hald; Schjoerring, Jan Kofod; Husted, Søren

    2014-01-01

    Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2, which encode membrane-bound proteins belonging to the cation diffusion facilitator (CDF) family in the cereal species barley (Hordeum vulgare). Transient expression in onion epidermal cells showed that MTP8.1 and MTP8.2 proteins fused to the green fluorescent protein (GFP) are localized to Golgi. When heterologously expressed in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP8 proteins are involved in Mn loading to the Golgi apparatus and play a role in Mn homeostasis by delivering Mn to Mn-dependent enzymes and/or by facilitating Mn efflux via secretory vesicles. This study highlights the importance of MTP transporters in Mn homeostasis and is the first report of Golgi localized Mn2+ transport proteins in a monocot plant species. PMID:25486417

  6. 7 CFR 810.206 - Grades and grade requirements for barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... weight per bushel (pounds) Sound barley (percent) Maximum Limits of— Damaged kernels 1 (percent) Heat damaged kernels (percent) Foreign material (percent) Broken kernels (percent) Thin barley (percent) U.S... or otherwise of distinctly low quality. 1 Includes heat-damaged kernels. Injured-by-frost kernels and...

  7. Vitamin-D deficiency predicts infections in young north Indian children: A secondary data analysis.

    PubMed

    Chowdhury, Ranadip; Taneja, Sunita; Bhandari, Nita; Sinha, Bireshwar; Upadhyay, Ravi Prakash; Bhan, Maharaj Kishan; Strand, Tor A

    2017-01-01

    Recent studies have demonstrated a relationship between poor vitamin D status and respiratory infections and diarrhea among young children. Acute lower respiratory infections (ALRI) and diarrhea are among the two most important causes of death in under-5 children. In this paper, we examined the extent to which vitamin-D deficiency (<10 ng/ml) predicts ALRI, clinical pneumonia and diarrhea among 6 to 30 months old children. We used data from a randomized controlled trial (RCT) of daily folic acid and/or vitamin B12 supplementation for six months in 6 to 30 months old children conducted in Delhi, India. Generalized estimating equations (GEE) were used to examine the associations between vitamin-D deficiency and episodes of ALRI, clinical pneumonia and diarrhea. Of the 960 subjects who had vitamin-D concentrations measured, 331(34.5%) were vitamin-D deficient. We found, after controlling for relevant potential confounders (age, sex, breastfeeding status, wasting, stunting, underweight, anemia status and season), that the risk of ALRI was significantly higher among vitamin-D deficient (OR 1.26; 95% CI: 1.03 to 1.55) compared to vitamin-D-replete children in the six months follow-up period. Vitamin-D status was not associated with episodes of diarrhea or clinical pneumonia. Vitamin-D deficiency is common in young children in New Delhi and is associated with a higher risk of ALRI. The role of vitamin D in Indian children needs to be elucidated in further studies.

  8. Refeeding syndrome in a young woman with argininosuccinate lyase deficiency.

    PubMed

    Stuy, M; Chen, G-F; Masonek, J M; Scharschmidt, B F

    2015-09-01

    A severely chronically protein and calorie restricted young woman with argininosuccinate lyase deficiency developed transient refeeding syndrome (RFS) and hyperammonemia after modest diet liberalization following initiation of glycerol phenylbutyrate (GPB). The patient required IV supportive care and supplementation with potassium, magnesium and calcium. She is now doing well on GPB and an appropriate maintenance diet. Susceptibility to RFS should be considered in chronically nutritionally restricted patients with metabolic disorders after liberalization of diet.

  9. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of— Test... and Six-rowed Blue Malting barley varieties not meeting the requirements of this section shall be...

  10. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of— Test... and Six-rowed Blue Malting barley varieties not meeting the requirements of this section shall be...

  11. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of— Test... and Six-rowed Blue Malting barley varieties not meeting the requirements of this section shall be...

  12. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of— Test... and Six-rowed Blue Malting barley varieties not meeting the requirements of this section shall be...

  13. Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1

    PubMed Central

    Kucharewicz, Weronika; Distelfeld, Assaf; Bilger, Wolfgang; Müller, Maren; Munné-Bosch, Sergi; Hensel, Götz

    2017-01-01

    Abstract WHIRLY1 in barley was isolated as a potential regulator of the senescence-associated gene HvS40. In order to investigate whether the plastid–nucleus-located DNA/RNA-binding protein WHIRLY1 plays a role in regulation of leaf senescence, primary foliage leaves from transgenic barley plants with an RNAi-mediated knockdown of the WHIRLY1 gene were characterized by typical senescence parameters, namely pigment contents, function and composition of the photosynthetic apparatus, as well as expression of selected genes known to be either down- or up-regulated during leaf senescence. When the plants were grown at low light intensity, senescence progression was similar between wild-type and RNAi-W1 plants. Likewise, dark-induced senescence of detached leaves was not affected by reduction of WHIRLY1. When plants were grown at high light intensity, however, senescence was induced prematurely in wild-type plants but was delayed in RNAi-W1 plants. This result suggests that WHIRLY1 plays a role in light sensing and/or stress communication between chloroplasts and the nucleus. PMID:28338757

  14. Metal Binding in Photosystem II Super- and Subcomplexes from Barley Thylakoids1

    PubMed Central

    Persson, Daniel Pergament; Powikrowska, Marta

    2015-01-01

    Metals exert important functions in the chloroplast of plants, where they act as cofactors and catalysts in the photosynthetic electron transport chain. In particular, manganese (Mn) has a key function because of its indispensable role in the water-splitting reaction of photosystem II (PSII). More and better knowledge is required on how the various complexes of PSII are affected in response to, for example, nutritional disorders and other environmental stress conditions. We here present, to our knowledge, a new method that allows the analysis of metal binding in intact photosynthetic complexes of barley (Hordeum vulgare) thylakoids. The method is based on size exclusion chromatography coupled to inductively coupled plasma triple-quadrupole mass spectrometry. Proper fractionation of PSII super- and subcomplexes was achieved by critical selection of elution buffers, detergents for protein solubilization, and stabilizers to maintain complex integrity. The applicability of the method was shown by quantification of Mn binding in PSII from thylakoids of two barley genotypes with contrasting Mn efficiency exposed to increasing levels of Mn deficiency. The amount of PSII supercomplexes was drastically reduced in response to Mn deficiency. The Mn efficient genotype bound significantly more Mn per unit of PSII under control and mild Mn deficiency conditions than the inefficient genotype, despite having lower or similar total leaf Mn concentrations. It is concluded that the new method facilitates studies of the internal use of Mn and other biometals in various PSII complexes as well as their relative dynamics according to changes in environmental conditions. PMID:26084923

  15. A Transgenic Transcription Factor (TaDREB3) in Barley Affects the Expression of MicroRNAs and Other Small Non-Coding RNAs

    PubMed Central

    Hackenberg, Michael; Shi, Bu-Jun; Gustafson, Perry; Langridge, Peter

    2012-01-01

    Transcription factors (TFs), microRNAs (miRNAs), small interfering RNAs (siRNAs) and other functional non-coding small RNAs (sRNAs) are important gene regulators. Comparison of sRNA expression profiles between transgenic barley over-expressing a drought tolerant TF (TaDREB3) and non-transgenic control barley revealed many group-specific sRNAs. In addition, 42% of the shared sRNAs were differentially expressed between the two groups (|log2| >1). Furthermore, TaDREB3-derived sRNAs were only detected in transgenic barley despite the existence of homologous genes in non-transgenic barley. These results demonstrate that the TF strongly affects the expression of sRNAs and siRNAs could in turn affect the TF stability. The TF also affects size distribution and abundance of sRNAs including miRNAs. About half of the sRNAs in each group were derived from chloroplast. A sRNA derived from tRNA-His(GUG) encoded by the chloroplast genome is the most abundant sRNA, accounting for 42.2% of the total sRNAs in transgenic barley and 28.9% in non-transgenic barley. This sRNA, which targets a gene (TC245676) involved in biological processes, was only present in barley leaves but not roots. 124 and 136 miRNAs were detected in transgenic and non-transgenic barley, respectively. miR156 was the most abundant miRNA and up-regulated in transgenic barley, while miR168 was the most abundant miRNA and up-regulated in non-transgenic barley. Eight out of 20 predicted novel miRNAs were differentially expressed between the two groups. All the predicted novel miRNA targets were validated using a degradome library. Our data provide an insight into the effect of TF on the expression of sRNAs in barley. PMID:22870277

  16. Structural features of immunostimulatory polysaccharide purified from pectinase hydrolysate of barley leaf.

    PubMed

    Kim, Hoon; Kwak, Bong-Shin; Hong, Hee-Do; Suh, Hyung-Joo; Shin, Kwang-Soon

    2016-06-01

    Four polysaccharide fractions were isolated from young barley leaves treated with or without pectinase followed by ethanol fractionation. Among the polysaccharide fractions, BLE-P isolated from pectinase digested with a high molecular weight had the most enhanced macrophage stimulatory activity, indicating that pectinase digestion of barley leaf is a useful method for enhancement of its activity. BLE-P was further purified by column chromatography to identify the chemical and structural properties. BLE-P-I eluted in void volume fraction showed potent macrophage stimulatory activity. Monosaccharide composition and linkage analysis indicated that at least three kinds of polysaccharide, that is, glucuronoarabinoxylan (GAX; 40-45%), rhamnogalacturonan-I (RG-I) with branching mainly involving a type II arabinogalactan (AG-II) side chain (30-35%), and linear glucan such as starch and cellulose (less than 10%) coexisted in BLE-P-I. Given the association with macrophage stimulatory activity, it is likely that the GAX and to the RG-I polysaccharide branched with an AG-II side chain may be important for expression of the activity in barley leaf. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A mutant of barley lacking NADH-hydroxypyruvate reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackwell, R.; Lea, P.

    1989-04-01

    A mutant of barley, LaPr 88/29, deficient in peroxisomal NADH-hydroxypyruvate reductase (HPR) activity has been identified. Compared to the wild type the activities of NADH-HPR and NADPH-HPR were severely reduced but the mutant was still capable of fixing CO{sub 2} at rates equivalent to 75% of that of the wild type in air. Although lacking an enzyme in the main photorespiratory pathway, there appeared to be little disruption to photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{sup 14}C) serine were similar in both mutant and wild type. LaPr 88/29 has been used tomore » show that NADH-glyoxylate reductase (GR) and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-HPR activity is due to the NADH-HPR enzyme. Immunological studies, using antibodies raised against spinach HPR, have shown that the NADH-dependent enzyme protein is absent in LaPr 88/29 but there appears to be enhanced synthesis of the NADPH-dependent enzyme protein.« less

  18. Iron Deficiency without Anemia: A Common Yet Under-Recognized Diagnosis in Young Women with Heavy Menstrual Bleeding.

    PubMed

    Johnson, Stephen; Lang, Abigail; Sturm, Mollie; O'Brien, Sarah H

    2016-12-01

    To assess the proportion of iron deficiency that is not detected with a screening hemoglobin or complete blood count (CBC) alone in young women with heavy menstrual bleeding. Retrospective review of electronic medical records. Nationwide Children's Hospital in Columbus, Ohio. One hundred fourteen young women aged 9-19 years consecutively referred to a young women's hematology clinic with a complaint of heavy menstrual bleeding. Fifty-eight (50.9%) of all patients had ferritin <20 ng/mL indicating iron deficiency. Of the 58 patients with iron deficiency, only 24 (41.4%) were anemic and 25 (46.3%) were microcytic. The sensitivity of hemoglobin alone and CBC alone for identifying women with ferritin <20 ng/mL was 41.4% (95% confidence interval [CI], 28.7-54.1) and 46.3% (95% CI, 33.0-59.6), respectively. Both tests had reasonable specificity at 91.1% (95% CI, 83.6-98.5) for hemoglobin and 83.9% for CBC (95% CI, 74.3-93.6). Patients had significantly higher odds of having iron deficiency if they were overweight or obese (odds ratio, 2.81; 95% CI, 1.25-6.29) compared with patients with normal body mass index. Age at presentation for heavy menstrual bleeding, presence of an underlying bleeding disorder, and median household income were not significantly associated with iron deficiency. In adolescents with heavy menstrual bleeding, fewer than half of iron deficiency cases are detected when screening is performed with hemoglobin or blood count alone. Measuring ferritin levels in at-risk patients might allow for earlier implementation of iron therapy and improvement in symptoms. Copyright © 2016 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  19. 2015 nationwide survey revealed Barley stripe mosaic virus in Korean barley fields

    USDA-ARS?s Scientific Manuscript database

    A seed-transmitted virus has consistently caused significant economic damage to barley crops in Korea in recent years, and may be increasing because many farmers save seed for replanting. Because some barley seed is imported, there is the potential for introduction of new seed-transmitted viruses, c...

  20. Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit.

    PubMed

    Dockter, Christoph; Gruszka, Damian; Braumann, Ilka; Druka, Arnis; Druka, Ilze; Franckowiak, Jerome; Gough, Simon P; Janeczko, Anna; Kurowska, Marzena; Lundqvist, Joakim; Lundqvist, Udda; Marzec, Marek; Matyszczak, Izabela; Müller, André H; Oklestkova, Jana; Schulz, Burkhard; Zakhrabekova, Shakhira; Hansson, Mats

    2014-12-01

    Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars. © 2014 American Society of Plant Biologists. All Rights Reserved.

  1. Efficient removal of cyclobutane pyrimidine dimers in barley: differential contribution of light-dependent and dark DNA repair pathways.

    PubMed

    Manova, Vasilissa; Georgieva, Ralitsa; Borisov, Borislav; Stoilov, Lubomir

    2016-10-01

    Barley stress response to ultraviolet radiation (UV) has been intensively studied at both the physiological and morphological level. However, the ability of barley genome to repair UV-induced lesions at the DNA level is far less characterized. In this study, we have investigated the relative contribution of light-dependent and dark DNA repair pathways for the efficient elimination of cyclobutane pyrimidine dimers (CPDs) from the genomic DNA of barley leaf seedlings. The transcriptional activity of barley CPD photolyase gene in respect to the light-growth conditions and UV-C irradiation of the plants has also been analyzed. Our results show that CPDs induced in the primary barley leaf at frequencies potentially damaging DNA at the single-gene level are removed efficiently and exclusively by photorepair pathway, whereas dark repair is hardly detectable, even at higher CPD frequency. A decrease of initially induced CPDs under dark is observed but only after prolonged incubation, suggesting the activation of light-independent DNA damage repair and/or tolerance mechanisms. The green barley seedlings possess greater capacity for CPD photorepair than the etiolated ones, with efficiency of CPD removal dependent on the intensity and quality of recovering light. The higher repair rate of CPDs measured in the green leaves correlates with the higher transcriptional activity of barley CPD photolyase gene. Visible light and UV-C radiation affect differentially the expression of CPD photolyase gene particularly in the etiolated leaves. We propose that the CPD repair potential of barley young seedlings may influence their response to UV-stress. © 2016 Scandinavian Plant Physiology Society.

  2. Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1.

    PubMed

    Kucharewicz, Weronika; Distelfeld, Assaf; Bilger, Wolfgang; Müller, Maren; Munné-Bosch, Sergi; Hensel, Götz; Krupinska, Karin

    2017-02-01

    WHIRLY1 in barley was isolated as a potential regulator of the senescence-associated gene HvS40. In order to investigate whether the plastid-nucleus-located DNA/RNA-binding protein WHIRLY1 plays a role in regulation of leaf senescence, primary foliage leaves from transgenic barley plants with an RNAi-mediated knockdown of the WHIRLY1 gene were characterized by typical senescence parameters, namely pigment contents, function and composition of the photosynthetic apparatus, as well as expression of selected genes known to be either down- or up-regulated during leaf senescence. When the plants were grown at low light intensity, senescence progression was similar between wild-type and RNAi-W1 plants. Likewise, dark-induced senescence of detached leaves was not affected by reduction of WHIRLY1. When plants were grown at high light intensity, however, senescence was induced prematurely in wild-type plants but was delayed in RNAi-W1 plants. This result suggests that WHIRLY1 plays a role in light sensing and/or stress communication between chloroplasts and the nucleus. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Cold-Specific Induction of a Dehydrin Gene Family Member in Barley.

    PubMed Central

    Van Zee, K.; Chen, F. Q.; Hayes, P. M.; Close, T. J.; Chen, THH.

    1995-01-01

    An interval on barley (Hordeum vulgare L.) chromosome 7 accounting for significant quantitative trait locus effects for winter hardiness were detected in a winter (Dicktoo) x spring (Morex) barley population (P.M. Hayes, T. Blake, T.H.H. Chen, S. Tragoonrung, F. Chen, A. Pan, and B. Liu [1993] Genome 36: 66-71). Two members of the barley dehydrin gene family, Dhn1 and Dhn2, were located within the region defining the winter hardiness quantitative trait locus effect (A. Pan, P.M. Hayes, F. Chen, T. Blake, T.H.H. Chen, T.T.S. Wright, I. Karsai, Z. Bedo [1994] Theor Appl Genet 89: 900-910). To investigate the possible role of Dhn1 and Dhn2 in winter hardiness, we examined the expression pattern of six barley dehydrin gene family members in shoot tissue in response to cold temperature. Incubation of 3-week-old barley plants at 2[deg]C resulted in a rapid induction of a single 86-kD polypeptide that was recognized by an antiserum against a peptide conserved in the dehydrin gene family. Northern blot analysis confirmed the induction of an mRNA corresponding to Dhn5. The expression patterns of cold-induced dehydrins in shoot tissue for Dicktoo and Morex were identical under the conditions studied, in spite of the known phenotypic differences in their winter hardiness. These results, together with the allelic structure of selected high- and low-survival lines, suggest that the Dicktoo alleles at the Dhn1 and Dhn2 may not be the primary determinants of winter hardiness in barley. PMID:12228540

  4. Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material.

    PubMed

    Steiner, Elisabeth; Auer, Andrea; Becker, Thomas; Gastl, Martina

    2012-03-15

    Brewing with 100% barley using the Ondea® Pro exogenous brewing enzyme product was compared to brewing with 100% barley. The use of barley, rather than malt, in the brewing process and the consequences for selected beer quality attributes (foam formation, colloidal stability and filterability, sensory differences, protein content and composition) was considered. The quality attributes of barley, malt, kettle-full-wort, cold wort, unfiltered beer and filtered beer were assessed. A particular focus was given to monitoring changes in the barley protein composition during the brewing process and how the exogenous OndeaPro® enzymes influenced wort protein composition. All analyses were based on standard brewing methods described in ASBC, EBC or MEBAK. To monitor the protein changes two-dimensional polyacrylamide gel electrophoresis was used. It was shown that by brewing beer with 100% barley and an appropriate addition of exogenous Ondea® Pro enzymes it was possible to efficiently brew beer of a satisfactory quality. The production of beers brewed with 100% barley resulted in good process efficiency (lautering and filtration) and to a final product whose sensory quality was described as light, with little body and mouthfeel, very good foam stability and similar organoleptic qualities compared to conventional malt beer. In spite of the sensory evaluation differences could still be seen in protein content and composition. Copyright © 2011 Society of Chemical Industry.

  5. What are the implications of variation in root hair length on tolerance to phosphorus deficiency in combination with water stress in barley (Hordeum vulgare)?

    PubMed Central

    Brown, L.K.; George, T.S.; Thompson, J.A.; Wright, G.; Lyon, J.; Dupuy, L.; Hubbard, S.F.; White, P.J.

    2012-01-01

    Background and Aims Phosphorus commonly limits crop yield and is frequently applied as fertilizer; however, supplies of quality rock phosphate for fertilizer production are diminishing. Plants have evolved many mechanisms to increase their P-fertilizer use efficiency, and an understanding of these traits could result in improved long-term sustainability of agriculture. Here a mutant population is utilized to assess the impact of root hair length on P acquisition and yield under P-deficient conditions alone or when combined with drought. Methods Mutants with various root hair phenotypes were grown in the glasshouse in pots filled with soil representing sufficient and deficient P treatments and, in one experiment, a range of water availability was also imposed. Plants were variously harvested at 7 d, 8 weeks and 14 weeks, and variables including root hair length, rhizosheath weight, biomass, P accumulation and yield were measured. Key Results The results confirmed the robustness of the root hair phenotypes in soils and their relationship to rhizosheath production. The data demonstrated that root hair length is important for shoot P accumulation and biomass, while only the presence of root hairs is critical for yield. Root hair presence was also critical for tolerance to extreme combined P deficit and drought stress, with genotypes with no root hairs suffering extreme growth retardation in comparison with those with root hairs. Conclusions The results suggest that although root hair length is not important for maintaining yield, the presence of root hairs is implicit to sustainable yield of barley under P-deficient conditions and when combined with extreme drought. Root hairs are a trait that should be maintained in future germplasm. PMID:22539540

  6. The 1980 US/Canada wheat and barley exploratory experiment. Volume 2: Addenda

    NASA Technical Reports Server (NTRS)

    Bizzell, R. M.; Prior, H. L.; Payne, R. W.; Disler, J. M.

    1983-01-01

    Three study areas supporting the U.S./Canada Wheat and Barley Exploratory Experiment are discussed including an evaluation of the experiment shakedown test analyst labeling results, an evaluation of the crop proportion estimate procedure 1A component, and the evaluation of spring wheat and barley crop calendar models for the 1979 crop year.

  7. Fusariotoxicosis from barley in British Columbia. II. Analysis and toxicity of syspected barley.

    PubMed Central

    Puls, R; Greenway, J A

    1976-01-01

    Fusariotoxin T-2, a trichothecene, was tentatively identified in barley samples which caused field outbreaks of mycotoxicosis in British Columbia. Geese died when fed the contaminated barley experimentally but mice were little affected after long term feeding. The methods used in the laboratory for trichothecene extraction and identification of T-2 toxin are described. PMID:1000373

  8. Characterization of the association of nitrate reductase with barley (Hordeum vulgare L.) root membranes

    NASA Technical Reports Server (NTRS)

    Meyerhoff, P. A.; Fox, T. C.; Travis, R. L.; Huffaker, R. C.

    1994-01-01

    The nature of the association between nitrate reductase (NR) and membranes was examined. Nitrate reductase activity (NRA) associated with the microsomal fraction of barley (Hordeum vulgare L.) roots amounted to 0.6 to 0.8% of soluble NRA following sonication in the presence of 250 mM KI and repeated osmotic shock. This treatment removed all contaminating soluble NRA from microsomes of uninduced barley roots that had been homogenized in a soluble extract from roots of NO3(-)-induced plants. On continuous sucrose gradients, NRA co-migrated specifically with VO4(-)-sensitive ATPase activity, a plasma membrane (PM) marker; activity of glucose-6-phosphate dehydrogenase, assayed as cytosolic marker, co-migrated with NRA. Microsomal NRA was absent in barley deficient in soluble NR. Perturbation and trypsinolysis experiments with PM vesicles isolated by aqueous two-phase partitioning indicated that NR is associated with the periphery of the cytoplasmic face of the bilayer. These results demonstrate that PM and soluble NRs are essentially the same protein but that the membrane-associated form is tightly bound. Although it is possible that PM-associated NR exists in vivo, unequivocal evidence for this has yet to be shown. However, PM NR is definitely present in vitro.

  9. Surface interactions of Fusarium graminearum on barley.

    PubMed

    Imboden, Lori; Afton, Drew; Trail, Frances

    2018-06-01

    The filamentous fungus Fusarium graminearum, a devastating pathogen of barley (Hordeum vulgare L.), produces mycotoxins that pose a health hazard. To investigate the surface interactions of F. graminearum on barley, we focused on barley florets, as the most important infection site leading to grain contamination. The fungus interacted with silica-accumulating cells (trichomes and silica/cork cell pairs) on the host surface. We identified variation in trichome-type cells between two-row and six-row barley, and in the role of specific epidermal cells in the ingress of F. graminearum into barley florets. Prickle-type trichomes functioned to trap conidia and were sites of fungal penetration. Infections of more mature florets supported the spread of hyphae into the vascular bundles, whereas younger florets did not show this spread. These differences related directly to the timing and location of increases in silica content during maturation. Focal accumulation of cellulose in infected paleae of two-row and six-row barley indicated that the response is in part linked to trichome type. Overall, silica-accumulating epidermal cells had an expanded role in barley, serving to trap conidia, provide sites for fungal ingress and initiate resistance responses, suggesting a role for silica in pathogen establishment. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  10. Identification of aerenchyma formation-related QTL in barley that can be effective in breeding for waterlogging tolerance.

    PubMed

    Zhang, Xuechen; Zhou, Gaofeng; Shabala, Sergey; Koutoulis, Anthony; Shabala, Lana; Johnson, Peter; Li, Chengdao; Zhou, Meixue

    2016-06-01

    Aerenchyma formation after 7 days of waterlogging in commercial potting mixture can be a reliable, fast, and widely utilized approach for the selection of waterlogging tolerant barley genotypes. One major QTL for aerenchyma formation after 7 days of waterlogging treatment was identified and the newly developed markers explained 44 % of the phenotypic variance. This QTL can now be effectively used in barley breeding programs. Waterlogging is one of the important limiting conditions for crop yield and productivity. The main feature of waterlogged soils is oxygen deprivation, due to slow gas diffusion in water. Decreased oxygen content in waterlogged soils leads to the oxygen deficiency in plant tissues, resulting in reduced energy availability for plants. Rapidly induced aerenchyma formation is critical to maintaining adequate oxygen supply and overall waterlogging tolerance in barley. In this study, we have proved that quantifying aerenchyma formation after 7 days of waterlogging in commercial potting mixture can be a reliable, fast, and widely utilised approach for the selection of waterlogging tolerant barley genotypes, which is supported by measurements of redox potential (an indicator of anaerobic conditions). This protocol was also used to identify quantitative trait loci (QTL) in a doubled haploid population of barley from the cross between Yerong (tolerant) and Franklin (sensitive) genotypes. The QTL for aerenchyma formation and root porosity were at the same location as the waterlogging tolerance QTL. Seven new markers were developed and added onto this region on chromosome 4H. One major QTL for aerenchyma formation after 7 days waterlogging treatment explained 44.0 % of the phenotypic variance. This successful QTL for aerenchyma formation can be effectively used in the marker assisted selection to improve waterlogging tolerance in barley.

  11. Infant and young child feeding practices in urban Philippines and their associations with stunting, anemia, and deficiencies of iron and vitamin A.

    PubMed

    Rohner, Fabian; Woodruff, Bradley A; Aaron, Grant J; Yakes, Elizabeth A; Lebanan, May Antonnette O; Rayco-Solon, Pura; Saniel, Ofelia P

    2013-06-01

    The prevalence of stunting, underweight, and micronutrient deficiencies are persistently high in young children in the Philippines, and among other factors, suboptimal infant and young child feeding behavior may contribute to these forms of malnutrition. To improve the understanding of contributors associated with the nutritional status of children 6 to 23 months of age living in urban areas of the Philippines. A cross-sectional survey was conducted covering five urban centers in the Philippines. Data on infant and young child feeding and nutritional status (including wasting, stunting, underweight, anemia, iron deficiency, and vitamin A deficiency) were collected for 1,784 children. Among children from urban and predominantly poor and very poor households, 26% were stunted, 18% were underweight, and 5% were wasted. Forty-two percent were anemic, 28% were iron deficient, and 3% were vitamin A deficient. About half of the children were breastfed within an hour after birth, were breastfed at the time of the survey, and had been continuously breastfed up to 1 year of age. Of the factors investigated, low socioeconomic status, use of cheaper cooking fuel, and nonuse of multivitamins were all independently associated with stunting. The prevalence of anemia, iron deficiency, and vitamin A deficiency were independently associated with the same factors and poorer sanitation facilities, lower maternal education, current unemployment, and inflammation. These factors merit attention in future programming and interventions may include promotion of the timely introduction of appropriate fortified complementary foods, the use of affordable multiple micronutrient preparations, and measures to reduce infections.

  12. Characterization and genetic mapping of eceriferum-ym (cer-ym), a cutin deficient barley mutant with impaired leaf water retention capacity.

    PubMed

    Li, Chao; Liu, Cheng; Ma, Xiaoying; Wang, Aidong; Duan, Ruijun; Nawrath, Christiane; Komatsuda, Takao; Chen, Guoxiong

    2015-09-01

    The cuticle covers the aerial parts of land plants, where it serves many important functions, including water retention. Here, a recessive cuticle mutant, eceriferum-ym (cer-ym), of Hordeum vulgare L. (barley) showed abnormally glossy spikes, sheaths, and leaves. The cer-ym mutant plant detached from its root system was hypersensitive to desiccation treatment compared with wild type plants, and detached leaves of mutant lost 41.8% of their initial weight after 1 h of dehydration under laboratory conditions, while that of the wild type plants lost only 7.1%. Stomata function was not affected by the mutation, but the mutant leaves showed increased cuticular permeability to water, suggesting a defective leaf cuticle, which was confirmed by toluidine blue staining. The mutant leaves showed a substantial reduction in the amounts of the major cutin monomers and a slight increase in the main wax component, suggesting that the enhanced cuticle permeability was a consequence of cutin deficiency. cer-ym was mapped within a 0.8 cM interval between EST marker AK370363 and AK251484, a pericentromeric region on chromosome 4H. The results indicate that the desiccation sensitivity of cer-ym is caused by a defect in leaf cutin, and that cer-ym is located in a chromosome 4H pericentromeric region.

  13. Characterization and genetic mapping of eceriferum-ym (cer-ym), a cutin deficient barley mutant with impaired leaf water retention capacity

    PubMed Central

    Li, Chao; Liu, Cheng; Ma, Xiaoying; Wang, Aidong; Duan, Ruijun; Nawrath, Christiane; Komatsuda, Takao; Chen, Guoxiong

    2015-01-01

    The cuticle covers the aerial parts of land plants, where it serves many important functions, including water retention. Here, a recessive cuticle mutant, eceriferum-ym (cer-ym), of Hordeum vulgare L. (barley) showed abnormally glossy spikes, sheaths, and leaves. The cer-ym mutant plant detached from its root system was hypersensitive to desiccation treatment compared with wild type plants, and detached leaves of mutant lost 41.8% of their initial weight after 1 h of dehydration under laboratory conditions, while that of the wild type plants lost only 7.1%. Stomata function was not affected by the mutation, but the mutant leaves showed increased cuticular permeability to water, suggesting a defective leaf cuticle, which was confirmed by toluidine blue staining. The mutant leaves showed a substantial reduction in the amounts of the major cutin monomers and a slight increase in the main wax component, suggesting that the enhanced cuticle permeability was a consequence of cutin deficiency. cer-ym was mapped within a 0.8 cM interval between EST marker AK370363 and AK251484, a pericentromeric region on chromosome 4H. The results indicate that the desiccation sensitivity of cer-ym is caused by a defect in leaf cutin, and that cer-ym is located in a chromosome 4H pericentromeric region. PMID:26366115

  14. 76 FR 61287 - Request for Public Comment on the United States Standards for Barley

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... barley marketing and define U.S. barley quality in the domestic and global marketplace. The standards define commonly used industry terms; contain basic principles governing the application of standards... standards using approved methodologies and can be applied at any point in the marketing chain. Furthermore...

  15. 7 CFR 1421.7 - Requesting marketing assistance loans and loan deficiency payments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... agreement or loan deficiency payment application on or before the applicable final loan availability date... harvested: barley, canola, flaxseed, oats, rapeseed, crambe, sesame seed, and wheat. (2) May 31 of the year following the year in which the following crops are normally harvested: corn, grain sorghum, mustard seed...

  16. 7 CFR 1421.7 - Requesting marketing assistance loans and loan deficiency payments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... agreement or loan deficiency payment application on or before the applicable final loan availability date... harvested: barley, canola, flaxseed, oats, rapeseed, crambe, sesame seed, and wheat. (2) May 31 of the year following the year in which the following crops are normally harvested: corn, grain sorghum, mustard seed...

  17. 7 CFR 1421.7 - Requesting marketing assistance loans and loan deficiency payments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... agreement or loan deficiency payment application on or before the applicable final loan availability date... harvested: barley, canola, flaxseed, oats, rapeseed, crambe, sesame seed, and wheat. (2) May 31 of the year following the year in which the following crops are normally harvested: corn, grain sorghum, mustard seed...

  18. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains.

    PubMed

    Holme, Inger Baeksted; Dionisio, Giuseppe; Madsen, Claus Krogh; Brinch-Pedersen, Henrik

    2017-04-01

    The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S-promoter, and the phytase activity was measured in the mature grains, the green leaves and in the dry mature vegetative plant parts left after harvest of the grains. The T 2 -generation of HvPAPhy_a transformed barley showed phytase activity increases up to 19-fold (29 000 phytase units (FTU) per kg in mature grains). Moreover, also in green leaves and mature dry straw, phytase activities were increased significantly by 110-fold (52 000 FTU/kg) and 57-fold (51 000 FTU/kg), respectively. The HvPAPhy_a-transformed barley plants with high phytase activities possess triple potential utilities for the improvement of phosphate bioavailability. First of all, the utilization of the mature grains as feed to increase the release of bio-available phosphate and minerals bound to the phytate of the grains; secondly, the utilization of the powdered straw either directly or phytase extracted hereof as a supplement to high phytate feed or food; and finally, the use of the stubble to be ploughed into the soil for mobilizing phytate-bound phosphate for plant growth. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Arsenite Elicits Anomalous Sulfur Starvation Responses in Barley1[W

    PubMed Central

    Reid, Rob; Gridley, Kate; Kawamata, Yuta; Zhu, Yongguan

    2013-01-01

    Treatment of barley (Hordeum vulgare) seedlings with arsenite (AsIII) rapidly induced physiological and transcriptional changes characteristic of sulfur deficiency, even in plants replete with sulfur. AsIII and sulfur deficiency induced 5- to 20-fold increases in the three genes responsible for sulfate reduction. Both treatments also caused up-regulation of a sulfate transporter, but only in the case of sulfur deficiency was there an increase in sulfate influx. Longer-term changes included reduction in transfer of sulfur from roots to shoots and an increase in root growth relative to shoot growth. Genes involved in complexation and compartmentation of arsenic were up-regulated by AsIII, but not by sulfur deficiency. The rate at which arsenic accumulated appeared to be controlled by the rate of thiol synthesis. Over a range of AsIII concentrations and growth periods, the ratio of thiols to arsenic was always close to 3:1, which is consistent with the formation of a stable complex between three glutathione molecules per AsIII. The greater toxicity of arsenic under sulfur-limiting conditions is likely to be due to an intensification of sulfur deficiency as a result of thiol synthesis, rather than to a direct toxicity to metabolism. Because influx of AsIII was nearly 20-fold faster than the rate of synthesis of thiols, it is questionable whether this complexation strategy can be effective in preventing arsenic toxicity, unless arsenic uptake becomes limited by diffusive resistances in the rhizosphere. PMID:23482871

  20. Transgenic barley: a prospective tool for biotechnology and agriculture.

    PubMed

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming. © 2013 Elsevier Inc. All rights reserved.

  1. Non-enzymatic antioxidant accumulations in BR-deficient and BR-insensitive barley mutants under control and drought conditions.

    PubMed

    Gruszka, Damian; Janeczko, Anna; Dziurka, Michal; Pociecha, Ewa; Fodor, Jozsef

    2017-12-07

    Drought is one of the most adverse stresses that affect plant growth and yield. Disturbances in metabolic activity resulting from drought cause overproduction of reactive oxygen species. It is postulated that brassinosteroids (BRs) regulate plant tolerance to the stress conditions, but the underlying mechanisms remain largely unknown. An involvement of endogenous BRs in regulation of the antioxidant homeostasis is not fully clarified either. Therefore, the aim of this study was to elucidate the role of endogenous BRs in regulation of non-enzymatic antioxidants in barley (Hordeum vulgare) under control and drought conditions. The plant material included the 'Bowman' cultivar and a group of semi-dwarf near-isogenic lines (NILs), representing mutants deficient in BR biosynthesis or signaling. In general, accumulations of 11 compounds representing various types of non-enzymatic antioxidants were analyzed under both conditions. The analyses of accumulations of reduced and oxidized forms of ascorbate indicated that the BR mutants contain significantly higher contents of dehydroascorbic acid under drought conditions when compared with the 'Bowman' cultivar. The analysis of glutathione accumulation indicated that under the control conditions the BR-insensitive NILs contained significantly lower concentrations of this antioxidant when compared with the rest of genotypes. Therefore, we postulate that BR sensitivity is required for normal accumulation of glutathione. A complete accumulation profile of various tocopherols indicated that functional BR biosynthesis and signaling are required for their normal accumulation under both conditions. Results of this study provided an insight into the role of endogenous BRs in regulation of the non-enzymatic antioxidant homeostasis. © 2017 Scandinavian Plant Physiology Society.

  2. Induced Variations in Brassinosteroid Genes Define Barley Height and Sturdiness, and Expand the Green Revolution Genetic Toolkit1[C][W][OPEN

    PubMed Central

    Dockter, Christoph; Gruszka, Damian; Braumann, Ilka; Druka, Arnis; Druka, Ilze; Franckowiak, Jerome; Gough, Simon P.; Janeczko, Anna; Kurowska, Marzena; Lundqvist, Joakim; Lundqvist, Udda; Marzec, Marek; Matyszczak, Izabela; Müller, André H.; Oklestkova, Jana; Schulz, Burkhard; Zakhrabekova, Shakhira; Hansson, Mats

    2014-01-01

    Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars. PMID:25332507

  3. Copper, iron and zinc absorption, retention and status of young women fed vitamin B-6 deficient diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnlund, J.R.; Keyes, W.R.; Hudson, C.A.

    1991-03-11

    A study was conducted in young women to determine the effect of vitamin B-6 deficient diets on copper, iron and zinc metabolism. Young women were confined to a metabolic research unit for 84 and 98 days. They were fed a vitamin B-6 deficient formula diet initially, followed by food diet containing four increasing levels of vitamin B-6. Copper, iron and zinc absorption, retention and status were determined at intervals throughout the study. Absorption was determined using the stable isotopes {sup 65}Cu, {sup 54}Fe, and {sup 67}Zn. Status was based on serum copper and zinc, hemoglobin, hematocrit and mean corpuscular volume.more » Copper absorption averaged 18 {plus minus} 1% during vitamin B-6 depletion, significantly lower than 24 {plus minus} 1% during repletion, but serum copper was not affected and balance was positive. Iron absorption was not impaired significantly by vitamin B-6 deficient diets, but status declined during the depletion period. Zinc absorption averaged 40 {plus minus} 2% during depletion and 27 {plus minus} 2% during repletion. Zinc absorption and retention were significantly greater during vitamin B-6 depletion, but serum zinc declined suggesting the absorbed zinc was not available for utilization. The results suggest that vitamin B-6 depletion of young women may inhibit copper absorption, affect iron status and alter zinc metabolism. The effects of vitamin B-6 depletion differ markedly among these elements.« less

  4. Severe iron-deficiency anaemia and feeding practices in young children.

    PubMed

    Parkin, Patricia C; DeGroot, Julie; Maguire, Jonathon L; Birken, Catherine S; Zlotkin, Stanley

    2016-03-01

    Fe-deficiency anaemia (IDA) occurs in 1-2 % of infants in developed countries, peaks at 1-3 years of age and is associated with later cognitive deficits. The objectives of the present study were to describe the characteristics of young children with severe IDA and examine modifiable risk factors in a developed-country setting. Two prospective samples: a national surveillance programme sample and a regional longitudinal study sample. Canada, 2009-2011. Two samples of young children recruited from community-based health-care practices: a national sample with severe anaemia (Hb<80 g/l) due to Fe deficiency and a regional sample with non-anaemic Fe sufficiency. Children with severe IDA (n 201, mean Hb 55·1 g/l) experienced substantial morbidity (including developmental delay, heart failure, cerebral thrombosis) and health-care utilization (including a 42 % hospitalization rate). Compared with children with Fe sufficiency (n 597, mean Hb 122·4 g/l), children with severe IDA consumed a larger volume of cow's milk daily (median 1065 ml v. 500 ml, P<0·001) and were more likely to be using a bottle during the day (78 % v. 43 %, OR=6·0; 95 % CI 4·0, 8·9) and also in bed (60 % v. 21 %, OR=6·5; 95 % CI 4·4, 9·5). Severe IDA is associated with substantial morbidity and may be preventable. Three potentially modifiable feeding practices are associated with IDA: (i) cow's milk consumption greater than 500 ml/d; (ii) daytime bottle use beyond 12 months of age; and (iii) bottle use in bed. These feeding practices should be highlighted in future recommendations for public health and primary-care practitioners.

  5. Barley hulls and straw constituents and emulsifying properties of their hemicelluloses

    USDA-ARS?s Scientific Manuscript database

    Barley hulls (husks) are potential by-products of barley ethanol production. Barley straw is an abundant biomass in the regions producing barley for malting, feeds, and fuel ethanol. Both barley hulls and straw contain valuable hemicelluloses (arabinoxylans) and other useful carbohydrate and non-car...

  6. Products based on a high fiber barley genotype, but not on common barley or oats, lower postprandial glucose and insulin responses in healthy humans.

    PubMed

    Liljeberg, H G; Granfeldt, Y E; Björck, I M

    1996-02-01

    Postprandial blood glucose and insulin responses to cereal products made from common barley, oats or a barley genotype containing elevated levels of beta-glucans were evaluated in nine healthy subjects. Porridges were made from commercial Swedish whole-meal barley or oat flours, and a mixed whole-meal porridge using the high fiber barley genotype and commercial Swedish common barley (50:50). Also studied were two types of flour-based bread products composed of high fiber barley and common barley in ratios of 50:50 or 80:20, respectively. The common oat and barley porridges produced postprandial glucose and insulin responses similar to the white wheat bread reference, suggesting that the naturally occurring dietary fiber in these whole-meal flours has no impact on the glucose tolerance. In contrast, all high fiber barley products induced significantly lower responses than did the reference product, with the glycemic and insulin indices ranging from 57 to 72 or 42 to 72%, respectively. It is concluded that "lente" products of high sensory quality can be prepared from a barley genotype with an elevated content of soluble dietary fiber. The glycemic index of these products compares favorably with that of products made from common cereals, suggesting their use as a potential component of diets for patients with diabetes and hyperlipidemia, and for individuals predisposed to metabolic disease.

  7. Living with transversal upper limb reduction deficiency: limitations experienced by young adults during their transition to adulthood.

    PubMed

    Lankhorst, Ilse M F; Baars, Erwin C T; Wijk, Iris van; Janssen, Wim G M; Poelma, Margriet J; van der Sluis, Corry K

    2017-08-01

    During transition to adulthood young adults with disabilities are at risk of experiencing limitations due to changing physical and social requirements. To determine whether young adults with transversal upper limb reduction deficiency (tULRD) have experienced limitations in various domains of participation during transition to adulthood and how they dealt with these limitations. Fifteen participants (mean age 21.4 years) with tULRD. A qualitative study was performed using a semi-structured interview based on the Rotterdam Transition Profile to identify the limitations experienced in participation domains. Almost all the participants reported difficulties in finding a suitable study or job. Most young adults were convinced they were suitable for almost any study or job, but their teachers and potential employers were more reserved. Few difficulties were reported on the domains leisure activities, intimate relationships/sexuality, housing/housekeeping and transportation. Participants preferred to develop their own strategies for dealing with limitations. Various aids, adaptations and prostheses were used to overcome limitations. Rehabilitation teams were infrequently consulted for advice in solving transitional problems. Young adults with tULRD experience limitations mainly in choosing and finding a suitable study or job. Rehabilitation teams may play a more extensive role in supporting individuals with transitional problems. Implications for rehabilitation Most young adults with transversal upper limb reduction deficiency (tULRD) experience limitations in study and job selection during transition to adulthood, but they do not consult the rehabilitation team. Assessment of abilities in relation to job interests and practicing job specific bimanual activities may be helpful for young adults with a tULRD. How the rehabilitation teams can meet the needs of young adults with tULRD during transitional phases, when autonomy is of growing importance, should be investigated

  8. The Barley Magnesium Chelatase 150-kD Subunit Is Not an Abscisic Acid Receptor1[OA

    PubMed Central

    Müller, André H.; Hansson, Mats

    2009-01-01

    Magnesium chelatase is the first unique enzyme of the chlorophyll biosynthetic pathway. It is composed of three gene products of which the largest is 150 kD. This protein was recently identified as an abscisic acid receptor in Arabidopsis (Arabidopsis thaliana). We have evaluated whether the barley (Hordeum vulgare) magnesium chelatase large subunit, XanF, could be a receptor for the phytohormone. The study involved analysis of recombinant magnesium chelatase protein as well as several induced chlorophyll-deficient magnesium chelatase mutants with defects identified at the gene and protein levels. Abscisic acid had no effect on magnesium chelatase activity and binding to the barley 150-kD protein could not be shown. Magnesium chelatase mutants showed a wild-type response in respect to postgermination growth and stomatal aperture. Our results question the function of the large magnesium chelatase subunit as an abscisic acid receptor. PMID:19176716

  9. Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines

    PubMed Central

    Wang, Gongwei; Schmalenbach, Inga; von Korff, Maria; Léon, Jens; Kilian, Benjamin; Rode, Jeannette

    2010-01-01

    The control of flowering time has important impacts on crop yield. The variation in response to day length (photoperiod) and low temperature (vernalization) has been selected in barley to provide adaptation to different environments and farming practices. As a further step towards unraveling the genetic mechanisms underlying flowering time control in barley, we investigated the allelic variation of ten known or putative photoperiod and vernalization pathway genes between two genotypes, the spring barley elite cultivar ‘Scarlett’ (Hordeum vulgare ssp. vulgare) and the wild barley accession ‘ISR42-8’ (Hordeum vulgare ssp. spontaneum). The genes studied are Ppd-H1, VRN-H1, VRN-H2, VRN-H3, HvCO1, HvCO2, HvGI, HvFT2, HvFT3 and HvFT4. ‘Scarlett’ and ‘ISR42-8’ are the parents of the BC2DH advanced backcross population S42 and a set of wild barley introgression lines (S42ILs). The latter are derived from S42 after backcrossing and marker-assisted selection. The genotypes and phenotypes in S42 and S42ILs were utilized to determine the genetic map location of the candidate genes and to test if these genes may exert quantitative trait locus (QTL) effects on flowering time, yield and yield-related traits in the two populations studied. By sequencing the characteristic regions of the genes and genotyping with diagnostic markers, the contrasting allelic constitutions of four known flowering regulation genes were identified as ppd-H1, Vrn-H1, vrn-H2 and vrn-H3 in ‘Scarlett’ and as Ppd-H1, vrn-H1, Vrn-H2 and a novel allele of VRN-H3 in ‘ISR42-8’. All candidate genes could be placed on a barley simple sequence repeat (SSR) map. Seven candidate genes (Ppd-H1, VRN-H2, VRN-H3, HvGI, HvFT2, HvFT3 and HvFT4) were associated with flowering time QTLs in population S42. Four exotic alleles (Ppd-H1, Vrn-H2, vrn-H3 and HvCO1) possibly exhibited significant effects on flowering time in S42ILs. In both populations, the QTL showing the strongest effect corresponded to

  10. Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley.

    PubMed

    Dai, Fei; Chen, Zhong-Hua; Wang, Xiaolei; Li, Zefeng; Jin, Gulei; Wu, Dezhi; Cai, Shengguan; Wang, Ning; Wu, Feibo; Nevo, Eviatar; Zhang, Guoping

    2014-09-16

    The domestication of cultivated barley has been used as a model system for studying the origins and early spread of agrarian culture. Our previous results indicated that the Tibetan Plateau and its vicinity is one of the centers of domestication of cultivated barley. Here we reveal multiple origins of domesticated barley using transcriptome profiling of cultivated and wild-barley genotypes. Approximately 48-Gb of clean transcript sequences in 12 Hordeum spontaneum and 9 Hordeum vulgare accessions were generated. We reported 12,530 de novo assembled transcripts in all of the 21 samples. Population structure analysis showed that Tibetan hulless barley (qingke) might have existed in the early stage of domestication. Based on the large number of unique genomic regions showing the similarity between cultivated and wild-barley groups, we propose that the genomic origin of modern cultivated barley is derived from wild-barley genotypes in the Fertile Crescent (mainly in chromosomes 1H, 2H, and 3H) and Tibet (mainly in chromosomes 4H, 5H, 6H, and 7H). This study indicates that the domestication of barley may have occurred over time in geographically distinct regions.

  11. A Barley Powdery Mildew Fungus Non-Autonomous Retrotransposon Encodes a Peptide that Supports Penetration Success on Barley.

    PubMed

    Nottensteiner, Mathias; Zechmann, Bernd; McCollum, Christopher; Hückelhoven, Ralph

    2018-05-11

    Pathogens overcome plant immunity by the means of secreted effectors. Host effector targets often act in pathogen defense but might also support fungal accommodation or nutrition. The barley ROP GTPase HvRACB is involved in accommodation of fungal haustoria of the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh) in barley epidermal cells. We found that HvRACB interacts with the ROP-interactive peptide 1 (ROPIP1) that is encoded on the active non-long terminal repeat retroelement Eg-R1 of Bgh. Over-expression of ROPIP1 in barley epidermal cells and host-induced post-transcriptional gene silencing (HIGS) of ROPIP1 suggested that ROPIP1 is involved in virulence of Bgh. Bimolecular fluorescence complementation and co-localization supported that ROPIP1 can interact with activated HvRACB in planta. We show that ROPIP1 is expressed by Bgh on barley and translocated into the cytoplasm of infected barley cells. ROPIP1 is recruited to microtubules upon co-expression of microtubule associated ROP GTPase ACTIVATING PROTEIN (HvMAGAP1) and can destabilize cortical microtubules. Data suggest that Bgh ROPIP targets HvRACB and manipulates host cell microtubule organization for facilitated host cell entry. This points to a possible neo-functionalization of retroelement-derived transcripts for the evolution of a pathogen virulence effector.

  12. Mismatch Repair Deficiency Testing in Patients With Colorectal Cancer and Nonadherence to Testing Guidelines in Young Adults.

    PubMed

    Shaikh, Talha; Handorf, Elizabeth A; Meyer, Joshua E; Hall, Michael J; Esnaola, Nestor F

    2018-02-08

    Mismatch repair (MMR) deficiency of DNA has been observed in up to 15% of sporadic colorectal cancers (CRCs) and is a characteristic feature of Lynch syndrome, which has a higher incidence in young adults (age, <50 years) with CRC. Mismatch repair deficiency can be due to germline mutations or epigenetic inactivation, affects prognosis and response to systemic therapy, and results in unrepaired repetitive DNA sequences, which increases the risk of multiple malignant tumors. To evaluate the utilization of MMR deficiency testing in adults with CRC and analyze nonadherence to long-standing testing guidelines in younger adults using a contemporary national data set to help identify potential risk factors for nonadherence to newly implemented universal testing guidelines. Adult (age, <30 to ≥70 years) and, of these, younger adult (<30 to 49 years) patients with invasive colorectal adenocarcinoma diagnosed between 2010 and 2012 and known MMR deficiency testing status were identified using the National Cancer Database. The study was conducted from March 16, 2016, to March 1, 2017. Patient sociodemographic, facility, tumor, and treatment characteristics. The primary outcome of interest was receipt of MMR deficiency testing. Multivariable logistic regression was used to identify independent predictors of testing in adult and/or young adult patients. A total of 152 993 adults with CRC were included in the study (78 579 [51.4%] men; mean [SD] age, 66.9 [13.9] years). Of these patients, only 43 143 (28.2%) underwent MMR deficiency testing; the proportion of patients tested increased between 2010 and 2012 (22.3% vs 33.1%; P<.001). Among 17 218 younger adult patients with CRC, only 7422 (43.1%) underwent MMR deficiency testing; the proportion tested increased between 2010 and 2012 (36.1% vs 48.0%; P < .001). Irrespective of age, higher educational level (OR, 1.38; 95% CI, 1.15-1.66), later diagnosis year (OR, 1.81; 95% CI, 1.65-1.98), early stage disease (OR, 1

  13. Comparative genomic analysis and expression of the APETALA2-like genes from barley, wheat, and barley-wheat amphiploids

    PubMed Central

    Gil-Humanes, Javier; Pistón, Fernando; Martín, Antonio; Barro, Francisco

    2009-01-01

    Background The APETALA2-like genes form a large multi-gene family of transcription factors which play an important role during the plant life cycle, being key regulators of many developmental processes. Many studies in Arabidopsis have revealed that the APETALA2 (AP2) gene is implicated in the establishment of floral meristem and floral organ identity as well as temporal and spatial regulation of flower homeotic gene expression. Results In this work, we have cloned and characterised the AP2-like gene from accessions of Hordeum chilense and Hordeum vulgare, wild and domesticated barley, respectively, and compared with other AP2 homoeologous genes, including the Q gene in wheat. The Hordeum AP2-like genes contain two plant-specific DNA binding motifs called AP2 domains, as does the Q gene of wheat. We confirm that the H. chilense AP2-like gene is located on chromosome 5Hch. Patterns of expression of the AP2-like genes were examined in floral organs and other tissues in barley, wheat and in tritordeum amphiploids (barley × wheat hybrids). In tritordeum amphiploids, the level of transcription of the barley AP2-like gene was lower than in its barley parental and the chromosome substitutions 1D/1Hch and 2D/2Hch were seen to modify AP2 gene expression levels. Conclusion The results are of interest in order to understand the role of the AP2-like gene in the spike morphology of barley and wheat, and to understand the regulation of this gene in the amphiploids obtained from barley-wheat crossing. This information may have application in cereal breeding programs to up- or down-regulate the expression of AP2-like genes in order to modify spike characteristics and to obtain free-threshing plants. PMID:19480686

  14. Transcriptome analysis of trichothecene-induced gene expression in barley.

    PubMed

    Boddu, Jayanand; Cho, Seungho; Muehlbauer, Gary J

    2007-11-01

    Fusarium head blight, caused primarily by Fusarium graminearum, is a major disease problem on barley (Hordeum vulgare L.). Trichothecene mycotoxins produced by the fungus during infection increase the aggressiveness of the fungus and promote infection in wheat (Triticum aestivum L.). Loss-of-function mutations in the TRI5 gene in F. graminearum result in the inability to synthesize trichothecenes and in reduced virulence on wheat. We examined the impact of pathogen-derived trichothecenes on virulence and the transcriptional differences in barley spikes infected with a trichothecene-producing wild-type strain and a loss-of-function tri5 trichothecene nonproducing mutant. Disease severity, fungal biomass, and floret necrosis and bleaching were reduced in spikes inoculated with the tri5 mutant strain compared with the wild-type strain, indicating that the inability to synthesize trichothecenes results in reduced virulence in barley. We detected 63 transcripts that were induced during trichothecene accumulation, including genes encoding putative trichothecene detoxification and transport proteins, ubiquitination-related proteins, programmed cell death-related proteins, transcription factors, and cytochrome P450s. We also detected 414 gene transcripts that were designated as basal defense response genes largely independent of trichothecene accumulation. Our results show that barley exhibits a specific response to trichothecene accumulation that can be separated from the basal defense response. We propose that barley responds to trichothecene accumulation by inducing at least two general responses. One response is the induction of genes encoding trichothecene detoxification and transport activities that may reduce the impact of trichothecenes. The other response is to induce genes encoding proteins associated with ubiquitination and cell death which may promote successful establishment of the disease.

  15. Diagnosis of primary antibody and complement deficiencies in young adults after a first invasive bacterial infection.

    PubMed

    Sanges, S; Wallet, F; Blondiaux, N; Theis, D; Vérin, I; Vachée, A; Dessein, R; Faure, K; Viget, N; Senneville, E; Leroy, O; Maury, F; Just, N; Poissy, J; Mathieu, D; Prévotat, A; Chenivesse, C; Scherpereel, A; Smith, G; Lopez, B; Rosain, J; Frémeaux-Bacchi, V; Hachulla, E; Hatron, P-Y; Bahuaud, M; Batteux, F; Launay, D; Labalette, M; Lefèvre, G

    2017-08-01

    Screening for primary immunodeficiencies (PIDs) in adults is recommended after two severe bacterial infections. We aimed to evaluate if screening should be performed after the first invasive infection in young adults. Eligible patients were retrospectively identified using hospital discharge and bacteriology databases in three centres during a 3-year period. Eighteen to 40-year-old patients were included if they had experienced an invasive infection with encapsulated bacteria commonly encountered in PIDs (Streptococcus pneumoniae (SP), Neisseria meningitidis (NM), Neisseria gonorrhoeae (NG), Haemophilus influenzae (HI), or group A Streptococcus (GAS)). They were excluded in case of general or local predisposing factors. Immunological explorations and PIDs diagnoses were retrieved from medical records. Serum complement and IgG/A/M testings were systematically proposed at the time of study to patients with previously incomplete PID screening. The study population comprised 38 patients. Thirty-six had experienced a first invasive episode and a PID was diagnosed in seven (19%): two cases of common variable immunodeficiency revealed by SP bacteraemia, one case of idiopathic primary hypogammaglobulinaemia, and two cases of complement (C6 and C7) deficiency revealed by NM meningitis, one case of IgG2/IgG4 subclasses deficiency revealed by GAS bacteraemia, and one case of specific polysaccharide antibody deficiency revealed by HI meningitis. Two patients had previously experienced an invasive infection before the study period: in both cases, a complement deficiency was diagnosed after a second NM meningitis and a second NG bacteraemia, respectively. PID screening should be considered after a first unexplained invasive encapsulated-bacterial infection in young adults. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  16. Metabolism of Linoleic Acid by Barley Lipoxygenase and Hydroperoxide Isomerase 1

    PubMed Central

    Lulai, Edward C.; Baker, Charles W.; Zimmerman, Don C.

    1981-01-01

    The oxidation of linoleic acid in incubation mixtures containing extracts of barley lipoxygenase and hydroperoxide isomerase, and the production of these enzymes in quiescent and germinated barley, were investigated. The ratio of 9-hydroperoxylinoleic acid to 13-hydroperoxylinoleic acid was higher for incubation mixtures containing extracts of quiescent barley than for mixtures containing extracts of germinated barley; production of 13-hydroperoxylinoleic acid from germinated barley exceeded that of quiescent barley. Hydroperoxy metabolites of linoleic acid were converted to 9-hydroxy-10-oxo-cis-12-octadecenoic acid, 13-hydroxy-10-oxo-trans-11-octadecenoic acid, and small amounts of 11-hydroxy-12,13-epoxy-cis-9-octadecenoic acid and 11-hydroxy-9,10-epoxy-cis-13-octadecenoic acid whether quiescent or germinated barley was the enzyme source; a fifth product, 13-hydroxy-12-oxo-cis-9-octadecenoic acid was formed only when germinated barley was the enzyme source. Lipoxygenase was readily extracted by buffer, but hydroperoxide isomerase was bound in a catalytically active state to the insoluble barley grist and was efficiently extracted only when Triton X-100 was included in the extraction buffer. Hydroperoxide isomerase was localized in the embryo of quiescent barley, but it was present in the embryo, acrospire, and in small but concentrated amounts in the rootlet of germinating barley. The levels of both lipoxygenase and hydroperoxide isomerase increased through the thirteenth day of germination. Images PMID:16662032

  17. S-nitrosoglutathione reductase deficiency-induced S-nitrosylation results in neuromuscular dysfunction.

    PubMed

    Montagna, Costanza; Di Giacomo, Giuseppina; Rizza, Salvatore; Cardaci, Simone; Ferraro, Elisabetta; Grumati, Paolo; De Zio, Daniela; Maiani, Emiliano; Muscoli, Carolina; Lauro, Filomena; Ilari, Sara; Bernardini, Sergio; Cannata, Stefano; Gargioli, Cesare; Ciriolo, Maria R; Cecconi, Francesco; Bonaldo, Paolo; Filomeni, Giuseppe

    2014-08-01

    Nitric oxide (NO) production is implicated in muscle contraction, growth and atrophy, and in the onset of neuropathy. However, many aspects of the mechanism of action of NO are not yet clarified, mainly regarding its role in muscle wasting. Notably, whether NO production-associated neuromuscular atrophy depends on tyrosine nitration or S-nitrosothiols (SNOs) formation is still a matter of debate. Here, we aim at assessing this issue by characterizing the neuromuscular phenotype of S-nitrosoglutathione reductase-null (GSNOR-KO) mice that maintain the capability to produce NO, but are unable to reduce SNOs. We demonstrate that, without any sign of protein nitration, young GSNOR-KO mice show neuromuscular atrophy due to loss of muscle mass, reduced fiber size, and neuropathic behavior. In particular, GSNOR-KO mice show a significant decrease in nerve axon number, with the myelin sheath appearing disorganized and reduced, leading to a dramatic development of a neuropathic phenotype. Mitochondria appear fragmented and depolarized in GSNOR-KO myofibers and myotubes, conditions that are reverted by N-acetylcysteine treatment. Nevertheless, although atrogene transcription is induced, and bulk autophagy activated, no removal of damaged mitochondria is observed. These events, alongside basal increase of apoptotic markers, contribute to persistence of a neuropathic and myopathic state. Our study provides the first evidence that GSNOR deficiency, which affects exclusively SNOs reduction without altering nitrotyrosine levels, results in a clinically relevant neuromuscular phenotype. These findings provide novel insights into the involvement of GSNOR and S-nitrosylation in neuromuscular atrophy and neuropathic pain that are associated with pathological states; for example, diabetes and cancer.

  18. Registration of Sawtooth low-phytate, hulled spring barley

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, U.S. Department of Agriculture (USDA-ARS), has released 'Sawtooth', (Hordeum vulgare L.) (Reg. No. xxxxxx, P.I. xxxxxx). Sawtooth is a hulless, low-phytate, spring barley, the second to be developed and released by the USDA-ARS. Compared to the previously released ...

  19. Characterization of Resistance to Cephus cinctus (Hymenoptera: Cephidae) in Barley Germplasm.

    PubMed

    Varella, Andrea C; Talbert, Luther E; Achhami, Buddhi B; Blake, Nancy K; Hofland, Megan L; Sherman, Jamie D; Lamb, Peggy F; Reddy, Gadi V P; Weaver, David K

    2018-04-02

    Most barley cultivars have some degree of resistance to the wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae). Damage caused by WSS is currently observed in fields of barley grown in the Northern Great Plains, but the impact of WSS damage among cultivars due to genetic differences within the barley germplasm is not known. Specifically, little is known about the mechanisms underlying WSS resistance in barley. We characterized WSS resistance in a subset of the spring barley CAP (Coordinated Agricultural Project) germplasm panel containing 193 current and historically important breeding lines from six North American breeding programs. Panel lines were grown in WSS infested fields for two consecutive years. Lines were characterized for stem solidness, stem cutting, WSS infestation (antixenosis), larval mortality (antibiosis), and parasitism (indirect plant defense). Variation in resistance to WSS in barley was compared to observations made for solid-stemmed resistant and hollow-stemmed susceptible wheat lines. Results indicate that both antibiosis and antixenosis are involved in the resistance of barley to the WSS, but antibiosis seems to be more prevalent. Almost all of the barley lines had greater larval mortality than the hollow-stemmed wheat lines, and only a few barley lines had mortality as low as that observed in the solid-stemmed wheat line. Since barley lines lack solid stems, it is apparent that barley has a different form of antibiosis. Our results provide information for use of barley in rotation to control the WSS and may provide a basis for identification of new approaches for improving WSS resistance in wheat.

  20. A link between premenopausal iron deficiency and breast cancer malignancy

    PubMed Central

    2013-01-01

    Background Young breast cancer (BC) patients less than 45 years old are at higher risk of dying from the disease when compared to their older counterparts. However, specific risk factors leading to this poorer outcome have not been identified. Methods One candidate is iron deficiency, as this is common in young women and a clinical feature of young age. In the present study, we used immuno-competent and immuno-deficient mouse xenograft models as well as hemoglobin as a marker of iron status in young BC patients to demonstrate whether host iron deficiency plays a pro-metastatic role. Results We showed that mice fed an iron-deficient diet had significantly higher tumor volumes and lung metastasis compared to those fed normal iron diets. Iron deficiency mainly altered Notch but not TGF-β and Wnt signaling in the primary tumor, leading to the activation of epithelial mesenchymal transition (EMT). This was revealed by increased expression of Snai1 and decreased expression of E-cadherin. Importantly, correcting iron deficiency by iron therapy reduced primary tumor volume, lung metastasis, and reversed EMT markers in mice. Furthermore, we found that mild iron deficiency was significantly associated with lymph node invasion in young BC patients (p<0.002). Conclusions Together, our finding indicates that host iron deficiency could be a contributor of poor prognosis in young BC patients. PMID:23800380

  1. Transposable element junctions in marker development and genomic characterization of barley

    USDA-ARS?s Scientific Manuscript database

    Barley is a model plant in genomic studies of Triticeae species. A complete barley genome sequence will facilitate not only barley breeding programs, but also those for related species. However, the large genome size and high repetitive sequence content complicate the barley genome assembly. The ma...

  2. Sprouted barley for dairy cows: Nutritional composition and digestibility

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley or barley grain with an haylage or pasture diet on nutrient digestibility and methane output. Barley grain was sprouted in climate controlled growth chambers, to be used as part ...

  3. Calcium Deficiency Triggers Phloem Remobilization of Cadmium in a Hyperaccumulating Species1

    PubMed Central

    Tian, Shengke; Xie, Ruohan; Wang, Haixin; Hu, Yan; Ge, Jun; Liao, Xingcheng; Gao, Xiaoyu; Brown, Patrick; Lin, Xianyong; Lu, Lingli

    2016-01-01

    Understanding cadmium (Cd) accumulation in plants is critical for the development of plant-based strategies for soil remediation and crop safety. Sedum alfredii is a nonbrassica plant species known to hyperaccumulate Cd. The characteristics of Cd uptake, distribution, and retranslocation affected by the Ca status were investigated at cellular levels in S. alfredii. Low Ca supply significantly increased Cd contents in shoots of S. alfredii, particularly in the young leaves. Micro x-ray fluorescence images confirmed that sequestration of Cd was greatly enhanced in the young leaves under Ca deficiency stress, with a significant amount of Cd localized in mesophyll cells, compared to the young leaves supplied with high Ca levels. Cd influx into protoplasts isolated from young leaves was significantly inhibited by the addition of Ca channel inhibitors, but not by pre-exposure to Ca deficiency. In stems, the Cd signal in vascular systems under low Ca levels was 10-fold higher than in those treated with higher Ca levels. A detailed investigation of vascular bundles revealed that an extremely high Cd signal induced by low Ca supply occurred in the phloem tissues, but not in the xylem tissues. Transfer of Cd pretreated plants to nutrient solutions at different Ca levels confirmed that a much higher amount of Cd was reallocated to the new growth tissues under low Ca stress compared to plants supplied with sufficient Ca. These results suggest that Ca deficiency triggered a highly efficient phloem remobilization of Cd in S. alfredii and subsequently enhanced Cd accumulation in its young leaves. PMID:27789737

  4. Registration of Harriman low-phytate, hulled spring barley

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, U.S. Department of Agriculture (USDA-ARS), has released 'Harriman', (Hordeum vulgare L.) (Reg. No. xxxxxx, P.I. xxxxxx). Harriman is a hulled, low-phytate barley, the second to be developed and released by the USDA-ARS. Compared to the previously released hulled, l...

  5. Effects of water storage in the stele on measurements of the hydraulics of young roots of corn and barley.

    PubMed

    Joshi, Ankur; Knipfer, Thorsten; Steudle, Ernst

    2009-11-01

    In standard techniques (root pressure probe or high-pressure flowmeter), the hydraulic conductivity of roots is calculated from transients of root pressure using responses following step changes in volume or pressure, which may be affected by a storage of water in the stele. Storage effects were examined using both experimental data of root pressure relaxations and clamps and a physical capacity model. Young roots of corn and barley were treated as a three-compartment system, comprising a serial arrangement of xylem/probe, stele and outside medium/cortex. The hydraulic conductivities of the endodermis and of xylem vessels were derived from experimental data. The lower limit of the storage capacity of stelar tissue was caused by the compressibility of water. This was subsequently increased to account for realistic storage capacities of the stele. When root water storage was varied over up to five orders of magnitude, the results of simulations showed that storage effects could not explain the experimental data, suggesting a major contribution of effects other than water storage. It is concluded that initial water flows may be used to measure root hydraulic conductivity provided that the volumes of water used are much larger than the volumes stored.

  6. Shotgun proteomics of the barley seed proteome

    USDA-ARS?s Scientific Manuscript database

    Barley seed proteins are of prime importance to the brewing industry, human and animal nutrition and in plant breeding for cultivar identification. To obtain comprehensive proteomic data from barley seeds, acetone precipitated proteins were in-solution digested and the resulting peptides were analyz...

  7. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that...

  8. 7 CFR 407.10 - Group risk plan for barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Group risk plan for barley. 407.10 Section 407.10..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.10 Group risk plan for barley. The provisions of the Group Risk Plan for Barley for the 2000 and succeeding crop years are as follows: 1...

  9. 7 CFR 407.10 - Group risk plan for barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Group risk plan for barley. 407.10 Section 407.10..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.10 Group risk plan for barley. The provisions of the Group Risk Plan for Barley for the 2000 and succeeding crop years are as follows: 1...

  10. Dietary Determinants of and Possible Solutions to Iron Deficiency for Young Women Living in Industrialized Countries: A Review

    PubMed Central

    Beck, Kathryn L.; Conlon, Cathryn A.; Kruger, Rozanne; Coad, Jane

    2014-01-01

    Iron deficiency is a concern in both developing and developed (industrialized) countries; and young women are particularly vulnerable. This review investigates dietary determinants of and possible solutions to iron deficiency in young women living in industrialized countries. Dietary factors including ascorbic acid and an elusive factor in animal protein foods (meat; fish and poultry) enhance iron absorption; while phytic acid; soy protein; calcium and polyphenols inhibit iron absorption. However; the effects of these dietary factors on iron absorption do not necessarily translate into an association with iron status and iron stores (serum ferritin concentration). In cross-sectional studies; only meat intake has consistently (positively) been associated with higher serum ferritin concentrations. The enhancing effects of ascorbic acid and meat on iron absorption may be negated by the simultaneous consumption of foods and nutrients which are inhibitory. Recent cross-sectional studies have considered the combination and timing of foods consumed; with mixed results. Dietary interventions using a range of focused dietary measures to improve iron status appear to be more effective than dietary approaches that focus on single nutrients or foods. Further research is needed to determine optimal dietary recommendations for both the prevention and treatment of iron deficiency. PMID:25244367

  11. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    PubMed

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  12. The Importance of Barley Genetics and Domestication in a Global Perspective

    PubMed Central

    Pourkheirandish, Mohammad; Komatsuda, Takao

    2007-01-01

    Background Archaeological evidence has revealed that barley (Hordeum vulgare) is one of the oldest crops used by ancient farmers. Studies of the time and place of barley domestication may help in understanding ancient human civilization. Scope The studies of domesticated genes in crops have uncovered the mechanisms which converted wild and unpromising wild species to the most important food for humans. In addition to archaeological studies, molecular studies are finding new insights into the process of domestication. Throughout the process of barley domestication human selection on wild species resulted in plants with more harvestable seeds. One of the remarkable changes during barley domestications was the appearance of six-rowed barley. The gene associated with this trait results in three times more seed per spike compared with ancestral wild barley. This increase in number of seed resulted in a major dichotomy in the evolution of barley. The identification of the six-rowed spike gene provided a framework for understanding how this character was evolved. Some important barley domestication genes have been discovered and many are currently being investigated. Conclusions Identification of domestication genes in crops revealed that most of the drastic changes during domestication are the result of functional impairments in transcription factor genes, and creation of new functions is rare. Isolation of the six-rowed spike gene revealed that this trait was domesticated more than once in the domestication history of barley. Six-rowed barley is derived from two-rowed ancestral forms. Isolation of photoperiod-response genes in barley and rice revealed that different genes belonging to similar genetic networks partially control this trait. PMID:17761690

  13. S-Nitrosoglutathione Reductase Deficiency-Induced S-Nitrosylation Results in Neuromuscular Dysfunction

    PubMed Central

    Montagna, Costanza; Di Giacomo, Giuseppina; Rizza, Salvatore; Cardaci, Simone; Ferraro, Elisabetta; Grumati, Paolo; De Zio, Daniela; Maiani, Emiliano; Muscoli, Carolina; Lauro, Filomena; Ilari, Sara; Bernardini, Sergio; Cannata, Stefano; Gargioli, Cesare; Ciriolo, Maria R.; Cecconi, Francesco; Bonaldo, Paolo

    2014-01-01

    Abstract Aims: Nitric oxide (NO) production is implicated in muscle contraction, growth and atrophy, and in the onset of neuropathy. However, many aspects of the mechanism of action of NO are not yet clarified, mainly regarding its role in muscle wasting. Notably, whether NO production-associated neuromuscular atrophy depends on tyrosine nitration or S-nitrosothiols (SNOs) formation is still a matter of debate. Here, we aim at assessing this issue by characterizing the neuromuscular phenotype of S-nitrosoglutathione reductase-null (GSNOR-KO) mice that maintain the capability to produce NO, but are unable to reduce SNOs. Results: We demonstrate that, without any sign of protein nitration, young GSNOR-KO mice show neuromuscular atrophy due to loss of muscle mass, reduced fiber size, and neuropathic behavior. In particular, GSNOR-KO mice show a significant decrease in nerve axon number, with the myelin sheath appearing disorganized and reduced, leading to a dramatic development of a neuropathic phenotype. Mitochondria appear fragmented and depolarized in GSNOR-KO myofibers and myotubes, conditions that are reverted by N-acetylcysteine treatment. Nevertheless, although atrogene transcription is induced, and bulk autophagy activated, no removal of damaged mitochondria is observed. These events, alongside basal increase of apoptotic markers, contribute to persistence of a neuropathic and myopathic state. Innovation: Our study provides the first evidence that GSNOR deficiency, which affects exclusively SNOs reduction without altering nitrotyrosine levels, results in a clinically relevant neuromuscular phenotype. Conclusion: These findings provide novel insights into the involvement of GSNOR and S-nitrosylation in neuromuscular atrophy and neuropathic pain that are associated with pathological states; for example, diabetes and cancer. Antioxid. Redox Signal. 21, 570–587. PMID:24684653

  14. [Effects of phosphorus sources on phosphorus fractions in rhizosphere soil of wild barley genotypes with high phosphorus utilization efficiency].

    PubMed

    Cai, Qiu-Yan; Zhang, Xi-Zhou; Li, Ting-Xuan; Chen, Guang-Deng

    2014-11-01

    organic phosphorus decreased in rhizosphere soil. The concentrations of labile and moderate labile organic phosphorus in rhizosphere soil of high P-efficiency wild barley were significantly higher than that of low P-efficiency wild barley in each phosphorus source treatment. However, moderate resistant organic phosphorus and resistant organic phosphorus concentrations had no significant difference between the two genotypes. Wild barley with high P-efficiency demonstrated a greater ability of mobilization and uptake Ca2-P, Ca8-P, Al-P and labile organic phosphorus than that with low P-efficiency under Pi deficiency.

  15. Comparative Proteomic Analysis of Aluminum Tolerance in Tibetan Wild and Cultivated Barleys

    PubMed Central

    Dai, Huaxin; Cao, Fangbin; Chen, Xianhong; Zhang, Mian; Ahmed, Imrul Mosaddek; Chen, Zhong-Hua; Li, Chengdao; Zhang, Guoping; Wu, Feibo

    2013-01-01

    Aluminum (Al) toxicity is a major limiting factor for plant production in acid soils. Wild barley germplasm is rich in genetic diversity and may provide elite genes for crop Al tolerance improvement. The hydroponic-experiments were performed to compare proteomic and transcriptional characteristics of two contrasting Tibetan wild barley genotypes Al- resistant/tolerant XZ16 and Al-sensitive XZ61 as well as Al-resistant cv. Dayton. Results showed that XZ16 had less Al uptake and translocation than XZ61 and Dayton under Al stress. Thirty-five Al-tolerance/resistance-associated proteins were identified and categorized mainly in metabolism, energy, cell growth/division, protein biosynthesis, protein destination/storage, transporter, signal transduction, disease/defense, etc. Among them, 30 were mapped on barley genome, with 16 proteins being exclusively up-regulated by Al stress in XZ16, including 4 proteins (S-adenosylmethionine-synthase 3, ATP synthase beta subunit, triosephosphate isomerase, Bp2A) specifically expressed in XZ16 but not Dayton. The findings highlighted the significance of specific-proteins associated with Al tolerance, and verified Tibetan wild barley as a novel genetic resource for Al tolerance. PMID:23691047

  16. Granary trial of protein-enriched pea flour for the control of three stored-product insects in barley.

    PubMed

    Hou, Xingwei; Fields, Paul G

    2003-06-01

    A granary trial was conducted to evaluate the efficacy of protein-enriched pea flour against three common stored-grain insects, Sitophilus oryzae (L.), Tribolium castaneum (Herbst), and Cryptolestes ferrugineus (Stephens). Six 30-t farm granaries were filled with approximately 11 t of barley. The barley was either not treated, treated with protein-enriched pea flour at 0.1% throughout the entire grain mass, or treated at 0.5% throughout the top half of the grain mass. Adult insects were released in screened boxes (two insects per kilogram barley for S. oryzae and T. castaneum 1.4 insects per kilogram barley for C. ferrugineus). Barley was sampled four times during the 70-d trial. The number and mortality of adults and emerged adults in the samples were noted. Four kinds of traps, flight, surface-pitfall, probe-pitfall, and sticky-bar, were placed at different locations in the granaries to estimate the movement of insects. The 0.1% protein-enriched pea flour treatment reduced adult numbers of S. oryzae by 93%, T. castaneum by 66%, and C. ferrugineus by 58%, and reduced the emerged adults by 87, 77, and 77%, respectively. Treating the top half of the barley with 0.5% protein-enriched pea flour had similar effects as treating the entire grain mass with 0.1% pea-protein flour. However, the top-half treatment failed to prevent insects from penetrating into the untreated lower layer. Differences between traps are discussed.

  17. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Wheat or barley winter coverage endorsement. 457.102... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.102 Wheat or barley... Wheat or Barley Winter Coverage Endorsement (This is a continuous endorsement) 1. In return for payment...

  18. Ectoparasitic growth of Magnaporthe on barley triggers expression of the putative barley wax biosynthesis gene CYP96B22 which is involved in penetration resistance

    PubMed Central

    2014-01-01

    Background Head blast caused by the fungal plant pathogen Magnaporthe oryzae is an upcoming threat for wheat and barley cultivation. We investigated the nonhost response of barley to an isolate of the Magnaporthe species complex which is pathogenic on Pennisetum spp. as a potential source for novel resistance traits. Results Array experiments identified a barley gene encoding a putative cytochrome P450 monooxygenase whose transcripts accumulate to a higher concentration in the nonhost as compared to the host interaction. The gene clusters within the CYP96 clade of the P450 plant gene family and is designated as CYP96B22. Expression of CYP96B22 was triggered during the ectoparasitic growth of the pathogen on the outside of the leaf. Usage of a fungicidal treatment and a Magnaporthe mutant confirmed that penetration was not necessary for this early activation of CYP96B22. Transcriptional silencing of CYP96B22 using Barley stripe mosaic virus led to a decrease in penetration resistance of barley plants to Magnaporthe host and nonhost isolates. This phenotype seems to be specific for the barley-Magnaporthe interaction, since penetration of the adapted barley powdery mildew fungus was not altered in similarly treated plants. Conclusion Taken together our results suggest a cross-talk between barley and Magnaporthe isolates across the plant surface. Since members of the plant CYP96 family are known to be involved in synthesis of epicuticular waxes, these substances or their derivatives might act as signal components. We propose a functional overlap of CYP96B22 in the execution of penetration resistance during basal and nonhost resistance of barley against different Magnaporthe species. PMID:24423145

  19. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...— Damaged kernels 1 (percent) Foreign material (percent) Other grains (percent) Skinned and broken kernels....0 10.0 15.0 1 Injured-by-frost kernels and injured-by-mold kernels are not considered damaged kernels or considered against sound barley. Notes: Malting barley shall not be infested in accordance with...

  20. Characterization of volatile aroma compounds in different brewing barley cultivars.

    PubMed

    Dong, Liang; Hou, Yingmin; Li, Feng; Piao, Yongzhe; Zhang, Xiao; Zhang, Xiaoyu; Li, Cheng; Zhao, Changxin

    2015-03-30

    Beer is a popular alcoholic malt beverage resulting from fermentation of the aqueous extract of malted barley with hops. The aroma of brewing barley impacts the flavor of beer indirectly, because some flavor compounds or their precursors in beer come from the barley. The objectives of this research were to study volatile profiles and to characterize odor-active compounds of brewing barley in order to determine the variability of the aroma composition among different brewing barley cultivars. Forty-one volatiles comprising aldehydes, ketones, alcohols, organic acids, aromatic compounds and furans were identified using solid phase microextraction combined with gas chromatography/mass spectrometry, among which aldehydes, alcohols and ketones were quantitatively in greatest abundance. Quantitative measurements performed by means of solvent extraction and calculation of odor activity values revealed that acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, hexanal, heptanal, octanal, nonanal, 3-methyl-1-butanol, cyclopentanol, 2,3-butanedione, 2,3-pentanedione, 2-heptanone, acetic acid, ethyl acetate, 2-pentylfuran and benzeneacetaldehyde, whose concentrations exceeded their odor thresholds, could be considered as odor-active compounds of brewing barley. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the concentrations of aroma compounds enabled good differentiation of most barley cultivars. © 2014 Society of Chemical Industry.

  1. 7 CFR 457.118 - Malting barley price and quality endorsement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... highest additional value price will be used until the number of bushels covered at the higher additional... barley contract or malting barley price agreement, you must provide us with a copy of your current crop... contract or malting barley price agreement is not provided to us by the acreage reporting date. (c) Under...

  2. Application of Near Infrared Reflectance Spectroscopy for Rapid and Non-Destructive Discrimination of Hulled Barley, Naked Barley, and Wheat Contaminated with Fusarium

    PubMed Central

    Lim, Jongguk; Kim, Giyoung; Mo, Changyeun; Oh, Kyoungmin; Kim, Geonseob; Ham, Hyeonheui; Kim, Seongmin; Kim, Moon S.

    2018-01-01

    Fusarium is a common fungal disease in grains that reduces the yield of barley and wheat. In this study, a near infrared reflectance spectroscopic technique was used with a statistical prediction model to rapidly and non-destructively discriminate grain samples contaminated with Fusarium. Reflectance spectra were acquired from hulled barley, naked barley, and wheat samples contaminated with Fusarium using near infrared reflectance (NIR) spectroscopy with a wavelength range of 1175–2170 nm. After measurement, the samples were cultured in a medium to discriminate contaminated samples. A partial least square discrimination analysis (PLS-DA) prediction model was developed using the acquired reflectance spectra and the culture results. The correct classification rate (CCR) of Fusarium for the hulled barley, naked barley, and wheat samples developed using raw spectra was 98% or higher. The accuracy of discrimination prediction improved when second and third-order derivative pretreatments were applied. The grains contaminated with Fusarium could be rapidly discriminated using spectroscopy technology and a PLS-DA discrimination model, and the potential of the non-destructive discrimination method could be verified. PMID:29301319

  3. Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2016-01-01

    The origin and domestication of cultivated barley have long been under debate. A population-based resequencing and phylogenetic analysis of the single copy of RPB2 gene was used to address barley domestication, to explore genetic differentiation of barley populations on the worldwide scale, and to understand gene-pool exchanges during the spread and subsequent development of barley cultivation. Our results revealed significant genetic differentiation among three geographically distinct wild barley populations. Differences in haplotype composition among populations from different geographical regions revealed that modern cultivated barley originated from two major wild barley populations: one from the Near East Fertile Crescent and the other from the Tibetan Plateau, supporting polyphyletic origin of cultivated barley. The results of haplotype frequencies supported multiple domestications coupled with widespread introgression events that generated genetic admixture between divergent barley gene pools. Our results not only provide important insight into the domestication and evolution of cultivated barley, but also enhance our understanding of introgression and distinct selection pressures in different environments on shaping the genetic diversity of worldwide barley populations, thus further facilitating the effective use of the wild barley germplasm. PMID:27786300

  4. Degenerative myelopathy and vitamin A deficiency in a young black-maned lion (Panthera leo).

    PubMed

    Maratea, Kimberly A; Hooser, Stephen B; Ramos-Vara, José A

    2006-11-01

    Degenerative myelopathy and vitamin A deficiency were diagnosed in a 1-year-old, female, black-maned lion (Panthera leo). Diffuse white matter degeneration characterized by dilated myelin sheaths, Wallerian degeneration, and reactive astrocytosis was present at all levels of the spinal cord. With luxol fast blue-resyl echt violet stain, bilaterally symmetrical demyelination was observed in the fasciculus cuneatus of the cervical spinal cord and in peripheral white matter of cervical, thoracic, and lumbar segments. Additionally, the ventral gray columns and brain stem nuclei contained rare chromatolytic neurons with abnormal neurofilament accumulation. Leptomeninges of the cervical spinal cord were focally adhered to the dura and thickened by fibrosis and osseous metaplasia. Vitamin A deficiency was diagnosed based on hepatic vitamin A concentration of 1.71 microg/g dry weight. Adequate hepatic vitamin A concentration for yearling to adult domestic animals ranges between 150 and 1000 microg/g dry weight. Lesions were distinct from those previously described in young captive lions with vitamin A deficiency, which had thickened skull bones and cerebellar herniation. The pathogenesis of vitamin A-associated myelopathy in this lion may be similar to that described in adult cattle, which is believed to result from spinal cord compression secondary to elevated pressure of cerebrospinal fluid.

  5. QTL controlling grain filling under terminal drought stress in a set of wild barley introgression lines.

    PubMed

    Honsdorf, Nora; March, Timothy J; Pillen, Klaus

    2017-01-01

    Drought is a major abiotic stress impeding the yield of cereal crops globally. Particularly in Mediterranean environments, water becomes a limiting factor during the reproductive developmental stage, causing yield losses. The wild progenitor of cultivated barley Hordeum vulgare ssp spontaneum (Hsp) is a potentially useful source of drought tolerance alleles. Wild barley introgression lines like the S42IL library may facilitate the introduction of favorable exotic alleles into breeding material. The complete set of 83 S42ILs was genotyped with the barley 9k iSelect platform in order to complete genetic information obtained in previous studies. The new map comprises 2,487 SNPs, spanning 989.8 cM and covering 94.5% of the Hsp genome. Extent and positions of introgressions were confirmed and new information for ten additional S42ILs was collected. A subset of 49 S42ILs was evaluated for drought response in four greenhouse experiments. Plants were grown under well-watered conditions until ten days post anthesis. Subsequently drought treatment was applied by reducing the available water. Several morphological and harvest parameters were evaluated. Under drought treatment, trait performance was reduced. However, there was no interaction effect between genotype and treatment, indicating that genotypes, which performed best under control treatment, also performed best under drought treatment. In total, 40 QTL for seven traits were detected in this study. For instance, favorable Hsp effects were found for thousand grain weight (TGW) and number of grains per ear under drought stress. In particular, line S42IL-121 is a promising candidate for breeding improved malting cultivars, displaying a TGW, which was increased by 17% under terminal drought stress due to the presence of an unknown wild barley QTL allele on chromosome 4H. The introgression line showed a similar advantage in previous field experiments and in greenhouse experiments under early drought stress. We, thus

  6. Fusion, rupture, and degeneration: the fate of in vivo-labelled PSVs in developing barley endosperm *

    PubMed Central

    Ibl, Verena; Kapusi, Eszter; Arcalis, Elsa; Kawagoe, Yasushi; Stoger, Eva

    2014-01-01

    Cereal endosperm is a highly differentiated tissue containing specialized organelles for the accumulation of storage proteins. The endosperm of barley contains hordeins, which are ultimately deposited within protein storage vacuoles (PSVs). These organelles have been characterized predominantly by the histochemical analysis of fixed immature tissue samples. However, little is known about the fate of PSVs during barley endosperm development, and in vivo imaging has not been attempted in order to gain further insight. In this report, young seeds were followed through development to characterize the dynamic morphology of PSVs from aleurone, subaleurone, and central starchy endosperm cells. TIP3-GFP was used as a PSV membrane marker and several fluorescent tracers were used to identify membranes and monitor endomembrane organelles in real time. Whereas the spherical appearance of strongly labelled TIP3-GFP PSVs in the aleurone remained constant, those in the subaleurone and central starchy endosperm underwent substantial morphological changes. Fusion and rupture events were observed in the subaleurone, and internal membranes derived from both the tonoplast and endoplasmic reticulum were identified within these PSVs. TIP3-GFP-labelled PSVs in the starchy endosperm cells underwent a dramatic reduction in size, so that finally the protein bodies were tightly enclosed. Potential desiccation-related membrane-altering processes that may be causally linked to these dynamic endomembrane events in the barley endosperm are discussed. PMID:24803499

  7. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2015-01-01

    The origin, evolution, and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-grain protein content (GPC). Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73 to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44%) than cultivated barley. Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC. Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding. PMID:26483818

  8. Zinc deficiency reduces bone mineral density in the spine of young adult rats: a pilot study.

    PubMed

    Ryz, Natasha R; Weiler, Hope A; Taylor, Carla G

    2009-01-01

    The objective of this study was to investigate the effects of zinc deficiency initiated during adolescence on skeletal densitometry, serum markers of bone metabolism, femur minerals and morphometry in young adult rats. Ten-week-old male rats were fed a <1-mg Zn/kg diet (9ZD), a 5-mg Zn/kg diet (9MZD) or a 30-mg Zn/kg diet (9CTL) for up to 9 weeks. Analyses included bone mineral density, serum osteocalcin and C-terminal peptides of type I collagen, serum zinc, femur zinc, calcium and phosphorus, and femur morphometry. Bone mineral density was 14% lower in the spine of 9ZD, but was not altered in the whole body, tibia or femur, or in any of the aforementioned sites in 9MZD, compared to 9CTL. When adjusted for size, spine bone mineral apparent density was still 8% lower in 9ZD than 9CTL. Serum osteocalcin, a marker for bone formation, was approximately 33% lower in 9ZD compared to both 9MZD and 9CTL. The 9ZD and 9MZD had 57% lower femur zinc and 56-88% lower serum zinc concentrations compared to 9CTL. These findings indicate that severe zinc deficiency initiated during adolescence may have important implications for future bone health, especially with regards to bone consolidation in the spine. 2009 S. Karger AG, Basel.

  9. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Tolerances for barley pearlers. 801.3 Section 801.3 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances for...

  10. Viability of barley seeds after long-term exposure to outer side of international space station

    NASA Astrophysics Data System (ADS)

    Sugimoto, Manabu; Ishii, Makoto; Mori, Izumi C.; Elena, Shagimardanova; Gusev, Oleg A.; Kihara, Makoto; Hoki, Takehiro; Sychev, Vladimir N.; Levinskikh, Margarita A.; Novikova, Natalia D.; Grigoriev, Anatoly I.

    2011-09-01

    Barley seeds were exposed to outer space for 13 months in a vented metal container without a climate control system to assess the risk of physiological and genetic mutation during long-term storage in space. The space-stored seeds (S0 generation), with an 82% germination rate in 50 seeds, lost about 20% of their weight after the exposure. The germinated seeds showed normal growth, heading, and ripening. The harvested seeds (S1 generation) also germinated and reproduced (S2 generation) as did the ground-stored seeds. The culm length, ear length, number of seed, grain weight, and fertility of the plants from the space-stored seeds were not significantly different from those of the ground-stored seeds in each of the S0 and S1 generation. Furthermore, the S1 and S2 space-stored seeds respectively showed similar β-glucan content to those of the ground-stored seeds. Amplified fragment length polymorphism analysis with 16 primer combinations showed no specific fragment that appears or disappears significantly in the DNA isolated from the barley grown from the space-stored seeds. Though these data are derived from nine S0 space-stored seeds in a single exposure experiment, the results demonstrate the preservation of barley seeds in outer space for 13 months without phenotypic or genotypic changes and with healthy and vigorous growth in space.

  11. Phenolic compounds of barley grain and their implication in food product discoloration.

    PubMed

    Quinde-Axtell, Zory; Baik, Byung-Kee

    2006-12-27

    Barley grains contain significant amounts of phenolic compounds that may play a major role in the discoloration of food products. Phenolic acid and proanthocyanidin (PA) composition of 11 barley genotypes were determined, using high-performance liquid chromatography and liquid chromatography-mass spectrometry, and their significance on food discoloration was evaluated. Abraded grains contained 146-410 microg/g of phenolic acids (caffeic, p-coumaric, and ferulic) in hulled barley and 182-282 microg/g in hulless barley. Hulled PA-containing and PA-free genotypes had comparable phenolic acid contents. Catechin and six major barley PAs, including dimeric prodelphinidin B3 and procyandin B3, and four trimers were quantified. PAs were quantified as catechin equivalents (CE). The catechin content was higher in hulless (48-71 microg/g) than in hulled (32-37 microg/g) genotypes. The total PA content of abraded barley grains ranged from 169 to 395microg CE/g in PA-containing hulled and hulless genotypes. Major PAs were prodelphinidin B3 (39-109 microg CE/g) and procyanidin B3 (40-99 microg CE/g). The contents of trimeric PAs including procyanidin C2 ranged from 53 to 151 g CE/g. Discoloration of barley flour dough correlated with the catechin content of abraded grains (r = -0.932, P < 0.001), but not with the content of individual phenolic acids and PAs. Discoloration of barley flour dough was, however, intensified when total PA extracts and catechin or dimeric PA fractions were added into PA-free barley flour. The brightness of dough also decreased when the total PA extract or trimeric PA fraction was added into heat-treated PA-free barley flour. Despite its low concentration, catechin appears to exert the largest influence on the discoloration of barley flour dough among phenolic compounds.

  12. Prevalence of glucose-6-phosphate dehydrogenase deficiency in U.S. Army personnel.

    PubMed

    Chinevere, Troy D; Murray, Clinton K; Grant, Earl; Johnson, Gregory A; Duelm, Felix; Hospenthal, Duane R

    2006-09-01

    The U.S. Army recently mandated that soldiers undergo glucose-6-phosphate dehydrogenase (G6PD) testing before deployment to malarious regions. We retrospectively characterize the presence and degree of G6PD deficiency in U.S. military personnel by sex, self-reported ethnicity, and World Health Organization deficiency classification through test results obtained October 1, 2004 through January 17, 2005. Data were available for 63,302 (54,874 males and 8,428 females) subjects; 2.5% of males and 1.6% of females were deficient, with most having only moderate enzyme deficiency. African American males (12.2%) and females (4.1%), along with Asian males (4.3%), had the highest rates of G6PD deficiency. Most males were found to have class III variants while most females were class IV variants. The most severely deficient were Asian males (class II). These results suggest that universal screening for G6PD deficiency is clinically warranted, and particularly essential for those male service members who self-report ethnicity as African American, Asian, or Hispanic.

  13. Volatile Compound-Mediated Interactions between Barley and Pathogenic Fungi in the Soil

    PubMed Central

    Fiers, Marie; Lognay, Georges; Fauconnier, Marie-Laure; Jijakli, M. Haïssam

    2013-01-01

    Plants are able to interact with their environment by emitting volatile organic compounds. We investigated the volatile interactions that take place below ground between barley roots and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum. The volatile molecules emitted by each fungus, by non-infected barley roots and by barley roots infected with one of the fungi or the two of them were extracted by head-space solid phase micro extraction and analyzed by gas chromatography mass spectrometry. The effect of fungal volatiles on barley growth and the effect of barley root volatiles on fungal growth were assessed by cultivating both organisms in a shared atmosphere without any physical contact. The results show that volatile organic compounds, especially terpenes, are newly emitted during the interaction between fungi and barley roots. The volatile molecules released by non-infected barley roots did not significantly affect fungal growth, whereas the volatile molecules released by pathogenic fungi decreased the length of barley roots by 19 to 21.5% and the surface of aerial parts by 15%. The spectrum of the volatiles released by infected barley roots had no significant effect on F. culmorum growth, but decreased C. sativus growth by 13 to 17%. This paper identifies the volatile organic compounds emitted by two pathogenic fungi and shows that pathogenic fungi can modify volatile emission by infected plants. Our results open promising perspectives concerning the biological control of edaphic diseases. PMID:23818966

  14. Molecular cytogenetic and morphological characterization of two wheat-barley translocation lines

    PubMed Central

    Ivanizs, László; Farkas, András; Linc, Gabriella; Molnár-Láng, Márta

    2018-01-01

    Abstract Barley chromosome 5H, carrying important QTLs for plant adaptation and tolerance to abiotic stresses, is extremely instable in the wheat genetic background and is eliminated in the early generations of wheat-barley crosses. A spontaneous wheat-barley 5HS-7DS.7DL translocation was previously obtained among the progenies of the Mv9kr1 x Igri hybrid. The present work reports on the transfer of the 5HS-7DS.7DL translocation into a modern wheat cultivar, Mv Bodri, in order to use it in the wheat breeding program. The comparison of the hybridization bands of DNA repeats HvT01, pTa71, (GAA)n and the barley centromere-specific (AGGGAG)n in Igri barley and the 5HS-7DS.7DL translocation, together with the visualization of the barley chromatin made it possible to determine the size of the introgressed barley segment, which was approximately 74% of the whole 5HS. Of the 29 newly developed PCR markers, whose source ESTs were selected from the Genome Zipper of barley chromosome 5H, 23 were mapped in the introgressed 1–0.26 FL 5HS bin, three were located in the missing C-0.26 FL region, while three markers were specific for 5HL. The translocation breakpoint was flanked by markers Hv7502 and Hv3949. A comparison of the parental wheat cultivars and the wheat-barley introgression lines indicated that the presence of the translocation improved tillering ability in the Mv9kr1 and Mv Bodri genetic background. The similar or better yield components under high- or low-input cultivation environments, respectively, indicated that the 5HS-7DS.7DL translocation had little or no negative effect on yield components, making it a promising genotype to improve wheat genetic diversity. These results promise to accelerate functional genomic studies on barley chromosome 5H and to support pre-breeding and breeding research on wheat. PMID:29889875

  15. Iron deficiency in young Lebanese children: association with elevated blood lead levels.

    PubMed

    Muwakkit, Samar; Nuwayhid, Iman; Nabulsi, Mona; al Hajj, Rima; Khoury, Ruby; Mikati, Mohamad; Abboud, Miguel R

    2008-05-01

    To measure the prevalence of transferrin saturation (TS) <12%, and iron-deficiency anemia (IDA) in Lebanese children, and their association with dietary habits, sociodemographic characteristics, and blood lead levels. A cross-sectional study was performed over a period of 2 years. Of 268 children studied, 142 (53%) were boys and 126 (47%) were girls with an age range of 11 to 75 months. Information collected included nutritional status, blood counts, TS, and blood lead levels. The total prevalence of TS<12% and IDA were 33.6% and 20.5%, respectively, and were associated with not having received iron supplements. IDA was more prevalent among males (P=0.04). TS<12% and IDA were significantly associated with elevated blood lead levels in the first age group (11 to 23 mo) (P=0.04, odds ratio=3.19) and (P=0.006, odds ratio=4.59), respectively. IDA is common in Lebanese children and is associated with increased blood lead levels, lack of iron supplementation, and cultural dietary habits. Remedial measures such as iron fortification of commonly consumed food are needed on the national level. Lead exposure must be controlled and awareness must be raised about the potentially devastating consequences of combined iron deficiency and lead poisoning on young children.

  16. Use of a Questionnaire to Assess Vitamin D Status in Young Adults

    PubMed Central

    Bolek-Berquist, Jilaine; Elliott, Mary E.; Gangnon, Ronald E.; Gemar, Dessa; Engelke, Jean; Lawrence, Susan J.; Hansen, Karen E.

    2010-01-01

    Objective We hypothesized that young adults would commonly have vitamin D deficiency and that a questionnaire could help identify subjects with the condition. Design Between January and May 2004, we administered a questionnaire to a convenience sample of young adults. We measured each participant’s serum 25(OH)D using a chemiluminescent assay and defined deficiency as a serum 25(OH)D <16 ng/ml. Setting and Subjects We recruited young adults living in Madison, Wisconsin without pre-existing conditions affecting vitamin D and/or calcium metabolism. Results One hundred eighty-four adults (mean age 24 years, 53% women, 90% Caucasian) participated in the study. Nearly three in four adults (71%) had 25(OH)D levels <30 ng/ml and 26% were vitamin D deficient. In multivariate analysis, persons reporting a suntan (OR 0.24, 95% CI 0.09–0.63, p=0.004), tanning booth use (OR 0.09, 95% CI 0.02–0.43, p=0.002) and daily ingestion of two or more servings of milk (OR 0.21, 95% CI 0.09–0.48, p<0.001) were less likely to be deficient. These three questions provided a sensitivity and specificity of 79% and 78%, respectively, for the presence of deficiency. Conclusions The questionnaire is moderately useful to identify young adults likely to be vitamin D deficient. Additional revisions of the questionnaire may improve its ability to predict vitamin D deficiency. PMID:18752694

  17. BIOCHEMICAL COMPOSITION AND NUTRITIONAL EVALUATION OF BARLEY RIHANE (HORDEUM VULGARE L.).

    PubMed

    Lahouar, Lamia; Ghrairi, Fatma; El Arem, Amira; Medimagh, Sana; El Felah, Mouledi; Salem, Hichem Ben; Achour, Lotfi

    2017-01-01

    Many experimental studies have suggested an important role for barley Rihane(BR)in the prevention of colon cancer and cardiovascular diseases. The objective of this study was to evaluate the physico-chemical properties and nutritional characterizations of BR compared to other varieties grown in Tunisia (Manel, Roho and Tej). Total, insoluble and soluble dietary fiber(β-glucan), total protein, ash and some minerals of BR and Tunisian barley varieties were determined. The results revealed that BR is good source of dietary fiber mainly β-glucan compared to the other varieties. This variety is a relatively rich source of phosphorous and potassium and it contains many important unsaturated fatty acids. BR has higher nutritional value than other varieties. Barley Rihane has significant nutritional characterizations compared to others Tunisian barleys varieties. Abbreviations: BR, Barley Rihane; LDL, low density lipoprotein; HDL, high density lipoprotein; AOM, azoxymethane; TBV, Tunisian barley varieties; TGW, thousand grain weight; SW, weight specific; TDF, total dietary fiber; IDF, insoluble dietary fiber; SDF, soluble dietary fiber; DM, Dry Matter.

  18. BIOCHEMICAL COMPOSITION AND NUTRITIONAL EVALUATION OF BARLEY RIHANE (HORDEUM VULGARE L.)

    PubMed Central

    Lahouar, Lamia; Ghrairi, Fatma; El Arem, Amira; Medimagh, Sana; El Felah, Mouledi; Salem, Hichem Ben; Achour, Lotfi

    2017-01-01

    Background: Many experimental studies have suggested an important role for barley Rihane(BR)in the prevention of colon cancer and cardiovascular diseases. The objective of this study was to evaluate the physico-chemical properties and nutritional characterizations of BR compared to other varieties grown in Tunisia (Manel, Roho and Tej). Material and Methods: Total, insoluble and soluble dietary fiber(β-glucan), total protein, ash and some minerals of BR and Tunisian barley varieties were determined. Results: The results revealed that BR is good source of dietary fiber mainly β-glucan compared to the other varieties. This variety is a relatively rich source of phosphorous and potassium and it contains many important unsaturated fatty acids. BR has higher nutritional value than other varieties. Conclusion: Barley Rihane has significant nutritional characterizations compared to others Tunisian barleys varieties. Abbreviations: BR, Barley Rihane; LDL, low density lipoprotein; HDL, high density lipoprotein; AOM, azoxymethane; TBV, Tunisian barley varieties; TGW, thousand grain weight; SW, weight specific; TDF, total dietary fiber; IDF, insoluble dietary fiber; SDF, soluble dietary fiber; DM, Dry Matter. PMID:28480409

  19. Barley ROP Binding Kinase1 Is Involved in Microtubule Organization and in Basal Penetration Resistance to the Barley Powdery Mildew Fungus1[W

    PubMed Central

    Huesmann, Christina; Reiner, Tina; Hoefle, Caroline; Preuss, Jutta; Jurca, Manuela E.; Domoki, Mónika; Fehér, Attila; Hückelhoven, Ralph

    2012-01-01

    Certain plant receptor-like cytoplasmic kinases were reported to interact with small monomeric G-proteins of the RHO of plant (ROP; also called RAC) family in planta and to be activated by this interaction in vitro. We identified a barley (Hordeum vulgare) partial cDNA of a ROP binding protein kinase (HvRBK1) in yeast (Saccharomyces cerevisiae) two-hybrid screenings with barley HvROP bait proteins. Protein interaction of the constitutively activated (CA) barley HvROPs CA HvRACB and CA HvRAC1 with full-length HvRBK1 was verified in yeast and in planta. Green fluorescent protein-tagged HvRBK1 appears in the cytoplasm and nucleoplasm, but CA HvRACB or CA HvRAC1 can recruit green fluorescent protein-HvRBK1 to the cell periphery. Barley HvRBK1 is an active kinase in vitro, and activity is enhanced by CA HvRACB or GTP-loaded HvRAC1. Hence, HvRBK1 might act downstream of active HvROPs. Transient-induced gene silencing of barley HvRBK1 supported penetration by the parasitic fungus Blumeria graminis f. sp. hordei, suggesting a function of the protein in basal disease resistance. Transient knockdown of HvRBK1 also influenced the stability of cortical microtubules in barley epidermal cells. Hence, HvRBK1 might function in basal resistance to powdery mildew by influencing microtubule organization. PMID:22415513

  20. Effect of barley flour on rheological characteristics of dough, organoleptic, nutritional and storage characteristics of south Indian parotta.

    PubMed

    Maiya, G Koushika; Shwetha, B G; Indrani, D

    2015-01-01

    Barley (Hordeum sativum) is a good source of dietary fibre, particularly β-glucan. Effect of 10, 20, 30 and 40% barley flour on the rheological characteristics of dough and quality characteristics of south Indian parotta was studied. Use of increasing amount of barley flour from 0 to 40% increased farinograph water absorption and decreased stability, increased extensograph resistance to extension and decreased extensibility, decreased amylograph set back and increased peak viscosity values. Sensory analysis showed that use of barley flour above 30% brought about adverse effect on the quality of parotta. Addition of combination of 2% dry gluten powder and 0.001% xylanase enzyme, XY (combination of improvers) decreased elasticity, increased extensibility of the dough and quality of parotta with 30% BF. During 48 h of storage, parottas with 30% barley flour remained softer than control parotta. The total dietary fibre and β-glucan contents of parotta with 30% BF were 2.0 and 10.5 times higher than the control parotta. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones.

    PubMed

    Honsel, Anne; Kojima, Mikiko; Haas, Richard; Frank, Wolfgang; Sakakibara, Hitoshi; Herschbach, Cornelia; Rennenberg, Heinz

    2012-03-01

    The influence of sulphur (S) depletion on the expression of genes related to S metabolism, and on metabolite and plant hormone contents was analysed in young and mature leaves, fine roots, xylem sap, and phloem exudates of poplar (Populus tremula×Populus alba) with special focus on early consequences. S depletion was applied by a gradual decrease of sulphate availability. The observed changes were correlated with sulphate contents. Based on the decrease in sulphate contents, two phases of S depletion could be distinguished that were denominated as 'S limitation' and 'early S deficiency'. S limitation was characterized by improved sulphate uptake (enhanced root-specific sulphate transporter PtaSULTR1;2 expression) and reduction capacities (enhanced adenosine 5'-phosphosulphate (APS) reductase expression) and by enhanced remobilization of sulphate from the vacuole (enhanced putative vacuolar sulphate transporter PtaSULTR4;2 expression). During early S deficiency, whole plant distribution of S was impacted, as indicated by increasing expression of the phloem-localized sulphate transporter PtaSULTR1;1 and by decreasing glutathione contents in fine roots, young leaves, mature leaves, and phloem exudates. Furthermore, at 'early S deficiency', expression of microRNA395 (miR395), which targets transcripts of PtaATPS3/4 (ATP sulphurylase) for cleavage, increased. Changes in plant hormone contents were observed at 'early S deficiency' only. Thus, S depletion affects S and plant hormone metabolism of poplar during 'S limitation' and 'early S deficiency' in a time series of events. Despite these consequences, the impact of S depletion on growth of poplar plants appears to be less severe than in Brassicaceae such as Arabidopsis thaliana or Brassica sp.

  2. Exome sequencing identifies NFS1 deficiency in a novel Fe-S cluster disease, infantile mitochondrial complex II/III deficiency.

    PubMed

    Farhan, Sali M K; Wang, Jian; Robinson, John F; Lahiry, Piya; Siu, Victoria M; Prasad, Chitra; Kronick, Jonathan B; Ramsay, David A; Rupar, C Anthony; Hegele, Robert A

    2014-01-01

    Iron-sulfur (Fe-S) clusters are a class of highly conserved and ubiquitous prosthetic groups with unique chemical properties that allow the proteins that contain them, Fe-S proteins, to assist in various key biochemical pathways. Mutations in Fe-S proteins often disrupt Fe-S cluster assembly leading to a spectrum of severe disorders such as Friedreich's ataxia or iron-sulfur cluster assembly enzyme (ISCU) myopathy. Herein, we describe infantile mitochondrial complex II/III deficiency, a novel autosomal recessive mitochondrial disease characterized by lactic acidemia, hypotonia, respiratory chain complex II and III deficiency, multisystem organ failure and abnormal mitochondria. Through autozygosity mapping, exome sequencing, in silico analyses, population studies and functional tests, we identified c.215G>A, p.Arg72Gln in NFS1 as the likely causative mutation. We describe the first disease in man likely caused by deficiency in NFS1, a cysteine desulfurase that is implicated in respiratory chain function and iron maintenance by initiating Fe-S cluster biosynthesis. Our results further demonstrate the importance of sufficient NFS1 expression in human physiology.

  3. Label-free proteome profiling reveals developmental-dependent patterns in young barley grains.

    PubMed

    Kaspar-Schoenefeld, Stephanie; Merx, Kathleen; Jozefowicz, Anna Maria; Hartmann, Anja; Seiffert, Udo; Weschke, Winfriede; Matros, Andrea; Mock, Hans-Peter

    2016-06-30

    Due to its importance as a cereal crop worldwide, high interest in the determination of factors influencing barley grain quality exists. This study focusses on the elucidation of protein networks affecting early grain developmental processes. NanoLC-based separation coupled to label-free MS detection was applied to gain insights into biochemical processes during five different grain developmental phases (pre-storage until storage phase, 3days to 16days after flowering). Multivariate statistics revealed two distinct developmental patterns during the analysed grain developmental phases: proteins showed either highest abundance in the middle phase of development - in the transition phase - or at later developmental stages - within the storage phase. Verification of developmental patterns observed by proteomic analysis was done by applying hypothesis-driven approaches, namely Western Blot analysis and enzyme assays. High general metabolic activity of the grain with regard to protein synthesis, cell cycle regulation, defence against oxidative stress, and energy production via photosynthesis was observed in the transition phase. Proteins upregulated in the storage phase are related towards storage protein accumulation, and interestingly to the defence of storage reserves against pathogens. A mixed regulatory pattern for most enzymes detected in our study points to regulatory mechanisms at the level of protein isoforms. In-depth understanding of early grain developmental processes of cereal caryopses is of high importance as they influence final grain weight and quality. Our knowledge about these processes is still limited, especially on proteome level. To identify key mechanisms in early barley grain development, a label-free data-independent proteomics acquisition approach has been applied. Our data clearly show, that proteins either exhibit highest expression during cellularization and the switch to the storage phase (transition phase, 5-7 DAF), or during storage

  4. Barley stripe mosaic virus: Structure and relationship to the tobamoviruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendall, Amy; Williams, Dewight; Bian, Wen

    Barley stripe mosaic virus (BSMV) is the type member of the genus Hordeivirus, rigid, rod-shaped viruses in the family Virgaviridae. We have used fiber diffraction and cryo-electron microscopy to determine the helical symmetry of BSMV to be 23.2 subunits per turn of the viral helix, and to obtain a low-resolution model of the virus by helical reconstruction methods. Features in the model support a structural relationship between the coat proteins of the hordeiviruses and the tobamoviruses. - Highlights: • We report a low-resolution structure of barley stripe mosaic virus. • Barley stripe mosaic virus has 23.2 subunits per turn ofmore » the viral helix. • We compare barley stripe mosaic virus with tobacco mosaic virus.« less

  5. Fusion, rupture, and degeneration: the fate of in vivo-labelled PSVs in developing barley endosperm.

    PubMed

    Ibl, Verena; Kapusi, Eszter; Arcalis, Elsa; Kawagoe, Yasushi; Stoger, Eva

    2014-07-01

    Cereal endosperm is a highly differentiated tissue containing specialized organelles for the accumulation of storage proteins. The endosperm of barley contains hordeins, which are ultimately deposited within protein storage vacuoles (PSVs). These organelles have been characterized predominantly by the histochemical analysis of fixed immature tissue samples. However, little is known about the fate of PSVs during barley endosperm development, and in vivo imaging has not been attempted in order to gain further insight. In this report, young seeds were followed through development to characterize the dynamic morphology of PSVs from aleurone, subaleurone, and central starchy endosperm cells. TIP3-GFP was used as a PSV membrane marker and several fluorescent tracers were used to identify membranes and monitor endomembrane organelles in real time. Whereas the spherical appearance of strongly labelled TIP3-GFP PSVs in the aleurone remained constant, those in the subaleurone and central starchy endosperm underwent substantial morphological changes. Fusion and rupture events were observed in the subaleurone, and internal membranes derived from both the tonoplast and endoplasmic reticulum were identified within these PSVs. TIP3-GFP-labelled PSVs in the starchy endosperm cells underwent a dramatic reduction in size, so that finally the protein bodies were tightly enclosed. Potential desiccation-related membrane-altering processes that may be causally linked to these dynamic endomembrane events in the barley endosperm are discussed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Using barley genomics to develop Fusarium head blight resistant wheat and barley

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight, caused by Fusarium graminearum, is a major problem for wheat and barley growers. During infection, F. graminearum produces trichothecene mycotoxins (e.g., deoxynivalenol or DON) that increases fungal virulence and reduces grain quality and yield. Previous work in Arabidopsis sh...

  7. Juvenile Paget’s Disease In An Iranian Kindred With Vitamin D Deficiency And Novel Homozygous TNFRSF11B Mutation

    PubMed Central

    Saki, Forough; Karamizadeh, Zohreh; Nasirabadi, Shiva; Mumm, Steven; McAlister, William H.; Whyte, Michael P.

    2013-01-01

    Juvenile Paget’s disease (JPD) is a rare heritable osteopathy characterized biochemically by markedly increased serum alkaline phosphatase (ALP) activity emanating from generalized acceleration of skeletal turnover. Affected infants and children typically suffer bone pain and fractures and deformities, become deaf, and have macrocranium. Some who survive to young adult life develop blindness from retinopathy engendered by vascular microcalcification. Most cases of JPD are caused by osteoprotegerin (OPG) deficiency due to homozygous loss-of-function mutations within the TNFRSF11B gene that encodes OPG. We report a 3-year-old Iranian girl with JPD and craniosynostosis who had vitamin D deficiency in infancy. She presented with fractures during the first year-of-life followed by bone deformities, delayed development, failure-to-thrive, and pneumonias. At 1 year-of-age, biochemical studies of serum revealed marked hyperphosphatasemia together with low-normal calcium and low inorganic phosphate and 25-hydroxyvitamin D levels. Several family members in previous generations of this consanguineous kindred may also have had JPD and vitamin D deficiency. Mutation analysis showed homozygosity for a unique missense change (c.130T>C, p.Cys44Arg) in TNFRSF11B that would compromise the cysteine-rich domain of OPG that binds receptor activator of NF-κB ligand (RANKL). Both parents were heterozygous for this mutation. The patient’s serum OPG level was extremely low and RANKL level markedly elevated. She responded well to rapid oral vitamin D repletion followed by pamidronate treatment given intravenously. Our patient is the first Iranian reported with JPD. Her novel mutation in TNFRSF11B plus vitamin D deficiency in infancy was associated with severe JPD uniquely complicated by craniosynostosis. Pamidronate treatment with vitamin D sufficiency can be effective treatment for the skeletal disease caused by the OPG deficiency form of JPD. PMID:23322328

  8. Effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro disappearance and gas production for feedlot cattle.

    PubMed

    Tagawa, Shin-Ichi; Holtshausen, Lucia; McAllister, Tim A; Yang, Wen Zhu; Beauchemin, Karen Ann

    2017-04-01

    The effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro dry matter (DM) disappearance (DMD), gas production and fermentation pH were investigated for feedlot cattle. Rumen fluid from four fistulated feedlot cattle fed a diet of 860 dry-rolled barley grain, 90 maize silage and 50 supplement g/kg DM was used as inoculum in 3 batch culture in vitro studies. In Experiment 1, dry-rolled barley and barley ground through a 1-, 2-, or 4-mm screen were used to obtain four substrates differing in particle size. In Experiment 2, cellulase enzyme (ENZ) from Acremonium cellulolyticus Y-94 was added to dry-rolled and ground barley (2-mm) at 0, 0.1, 0.5, 1, and 2 mg/g, while Experiment 3 examined the interactions between microwaving (0, 30, and 60 s microwaving) and ENZ addition (0, 1, and 2 mg/g) using dry-rolled barley and 2-mm ground barley. In Experiment 1, decreasing particle size increased DMD and gas production, and decreased fermentation pH (p<0.01). The DMD (g/kg DM) of the dry-rolled barley after 24 h incubation was considerably lower (p<0.05) than that of the ground barley (119.1 dry-rolled barley versus 284.8 for 4-mm, 341.7 for 2-mm; and 358.6 for 1-mm). In Experiment 2, addition of ENZ to dry-rolled barley increased DMD (p<0.01) and tended to increase (p = 0.09) gas production and decreased (p<0.01) fermentation pH, but these variables were not affected by ENZ addition to ground barley. In Experiment 3, there were no interactions between microwaving and ENZ addition after microwaving for any of the variables. Microwaving had minimal effects (except decreased fermentation pH), but consistent with Experiment 2, ENZ addition increased (p<0.01) DMD and gas production, and decreased (p<0.05) fermentation pH of dry-rolled barley, but not ground barley. We conclude that cellulase enzymes can be used to increase the rumen disappearance of barley grain when it is coarsely processed as in the case of dry-rolled barley

  9. Quantitative Trait Loci Associated with the Tocochromanol (Vitamin E) Pathway in Barley.

    PubMed

    Graebner, Ryan C; Wise, Mitchell; Cuesta-Marcos, Alfonso; Geniza, Matthew; Blake, Tom; Blake, Victoria C; Butler, Joshua; Chao, Shiaomen; Hole, David J; Horsley, Rich; Jaiswal, Pankaj; Obert, Don; Smith, Kevin P; Ullrich, Steven; Hayes, Patrick M

    2015-01-01

    The Genome-Wide Association Studies approach was used to detect Quantitative Trait Loci associated with tocochromanol concentrations using a panel of 1,466 barley accessions. All major tocochromanol types- α-, β-, δ-, γ-tocopherol and tocotrienol- were assayed. We found 13 single nucleotide polymorphisms associated with the concentration of one or more of these tocochromanol forms in barley, seven of which were within 2 cM of sequences homologous to cloned genes associated with tocochromanol production in barley and/or other plants. These associations confirmed a prior report based on bi-parental QTL mapping. This knowledge will aid future efforts to better understand the role of tocochromanols in barley, with specific reference to abiotic stress resistance. It will also be useful in developing barley varieties with higher tocochromanol concentrations, although at current recommended daily consumption amounts, barley would not be an effective sole source of vitamin E. However, it could be an important contributor in the context of whole grains in a balanced diet.

  10. Identification of a Phytase Gene in Barley (Hordeum vulgare L.)

    PubMed Central

    Dai, Fei; Qiu, Long; Ye, Lingzhen; Wu, Dezhi; Zhou, Meixue; Zhang, Guoping

    2011-01-01

    Background Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity. Methodology/Principal Findings Quantitative trait loci (QTL) analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP) gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy. Conclusions/Significance It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains. PMID:21533044

  11. Occurrence of deoxynivalenol and zearalenone in brewing barley grains from Brazil.

    PubMed

    Piacentini, Karim C; Rocha, L O; Savi, G D; Carnielli-Queiroz, L; Almeida, F G; Minella, E; Corrêa, B

    2018-03-09

    Barley (Hordeum vulgare L.) is an important cereal crop for food and represents one of the main ingredients in beer production. Considering the importance of barley and its derived products, the knowledge about the mycotoxin contamination in the barley production is essential in order to assess its safety. In this study, the levels of deoxynivalenol (DON) and zearalenone (ZEN) in brewing barley were determined using a LC-MS/MS method. A survey was conducted in 2015 to estimate the mycotoxin levels in these products (n = 76) from four crop regions in Brazil. The results showed high levels of DON and ZEN in the analyzed samples, with contamination levels of 94 and 73.6%, respectively. The mean levels of DON and ZEN ranged from 1700 to 7500 μg/kg and from 300 to 630 μg/kg, respectively. Barley samples from regions 1 and 2 presented higher levels of ZEN and DON, respectively, and those from region 4 presented lower levels of both. Co-occurrence of DON and ZEN was seen in the majority of the barley grain samples, and the mycotoxin content was above the maximum levels established by the Brazilian and European regulations.

  12. Barley yellow dwarf virus: Luteoviridae or Tombusviridae?

    PubMed

    Miller, W Allen; Liu, Sijun; Beckett, Randy

    2002-07-01

    Summary Barley yellow dwarf virus (BYDV), the most economically important virus of small grains, features highly specialised relationships with its aphid vectors, a plethora of novel translation mechanisms mediated by long-distance RNA interactions, and an ambiguous taxonomic status. The structural and movement proteins of BYDV that confer aphid transmission and phloem-limitation properties resemble those of the Luteoviridae, the family in which BYDV is classified. In contrast, many genes and cis-acting signals involved in replication and gene expression most closely resemble those of the Tombusviridae. BYDV is in genus Luteovirus, family Luteoviridae. BYDV includes at least two serotypes or viruses: BYDV-PAV and BYDV-MAV. The former BYDV-RPV is now Cereal yellow dwarf virus-RPV (CYDV-RPV). CYDV is in genus Polerovirus, family Luteoviridae. Genus Luteovirus shares many features with family Tombusviridae. Physical properties: approximately 25 nm icosahedral (T = 3) virions. One major (22 kDa) and one minor (50-55 kDa) coat protein. 5.6-5.8 kb positive sense RNA genome with no 5'-cap and no poly(A) tail. Most grasses. Most important in oats, barley and wheat. Also infects maize and rice. Yellowing and dwarfing in barley, stunting in wheat; reddening, yellowing and blasting in oats. Some isolates cause leaf notching and curling. Key attractions: Model for the study of circulative transmission of aphid-transmitted viruses. Plethora of unusual translation mechanisms. Evidence of recombination in recent evolutionary history creates taxonomic ambiguity. Economically important virus of wheat, barley and oats, worldwide. Useful websites/meetings: International symposium: 'Barley Yellow Dwarf Disease: Recent Advances and Future Strategies', CIMMYT, El Batan, Mexico, 1-5 September 2002, http://www.cimmyt.cgiar.org/Research/wheat/Conf_BYD_02/invitation.htm http://www.cimmyt.org/Research/wheat/BYDVNEWS/htm/BYDVNEWS.htm Aphid transmission animation: http://www.ppws.vt.edu/~sforza/tmv/bydv_aph.html.

  13. Assessment of genetic diversity among barley cultivars and breeding lines adapted to the US Pacific Northwest, and its implications in breeding barley for imidazolinone-resistance.

    PubMed

    Rustgi, Sachin; Matanguihan, Janet; Mejías, Jaime H; Gemini, Richa; Brew-Appiah, Rhoda A T; Wen, Nuan; Osorio, Claudia; Ankrah, Nii; Murphy, Kevin M; von Wettstein, Diter

    2014-01-01

    Extensive application of imidazolinone (IMI) herbicides had a significant impact on barley productivity contributing to a continuous decline in its acreage over the last two decades. A possible solution to this problem is to transfer IMI-resistance from a recently characterized mutation in the 'Bob' barley AHAS (acetohydroxy acid synthase) gene to other food, feed and malting barley cultivars. We focused our efforts on transferring IMI-resistance to barley varieties adapted to the US Pacific Northwest (PNW), since it comprises ∼23% (335,000 ha) of the US agricultural land under barley production. To effectively breed for IMI-resistance, we studied the genetic diversity among 13 two-rowed spring barley cultivars/breeding-lines from the PNW using 61 microsatellite markers, and selected six barley genotypes that showed medium to high genetic dissimilarity with the 'Bob' AHAS mutant. The six selected genotypes were used to make 29-53 crosses with the AHAS mutant and a range of 358-471 F1 seeds were obtained. To make informed selection for the recovery of the recipient parent genome, the genetic location of the AHAS gene was determined and its genetic nature assessed. Large F2 populations ranging in size from 2158-2846 individuals were evaluated for herbicide resistance and seedling vigor. Based on the results, F3 lines from the six most vigorous F2 genotypes per cross combination were evaluated for their genetic background. A range of 20%-90% recovery of the recipient parent genome for the carrier chromosome was observed. An effort was made to determine the critical dose of herbicide to distinguish between heterozygotes and homozygotes for the mutant allele. Results suggested that the mutant can survive up to the 10× field recommended dose of herbicide, and the 8× and 10× herbicide doses can distinguish between the two AHAS mutant genotypes. Finally, implications of this research in sustaining barley productivity in the PNW are discussed.

  14. Ingestible roasted barley for contrast-enhanced photoacoustic imaging in animal and human subjects.

    PubMed

    Wang, Depeng; Lee, Dong Hyeun; Huang, Haoyuan; Vu, Tri; Lim, Rachel Su Ann; Nyayapathi, Nikhila; Chitgupi, Upendra; Liu, Maggie; Geng, Jumin; Xia, Jun; Lovell, Jonathan F

    2018-08-01

    Photoacoustic computed tomography (PACT) is an emerging imaging modality. While many contrast agents have been developed for PACT, these typically cannot immediately be used in humans due to the lengthy regulatory process. We screened two hundred types of ingestible foodstuff samples for photoacoustic contrast with 1064 nm pulse laser excitation, and identified roasted barley as a promising candidate. Twenty brands of roasted barley were further screened to identify the one with the strongest contrast, presumably based on complex chemical modifications incurred during the roasting process. Individual roasted barley particles could be detected through 3.5 cm of chicken-breast tissue and through the whole hand of healthy human volunteers. With PACT, but not ultrasound imaging, a single grain of roasted barley was detected in a field of hundreds of non-roasted particles. Upon oral administration, roasted barley enabled imaging of the gut and peristalsis in mice. Prepared roasted barley tea could be detected through 2.5 cm chicken breast tissue. When barley tea was administered to humans, photoacoustic imaging visualized swallowing dynamics in healthy volunteers. Thus, roasted barley represents an edible foodstuff that should be considered for photoacoustic contrast imaging of swallowing and gut processes, with immediate potential for clinical translation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Analysis of enzyme production by submerged culture of Aspergillus oryzae using whole barley.

    PubMed

    Masuda, Susumu; Kikuchi, Kaori; Matsumoto, Yuko; Sugimoto, Toshikazu; Shoji, Hiroshi; Tanabe, Masayuki

    2009-10-01

    We have reported on high enzyme production by submerged culture of Aspergillus kawachii using barley with the husk (whole barley). To elucidate the mechanism underlying this high enzyme production, we performed a detailed analysis. Aspergillus oryzae RIB40 was submerged-cultured using whole barley and milled whole barley. Enzyme production was analyzed in terms of changes in medium components and gene expression levels. When whole barley was used, high production of glucoamylase and alpha-amylase and high gene expression levels of these enzymes were observed. Low ammonium concentrations were maintained with nitrate ion uptake continuing into the late stage using whole barley. These findings suggest that the sustainability of nitrogen metabolism is related to high enzyme production, and that a mechanism other than that associated with the conventional amylase expression system is involved in this relationship.

  16. Epidemiology and control of rusts of wheat and barley

    USDA-ARS?s Scientific Manuscript database

    Rusts of wheat and barley were monitored throughout the Pacific Northwest (PNW) using trap plots and through field surveys during the 2008 growing season. Through collaborators in other states, stripe rusts of wheat and barley were monitored throughout the US. In 2008, stripe rust occurred in 18 st...

  17. Characterizing the Pyrenophora teres f. maculata–Barley Interaction Using Pathogen Genetics

    PubMed Central

    Carlsen, Steven A.; Neupane, Anjan; Wyatt, Nathan A.; Richards, Jonathan K.; Faris, Justin D.; Xu, Steven S.; Brueggeman, Robert S.; Friesen, Timothy L.

    2017-01-01

    Pyrenophora teres f. maculata is the cause of the foliar disease spot form net blotch (SFNB) on barley. To evaluate pathogen genetics underlying the P. teres f. maculata–barley interaction, we developed a 105-progeny population by crossing two globally diverse isolates, one from North Dakota and the other from Western Australia. Progeny were phenotyped on a set of four barley genotypes showing a differential reaction to the parental isolates, then genotyped using a restriction site-associated-genotype-by-sequencing (RAD-GBS) approach. Genetic maps were developed for use in quantitative trait locus (QTL) analysis to identify virulence-associated QTL. Six QTL were identified on five different linkage groups and individually accounted for 20–37% of the disease variation, with the number of significant QTL ranging from two to four for the barley genotypes evaluated. The data presented demonstrate the complexity of virulence involved in the P. teres f. maculata–barley pathosystem and begins to lay the foundation for understanding this important interaction. PMID:28659291

  18. Barley Transformation Using Agrobacterium-Mediated Techniques

    NASA Astrophysics Data System (ADS)

    Harwood, Wendy A.; Bartlett, Joanne G.; Alves, Silvia C.; Perry, Matthew; Smedley, Mark A.; Leyland, Nicola; Snape, John W.

    Methods for the transformation of barley using Agrobacterium-mediated techniques have been available for the past 10 years. Agrobacterium offers a number of advantages over biolistic-mediated techniques in terms of efficiency and the quality of the transformed plants produced. This chapter describes a simple system for the transformation of barley based on the infection of immature embryos with Agrobacterium tumefaciens followed by the selection of transgenic tissue on media containing the antibiotic hygromycin. The method can lead to the production of large numbers of fertile, independent transgenic lines. It is therefore ideal for studies of gene function in a cereal crop system.

  19. Involvement of Alternative Splicing in Barley Seed Germination

    PubMed Central

    Zhang, Qisen; Zhang, Xiaoqi; Wang, Songbo; Tan, Cong; Zhou, Gaofeng; Li, Chengdao

    2016-01-01

    Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS) regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling). Alternative 3’ splicing (34%-45%), intron retention (32%-34%) and alternative 5’ splicing (16%-21%) were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination. PMID:27031341

  20. Leaf rust of cultivated barley: pathology and control.

    PubMed

    Park, Robert F; Golegaonkar, Prashant G; Derevnina, Lida; Sandhu, Karanjeet S; Karaoglu, Haydar; Elmansour, Huda M; Dracatos, Peter M; Singh, Davinder

    2015-01-01

    Leaf rust of barley is caused by the macrocyclic, heteroecious rust pathogen Puccinia hordei, with aecia reported from selected species of the genera Ornithogalum, Leopoldia, and Dipcadi, and uredinia and telia occurring on Hordeum vulgare, H. vulgare ssp. spontaneum, Hordeum bulbosum, and Hordeum murinum, on which distinct parasitic specialization occurs. Although Puccinia hordei is sporadic in its occurrence, it is probably the most common and widely distributed rust disease of barley. Leaf rust has increased in importance in recent decades in temperate barley-growing regions, presumably because of more intensive agricultural practices. Although total crop loss does not occur, under epidemic conditions yield reductions of up to 62% have been reported in susceptible varieties. Leaf rust is primarily controlled by the use of resistant cultivars, and, to date, 21 seedling resistance genes and two adult plant resistance (APR) genes have been identified. Virulence has been detected for most seedling resistance genes but is unknown for the APR genes Rph20 and Rph23. Other potentially new sources of APR have been reported, and additivity has been described for some of these resistances. Approaches to achieving durable resistance to leaf rust in barley are discussed.

  1. phiC31 Integrase-Mediated Site-Specific Recombination in Barley

    PubMed Central

    Rubtsova, Myroslava; Kumlehn, Jochen; Gils, Mario

    2012-01-01

    The Streptomyces phage phiC31 integrase was tested for its feasibility in excising transgenes from the barley genome through site-specific recombination. We produced transgenic barley plants expressing an active phiC31 integrase and crossed them with transgenic barley plants carrying a target locus for recombination. The target sequence involves a reporter gene encoding green fluorescent protein (GFP), which is flanked by the attB and attP recognition sites for the phiC31 integrase. This sequence disruptively separates a gusA coding sequence from an upstream rice actin promoter. We succeeded in producing site-specific recombination events in the hybrid progeny of 11 independent barley plants carrying the above target sequence after crossing with plants carrying a phiC31 expression cassette. Some of the hybrids displayed fully executed recombination. Excision of the GFP gene fostered activation of the gusA gene, as visualized in tissue of hybrid plants by histochemical staining. The recombinant loci were detected in progeny of selfed F1, even in individuals lacking the phiC31 transgene, which provides evidence of stability and generative transmission of the recombination events. In several plants that displayed incomplete recombination, extrachromosomal excision circles were identified. Besides the technical advance achieved in this study, the generated phiC31 integrase-expressing barley plants provide foundational stock material for use in future approaches to barley genetic improvement, such as the production of marker-free transgenic plants or switching transgene activity. PMID:23024817

  2. Structural comparison of arabinoxylans from two barley side-stream fractions.

    PubMed

    Pitkänen, Leena; Tuomainen, Päivi; Virkki, Liisa; Aseyev, Vladimir; Tenkanen, Maija

    2008-07-09

    The structures of barley ( Hordeum vulgare) arabinoxylans isolated from two industrial side fractions, barley husks (BH) and barley fiber (BF), were characterized. Arabinoxylans were extracted with saturated barium hydroxide after enzymatic pretreatment. Barium hydroxide was selective toward arabinoxylans, and only a minor amount of glucose-containing material was coextracted. Acid methanolysis followed by gas chromatography, 1H NMR spectroscopy, and specific enzymatic treatments followed by anion exchange chromatography with pulse amperometric detection (HPAEC-PAD) revealed that the chemical structure of barley husk arabinoxylan (BHAX) clearly differed from that of barley fiber arabinoxylan (BFAX). BFAX was more branched, containing more beta-D-xylopyranosyl (beta-D-Xylp) residues carrying alpha-L-arabinofuranosyl (alpha-L-Araf) units at both O-2 and O-3 positions. BHAX, on the other hand, contained more 2-O-beta-D-Xyl p-alpha-L-Ara f substituents than BFAX. BHAX and BFAX also differed with respect to the hydrodynamic properties investigated with multidetector size exclusion chromatography. BFAX had a higher weight-average molar mass and larger hydrodynamic volume, the latter indicating less dense conformation than BHAX. Mn, Mw /Mn, Rh, and the Mark-Houwink a value were also determined for both arabinoxylans.

  3. Today's Young People: On the Problem of "Deficient" Socialization

    ERIC Educational Resources Information Center

    Zorkaia, Nataliia

    2009-01-01

    At the beginning of the 1990s, the potential for change in society, the modernization of society, was associated with the younger generations' entering into a "new life." This article focuses on what the younger generations bring with them to the socialization process, and the characteristics of the socialization of young people in the…

  4. Effects of microwaves on the reduction of Aspergillus flavus and Aspergillus parasiticus on brown rice (Oryza sativa L.) and barley (Hordeum vulgare L.).

    PubMed

    Lee, Seung-Hun; Park, Shin Young; Byun, Kye-Hwan; Chun, Hyang Sook; Ha, Sang-Do

    2017-07-01

    Aspergillus flavus and Aspergillus parasiticus are primary pathogen moulds on brown rice and barley. This study investigated the effects of microwave irradiation (MWI) (2450 MHz, 700 W, 10-50 s) on inactivation of A. flavus and A. parasiticus on brown rice and barley and the quality of these samples. The counts of both strains were significantly (p < 0.05) reduced by the stepwise increase in MWI treatment time. The log reductions of A. flavus on brown rice and barley were 0.05 and 0.04 after 10 s; 1.06 and 1.05 after 20 s; 1.59 and 1.52 after 30 s; and 3.04 and 2.78 after 40 s. The log reductions of A. parasiticus on brown rice and barley were 0.06 and 0.10 after 10 s; 1.20 and 1.00 after 20 s; 2.04 and 1.61 after 30 s; and 2.89 and 2.90 after 40 s. Moreover, neither strain survived after 50 s of MWI. The Hunter colour 'L' gradually increased with increasing MWI treatment time. However, there were no significant differences in the 'L' of brown rice after 10-40 s of MWI treatment and of barley after 10-30 s of MWI treatment. The Hunter colour 'a' and 'b' gradually increased with increasing microwave time. No significant change was observed in the moisture content of either cereal treated with 10-20 s of MWI. The differences in the sensory quality (colour, appearance, flavour, texture and overall acceptability) after 0-30 s of MWI were not significant. However, values for colour, appearance, texture and overall acceptability were significantly reduced when treated with 40-50 s of MWI. Therefore, with 20 s of MWI at 2450 MHz, 700 W could be effective for > 90% reduction of mould without causing deleterious changes to the colour, moisture content and sensory qualities of these cereals.

  5. Biotype differences for resistance to Russian wheat aphid in barley

    USDA-ARS?s Scientific Manuscript database

    Russian wheat aphid (RWA) is a worldwide insect pest of barley, causing crop losses each year. Previously identified resistant barley lines do not show variable reactions to the eight USA RWA biotypes identified by wheat reactions. However, additional RWA isolates have been identified outside the ...

  6. Genome-Wide Association Analysis of Aluminum Tolerance in Cultivated and Tibetan Wild Barley

    PubMed Central

    Cai, Shengguan; Wu, Dezhi; Jabeen, Zahra; Huang, Yuqing; Huang, Yechang; Zhang, Guoping

    2013-01-01

    Tibetan wild barley (Hordeum vulgare L. ssp. spontaneum), originated and grown in harsh enviroment in Tibet, is well-known for its rich germpalsm with high tolerance to abiotic stresses. However, the genetic variation and genes involved in Al tolerance are not totally known for the wild barley. In this study, a genome-wide association analysis (GWAS) was performed by using four root parameters related with Al tolerance and 469 DArT markers on 7 chromosomes within or across 110 Tibetan wild accessions and 56 cultivated cultivars. Population structure and cluster analysis revealed that a wide genetic diversity was present in Tibetan wild barley. Linkage disequilibrium (LD) decayed more rapidly in Tibetan wild barley (9.30 cM) than cultivated barley (11.52 cM), indicating that GWAS may provide higher resolution in the Tibetan group. Two novel Tibetan group-specific loci, bpb-9458 and bpb-8524 were identified, which were associated with relative longest root growth (RLRG), located at 2H and 7H on barely genome, and could explain 12.9% and 9.7% of the phenotypic variation, respectively. Moreover, a common locus bpb-6949, localized 0.8 cM away from a candidate gene HvMATE, was detected in both wild and cultivated barleys, and showed significant association with total root growth (TRG). The present study highlights that Tibetan wild barley could provide elite germplasm novel genes for barley Al-tolerant improvement. PMID:23922796

  7. Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley.

    PubMed

    Hasanuzzaman, Md; Davies, Noel W; Shabala, Lana; Zhou, Meixue; Brodribb, Tim J; Shabala, Sergey

    2017-06-19

    While most water loss from leaf surfaces occurs via stomata, part of this loss also occurs through the leaf cuticle, even when the stomata are fully closed. This component, termed residual transpiration, dominates during the night and also becomes critical under stress conditions such as drought or salinity. Reducing residual transpiration might therefore be a potentially useful mechanism for improving plant performance when water availability is reduced (e.g. under saline or drought stress conditions). One way of reducing residual transpiration may be via increased accumulation of waxes on the surface of leaf. Residual transpiration and wax constituents may vary with leaf age and position as well as between genotypes. This study used barley genotypes contrasting in salinity stress tolerance to evaluate the contribution of residual transpiration to the overall salt tolerance, and also investigated what role cuticular waxes play in this process. Leaves of three different positions (old, intermediate and young) were used. Our results show that residual transpiration was higher in old leaves than the young flag leaves, correlated negatively with the osmolality, and was positively associated with the osmotic and leaf water potentials. Salt tolerant varieties transpired more water than the sensitive variety under normal growth conditions. Cuticular waxes on barley leaves were dominated by primary alcohols (84.7-86.9%) and also included aldehydes (8.90-10.1%), n-alkanes (1.31-1.77%), benzoate esters (0.44-0.52%), phytol related compounds (0.22-0.53%), fatty acid methyl esters (0.14-0.33%), β-diketones (0.07-0.23%) and alkylresorcinols (1.65-3.58%). A significant negative correlation was found between residual transpiration and total wax content, and residual transpiration correlated significantly with the amount of primary alcohols. Both leaf osmolality and the amount of total cuticular wax are involved in controlling cuticular water loss from barley leaves under well

  8. Development and Implementation of High-Throughput SNP Genotyping in Barley

    USDA-ARS?s Scientific Manuscript database

    Approximately 22,000 SNPs were identified from barley ESTs and sequenced amplicons; 4,596 of them were tested for performance in three pilot phase Illumina GoldenGate assays. Pilot phase data from three barley doubled haploid mapping populations supported the production of an initial consensus map, ...

  9. Competitive advantage and tolerance of selected shochu yeast in barley shochu mash.

    PubMed

    Takashita, Hideharu; Fujihara, Emi; Furutera, Mihoko; Kajiwara, Yasuhiro; Shimoda, Masahiko; Matsuoka, Masayoshi; Ogawa, Takahira; Kawamoto, Seiji; Ono, Kazuhisa

    2013-07-01

    A shochu yeast strain, Saccharomyces cerevisiae BAW-6, was previously isolated from Kagoshima yeast strain Ko, and has since been utilized in shochu production. The BAW-6 strain carries pho3/pho3 homozygous genes in contrast to the heterozygous PHO3/pho3 genes in the parental Ko strain. However, absence of the PHO3 gene per se cannot explain the fermentation superiority of BAW-6. Here, we demonstrate the growth advantage of the BAW-6 strain over the Ko strain by competitive cultivation in barley shochu preparation, where alcohol yield and nihonshudo of the former strain were higher than those of the latter strain. In addition, the maximum growth rate of BAW-6 was less affected than that of Ko by high Brix values of barley koji medium, suggesting that BAW-6 is less sensitive to growth inhibitory compounds derived from barley or barley koji. The tolerance of BAW-6 to growth inhibitory compounds, cerulenin and diethylstilbestrol (an H⁺-ATPase inhibitor), was also higher than that of other yeast strains. Consistent with BAW-6's tolerance to diethylstilbestrol in the presence of 8% ethanol (pH 4.5), H⁺-ATPase activity, but not transcription of its gene, was higher in BAW-6 than in Ko. We conclude that the BAW-6 strain is associated with certain gene alterations other than PHO3, such that it can maintain cellular ion homeostasis under conditions of ethanol stress during the latter phase of fermentation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Fine Mapping of the Barley Chromosome 6H Net Form Net Blotch Susceptibility Locus

    PubMed Central

    Richards, Jonathan; Chao, Shiaoman; Friesen, Timothy; Brueggeman, Robert

    2016-01-01

    Net form net blotch, caused by the necrotrophic fungal pathogen Pyrenophora teres f. teres, is a destructive foliar disease of barley with the potential to cause significant yield loss in major production regions throughout the world. The complexity of the host–parasite genetic interactions in this pathosystem hinders the deployment of effective resistance in barley cultivars, warranting a deeper understanding of the interactions. Here, we report on the high-resolution mapping of the dominant susceptibility locus near the centromere of chromosome 6H in the barley cultivars Rika and Kombar, which are putatively targeted by necrotrophic effectors from P. teres f. teres isolates 6A and 15A, respectively. Utilization of progeny isolates derived from a cross of P. teres f. teres isolates 6A × 15A harboring single major virulence loci (VK1, VK2, and VR2) allowed for the Mendelization of single inverse gene-for-gene interactions in a high-resolution population consisting of 2976 Rika × Kombar recombinant gametes. Brachypodium distachyon synteny was exploited to develop and saturate the susceptibility region with markers, delimiting it to ∼0.24 cM and a partial physical map was constructed. This genetic and physical characterization further resolved the dominant susceptibility locus, designated Spt1 (susceptibility to P. teres f. teres). The high-resolution mapping and cosegregation of the Spt1.R and Spt1.K gene/s indicates tightly linked genes in repulsion or alleles possibly targeted by different necrotrophic effectors. Newly developed barley genomic resources greatly enhance the efficiency of positional cloning efforts in barley, as demonstrated by the Spt1 fine mapping and physical contig identification reported here. PMID:27172206

  11. The prevalence of hemoglobin S and glucose-6-phosphate dehydrogenase deficiency in Jordanian newborn.

    PubMed

    Talafih, K; Hunaiti, A A; Gharaibeh, N; Gharaibeh, M; Jaradat, S

    1996-10-01

    The aim of this study was to determine the incidence of HbS and glucose-6-phosphate dehydrogenase (G6PD) deficiency in Jordanian newborn. A total of 181 male and female babies born at Princess Basma Teaching Hospital, randomly selected, and cord blood samples were collected, and the erythrocyte G6PD activity was measured, and the hemoglobin electrophoresis for blood lysate was conducted and scanned for HbS scanning. The frequencies of two major red cell genetic defects, sickle hemoglobin (HbS) and deficiency G6PD was determined, of the studied subjects 10 (11%) females and 11 (12%) males were found to be deficient in the G6PD gene. The frequency of HbS carriers among the females was 4% while it was 6% among males. The coincidence of both G6PD deficiency and sickle cell hemoglobin in the samples was 1%. No coincidence was found between G6PD deficiency and hyperbilirubinemia. A better understanding of the distributions of these genetic disorders has the potential to aid in the more efficient utilization of health care resources and improved planning.

  12. Expression of stress/defense-related genes in barley grown under space environment

    NASA Astrophysics Data System (ADS)

    Sugimoto, Manabu; Shagimardanova, Elena; Gusev, Oleg; Bingham, Gail; Levinskikh, Margarita; Sychev, Vladimir

    Plants are exposed to the extreme environment in space, especially space radiation is suspected to induce oxidative stress by generating high-energy free radicals and microgravity would enhance the effect of space radiation, however, current understandings of plant growth and responses on this synergistic effect of radiation and microgravity is limited to a few experiments. In this study, expression of stress/defense-related genes in barley grown under space environment was analyzed by RT-PCR and DNA microarray experiments to understand plant responses and adaptation to space environment and to develop the space stress-tolerant plants. The seeds of barley, Hordeum vulgare L. cv. Haruna nijo, kept in the international space station (ISS) over 4 months, were germinated after 3 days of irrigation in LADA plant growth chamber onboard Russian segment of ISS and the final germination ratio was over 90 %. The height of plants was about 50 to 60 cm and flag leaf has been opened after 26 days of irrigation under 24 hr lighting, showing the similar growth to ground-grown barley. Expression levels of stress/defense-related genes in space-grown barley were compared to those in ground-grown barley by semi-quantitative RT-PCR. In 17 stress/defense-related genes that are up-regulated by oxidative stress or other abiotic stress, only catalase, pathogenesis-related protein 13, chalcone synthase, and phenylalanine ammonia-lyase genes were increased in space-grown barley. DNA microarrya analysis with the GeneChip Barley Genome Array showed the similar expression profiles of the stress/defense-related genes to those by RT-PCR experiment, suggesting that the barley germinated and grown in LADA onboard ISS is not damaged by space environment, especially oxidative stress induced by space radiation and microgravity.

  13. Pasting and rheological properties of chia composites containing barley flour

    USDA-ARS?s Scientific Manuscript database

    The chia containing omega-3 polyunsaturated fatty acids (omega-3 PUFAs) was composited with barley flour having high ß-glucan content. Both omega-3 PUFAs and ß-glucan are well known for lowering blood cholesterol and preventing coronary heart disease. Barley flour was dry blended with ground chia ...

  14. Root cortical senescence decreases root respiration, nutrient content and radial water and nutrient transport in barley.

    PubMed

    Schneider, Hannah M; Wojciechowski, Tobias; Postma, Johannes A; Brown, Kathleen M; Lücke, Andreas; Zeisler, Viktoria; Schreiber, Lukas; Lynch, Jonathan P

    2017-08-01

    The functional implications of root cortical senescence (RCS) are poorly understood. We tested the hypotheses that RCS in barley (1) reduces the respiration and nutrient content of root tissue; (2) decreases radial water and nutrient transport; and (3) is accompanied by increased suberization to protect the stele. Genetic variation for RCS exists between modern germplasm and landraces. Nitrogen and phosphorus deficiency increased the rate of RCS. Maximal RCS, defined as the disappearance of the entire root cortex, reduced root nitrogen content by 66%, phosphorus content by 63% and respiration by 87% compared with root segments with no RCS. Roots with maximal RCS had 90, 92 and 84% less radial water, nitrate and phosphorus transport, respectively, compared with segments with no RCS. The onset of RCS coincided with 30% greater aliphatic suberin in the endodermis. These results support the hypothesis that RCS reduces root carbon and nutrient costs and may therefore have adaptive significance for soil resource acquisition. By reducing root respiration and nutrient content, RCS could permit greater root growth, soil resource acquisition and resource allocation to other plant processes. RCS merits investigation as a trait for improving the performance of barley, wheat, triticale and rye under edaphic stress. © 2017 John Wiley & Sons Ltd.

  15. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain.

    PubMed

    Carstensen, Andreas; Herdean, Andrei; Schmidt, Sidsel Birkelund; Sharma, Anurag; Spetea, Cornelia; Pribil, Mathias; Husted, Søren

    2018-05-01

    Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley ( Hordeum vulgare ). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b 6 f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO 2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue. © 2018 American Society of Plant Biologists. All Rights Reserved.

  16. The Compromised Recognition of Turnip Crinkle Virus1 Subfamily of Microrchidia ATPases Regulates Disease Resistance in Barley to Biotrophic and Necrotrophic Pathogens1[C][W][OPEN

    PubMed Central

    Langen, Gregor; von Einem, Sabrina; Koch, Aline; Imani, Jafargholi; Pai, Subhash B.; Manohar, Murli; Ehlers, Katrin; Choi, Hyong Woo; Claar, Martina; Schmidt, Rebekka; Mang, Hyung-Gon; Bordiya, Yogendra; Kang, Hong-Gu; Klessig, Daniel F.; Kogel, Karl-Heinz

    2014-01-01

    MORC1 and MORC2, two of the seven members of the Arabidopsis (Arabidopsis thaliana) Compromised Recognition of Turnip Crinkle Virus1 subfamily of microrchidia Gyrase, Heat Shock Protein90, Histidine Kinase, MutL (GHKL) ATPases, were previously shown to be required in multiple layers of plant immunity. Here, we show that the barley (Hordeum vulgare) MORCs also are involved in disease resistance. Genome-wide analyses identified five MORCs that are 37% to 48% identical on the protein level to AtMORC1. Unexpectedly, and in clear contrast to Arabidopsis, RNA interference-mediated knockdown of MORC in barley resulted in enhanced basal resistance and effector-triggered, powdery mildew resistance locus A12-mediated resistance against the biotrophic powdery mildew fungus (Blumeria graminis f. sp. hordei), while MORC overexpression decreased resistance. Moreover, barley knockdown mutants also showed higher resistance to Fusarium graminearum. Barley MORCs, like their Arabidopsis homologs, contain the highly conserved GHKL ATPase and S5 domains, which identify them as members of the MORC superfamily. Like AtMORC1, barley MORC1 (HvMORC1) binds DNA and has Mn2+-dependent endonuclease activities, suggesting that the contrasting function of MORC1 homologs in barley versus Arabidopsis is not due to differences in their enzyme activities. In contrast to AtMORCs, which are involved in silencing of transposons that are largely restricted to pericentromeric regions, barley MORC mutants did not show a loss-of-transposon silencing regardless of their genomic location. Reciprocal overexpression of MORC1 homologs in barley and Arabidopsis showed that AtMORC1 and HvMORC1 could not restore each other’s function. Together, these results suggest that MORC proteins function as modulators of immunity, which can act negatively (barley) or positively (Arabidopsis) dependent on the species. PMID:24390392

  17. Biotesting of radioactively contaminated forest soils using barley-based bioassay

    NASA Astrophysics Data System (ADS)

    Mel'nikova, T. V.; Polyakova, L. P.; Oudalova, A. A.

    2017-01-01

    Findings from radioactivity and phytotoxicity study are presented for soils from nine study-sites of the Klintsovsky Forestry located in the Bryansk region that were radioactively contaminated after the Chernobyl accident. According to the bioassay based on barley as test-species, stimulating effect of the soils analyzed is revealed for biological indexes of the length of barley roots and sprouts. From data on 137Cs specific activities in soils and plant biomass, the migration potential of radionuclide in the "soil-plant" system is assessed as a transfer factor. With correlation analysis, an impact of 137Cs in soil on the biological characteristics of barley is estimated.

  18. Production of Ethanol From Newly Developed and Improved Winter Barley Cultivars.

    PubMed

    Nghiem, Nhuan P; Brooks, Wynse S; Griffey, Carl A; Toht, Matthew J

    2017-05-01

    Winter barley has attracted strong interest as a potential feedstock for fuel ethanol production in regions with mild winter climate such as the mid-Atlantic and northeastern USA. Ten recently developed and improved winter barley cultivars and breeding lines including five hulled and five hull-less lines were experimentally evaluated for potential ethanol production. The five hulled barley lines included three released cultivars (Thoroughbred, Atlantic, and Secretariat) and two breeding lines (VA09B-34 and VA11B-4). The five hull-less lines also included three released cultivars (Eve, Dan, and Amaze 10) and two breeding lines (VA08H-65 and VA13H-34). On the average, the hull-less barley cultivars produced more ethanol per unit mass because of their higher starch and β-glucan contents. However, since the hulled barley cultivars had higher agronomic yield, the potential ethanol production per acre of land for the two types were approximately equal. Among the ten cultivars tested, the hull-less cultivar Amaze 10 was the best one for ethanol production. The ethanol yield values obtained for this cultivar were 2.61 gal per bushel and 292 gal per acre.

  19. Use of reflectance spectroscopy for early detection of calcium deficiency in plants

    NASA Astrophysics Data System (ADS)

    Li, Bingqing; Wah, Liew Oi; Asundi, Anand K.

    2005-04-01

    This article investigates calcium deficiency symptoms of the plants grown under hydroponics conditions. Leaf reflectance data were collected from plants, and then transformed to L*, a*, b* values, which provide color information of the leaves. After comparing the color information of deficient plants to control plants, a set of deficiency criterion was established for early detection of calcium deficiency in the plants. Calcium deficiency could be detected as early as two days from the onset of stress in mature plants when optical data were collected from terminal young leaves. Young plants subjected to calcium stress for 9 days could not be distinguished from nutrient sufficient plants.

  20. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... designate both a fall final planting date and a spring final planting date, and for which the actuarial... planted spring barley. 6. If you elect this endorsement for winter barley, the contract change, cancellation, and termination dates applicable to wheat in the county will be applicable to all your spring and...

  1. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... designate both a fall final planting date and a spring final planting date, and for which the actuarial... planted spring barley. 6. If you elect this endorsement for winter barley, the contract change, cancellation, and termination dates applicable to wheat in the county will be applicable to all your spring and...

  2. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... designate both a fall final planting date and a spring final planting date, and for which the actuarial... planted spring barley. 6. If you elect this endorsement for winter barley, the contract change, cancellation, and termination dates applicable to wheat in the county will be applicable to all your spring and...

  3. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... designate both a fall final planting date and a spring final planting date, and for which the actuarial... planted spring barley. 6. If you elect this endorsement for winter barley, the contract change, cancellation, and termination dates applicable to wheat in the county will be applicable to all your spring and...

  4. Recurrent pulmonary embolism associated with deep venous thrombosis diagnosed as protein s deficiency owing to a novel mutation in PROS1: A case report.

    PubMed

    Huang, Xiaojie; Xu, Fangfang; Assa, Carmel Rebecca; Shen, Laigen; Chen, Bing; Liu, Zhenjie

    2018-05-01

    Protein S (PS) deficiency that can be inherited or acquired is an independent risk factor for venous thromboembolism (VTE). In this report, we present a case of recurrent pulmonary embolism (PE) and deep venous thrombosis (DVT) due to PS deficiency. A 32-year-old male patient with significant decrease in PS activity was detected by laboratory tests. Genetic examination of the PROS1 gene showed a transition of G to T in exon 14 (c.1792 G>T, p.E598X), which was a paternal inherited heterozygous G1792T substitution in the laminin G-type repeat domain, generating a premature stop codon at Glu598. We considered that the inherited PS deficiency due to a PROS1 gene mutation may associate with recurrent VTE. The patient was suggested to have an extended anticoagulant therapy to avoid a severe VTE event. The patient was discharged home with continued oral anticoagulants and was still seen in clinic for follow-up. It is necessary for the young patient with recurrent idiopathic thrombosis to perform an inherited PS deficiency test and receive anticoagulant therapy for an extended period.

  5. Fermentation of Barley by Using Saccharomyces cerevisiae: Examination of Barley as a Feedstock for Bioethanol Production and Value-Added Products ▿

    PubMed Central

    Gibreel, Amera; Sandercock, James R.; Lan, Jingui; Goonewardene, Laksiri A.; Zijlstra, Ruurd T.; Curtis, Jonathan M.; Bressler, David C.

    2009-01-01

    The objective of this study was to examine the ethanol yield potential of three barley varieties (Xena, Bold, and Fibar) in comparison to two benchmarks, corn and wheat. Very high gravity (VHG; 30% solids) fermentations using both conventional and Stargen 001 enzymes for starch hydrolysis were carried out as simultaneous saccharification and fermentation. The grains and their corresponding dried distiller's grain with solubles (DDGS) were also analyzed for nutritional and value-added characteristics. A VHG traditional fermentation approach utilizing jet-cooking fermentation revealed that both dehulled Bold and Xena barley produced ethanol concentrations higher than that produced by wheat (12.3, 12.2, and 11.9%, respectively) but lower than that produced by corn (13.8%). VHG-modified Stargen-based fermentation of dehulled Bold barley demonstrated comparable performance (14.3% ethanol) relative to that of corn (14.5%) and wheat (13.3%). Several important components were found to survive fermentation and were concentrated in DDGS. The highest yield of phenolics was detected in the DDGS (modified Stargen 001, 20% solids) of Xena (14.6 mg of gallic acid/g) and Bold (15.0 mg of gallic acid/g) when the hull was not removed before fermentation. The highest concentration of sterols in DDGS from barley was found in Xena (3.9 mg/g) when the hull was included. The DDGS recovered from corn had the highest concentration of fatty acids (72.6 and 77.5 mg/g). The DDGS recovered from VHG jet-cooking fermentations of Fibar, dehulled Bold, and corn demonstrated similar levels of tocopherols and tocotrienols. Corn DDGS was highest in crude fat but was lowest in crude protein and in vitro energy digestibility. Wheat DDGS was highest in crude protein content, similar to previous studies. The barley DDGS was the highest in in vitro energy digestibility. PMID:19114516

  6. Serum adiponectin levels in adolescents and young adults with growth hormone deficiency.

    PubMed

    Oswiecimska, Joanna M; Roczniak, Wojciech; Roczniak, Robert Grzegorz; Malczyk, Zaneta; Chyra, Marcin; Mazur, Bogdan; Ziora, Katarzyna T

    2017-05-01

    Adiponectin (APN) is adipose tissue-derived hormone influencing energy metabolism. Growth hormone deficiency (GHD) may contribute to the development of disturbances in the hormonal function of adipose tissue (AT), and many disorders observed in untreated patients with GHD coincides with these contributed to low serum APN levels. The assessment of serum adiponectin levels in adolescents and young adults with severe or partial GHD and analysis of relationships between serum APN and GH/IGF-1 axis function impairment as well as cardiometabolic risk factors. Based on the results of insulin tolerance test (ITT) patients were qualified for one of the following groups: 1) severe GHD - SGHD (26 patients; 8 women and 18 men); 2) partial GHD - PGHD (22 patients, 7 women and 15 men); 3) normal GH status - NGHS (28 patients, 9 women and 19 men). The fourth examined group consisted of healthy individuals - H (46 participants; 15 women, 31 men). Anthropometric measurements (height, weight, BMI), analysis of body composition and serum glucose, lipids, insulin, IGF-1 and APN assays were performed in all participants. There were no significant differences in the concentrations of APN between groups. After calculation of the total APN content in extracellular fluids per unit of fat tissue mass (TAPN/FM), these values were significantly lower in the SGHD (p<0.001) and correlated with the degree of impairment of the GH/IGF-1 axis functioning. In patients with GHD positive correlations between APN and serum HDL cholesterol (r=0.39, p<0.05) have been demonstrated. In the subjects with normal GH secretion serum APN correlated positively with serum HDL cholesterol (r=0.28; p<0.05), and negatively with fasting blood glucose (r=-0.31; p<0.05). Severe, but not partial growth hormone deficiency impairs adiponectin production in the adipose tissue that is compensated by the increase of fat mass. The degree of GH/IGF-1 axis disruption is related to the TAPN/FM. This parameter may be potentially

  7. Boron Stress Responsive MicroRNAs and Their Targets in Barley

    PubMed Central

    Ozhuner, Esma; Eldem, Vahap; Ipek, Arif; Okay, Sezer; Sakcali, Serdal; Zhang, Baohong; Boke, Hatice; Unver, Turgay

    2013-01-01

    Boron stress is an environmental factor affecting plant development and production. Recently, microRNAs (miRNAs) have been found to be involved in several plant processes such as growth regulation and stress responses. In this study, miRNAs associated with boron stress were identified and characterized in barley. miRNA profiles were also comparatively analyzed between root and leave samples. A total of 31 known and 3 new miRNAs were identified in barley; 25 of them were found to respond to boron treatment. Several miRNAs were expressed in a tissue specific manner; for example, miR156d, miR171a, miR397, and miR444a were only detected in leaves. Additionally, a total of 934 barley transcripts were found to be specifically targeted and degraded by miRNAs. In silico analysis of miRNA target genes demonstrated that many miRNA targets are conserved transcription factors such as Squamosa promoter-binding protein, Auxin response factor (ARF), and the MYB transcription factor family. A majority of these targets were responsible for plant growth and response to environmental changes. We also propose that some of the miRNAs in barley such as miRNA408 might play critical roles against boron exposure. In conclusion, barley may use several pathways and cellular processes targeted by miRNAs to cope with boron stress. PMID:23555702

  8. Near-Infrared Spectroscopy Using a Supercontinuum Laser: Application to Long Wavelength Transmission Spectra of Barley Endosperm and Oil.

    PubMed

    Ringsted, Tine; Dupont, Sune; Ramsay, Jacob; Jespersen, Birthe Møller; Sørensen, Klavs Martin; Keiding, Søren Rud; Engelsen, Søren Balling

    2016-07-01

    The supercontinuum laser is a new type of light source, which combines the collimation and intensity of a laser with the broad spectral region of a lamp. Using such a source therefore makes it possible to focus the light onto small sample areas without losing intensity and thus facilitate either rapid or high-intensity measurements. Single seed transmission analysis in the long wavelength (LW) near-infrared (NIR) region is one area that might benefit from a brighter light source such as the supercontinuum laser. This study is aimed at building an experimental spectrometer consisting of a supercontinuum laser source and a dispersive monochromator in order to investigate its capability to measure the barley endosperm using transmission experiments in the LW NIR region. So far, barley and wheat seeds have only been studied using NIR transmission in the short wavelength region up to 1100 nm. However, the region in the range of 2260-2380 nm has previously shown to be particularly useful in differentiating barley phenotypes using NIR spectroscopy in reflectance mode. In the present study, 350 seeds (consisting of 70 seeds from each of five barley genotypes) in 1 mm slices were measured by NIR transmission in the range of 2235-2381 nm and oils from the same five barley genotypes were measured in a cuvette with a 1 mm path length in the range of 2003-2497 nm. The spectra of the barley seeds could be classified according to genotypes by principal component analysis; and spectral covariances with reference analysis of moisture, β-glucan, starch, protein and lipid were established. The spectral variations of the barley oils were compared to the fatty acid compositions as measured using gas chromotography-mass spectrometry (GC-MS). © The Author(s) 2016.

  9. Genetic dissection of grain beta-glucan and amylose content in barley (Hordeum vulgare L.)

    USDA-ARS?s Scientific Manuscript database

    High beta glucan (BG) barleys (Hordeum vulgare L.) have major potential as food ingredients due to the well know health benefits. Quantitative trait loci (QTLs) associated with BG have been reported in hulled barley, however no QTL studies have been reported in hulless barley. In this study, QTL an...

  10. Antithrombin deficiency and decreased protein C activity in a young man with venous thromboembolism: a case report.

    PubMed

    Wang, Dong; Tian, Min; Cui, Guanglin; Wang, Dao Wen

    2018-06-01

    Antithrombin and protein C are two crucial members in the anticoagulant system and play important roles in hemostasis. Mutations in SERPINC1 and PROC lead to deficiency or dysfunction of the two proteins, which could result in venous thromboembolism (VTE). Here, we report a Chinese 22-year-old young man who developed recurrent and serious VTE in cerebral veins, visceral veins, and deep veins of the lower extremity. Laboratory tests and direct sequencing of PROC and SERPINC1 were conducted for the patient and his family members. Coagulation tests revealed that the patient presented type I antithrombin deficiency combined with decreased protein C activity resulting from a small insertion mutation c.848_849insGATGT in SERPINC1 and a short deletion variant c.572_574delAGA in PROC. This combination of the two mutations was absent in 400 healthy subjects each from southern and northern China. Then, we summarized all the mutations of the SERPINC1 and PROC gene reported in the Chinese Han population. This study demonstrates that the combination of antithrombin deficiency and decreased protein C activity can result in severe VTE and that the coexistence of different genetic factors may increase the risk of VTE.

  11. Technical summary of accomplishments made in preparation for the USSR barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Chapman, G. M.; Dailey, C. L.

    1982-01-01

    The highlights of the work accomplished under each subcomponent of the U.S.S.R. Barley Pilot Experiment, which is scheduled for completion in 1984, are summarized. A significant amount of developmental system implementation activity was in the final stages of preparation prior to the rescoping of project tasks. Unpublished materials which are significant to this exploratory experiment are incorporated into the appendixes.

  12. Construction of a map-based reference genome sequence for barley, Hordeum vulgare L.

    PubMed Central

    Beier, Sebastian; Himmelbach, Axel; Colmsee, Christian; Zhang, Xiao-Qi; Barrero, Roberto A.; Zhang, Qisen; Li, Lin; Bayer, Micha; Bolser, Daniel; Taudien, Stefan; Groth, Marco; Felder, Marius; Hastie, Alex; Šimková, Hana; Staňková, Helena; Vrána, Jan; Chan, Saki; Muñoz-Amatriaín, María; Ounit, Rachid; Wanamaker, Steve; Schmutzer, Thomas; Aliyeva-Schnorr, Lala; Grasso, Stefano; Tanskanen, Jaakko; Sampath, Dharanya; Heavens, Darren; Cao, Sujie; Chapman, Brett; Dai, Fei; Han, Yong; Li, Hua; Li, Xuan; Lin, Chongyun; McCooke, John K.; Tan, Cong; Wang, Songbo; Yin, Shuya; Zhou, Gaofeng; Poland, Jesse A.; Bellgard, Matthew I.; Houben, Andreas; Doležel, Jaroslav; Ayling, Sarah; Lonardi, Stefano; Langridge, Peter; Muehlbauer, Gary J.; Kersey, Paul; Clark, Matthew D.; Caccamo, Mario; Schulman, Alan H.; Platzer, Matthias; Close, Timothy J.; Hansson, Mats; Zhang, Guoping; Braumann, Ilka; Li, Chengdao; Waugh, Robbie; Scholz, Uwe; Stein, Nils; Mascher, Martin

    2017-01-01

    Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. ‘Morex’ was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX). PMID:28448065

  13. Substitution of wheat dried distillers grains with solubles for barley grain or barley silage in feedlot cattle diets: intake, digestibility, and ruminal fermentation.

    PubMed

    Li, Y L; McAllister, T A; Beauchemin, K A; He, M L; McKinnon, J J; Yang, W Z

    2011-08-01

    The objective of this study was to evaluate the effects of substituting wheat dried distillers grains with solubles (DDGS) for barley grain and barley silage on intake, digestibility, and ruminal fermentation in feedlot beef cattle. Eight ruminally cannulated Angus heifers (initial BW 455 ± 10.8 kg) were assigned to a replicated 4 × 4 Latin square design with 4 treatments: control, low (25%), medium (30%), and high (35%) wheat DDGS (DM basis). The diets consisted of barley silage, barley concentrate, and wheat DDGS in ratios of 15:85:0 (CON), 10:65:25 (25DDGS), 5:65:30 (30DDGS), and 0:65:35 (35DDGS; DM basis), respectively. The diets were formulated such that wheat DDGS was substituted for both barley grain and barley silage to evaluate whether wheat DDGS can be fed as a source of both energy (grain) and fiber in feedlot finishing diets. Intakes (kg/d) of DM and OM were not different, whereas those of CP, NDF, ADF, and ether extract (EE) were greater (P < 0.01) and intake of starch was less (P < 0.01) for the 25DDGS compared with the CON diet. The digestibilities of CP, NDF, ADF, and EE in the total digestive tract were greater (P < 0.05) for 25DDGS vs. CON. Ruminal pH and total VFA concentrations were not different (P > 0.15) between 25DDGS and CON diets. Replacing barley silage with increasing amounts of wheat DDGS (i.e., from 25DDGS to 35DDGS) linearly reduced (P < 0.05) intakes of DM and other nutrients without altering (P=0.40) CP intake. In contrast, digestibilities of DM and other nutrients in the total digestive tract linearly increased (P < 0.05) with increasing wheat DDGS except for that of EE. Additionally, with increasing amounts of wheat DDGS, mean ruminal pH tended (P=0.10) to linearly decrease, and ruminal pH status decreased with longer (P=0.04) duration of pH <5.5 and <5.2, and greater (P=0.01) curve area under pH <5.8 and <5.5 without altering (P > 0.19) ruminal VFA and NH(3)-N concentrations. Results indicated that wheat DDGS can be effectively

  14. Effects of young barley leaf extract and antioxidative vitamins on LDL oxidation and free radical scavenging activities in type 2 diabetes.

    PubMed

    Yu, Y-M; Chang, W-C; Chang, C-T; Hsieh, C-L; Tsai, C E

    2002-04-01

    The effects of supplementation of young barley leaf extract (BL) and/or antioxidative vitamins C and E on different low-density lipoprotein (LDL) subfractions susceptibility to oxidation and free radical scavenging activities in patients with type 2 diabetes were evaluated. Thirty-six type 2 diabetic patients were enrolled in this study. The subjects received one of the following supplements daily for 4 weeks: 15 g BL, 200 mg vitamin C and 200 mg vitamin E (CE), or BL plus CE (BL + CE). The lucigenin-chemiluminescence (CL) and luminol-CL levels in blood were significantly reduced in all groups. Vitamin E content of LDL subfractions increased significantly following supplements, especially for BL + CE group. The percent increase of lag times in the BL + CE was significantly higher than those in the BL or CE group. The antioxidative effect of BL + CE was the greatest for small, dense LDL (Sd-LDL) with further increases in percentage of lag times 4 folds compared to BL alone. Our results indicate that supplementation with BL may help to scavenge oxygen free radicals, save the LDL-vitamin E content, and inhibit LDL oxidation. Furthermore, the addition of vitamins C and E to BL can inhibit the Sd-LDL oxidation more effectively, which may protect against vascular diseases in type 2 diabetic patients.

  15. Diversity and Evolution of Disease Resistance Genes in Barley (Hordeum vulgare L.)

    PubMed Central

    Andersen, Ethan J.; Ali, Shaukat; Reese, R. Neil; Yen, Yang; Neupane, Surendra; Nepal, Madhav P.

    2016-01-01

    Plant disease resistance genes (R-genes) play a critical role in the defense response to pathogens. Barley is one of the most important cereal crops, having a genome recently made available, for which the diversity and evolution of R-genes are not well understood. The main objectives of this research were to conduct a genome-wide identification of barley Coiled-coil, Nucleotide-binding site, Leucine-rich repeat (CNL) genes and elucidate their evolutionary history. We employed a Hidden Markov Model using 52 Arabidopsis thaliana CNL reference sequences and analyzed for phylogenetic relationships, structural variation, and gene clustering. We identified 175 barley CNL genes nested into three clades, showing (a) evidence of an expansion of the CNL-C clade, primarily due to tandem duplications; (b) very few members of clade CNL-A and CNL-B; and (c) a complete absence of clade CNL-D. Our results also showed that several of the previously identified mildew locus A (MLA) genes may be allelic variants of two barley CNL genes, MLOC_66581 and MLOC_10425, which respond to powdery mildew. Approximately 23% of the barley CNL genes formed 15 gene clusters located in the extra-pericentromeric regions on six of the seven chromosomes; more than half of the clustered genes were located on chromosomes 1H and 7H. Higher average numbers of exons and multiple splice variants in barley relative to those in Arabidopsis and rice may have contributed to a diversification of the CNL-C members. These results will help us understand the evolution of R-genes with potential implications for developing durable resistance in barley cultivars. PMID:27168720

  16. Production of ethanol from newly developed and improved winter barley cultivars

    USDA-ARS?s Scientific Manuscript database

    Winter barley has attracted strong interest as a potential feedstock for fuel ethanol production in regions with mild winter climates such as the mid-Atlantic and northeastern United States. Ten recently developed and improved winter barley cultivars and breeding lines, including five hulled and fiv...

  17. Effects of barley β-glucan-enriched flour fractions on the glycaemic index of bread.

    PubMed

    Finocchiaro, Franca; Ferrari, Barbara; Gianinetti, Alberto; Scazzina, Francesca; Pellegrini, Nicoletta; Caramanico, Rosita; Salati, Claudia; Shirvanian, Vigen; Stanca, Antonio Michele

    2012-02-01

    The aim of this research was to evaluate β-glucan-enriched flours, obtained from barleys with either normal or waxy starch, for their effects on the glycaemic index (GI) and the quality of bread. Rheological results confirmed that when barley flour was included in the dough the overall quality of bread slightly worsened. However, positive consequences on glycaemia were obtained with the normal starch barley: the GI of all-wheat bread (82.8 ± 7.2) was significantly reduced (57.2 ± 7.9) when 40% of wheat flour was substituted with β-glucan-enriched barley flour (6.0% ± 0.1 β-glucan in the final flour blend). In contrast, this positive effect was significantly reduced (GI: 70.1 ± 9.1) when 40% of wheat flour was substituted with the β-glucan-enriched flour of a waxy barley (CDC Alamo; 6.6 ± 0.2 β-glucan in the final flour blend), suggesting that the ability of β-glucans to lower the GI was affected by the barley starch-type.

  18. Homologous recombination mediates S-phase-dependent radioresistance in cells deficient in DNA polymerase eta

    PubMed Central

    Sharma, Ricky A.

    2012-01-01

    DNA polymerase eta (pol η) is the only DNA polymerase causally linked to carcinogenesis in humans. Inherited deficiency of pol η in the variant form of xeroderma pigmentosum (XPV) predisposes to UV-light-induced skin cancer. Pol η-deficient cells demonstrate increased sensitivity to cisplatin and oxaliplatin chemotherapy. We have found that XP30R0 fibroblasts derived from a patient with XPV are more resistant to cell kill by ionising radiation (IR) than the same cells complemented with wild-type pol η. This phenomenon has been confirmed in Burkitt’s lymphoma cells, which either expressed wild-type pol η or harboured a pol η deletion. Pol η deficiency was associated with accumulation of cells in S-phase, which persisted after IR. Cells deficient in pol η demonstrated increased homologous recombination (HR)-directed repair of double strand breaks created by IR. Depletion of the HR protein, X-ray repair cross-complementing protein 3 (XRCC3), abrogated the radioresistance observed in pol η-deficient cells as compared with pol η-complemented cells. These findings suggest that HR mediates S-phase-dependent radioresistance associated with pol η deficiency. We propose that pol η protein levels in tumours may potentially be used to identify patients who require treatment with chemo-radiotherapy rather than radiotherapy alone for adequate tumour control. PMID:22822095

  19. Endosperm structure affects the malting quality of barley (Hordeum vulgare L.).

    PubMed

    Holopainen, Ulla R M; Wilhelmson, Annika; Salmenkallio-Marttila, Marjatta; Peltonen-Sainio, Pirjo; Rajala, Ari; Reinikainen, Pekka; Kotaviita, Erja; Simolin, Helena; Home, Silja

    2005-09-07

    Twenty-seven barley (Hordeum vulgare L.) samples collected from growing sites in Scandinavia in 2001 and 2002 were examined to study the effect of endosperm structure on malting behavior. Samples were micromalted, and several malt characteristics were measured. Samples were classified as having a mealier or steelier endosperm on the basis of light transflectance (LTm). Because endosperm structure is greatly dependent on protein content, three barley sample pairs with similar protein contents were chosen for further analysis. During malting, the steelier barley samples produced less root mass, but showed higher respiration losses and higher activities of starch-hydrolyzing enzymes. Malts made from steelier barley had a less friable structure, with more urea-soluble D hordein and more free amino nitrogen and soluble protein. The reason for these differences may lie in the structure or localization of the hordeins as well as the possible effects of endosperm packing on water uptake and movement of enzymes.

  20. Effects of process parameters on the properties of barley containing snacks enriched with brewer's spent grain.

    PubMed

    Kirjoranta, Satu; Tenkanen, Maija; Jouppila, Kirsi

    2016-01-01

    Brewer's spent grain (BSG), a by-product of malting of barley in the production of malt extract, was used as an ingredient in extruded barley-based snacks in order to improve the nutritional value of the snacks and widen the applications of this by-product in food sector. The effects of the extrusion parameters on the selected properties of the snacks were studied. Snacks with different ingredients including whole grain barley flour, BSG, whey protein isolate (WPI), barley starch and waxy corn starch were produced in 5 separate trials using a co-rotating twin-screw extruder. Extrusion parameters were water content of the mass (17-23 %), screw speed (200-500 rpm) and temperature of the last section and die (110-150 °C). Expansion, hardness and water content of the snacks were determined. Snacks containing barley flour and BSG (10 % of solids) had small expansion and high hardness. Addition of WPI (20 % of solids) increased expansion only slightly. Snacks with high expansion and small hardness were obtained when part of the barley flour was replaced with starch (barley or waxy corn). Yet, the highest expansion and the smallest hardness were achieved when barley flour was used with barley starch and WPI without BSG. Furthermore, expansion increased by increasing screw speed and decreasing water content of the mass in most of the trials. This study showed that BSG is a suitable material for extruded snacks rich in dietary fiber. Physical properties of the snacks could be improved by using barley or waxy corn starch and WPI.

  1. High-Throughput Phenotyping to Detect Drought Tolerance QTL in Wild Barley Introgression Lines

    PubMed Central

    Honsdorf, Nora; March, Timothy John; Berger, Bettina; Tester, Mark; Pillen, Klaus

    2014-01-01

    Drought is one of the most severe stresses, endangering crop yields worldwide. In order to select drought tolerant genotypes, access to exotic germplasm and efficient phenotyping protocols are needed. In this study the high-throughput phenotyping platform “The Plant Accelerator”, Adelaide, Australia, was used to screen a set of 47 juvenile (six week old) wild barley introgression lines (S42ILs) for drought stress responses. The kinetics of growth development was evaluated under early drought stress and well watered treatments. High correlation (r = 0.98) between image based biomass estimates and actual biomass was demonstrated, and the suitability of the system to accurately and non-destructively estimate biomass was validated. Subsequently, quantitative trait loci (QTL) were located, which contributed to the genetic control of growth under drought stress. In total, 44 QTL for eleven out of 14 investigated traits were mapped, which for example controlled growth rate and water use efficiency. The correspondence of those QTL with QTL previously identified in field trials is shown. For instance, six out of eight QTL controlling plant height were also found in previous field and glasshouse studies with the same introgression lines. This indicates that phenotyping juvenile plants may assist in predicting adult plant performance. In addition, favorable wild barley alleles for growth and biomass parameters were detected, for instance, a QTL that increased biomass by approximately 36%. In particular, introgression line S42IL-121 revealed improved growth under drought stress compared to the control Scarlett. The introgression line showed a similar behavior in previous field experiments, indicating that S42IL-121 may be an attractive donor for breeding of drought tolerant barley cultivars. PMID:24823485

  2. Barley Coleoptile Peroxidases. Purification, Molecular Cloning, and Induction by Pathogens1

    PubMed Central

    Kristensen, Brian Kåre; Bloch, Helle; Rasmussen, Søren Kjærsgaard

    1999-01-01

    A cDNA clone encoding the Prx7 peroxidase from barley (Hordeum vulgare L.) predicted a 341-amino acid protein with a molecular weight of 36,515. N- and C-terminal putative signal peptides were present, suggesting a vacuolar location of the peroxidase. Immunoblotting and reverse-transcriptase polymerase chain reaction showed that the Prx7 protein and mRNA accumulated abundantly in barley coleoptiles and in leaf epidermis inoculated with powdery mildew fungus (Blumeria graminis). Two isoperoxidases with isoelectric points of 9.3 and 7.3 (P9.3 and P7.3, respectively) were purified to homogeneity from barley coleoptiles. P9.3 and P7.3 had Reinheitszahl values of 3.31 and 2.85 and specific activities (with 2,2′-azino-di-[3-ethyl-benzothiazoline-6-sulfonic acid], pH 5.5, as the substrate) of 11 and 79 units/mg, respectively. N-terminal amino acid sequencing and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry peptide analysis identified the P9.3 peroxidase activity as due to Prx7. Tissue and subcellular accumulation of Prx7 was studied using activity-stained isoelectric focusing gels and immunoblotting. The peroxidase activity due to Prx7 accumulated in barley leaves 24 h after inoculation with powdery mildew spores or by wounding of epidermal cells. Prx7 accumulated predominantly in the epidermis, apparently in the vacuole, and appeared to be the only pathogen-induced vacuolar peroxidase expressed in barley tissues. The data presented here suggest that Prx7 is responsible for the biosynthesis of antifungal compounds known as hordatines, which accumulate abundantly in barley coleoptiles. PMID:10364401

  3. Seminar on young child nutrition: improving nutrition and health status of young children in indonesia.

    PubMed

    Isabelle, Mia; Chan, Pauline

    2011-01-01

    The Seminar on Young Child Nutrition: Improving Nutrition and Health Status of Young Children in Indonesia held in Jakarta on November 2009 reviewed the current nutritional and health status of young children in Indonesia and identified key nutrient deficiencies affecting their optimal growth. The continuation of child growth from fetal stage is of paramount importance; and maternal and child health should be a central consideration in policy and strategy development. Clinical management of nutrient deficiency and malnutrition, as well as strategies and education to improve feeding practices of young Indonesian children were discussed in the seminar. Relevant experiences, approaches and strategies from France, New Zealand and Malaysia were also shared and followed with discussion on how regulatory systems can support the development of health policy for young children. This report highlights important information presented at the seminar.

  4. Extraction of starch from hulled and hull-less barley with papain and aqueous sodium hydroxide.

    PubMed

    Sharma, Priyanka; Tejinder, S

    2014-12-01

    Starch was isolated from hulled (VJM 201) and hull-less (BL 134) barley with papain and aqueous sodium hydroxide treatments. For enzyme-assisted extraction, barley was steeped in water containing 0.2 % SO2 + 0.55 % lactic acid at 50° ± 2 °C for 4-5 h. The slurry was mixed with 0.4-2.0 g papain/kg barley and incubated at 50° ± 2 °C for 1-5 h. Aqueous sodium hydroxide (0.01-0.05 M) was added to the finely ground barley meal. The alkaline slurry was incubated at ambient temperature (25° ± 2 °C) for 15-60 min. The starch and grain fractions were isolated by screening and centrifugation. Increases in the time of treatment significantly affected the fiber, centrifugation and non-starch residue losses. Concentration of papain and sodium hydroxide had negligible effect on extraction losses. The enzyme-assisted extraction efficiency of starch was higher (80.7-84.6 %) than the alkaline method (70.9-83.7 %). The hulled barley showed higher extraction efficiency than the hull-less barley. The slurry treated with 0.4 g papain/kg barley for 5 h and 0.03 M sodium hydroxide for 60 min produced maximal yield of starch. Barley starch showed desirably high pasting temperature, water binding capacity and hold viscosity; and low final and setback viscosity compared with the commercial corn starch. The alkaline extracted hull-less barley starch showed exceptionally high peak and hold viscosities.

  5. Iron deficiency and anemia control for infants and young children in malaria-endemic areas: a call to action and consensus among the research community123

    PubMed Central

    Harding, Kimberly B.; Neufeld, Lynnette M.

    2012-01-01

    WHO recommendations on iron supplementation for infants and young children in malaria-endemic areas changed dramatically from universal to targeted supplementation for iron-deficient children only, after a trial in a high malaria transmission area showed an increased risk of hospital admission and mortality among iron-replete children following iron and folic acid supplementation. Since this time, there has been much debate and little agreement among the nutrition research community on how to move forward, and country policy and program decision makers have been left with incomplete guidance on how to address young child iron deficiency and anemia in their countries. The focus of a recent symposium during the American Society for Nutrition annual meeting, held in Washington, DC, in April 2011, was on exploring options for addressing iron deficiency and anemia among infants and young children in malaria-endemic areas, now, with safe, effective, and feasible interventions that provide iron. Papers based on the invited presentations are included in this supplement. The first paper is a review of the relationship between iron and malaria. The second is an analysis of theoretical and practical considerations regarding the targeted approach of providing iron and includes results from field testing noninvasive screening devices. This is followed by a review of the safety of universal provision of iron through home-fortification products in malaria-endemic areas. The final papers provide a call to action by highlighting pending research issues (fourth paper) and feasible strategies to move programs forward (fifth paper). PMID:22797991

  6. Calculation of Haem Iron Intake and Its Role in the Development of Iron Deficiency in Young Women from the Australian Longitudinal Study on Women's Health.

    PubMed

    Reeves, Angela J; McEvoy, Mark A; MacDonald-Wicks, Lesley K; Barker, Daniel; Attia, John; Hodge, Allison M; Patterson, Amanda J

    2017-05-19

    Total iron intake is not strongly associated with iron stores, but haem iron intake may be more predictive. Haem iron is not available in most nutrient databases, so experimentally determined haem contents were applied to an Australian Food Frequency Questionnaire (FFQ) to estimate haem iron intake in a representative sample of young women (25-30 years). The association between dietary haem iron intakes and incident self-reported diagnosed iron deficiency over six years of follow-up was examined. Haem iron contents for Australian red meats, fish, and poultry were applied to haem-containing foods in the Dietary Questionnaire for Epidemiological Studies V2 (DQESv2) FFQ. Haem iron intakes were calculated for 9076 women from the Australian Longitudinal Study on Women's Health (ALSWH) using the DQESv2 dietary data from 2003. Logistic regression was used to examine the association between haem iron intake (2003) and the incidence of iron deficiency in 2006 and 2009. Multiple logistic regression showed baseline haem iron intake was a statistically significant predictor of iron deficiency in 2006 (Odds Ratio (OR): 0.91; 95% Confidence Interval (CI): 0.84-0.99; p -value: 0.020) and 2009 (OR: 0.89; 95% CI: 0.82-0.99; p -value: 0.007). Using the energy-adjusted haem intake made little difference to the associations. Higher haem iron intake is associated with reduced odds of iron deficiency developing in young adult Australian women.

  7. Action of an endo-β-1,3(4)-glucanase on cellobiosyl unit structure in barley β-1,3:1,4-glucan

    PubMed Central

    Kuge, Takao; Nagoya, Hiroki; Tryfona, Theodora; Kurokawa, Tsunemi; Yoshimi, Yoshihisa; Dohmae, Naoshi; Tsubaki, Kazufumi; Dupree, Paul; Tsumuraya, Yoichi; Kotake, Toshihisa

    2015-01-01

    β-1,3:1,4-Glucan is a major cell wall component accumulating in endosperm and young tissues in grasses. The mixed linkage glucan is a linear polysaccharide mainly consisting of cellotriosyl and cellotetraosyl units linked through single β-1,3-glucosidic linkages, but it also contains minor structures such as cellobiosyl units. In this study, we examined the action of an endo-β-1,3(4)-glucanase from Trichoderma sp. on a minor structure in barley β-1,3:1,4-glucan. To find the minor structure on which the endo-β-1,3(4)-glucanase acts, we prepared oligosaccharides from barley β-1,3:1,4-glucan by endo-β-1,4-glucanase digestion followed by purification by gel permeation and paper chromatography. The endo-β-1,3(4)-glucanase appeared to hydrolyze an oligosaccharide with degree of polymerization 5, designated C5-b. Based on matrix-assisted laser desorption/ionization (MALDI) time-of-flight (ToF)/ToF-mass spectrometry (MS)/MS analysis, C5-b was identified as β-Glc-1,3-β-Glc-1,4-β-Glc-1,3-β-Glc-1,4-Glc including a cellobiosyl unit. The results indicate that a type of endo-β-1,3(4)-glucanase acts on the cellobiosyl units of barley β-1,3:1,4-glucan in an endo-manner. PMID:26027730

  8. Short stature before puberty: which children should be screened for SHOX deficiency?

    PubMed

    Wolters, Barbara; Lass, Nina; Wunsch, Rainer; Böckmann, Beatrix; Austrup, Frank; Reinehr, Thomas

    2013-01-01

    We studied the prevalence of deficiency in the short stature homeobox containing gene (SHOX) in prepubertal short-statured children and analyzed the clinical and radiological signs. Screening for SHOX deficiency was performed in 449 prepubertal short-statured children (54% females, aged 4-10 years) by direct sequencing and multiplex ligation probe-dependent amplification. Children with SHOX deficiency were compared to 1:2 age- and gender-matched prepubertal children without SHOX deficiency with respect to left-hand radiographs and anthropometrics including different ratios to height and proposed scores. We identified 22 (4.9%) patients with SHOX deficiency (64% point mutations). Children with SHOX deficiency demonstrated a mesomelic shortening of extremities. Lower leg lengths but not forearm length was reduced in children <8 years with SHOX deficiency. 36% of all children and none of the children <8 years with SHOX deficiency demonstrated any typical radiologic sign. Increased sitting height-to-height ratio and decreased extremities-to-trunk ratio demonstrated the best positive and negative predictive values to identify SHOX deficiency. Screening for SHOX deficiency seems rational, especially in children with increased sitting height-to-height ratio or decreased extremities-to-trunk ratio. These criteria were also valid in young children. © 2013 S. Karger AG, Basel.

  9. Fusariotoxicosis from barley in British Columbia. I. Natural occurrence and diagnosis.

    PubMed

    Greenway, J A; Puls, R

    1976-01-01

    Clinical sickness was observed in domestic ducks, geese, horses and swine during October 1973. All species showed upper alimentary distress with mortalities occurring in the geese. Barley derived from a common source had been fed. Examination of the barley revealed invasion by Fusarium spp and detection of a high level of dermatitic fusariotoxins.

  10. Brassinosteroid enhances resistance to fusarium diseases of barley.

    PubMed

    Ali, Shahin S; Kumar, G B Sunil; Khan, Mojibur; Doohan, Fiona M

    2013-12-01

    Fusarium pathogens are among the most damaging pathogens of cereals. These pathogens have the ability to attack the roots, seedlings, and flowering heads of barley and wheat plants with disease, resulting in yield loss and head blight disease and also resulting in the contamination of grain with mycotoxins harmful to human and animal health. There is increasing evidence that brassinosteroid (BR) hormones play an important role in plant defense against both biotic and abiotic stress agents and this study set out to determine if and how BR might affect Fusarium diseases of barley. Application of the epibrassinolide (epiBL) to heads of 'Lux' barley reduced the severity of Fusarium head blight (FHB) caused by Fusarium culmorum by 86% and reduced the FHB-associated loss in grain weight by 33%. Growth of plants in soil amended with epiBL resulted in a 28 and 35% reduction in Fusarium seedling blight (FSB) symptoms on the Lux and 'Akashinriki' barley, respectively. Microarray analysis was used to determine whether growth in epiBL-amended soil changed the transcriptional profile in stem base tissue during the early stages of FSB development. At 24 and 48 h post F. culmorum inoculation, there were 146 epiBL-responsive transcripts, the majority being from the 48-h time point (n = 118). Real-time reverse-transcription polymerase chain reaction analysis validated the results for eight transcripts, including five defense genes. The results of gene expression studies show that chromatin remodeling, hormonal signaling, photosynthesis, and pathogenesis-related genes are activated in plants as a result of growth in epiBL.

  11. Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat.

    PubMed

    Rey, Elodie; Abrouk, Michael; Keeble-Gagnère, Gabriel; Karafiátová, Miroslava; Vrána, Jan; Balzergue, Sandrine; Soubigou-Taconnat, Ludivine; Brunaud, Véronique; Martin-Magniette, Marie-Laure; Endo, Takashi R; Bartoš, Jan; Appels, Rudi; Doležel, Jaroslav

    2018-03-06

    Despite a long history, the production of useful alien introgression lines in wheat remains difficult mainly due to linkage drag and incomplete genetic compensation. In addition, little is known about the molecular mechanisms underlying the impact of foreign chromatin on plant phenotype. Here, a comparison of the transcriptomes of barley, wheat and a wheat-barley 7HL addition line allowed the transcriptional impact both on 7HL genes of a non-native genetic background and on the wheat gene complement as a result of the presence of 7HL to be assessed. Some 42% (389/923) of the 7HL genes assayed were differentially transcribed, which was the case for only 3% (960/35 301) of the wheat gene complement. The absence of any transcript in the addition line of a suite of chromosome 7A genes implied the presence of a 36 Mbp deletion at the distal end of the 7AL arm; this deletion was found to be in common across the full set of Chinese Spring/Betzes barley addition lines. The remaining differentially transcribed wheat genes were distributed across the whole genome. The up-regulated barley genes were mostly located in the proximal part of the 7HL arm, while the down-regulated ones were concentrated in the distal part; as a result, genes encoding basal cellular functions tended to be transcribed, while those encoding specific functions were suppressed. An insight has been gained into gene transcription in an alien introgression line, thereby providing a basis for understanding the interactions between wheat and exotic genes in introgression materials. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain1[OPEN

    PubMed Central

    2018-01-01

    Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley (Hordeum vulgare). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b6f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue. PMID:29540590

  13. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw.

    PubMed

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne S

    2007-12-01

    In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.

  14. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development

    PubMed Central

    Ruzanski, Christian; Krucewicz, Katarzyna; Meier, Sebastian; Hägglund, Per; Svensson, Birte; Palcic, Monica M.

    2017-01-01

    The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1 (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis, that is, the enzymes and substrates involved in the initial transition from simple sugars to polysaccharides, remain unclear. We found that HvPho1 is present as an active protein at the onset of barley endosperm development. Notably, purified recombinant protein can catalyze the de novo production of α-1,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley. PMID:28407006

  15. Improving barley culm robustness for secured crop yield in a changing climate.

    PubMed

    Dockter, Christoph; Hansson, Mats

    2015-06-01

    The Green Revolution combined advancements in breeding and agricultural practice, and provided food security to millions of people. Daily food supply is still a major issue in many parts of the world and is further challenged by future climate change. Fortunately, life science research is currently making huge progress, and the development of future crop plants will be explored. Today, plant breeding typically follows one gene per trait. However, new scientific achievements have revealed that many of these traits depend on different genes and complex interactions of proteins reacting to various external stimuli. These findings open up new possibilities for breeding where variations in several genes can be combined to enhance productivity and quality. In this review we present an overview of genes determining plant architecture in barley, with a special focus on culm length. Many genes are currently known only through their mutant phenotypes, but emerging genomic sequence information will accelerate their identification. More than 1000 different short-culm barley mutants have been isolated and classified in different phenotypic groups according to culm length and additional pleiotropic characters. Some mutants have been connected to deficiencies in biosynthesis and reception of brassinosteroids and gibberellic acids. Still other mutants are unlikely to be connected to these hormones. The genes and corresponding mutations are of potential interest for development of stiff-straw crop plants tolerant to lodging, which occurs in extreme weather conditions with strong winds and heavy precipitation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Gene Deletion in Barley Mediated by LTR-retrotransposon BARE

    PubMed Central

    Shang, Yi; Yang, Fei; Schulman, Alan H.; Zhu, Jinghuan; Jia, Yong; Wang, Junmei; Zhang, Xiao-Qi; Jia, Qiaojun; Hua, Wei; Yang, Jianming; Li, Chengdao

    2017-01-01

    A poly-row branched spike (prbs) barley mutant was obtained from soaking a two-rowed barley inflorescence in a solution of maize genomic DNA. Positional cloning and sequencing demonstrated that the prbs mutant resulted from a 28 kb deletion including the inflorescence architecture gene HvRA2. Sequence annotation revealed that the HvRA2 gene is flanked by two LTR (long terminal repeat) retrotransposons (BARE) sharing 89% sequence identity. A recombination between the integrase (IN) gene regions of the two BARE copies resulted in the formation of an intact BARE and loss of HvRA2. No maize DNA was detected in the recombination region although the flanking sequences of HvRA2 gene showed over 73% of sequence identity with repetitive sequences on 10 maize chromosomes. It is still unknown whether the interaction of retrotransposons between barley and maize has resulted in the recombination observed in the present study. PMID:28252053

  17. Comparative energy content and amino acid digestibility of barley obtained from diverse sources fed to growing pigs.

    PubMed

    Wang, Hong Liang; Shi, Meng; Xu, Xiao; Ma, Xiao Kang; Liu, Ling; Piao, Xiang Shu

    2017-07-01

    Two experiments were conducted to determine the content of digestible energy (DE) and metabolizable energy (ME) as well as the apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AA) in barley grains obtained from Australia, France or Canada. In Exp. 1, 18 growing barrows (Duroc×Landrace×Yorkshire; 31.5±3.2 kg) were individually placed in stainless-steel metabolism crates (1.4×0.7×0.6 m) and randomly allotted to 1 of 3 test diets. In Exp. 2, eight crossbred pigs (30.9±1.8 kg) were allotted to a replicate 3×4 Youden Square designed experiment with three periods and four diets. Two pigs received each diet during each test period. The diets included one nitrogen-free diet and three test diets. The relative amounts of gross energy (GE), CP, and all AA in the Canadian barley were higher than those in Australian and French barley while higher concentrations of neutral detergent fiber, acid detergent fiber, total dietary fiber, insoluble dietary fiber and β-glucan as well as lower concentrations of GE and ether extract were observed in the French barley compared with the other two barley sources. The DE and ME as well as the SID of histidine, isoleucine, leucine and phenylalanine in Canadian barley were higher (p<0.05) than those in French barley but did not differ from Australian barley. Differences in the chemical composition, energy content and the SID and AID of AA were observed among barley sources obtained from three countries. The feeding value of barley from Canada and Australia was superior to barley obtained from France which is important information in developing feeding systems for growing pigs where imported grains are used.

  18. Utilization of barley or wheat bran to bioconvert glutamate to γ-aminobutyric acid (GABA).

    PubMed

    Jin, Wen-Jie; Kim, Min-Ju; Kim, Keun-Sung

    2013-09-01

    This study deals with the utilization of agro-industrial wastes created by barley and wheat bran in the production of a value-added product, γ-aminobutyric acid (GABA). The simple and eco-friendly reaction requires no pretreatment or microbial fermentation steps but uses barley or wheat bran as an enzyme source, glutamate as a substrate, and pyridoxal 5'-phosphate (PLP) as a cofactor. The optimal reaction conditions were determined on the basis of the temperatures and times used for the decarboxylation reactions and the initial concentrations of barley or wheat bran, glutamate, and PLP. The optimal reactions produced 9.2 mM of GABA from 10 mM glutamate, yielding a 92% GABA conversion rate, when barley bran was used and 6.0 mM of GABA from 10 mM glutamate, yielding a 60% GABA conversion rate, when wheat bran was used. The results imply that barley bran is more efficient than wheat bran in the production of GABA. © 2013 Institute of Food Technologists®

  19. Identification of a negative regulator of gibberellin action, HvSPY, in barley.

    PubMed Central

    Robertson, M; Swain, S M; Chandler, P M; Olszewski, N E

    1998-01-01

    To broaden our understanding of the molecular mechanisms of gibberellin (GA) action, we isolated a spindly clone (HvSPY) from barley cultivar Himalaya and tested whether the HvSPY protein would modulate GA action in barley aleurone. The HvSPY cDNA showed high sequence identity to Arabidopsis SPY along its entire length, and the barley protein functionally complemented the spy-3 mutation. HvSPY and SPY proteins showed sequence relatedness with animal O-linked N-acetylglucosamine transferases (OGTs), suggesting that they may also have OGT activity. HvSPY has a locus distinct from that of Sln, a mutation that causes the constitutive GA responses of slender barley, which phenotypically resembles Arabidopsis spy mutants. The possibility that the HvSPY gene encodes a negative regulator of GA action was tested by expressing HvSPY in a barley aleurone transient assay system. HvSPY coexpression largely abolished GA3-induced activity of an alpha-amylase promoter. Surprisingly, HvSPY coexpression increased reporter gene activity from an abscisic acid (ABA)-inducible gene promoter (dehydrin), even in the absence of exogenous ABA. These results show that HvSPY modulates the transcriptional activities of two hormonally regulated promoters: negatively for a GA-induced promoter and positively for an ABA-induced promoter. PMID:9634587

  20. Homologous recombination mediates S-phase-dependent radioresistance in cells deficient in DNA polymerase eta.

    PubMed

    Nicolay, Nils H; Carter, Rebecca; Hatch, Stephanie B; Schultz, Niklas; Prevo, Remko; McKenna, W Gillies; Helleday, Thomas; Sharma, Ricky A

    2012-11-01

    DNA polymerase eta (pol η) is the only DNA polymerase causally linked to carcinogenesis in humans. Inherited deficiency of pol η in the variant form of xeroderma pigmentosum (XPV) predisposes to UV-light-induced skin cancer. Pol η-deficient cells demonstrate increased sensitivity to cisplatin and oxaliplatin chemotherapy. We have found that XP30R0 fibroblasts derived from a patient with XPV are more resistant to cell kill by ionising radiation (IR) than the same cells complemented with wild-type pol η. This phenomenon has been confirmed in Burkitt's lymphoma cells, which either expressed wild-type pol η or harboured a pol η deletion. Pol η deficiency was associated with accumulation of cells in S-phase, which persisted after IR. Cells deficient in pol η demonstrated increased homologous recombination (HR)-directed repair of double strand breaks created by IR. Depletion of the HR protein, X-ray repair cross-complementing protein 3 (XRCC3), abrogated the radioresistance observed in pol η-deficient cells as compared with pol η-complemented cells. These findings suggest that HR mediates S-phase-dependent radioresistance associated with pol η deficiency. We propose that pol η protein levels in tumours may potentially be used to identify patients who require treatment with chemo-radiotherapy rather than radiotherapy alone for adequate tumour control.

  1. Effect of barley and its amylopectin content on ruminal fermentation and nitrogen utilization in lactating dairy cows.

    PubMed

    Foley, A E; Hristov, A N; Melgar, A; Ropp, J K; Etter, R P; Zaman, S; Hunt, C W; Huber, K; Price, W J

    2006-11-01

    The effect of type of grain (corn vs. barley) and amylopectin content of barley grain (normal vs. waxy) on ruminal fermentation, digestibility, and utilization of ruminal ammonia nitrogen for milk protein synthesis was studied in a replicated 3 x 3 Latin square design trial with 6 lactating dairy cows. The experimental treatments were (proportion of dietary dry matter): CORN, 40% corn grain, NBAR, 30% normal Baronesse barley:10% corn grain, and WBAR, 30% high-amylopectin (waxy) Baronesse barley:10% corn grain. All grains were steam-rolled and fed as part of a total mixed ration. The NBAR and WBAR diets resulted in increased ruminal ammonia concentrations compared with CORN (8.2, 7.4, and 5.6 mM, respectively), but other ruminal fermentation parameters were not affected. Ruminal digestibility of dietary nutrients and microbial protein synthesis in the rumen were also not affected by diet. Corn grain had greater in situ effective ruminal dry matter degradability (62.8%) than the barley grains (58.2 and 50.7%, respectively), and degradability of the normal barley starch was greater than that of the waxy barley (69.3 and 58.9%, respectively). A greater percentage of relative starch crystallinity was observed for the waxy compared with the normal barley grain. Total tract apparent digestibility of dry matter and organic matter were decreased by WBAR compared with CORN and NBAR. Total tract starch digestibility was greater and milk urea nitrogen content was lower for CORN compared with the 2 barley diets. In this study, the extent of processing of the grain component of the diet was most likely the factor that determined the diet responses. Minimal processing of barley grain (processing indexes of 79.2 to 87.9%) reduced its total tract digestibility of starch compared with steam-rolled corn (processing index of 58.8%). As a result of the increased ammonia concentration and reduced degradability of barley dry matter in the rumen, the utilization of ruminal ammonia

  2. The incidence of gastrointestinal pathology and subsequent anemia in young men presenting with iron deficiency without anemia.

    PubMed

    Carter, Dan; Bardan, Eytan; Derazne, Estela; Tzur, Dorit; Avidan, Benjamin

    2016-10-01

    The etiology of iron deficiency (ID) without anemia in young men is unclear, and there are no evidence-based recommendations for the required gastrointestinal (GI) evaluation. The aims of this study were to examine the incidence of significant GI pathology and the development of anemia during the follow-up of young men presenting with ID, but without anemia. All young men (18-30 years) who served in the Israel Defense Forces during the years 2005-2013 and had at least a single laboratory test indicative of ID without anemia were followed until the diagnosis of significant GI pathology or discharge from military service. The study population included 2061 young men (mean age 20.7±1.8). During follow-up of 3150 person years, significant GI pathologies were diagnosed in 39 patients: inflammatory bowel disease in 25 (1.2%), celiac disease in 8 (0.4%), and peptic disease in 4 (0.1%). No cases of GI-related cancer were diagnosed. ID anemia developed during follow-up in 203 (9.8%). Lower baseline hemoglobin levels, lower ferritin levels, and younger age at diagnosis were more common among those who developed anemia. The development of anemia was a predisposing factor for the diagnosis of GI pathology (risk ratio=3.60, 95% confidence interval 1.34-8.32, P=0.012). Significant GI pathology is very uncommon in young men presenting with ID. Overt anemia developed in close to 10% of the study cohort. Therefore, we advise simple GI evaluation (celiac serology, C-reactive protein or fecal calprotectin, and urease breath test) as well as follow-up in this population.

  3. Wet processing barley grains into concentrates with protein, beta-glucan, and starch

    USDA-ARS?s Scientific Manuscript database

    An improved wet method was developed to process barley into fractions concentrated in protein, (1-3)(1-4)-b-D-glucan (BG), starch, or other carbohydrates (CHO). Alkaline concentration, solvent to barley flour ratio (SFR), and extraction temperature were evaluated for their effects on concentration a...

  4. Compositional equivalence of barleys differing only in low and normal phytate levels

    USDA-ARS?s Scientific Manuscript database

    Recent breeding advances have led to the development of several barley lines with reduced levels of phytate. One of them was further developed and released as a hulless low phytate cultivar (Clearwater). Because barley oil contains high levels of tocotrienols and other functional lipids, we conduc...

  5. Heterogeneity of Powdery Mildew Resistance Revealed in Accessions of the ICARDA Wild Barley Collection

    PubMed Central

    Dreiseitl, Antonin

    2017-01-01

    The primary genepool of barley comprises two subspecies – wild barley (Hordeum vulgare subsp. spontaneum) and cultivated barley H. vulgare. subsp. vulgare. The former originated 5.5 million years ago in southwest Asia and is the immediate ancestor of cultivated barley, which arose around 10,000 years ago. In this study, the specific resistance of a set of 146 wild barley accessions, maintained by the International Center for Agriculture Research in the Dry Areas (ICARDA), to 32 isolates of barley powdery mildew caused by Blumeria graminis f. sp. hordei was evaluated. The set comprised 146 heterogeneous accessions of a previously tested collection. Seed was obtained by single seed descent and each accession was usually represented by five single plant progenies. In total, 687 plant progenies were tested. There were 211 phenotypes of resistance among the accessions, 87 of which were found in single plants, while 202 plants contained the eight most common phenotypes. The most frequent phenotype was found in 56 plants that were susceptible to all pathogen isolates, whereas the second most frequent phenotype, which occurred in 46 plants, was resistant to all isolates. The broad resistance diversity that was revealed is of practical importance and is an aid to determining the extent and role of resistance in natural ecosystems. PMID:28261253

  6. The Rhizobium sp. strain NGR234 systemically suppresses arbuscular mycorrhizal root colonization in a split-root system of barley (Hordeum vulgare).

    PubMed

    Khaosaad, Thanasan; Staehelin, Christian; Steinkellner, Siegrid; Hage-Ahmed, Karin; Ocampo, Juan Antonio; Garcia-Garrido, Jose Manuel; Vierheilig, Horst

    2010-11-01

    Nitrogen-fixing bacteria (rhizobia) form a nodule symbiosis with legumes, but also induce certain effects on non-host plants. Here, we used a split-root system of barley to examine whether inoculation with Rhizobium sp. strain NGR234 on one side of a split-root system systemically affects arbuscular mycorrhizal (AM) root colonization on the other side. Mutant strains of NGR234 deficient in Nod factor production (strain NGRΔnodABC), perception of flavonoids (strain NGRΔnodD1) and secretion of type 3 effector proteins (strain NGRΩrhcN) were included in this study. Inoculation resulted in a systemic reduction of AM root colonization with all tested strains. However, the suppressive effect of strain NGRΩrhcN was less pronounced. Moreover, levels of salicylic acid, an endogenous molecule related to plant defense, were increased in roots challenged with rhizobia. These data indicate that barley roots perceived NGR234 and that a systemic regulatory mechanism of AM root colonization was activated. The suppressive effect appears to be Nod factor independent, but enhanced by type 3 effector proteins of NGR234. Copyright © Physiologia Plantarum 2010.

  7. Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome

    PubMed Central

    2013-01-01

    Background There is growing evidence for the prevalence of copy number variation (CNV) and its role in phenotypic variation in many eukaryotic species. Here we use array comparative genomic hybridization to explore the extent of this type of structural variation in domesticated barley cultivars and wild barleys. Results A collection of 14 barley genotypes including eight cultivars and six wild barleys were used for comparative genomic hybridization. CNV affects 14.9% of all the sequences that were assessed. Higher levels of CNV diversity are present in the wild accessions relative to cultivated barley. CNVs are enriched near the ends of all chromosomes except 4H, which exhibits the lowest frequency of CNVs. CNV affects 9.5% of the coding sequences represented on the array and the genes affected by CNV are enriched for sequences annotated as disease-resistance proteins and protein kinases. Sequence-based comparisons of CNV between cultivars Barke and Morex provided evidence that DNA repair mechanisms of double-strand breaks via single-stranded annealing and synthesis-dependent strand annealing play an important role in the origin of CNV in barley. Conclusions We present the first catalog of CNVs in a diploid Triticeae species, which opens the door for future genome diversity research in a tribe that comprises the economically important cereal species wheat, barley, and rye. Our findings constitute a valuable resource for the identification of CNV affecting genes of agronomic importance. We also identify potential mechanisms that can generate variation in copy number in plant genomes. PMID:23758725

  8. Effects of zinc deficiency on the vallate papillae and taste buds in rats.

    PubMed

    Chou, H C; Chien, C L; Huang, H L; Lu, K S

    2001-05-01

    Zinc deficiency is associated with multiple clinical complications, including taste disturbance, anorexia, growth retardation, skin changes, and hypogonadism. We investigated the zinc-deficiency-induced morphologic changes in the vallate taste buds of weanling and young adult male Wistar rats. A total of 24 weanling and 30 young adult rats were used. Each age group was further divided into a control group fed a zinc-adequate (50 ppm) diet, a zinc-deficient (< 1 ppm) diet group, and a zinc-adequate pair-fed group who were fed the same amount of food as that taken by the zinc-deficient group. Weanling rats were fed for 4 weeks and young adult rats were fed for 6 weeks. The morphometry and morphologic changes of vallate taste buds were analyzed using light and transmission electron microscopy. Light microscopy revealed no significant difference in papilla size and morphology among the various groups. In both weanling and young adult rats in the zinc-deficient diet and pair-fed groups, the number of taste buds per papilla (per animal) and the average profile area of the taste bud were significantly smaller than those of the corresponding controls (p < 0.05). Ultrastructural changes were seen only in the taste buds of weanling rats fed the zinc-deficient diet, with derangement of the architecture of the taste bud and widening of the intercellular space between taste bud cells. The proportion of type I taste bud cells in the taste buds of weanling rats fed the zinc-deficient diet decreased from 59% to 39%, and that of type II taste bud cells decreased from 25% to 12%. No obvious changes in the ultrastructure of type III taste bud cells were observed. The main effects of zinc deficiency in weanling and young adult rats and in adequate diet pair-fed rats were changes in the number and size of taste buds, and fine structure changes in the taste bud cells, especially during the accelerated growth stage after weaning.

  9. Genome-Wide Association Mapping of Acid Soil Resistance in Barley (Hordeum vulgare L.)

    PubMed Central

    Zhou, Gaofeng; Broughton, Sue; Zhang, Xiao-Qi; Ma, Yanling; Zhou, Meixue; Li, Chengdao

    2016-01-01

    Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) have been used to detect QTLs underlying complex traits in major crops. In this study, we collected 218 barley (Hordeum vulgare L.) lines including wild barley and cultivated barley from China, Canada, Australia, and Europe. A total of 408 polymorphic markers were used for population structure and LD analysis. GWAS for acid soil resistance were performed on the population using a general linkage model (GLM) and a mixed linkage model (MLM), respectively. A total of 22 QTLs (quantitative trait loci) were detected with the GLM and MLM analyses. Two QTLs, close to markers bPb-1959 (133.1 cM) and bPb-8013 (86.7 cM), localized on chromosome 1H and 4H respectively, were consistently detected in two different trials with both the GLM and MLM analyses. Furthermore, bPb-8013, the closest marker to the major Al3+ resistance gene HvAACT1 in barley, was identified to be QTL5. The QTLs could be used in marker-assisted selection to identify and pyramid different loci for improved acid soil resistance in barley. PMID:27064793

  10. Genomic Regions Influencing Seminal Root Traits in Barley.

    PubMed

    Robinson, Hannah; Hickey, Lee; Richard, Cecile; Mace, Emma; Kelly, Alison; Borrell, Andrew; Franckowiak, Jerome; Fox, Glen

    2016-03-01

    Water availability is a major limiting factor for crop production, making drought adaptation and its many component traits a desirable attribute of plant cultivars. Previous studies in cereal crops indicate that root traits expressed at early plant developmental stages, such as seminal root angle and root number, are associated with water extraction at different depths. Here, we conducted the first study to map seminal root traits in barley ( L.). Using a recently developed high-throughput phenotyping method, a panel of 30 barley genotypes and a doubled-haploid (DH) population (ND24260 × 'Flagship') comprising 330 lines genotyped with diversity array technology (DArT) markers were evaluated for seminal root angle (deviation from vertical) and root number under controlled environmental conditions. A high degree of phenotypic variation was observed in the panel of 30 genotypes: 13.5 to 82.2 and 3.6 to 6.9° for root angle and root number, respectively. A similar range was observed in the DH population: 16.4 to 70.5 and 3.6 to 6.5° for root angle and number, respectively. Seven quantitative trait loci (QTL) for seminal root traits (root angle, two QTL; root number, five QTL) were detected in the DH population. A major QTL influencing both root angle and root number (/) was positioned on chromosome 5HL. Across-species analysis identified 10 common genes underlying root trait QTL in barley, wheat ( L.), and sorghum [ (L.) Moench]. Here, we provide insight into seminal root phenotypes and provide a first look at the genetics controlling these traits in barley. Copyright © 2016 Crop Science Society of America.

  11. Physical and sensory characterization and consumer preference of corn and barley-fed beef.

    PubMed

    Wismer, W V; Okine, E K; Stein, A; Seibel, M R; Goonewardene, L A

    2008-11-01

    Steaks from corn-fed and barley-fed beef were characterized by a trained panel, which rated corn-fed beef higher (p<0.05) for tenderness attributes and overall flavor intensity. Canadian consumers preferred (p<0.01) cooked and raw steaks from barley-fed beef, while Mexican consumers showed no preference (p>0.05) for either type of finished beef. Japanese consumers showed a preference (p<0.05) for the appearance of raw barley-fed steaks but a preference for cooked corn-fed steaks (p<0.05). No differences (p>0.05) were observed for Warner-Bratzler shear, marbling scores, cooking losses or Hunter colorimeter values. There was a trend for higher concentrations (p<0.08) of the saturated fatty acids in the barley treatment, but no differences (p>0.10) in mono or polyunsaturated fatty acids.

  12. Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains.

    PubMed

    Radchuk, Volodymyr; Riewe, David; Peukert, Manuela; Matros, Andrea; Strickert, Marc; Radchuk, Ruslana; Weier, Diana; Steinbiß, Hans-Henning; Sreenivasulu, Nese; Weschke, Winfriede; Weber, Hans

    2017-07-20

    Sucrose transport and partitioning are crucial for seed filling. While many plasma-membrane-localised sucrose transporters (SUT1 family members) have been analysed in seeds, the functions of vacuolar SUT2 members are still obscure. In barley grains, expression of HvSUT1 and HvSUT2 overlap temporally and spatially, suggesting concerted functions to regulate sucrose homeostasis. Using HvSUT2-RNAi plants, we found that grains were also deficient in HvSUT1 expression and seemingly sucrose-limited during mid-to-late grain filling. Transgenic endosperms accumulated less starch and dry weight, although overall sucrose and hexose contents were higher. Comprehensive transcript and metabolite profiling revealed that genes related to glycolysis, the tricarboxylic acid cycle, starch and amino acid synthesis, grain maturation, and abscisic acid signalling were down-regulated together with most glycolytic intermediates and amino acids. Sucrose was increased along the sucrose delivery route in the nucellar projection, the endosperm transfer cells, and the starchy endosperm, indicating that suppressed transporter activity diminished sucrose efflux from vacuoles, which generated sugar deficiency in the cytoplasm. Thus, endosperm vacuoles may buffer sucrose concentrations to regulate homeostasis at grain filling. Transcriptional changes revealed that limited endosperm sucrose initiated sugar starvation responses, such as sugar recycling from starch, hemicelluloses and celluloses together with vacuolar protein degradation, thereby supporting formation of nucleotide sugars. Barley endosperm cells can thus suppress certain pathways to retrieve resources to maintain essential cell functions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Biochemistry, Structure and Function of Non-Wheat Proteins: Case Study of Barley ß-Amylase

    USDA-ARS?s Scientific Manuscript database

    The importance of a protein is not always evident and may be due to its multifunctional nature. ß-Amylase in seeds of barley (Hordeum vulgare L.) constitutes approximately 2% of the total protein in mature seeds and is assumed to be important when storage proteins are mobilized to support protein s...

  14. Study of fluorescence quenching of Barley α-amylase

    NASA Astrophysics Data System (ADS)

    Bakkialakshmi, S.; Shanthi, B.; Bhuvanapriya, T.

    2012-05-01

    The fluorescence quenching of Barley α-amylase by acrylamide and succinimide has been studied in water using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e., 6, 7 and 8) of water. Ground state and excited state binding constants (Kg &Ke) have been calculated. From the calculated binding constants (Kg &Ke) the free energy changes for the ground (ΔGg) and excited (ΔGe) states have been calculated and are presented in tables. UV and FTIR spectra have also been recorded to prove the binding of Barley α-amylase with acrylamide and succinimide.

  15. Classification of Fusarium-Infected Korean Hulled Barley Using Near-Infrared Reflectance Spectroscopy and Partial Least Squares Discriminant Analysis

    PubMed Central

    Lim, Jongguk; Kim, Giyoung; Mo, Changyeun; Oh, Kyoungmin; Yoo, Hyeonchae; Ham, Hyeonheui; Kim, Moon S.

    2017-01-01

    The purpose of this study is to use near-infrared reflectance (NIR) spectroscopy equipment to nondestructively and rapidly discriminate Fusarium-infected hulled barley. Both normal hulled barley and Fusarium-infected hulled barley were scanned by using a NIR spectrometer with a wavelength range of 1175 to 2170 nm. Multiple mathematical pretreatments were applied to the reflectance spectra obtained for Fusarium discrimination and the multivariate analysis method of partial least squares discriminant analysis (PLS-DA) was used for discriminant prediction. The PLS-DA prediction model developed by applying the second-order derivative pretreatment to the reflectance spectra obtained from the side of hulled barley without crease achieved 100% accuracy in discriminating the normal hulled barley and the Fusarium-infected hulled barley. These results demonstrated the feasibility of rapid discrimination of the Fusarium-infected hulled barley by combining multivariate analysis with the NIR spectroscopic technique, which is utilized as a nondestructive detection method. PMID:28974012

  16. Transient Overexpression of HvSERK2 Improves Barley Resistance to Powdery Mildew.

    PubMed

    Li, Yingbo; Li, Qingwei; Guo, Guimei; He, Ting; Gao, Runhong; Faheem, Muhammad; Huang, Jianhua; Lu, Ruiju; Liu, Chenghong

    2018-04-18

    Somatic embryogenesis receptor-like kinases (SERKs) play an essential role in plant response to pathogen infection. Here we identified three SERK genes ( HvSERK1/2/3 ) from barley, and aimed to determine their implication in defense responses to barley powdery mildew ( Bgh ). Although HvSERK1/2/3 share the characteristic domains of the SERK family, only HvSERK2 was significantly induced in barley leaves during Bgh infection. The expression of HvSERK2 was rapidly induced by hydrogen peroxide (H₂O₂) treatment, but not by treatment with salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), or abscisic acid (ABA). Bioinformatics analysis of the cloned HvSERK2 promoter revealed that it contains several elements responsible for defense responses against pathogens. Promoter functional analysis showed that the HvSERK2 promoter was induced by Bgh and H₂O₂. Subcellular localization analysis of HvSERK2 indicated that it is mainly located on the plasma membrane. Transient overexpression of HvSERK2 in epidermal cells of the susceptible barley cultivar Hua 30 reduced the Bgh haustorium index from 58.6% to 43.2%. This study suggests that the HvSERK2 gene plays a positive role in the improvement of barley resistance to powdery mildew, and provides new insight into the function of SERK genes in the biotic stress response of plants.

  17. The Genetic Basis of Composite Spike Form in Barley and ‘Miracle-Wheat’

    PubMed Central

    Poursarebani, Naser; Seidensticker, Tina; Koppolu, Ravi; Trautewig, Corinna; Gawroński, Piotr; Bini, Federica; Govind, Geetha; Rutten, Twan; Sakuma, Shun; Tagiri, Akemi; Wolde, Gizaw M.; Youssef, Helmy M.; Battal, Abdulhamit; Ciannamea, Stefano; Fusca, Tiziana; Nussbaumer, Thomas; Pozzi, Carlo; Börner, Andreas; Lundqvist, Udda; Komatsuda, Takao; Salvi, Silvio; Tuberosa, Roberto; Uauy, Cristobal; Sreenivasulu, Nese; Rossini, Laura; Schnurbusch, Thorsten

    2015-01-01

    Inflorescences of the tribe Triticeae, which includes wheat (Triticum sp. L.) and barley (Hordeum vulgare L.) are characterized by sessile spikelets directly borne on the main axis, thus forming a branchless spike. ‘Compositum-Barley’ and tetraploid ‘Miracle-Wheat’ (T. turgidum convar. compositum (L.f.) Filat.) display noncanonical spike-branching in which spikelets are replaced by lateral branch-like structures resembling small-sized secondary spikes. As a result of this branch formation ‘Miracle-Wheat’ produces significantly more grains per spike, leading to higher spike yield. In this study, we first isolated the gene underlying spike-branching in ‘Compositum-Barley,’ i.e., compositum 2 (com2). Moreover, we found that COM2 is orthologous to the branched headt (bht) locus regulating spike branching in tetraploid ‘Miracle-Wheat.’ Both genes possess orthologs with similar functions in maize BRANCHED SILKLESS 1 (BD1) and rice FRIZZY PANICLE/BRANCHED FLORETLESS 1 (FZP/BFL1) encoding AP2/ERF transcription factors. Sequence analysis of the bht locus in a collection of mutant and wild-type tetraploid wheat accessions revealed that a single amino acid substitution in the DNA-binding domain gave rise to the domestication of ‘Miracle-Wheat.’ mRNA in situ hybridization, microarray experiments, and independent qRT-PCR validation analyses revealed that the branch repression pathway in barley is governed through the spike architecture gene Six-rowed spike 4 regulating COM2 expression, while HvIDS1 (barley ortholog of maize INDETERMINATE SPIKELET 1) is a putative downstream target of COM2. These findings presented here provide new insights into the genetic basis of spike architecture in Triticeae, and have disclosed new targets for genetic manipulations aiming at boosting wheat’s yield potential. PMID:26156223

  18. S-adenosylhomocysteine hydrolase deficiency in a 26-year-old man.

    PubMed

    Buist, N R M; Glenn, B; Vugrek, O; Wagner, C; Stabler, S; Allen, R H; Pogribny, I; Schulze, A; Zeisel, S H; Barić, I; Mudd, S H

    2006-08-01

    This paper reports the third proven human case of deficient S-adenosylhomocysteine (AdoHcy) hydrolase activity. The patient is similar to the only two previously reported cases with this disorder in having severe myopathy, developmental delay, elevated serum creatine kinase (CK) concentrations, and hypermethioninaemia. Although he has been followed from infancy, the basic enzyme deficiency was established only at age 26 years. The diagnosis was based on markedly elevated plasma concentrations of both AdoHcy and S-adenosylmethionine, some 20% of the mean control activity of AdoHcy hydrolase activity in haemolysates of his red-blood cells, and two missense mutations in his gene encoding AdoHcy hydrolase. He had low values of erythrocyte phosphatidylcholine and plasma free choline and marginally elevated excretion of guanidinoacetate, suggesting that the elevated AdoHcy may have been inhibiting methylation of phosphatidylethanolamine and guanidinoacetate. His leukocyte DNA was globally more methylated than the DNA's of his parents or the mean extent of methylation measured in age-matched control subjects.

  19. The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley

    PubMed Central

    Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R.

    2013-01-01

    Background and Aims Aluminium is toxic in acid soils because the soluble Al3+ inhibits root growth. A mechanism of Al3+ tolerance discovered in many plant species involves the release of organic anions from root apices. The Al3+-activated release of citrate from the root apices of Al3+-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al3+ tolerance of these important cereal species. Methods HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al3+ tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Key Results and Conclusions Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al3+ tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al3+ tolerance of important crop plants. PMID:23798600

  20. The barley MATE gene, HvAACT1, increases citrate efflux and Al(3+) tolerance when expressed in wheat and barley.

    PubMed

    Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R

    2013-08-01

    Aluminium is toxic in acid soils because the soluble Al(3+) inhibits root growth. A mechanism of Al(3+) tolerance discovered in many plant species involves the release of organic anions from root apices. The Al(3+)-activated release of citrate from the root apices of Al(3+)-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al(3+) tolerance of these important cereal species. HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al(3+) tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al(3+) tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al(3+) tolerance of important crop plants.

  1. Using Goat's Milk, Barley Flour, Honey, and Probiotic to Manufacture of Functional Dairy Product.

    PubMed

    Ismail, Magdy Mohamed; Hamad, Mohamed Farid; Elraghy, Esraa Mohamed

    2017-08-23

    Stirred yogurt manufactured using probiotic culture which usually called Rayeb milk in the Middle East region is one of the most important functional fermented milk products. To increase the health and functionality properties to this product, some ingredients like fruits, cereal, and whey protein are used in production. This study was carried out to prepare functional Rayeb milk from goat's milk, barley flour (15%) and honey (4%) mixtures using ABT culture. Also, vanilla and cocoa powder were used as flavorings. Adding barley flour and honey to goat's milk increased curd tension and water-holding capacity and decreased coagulation time and susceptibility to syneresis. The values of carbohydrate, total solids, dietary fiber, ash, total protein, water soluble nitrogen, total volatile fatty acids, unsaturated fatty acids, oleic, linoleic, α-linolenic acids, and antioxidant activity were higher in Rayeb milk supplemented with barley flour and honey than control. The viabilities of Lactobacillus acidophilus and Bifidobacterium lactis Bb12 (Chr. Hansen's Lab A/S) increased in fortified Rayeb milk. The recommended level of 10 7  cfu g -1 of bifidobacteria as a probiotic was exceeded for these samples. Addition of vanilla (0.1%) or cocoa powder (0.5%) improved the sensory properties of fortified Rayeb milk.

  2. Supplementation of Reduced Gluten Barley Diet with Oral Prolyl Endopeptidase Effectively Abrogates Enteropathy-Associated Changes in Gluten-Sensitive Macaques.

    PubMed

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Liu, David X; Alvarez, Xavier; Laine, David; Clarke, Adam; Doyle, Anthony; Aye, Pyone P; Blanchard, James; Moehs, Charles P

    2016-06-28

    Celiac disease (CD) is an autoimmune disorder that affects approximately three million people in the United States. Furthermore, non-celiac gluten sensitivity (NCGS) affects an estimated additional 6% of the population, e.g., 20 million in the U.S. The only effective treatment of CD and NCGS requires complete removal of gluten sources from the diet. While required adherence to a gluten-free diet (GFD) is extremely difficult to accomplish, efforts to develop additional supportive treatments are needed. To facilitate these efforts, we developed a gluten-sensitive (GS) rhesus macaque model to study the effects of novel therapies. Recently reported results from phase one of this project suggest that partial improvement-but not remission-of gluten-induced disease can be accomplished by 100-fold reduction of dietary gluten, i.e., 200 ppm-by replacement of conventional dietary sources of gluten with a mutant, reduced gluten (RG) barley (lys3a)-derived source. The main focus of this (phase two) study was to determine if the inflammatory effects of the residual gluten in lys3a mutant barley grain could be further reduced by oral supplementation with a prolylendopeptidase (PE). Results reveal that PE supplementation of RG barley diet induces more complete immunological, histopathological and clinical remission than RG barley diet alone. The combined effects of RG barley diet and PE supplementation resulted in a further decrease of inflammatory mediators IFN-γ and TNF secretion by peripheral lymphocytes, as well as decreased plasma anti-gliadin and anti-intestinal tissue transglutaminase (TG2) antibodies, diminished active caspase production in small intestinal mucosa, and eliminated clinical diarrhea-all comparable with a gluten-free diet induced remission. In summary, the beneficial results of a combined RG barley and PE administration in GS macaques may warrant the investigation of similar synergistic approaches.

  3. Supplementation of Reduced Gluten Barley Diet with Oral Prolyl Endopeptidase Effectively Abrogates Enteropathy-Associated Changes in Gluten-Sensitive Macaques

    PubMed Central

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Liu, David X.; Alvarez, Xavier; Laine, David; Clarke, Adam; Doyle, Anthony; Aye, Pyone P.; Blanchard, James; Moehs, Charles P.

    2016-01-01

    Celiac disease (CD) is an autoimmune disorder that affects approximately three million people in the United States. Furthermore, non-celiac gluten sensitivity (NCGS) affects an estimated additional 6% of the population, e.g., 20 million in the U.S. The only effective treatment of CD and NCGS requires complete removal of gluten sources from the diet. While required adherence to a gluten-free diet (GFD) is extremely difficult to accomplish, efforts to develop additional supportive treatments are needed. To facilitate these efforts, we developed a gluten-sensitive (GS) rhesus macaque model to study the effects of novel therapies. Recently reported results from phase one of this project suggest that partial improvement—but not remission—of gluten-induced disease can be accomplished by 100-fold reduction of dietary gluten, i.e., 200 ppm—by replacement of conventional dietary sources of gluten with a mutant, reduced gluten (RG) barley (lys3a)-derived source. The main focus of this (phase two) study was to determine if the inflammatory effects of the residual gluten in lys3a mutant barley grain could be further reduced by oral supplementation with a prolylendopeptidase (PE). Results reveal that PE supplementation of RG barley diet induces more complete immunological, histopathological and clinical remission than RG barley diet alone. The combined effects of RG barley diet and PE supplementation resulted in a further decrease of inflammatory mediators IFN-γ and TNF secretion by peripheral lymphocytes, as well as decreased plasma anti-gliadin and anti-intestinal tissue transglutaminase (TG2) antibodies, diminished active caspase production in small intestinal mucosa, and eliminated clinical diarrhea—all comparable with a gluten-free diet induced remission. In summary, the beneficial results of a combined RG barley and PE administration in GS macaques may warrant the investigation of similar synergistic approaches. PMID:27367722

  4. Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestication.

    PubMed

    Shi, Tao; Dimitrov, Ivan; Zhang, Yinling; Tax, Frans E; Yi, Jing; Gou, Xiaoping; Li, Jia

    2015-10-01

    Traits related to grain and reproductive organs in grass crops have been under continuous directional selection during domestication. Barley is one of the oldest domesticated crops in human history. Thus genes associated with the grain and reproductive organs in barley may show evidence of dramatic evolutionary change. To understand how artificial selection contributes to protein evolution of biased genes in different barley organs, we used Digital Gene Expression analysis of six barley organs (grain, pistil, anther, leaf, stem and root) to identify genes with biased expression in specific organs. Pairwise comparisons of orthologs between barley and Brachypodium distachyon, as well as between highland and lowland barley cultivars mutually indicated that grain and pistil biased genes show relatively higher protein evolutionary rates compared with the median of all orthologs and other organ biased genes. Lineage-specific protein evolutionary rates estimation showed similar patterns with elevated protein evolution in barley grain and pistil biased genes, yet protein sequences generally evolve much faster in the lowland barley cultivar. Further functional annotations revealed that some of these grain and pistil biased genes with rapid protein evolution are related to nutrient biosynthesis and cell cycle/division. Our analyses provide insights into how domestication differentially shaped the evolution of genes specific to different organs of a crop species, and implications for future functional studies of domestication genes.

  5. Iodine Deficiency

    MedlinePlus

    ... public health problem globally. Approximately 40% of the world’s population remains at risk for iodine deficiency. Iodine Deficiency ... common preventable cause of intellectual disabilities in the world. Even mild iodine ... deficiency is seen in an entire population, it is best managed by ensuring that common ...

  6. Geographical and environmental determinants of the genetic structure of wild barley in southeastern Anatolia.

    PubMed

    Pournosrat, Reza; Kaya, Selma; Shaaf, Salar; Kilian, Benjamin; Ozkan, Hakan

    2018-01-01

    Despite the global value of barley, compared to its wild progenitor, genetic variation in this crop has been drastically reduced due to the process of domestication, selection and improvement. In the medium term, this will negatively impact both the vulnerability and yield stability of barley against biotic and abiotic stresses under climate change. Returning to the crop wild relatives (CWR) as sources of new and beneficial alleles is a clear option for enhancing the resilience of diversity and adaptation to climate change. Southeastern Anatolia constitutes an important part of the natural distribution of wild barley in the Fertile Crescent where important crops were initially domesticated. In this study, we investigated genetic diversity in a comprehensive collection of 281 geo-referenced wild barley individuals from 92 collection sites with sample sizes ranging from 1 to 9 individuals per site, collected from southeastern Anatolia and 131 domesticated genotypes from 49 different countries using 40 EST-SSR markers. A total of 375 alleles were detected across entire collection, of which 283 were carried by domesticated genotypes and 316 alleles were present in the wild gene pool. The number of unique alleles in the wild and in the domesticated gene pool was 92 and 59, respectively. The population structure at K = 3 suggested two groups of wild barley namely G1-W consisting wild barley genotypes from the western part and G1-E comprising those mostly from the eastern part of the study area, with a sharp separation from the domesticated gene pool. The geographic and climatic factors jointly showed significant effects on the distribution of wild barley. Using a Latent Factor Mixed Model, we identified four candidate loci potentially involved in adaptation of wild barley to three environmental factors: temperature seasonality, mean temperature of driest quarter, and precipitation of coldest quarter. These loci are probably the targets of genomic regions, with potential

  7. Geographical and environmental determinants of the genetic structure of wild barley in southeastern Anatolia

    PubMed Central

    Shaaf, Salar; Kilian, Benjamin

    2018-01-01

    Despite the global value of barley, compared to its wild progenitor, genetic variation in this crop has been drastically reduced due to the process of domestication, selection and improvement. In the medium term, this will negatively impact both the vulnerability and yield stability of barley against biotic and abiotic stresses under climate change. Returning to the crop wild relatives (CWR) as sources of new and beneficial alleles is a clear option for enhancing the resilience of diversity and adaptation to climate change. Southeastern Anatolia constitutes an important part of the natural distribution of wild barley in the Fertile Crescent where important crops were initially domesticated. In this study, we investigated genetic diversity in a comprehensive collection of 281 geo-referenced wild barley individuals from 92 collection sites with sample sizes ranging from 1 to 9 individuals per site, collected from southeastern Anatolia and 131 domesticated genotypes from 49 different countries using 40 EST-SSR markers. A total of 375 alleles were detected across entire collection, of which 283 were carried by domesticated genotypes and 316 alleles were present in the wild gene pool. The number of unique alleles in the wild and in the domesticated gene pool was 92 and 59, respectively. The population structure at K = 3 suggested two groups of wild barley namely G1-W consisting wild barley genotypes from the western part and G1-E comprising those mostly from the eastern part of the study area, with a sharp separation from the domesticated gene pool. The geographic and climatic factors jointly showed significant effects on the distribution of wild barley. Using a Latent Factor Mixed Model, we identified four candidate loci potentially involved in adaptation of wild barley to three environmental factors: temperature seasonality, mean temperature of driest quarter, and precipitation of coldest quarter. These loci are probably the targets of genomic regions, with potential

  8. Preventive and Therapeutic Role of Functional Ingredients of Barley Grass for Chronic Diseases in Human Beings

    PubMed Central

    Du, Juan; Yang, Xiaomeng; Li, Xia; Li, Ling; Zhou, Yan; Yang, Tao

    2018-01-01

    Barley grass powder is the best functional food that provides nutrition and eliminates toxins from cells in human beings; however, its functional ingredients have played an important role as health benefit. In order to better cognize the preventive and therapeutic role of barley grass for chronic diseases, we carried out the systematic strategies for functional ingredients of barley grass, based on the comprehensive databases, especially the PubMed, Baidu, ISI Web of Science, and CNKI, between 2008 and 2017. Barley grass is rich in functional ingredients, such as gamma-aminobutyric acid (GABA), flavonoids, saponarin, lutonarin, superoxide dismutase (SOD), K, Ca, Se, tryptophan, chlorophyll, vitamins (A, B1, C, and E), dietary fiber, polysaccharide, alkaloid, metallothioneins, and polyphenols. Barley grass promotes sleep; has antidiabetic effect; regulates blood pressure; enhances immunity; protects liver; has anti-acne/detoxifying and antidepressant effects; improves gastrointestinal function; has anticancer, anti-inflammatory, antioxidant, hypolipidemic, and antigout effects; reduces hyperuricemia; prevents hypoxia, cardiovascular diseases, fatigue, and constipation; alleviates atopic dermatitis; is a calcium supplement; improves cognition; and so on. These results support that barley grass may be one of the best functional foods for preventive chronic diseases and the best raw material of modern diet structure in promoting the development of large health industry and further reveal that GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan mechanism of barley grass have preventive and therapeutic role for chronic diseases. This paper can be used as a scientific evidence for developing functional foods and novel drugs for barley grass for preventive chronic diseases.

  9. The 1980 US/Canada wheat and barley exploratory experiment, volume 1

    NASA Technical Reports Server (NTRS)

    Bizzell, R. M.; Prior, H. L.; Payne, R. W.; Disler, J. M.

    1983-01-01

    The results from the U.S./Canada Wheat and Barley Exploratory Experiment which was completed during FY 1980 are presented. The results indicate that the new crop identification procedures performed well for spring small grains and that they are conductive to automation. The performance of the machine processing techniques shows a significant improvement over previously evaluated technology. However, the crop calendars will require additional development and refinements prior to integration into automated area estimation technology. The evaluation showed the integrated technology to be capable of producing accurate and consistent spring small grains proportion estimates. However, barley proportion estimation technology was not satisfactorily evaluated. The low-density segments examined were judged not to give indicative or unequivocal results. It is concluded that, generally, the spring small grains technology is ready for evaluation in a pilot experiment focusing on sensitivity analyses to a variety of agricultural and meteorological conditions representative of the global environment. It is further concluded that a strong potential exists for establishing a highly efficient technology or spring small grains.

  10. Oxygen and Carbon Dioxide Fluxes from Barley Shoots Depend on Nitrate Assimilation 1

    PubMed Central

    Bloom, Arnold J.; Caldwell, Richard M.; Finazzo, John; Warner, Robert L.; Weissbart, Joseph

    1989-01-01

    A custom oxygen analyzer in conjunction with an infrared carbon dioxide analyzer and humidity sensors permitted simultaneous measurements of oxygen, carbon dioxide, and water vapor fluxes from the shoots of intact barley plants (Hordeum vulgare L. cv Steptoe). The oxygen analyzer is based on a calciazirconium sensor and can resolve concentration differences to within 2 microliters per liter against the normal background of 210,000 microliters per liter. In wild-type plants receiving ammonium as their sole nitrogen source or in nitrate reductase-deficient mutants, photosynthetic and respiratory fluxes of oxygen equaled those of carbon dioxide. By contrast, wild-type plants exposed to nitrate had unequal oxygen and carbon dioxide fluxes: oxygen evolution at high light exceeded carbon dioxide consumption by 26% and carbon dioxide evolution in the dark exceeded oxygen consumption by 25%. These results indicate that a substantial portion of photosynthetic electron transport or respiration generates reductant for nitrate assimilation rather than for carbon fixation or mitochondrial electron transport. PMID:16667024

  11. Isolated Cortisol Deficiency: A Rare Cause of Neonatal Cholestasis

    PubMed Central

    Al-Hussaini, Abdulrahman; Almutairi, Awatif; Mursi, Alaaddin; Alghofely, Mohammed; Asery, Ali

    2012-01-01

    For decades, congenital panhypopituitarism has been recognized to cause infantile cholestasis. However, the identity of the hormone whose deficiency causes such derangement of the liver is not clear. Here, we report four cases of isolated severe cortisol deficiency presenting with neonatal cholestasis and hypoglycemia, of whom two had familial primary glucocorticoid deficiency and the other two had isolated adrenocorticotropin deficiency. The resolution of cholestasis by hydrocortisone replacement therapy suggests a causal relationship between cortisol deficiency and the development of neonatal cholestasis. In conclusion, the presentation of a young infant with cholestasis and hypoglycemia should alert pediatricians to the possibility of cortisol deficiency and prompt investigation of adrenal function should be undertaken. PMID:23006463

  12. Cooking Characteristics and Antioxidant Activity of Rice-Barley Mix at Different Cooking Method and Mixing Ratio.

    PubMed

    Woo, Koan Sik; Kim, Hyun-Joo; Lee, Ji Hae; Ko, Jee Yeon; Lee, Byong Won; Lee, Byoung Kyu

    2018-03-01

    This study aimed to compare the phenolic compounds and antioxidant activity of barley at different proportion (0, 5, 10, 15, and 20%), and using different cooking methods. The grains used in this experiment are barley ( Hordeum vulgare L. cv. Huinchalssal) and Samkwang rice. The rice-barley mixture was cooked using general and high pressure cooking methods with and without fermented alcohol. The quality characteristics such as water binding capacity, pasting characteristic, water solubility, and swelling power of different proportions of barley were evaluated. The antioxidant characteristics evaluated are total polyphenol, flavonoid contents, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azinobis(3-ethylbenothiazoline-6-sulphonic acid) (ABTS) diammonium salt radical scavenging activities. Results showed that peak [195.0~184.0 rapid visco units (RVU)], trough (130.0~116.2 RVU), final (252.0~221.8 RVU), and setback viscosity (57.0~37.5 RVU) decreased correspondingly with the increase in the amount of barley. Water binding capacity (187.31~136.01%) and swelling power (162.37~127.58%) decreased as amounts of barley increases, however the water solubility (5.35~6.89%) increased. Moreover, the total polyphenol and flavonoid, and the DPPH and ABTS radical scavenging activities contents increased as the amounts of barley in the mixture increases. This study generally aims to provide useful information for the manufacturing of processed products.

  13. A Genome Wide Association Study of arabinoxylan content in 2-row spring barley grain

    PubMed Central

    Hassan, Ali Saleh; Houston, Kelly; Lahnstein, Jelle; Shirley, Neil; Schwerdt, Julian G.; Gidley, Michael J.; Waugh, Robbie; Little, Alan

    2017-01-01

    In barley endosperm arabinoxylan (AX) is the second most abundant cell wall polysaccharide and in wheat it is the most abundant polysaccharide in the starchy endosperm walls of the grain. AX is one of the main contributors to grain dietary fibre content providing several health benefits including cholesterol and glucose lowering effects, and antioxidant activities. Due to its complex structural features, AX might also affect the downstream applications of barley grain in malting and brewing. Using a high pressure liquid chromatography (HPLC) method we quantified AX amounts in mature grain in 128 spring 2-row barley accessions. Amounts ranged from ~ 5.2 μg/g to ~ 9 μg/g. We used this data for a Genome Wide Association Study (GWAS) that revealed three significant quantitative trait loci (QTL) associated with grain AX levels which passed a false discovery threshold (FDR) and are located on two of the seven barley chromosomes. Regions underlying the QTLs were scanned for genes likely to be involved in AX biosynthesis or turnover, and strong candidates, including glycosyltransferases from the GT43 and GT61 families and glycoside hydrolases from the GH10 family, were identified. Phylogenetic trees of selected gene families were built based on protein translations and were used to examine the relationship of the barley candidate genes to those in other species. Our data reaffirms the roles of existing genes thought to contribute to AX content, and identifies novel QTL (and candidate genes associated with them) potentially influencing the AX content of barley grain. One potential outcome of this work is the deployment of highly associated single nucleotide polymorphisms markers in breeding programs to guide the modification of AX abundance in barley grain. PMID:28771585

  14. Vitamin A deficiency, iron deficiency, and anemia among preschool children in the Republic of the Marshall Islands.

    PubMed

    Palafox, Neal A; Gamble, Mary V; Dancheck, Barbara; Ricks, Michelle O; Briand, Kennar; Semba, Richard D

    2003-05-01

    We investigated the co-occurrence of vitamin A deficiency, iron deficiency, and anemia among young children in the Republic of the Marshall Islands. Hemoglobin, serum retinol, and serum ferritin were assessed in the Republic of the Marshall Islands Vitamin A Deficiency Study, a community-based survey that involved 919 children ages 1 to 5 y. The proportion of children with vitamin A deficiency (serum retinol concentrations < 0.70 microM/L) was 59.9%. The prevalences of anemia (hemoglobin < 110 g/L), iron deficiency (serum ferritin < 12 microg/L), and iron deficiency anemia (iron deficiency and anemia) were 36.4%, 53.5%, and 23.8%, respectively. The proportion of children who had co-occurrence of vitamin A and iron deficiencies was 33.2%. The mean ages of children with and without vitamin A deficiency were 3.2 +/- 1.4 and 2.9 +/- 1.5 y, respectively (P = 0.01), and the mean ages of those with and without iron deficiency were 2.7 +/- 1.3 and 3.5 +/- 1.4 y, respectively (P < 0.0001). Children in the Republic of the Marshall Islands, ages 1 to 5 y, are at high risk of anemia, vitamin A deficiency, and iron deficiency, and one-third of these children had the co-occurrence of vitamin A and iron deficiencies. Further investigation is needed to identify risk factors and evaluate interventions to address vitamin A and iron deficiencies among children.

  15. Nitrogen use efficiencies of spring barley grown under varying nitrogen conditions in the field and growth chamber

    PubMed Central

    Beatty, Perrin H.; Anbessa, Yadeta; Juskiw, Patricia; Carroll, Rebecka T.; Wang, Juan; Good, Allen G.

    2010-01-01

    Background and Aims Nitrogen-use efficiency (NUE) of cereals needs to be improved by nitrogen (N) management, traditional plant breeding methods and/or biotechnology, while maintaining or, optimally, increasing crop yields. The aims of this study were to compare spring-barley genotypes grown on different nitrogen levels in field and growth-chamber conditions to determine the effects on N uptake (NUpE) and N utilization efficiency (NUtE) and ultimately, NUE. Methods Morphological characteristics, seed yield and metabolite levels of 12 spring barley (Hordeum vulgare) genotypes were compared when grown at high and low nitrogen levels in field conditions during the 2007 and 2008 Canadian growing seasons, and in potted and hydroponic growth-chamber conditions. Genotypic NUpE, NUtE and NUE were calculated and compared between field and growth-chamber environments. Key Results Growth chamber and field tests generally showed consistent NUE characteristics. In the field, Vivar, Excel and Ponoka, showed high NUE phenotypes across years and N levels. Vivar also had high NUE in growth-chamber trials, showing NUE across complex to simplistic growth environments. With the high NUE genotypes grown at low N in the field, NUtE predominates over NUpE. N metabolism-associated amino acid levels were different between roots (elevated glutamine) and shoots (elevated glutamate and alanine) of hydroponically grown genotypes. In field trials, metabolite levels were different between Kasota grown at high N (elevated glutamine) and Kasota at low N plus Vivar at either N condition. Conclusions Determining which trait(s) or gene(s) to target to improve barley NUE is important and can be facilitated using simplified growth approaches to help determine the NUE phenotype of various genotypes. The genotypes studied showed similar growth and NUE characteristics across field and growth-chamber tests demonstrating that simplified, low-variable growth environments can help pinpoint genetic targets for

  16. Transcriptomics analysis of hulless barley during grain development with a focus on starch biosynthesis.

    PubMed

    Tang, Yawei; Zeng, Xingquan; Wang, Yulin; Bai, Lijun; Xu, Qijun; Wei, Zexiu; Yuan, Hongjun; Nyima, Tashi

    2017-01-01

    Hulless barley, with its unique nutritional value and potential health benefits, has increasingly attracted attentions in recent years. However, the transcription dynamics during hulless barley grain development is not well understood. In the present study, we investigated the transcriptome changes during barley grain development using Illumina paired-end RNA-sequencing. Two datasets of the developing grain transcriptomes from two barley landraces with the differential seed starch synthesis traits were generated, and comparative transcriptome approach in both genotypes was performed. The results showed that 38 differentially expressed genes (DEGs) were found co-modulated in both genotypes during the barley grain development. Of those, the proteins encoded by most of those DGEs were found, such as alpha-amylase-related proteins, lipid-transfer protein, homeodomain leucine zipper (HD-Zip), NUCLEAR FACTOR-Y, subunit B (NF-YBs), as well as MYB transcription factors. More interestingly, two genes Hvulgare_GLEAN_10012370 and Hvulgare_GLEAN_10021199 encoding SuSy, AGPase (Hvulgare_GLEAN_10033640 and Hvulgare_GLEAN_10056301), as well as SBE2b (Hvulgare_GLEAN_10018352) were found to significantly contribute to the regulatory mechanism during grain development in both genotypes. Moreover, six co-expression modules associated with specific biological processes or pathways (M1 to M6) were identified by consensus co-expression network. Significantly enriched pathways of those module genes showed difference in both genotypes. These results will expand our understanding of the complex molecular mechanism of starch synthesis during barley grain development.

  17. Genetic differentiation and geographical Relationship of Asian barley landraces using SSRs

    PubMed Central

    Naeem, Rehan; Dahleen, Lynn; Mirza, Bushra

    2011-01-01

    Genetic diversity in 403 morphologically distinct landraces of barley (Hordeum vulgare L. subsp. vulgare) originating from seven geographical zones of Asia was studied using simple sequence repeat (SSR) markers from regions of medium to high recombination in the barley genome. The seven polymorphic SSR markers representing each of the chromosomes chosen for the study revealed a high level of allelic diversity among the landraces. Genetic richness was highest in those from India, followed by Pakistan while it was lowest for Uzbekistan and Turkmenistan. Out of the 50 alleles detected, 15 were unique to a geographic region. Genetic diversity was highest for landraces from Pakistan (0.70 ± 0.06) and lowest for those from Uzbekistan (0.18 ± 0.17). Likewise, polymorphic information content (PIC) was highest for Pakistan (0.67 ± 0.06) and lowest for Uzbekistan (0.15 ± 0.17). Diversity among groups was 40% compared to 60% within groups. Principal component analysis clustered the barley landraces into three groups to predict their domestication patterns. In total 51.58% of the variation was explained by the first two principal components of the barley germplasm. Pakistan landraces were clustered separately from those of India, Iran, Nepal and Iraq, whereas those from Turkmenistan and Uzbekistan were clustered together into a separate group. PMID:21734828

  18. The low-recombining pericentromeric region of barley restricts gene diversity and evolution but not gene expression

    PubMed Central

    Baker, Katie; Bayer, Micha; Cook, Nicola; Dreißig, Steven; Dhillon, Taniya; Russell, Joanne; Hedley, Pete E; Morris, Jenny; Ramsay, Luke; Colas, Isabelle; Waugh, Robbie; Steffenson, Brian; Milne, Iain; Stephen, Gordon; Marshall, David; Flavell, Andrew J

    2014-01-01

    The low-recombining pericentromeric region of the barley genome contains roughly a quarter of the genes of the species, embedded in low-recombining DNA that is rich in repeats and repressive chromatin signatures. We have investigated the effects of pericentromeric region residency upon the expression, diversity and evolution of these genes. We observe no significant difference in average transcript level or developmental RNA specificity between the barley pericentromeric region and the rest of the genome. In contrast, all of the evolutionary parameters studied here show evidence of compromised gene evolution in this region. First, genes within the pericentromeric region of wild barley show reduced diversity and significantly weakened purifying selection compared with the rest of the genome. Second, gene duplicates (ohnolog pairs) derived from the cereal whole-genome duplication event ca. 60MYa have been completely eliminated from the barley pericentromeric region. Third, local gene duplication in the pericentromeric region is reduced by 29% relative to the rest of the genome. Thus, the pericentromeric region of barley is a permissive environment for gene expression but has restricted gene evolution in a sizeable fraction of barley's genes. PMID:24947331

  19. Staining paraffin embedded sections of scald of barley before paraffin removal.

    PubMed

    Xi, K; Burnett, P A

    1997-07-01

    Staining of paraffin embedded sections with periodic acid-Schiff reagent and fast green before paraffin removal resulted in differentiation of barley seed and leaf tissue from fungal structures of Rhynchosporium secalis. Crystal violet, toluidine blue O and antiline blue also successfully stained fungal structures of R. secalis in barley leaf tissues. Staining of embedded sections before paraffin removal allows simple processing of a series of sections, saves time and reduces solvent consumption.

  20. Antifungal activities of Bacillus thuringiensis isolates on barley and cucumber powdery mildews.

    PubMed

    Choi, Gyung Ja; Kim, Jin-Cheol; Jang, Kyoung Soo; Lee, Dong-Hyun

    2007-12-01

    Fourteen Bacillus thuringiensis isolates having both insecticidal activity and in vitro antifungal activity were selected and tested for in vivo antifungal activity against tomato late blight, wheat leaf rust, tomato gray mold, and barley powdery mildew in growth chambers. All the isolates represented more than 70% disease control efficacy against at least one of four plant diseases. Specifically, 12 isolates exhibited strong control activity against barley powdery mildew. Under glasshouse conditions, four (50-02, 52-08, 52-16, and 52- 18) of the isolates also displayed potent control efficacy against cucumber powdery mildew. To our knowledge, this is the first report of B. thuringiensis isolates that have disease control efficacy against powdery mildew of barley and cucumber as well as insecticidal activity.

  1. Influence of barley grain particle size and treatment with citric acid on digestibility, ruminal fermentation and microbial protein synthesis in Holstein calves.

    PubMed

    Kazemi-Bonchenari, M; Salem, A Z M; López, S

    2017-08-01

    Chemical and physical treatments of barley grain increase ruminally resistant starch and can improve the rumen fermentation pattern. The objective of the present study was to evaluate the effects of chemical (addition of citric acid, CA) and physical (grinding to two different particle sizes, PS) treatment of barley grain on performance, rumen fermentation, microbial protein yield in the rumen and selected blood metabolites in growing calves. In all, 28 male Holstein calves (172±5.1 kg initial BW) were used in a complete randomised design with a factorial arrangement of 2 barley grain particle sizes×2 levels of citric acid. The diets were as follows: (i) small PS (average 1200 µm) barley grain soaked in water (no CA addition); (ii) small PS barley grain soaked in a CA solution (adding 20 g CA/kg barley); (iii) large PS (average 2400 µm) barley grain soaked in water (no citric acid addition) and (iv) large PS barley grain soaked in a citric acid solution (adding 20 g CA/kg barley). Barley grain was then incorporated at 35% in a total mixed ration and fed to the calves for 11 weeks. Feeding small PS barley decreased feed intake (P=0.02) and average daily weight gain (P=0.01). The addition of CA to barley grain did not affect intake but increased weight gain (P0.05). However, the molar proportion of propionate was increased (P=0.03) when barley was more finely ground, and that of acetate was increased (P=0.04) when CA was added to barley grain. The ruminal concentration of ammonia nitrogen was increased (P<0.01) and microbial nitrogen synthesis in the rumen tended to decrease by adding CA to barley. Treating barley grain with citric acid increased fibre digestibility of total mixed rations, attenuated the decrease in ruminal pH, and improved weight gain and feed efficiency in male Holstein growing calves fed a high-cereal diet (550 g cereal grain/kg diet).

  2. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM).

    PubMed

    Vatter, Thomas; Maurer, Andreas; Perovic, Dragan; Kopahnke, Doris; Pillen, Klaus; Ordon, Frank

    2018-01-01

    The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars.

  3. Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus

    PubMed Central

    Scheler, Björn; Schnepf, Vera; Galgenmüller, Carolina; Ranf, Stefanie; Hückelhoven, Ralph

    2016-01-01

    RHO GTPases are regulators of cell polarity and immunity in eukaryotes. In plants, RHO-like RAC/ROP GTPases are regulators of cell shaping, hormone responses, and responses to microbial pathogens. The barley (Hordeum vulgare L.) RAC/ROP protein RACB is required for full susceptibility to penetration by Blumeria graminis f.sp. hordei (Bgh), the barley powdery mildew fungus. Disease susceptibility factors often control host immune responses. Here we show that RACB does not interfere with early microbe-associated molecular pattern-triggered immune responses such as the oxidative burst or activation of mitogen-activated protein kinases. RACB also supports rather than restricts expression of defence-related genes in barley. Instead, silencing of RACB expression by RNAi leads to defects in cell polarity. In particular, initiation and maintenance of root hair growth and development of stomatal subsidiary cells by asymmetric cell division is affected by silencing expression of RACB. Nucleus migration is a common factor of developmental cell polarity and cell-autonomous interaction with Bgh. RACB is required for positioning of the nucleus near the site of attack from Bgh. We therefore suggest that Bgh profits from RACB’s function in cell polarity rather than from immunity-regulating functions of RACB. PMID:27056842

  4. Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.).

    PubMed

    Li, Haobing; Vaillancourt, René; Mendham, Neville; Zhou, Meixue

    2008-08-27

    Resistance to soil waterlogging stress is an important plant breeding objective in high rainfall or poorly drained areas across many countries in the world. The present study was conducted to identify quantitative trait loci (QTLs) associated with waterlogging tolerance (e.g. leaf chlorosis, plant survival and biomass reduction) in barley and compare the QTLs identified across two seasons and in two different populations using a composite map constructed with SSRs, RFLP and Diversity Array Technology (DArT) markers. Twenty QTLs for waterlogging tolerance related traits were found in the two barley double haploid (DH) populations. Several of these QTLs were validated through replication of experiments across seasons or by co-location across populations. Some of these QTLs affected multiple waterlogging tolerance related traits, for example, QTL Qwt4-1 contributed not only to reducing barley leaf chlorosis, but also increasing plant biomass under waterlogging stress, whereas other QTLs controlled both leaf chlorosis and plant survival. Improving waterlogging tolerance in barley is still at an early stage compared with other traits. QTLs identified in this study have made it possible to use marker assisted selection (MAS) in combination with traditional field selection to significantly enhance barley breeding for waterlogging tolerance. There may be some degree of homoeologous relationship between QTLs controlling barley waterlogging tolerance and that in other crops as discussed in this study.

  5. Dietary zinc deficiency reduced growth performance, intestinal immune and physical barrier functions related to NF-κB, TOR, Nrf2, JNK and MLCK signaling pathway of young grass carp (Ctenopharyngodon idella).

    PubMed

    Song, Zheng-Xing; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Zhou, Xiao-Qiu; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Feng, Lin

    2017-07-01

    Our study investigated the effects of dietary zinc (Zn) deficiency on growth performance, intestinal immune and physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 630 grass carp (244.14 ± 0.40 g) were fed graded levels of zinc lactate (10.71, 30.21, 49.84, 72.31, 92.56, 110.78 mg Zn/kg diet) and one zinc sulfate group (56.9 mg Zn/kg diet) for 60 days. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila for 14 days. These results indicated that compared with optimal dietary Zn level, dietary Zn deficiency (10.71 mg/kg diet) decreased the production of antibacterial compounds, up-regulated pro-inflammatory cytokines related to nuclear factor kappa B (NF-κB) and down-regulated anti-inflammatory cytokines related to target of rapamycin (TOR) in three intestinal segments of young grass carp (P < 0.05), suggesting that dietary Zn deficiency could impair intestinal immune barrier of fish; decreased the activities and mRNA levels of antioxidant enzymes related to NF-E2-related factor 2 (Nrf2), up-regulated the mRNA levels of caspase-3, -7, -8, -9 related to p38 mitogen activated protein (p38 MAPK) and c-Jun N-terminal protein kinase (JNK), down-regulated the mRNA levels of tight junction complexes (TJs) related to myosin light chain kinase (MLCK) in three intestinal segments of young grass carp (P < 0.05), demonstrating that dietary Zn deficiency could injury intestinal physical barrier of fish. Besides, the Zn requirements (zinc lactate as Zn source) based on percent weight gain (PWG), against enteritis morbidity, acid phosphatase (ACP) activity in the proximal intestine (PI) and malondialdehyde (MDA) content in the PI of young grass carp was estimated to be 61.2, 61.4, 69.2 and 69.5 mg/kg diet, respectively. Finally, based on specific growth rate (SGR), feed efficiency (FE) and against enteritis morbidity of young grass carp, the efficacy of zinc lactate relative to zinc sulfate were 132.59%, 135

  6. Landscape genomics reveal signatures of local adaptation in barley (Hordeum vulgare L.)

    PubMed Central

    Abebe, Tiegist D.; Naz, Ali A.; Léon, Jens

    2015-01-01

    Land plants are sessile organisms that cannot escape the adverse climatic conditions of a given environment. Hence, adaptation is one of the solutions to surviving in a challenging environment. This study was aimed at detecting adaptive loci in barley landraces that are affected by selection. To that end, a diverse population of barley landraces was analyzed using the genotyping by sequencing approach. Climatic data for altitude, rainfall and temperature were collected from 61 weather sites near the origin of selected landraces across Ethiopia. Population structure analysis revealed three groups whereas spatial analysis accounted significant similarities at shorter geographic distances (< 40 Km) among barley landraces. Partitioning the variance between climate variables and geographic distances indicated that climate variables accounted for most of the explainable genetic variation. Markers by climatic variables association analysis resulted in altogether 18 and 62 putative adaptive loci using Bayenv and latent factor mixed model (LFMM), respectively. Subsequent analysis of the associated SNPs revealed putative candidate genes for plant adaptation. This study highlights the presence of putative adaptive loci among barley landraces representing original gene pool of the farming communities. PMID:26483825

  7. Overexpression of HvHGGT Enhances Tocotrienol Levels and Antioxidant Activity in Barley.

    PubMed

    Chen, Jianshu; Liu, Cuicui; Shi, Bo; Chai, Yuqiong; Han, Ning; Zhu, Muyuan; Bian, Hongwu

    2017-06-28

    Vitamin E is a potent lipid-soluble antioxidant and essential nutrient for human health. Tocotrienols are the major form of vitamin E in seeds of most monocots. It has been known that homogentisate geranylgeranyl transferase (HGGT) catalyzes the committed step of tocotrienol biosynthesis. In the present study, we generated transgenic barley overexpressing HvHGGT under endogenous D-Hordein promoter (proHor). Overexpression of HvHGGT increased seed size and seed weight in transgenic barley. Notably, total tocotrienol content increased by 10-15% in seeds of transgenic lines, due to the increased levels of δ-, β-, and γ-tocotrienol, but not α-tocotrienol. Total tocopherol content decreased by 14-18% in transgenic lines, compared to wild type. The antioxidant activity of seeds was determined by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), and lipid peroxidation assays. Compared to wild type, radical scavenging activity of seed extracts was enhanced by 17-18% in transgenic lines. Meanwhile, the lipid peroxidation level was decreased by about 20% in transgenic barley seeds. Taken together, overexpression of HvHGGT enhanced the tocotrienol levels and antioxidant capacity in barley seeds.

  8. Modeling light and temperature effects on leaf emergence in wheat and barley

    NASA Technical Reports Server (NTRS)

    Volk, T.; Bugbee, B.

    1991-01-01

    Phenological development affects canopy structure, radiation interception, and dry matter production; most crop simulation models therefore incorporate leaf emergence rate as a basic parameter. A recent study examined leaf emergence rate as a function of temperature and daylength among wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) cultivars. Leaf emergence rate and phyllochron were modeled as functions of temperature alone, daylength alone, and the interaction between temperature and daylength. The resulting equations contained an unwieldy number of constants. Here we simplify by reducing the constants by > 70%, and show leaf emergence rate as a single response surface with temperature and daylength. In addition, we incorporate the effect of photosynthetic photon flux into the model. Generic fits for wheat and barley show cultivar differences less than +/- 5% for wheat and less than +/- 10% for barley. Barley is more sensitive to daylength changes than wheat for common environmental values of daylength, which may be related to the difference in sensitivity to daylength between spring and winter cultivars. Differences in leaf emergence rate between cultivars can be incorporated into the model by means of a single, nondimensional factor for each cultivar.

  9. Films based on oxidized starch and cellulose from barley.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Development of functional spaghetti enriched in bioactive compounds using barley coarse fraction obtained by air classification.

    PubMed

    Verardo, Vito; Gómez-Caravaca, Ana Maria; Messia, Maria Cristina; Marconi, Emanuele; Caboni, Maria Fiorenza

    2011-09-14

    Barley byproducts obtained by air classification have been used to produce a different barley functional spaghetti, which were compared to different commercial whole semolina samples. Total, insoluble, and soluble fiber and β-glucan contents of the barley spaghetti were found to be greater than those of commercial samples. Furthermore, it was proved that barley spaghetti reached the FDA requirements, which could allow these pastas to deserve the health claims "good source of dietary fiber" and "may reduce the risk of heart disease". When the barley coarse fraction was used, a flavan-3-ols enrichment and an increase of antioxidant activity were reported, while commercial samples showed the absence of flavan-3-ols and a higher presence of phenolic acids and tannins. Whole semolina commercial spaghetti had a significantly higher content of phenolic acids than semolina spaghetti samples. Besides, it was observed that when vital gluten was added to the spaghetti formulation, phenolic compounds were blocked in the gluten network and were partially released during the cooking process.

  11. Antioxidant-guided isolation and mass spectrometric identification of the major polyphenols in barley (Hordeum vulgare) grain.

    PubMed

    Gangopadhyay, Nirupama; Rai, Dilip K; Brunton, Nigel P; Gallagher, Eimear; Hossain, Mohammad B

    2016-11-01

    In the present study, the relative contribution of individual/classes of polyphenols in barley, to its antioxidant properties, was evaluated. Flash chromatography was used to fractionate the total polyphenol extract of Irish barley cultivar 'Irina', and fractions with highest antioxidant properties were identified using total phenolic content and three in vitro antioxidant assays: DPPH, FRAP, and ORAC. Flavanols (catechin, procyanidin B, prodelphinidin B, procyanidin C) and a novel substituted flavanol (catechin dihexoside, C27H33O16(-), m/z 613.17), were identified as constituents of the fraction with highest antioxidant capacity. Upon identification of phenolics in the other active fractions, the order of most potent contributors to observed antioxidant capacity of barley extract were, flavanols>flavonols (quercetin)>hydroxycinnamic acids (ferulic, caffeic, coumaric acids). The most abundant polyphenol in the overall extract was ferulic acid (277.7μg/gdw barley), followed by procyanidin B (73.7μg/gdw barley). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The transfer of {sup 137}Cs from barley to beer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proehl, G.; Mueller, H.; Voigt, G.

    Beer has been brewed from barley contaminated with {sup 137}Cs as a consequence of the Chernobyl accident. The {sup 137}Cs activity has been measured in all intermediate steps and in the by-products of the production process. About 35 % of the {sup 137}Cs in barley were recovered in beer. Processing factors defined as the concentration ratio of processed and raw products were determined to be 0.61, 3.3, 0.1 and 0.11 for malt, malt germs, spent grains and beer, respectively. 4 refs., 2 tabs.

  13. Age-related changes in the thermoregulatory capacity of tryptophan-deficient rats.

    PubMed

    Segall, P E; Timiras, P S

    1975-01-01

    From a larger study seeking to develop indexes of physiological aging, the present experiment was designed 1) to test thermoregulatory capacity in the aging and old rat subjected to 3 minutes of whole-body ice water immersion, and 2) using this index of physiological age, to determine whether tryptophan deficiency from time of weaning can retard the onset of senescence. Results indicate a progressive prolongation of temperature recovery time from young to middle age to old, and tryptophan-deficient animals restored to commercial diet at middle age show the thermoregulatory capacity of young adults. The implications of tryptophan deficiency with respect to brain development, serotonin metabolism, and temperature regulation are also discussed in terms of the possibility of intervening with the aging process.

  14. Adaptation of barley to mild winters: A role for PPDH2

    PubMed Central

    2011-01-01

    Background Understanding the adaptation of cereals to environmental conditions is one of the key areas in which plant science can contribute to tackling challenges presented by climate change. Temperature and day length are the main environmental regulators of flowering and drivers of adaptation in temperate cereals. The major genes that control flowering time in barley in response to environmental cues are VRNH1, VRNH2, VRNH3, PPDH1, and PPDH2 (candidate gene HvFT3). These genes from the vernalization and photoperiod pathways show complex interactions to promote flowering that are still not understood fully. In particular, PPDH2 function is assumed to be limited to the ability of a short photoperiod to promote flowering. Evidence from the fields of biodiversity, ecogeography, agronomy, and molecular genetics was combined to obtain a more complete overview of the potential role of PPDH2 in environmental adaptation in barley. Results The dominant PPDH2 allele is represented widely in spring barley cultivars but is found only occasionally in modern winter cultivars that have strong vernalization requirements. However, old landraces from the Iberian Peninsula, which also have a vernalization requirement, possess this allele at a much higher frequency than modern winter barley cultivars. Under field conditions in which the vernalization requirement of winter cultivars is not satisfied, the dominant PPDH2 allele promotes flowering, even under increasing photoperiods above 12 h. This hypothesis was supported by expression analysis of vernalization-responsive genotypes. When the dominant allele of PPDH2 was expressed, this was associated with enhanced levels of VRNH1 and VRNH3 expression. Expression of these two genes is needed for the induction of flowering. Therefore, both in the field and under controlled conditions, PPDH2 has an effect of promotion of flowering. Conclusions The dominant, ancestral, allele of PPDH2 is prevalent in southern European barley germplasm

  15. Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison.

    PubMed

    Li, Chengdao; Ni, Peixiang; Francki, Michael; Hunter, Adam; Zhang, Yong; Schibeci, David; Li, Heng; Tarr, Allen; Wang, Jun; Cakir, Mehmet; Yu, Jun; Bellgard, Matthew; Lance, Reg; Appels, Rudi

    2004-05-01

    Pre-harvest sprouting results in significant economic loss for the grain industry around the world. Lack of adequate seed dormancy is the major reason for pre-harvest sprouting in the field under wet weather conditions. Although this trait is governed by multiple genes it is also highly heritable. A major QTL controlling both pre-harvest sprouting and seed dormancy has been identified on the long arm of barley chromosome 5H, and it explains over 70% of the phenotypic variation. Comparative genomics approaches among barley, wheat and rice were used to identify candidate gene(s) controlling seed dormancy and hence one aspect of pre-harvest sprouting. The barley seed dormancy/pre-harvest sprouting QTL was located in a region that showed good synteny with the terminal end of the long arm of rice chromosome 3. The rice DNA sequences were annotated and a gene encoding GA20-oxidase was identified as a candidate gene controlling the seed dormancy/pre-harvest sprouting QTL on 5HL. This chromosomal region also shared synteny with the telomere region of wheat chromosome 4AL, but was located outside of the QTL reported for seed dormancy in wheat. The wheat chromosome 4AL QTL region for seed dormancy was syntenic to both rice chromosome 3 and 11. In both cases, corresponding QTLs for seed dormancy have been mapped in rice.

  16. Ethnobotany, diverse food uses, claimed health benefits and implications on conservation of barley landraces in North Eastern Ethiopia highlands

    PubMed Central

    2011-01-01

    Background Barley is the number one food crop in the highland parts of North Eastern Ethiopia produced by subsistence farmers grown as landraces. Information on the ethnobotany, food utilization and maintenance of barley landraces is valuable to design and plan germplasm conservation strategies as well as to improve food utilization of barley. Methods A study, involving field visits and household interviews, was conducted in three administrative zones. Eleven districts from the three zones, five kebeles in each district and five households from each kebele were visited to gather information on the ethnobotany, the utilization of barley and how barley end-uses influence the maintenance of landrace diversity. Results According to farmers, barley is the "king of crops" and it is put for diverse uses with more than 20 types of barley dishes and beverages reportedly prepared in the study area. The products are prepared from either boiled/roasted whole grain, raw- and roasted-milled grain, or cracked grain as main, side, ceremonial, and recuperating dishes. The various barley traditional foods have perceived qualities and health benefits by the farmers. Fifteen diverse barley landraces were reported by farmers, and the ethnobotany of the landraces reflects key quantitative and qualitative traits. Some landraces that are preferred for their culinary qualities are being marginalized due to moisture shortage and soil degradation. Conclusions Farmers' preference of different landraces for various end-use qualities is one of the important factors that affect the decision process of landraces maintenance, which in turn affect genetic diversity. Further studies on improving maintenance of landraces, developing suitable varieties and improving the food utilization of barley including processing techniques could contribute to food security of the area. PMID:21711566

  17. Registration of 'Dan' winter hulless barley

    USDA-ARS?s Scientific Manuscript database

    Dan’ (Reg. No. CV- , PI 659066) six-rowed winter hulless barley (Hordeum vulgare L.) was developed and released by the Virginia Agricultural Experiment Station in March 2009. Dan was derived from the cross VA96-41-17 / SC872143. It was released for production in the eastern United States, as a poten...

  18. Registration of ‘Secretariat’ winter barley

    USDA-ARS?s Scientific Manuscript database

    Secretariat’ (PI 673931) is a six-row hulled winter feed barley (Hordeum vulgare L.) cultivar developed by the Virginia Agricultural Experiment Station and released in May 2014. Secretariat, formerly designated VA08B-85, was derived from the cross VA00B-199 / VA00B-259 and was developed using a mod...

  19. Evaluation of the stability of a nanoremediation strategy using barley plants.

    PubMed

    Gil-Díaz, M; González, A; Alonso, J; Lobo, M C

    2016-01-01

    This study evaluated the effectiveness of nZVI in reducing the availability of Cd, Cr or Zn in polluted soils. The influence of this nanoremediation process on the development of barley plants as well as its impact on soil properties and the stability of the metal immobilization afterwards were also evaluated in a greenhouse experiment. The application of nZVI reduced the availability of these metals in the soil, but the effectiveness of the immobilization and its stability depended on the metal chemical characteristics. Cadmium distribution in soil fractions showed an important change after the barley crop, favoring the immobilization of Cd in RS fraction for both nZVI-treated and untreated soils. The Cr immobilization was stable over the time studied and the doses of Cr were lethal for the barley plants. In contrast, the decrease of Cr availability reached after the nZVI treatment induced a reduction of soil phytotoxicity and an improvement in the development of the plants, which were able to complete their growing period. The Zn immobilization with nZVI was stable over time, but its effectiveness was moderate, and the growth of barley plants was poorer than that observed in the cases of Cd and Cr. Thus the best results of metal immobilization with nZVI were obtained for Cr-polluted soils. There was no overall increase of Fe in barley plants from nZVI-treated soils. In relation to the soil, no negative effects on its physico-chemical properties were observed after the time exposure with nZVI. Taking into account these results we can conclude that the use of nZVI is a promising remediation strategy, and its effectiveness would be conditioned to the soil properties and the bioavailable metal concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers.

    PubMed

    Chełkowski, Jerzy; Tyrka, Mirosław; Sobkiewicz, Andrzej

    2003-01-01

    Current information on barley resistance genes available from scientific papers and on-line databases is summarised. The recent literature contains information on 107 major resistance genes (R genes) against fungal pathogens (excluding powdery mildew), pathogenic viruses and aphids identified in Hordeum vulgare accessions. The highest number of resistance genes was identified against Puccinia hordei, Rhynchosporium secalis, and the viruses BaYMV and BaMMV, with 17, 14 and 13 genes respectively. There is still a lot of confusion regarding symbols for R genes against powdery mildew. Among the 23 loci described to date, two regions Mla and Mlo comprise approximately 31 and 25 alleles. Over 50 R genes have already been localised and over 30 mapped on 7 barley chromosomes. Four barley R genes have been cloned recently: Mlo, Rpg1, Mla1 and Mla6, and their structures (sequences) are available. The paper presents a catalogue of barley resistance gene symbols, their chromosomalocation and the list of available DNA markers useful in characterising cultivars and breeding accessions.

  1. Growth hormone deficiency in children and young adults.

    PubMed

    Oświęcimska, Joanna; Roczniak, Wojciech; Mikołajczak, Agata; Szymlak, Agnieszka

    2016-09-13

    Growth hormone (GH) is a naturally occurring polypeptide hormone produced by somatotropic cells in the anterior pituitary. The main function of somatotropin is stimulation of linear growth, but it also affects carbohydrate metabolism, increases bone mass and has potent lipolytic, antinatriuretic and antidiuretic effects. Growth hormone deficiency (GHD) may occur both in children and in adults. At the moment there is no gold standard for the diagnosis of GHD, and the diagnosis should take into account clinical, auxological, biochemical and radiological changes and, if necessary, genetic testing. Recent studies have highlighted that the biochemical diagnosis of GH deficiency is still imperfect. Stimuli used in the tests are non-physiological, and various substances are characterized by a different mechanism of action and potency. A few years ago it was thought that GHD treatment in children must be completed at the end of linear growth. Studies performed in the last two decades have shown that GHD deficiency in adults may result in complex clinical problems, and if untreated shortens the life expectancy and worsens its comfort. Discontinuation of GH therapy after the final height has been reached in fact negatively impacts the physiological processes associated with the transition phase, which is the period of human life between achieving the final height and 25-30 years of age. Given the adverse metabolic effects of GH treatment interruption after linear growth has been completed, the latest recommendations propose reassessment of GH secretion in the period at least one month after cessation of treatment and continuation of the therapy in case of persistent deficit.

  2. The miR9863 Family Regulates Distinct Mla Alleles in Barley to Attenuate NLR Receptor-Triggered Disease Resistance and Cell-Death Signaling

    PubMed Central

    Liu, Jie; Cheng, Xiliu; Liu, Da; Xu, Weihui; Wise, Roger; Shen, Qian-Hua

    2014-01-01

    Barley (Hordeum vulgare L.) Mla alleles encode coiled-coil (CC), nucleotide binding, leucine-rich repeat (NB-LRR) receptors that trigger isolate-specific immune responses against the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). How Mla or NB-LRR genes in grass species are regulated at post-transcriptional level is not clear. The microRNA family, miR9863, comprises four members that differentially regulate distinct Mla alleles in barley. We show that miR9863 members guide the cleavage of Mla1 transcripts in barley, and block or reduce the accumulation of MLA1 protein in the heterologous Nicotiana benthamiana expression system. Regulation specificity is determined by variation in a unique single-nucleotide-polymorphism (SNP) in mature miR9863 family members and two SNPs in the Mla miR9863-binding site that separates these alleles into three groups. Further, we demonstrate that 22-nt miR9863s trigger the biogenesis of 21-nt phased siRNAs (phasiRNAs) and together these sRNAs form a feed-forward regulation network for repressing the expression of group I Mla alleles. Overexpression of miR9863 members specifically attenuates MLA1, but not MLA10-triggered disease resistance and cell-death signaling. We propose a key role of the miR9863 family in dampening immune response signaling triggered by a group of MLA immune receptors in barley. PMID:25502438

  3. Study of Barley Grain Molecular Structure for Ruminants Using DRIFT, FTIR-ATR and Synchrotron Radiation Infrared Microspectroscopy (SR-IMS): A Review

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang

    2012-05-01

    Barley inherent structures are highly associated with nutrient utilization and availability in both humans and animals. Barley has different degradation kinetics compared with other cereal grains. It has a relatively higher degradation rate and extent, which often cause digestive disorder in the rumen. Therefore understanding barley inherent structure at cellular and molecular levels and processing-induced structure changes is important, because we can manipulate barley inherent structures and digestive behaviors. Several molecular spectroscopy techniques can be used to detect barley inherent structures at cellular and molecular levels. This article reviews several applications of the IR molecular spectral bioanalytical techniques - DRIFT, FT/IR-ATR and SR-IMS for barley chemistry, molecular structure and molecular nutrition research

  4. Mobile bag starch prececal disappearance and postprandial glycemic response of four forms of barley in horses.

    PubMed

    Philippeau, C; Varloud, M; Julliand, V

    2014-05-01

    To determine prececal starch digestibili-ty and estimate glucose uptake from the digestion of 4 forms of barley in the small intestine, 4 mature cecally fistulated geldings (449 ± 41 kg BW) fed a 62:38 (wt/wt) meadow hay:concentrate diet at 1.7 kg DM/100 kg BW were included in a 4 × 4 Latin square design experiment. During each period, horses received 80% DM of their concentrate as 1 of the 4 forms of a same batch of barley, whole grain, 2.5 mm ground, steam flaked, and pelleted. Hay was offered in 2 equal meals and concentrate in 2 unequal meals. The starch supply in the morning meal amounted 2.7 g starch/kg BW. At each period, mobile bag DM and starch disappearance was determined. Except for ground barley, each form of barley was 4 mm ground before being introduced in the bag. Nylon bags containing each substrate were intubated in the horse receiving the pelleted barley. Bags were collected in the cecum for 10 h postintubation. At each period, postprandial glycemia was measured on blood samples collected on the 4 horses via an indwelling jugular catheter just before the concentrate morning meal and for 8 h. No hay in the morning meal was given the day of the measurements. Whole blood glucose was analyzed with a portable blood glucose meter. Mobile bag prececal DM disappearance and starch disappearance depended (P < 0.01) on barley form. Prececal starch disappearance of whole barley was the lowest but no difference (P > 0.05) was detected among the 3 processed grains. No significant effect of barley form was found whatever the glycemic parameters. No significant correlation was reported between glycemic parameters and the amount of prececal mobile bag disappeared starch calculated as the starch intake in the morning meal by the mobile bag starch disappearance. To conclude, the whole form of barley exhibited the lowest prececal mobile bag starch disappearance whereas, in relationship with large individual variations, no significant variation has been shown in

  5. Mitochondria dysfunctions under Fe and S deficiency: is citric acid involved in the regulation of adaptive responses?

    PubMed

    Vigani, Gianpiero; Pii, Youry; Celletti, Silvia; Maver, Mauro; Mimmo, Tanja; Cesco, Stefano; Astolfi, Stefania

    2018-05-01

    Within the last years, extensive information has been accumulated on the reciprocal influence between S and Fe nutrition at both physiological and molecular level in several plant species, but the mechanisms regulating S and Fe sensing and signaling are not fully understood. Fe and S interact for the building of Fe-S clusters, and mitochondria is one of the cellular compartments where Fe-S cluster assembly takes place. Therefore, it would be expected that mitochondria might play a central role in the regulation of Fe and S interaction. The Fe deficiency-induced alteration in the synthesis of mitochondria-derived carboxylic acids, such as citric acid, and the evidence that such molecules have already been identified as important players of metabolite signaling in several organisms, further support this hypothesis. Tomato plants were grown under single or combined Fe and S deficiency with the aim of verifying whether mitochondria activities played a role in Fe/S interaction. Both Fe and S deficiencies determined similar alteration of respiratory chain activity: a general decrease of Fe-S containing complexes as well as an increase of alternative NAD(P)H activities was observed in both Fe and S deficient-plants. However, the content of Krebs cycle-related organic acids in roots was substantially different in response to treatments, being the accumulation of citric acid always increased, while the others (i.e. succinic, malic, fumaric acids) always decreased. Interestingly, citric acid levels significantly correlated with the expression of some Fe and S deficiency induced genes. Our results contribute to existing knowledge on the complexity of the S/Fe interaction, suggesting a model in which endogenous alteration of citric acid content in plant tissues might act as signal molecule for the regulation of some nuclear-encoded and nutrient-responsive genes and also provide a basis for further study of the mechanism underlying S and Fe sensing and signalling. Copyright

  6. A rare case of unprovoked venous thromboembolism manifestation in a young patient with antithrombin Type IIB deficiency combined with inferior vena cava anomaly from Lithuania.

    PubMed

    Saulytė-Trakymienė, Sonata; Adomaitienė, Irina; Unkrig, Susanne; Oldenburg, Johannes; Ivaškevičius, Vytautas

    2017-01-01

    Hereditary antithrombin (AT) deficiency is an autosomal-dominant disorder predisposing to venous and arterial thrombosis. Homozygosity resulting in severe AT deficiency is not compatible with life, apart from homozygous mutations affecting the heparin-binding site representing the most severe thrombophilia. A 12-year-old previously healthy boy of Romani origin presented with a swollen, painful left leg and fever. Imaging revealed signs of inferior vena cava (IVC) thrombosis, the presence of interrupted intrahepatic IVC with azygos continuation and bilateral iliofemoral thrombosis with enlargement of the azygous and hemiazygos venous system. In addition, right pleural effusion and signs of bilateral renal pericortical cysts, possibly caused by retroperitoneal lymphangiectasia, were disclosed. Thrombophilia screening involving protein C, Protein S, Antithrombin (chromogenic assays based on the inhibition of FIIa and FXa, antigen concentration), APC resistance, prothrombin mutation and Lupus anticoagulants was performed using standard laboratory methods. Genetic analysis of the SERPINC1 gene was done by direct sequencing. Thrombophilia screening showed isolated decreased AT activity at 21% (RR 80-120%). AT levels were retested and remained decreased (33-36%) on two consecutive occasions. SERPINC1 gene analysis revealed a previously described homozygous mutation (Budapest III) causing type IIB deficiency (c.391C>T; p.Leu131Phe). A family study confirmed the same mutation in both parents and three siblings. The patient improved significantly following warfarin therapy and over the past 2.5 years did not experience new thromboembolism. This case represents a rare combination of two risk factors provoking manifestation of spontaneous venous thromboembolism at a young age requiring permanent anticoagulant therapy. Schattauer GmbH.

  7. A Portrait of Young Adolescents in the 1980's.

    ERIC Educational Resources Information Center

    Lefstein, Leah

    Research findings are reported which depict characteristics and conditions of young adolescents in the 1980s. Discussion begins with an overview of what is known about the physical, socioemotional, and cognitive growth of young adolescents. It is argued that: (1) adults perpetuate many myths about teenagers; (2) adolescence is no more pathological…

  8. Iron deficiency: new insights into diagnosis and treatment.

    PubMed

    Camaschella, Clara

    2015-01-01

    Iron deficiency and iron deficiency anemia are common conditions worldwide affecting especially children and young women. In developing countries, iron deficiency is caused by poor iron intake and/or parasitic infection, whereas vegetarian dietary choices, poor iron absorption, and chronic blood loss are common causes in high-income countries. Erythropoiesis stimulating agents can result in functional iron deficiency for erythropoiesis even when stores are iron-replete. Diagnosis of iron deficiency is straightforward, except when it occurs in the context of inflammatory disorders. Oral iron salts correct absolute iron deficiency in most patients, because low hepcidin levels facilitate iron absorption. Unfortunately frequent side effects limit oral iron efficacy. Intravenous iron is increasingly utilized, because currently available preparations allow rapid normalization of total body iron even with a single infusion and are effective also in functional iron deficiency and in iron deficiency associated with inflammatory disorders. The evidence is accumulating that these preparations are safe and effective. However, long-term safety issues of high doses of iron need to be further explored. © 2015 by The American Society of Hematology. All rights reserved.

  9. Discovery of Novel Bmy1 Alleles Increasing β-Amylase Activity in Chinese Landraces and Tibetan Wild Barley for Improvement of Malting Quality via MAS

    PubMed Central

    Gong, Xue; Westcott, Sharon; Zhang, Xiao-Qi; Yan, Guijun; Lance, Reg; Zhang, Guoping; Sun, Dongfa; Li, Chengdao

    2013-01-01

    China has a large barley germplasm collection which has not been well characterized and is therefore underutilized. The Bmy1 locus encoding the β-amylase enzyme on chromosome 4H has been well characterized in the worldwide barley germplasm collections due to its importance in the malting and brewing industry. The Bmy1 locus was chosen as an indicator to understand genetic potential for improvement of malting quality in Chinese landraces and Tibetan wild barley. The genetic diversity of 91 barley accessions was assessed using allele specific Multiplex-ready molecular markers. Eight accessions were further sequenced, based on the Multiplex-ready marker diversity for Bmy1 in the germplasm. Six of the eight accessions clustered together in a unique group, and showed similarities to ‘Haruna Nijo’, wild barley accession PI296896 and ‘Ashqelon’. Sequence comparisons with the known Bmy1 alleles identified not only the existing 13 amino acid substitutions, but also a new substitution positioned at A387T from a Chinese landrace W127, which has the highest β-amylase activity. Two new alleles/haplotypes namely Bmy1-Sd1c and Bmy1-Sd5 were designated based on different amino acid combinations. We identified new amino acid combination of C115, D165, V233, S347 and V430 in the germplasm. The broad variation in both β-amylase activity and amino acid composition provides novel alleles for the improvement of malting quality for different brewing styles, which indicates the high potential value of the Chinese landraces and Tibetan wild barley. PMID:24019884

  10. Barley and Oat beta-Glucan content measured by Calcofluor fluorescence in a microplate assay

    USDA-ARS?s Scientific Manuscript database

    Beta-glucans, linear glucan polymers of mixed linkage, are important constituents of cereal cell walls. They have important health benefits in the human diet, but also can negatively affect the use of barley grain as an animal feed. High beta-glucans in barley malt can also cause problems in brewi...

  11. iTAG Barley: A 9-12 classroom module to explore gene expression and segregation using Oregon Wolfe Barley

    USDA-ARS?s Scientific Manuscript database

    The Oregon Wolfe Barleys (OWBs) are a model resource for genetics research and instruction (http://barleyworld.org/oregonwolfe ; http://wheat.pw.usda.gov/ggpages/OWB_gallery/ISS-OWB/index.htm). The population of 94 doubled haploid lines was developed from an F1 of a cross between dominant and reces...

  12. An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat.

    PubMed

    Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A; Schweizer, Patrick

    2016-01-01

    Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8 ) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici . Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei . Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

  13. 2012 Mississippi Valley Uniform Regional Barley Nursery

    USDA-ARS?s Scientific Manuscript database

    It was a much better year for the barley nursery than last year when only four locations were able to contribute useable data for the report. Much drier weather prevailed during this growing season. The reader is referred to the "Nursery Conditions" section immediately following thi...

  14. Postprandial lipid, glucose, insulin, and cholecystokinin responses in men fed barley pasta enriched with beta-glucan.

    PubMed

    Bourdon, I; Yokoyama, W; Davis, P; Hudson, C; Backus, R; Richter, D; Knuckles, B; Schneeman, B O

    1999-01-01

    Fiber regulates the rate and site of lipid and carbohydrate digestion and absorption and thus can modify the alimentary responses to a meal. When fiber sources containing viscous polysaccharides are included in a meal, a slower rate of carbohydrate and lipid absorption will modify the alimentary hormone and lipid responses. We investigated in 11 healthy men the response of insulin, glucose, cholecystokinin, and lipid to 2 test meals containing beta-glucan. One of the meals was high in fiber (15.7 g) and the other meal was low in fiber (5.0 g). The low-fiber meal contained pasta made with wheat flour. The high-fiber meals contained pasta prepared by replacing 40% of the wheat with 2 types of barley flour: barley naturally high in beta-glucan and the other a flour enriched in beta-glucan during processing. Plasma glucose and insulin concentrations increased significantly after all meals but the insulin response was more blunted after the barley-containing meals. The test meals were low in fat (25% of energy) but elicited an increase in plasma triacylglycerol and cholecystokinin. Cholecystokinin remained elevated for a longer time after the barley-containing meals. After the low-fiber meal, plasma cholesterol concentrations did not change significantly; however, 4 h after the barley-containing meals, the cholesterol concentration dropped below the fasting concentration and was significantly lower than that after the low-fiber meal. Carbohydrate was more slowly absorbed from the 2 high-fiber meals. Consumption of the barley-containing meals appeared to stimulate reverse cholesterol transport, which may contribute to the cholesterol-lowering ability of barley.

  15. Genetic dissection of barley morphology and development.

    PubMed

    Druka, Arnis; Franckowiak, Jerome; Lundqvist, Udda; Bonar, Nicola; Alexander, Jill; Houston, Kelly; Radovic, Slobodanka; Shahinnia, Fahimeh; Vendramin, Vera; Morgante, Michele; Stein, Nils; Waugh, Robbie

    2011-02-01

    Since the early 20th century, barley (Hordeum vulgare) has been a model for investigating the effects of physical and chemical mutagens and for exploring the potential of mutation breeding in crop improvement. As a consequence, extensive and well-characterized collections of morphological and developmental mutants have been assembled that represent a valuable resource for exploring a wide range of complex and fundamental biological processes. We constructed a collection of 881 backcrossed lines containing mutant alleles that induce a majority of the morphological and developmental variation described in this species. After genotyping these lines with up to 3,072 single nucleotide polymorphisms, comparison to their recurrent parent defined the genetic location of 426 mutant alleles to chromosomal segments, each representing on average <3% of the barley genetic map. We show how the gene content in these segments can be predicted through conservation of synteny with model cereal genomes, providing a route to rapid gene identification.

  16. Microbial populations and fermentation profiles in rumen liquid and solids of Holstein cows respond differently to dietary barley processing.

    PubMed

    Metzler-Zebeli, B U; Khol-Parisini, A; Gruber, L; Zebeli, Q

    2015-12-01

    To evaluate the effects of treating barley grain with lactic acid (LA) and heat on postprandial dynamics of 19 microbial taxa and fermentation in the rumen of dairy cows. This study was designed as a double 3 × 3 Latin square with six rumen-cannulated cows and three diets either containing untreated control barley or barley treated with 1% LA and 1% LA and heat (LAH, 55°C). Microbial populations, pH and volatile fatty acids were assessed in rumen liquid and solids during the postprandial period. Propionate increased and butyrate decreased in rumen solids of cows fed LA and LAH treated barley compared to the control barley. The LA but not LAH treatment depressed Fibrobacter succinogenes in rumen liquid and solids, whereas the opposite effect was observed for Ruminococcus albus in both fractions and Ruminococcus flavefaciens in rumen solids. LA promoted Ruminobacter amylophilus with the effect being more pronounced with LAH. The Lactobacillus group and Megasphaera elsdenii increased in both fractions with LA but not with LAH. LA and LAH treatment of barley differently altered ruminal abundance of certain bacterial taxa and fungi and increased propionate fermentation in rumen solids, whereby LA and LAH effects were consistent and mostly independent of the rumen fraction and time after barley feeding. Results provided evidence that LA and LAH treatment of barley can enhance rumen propionate fermentation without adversely affecting rumen pH. As propionate is the major contributor to gluconeogenesis in ruminants, the present barley treatment may have practical application to enhance energy supply in dairy cows. © 2015 The Society for Applied Microbiology.

  17. Sequence and transcriptional analysis of the barley ctDNA region upstream of psbD-psbC encoding trnK(UUU), rps16, trnQ(UUG), psbK, psbI, and trnS(GCU).

    PubMed

    Berends Sexton, T; Jones, J T; Mullet, J E

    1990-05-01

    A 6.25 kbp barley plastid DNA region located between psbA and psbD-psbC were sequenced and RNAs produced from this DNA were analyzed. TrnK(UUU), rps16 and trnQ(UUG) were located upstream of psbA. These genes were transcribed from the same DNA strand as psbA and multiple RNAs hybridized to them. TrnK and rsp16 contained introns; a 504 amino acid open reading frame (ORF504) was located within the trnK intron. Between trnQ and psbD-psbC was a 2.24 kbp region encoding psbK, psbI and trnS(GCU). PsbK and psbI are encoded on the same DNA strand as psbD-psbC whereas trnS(GCU) is transcribed from the opposite strand. Two large RNAs accumulate in barley etioplasts which contain psbK, psbI, anti-sense trnS(GCU) and psbD-psbC sequences. Other RNAs encode psbK and psbI only, or psbK only. The divergent trnS(GCU) located upstream of psbD-psbC and a second divergent trnS(UGA) located downstream of psbD-psbC were both expressed. Furthermore, RNA complementary to psbK and psbI mRNA was detected, suggesting that transcription from divergent overlapping transcription units may modulate expression from this DNA region.

  18. Hepatic lipase deficiency in a Middle-Eastern-Arabic male.

    PubMed

    Al Riyami, Nafila; Al-Ali, Abdullah M; Al-Sarraf, Ahmad J; Hill, John; Sachs-Barrable, Kristina; Hegele, Robert; Wasan, Kishor M; Frohlich, Jiri

    2010-11-12

    Hepatic lipase (HL) deficiency is a rare genetic disorder that has been associated with premature atherosclerosis despite high plasma high-density lipoprotein (HDL) cholesterol concentrations in the affected individuals. The authors describe the clinical and biochemical features of HL deficiency in a young male of Middle-Eastern-Arabic origin. This is the first report of cholesterol ester transfer protein (CETP) activity and mass in HL deficiency in a patient from this ethnic group. While the CETP mass was high, its activity was low, a discrepancy likely due to the abnormal composition of patient's HDL particles.

  19. Responses to iron limitation in Hordeum vulgare L. as affected by the atmospheric CO2 concentration.

    PubMed

    Haase, S; Rothe, A; Kania, A; Wasaki, J; Römheld, V; Engels, C; Kandeler, E; Neumann, G

    2008-01-01

    Elevated atmospheric CO2 treatments stimulated biomass production in Fe-sufficient and Fe-deficient barley plants, both in hydroponics and in soil culture. Root/shoot biomass ratio was increased in severely Fe-deficient plants grown in hydroponics but not under moderate Fe limitation in soil culture. Significantly increased biomass production in high CO2 treatments, even under severe Fe deficiency in hydroponic culture, indicates an improved internal Fe utilization. Iron deficiency-induced secretion of PS in 0.5 to 2.5 cm sub-apical root zones was increased by 74% in response to elevated CO2 treatments of barley plants in hydroponics but no PS were detectable in root exudates collected from soil-grown plants. This may be attributed to suppression of PS release by internal Fe concentrations above the critical level for Fe deficiency, determined at final harvest for soil-grown barley plants, even without additional Fe supply. However, extremely low concentrations of easily plant-available Fe in the investigated soil and low Fe seed reserves suggest a contribution of PS-mediated Fe mobilization from sparingly soluble Fe sources to Fe acquisition of the soil-grown barley plants during the preceding culture period. Higher Fe contents in shoots (+52%) of plants grown in soil culture without Fe supply under elevated atmospheric CO2 concentrations may indicate an increased efficiency for Fe acquisition. No significant influence on diversity and function of rhizosphere-bacterial communities was detectable in the outer rhizosphere soil (0-3 mm distance from the root surface) by DGGE of 16S rRNA gene fragments and analysis of marker enzyme activities for C-, N-, and P-cycles.

  20. Iodine deficiency disorders: contemporary scientific issues.

    PubMed

    Maberly, G F

    1994-08-01

    Iodine deficiency is the leading cause of preventable intellectual impairment and is associated with a spectrum of neurologic and developmental pathology. More than one billion people are at risk. The developing fetus, newborn, and young child are the most susceptible to the effects of an iodine-deficient diet. If intervention is not initiated in a timely fashion, the pathophysiologic abnormalities become resistant to treatment and permanent intellectual, neurologic, and somatic deficits result. The technology of iodine deficiency intervention is well established. Iodized salt, the preferred method, is easy to produce, administer in physiologic doses, and is cost effective. The distribution of iodized salt and social marketing are key to a successful iodine deficiency elimination program. In remote regions, iodized oil is a useful interim intervention. However, it is clear that technology is not enough. Any national effort to eliminate iodine deficiency must extend far beyond the Ministry of Health. The program will require the full participation of a range of national government ministries and agencies and the full support and participation of local or regional governments.

  1. The Barley Genome Sequence Assembly Reveals Three Additional Members of the CslF (1,3;1,4)-β-Glucan Synthase Gene Family

    PubMed Central

    Schreiber, Miriam; Wright, Frank; MacKenzie, Katrin; Hedley, Pete E.; Schwerdt, Julian G.; Little, Alan; Burton, Rachel A.; Fincher, Geoffrey B.; Marshall, David; Waugh, Robbie; Halpin, Claire

    2014-01-01

    An important component of barley cell walls, particularly in the endosperm, is (1,3;1,4)-β- glucan, a polymer that has proven health benefits in humans and that influences processability in the brewing industry. Genes of the cellulose synthase-like (Csl) F gene family have been shown to be involved in (1,3;1,4)-β-glucan synthesis but many aspects of the biosynthesis are still unclear. Examination of the sequence assembly of the barley genome has revealed the presence of an additional three HvCslF genes (HvCslF11, HvCslF12 and HvCslF13) which may be involved in (1,3;1,4)-β-glucan synthesis. Transcripts of HvCslF11 and HvCslF12 mRNA were found in roots and young leaves, respectively. Transient expression of these genes in Nicotiana benthamiana resulted in phenotypic changes in the infiltrated leaves, although no authentic (1,3;1,4)-β-glucan was detected. Comparisons of the CslF gene families in cereals revealed evidence of intergenic recombination, gene duplications and translocation events. This significant divergence within the gene family might be related to multiple functions of (1,3;1,4)-β-glucans in the Poaceae. Emerging genomic and global expression data for barley and other cereals is a powerful resource for characterising the evolution and dynamics of complete gene families. In the case of the CslF gene family, the results will contribute to a more thorough understanding of carbohydrate metabolism in grass cell walls. PMID:24595438

  2. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.

    PubMed

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2006-02-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan.

  3. BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew.

    PubMed

    Eichmann, Ruth; Bischof, Melanie; Weis, Corina; Shaw, Jane; Lacomme, Christophe; Schweizer, Patrick; Duchkov, Dimitar; Hensel, Götz; Kumlehn, Jochen; Hückelhoven, Ralph

    2010-09-01

    BAX INHIBITOR-1 (BI-1) is one of the few proteins known to have cross-kingdom conserved functions in negative control of programmed cell death. Additionally, barley BI-1 (HvBI-1) suppresses defense responses and basal resistance to the powdery mildew fungus Blumeria graminis f. sp. hordei and enhances resistance to cell death-provoking fungi when overexpressed in barley. Downregulation of HvBI-1 by transient-induced gene silencing or virus-induced gene silencing limited susceptibility to B. graminis f. sp. hordei, suggesting that HvBI-1 is a susceptibility factor toward powdery mildew. Transient silencing of BI-1 did not limit supersusceptibility induced by overexpression of MLO. Transgenic barley plants harboring an HvBI-1 RNA interference (RNAi) construct displayed lower levels of HvBI-1 transcripts and were less susceptible to powdery mildew than wild-type plants. At the cellular level, HvBI-1 RNAi plants had enhanced resistance to penetration by B. graminis f. sp. hordei. These data support a function of BI-1 in modulating cell-wall-associated defense and in establishing full compatibility of B. graminis f. sp. hordei with barley.

  4. Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils.

    PubMed

    Chang, Pearl; Gerhardt, Karen E; Huang, Xiao-Dong; Yu, Xiao-Ming; Glick, Bernard R; Gerwing, Perry D; Greenberg, Bruce M

    2014-01-01

    Plant growth-promoting bacteria (PGPB) strains that contain the enzyme 1-amino-cyclopropane-1-carboxylate (ACC) deaminase can lower stress ethylene levels and improve plant growth. In this study, ACC deaminase-producing bacteria were isolated from a ) salt-impacted ( 50 dS/m) farm field, and their ability to promote plant growth of barley 1): and oats in saline soil was investigated in pouch assays (1% NaCI), greenhouse trials (9.4 dS/m), and field trials (6-24 dS/m). A mix of previously isolated PGPB strains UW3 (Pseudomonas sp.) and UW4 (P. sp.) was also tested for comparison. Rhizobacterial isolate CMH3 (P. corrugata) and UW3+UW4 partially alleviated plant salt stress in growth pouch assays. In greenhouse trials, CMH3 enhanced root biomass of barley and oats by 200% and 50%, respectively. UW3+UW4, CMH3 and isolate CMH2 also enhanced barley and oat shoot growth by 100%-150%. In field tests, shoot biomass of oats tripled when treated with UW3+UW4 and doubled with CHM3 compared with that of untreated plants. PGPB treatment did not affect salt uptake on a per mass basis; higher plant biomass led to greater salt uptake, resulting in decreased soil salinity. This study demonstrates a method for improving plant growth in marginal saline soils. Associated implications for salt

  5. Alternative Splicing of Barley Clock Genes in Response to Low Temperature

    PubMed Central

    Calixto, Cristiane P. G.; Simpson, Craig G.; Waugh, Robbie; Brown, John W. S.

    2016-01-01

    Alternative splicing (AS) is a regulated mechanism that generates multiple transcripts from individual genes. It is widespread in eukaryotic genomes and provides an effective way to control gene expression. At low temperatures, AS regulates Arabidopsis clock genes through dynamic changes in the levels of productive mRNAs. We examined AS in barley clock genes to assess whether temperature-dependent AS responses also occur in a monocotyledonous crop species. We identify changes in AS of various barley core clock genes including the barley orthologues of Arabidopsis AtLHY and AtPRR7 which showed the most pronounced AS changes in response to low temperature. The AS events modulate the levels of functional and translatable mRNAs, and potentially protein levels, upon transition to cold. There is some conservation of AS events and/or splicing behaviour of clock genes between Arabidopsis and barley. In addition, novel temperature-dependent AS of the core clock gene HvPPD-H1 (a major determinant of photoperiod response and AtPRR7 orthologue) is conserved in monocots. HvPPD-H1 showed a rapid, temperature-sensitive isoform switch which resulted in changes in abundance of AS variants encoding different protein isoforms. This novel layer of low temperature control of clock gene expression, observed in two very different species, will help our understanding of plant adaptation to different environments and ultimately offer a new range of targets for plant improvement. PMID:27959947

  6. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM)

    PubMed Central

    Vatter, Thomas; Maurer, Andreas; Perovic, Dragan; Kopahnke, Doris; Pillen, Klaus

    2018-01-01

    The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars. PMID:29370232

  7. Current and potential barley grain food products

    USDA-ARS?s Scientific Manuscript database

    Barley has been an important food source from the beginning of human civilization, and remains an important staple food crop in a few countries, although its consumption has decreased sharply with the ample availability of more palatable and versatile food crops such as rice and wheat. In many Weste...

  8. Barley stripe mosaic virus (BSMV) as a virus-induced gene silencing vector in maize seedlings

    USDA-ARS?s Scientific Manuscript database

    Barley stripe mosaic virus (BSMV; genus Hordeivirus family Virgaviridae) was the first reported and still widely used virus-induced gene silencing (VIGS) vector for monocotyledons. The utility of the virus as VIGS vector has been demonstrated in monocotyledonous hosts including wheat and barley. Des...

  9. Influence of jet-cooking Prowashonupana barley flour on phenolic composition, antioxidant activities, and viscoelastic properties

    USDA-ARS?s Scientific Manuscript database

    The influence of jet-cooking Prowashonupana barley flour on total phenolic contents, antioxidant activities, water holding capacities, and viscoelastic properties was studied. Barley flour was jet-cooked without or with pH adjustment at 7, 9, or 11. Generally, the free phenolic content and antioxi...

  10. Quantum chemical determination of young?s modulus of lignin. Calculations on ß-O-4' model compound

    Treesearch

    Thomas Elder

    2007-01-01

    The calculation of Young?s modulus of lignin has been examined by subjecting a dimeric model compound to strain, coupled with the determination of energy and stress. The computational results, derived from quantum chemical calculations, are in agreement with available experimental results. Changes in geometry indicate that modifications in dihedral angles occur in...

  11. Peripubertal Vitamin D3 Deficiency Delays Puberty and Disrupts the Estrous Cycle in Adult Female Mice1

    PubMed Central

    Dicken, Cary L.; Israel, Davelene D.; Davis, Joe B.; Sun, Yan; Shu, Jun; Hardin, John; Neal-Perry, Genevieve

    2012-01-01

    ABSTRACT The mechanism(s) by which vitamin D3 regulates female reproduction is minimally understood. We tested the hypothesis that peripubertal vitamin D3 deficiency disrupts hypothalamic-pituitary-ovarian physiology. To test this hypothesis, we used wild-type mice and Cyp27b1 (the rate-limiting enzyme in the synthesis of 1,25-dihydroxyvitamin D3) null mice to study the effect of vitamin D3 deficiency on puberty and reproductive physiology. At the time of weaning, mice were randomized to a vitamin D3-replete or -deficient diet supplemented with calcium. We assessed the age of vaginal opening and first estrus (puberty markers), gonadotropin levels, ovarian histology, ovarian responsiveness to exogenous gonadotropins, and estrous cyclicity. Peripubertal vitamin D3 deficiency significantly delayed vaginal opening without affecting the number of GnRH-immunopositive neurons or estradiol-negative feedback on gonadotropin levels during diestrus. Young adult females maintained on a vitamin D3-deficient diet after puberty had arrested follicular development and prolonged estrous cycles characterized by extended periods of diestrus. Ovaries of vitamin D3-deficient Cyp27b1 null mice responded to exogenous gonadotropins and deposited significantly more oocytes into the oviducts than mice maintained on a vitamin D3-replete diet. Estrous cycles were restored when vitamin D3-deficient Cyp27b1 null young adult females were transferred to a vitamin D3-replete diet. This study is the first to demonstrate that peripubertal vitamin D3 sufficiency is important for an appropriately timed pubertal transition and maintenance of normal female reproductive physiology. These data suggest vitamin D3 is a key regulator of neuroendocrine and ovarian physiology. PMID:22572998

  12. Interactions between barley grain processing and source of supplemental dietary fat on nitrogen metabolism and urea-nitrogen recycling in dairy cows.

    PubMed

    Gozho, G N; Hobin, M R; Mutsvangwa, T

    2008-01-01

    The objective of this study was to determine the effects of methods of barley grain processing and source of supplemental fat on urea-N transfer to the gastrointestinal tract (GIT) and the utilization of this recycled urea-N in lactating dairy cows. Four ruminally cannulated Holstein cows (656.3 +/- 27.7 kg of BW; 79.8 +/- 12.3 d in milk) were used in a 4 x 4 Latin square design with 28-d periods and a 2 x 2 factorial arrangement of dietary treatments. Experimental diets contained dry-rolled barley or pelleted barley in combination with whole canola or whole flaxseed as supplemental fat sources. Nitrogen balance was measured from d 15 to 19, with concurrent measurements of urea-N kinetics using continuous intrajugular infusions of [15N 15N]-urea. Dry matter intake and N intake were higher in cows fed dry-rolled barley compared with those fed pelleted barley. Nitrogen retention was not affected by diet, but fecal N excretion was higher in cows fed dry-rolled barley than in those fed pelleted barley. Actual and energy-corrected milk yield were not affected by diet. Milk fat content and milk fat yield were higher in cows fed dry-rolled barley compared with those fed pelleted barley. Source of supplemental fat did not affect urea-N kinetics. Urea-N production was higher (442.2 vs. 334.3 g of N/d), and urea-N entering the GIT tended to be higher (272.9 vs. 202.0 g of N/d), in cows fed dry-rolled barley compared with those fed pelleted barley. The amount of urea-N entry into the GIT that was returned to the ornithine cycle was higher (204.1 vs. 159.5 g of N/d) in cows fed dry-rolled barley than in pelleted barley-fed cows. The amount of urea-N recycled to the GIT and used for anabolic purposes, and the amounts lost in the urine or feces were not affected by dietary treatment. Microbial nonammonia N supply, estimated using total urinary excretion of purine derivatives, was not affected by diet. These results show that even though barley grain processing altered urea

  13. Relationship of carbohydrates and lignin molecular structure spectral profiles to nutrient profile in newly developed oats cultivars and barley grain

    NASA Astrophysics Data System (ADS)

    Prates, Luciana Louzada; Refat, Basim; Lei, Yaogeng; Louzada-Prates, Mariana; Yu, Peiqiang

    2018-01-01

    The objectives of this study were to quantify the chemical profile and the magnitude of differences in the oat and barley grain varieties developed by Crop Development Centre (CDC) in terms of Cornell Net Carbohydrate Protein System (CNCPS) carbohydrate sub-fractions: CA4 (sugars), CB1 (starch), CB2 (soluble fibre), CB3 (available neutral detergent fibre - NDF), and CC (unavailable carbohydrate); to estimate the energy values; to detect the lignin and carbohydrate (CHO) molecular structure profiles in CDC Nasser and CDC Seabiscuit oat and CDC Meredith barley grains by using Fourier transform infrared attenuated total reflectance (FTIR-ATR); to develop a model to predict nutrient supply based on CHO molecular profile. Results showed that NDF, ADF and CHO were greater (P < 0.05) in oat than in barley. The starch content was greater (P < 0.05) in barley than in oat. The CDC Meredith showed greater total rumen degradable carbohydrate (RDC), intestinal digestible fraction carbohydrate (FC) and lower total rumen undegradable carbohydrate (RUC). However, the estimated milk production did not differ for CDC Nasser oat and CDC Meredith barley. Lignin peak area and peak height did not differ (P > 0.05) for oat and barley grains as well as non-structural CHO. However, cellulosic compounds peak area and height were greater (P < 0.05) in oat than barley grains. Multiple regressions were determined to predict nutrient supply by using lignin and CHO molecular profiles. It was concluded that although there were some differences between oat and barley grains, CDC Nasser and CDC Meredith presented similarities related to chemical and molecular profiles, indicating that CDC Meredith barley could be replaced for CDC Nasser as ruminant feed. The FTIR was able to identify functional groups related to CHO molecular spectral in oat and barley grains and FTIR-ATR results could be used to predict nutrient supply in ruminant livestock systems.

  14. Community dynamics and metabolite target analysis of spontaneous, backslopped barley sourdough fermentations under laboratory and bakery conditions.

    PubMed

    Harth, Henning; Van Kerrebroeck, Simon; De Vuyst, Luc

    2016-07-02

    Barley flour is not commonly used for baking because of its negative effects on bread dough rheology and loaf volume. However, barley sourdoughs are promising ingredients to produce improved barley-based breads. Spontaneous barley sourdough fermentations were performed through backslopping (every 24h, 10days) under laboratory (fermentors, controlled temperature of 30°C, high dough yield of 400) and bakery conditions (open vessels, ambient temperature of 17-22°C, low dough yield of 200), making use of the same batch of flour. They differed in pH evolution, microbial community dynamics, and lactic acid bacteria (LAB) species composition. After ten backsloppings, the barley sourdoughs were characterized by the presence of the LAB species Lactobacillus fermentum, Lactobacillus plantarum, and Lactobacillus brevis in the case of the laboratory productions (fast pH decrease, pH<4.0 after two backslopping steps), and of Leuconostoc citreum, Leuconostoc mesenteroides, Weissella confusa and Weissella cibaria in the case of the bakery productions (slow pH decrease, pH4.0 after eight backslopping steps). In both sourdough productions, Saccharomyces cerevisiae was the sole yeast species. Breads made with wheat flour supplemented with 20% (on flour basis) barley sourdough displayed a firmer texture, a smaller volume, and an acceptable flavour compared with all wheat-based reference breads. Hence, representative strains of the LAB species mentioned above, adapted to the environmental conditions they will be confronted with, may be selected as starter cultures for the production of stable barley sourdoughs and flavourful breads. Copyright © 2016. Published by Elsevier B.V.

  15. Drivers of Phosphorus Uptake by Barley Following Secondary Resource Application

    PubMed Central

    Brod, Eva; Øgaard, Anne Falk; Krogstad, Tore; Haraldsen, Trond Knapp; Frossard, Emmanuel; Oberson, Astrid

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake is still poorly understood. Using radioactive-labeling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal, and wood ash were studied as P uptake by barley after 44 days and compared with those of water-soluble mineral P (MinP) and an unfertilized control (NoP) in a pot experiment with an agricultural soil containing little available P at two soil pH levels, approximately pH 5.3 (unlimed soil) and pH 6.2 (limed soil). In a parallel incubation experiment, the effects of the secondary resources on physicochemical and microbial soil processes were studied. The results showed that the relative agronomic efficiency compared with MinP decreased in the order: manure ≥fish sludge ≥wood ash ≥meat bone meal. The solubility of inorganic P in secondary resources was the main driver for P uptake by barley (Hordeum vulgare). The effects of secondary resources on physicochemical and microbial soil processes were of little overall importance. Application of organic carbon with manure resulted in microbial P immobilization and decreased uptake by barley of P derived from the soil. On both soils, P uptake by barley was best explained by a positive linear relationship with the H2O + NaHCO3-soluble inorganic P fraction in fertilizers or by a linear negative relationship with the HCl-soluble inorganic P fraction in fertilizers. PMID:27243015

  16. Detection of addition of barley to coffee using near infrared spectroscopy and chemometric techniques.

    PubMed

    Ebrahimi-Najafabadi, Heshmatollah; Leardi, Riccardo; Oliveri, Paolo; Casolino, Maria Chiara; Jalali-Heravi, Mehdi; Lanteri, Silvia

    2012-09-15

    The current study presents an application of near infrared spectroscopy for identification and quantification of the fraudulent addition of barley in roasted and ground coffee samples. Nine different types of coffee including pure Arabica, Robusta and mixtures of them at different roasting degrees were blended with four types of barley. The blending degrees were between 2 and 20 wt% of barley. D-optimal design was applied to select 100 and 30 experiments to be used as calibration and test set, respectively. Partial least squares regression (PLS) was employed to build the models aimed at predicting the amounts of barley in coffee samples. In order to obtain simplified models, taking into account only informative regions of the spectral profiles, a genetic algorithm (GA) was applied. A completely independent external set was also used to test the model performances. The models showed excellent predictive ability with root mean square errors (RMSE) for the test and external set equal to 1.4% w/w and 0.8% w/w, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Phenotypic and Physiological Evaluation of Two and Six Rows Barley under Different Environmental Conditions.

    PubMed

    Naser, Mahmoud; Badran, Mohamed; Abouzied, Hanaa; Ali, Heba; Elbasyoni, Ibrahim

    2018-05-04

    In recent years, barley has attracted more interest as a food and feed source because of its high soluble dietary fiber and β-glucan content compared with other small grains. Twenty-five barley genotypes (20 imported genotypes and five check cultivars) were grown in three environments for two successive seasons: 2015/2016 and 2016/2017. The first environment was in El-Nubaria, Alexandria, Egypt during 2015/2016, while the second and third environments were in El-Bostan, Elbhera, Egypt during 2015/2016 and 2016/2017. The experiments were conducted in a randomized complete block design with the three replicates. The primary objectives of the current study were to evaluate the performance of 20 imported barley genotypes under several environmental conditions. The imported materials were superior to the local commercial cultivars for several traits, including grain yield. Therefore, the superior genotypes will be further evaluated and used in barley breeding programs. Our future work will focus on creating several crosses among the selected superior genotypes to improve yield and other important traits, while applying marker-assisted selection.

  18. Transposition of the maize transposable element Ac in barley (Hordeum vulgare L.).

    PubMed

    Scholz, S; Lörz, H; Lütticke, S

    2001-01-01

    Transposition of the maize autonomous element Ac (Activator) was investigated in barley (Hordeum vulgare L.) with the aim of developing a transposon tagging system for the latter. The Ac element was introduced into meristematic tissue of barley by microprojectile bombardment. Transposon activity was then examined in the resulting transgenic plants. Multiple excision events were detected in leaf tissue of all plant lines. The mobile elements generated empty donor sites with small DNA sequence alterations, similar to those found in maize. Reintegration of Ac at independent genomic loci in somatic tissue was demonstrated by isolation of new element-flanking regions by AIMS-PCR (amplification of insertion-mutagenized sites). In addition, transmission of transposed Ac elements to progeny plants was confirmed. The results indicate that the introduced Ac element is able to transpose in barley. This is a first step towards the establishment of a transposon tagging system in this economically important crop.

  19. Elucidation of the origin of 'agriocrithon' based on domestication genes questions the hypothesis that Tibet is one of the centers of barley domestication.

    PubMed

    Pourkheirandish, Mohammad; Kanamori, Hiroyuki; Wu, Jianzhong; Sakuma, Shun; Blattner, Frank R; Komatsuda, Takao

    2018-05-01

    Wild barley forms a two-rowed spike with a brittle rachis whereas domesticated barley has two- or six-rowed spikes with a tough rachis. Like domesticated barley, 'agriocrithon' forms a six-rowed spike; however, the spike is brittle as in wild barley, which makes the origin of agriocrithon obscure. Haplotype analysis of the Six-rowed spike 1 (vrs1) and Non-brittle rachis 1 (btr1) and 2 (btr2) genes was conducted to infer the origin of agriocrithon barley. Some agriocrithon barley accessions (eu-agriocrithon) carried Btr1 and Btr2 haplotypes that are not found in any cultivars, implying that they are directly derived from wild barley through a mutation at the vrs1 locus. Other agriocrithon barley accessions (pseudo-agriocrithon) carried Btr1 or Btr2 from cultivated barley, thus implying that they originated from hybridization between six-rowed landraces carrying btr1Btr2 and Btr1btr2 genotypes followed by recombination to produce Btr1Btr2. All materials we collected from Tibet belong to pseudo-agriocrithon and thus do not support the Tibetan Plateau as being a center of barley domestication. Tracing the evolutionary history of these allelic variants revealed that eu-agriocrithon represents six-rowed barley lineages that were selected by early farmers, once in south-eastern Turkmenistan (vrs1.a1) and again in the eastern part of Uzbekistan (vrs1.a4). © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  20. Supplementation of hydroxypropyl methylcellulose into yeast leavened all-whole grain barley bread potentiates cholesterol-lowering effect.

    PubMed

    Kim, Hyunsook; Turowski, Maciej; Anderson, W H Kerr; Young, Scott A; Kim, Yookyung; Yokoyama, Wallace

    2011-07-27

    We investigated in Syrian Golden hamsters the biological impact and its underlying mechanism of single whole grain breads supplemented with 2-3% hydroxypropyl methylcellulose (HPMC), a semisynthetic viscous soluble dietary fiber (SDF) as a substitute for gluten. Hamsters were fed high-fat diets supplemented with 48-65% (w/w) differently ground, freeze-dried single grain breads including whole grain wheat, barley, barley supplemented with HPMC, debranned oat, and oat supplemented with HPMC which were compared to a diet containing microcrystalline cellulose (control). All single grain breads significantly lowered plasma LDL-cholesterol concentrations compared to the control. Enrichment with HPMC further lowered plasma and hepatic cholesterol concentrations. Despite the reduced molecular weight of naturally occurring soluble (1--->3),(1--->4)-β-d-glucan (β-glucan) caused by the bread-making process, whole grain barley breads downregulated hepatic expression of CYP7A1 and HMG-CoAR genes that are responsible for bile acid and cholesterol synthesis, suggesting a possible role of bioactive compounds such as short-chain fatty acids and phenolic compounds from barley bread. Barley bread enriched with HPMC downregulated expression of ABCG5 gene. Taken together, it appears that distinctive modulation of synthesis and excretion of hepatic cholesterol and bile acid contributes to the cholesterol-lowering properties of whole grain barley breads and breads enriched with HPMC. These data suggests that alternative whole grain breads supplemented with HPMC may provide consumers with a staple food that can assist in cholesterol management.

  1. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene

    PubMed Central

    Komatsuda, Takao; Pourkheirandish, Mohammad; He, Congfen; Azhaguvel, Perumal; Kanamori, Hiroyuki; Perovic, Dragan; Stein, Nils; Graner, Andreas; Wicker, Thomas; Tagiri, Akemi; Lundqvist, Udda; Fujimura, Tatsuhito; Matsuoka, Makoto; Matsumoto, Takashi; Yano, Masahiro

    2007-01-01

    Increased seed production has been a common goal during the domestication of cereal crops, and early cultivators of barley (Hordeum vulgare ssp. vulgare) selected a phenotype with a six-rowed spike that stably produced three times the usual grain number. This improved yield established barley as a founder crop for the Near Eastern Neolithic civilization. The barley spike has one central and two lateral spikelets at each rachis node. The wild-type progenitor (H. vulgare ssp. spontaneum) has a two-rowed phenotype, with additional, strictly rudimentary, lateral rows; this natural adaptation is advantageous for seed dispersal after shattering. Until recently, the origin of the six-rowed phenotype remained unknown. In the present study, we isolated vrs1 (six-rowed spike 1), the gene responsible for the six-rowed spike in barley, by means of positional cloning. The wild-type Vrs1 allele (for two-rowed barley) encodes a transcription factor that includes a homeodomain with a closely linked leucine zipper motif. Expression of Vrs1 was strictly localized in the lateral-spikelet primordia of immature spikes, suggesting that the VRS1 protein suppresses development of the lateral rows. Loss of function of Vrs1 resulted in complete conversion of the rudimentary lateral spikelets in two-rowed barley into fully developed fertile spikelets in the six-rowed phenotype. Phylogenetic analysis demonstrated that the six-rowed phenotype originated repeatedly, at different times and in different regions, through independent mutations of Vrs1. PMID:17220272

  2. Characterization of barley Prp1 gene and its expression during seed development and under abiotic stress.

    PubMed

    Jiang, Qian-Tao; Liu, Tao; Ma, Jian; Wei, Yu-Ming; Lu, Zhen-Xiang; Lan, Xiu-Jin; Dai, Shou-Fen; Zheng, You-Liang

    2011-10-01

    The pre-mRNA processing (Prp1) gene encodes a spliceosomal protein. It was firstly identified in fission yeast and plays a regular role during spliceosome activation and cell cycle. Plant Prp1 genes have only been identified from rice, Sorghum and Arabidopsis thaliana. In this study, we reported the identification and isolation of a novel Prp1 gene from barley, and further explored its expressional pattern by using real-time quantitative RTPCR, promoter prediction and analysis of microarray data. The putative barley Prp1 protein has a similar primary structure features to those of other known Prp1 protein in this family. The results of amino acid comparison indicated that Prp1 protein of barley and other plant species has a highly conserved 30 termnal region while their 50 sequences greatly varied. The results of expressional analysis revealed that the expression level of barley Prp1 gene is always stable in different vegetative tissues, except it is up-regulated at the mid- and late stages of seed development or under the condition of cold stress. This kind of expressional pattern for barley Prp1 is also supported by our results of comparison of microarray data from barley, rice and Arabidopsis. For the molecular mechanism of its expressional pattern, we conclude that the expression of Prp1 gene may be up-regulated by the increase of pre-mRNAs and not be constitutive or ubiquitous.

  3. Effect of natural flocculants on purity and properties of β-glucan extracted from barley and oat.

    PubMed

    Kurek, Marcin Andrzej; Karp, Sabina; Stelmasiak, Adrian; Pieczykolan, Ewelina; Juszczyk, Karolina; Rieder, Anne

    2018-05-15

    In this study, β-glucan was extracted from wholegrain oat and barley flours by a novel extraction and purification method employing natural flocculants (chitosan, guar gum and gelatin). The use of flocculants decreased the total amount of extracted gum, which was highest in control samples (9.07 and 7.9% for oat and barley, respectively). The β-glucan specific yield, however, increased with the use of chitosan and guar gum, which were able to remove protein and ash impurities resulting in gums with a higher purity.The highest concentration of chitosan (0.6 %) resulted in gums with the highest β-glucan content (82.0 ± 0.23 and 79.0 ± 0.19 for barley and oat, respectively) and highest β-glucan specific yield (96.9 and 93.3 % for oat and barley, respectively). Explanation is in R&D section. The use of gelatin was not successful. All gum samples had a high content of total dietary fiber (>74%) and a high water holding capacity (4.6-7.4 g/g), but differed in apparent viscosity, which was highest for the oat sample extracted with 0.6% chitosan. This sample also showed the highest β-glucan molecular weight among the oat samples, which were in general 10-fold higher than for the barley samples. Among the barley samples, β-glucan molecular weight was highest for the control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat

    PubMed Central

    Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L.; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F.; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A.; Schweizer, Patrick

    2016-01-01

    Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus. PMID:28018377

  5. Effect of β-glucan-rich barley flour fraction on rheology and quality of frozen yeasted dough.

    PubMed

    Hamed, Abdelmagid; Ragaee, Sanaa; Abdel-Aal, El-Sayed M

    2014-12-01

    Research has shown that prolonged frozen storage of bread dough reduces the quality of the end product. In this study, the effect of air-classified barley flour fraction rich in β-glucan (approximately 25%) on rheology and quality of frozen yeasted bread dough was investigated. Wheat flour (W) was replaced by air-classified barley flour fraction (B) at 10% without or with 1.4% vital gluten to produce β-glucan enriched barley dough (WB) or barley dough plus gluten (WB + G). Dough products were stored at -18 ºC for 8 wk and their rheological properties were investigated weekly. During frozen storage dough extensibility increased, while elastic and viscous moduli decreased. Differential scanning calorimeter and nuclear magnetic resonance data indicated that WB and WB + G dough products contained approximately 10% less freezable water and 9% more bound water compared to the control dough (W). β-Glucan enriched dough also exhibited less changes in gluten network as shown by SEM photographs. The addition of air-classified barley flour fraction at 10% in frozen dough reduced deterioration effects caused by frozen storage via minimizing water redistribution and maintaining rheological properties of frozen dough. © 2014 Institute of Food Technologists®

  6. Spatio-Temporal Dynamics of Fructan Metabolism in Developing Barley Grains[W

    PubMed Central

    Peukert, Manuela; Thiel, Johannes; Peshev, Darin; Weschke, Winfriede; Van den Ende, Wim; Mock, Hans-Peter; Matros, Andrea

    2014-01-01

    Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging, targeted metabolite analyses, and transcript profiling of microdissected grain tissues. Distinct spatio-temporal sugar balances were observed, which may relate to differentiation and grain filling processes. Notably, various types of oligofructans showed specific distribution patterns. Levan- and graminan-type oligofructans were synthesized in the cellularized endosperm prior to the commencement of starch biosynthesis, while during the storage phase, inulin-type oligofructans accumulated to a high concentration in and around the nascent endosperm cavity. In the shrunken endosperm mutant seg8, with a decreased sucrose flux toward the endosperm, fructan accumulation was impaired. The tight partitioning of oligofructan biosynthesis hints at distinct functions of the various fructan types in the young endosperm prior to starch accumulation and in the endosperm transfer cells that accomplish the assimilate supply toward the endosperm at the storage phase. PMID:25271242

  7. Enzymatic fractionation of SAA-pretreated barley straw for production of fuel ethanol and astaxanthin as a value-added co-product

    USDA-ARS?s Scientific Manuscript database

    Barley straw was used to demonstrate a process for production of ethanol and astaxanthin as a value-added co-product. Barley straw was pretreated by soaking in aqueous ammonia (SAA) using the previously determined optimum conditions. The pretreated barley straw was first hydrolyzed with Accellerase®...

  8. Safeguarding world wheat and barley production against Russian wheat aphid: An international pre-breeding initiative

    USDA-ARS?s Scientific Manuscript database

    The Russian wheat aphid (RWA), Diuraphis noxia, is one of the most damaging insect pests of wheat and barley throughout the World. This aphid, although is not yet present in Australia, is extremely damaging with up to 70% yield loses in wheat and barley producing lands, causing significant financia...

  9. Iron Deficiency's Long-Term Effects: An Interview with Pediatrician Betsy Lozoff

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2006

    2006-01-01

    Betsy Lozoff is among the world's leading experts on iron deficiency and its effects on infant brain development and behavior. Iron deficiency is the most common single nutrient disorder in the world, affecting more than half of the world's infants and young children. Research by Lozoff and others has shown that there are long-lasting…

  10. A Barley ROP GTPase ACTIVATING PROTEIN Associates with Microtubules and Regulates Entry of the Barley Powdery Mildew Fungus into Leaf Epidermal Cells[C][W

    PubMed Central

    Hoefle, Caroline; Huesmann, Christina; Schultheiss, Holger; Börnke, Frederik; Hensel, Götz; Kumlehn, Jochen; Hückelhoven, Ralph

    2011-01-01

    Little is known about the function of host factors involved in disease susceptibility. The barley (Hordeum vulgare) ROP (RHO of plants) G-protein RACB is required for full susceptibility of the leaf epidermis to invasion by the biotrophic fungus Blumeria graminis f. sp hordei. Stable transgenic knockdown of RACB reduced the ability of barley to accommodate haustoria of B. graminis in intact epidermal leaf cells and to form hairs on the root epidermis, suggesting that RACB is a common element of root hair outgrowth and ingrowth of haustoria in leaf epidermal cells. We further identified a barley MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN (MAGAP1) interacting with RACB in yeast and in planta. Fluorescent MAGAP1 decorated cortical microtubules and was recruited by activated RACB to the cell periphery. Under fungal attack, MAGAP1-labeled microtubules built a polarized network at sites of successful defense. By contrast, microtubules loosened where the fungus succeeded in penetration. Genetic evidence suggests a function of MAGAP1 in limiting susceptibility to penetration by B. graminis. Additionally, MAGAP1 influenced the polar organization of cortical microtubules. These results add to our understanding of how intact plant cells accommodate fungal infection structures and suggest that RACB and MAGAP1 might be antagonistic players in cytoskeleton organization for fungal entry. PMID:21685259

  11. Structural Basis for Specificity of Propeptide-Enzyme Interaction in Barley C1A Cysteine Peptidases

    PubMed Central

    Cambra, Inés; Hernández, David; Diaz, Isabel; Martinez, Manuel

    2012-01-01

    C1A cysteine peptidases are synthesized as inactive proenzymes. Activation takes place by proteolysis cleaving off the inhibitory propeptide. The inhibitory capacity of propeptides from barley cathepsin L and B-like peptidases towards commercial and barley cathepsins has been characterized. Differences in selectivity have been found for propeptides from L-cathepsins against their cognate and non cognate enzymes. Besides, the propeptide from barley cathepsin B was not able to inhibit bovine cathepsin B. Modelling of their three-dimensional structures suggests that most propeptide inhibitory properties can be explained from the interaction between the propeptide and the mature cathepsin structures. Their potential use as biotechnological tools is discussed. PMID:22615948

  12. Liver transplantation for treatment of severe S-adenosylhomocysteine hydrolase deficiency.

    PubMed

    Strauss, Kevin A; Ferreira, Carlos; Bottiglieri, Teodoro; Zhao, Xueqing; Arning, Erland; Zhang, Shucha; Zeisel, Steven H; Escolar, Maria L; Presnick, Nancy; Puffenberger, Erik G; Vugrek, Oliver; Kovacevic, Lucija; Wagner, Conrad; Mazariegos, George V; Mudd, S Harvey; Soltys, Kyle

    2015-01-01

    A child with severe S-adenosylhomocysteine hydrolase (AHCY) deficiency (AHCY c.428A>G, p.Tyr143Cys; c.982T>G, p.Tyr328Asp) presented at 8 months of age with growth failure, microcephaly, global developmental delay, myopathy, hepatopathy, and factor VII deficiency. Plasma methionine, S-adenosylmethionine (AdoMet), and S-adenosylhomocysteine (AdoHcy) were markedly elevated and the molar concentration ratio of AdoMet:AdoHcy, believed to regulate a myriad of methyltransferase reactions, was 15% of the control mean. Dietary therapy failed to normalize biochemical markers or alter the AdoMet to AdoHcy molar concentration ratio. At 40 months of age, the proband received a liver segment from a healthy, unrelated living donor. Mean AdoHcy decreased 96% and the AdoMet:AdoHcy concentration ratio improved from 0.52±0.19 to 1.48±0.79 mol:mol (control 4.10±2.11 mol:mol). Blood methionine and AdoMet were normal and stable during 6 months of follow-up on an unrestricted diet. Average calculated tissue methyltransferase activity increased from 43±26% to 60±22%, accompanied by signs of increased transmethylation in vivo. Factor VII activity increased from 12% to 100%. During 6 postoperative months, head growth accelerated 4-fold and the patient made promising gains in gross motor, language, and social skills. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. [Recurrent pulmonary infarction associated with familial protein S deficiency type III].

    PubMed

    Ide, K; Chida, K; Suda, T; Imokawa, S; Tsukamoto, K; Todate, A; Sato, J; Yonekawa, O; Nakamura, H

    1999-05-01

    A 38-year-old woman was admitted to our hospital because of recurrent chest pain and fever. Chest X-ray films and computed tomograms showed subpleural consolidation containing small cavity-like opacities. Open lung biopsy revealed non-infectious abscess and vessels with organizing thrombus. The patient was given a diagnosis of pulmonary infarction due to the existence of deep venous thrombosis. Coagulation studies demonstrated that she had decreased plasma protein S activity, whereas her free and total protein S antigen levels were normal. Because her mother and maternal uncle and aunt also demonstrated decreased protein S activity with normal plasma protein S antigen levels, the patient was considered to be affected by familial protein S deficiency type III.

  14. Hepatic lipase deficiency in a Middle-Eastern-Arabic male

    PubMed Central

    Al Riyami, Nafila; Al-Ali, Abdullah M; Al-Sarraf, Ahmad J; Hill, John; Sachs-Barrable, Kristina; Hegele, Robert; Wasan, Kishor M; Frohlich, Jiri

    2010-01-01

    Hepatic lipase (HL) deficiency is a rare genetic disorder that has been associated with premature atherosclerosis despite high plasma high-density lipoprotein (HDL) cholesterol concentrations in the affected individuals. The authors describe the clinical and biochemical features of HL deficiency in a young male of Middle-Eastern-Arabic origin. This is the first report of cholesterol ester transfer protein (CETP) activity and mass in HL deficiency in a patient from this ethnic group. While the CETP mass was high, its activity was low, a discrepancy likely due to the abnormal composition of patient's HDL particles. PMID:22798447

  15. The effects of iron deficiency on rat liver enzymes.

    PubMed Central

    Bailey-Wood, R.; Blayney, L. M.; Muir, J. R.; Jacobs, A.

    1975-01-01

    The effect of iron deficiency on a number or iron containing enzymes in rat liver has been examined. In addition, 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase have been assayed. Of the mitochondrial electron transport reactions only succinate-cytochrome C reductase activity was decreased in iron deficient animals. Microsomal reductase enzymes associated with the NADPH-oxidase system were also markedly decreased although cytochrome P450 concentrations were unaffected. Both 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase were reduced in young iron deficient rats but the former had returned to control levels at the age of 14 weeks. PMID:172099

  16. Increased superoxide production and altered nitric oxide-mediated relaxation in the aorta of young but not old male relaxin-deficient mice.

    PubMed

    Ng, Hooi H; Jelinic, Maria; Parry, Laura J; Leo, Chen-Huei

    2015-07-15

    The vascular effects of exogenous relaxin (Rln) treatment are well established and include decreased myogenic reactivity and enhanced relaxation responses to vasodilators in small resistance arteries. These vascular responses are reduced in older animals, suggesting that Rln is less effective in mediating arterial function with aging. The present study investigated the role of endogenous Rln in the aorta and the possibility that vascular dysfunction occurs more rapidly with aging in Rln-deficient (Rln(-/-)) mice. We compared vascular function and underlying vasodilatory pathways in the aorta of male wild-type (Rln(+/+)) and Rln(-/-) mice at 4 and 16 mo of age using wire myography. Superoxide production, but not nitrotyrosine or NADPH oxidase expression, was significantly increased in the aorta of young Rln(-/-) mice, whereas endothelial nitric oxide (NO) synthase and basal NO availability were both significantly decreased compared with Rln(+/+) mice. In the presence of the cyclooxygenase inhibitor indomethacin, sensitivity to ACh was significantly decreased in young Rln(-/-) mice, demonstrating altered NO-mediated relaxation that was normalized in the presence of a membrane-permeable SOD or ROS scavenger. These vascular phenotypes were not exacerbated in old Rln(-/-) mice and, in most cases, did not differ significantly from old Rln(+/+) mice. Despite the vascular phenotypes in Rln(-/-) mice, endothelium-dependent and -independent vasodilation were not adversely affected. Our data show a role for endogenous Rln in reducing superoxide production and maintaining NO availability in the aorta but also demonstrate that Rln deficiency does not compromise vascular function in this artery or exacerbate endothelial dysfunction associated with aging. Copyright © 2015 the American Physiological Society.

  17. Microbiological and technological characterization of sourdoughs destined for bread-making with barley flour.

    PubMed

    Zannini, Emanuele; Garofalo, Cristiana; Aquilanti, Lucia; Santarelli, Sara; Silvestri, Gloria; Clementi, Francesca

    2009-10-01

    The aim of the present study was the microbiological and technological characterization of laboratory- made sourdoughs for use in barley-flour-based bread-making. A defined multi-strain starter culture consisting of selected lactic acid bacteria (LAB) and yeasts from wheat sourdoughs was inoculated into three flour-water mixtures, composed of: (i) 100% wheat flour (ii) 50% wheat flour and 50% hull-less barley flour (composite flour); (iii) 100% hull-less barley flour. After two months of continuous propagation, the chemical characteristics of the three sourdoughs were investigated by measuring: pH, total titratable acidity and concentrations of various microbial metabolites by HPLC (i.e. lactic, acetic, phenyllactic and butyric acids and diacetyl). The microbial traits were studied through viable counts, isolation and typing of LAB and yeasts and PCR-DGGE analyses. Only Saccharomyces cerevisiae and Lactobacillus plantarum were detectable in the sourdoughs together with other lactobacilli species which were different depending on the type of flour blend used. The molecular typing of the isolates highlighted that only a few strains among those initially inoculated prevailed. The volume increases of the three types of sourdough were also investigated and a correlation was seen between an increase in the barley flour content and a reduction in the dough volume.

  18. Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond

    PubMed Central

    Mascher, Martin; Richmond, Todd A; Gerhardt, Daniel J; Himmelbach, Axel; Clissold, Leah; Sampath, Dharanya; Ayling, Sarah; Steuernagel, Burkhard; Pfeifer, Matthias; D'Ascenzo, Mark; Akhunov, Eduard D; Hedley, Pete E; Gonzales, Ana M; Morrell, Peter L; Kilian, Benjamin; Blattner, Frank R; Scholz, Uwe; Mayer, Klaus FX; Flavell, Andrew J; Muehlbauer, Gary J; Waugh, Robbie; Jeddeloh, Jeffrey A; Stein, Nils

    2013-01-01

    Advanced resources for genome-assisted research in barley (Hordeum vulgare) including a whole-genome shotgun assembly and an integrated physical map have recently become available. These have made possible studies that aim to assess genetic diversity or to isolate single genes by whole-genome resequencing and in silico variant detection. However such an approach remains expensive given the 5 Gb size of the barley genome. Targeted sequencing of the mRNA-coding exome reduces barley genomic complexity more than 50-fold, thus dramatically reducing this heavy sequencing and analysis load. We have developed and employed an in-solution hybridization-based sequence capture platform to selectively enrich for a 61.6 megabase coding sequence target that includes predicted genes from the genome assembly of the cultivar Morex as well as publicly available full-length cDNAs and de novo assembled RNA-Seq consensus sequence contigs. The platform provides a highly specific capture with substantial and reproducible enrichment of targeted exons, both for cultivated barley and related species. We show that this exome capture platform provides a clear path towards a broader and deeper understanding of the natural variation residing in the mRNA-coding part of the barley genome and will thus constitute a valuable resource for applications such as mapping-by-sequencing and genetic diversity analyzes. PMID:23889683

  19. Prevention of Iron-Deficiency Anemia in Infants and Children of Preschool Age.

    ERIC Educational Resources Information Center

    Fomon, Samuel J.

    Iron-deficiency anemia is almost certainly the most prevalent nutritional disorder among infants and young children in the United States. Anemia is frequently seen among children of low socioeconomic status but is probably also the most frequent nutritional deficiency disease seen among children cared for by private doctors. Possible reasons for…

  20. Laron syndrome (primary growth hormone insensitivity): a unique model to explore the effect of insulin-like growth factor 1 deficiency on human hair.

    PubMed

    Lurie, R; Ben-Amitai, D; Laron, Z

    2004-01-01

    Classical Laron syndrome is a recessive disease of primary insulin-like growth factor 1 (IGF-1) deficiency and primary growth hormone insensitivity. Affected children have, among other defects, sparse hair growth and frontal recessions. The hair is thin and easy to pluck. Young adults have various degrees of alopecia, more pronounced in males. The aim of the present study was to investigate the effect of primary IGF-1 deficiency on hair structure. The study sample included 11 patients with Laron syndrome--5 children (2 untreated) and 6 adults (5 untreated). Hairs were examined by light and electron microscopy. The most significant structured defect, pili torti et canaliculi, was found in 2 young, untreated patients. Grooving, tapered hair and trichorrhexis nodosa were found in the remainder. IGF-1-treated patients had either none or significantly fewer pathological changes compared to the untreated patients. This is the first documentation of the role of primary IGF-1 deficiency on hair structure in human beings. Copyright 2004 S. Karger AG, Basel

  1. Cerebral Venous Sinus Thrombosis in a Patient with Undiagnosed Factor VII Deficiency.

    PubMed

    Qadir, Hira; Rashid, Anila; Adil, Salman Naseem

    2017-09-01

    Factor VII (FVII) deficiency is one of the rare inherited bleeding disorders. Thrombosis has been occasionally described in inherited FVII deficiency. Here, we report a young female with undiagnosed FVII deficiency who presented with cerebral venous sinus thrombosis (CVST). Oral contraceptive pill was found to be prothrombotic risk factor. The CVSToccurred in spite of the congenital FVII deficiency indicating that no definitive antithrombotic protection is assured by this defect. Low molecular weight heparin and anti-Xa assay were found to be safe choice of anticoagulation and monitoring, respectively, in this patient.

  2. Global Landscape of a Co-Expressed Gene Network in Barley and its Application to Gene Discovery in Triticeae Crops

    PubMed Central

    Mochida, Keiichi; Uehara-Yamaguchi, Yukiko; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo

    2011-01-01

    Accumulated transcriptome data can be used to investigate regulatory networks of genes involved in various biological systems. Co-expression analysis data sets generated from comprehensively collected transcriptome data sets now represent efficient resources that are capable of facilitating the discovery of genes with closely correlated expression patterns. In order to construct a co-expression network for barley, we analyzed 45 publicly available experimental series, which are composed of 1,347 sets of GeneChip data for barley. On the basis of a gene-to-gene weighted correlation coefficient, we constructed a global barley co-expression network and classified it into clusters of subnetwork modules. The resulting clusters are candidates for functional regulatory modules in the barley transcriptome. To annotate each of the modules, we performed comparative annotation using genes in Arabidopsis and Brachypodium distachyon. On the basis of a comparative analysis between barley and two model species, we investigated functional properties from the representative distributions of the gene ontology (GO) terms. Modules putatively involved in drought stress response and cellulose biogenesis have been identified. These modules are discussed to demonstrate the effectiveness of the co-expression analysis. Furthermore, we applied the data set of co-expressed genes coupled with comparative analysis in attempts to discover potentially Triticeae-specific network modules. These results demonstrate that analysis of the co-expression network of the barley transcriptome together with comparative analysis should promote the process of gene discovery in barley. Furthermore, the insights obtained should be transferable to investigations of Triticeae plants. The associated data set generated in this analysis is publicly accessible at http://coexpression.psc.riken.jp/barley/. PMID:21441235

  3. Exploring the Influence of a Smartphone App (Young with Diabetes) on Young People’s Self-Management: Qualitative Study

    PubMed Central

    Husted, Gitte Reventlov; Weis, Janne; Teilmann, Grete

    2018-01-01

    Background Adequate self-management is the cornerstone of preventing type 1 diabetes mellitus (T1DM) complications. However, T1DM self-management is challenging for young people, who often struggle during the transition from childhood to adulthood. The mobile health (mHealth) app Young with Diabetes (YWD) was developed in collaboration with young people to enhance their T1DM self-management during this transition. Objective The purpose of this study was to explore the influence of YWD on young people’s self-management during a 12-month period. Methods A qualitative explorative approach was used, comprising a purposive sample of 20 young people (11 females and 9 males, ages 15 to 23 years, with app use of 3 to 64 days) from 3 pediatric and 3 adult departments. Participants were interviewed individually using a semistructured interview guide. Data were collected from January to March 2017 and analyzed using thematic analysis. Results A total of 5 themes were identified: (1) not feeling alone anymore (“we are in this together”); (2) gaining competence by sharing experiences and practical knowledge (“they know what they are talking about”); (3) feeling safer (“it’s just a click away”); (4) breaking the ice by starting to share thoughts and feelings and asking for help (“it is an outstretched hand”); and (5) lack of motivating factors (“done with the app”). Young people reported that YWD promoted self-management by peer-to-peer social support, exchanging messages with health care providers, and sharing YWD with parents. Participants recommended YWD as a supplement to self-management for newly diagnosed young people with T1DM and suggested improvements in app content and functionality. Conclusions The mHealth app YWD has the potential to support self-management. In particular, peer-to-peer support reduced feelings of loneliness and helped young people to gain knowledge and skills for managing T1DM. A need exists for alternative ways to train

  4. Research needed to strengthen science and programs for the control of iron deficiency and its consequences in young children.

    PubMed

    Stoltzfus, Rebecca J

    2008-12-01

    The purpose of this article is to highlight critical research needs for the effective prevention and control of iron deficiency and its consequences in children living in low-income countries. Four types of research are highlighted: The first involves scaling up interventions that we know are effective, namely iron supplementation of pregnant women, delayed cord clamping at delivery, immediate and exclusive breast-feeding, and continued exclusive breast-feeding for approximately 6 mo. The second entails evaluation research of alternative interventions that are likely to work, to find the most cost-effective strategies for a given social, economic, and epidemiological context. This research is especially needed to expand the implementation of appropriate complementary feeding interventions. In this area, research needs to be designed to provide causal evidence, to measure cost-effectiveness, and to measure potential effect modifiers. The third is efficacy research to discover promising practices where we lack proven interventions. Examples include how to detect infants younger than 6 mo who are at high risk of iron deficiency, efficacious and safe interventions for those young high-risk infants, and best protocols for the treatment of severe anemia. The fourth includes basic research to elucidate physiological processes and mechanisms underlying the risks and benefits of supplemental iron for children exposed to infectious diseases, especially malaria. Strategic research in all 4 areas will ensure that interventions to control pediatric iron deficiency are integrated into national programs and global initiatives to make pregnancy safer, reduce newborn deaths, and promote child development, health, and survival.

  5. Sequencing of 15,622 gene-bearing BACs clarifies the gene-dense regions of the barley genome

    USDA-ARS?s Scientific Manuscript database

    Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework....

  6. Integration of β-glucan fibre rich fractions from barley and mushrooms to form healthy extruded snacks.

    PubMed

    Brennan, Margaret A; Derbyshire, Emma; Tiwari, Brijesh K; Brennan, Charles S

    2013-03-01

    β-glucan is a commonly researched plant cell wall component that when incorporated into food products has been associated with cholesterol and glycaemic response reductions. This study focusses on β-glucan rich fractions from barley and mushroom used in the production of extruded ready to eat snacks. Inclusion of barley β-glucan rich fractions and mushroom β-glucan fractions at 10 % levels increased the total dietary fibre content of extrudates compared to the control (P < 0.05). Product expansion increased with the introduction of both barley and mushroom fraction (P < 0.05) which in turn resulted in a reduction in product hardness (P < 0.05). In vitro digestion protocol illustrated that inclusion of barley and mushroom β-glucan rich fractions manipulated the starch digestibility profile and hence rate of glucose release during digestion compared to the control sample. This in turn resulted in a significant (P < 0.05) reduction in potential glycaemic response of the samples of between 20 and 25 % for barley β-glucan rich fractions and between 17 and 25 % for mushroom β-glucan rich fractions. We conclude that the inclusion of these fractions could be utilised by the food industry to manipulate the glycaemic response of extruded snack products.

  7. Gravimorphism in rice and barley: promotion of leaf elongation by vertical inversion in agravitropically growing plants.

    PubMed

    Abe, K; Takahashi, H; Suge, H

    1998-12-01

    We have compared shoot responses of agravitropic rice and barley plants to vertical inversion with those of normal ones. When rice plants were vertically inverted, the main stems of a japonica type of rice, cv. Kamenoo, showed negative gravitropism at nodes 2-15 of both elongated and non-elongated internodes. However, shoots of lazy line of rice, lazy-Kamenoo, bent gravitropically at nodes 11-15 only elongated internodes but not at nodes 2-10 of non-elongated ones. Thus, shoots of Kamenoo responded gravitropically at all stages of growth, whereas shoots of lazy-Kamenoo did not show gravitropic response before heading. In Kamenoo plants, lengths of both leaf-sheath and leaf-blade were shortened by vertical inversion, but those of the vertically inverted plants of lazy-Kamenoo were significantly longer than the plants in an upright position. When agravitropic and normal plants of barley were vertically inverted, the same results as in rice were obtained; elongation of both leaf-sheath and leaf-blade was inhibited in normal barley plants, Chikurin-Ibaragi No. 1, but significantly stimulated in agravitropic plants of serpentina barley. These results suggest that vertical inversion of rice and barley plants enhances the elongation growth of leaves in the absence of tropistic response.

  8. Short Vegetative Phase-Like MADS-Box Genes Inhibit Floral Meristem Identity in Barley1[W][OA

    PubMed Central

    Trevaskis, Ben; Tadege, Million; Hemming, Megan N.; Peacock, W. James; Dennis, Elizabeth S.; Sheldon, Candice

    2007-01-01

    Analysis of the functions of Short Vegetative Phase (SVP)-like MADS-box genes in barley (Hordeum vulgare) indicated a role in determining meristem identity. Three SVP-like genes are expressed in vegetative tissues of barley: Barley MADS1 (BM1), BM10, and Vegetative to Reproductive Transition gene 2. These genes are induced by cold but are repressed during floral development. Ectopic expression of BM1 inhibited spike development and caused floral reversion in barley, with florets at the base of the spike replaced by tillers. Head emergence was delayed in plants that ectopically express BM1, primarily by delayed development after the floral transition, but expression levels of the barley VRN1 gene (HvVRN1) were not affected. Ectopic expression of BM10 inhibited spike development and caused partial floral reversion, where florets at the base of the spike were replaced by inflorescence-like structures, but did not affect heading date. Floral reversion occurred more frequently when BM1 and BM10 ectopic expression lines were grown in short-day conditions. BM1 and BM10 also inhibited floral development and caused floral reversion when expressed in Arabidopsis (Arabidopsis thaliana). We conclude that SVP-like genes function to suppress floral meristem identity in winter cereals. PMID:17114273

  9. Effect of barley flour, crude cinnamon, and their combination on glycemia, dyslipidemia, and adipose tissue hormones in type 2 diabetic rats.

    PubMed

    Shatwan, Israa Ali; Ahmed, Lamiaa Ali; Badkook, Maha Mohamed

    2013-07-01

    This study aimed to evaluate the effects of barley flour, crude cinnamon, and their combination on blood glucose, serum insulin, serum lipid profile, and serum adipose tissue hormones in streptozotocin-induced diabetic rats. Male Wistar rats (n=35) were divided into five groups: nondiabetic, diabetic, diabetic group fed 5% cinnamon, diabetic group fed 30% barley, and diabetic group fed 5% cinnamon and 30% barley. Fasting blood glucose, insulin, lipid profile, adiponectin, and leptin were measured after 8 weeks. Blood glucose significantly decreased in all treated diabetic rats compared with the diabetic group. Serum insulin and high-density lipoprotein significantly increased, while cholesterol, triglycerides, and low-density lipoprotein were significantly decreased after 8 weeks. Adiponectin significantly increased, while leptin significantly decreased with administration of either cinnamon, barley, or their combination. No significant differences were observed among the three treated groups on all parameters. A cinnamon and barley combination caused obvious improvement in insulin-positive cells of pancreatic tissue. In conclusion, consuming diets containing either cinnamon, barley, or their combination regulates blood glucose, lipid profile, and adipose tissue hormones in type 2 diabetic rats. The most effective treatment was the cinnamon and barley combination.

  10. Affective and cognitive behavior in the alpha-galactosidase A deficient mouse model of Fabry disease

    PubMed Central

    Karl, Franziska; Sommer, Claudia; Üçeyler, Nurcan

    2017-01-01

    Fabry disease is an X-linked inherited lysosomal storage disorder with intracellular accumulation of globotriaosylceramide (Gb3) due to α-galactosidase A (α-Gal A) deficiency. Fabry patients frequently report of anxiety, depression, and impaired cognitive function. We characterized affective and cognitive phenotype of male mice with α-Gal A deficiency (Fabry KO) and compared results with those of age-matched male wildtype (WT) littermates. Young (3 months) and old (≥ 18 months) mice were tested in the naïve state and after i.pl. injection of complete Freund`s adjuvant (CFA) as an inflammatory pain model. We used the elevated plus maze (EPM), the light-dark box (LDB) and the open field test (OF) to investigate anxiety-like behavior. The forced swim test (FST) and Morris water maze (MWM) were applied to assess depressive-like and learning behavior. The EPM test revealed no intergroup difference for anxiety-like behavior in naïve young and old Fabry KO mice compared to WT littermates, except for longer time spent in open arms of the EPM for young WT mice compared to young Fabry KO mice (p<0.05). After CFA injection, young Fabry KO mice showed increased anxiety-like behavior compared to young WT littermates (p<0.05) and naïve young Fabry KO mice (p<0.05) in the EPM as reflected by shorter time spent in EPM open arms. There were no relevant differences in the LDB and the OF test, except for longer time spent in the center zone of the OF by young WT mice compared to young Fabry KO mice (p<0.05). Complementary to this, depression-like and learning behavior were not different between genotypes and age-groups, except for the expectedly lower memory performance in older age-groups compared to young mice. Our results indicate that genetic influences on affective and cognitive symptoms in FD may be of subordinate relevance, drawing attention to potential influences of environmental and epigenetic factors. PMID:28662189

  11. Inherited glutathione-S-transferase deficiency is a risk factor for pulmonary asbestosis.

    PubMed

    Smith, C M; Kelsey, K T; Wiencke, J K; Leyden, K; Levin, S; Christiani, D C

    1994-09-01

    Pulmonary diseases attributable to asbestos exposure constitute a significant public health burden, yet few studies have investigated potential genetic determinants of susceptibility to asbestos-related diseases. The glutathione-S-transferases are a family of conjugating enzymes that both catalyze the detoxification of a variety of potentially cytotoxic electrophilic agents and act in the generation of sulfadipeptide leukotriene inflammatory mediators. The gene encoding glutathione-S-transferase class mu (GSTM-1) is polymorphic; approximately 50% of Caucasian individuals have a homozygous deletion of this gene and do not produce functional enzyme. Glutathione-S-transferase mu (GST-mu) deficiency has been previously reported to be associated with smoking-induced lung cancer. We conducted a cross-sectional study to examine the prevalence of the homozygous deletion for the GSTM-1 gene in members of the carpentry trade occupationally exposed to asbestos. Members of the United Brotherhood of Carpenters and Joiners of America attending their 1991 National Union conference were invited to participate. Each participant was offered a chest X-ray and was asked to complete a comprehensive questionnaire and have their blood drawn. All radiographs were assessed for the presence of pneumoconiosis in a blinded fashion by a National Institute for Occupational Safety and Health-certified International Labor Office "B" reader. Individual GSTM-1 status was determined using polymerase chain reaction methods. Six hundred fifty-eight workers were studied. Of these, 80 (12.2%) had X-ray abnormalities associated with asbestos exposure. Individuals genetically deficient in GST-mu were significantly more likely to have radiographic evidence of nonmalignant asbestos-related disease than those who were not deficient (chi 2 = 5.0; P < 0.03).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Prevalence of glucose-6-phosphate dehydrogenase deficiency and haemoglobin S in high and moderate malaria transmission areas of Muheza, north-eastern Tanzania.

    PubMed

    Segeja, M D; Mmbando, B P; Kamugisha, M L; Akida, J A; Savaeli, Z X; Minja, D T; Msangeni, H A; Lemnge, M M

    2008-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency and haemoglobin S (HbS) are very common genetic disorders in sub Saharan Africa, where malaria is endemic. These genetic disorders have been associated with protection against malaria and are therefore under strong selection pressure by the disease. In November-December 2003, we conducted a cross-sectional survey to determine the prevalence of G6PD deficiency and HbS in the population and relate these to malaria infection and haemoglobin levels in lowland and highland areas of differing malaria transmission patterns of Muheza, Tanzania. Blood samples from 1959 individuals aged 6 months to 45 years were collected. A total of 415 (21%) and 1181 (60%) samples were analysed for G6PD deficiency and HbS, respectively. Malarial parasite prevalence was 17.2% (114/1959) in the highlands and 39.6% (49/1959) in the lowlands. Lowlands had higher prevalence of G6PD deficiency and HbS than highlands (G6PD deficiency = 11.32% (24/212) versus 4.43% (9/203), P = 0.01, and HbS = 16.04% (98/611) versus 6.32% (36/570), P = 0.0001). Logistic regression model showed an association between G6PD deficiency and altitude [lowlands] (Odds ratio [OR] 3.4, 95% CI = 1.49; 7.90, P = 0.004). In the lowlands, G6PD deficient individuals had lower mean haemoglobin (10.9g/dl) than normal ones (12.8g/dl), P = 0.01. These findings show that high malaria transmission in the lowlands might have selected for G6PD deficiency and HbS.

  13. Internal Water Balance of Barley Under Soil Moisture Stress 1

    PubMed Central

    Millar, Agustin A.; Duysen, Murray E.; Wilkinson, Guy E.

    1968-01-01

    Leaf water potential, leaf relative water content, and relative transpiration of barley were determined daily under greenhouse conditions at 3 growth stages: tillering to boot, boot to heading, and heading to maturity. The leaf moisture characteristic curve (relative water content versus leaf water potential) was the same for leaves of the same age growing in the same environment for the first 2 stages of growth, but shifted at the heading to maturity stage to higher leaf relative water content for a given leaf water potential. Growth chamber experiments showed that the leaf moisture characteristic curve was not the same for plants growing in different environments. Relative transpiration data indicated that barley stomates closed at a water potential of about −22 bars at the 3 stages studied. The water potential was measured for all the leaves on barley to determine the variation of water potential with leaf position. Leaf water potential increased basipetally with plant leaf position. In soil with a moisture content near field capacity a difference of about 16.5 bars was observed between the top and bottom leaves on the same plant, while in soil with a moisture content near the permanent wilting point the difference was only 5.6 bars between the same leaf positions. PMID:16656869

  14. Screening of the aerodynamic and biophysical properties of barley malt

    NASA Astrophysics Data System (ADS)

    Ghodsvali, Alireza; Farzaneh, Vahid; Bakhshabadi, Hamid; Zare, Zahra; Karami, Zahra; Mokhtarian, Mohsen; Carvalho, Isabel. S.

    2016-10-01

    An understanding of the aerodynamic and biophysical properties of barley malt is necessary for the appropriate design of equipment for the handling, shipping, dehydration, grading, sorting and warehousing of this strategic crop. Malting is a complex biotechnological process that includes steeping; germination and finally, the dehydration of cereal grains under controlled temperature and humidity conditions. In this investigation, the biophysical properties of barley malt were predicted using two models of artificial neural networks as well as response surface methodology. Stepping time and germination time were selected as the independent variables and 1 000 kernel weight, kernel density and terminal velocity were selected as the dependent variables (responses). The obtained outcomes showed that the artificial neural network model, with a logarithmic sigmoid activation function, presents more precise results than the response surface model in the prediction of the aerodynamic and biophysical properties of produced barley malt. This model presented the best result with 8 nodes in the hidden layer and significant correlation coefficient values of 0.783, 0.767 and 0.991 were obtained for responses one thousand kernel weight, kernel density, and terminal velocity, respectively. The outcomes indicated that this novel technique could be successfully applied in quantitative and qualitative monitoring within the malting process.

  15. Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL.

    PubMed

    Romero, Cynara C T; Vermeulen, Jasper P; Vels, Anton; Himmelbach, Axel; Mascher, Martin; Niks, Rients E

    2018-05-01

    Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form. The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley (Hordeum vulgare L.) to powdery mildews (Blumeria graminis). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgt SC and SusBgt DC , with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici (Bgt) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning.

  16. Pancreatic enzyme deficiency depends on dietary protein origin in milk-fed calves.

    PubMed

    Guilloteau, P; Plodari, M; Romé, V; Savary, G; Le Normand, L; Zabielski, R

    2011-03-01

    In young mammals, milk proteins and their substitutes are used in milk formula. Protein substitution modifies diet digestibility and pancreatic secretions. The aim of this study was to test if milk protein substitution could generate pancreatic deficiency in milk-fed calves. The effect of pancreatic juice on the digestibility of proteins was studied. Measurement of apparent fecal nutrient digestibility was used to estimate digestion. Ten calves (60 to 130 d old) were chronically fitted with pancreatic accessory duct cannulas and 2 duodenal cannulas to provide precise measurement, sampling, and reintroduction of pancreatic juice as well as additional infusions. Animals were fed milk formula based on skim milk powder or soybean concentrate. Level of deficiency depended on dietary protein origin. Twice as much protein or trypsin was required with a soybean concentrate diet than with a skim milk powder diet to obtain maximal nutrient digestibility. Pancreatic protein concentration in the juice can be used to differentiate between normal and deficient animals. Among these proteins, trypsin measurement is a good pancreatic deficiency marker. These results confirmed the major role of exocrine pancreatic secretions in producing optimal digestion in young calves. Furthermore, practical applications of these results can be applied for the young in other animal species and in humans. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Efect of organic barley-based crop rotations on soil nutrient balance in a semiarid environment for a 16-year experiment

    NASA Astrophysics Data System (ADS)

    Meco, Ramón; María Moreno, Marta; Lacasta, Carlos; Moreno, Carmen

    2013-04-01

    In natural ecosystems with no percolating moisture regime, the biogeochemical cycle can be considered a closed system because the nutrients extracted by the roots will be returned to the soil after a certain time. In organic farming, a cycle model as close as possible is taken as a guideline, but we have to consider that unlike natural ecosystems, where most of the nutrients remain in the cycle, the agrosystems are open cycles. To achieve a sustainable fertility of the soil, the soil nutrient levels, the extractions according to the expected crop yields and the export refunds in the form of crop residues, biological nitrogen fixation, green manure or compost will have to be determined. Nutrient balance should be closed with external inputs, always avoiding to be a source of negative impacts on the environment. In organic farming without exogenous inputs, the effect of the crop rotations is much more noticeable in the nutrient balance than in the conventional farming fields which every year receive inputs of nutrients (nitrogen, phosphorus and potassium) in the form of chemical fertilizers. The most extractive crop rotations are those that produce a greater decrease in soil reserves, and in these cases exogenous inputs to maintain sustainability should be considered; however, in less extractive crop rotations, extractions can be restored by the edaphogenesis processes. In this work, soil organic matter, phosphorus and potassium balances were analyzed in different organic barley-based crop rotations (barley monoculture [b-b] and in rotation with vetch for hay production [B-Vh], vetch as green manure [B-Vm], sunflower [B-S], chickpea [B-C] and fallow [B-F]) in clay soils under a semiarid environment ("La Higueruela" Experimental Farm, Santa Olalla, Toledo, central Spain) over a 16 year period. Additionally, barley monoculture in conventional farming [B-B] was included. In the organic system, the fertilization involved the barley straw in all rotations, the sunflower

  18. Global burden of maternal and child undernutrition and micronutrient deficiencies.

    PubMed

    Ahmed, Tahmeed; Hossain, Muttaquina; Sanin, Kazi Istiaque

    2012-01-01

    Maternal and child undernutrition and micronutrient deficiencies affect approximately half of the world's population. These conditions include intrauterine growth restriction (IUGR), low birth weight, protein-energy malnutrition, chronic energy deficit of women, and micronutrient deficiencies. Although the rates of stunting or chronic protein-energy malnutrition are increasing in Africa, the absolute numbers of stunted children are much higher in Asia. The four common micronutrient deficiencies include those of iron, iodine, vitamin A, and zinc. All these conditions are responsible directly or indirectly for more than 50% of all under-5 deaths globally. According to more recent estimates, IUGR, stunting and severe wasting are responsible for one third of under-5 mortality. About 12% of deaths among under-5 children are attributed to the deficiency of the four common micronutrients. Despite tremendous progress in different disciplines and unprecedented improvement with many health indicators, persistently high undernutrition rates are a shame to the society. Human development is not possible without taking care to control undernutrition and micronutrient deficiencies. Poverty, food insecurity, ignorance, lack of appropriate infant and young child feeding practices, heavy burden of infectious illnesses, and poor hygiene and sanitation are factors responsible for the high levels of maternal and child undernutrition in developing countries. These factors can be controlled or removed by scaling up direct nutrition interventions and eliminating the root conditions including female illiteracy, lack of livelihoods, lack of women's empowerment, and poor hygiene and sanitation. Copyright © 2013 S. Karger AG, Basel.

  19. Gender and Health Behavior Clustering among U.S. Young Adults.

    PubMed

    Olson, Julie Skalamera; Hummer, Robert A; Harris, Kathleen Mullan

    2017-01-01

    U.S. trends in population health suggest alarming disparities among young adults, who are less healthy across most measureable domains than their counterparts in other high-income countries; these international comparisons are particularly troubling for women. To deepen our understanding of gender disparities in health and underlying behavioral contributions, we document gender-specific clusters of health behavior among U.S. young adults using nationally representative data from the National Longitudinal Study of Adolescent to Adult Health. We find high levels of poor health behavior, but especially among men; 40 percent of men clustered into a group characterized by unhealthy behavior (e.g., poor diet, no exercise, substance use), compared to only 22 percent of women. Additionally, women tend to age out of unhealthy behaviors in young adulthood more than men. Further, we uncover gender differences in the extent to which sociodemographic position and adolescent contexts inform health behavior clustering. For example, college education was more protective for men, whereas marital status was equally protective across gender. Parental drinking mattered for health behavior clustering among men, whereas peer drinking mattered for clustering among women. We discuss these results in the context of declining female advantage in U.S. health and changing young adult social and health contexts.

  20. Gender and Health Behavior Clustering among U.S. Young Adults

    PubMed Central

    Olson, Julie Skalamera; Hummer, Robert A.; Harris, Kathleen Mullan

    2016-01-01

    U.S. trends in population health suggest alarming disparities among young adults who are less healthy across most measureable domains than their counterparts in other high-income countries; these international comparisons are particularly troubling for women. To deepen our understanding of gender disparities in health and underlying behavioral contributions, we document gender-specific clusters of health behavior among U.S. young adults using nationally representative data from the National Longitudinal Study of Adolescent to Adult Health. We find high levels of poor health behavior, but especially among men; 40 percent of men clustered into a group characterized by unhealthy behavior (e.g., poor diet, no exercise, substance use), compared to only 22 percent of women. Additionally, women tend to age out of unhealthy behaviors in young adulthood more than men. Further, we uncover gender differences in the extent to which sociodemographic position and adolescent contexts inform health behavior clustering. For example, college education was more protective for men, whereas marital status was equally protective across gender. Parental drinking mattered for health behavior clustering among men, whereas peer drinking mattered for clustering among women. We discuss these results in the context of declining female advantage in U.S. health and changing young adult social and health contexts. PMID:28287308

  1. Free α-dicarbonyl compounds in coffee, barley coffee and soy sauce and effects of in vitro digestion.

    PubMed

    Papetti, Adele; Mascherpa, Dora; Gazzani, Gabriella

    2014-12-01

    α-Dicarbonyl (α-DC) compounds were characterised in roasted (coffee, barley coffee) and in fermented (soy sauce) food matrices. Glyoxal (GO), methylglyoxal (MGO), diacetyl (DA) and 3-deoxyglucosone (3-DG) were found in all samples, and hydroxypyruvaldehyde and 5-hydroxypentane-2,3-dione in barley and soy. Cis and trans 3,4-dideoxyglucosone-3-ene (3,4-DGE) isomers and 4-glucosyl-5,6-dihydroxy-2-oxohexanal (4-G,3-DG) were found only in barley, and 3,4-DGE only in soy sauce with molasses. GO, MGO, and DA were quantified. Findings indicate that i) α-DC profiles depend on the food matrix and any technological treatments applied; ii) α-DC quantitation by HPLC requires matrix-specific, validated methods; iii) GO and MGO were the most abundant α-DCs; and iv) barley coffee was the matrix richest in α-DCs both qualitatively and quantitatively. In vitro simulated digestion reduced (coffee) or strongly increased (barley, soy sauce) free α-DC content. These findings suggest that α-DC bioavailability could actually depend not on food content but rather on reactions occurring during digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Radiation hybrid map of barley chromosome 3H

    USDA-ARS?s Scientific Manuscript database

    Assembly of the barley genome is complicated by its large size (5.1 Gb) and proportion of repetitive elements (84%). This process is facilitated by high resolution maps for aligning BAC contigs along chromosomes. Available genetic maps; however, do not provide accurate information on the physical po...

  3. Additive effects of Na+ and Cl– ions on barley growth under salinity stress

    PubMed Central

    Tavakkoli, Ehsan; Fatehi, Foad; Coventry, Stewart; Rengasamy, Pichu; McDonald, Glenn K.

    2011-01-01

    Soil salinity affects large areas of the world's cultivated land, causing significant reductions in crop yield. Despite the fact that most plants accumulate both sodium (Na+) and chloride (Cl–) ions in high concentrations in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na+ accumulation. It has previously been suggested that Cl– toxicity may also be an important cause of growth reduction in barley plants. Here, the extent to which specific ion toxicities of Na+ and Cl– reduce the growth of barley grown in saline soils is shown under varying salinity treatments using four barley genotypes differing in their salt tolerance in solution and soil-based systems. High Na+, Cl–, and NaCl separately reduced the growth of barley, however, the reductions in growth and photosynthesis were greatest under NaCl stress and were mainly additive of the effects of Na+ and Cl– stress. The results demonstrated that Na+ and Cl– exclusion among barley genotypes are independent mechanisms and different genotypes expressed different combinations of the two mechanisms. High concentrations of Na+ reduced K+ and Ca2+ uptake and reduced photosynthesis mainly by reducing stomatal conductance. By comparison, high Cl– concentration reduced photosynthetic capacity due to non-stomatal effects: there was chlorophyll degradation, and a reduction in the actual quantum yield of PSII electron transport which was associated with both photochemical quenching and the efficiency of excitation energy capture. The results also showed that there are fundamental differences in salinity responses between soil and solution culture, and that the importance of the different mechanisms of salt damage varies according to the system under which the plants were grown. PMID:21273334

  4. Low GI Food with Barley in Space Foods

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Sugimoto, Manabu; Hashimoto, Hirofumi; Kihara, Makoto; Yamashita, Masamichi; Space Agriculture Task Force

    The construction of the life-support system to perform space, moon base, Mars emigration is demanded. The space foods will play a very important role of life support on this occasion. Particularly, in environment of the microgravity, our metabolism becomes less than the face of the Earth. The management of the blood sugar level is very important. We need to eat the meal which will be rise in blood sugar level slowly. The barley which includes much water-soluble dietary fibers is helpful to make low GI space food. After eating 30% barley with unpolished rice, blood sugar level was rise slowly. The cooking process is very important to our body in thinking about digestion and absorption. Soft foods, long-heated foods and grind-foods are easy to digest. After eating these-foods, our blood sugar level will rise, easily. We introduce the space foods with 30% wheat that the blood sugar level is hard to rising.

  5. Evolution of the Grain Dispersal System in Barley.

    PubMed

    Pourkheirandish, Mohammad; Hensel, Goetz; Kilian, Benjamin; Senthil, Natesan; Chen, Guoxiong; Sameri, Mohammad; Azhaguvel, Perumal; Sakuma, Shun; Dhanagond, Sidram; Sharma, Rajiv; Mascher, Martin; Himmelbach, Axel; Gottwald, Sven; Nair, Sudha K; Tagiri, Akemi; Yukuhiro, Fumiko; Nagamura, Yoshiaki; Kanamori, Hiroyuki; Matsumoto, Takashi; Willcox, George; Middleton, Christopher P; Wicker, Thomas; Walther, Alexander; Waugh, Robbie; Fincher, Geoffrey B; Stein, Nils; Kumlehn, Jochen; Sato, Kazuhiro; Komatsuda, Takao

    2015-07-30

    About 12,000 years ago in the Near East, humans began the transition from hunter-gathering to agriculture-based societies. Barley was a founder crop in this process, and the most important steps in its domestication were mutations in two adjacent, dominant, and complementary genes, through which grains were retained on the inflorescence at maturity, enabling effective harvesting. Independent recessive mutations in each of these genes caused cell wall thickening in a highly specific grain "disarticulation zone," converting the brittle floral axis (the rachis) of the wild-type into a tough, non-brittle form that promoted grain retention. By tracing the evolutionary history of allelic variation in both genes, we conclude that spatially and temporally independent selections of germplasm with a non-brittle rachis were made during the domestication of barley by farmers in the southern and northern regions of the Levant, actions that made a major contribution to the emergence of early agrarian societies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Influence of jet milling and particle size on the composition, physicochemical and mechanical properties of barley and rye flours.

    PubMed

    Drakos, Antonios; Kyriakakis, Georgios; Evageliou, Vasiliki; Protonotariou, Styliani; Mandala, Ioanna; Ritzoulis, Christos

    2017-01-15

    Finer barley and rye flours were produced by jet milling at two feed rates. The effect of reduced particle size on composition and several physicochemical and mechanical properties of all flours were evaluated. Moisture content decreased as the size of the granules decreased. Differences on ash and protein contents were observed. Jet milling increased the amount of damaged starch in both rye and barley flours. True density increased with decreased particle size whereas porosity and bulk density increased. The solvent retention capacity profile was also affected by jet milling. Barley was richer in phenolics and had greater antioxidant activity than rye. Regarding colour, both rye and barley flours when subjected to jet milling became brighter, whereas their yellowness was not altered significantly. The minimum gelation concentration for all flours was 16%w/v. Barley flour gels were stronger, firmer and more elastic than the rye ones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Genome-wide association mapping of barley yellow dwarf virus tolerance in spring oat (Avena sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Barley yellow dwarf (BYD) is one of the most destructive diseases of cereal crops worldwide. Barley yellow dwarf viruses (BYDVs) are responsible for BYD and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-t...

  8. The discovery of resistant sources of spring barley, Hordeum vulgare ssp. spontaneum, and unique greenbug biotypes

    USDA-ARS?s Scientific Manuscript database

    The genetic sources for host-plant resistance to the greenbug (Schiazphis graminum Ronani) in barley (Hordeum vulgare ssp. spontaneum) are limited in that only two single dominant genes Rsg1 and Rsg2 are available for resistance to greenbug biotypes. We evaluated four new barley lines from the Wild...

  9. Diversity in boron toxicity tolerance of Australian barley (Hordeum vulgare L.) genotypes.

    PubMed

    Hayes, Julie E; Pallotta, Margaret; Garcia, Melissa; Öz, Mehmet Tufan; Rongala, Jay; Sutton, Tim

    2015-09-26

    Boron (B) is an important micronutrient for plant growth, but is toxic when levels are too high. This commonly occurs in environments with alkaline soils and relatively low rainfall, including many of the cereal growing regions of southern Australia. Four major genetic loci controlling tolerance to high soil B have been identified in the landrace barley, Sahara 3771. Genes underlying two of the loci encode the B transporters HvBot1 and HvNIP2;1. We investigated sequence and expression level diversity in HvBot1 and HvNIP2;1 across barley germplasm, and identified five novel coding sequence alleles for HvBot1. Lines were identified containing either single or multiple copies of the Sahara HvBot1 allele. We established that only the tandemly duplicated Sahara allele conferred B tolerance, and this duplicated allele was found only in a set of nine lines accessioned in Australian collections as Sahara 3763-3771. HvNIP2;1 coding sequences were highly conserved across barley germplasm. We identified the likely causative SNP in the 5'UTR of Sahara HvNIP2;1, and propose that the creation of a small upstream open reading frame interferes with HvNIP2;1 translation in Sahara 3771. Similar to HvBot1, the tolerant HvNIP2;1 allele was unique to the Sahara barley accessions. We identified a new source of the 2H B tolerance allele controlling leaf symptom development, in the landrace Ethiopia 756. Ethiopia 756, as well as the cultivar Sloop Vic which carries both the 2H and HvBot1 B tolerance alleles derived from Sahara 3771, may be valuable as alternative parents in breeding programs targeted to high soil B environments. There is significant diversity in B toxicity tolerance among contemporary Australian barley varieties but this is not related to variation at any of the four known B tolerance loci, indicating that novel, as yet undiscovered, sources of tolerance exist.

  10. The variation in chemical composition of barley feed with or without enzyme supplementation influences nutrient digestibility and subsequently affects performance in piglets.

    PubMed

    Clarke, L C; Sweeney, T; Curley, E; Duffy, S K; Rajauria, G; O'Doherty, J V

    2018-06-01

    This study investigates the effect of dietary supplementation of a β-glucanase and β-xylanase enzyme mix to barley based diets, at two different chemical compositions achieved through different agronomical conditions on growth performance, coefficient of apparent total tract digestibility (CATTD) of nutrients, selected faecal microbial populations and faecal scores in piglets. Sixty-four piglets (11.7 kg (SD 0.96)) housed in pens of two were assigned to one of four dietary treatments (n = 8). The dietary treatments were as follows: (T1) low quality barley diet, (T2) low quality barley diet containing a β-glucanase and β-xylanase enzyme supplement, (T3) high quality barley diet and (T4) high quality barley diet containing a β-glucanase and β-xylanase enzyme supplement. Piglets offered the low quality barley-based diet had a higher (p < .05) average daily gain (ADG) (0.73 vs. 0.69 kg, SEM 0.001), gain:feed (G:F) ratio (0.61 vs. 0.58 kg, SEM 0.011) and a higher CATTD (p < .001) of dry matter (DM), organic matter (OM), nitrogen (N), ash, gross energy (GE) and neutral detergent fibre (NDF) compared with piglets offered the high quality barley diet. Piglets offered the high quality barley-based diet had reduced faecal scores compared to piglets offered the low quality barley-based diet (2.44 vs. 2.57, SEM 0.036) (p < .05). There was a higher population of Lactobacillus spp. (11.6 vs. 10.5 log gene copy number/g faeces, SEM 0.177) (p < .001) and total volatile fatty acid (VFA) concentration (185 vs. 165 mmol/g faeces, SEM 5.658) (p < .001) in the faeces of piglets offered the high quality barley-based diet compared to piglets offered the low quality barley-based diet. The inclusion of a β-glucanase and β-xylanase enzyme complex had no effect on any variable measured. In conclusion, the higher quality barley-based diet showed beneficial effects on the faecal Lactobacillus spp. population and faecal scores of the piglets; however, the higher level of

  11. Unique and Conserved Features of the Barley Root Meristem

    PubMed Central

    Kirschner, Gwendolyn K.; Stahl, Yvonne; Von Korff, Maria; Simon, Rüdiger

    2017-01-01

    Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Hordeum vulgare). Cell division studies revealed that the barley stem cell niche comprises a Quiescent Center (QC) of around 30 cells with low mitotic activity. The surrounding stem cells contribute to root growth through the production of new cells that are displaced from the meristem, elongate and differentiate into specialized root tissues. The distal stem cells produce the root cap and lateral root cap cells, while cells lateral to the QC generate the epidermis, as it is typical for monocots. Endodermis and inner cortex are derived from one common initial lateral to the QC, while the outer cortex cell layers are derived from a distinct stem cell. In rice and Arabidopsis, meristem homeostasis is achieved through feedback signaling from differentiated cells involving peptides of the CLE family. Application of synthetic CLE40 orthologous peptide from barley promotes meristem cell differentiation, similar to rice and Arabidopsis. However, in contrast to Arabidopsis, the columella stem cells do not respond to the CLE40 peptide, indicating that distinct mechanisms control columella cell fate in monocot and dicot plants. PMID:28785269

  12. Short alleles revealed by PCR demonstrate no heterozygote deficiency at minisatellite loci D1S7, D7S21, and D12S11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, S.; Castro, A.; Fernandez-Fernandez, I.

    1997-02-01

    Short VNTR alleles that go undetected after conventional Southern blot hybridization may constitute an alternative explanation for the heterozygosity deficiency observed at some minisatellite loci. To examine this hypothesis, we have employed a screening procedure based on PCR amplification of those individuals classified as homozygotes in our databases for the loci D1S7, D7S21, and D12S11. The results obtained indicate that the frequency of these short alleles is related to the heterozygosity deficiency observed. For the most polymorphic locus, D1S7, {approximately}60% of those individuals previously classified as homozygotes were in fact heterozygotes for a short allele. After the inclusion of thesemore » new alleles, the agreement between observed and expected heterozygosity, along with other statistical tests employed, provide additional evidence for lack of population substructuring. Comparisons of allele frequency distributions reveal greater differences between racial groups than between closely related populations. 45 refs., 3 figs., 6 tabs.« less

  13. Transcriptome Sequencing in a Tibetan Barley Landrace with High Resistance to Powdery Mildew

    PubMed Central

    Zeng, Xing-Quan; Luo, Xiao-Mei; Wang, Yu-Lin; Xu, Qi-Jun; Bai, Li-Jun; Yuan, Hong-Jun; Tashi, Nyima

    2014-01-01

    Hulless barley is an important cereal crop worldwide, especially in Tibet of China. However, this crop is usually susceptible to powdery mildew caused by Blumeria graminis f. sp. hordei. In this study, we aimed to understand the functions and pathways of genes involved in the disease resistance by transcriptome sequencing of a Tibetan barley landrace with high resistance to powdery mildew. A total of 831 significant differentially expressed genes were found in the infected seedlings, covering 19 functions. Either “cell,” “cell part,” and “extracellular region” in the cellular component category or “binding” and “catalytic” in the category of molecular function as well as “metabolic process” and “cellular process” in the biological process category together demonstrated that these functions may be involved in the resistance to powdery mildew of the hulless barley. In addition, 330 KEGG pathways were found using BLASTx with an E-value cut-off of <10−5. Among them, three pathways, namely, “photosynthesis,” “plant-pathogen interaction,” and “photosynthesis-antenna proteins” had significant matches in the database. Significant expressions of the three pathways were detected at 24 h, 48 h, and 96 h after infection, respectively. These results indicated a complex process of barley response to powdery mildew infection. PMID:25587568

  14. Identification of Mild Freezing Shock Response Pathways in Barley Based on Transcriptome Profiling.

    PubMed

    Wang, Xiaolei; Wu, Dezhi; Yang, Qian; Zeng, Jianbin; Jin, Gulei; Chen, Zhong-Hua; Zhang, Guoping; Dai, Fei

    2016-01-01

    Low temperature is a major abiotic stress affecting crop growth and productivity. A better understanding of low temperature tolerance mechanisms is imperative for developing the crop cultivars with improved tolerance. We herein performed an Illumina RNA-sequencing experiment using two barley genotypes differing in freezing tolerance (Nure, tolerant and Tremois, sensitive), to determine the transcriptome profiling and genotypic difference under mild freezing shock treatment after a very short acclimation for gene induction. A total of 6474 differentially expressed genes, almost evenly distributed on the seven chromosomes, were identified. The key DEGs could be classified into six signaling pathways, i.e., Ca(2+) signaling, PtdOH signaling, CBFs pathway, ABA pathway, jasmonate pathway, and amylohydrolysis pathway. Expression values of DEGs in multiple signaling pathways were analyzed and a hypothetical model of mild freezing shock tolerance mechanism was proposed. Expression and sequence profile of HvCBFs cluster within Frost resistance-H2, a major quantitative trait locus on 5H being closely related to low temperature tolerance in barley, were further illustrated, considering the crucial role of HvCBFs on freezing tolerance. It may be concluded that multiple signaling pathways are activated in concert when barley is exposed to mild freezing shock. The pathway network we presented may provide a platform for further exploring the functions of genes involved in low temperature tolerance in barley.

  15. Effects of Microbial Additives on Chemical Composition and Fermentation Characteristics of Barley Silage

    PubMed Central

    Amanullah, S. M.; Kim, D. H.; Lee, H. J.; Joo, Y. H.; Kim, S. B.; Kim, S. C.

    2014-01-01

    This study examined the effects of bacterial inoculants on chemical composition and fermentation indices of barley silage. Barley forage (Youngyang) was harvested at 24% dry matter (DM) and wilted to 47.9% DM. The wilted barley forage was chopped to 3–5 cm length and applied with no inoculant (CON), L. plantarum (1×1010 cfu/g, LP) or Effective Microorganisms (0.5×109 cfu/g, EM). Then the forages were ensiled in four replications for each treatment in 20 L mini silos and stored for 100 days. The contents of crude protein and ether extract were higher in CON silage ensiled for 100-d, while the contents of DM and crude ash were higher in EM silage (p<0.05). The contents of ADF, NDF and hemicellulose as well as the in vitro DM digestibility were not affected by microbial inoculation (p>0.05). The pH, ammonia-N concentration and lactate to acetate ratio were higher (p<0.05) in CON silage, while lactate concentrations were higher (p<0.05) in CON and LP silage. Acetate concentration and lactic acid bacteria was increased (p<0.05) by both inoculants (LP and EM), but propionate concentration and yeast was increased (p<0.05) by EM and LP, respectively. These results indicated that the fermentation quality of barley silage was improved by the application of bacterial inoculants. PMID:25049981

  16. Estimated Effects of Future Atmospheric CO2 Concentrations on Protein Intake and the Risk of Protein Deficiency by Country and Region

    PubMed Central

    Schwartz, Joel; Myers, Samuel S.

    2017-01-01

    Background: Crops grown under elevated atmospheric CO2 concentrations (eCO2) contain less protein. Crops particularly affected include rice and wheat, which are primary sources of dietary protein for many countries. Objectives: We aimed to estimate global and country-specific risks of protein deficiency attributable to anthropogenic CO2 emissions by 2050. Methods: To model per capita protein intake in countries around the world under eCO2, we first established the effect size of eCO2 on the protein concentration of edible portions of crops by performing a meta-analysis of published literature. We then estimated per-country protein intake under current and anticipated future eCO2 using global food balance sheets (FBS). We modeled protein intake distributions within countries using Gini coefficients, and we estimated those at risk of deficiency from estimated average protein requirements (EAR) weighted by population age structure. Results: Under eCO2, rice, wheat, barley, and potato protein contents decreased by 7.6%, 7.8%, 14.1%, and 6.4%, respectively. Consequently, 18 countries may lose >5% of their dietary protein, including India (5.3%). By 2050, assuming today’s diets and levels of income inequality, an additional 1.6% or 148.4 million of the world’s population may be placed at risk of protein deficiency because of eCO2. In India, an additional 53 million people may become at risk. Conclusions: Anthropogenic CO2 emissions threaten the adequacy of protein intake worldwide. Elevated atmospheric CO2 may widen the disparity in protein intake within countries, with plant-based diets being the most vulnerable. https://doi.org/10.1289/EHP41 PMID:28885977

  17. Influence of inoculum and climatic factors on the severity of Fusarium head blight in German spring and winter barley.

    PubMed

    Linkmeyer, Andrea; Hofer, Katharina; Rychlik, Michael; Herz, Markus; Hausladen, Hans; Hückelhoven, Ralph; Hess, Michael

    2016-01-01

    Fusarium head blight (FHB) of small cereals is a disease of global importance with regard to economic losses and mycotoxin contamination harmful to human and animal health. In Germany, FHB is predominantly associated with wheat and F. graminearum is recognised as the major causal agent of the disease, but little is known about FHB of barley. Monitoring of the natural occurrence of FHB on Bavarian barley revealed differences for individual Fusarium spp. in incidence and severity of grain infection between years and between spring and winter barley. Parallel measurement of fungal DNA content in grain and mycotoxin content suggested the importance of F. graminearum in winter barley and of F. langsethiae in spring barley for FHB. The infection success of these two species was associated with certain weather conditions and barley flowering time. Inoculation experiments in the field revealed different effects of five Fusarium spp. on symptom formation, grain yield and mycotoxin production. A significant association between fungal infection of grain and mycotoxin content was observed following natural or artificial infection with the type B trichothecene producer F. culmorum, but not with the type A trichothecene-producing species F. langsethiae and F. sporotrichioides. Trichothecene type A toxin contamination also occurred in the absence of significant damage to grain and did not necessarily promote fungal colonisation.

  18. The prevalence and characteristics of cow's milk protein allergy in infants and young children with iron deficiency anemia.

    PubMed

    Lai, Fu-Ping; Yang, Yao-Jong

    2018-02-01

    The clinical presentation of cow's milk protein allergy (CMPA) in children varies. This retrospective study aimed to investigate the prevalence and clinical manifestations of CMPA in young children who visited for evaluation of iron deficiency anemia (IDA). Patients aged <4 years who were diagnosed as having IDA (serum ferritin <12 ng/mL) at the National Cheng Kung University Hospital, Taiwan in the period 2005-2015 were reviewed. Their clinical presentations, laboratory data, endoscopy findings, and prognosis were analyzed. Seven of 51 IDA patients (13.7%) had CMPA. The pallor (100%), failure to thrive (43%), and general edema (43%) were the common features. Six (86%) had hypoalbuminemia and four (57%) had positive occult blood in the stool. Of the five patients who underwent skin prick test, four (80%) had positive results. Most of the colonoscopies revealed erosive and hemorrhagic colitis and lymphoid hyperplasia, but none of the biopsies demonstrated eosinophilia in the lamina propria. All of the patients recovered from their IDA within seven months of cow's milk protein elimination and iron supplementation. CMPA should be considered in young children with undetermined IDA. Cow's milk protein elimination and iron supplementation help in the recovery. Copyright © 2017. Published by Elsevier B.V.

  19. Genetics Home Reference: phosphoglycerate mutase deficiency

    MedlinePlus

    ... PubMed Tsujino S, Shanske S, Sakoda S, Fenichel G, DiMauro S. The molecular genetic basis of muscle phosphoglycerate mutase (PGAM) deficiency. Am ... PubMed Central Tsujino S, Shanske S, Sakoda S, Toscano A, DiMauro S. Molecular genetic studies in muscle phosphoglycerate mutase (PGAM-M) deficiency. ...

  20. Boron-toxicity tolerance in barley arising from efflux transporter amplification.

    PubMed

    Sutton, Tim; Baumann, Ute; Hayes, Julie; Collins, Nicholas C; Shi, Bu-Jun; Schnurbusch, Thorsten; Hay, Alison; Mayo, Gwenda; Pallotta, Margaret; Tester, Mark; Langridge, Peter

    2007-11-30

    Both limiting and toxic soil concentrations of the essential micronutrient boron represent major limitations to crop production worldwide. We identified Bot1, a BOR1 ortholog, as the gene responsible for the superior boron-toxicity tolerance of the Algerian barley landrace Sahara 3771 (Sahara). Bot1 was located at the tolerance locus by high-resolution mapping. Compared to intolerant genotypes, Sahara contains about four times as many Bot1 gene copies, produces substantially more Bot1 transcript, and encodes a Bot1 protein with a higher capacity to provide tolerance in yeast. Bot1 transcript levels identified in barley tissues are consistent with a role in limiting the net entry of boron into the root and in the disposal of boron from leaves via hydathode guttation.

  1. Transcriptome Assembly and Analysis of Tibetan Hulless Barley (Hordeum vulgare L. var. nudum) Developing Grains, with Emphasis on Quality Properties

    PubMed Central

    Chen, Xin; Long, Hai; Gao, Ping; Deng, Guangbing; Pan, Zhifen; Liang, Junjun; Tang, Yawei; Tashi, Nyima; Yu, Maoqun

    2014-01-01

    Background Hulless barley is attracting increasing attention due to its unique nutritional value and potential health benefits. However, the molecular biology of the barley grain development and nutrient storage are not well understood. Furthermore, the genetic potential of hulless barley has not been fully tapped for breeding. Methodology/Principal Findings In the present study, we investigated the transcriptome features during hulless barley grain development. Using Illumina paired-end RNA-Sequencing, we generated two data sets of the developing grain transcriptomes from two hulless barley landraces. A total of 13.1 and 12.9 million paired-end reads with lengths of 90 bp were generated from the two varieties and were assembled to 48,863 and 45,788 unigenes, respectively. A combined dataset of 46,485 All-Unigenes were generated from two transcriptomes with an average length of 542 bp, and 36,278 among were annotated with gene descriptions, conserved protein domains or gene ontology terms. Furthermore, sequences and expression levels of genes related to the biosynthesis of storage reserve compounds (starch, protein, and β-glucan) were analyzed, and their temporal and spatial patterns were deduced from the transcriptome data of cultivated barley Morex. Conclusions/Significance We established a sequences and functional annotation integrated database and examined the expression profiles of the developing grains of Tibetan hulless barley. The characterization of genes encoding storage proteins and enzymes of starch synthesis and (1–3;1–4)-β-D-glucan synthesis provided an overview of changes in gene expression associated with grain nutrition and health properties. Furthermore, the characterization of these genes provides a gene reservoir, which helps in quality improvement of hulless barley. PMID:24871534

  2. Mathematical Modelling of Allelopathy: IV. Assessment of Contributions of Competition and Allelopathy to Interference by Barley

    PubMed Central

    Liu, De Li; An, Min; Johnson, I.R.; Lovett, J.V.

    2005-01-01

    One of the main challenges to the research on allelopathy is technically the separation of allelopathic effect from competition, and quantitatively, the assessment of the contribution of each component to overall interference. A simple mathematical model is proposed to calculate the contribution of allelopathy and competition to interference. As an example of applying the quantitative model to interference by barley (Hordeum vulgare cv. Triumph), the approach used was an addition of allelopathic effect, by an equivalent amount, to the environment of the test plant (white mustard, Sinapis alba), rather than elimination of competition. Experiments were conducted in glasshouse to determine the magnitude of the contributions of allelopathy and competition to interference by barley. The leachates of living barley roots significantly reduced the total dry weight of white mustard. The model involved the calculation of adjusted densities to an equivalent basis for modelling the contribution of allelopathy and competition to total interference. The results showed that allelopathy contributed 40%, 37% and 43% to interference by barley at 6, 12 and 18 white mustard pot−1. The consistency in magnitude of the calculated contribution of allelopathic effect by barley across various densities of receiver plant suggested that the adjusted equivalent density is effective and that the model is able to assess the contribution of each component of interference regardless of the density of receiver plant. PMID:19330162

  3. Improving phenolic bioactive-linked anti-hyperglycemic functions of dark germinated barley sprouts (Hordeum vulgare L.) using seed elicitation strategy.

    PubMed

    Ramakrishna, Ramnarain; Sarkar, Dipayan; Manduri, Avani; Iyer, Shreyas Ganesan; Shetty, Kalidas

    2017-10-01

    Sprouts of cereal grains, such as barley ( Hordeum vulgare L.), are a good source of beneficial phenolic bioactives. Such health relevant phenolic bioactives of cereal sprouts can be targeted to manage chronic hyperglycemia and oxidative stress commonly associated with type 2 diabetes (T2D). Therefore improving phenolic bioactives by stimulating plant endogenous defense responses such as protective pentose phosphate pathway (PPP) during sprouting has significant merit. Based on this metabolic rationale, this study aimed to enhance phenolic bioactives and associated antioxidant and anti-hyperglycemic functions in dark germinated barley sprouts using exogenous elicitor treatments. Dark-germinated sprouts of two malting barley cultivars (Pinnacle and Celebration), treated with chitosan oligosaccharide (COS) and marine protein hydrolysate (GP), were evaluated. Total soluble phenolic content (TSP), phenolic acid profiles, total antioxidant activity (TA) and in vitro inhibitory activities of hyperglycemia relevant α-amylase and α-glucosidase enzymes of the dark germinated barley sprouts were evaluated at day 2, 4, and 6 post elicitor treatments. Overall, TSP content, TA, and α-amylase inhibitory activity of dark germinated barley sprouts decreased, while α-glucosidase inhibitory activity and gallic acid content increased from day 2 to day 6. Among barley cultivars, high phenolic antioxidant-linked anti-hyperglycemic bioactives were observed in Celebration. Furthermore, GP and COS seed elicitor treatments in selective doses improved T2D relevant phenolic-linked anti-hyperglycemic bioactives of barley spouts at day 6. Therefore, such seed elicitation approach can be strategically used to develop bioactive enriched functional food ingredients from cereal sprouts targeting chronic hyperglycemia and oxidative stress linked to T2D.

  4. Enhancement of nitrate uptake and growth of barley seedlings by calcium under saline conditions

    NASA Technical Reports Server (NTRS)

    Ward, M. R.; Aslam, M.; Huffaker, R. C.

    1986-01-01

    The effect of Ca2+ on NO3- assimilation in young barley (Hordeum vulgare L. var CM 72) seedlings in the presence and absence of NaCl was studied. Calcium increased the activity of the NO3- transporter under saline conditions, but had little effect under nonsaline conditions. Calcium decreased the induction period for the NO3- transporter under both saline and nonsaline conditions but had little effect on its apparent Km for NO3- both in the presence and absence of NaCl. The enhancement of NO3- transport by Ca2+ under saline conditions was dependent on the presence of Ca2+ in the uptake solution along with the salt, since Ca2+ had no effect when supplied before or after salinity stress. Although Mn2+ and Mg2+ enhanced NO3- uptake under saline conditions, neither was as effective as Ca2+. In longer studies, increasing the Ca2+ concentration in saline nutrient solutions resulted in increases in NO3- assimilation and seedling growth.

  5. Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis.

    PubMed

    Pourabed, Ehsan; Ghane Golmohamadi, Farzan; Soleymani Monfared, Peyman; Razavi, Seyed Morteza; Shobbar, Zahra-Sadat

    2015-01-01

    The basic leucine zipper (bZIP) family is one of the largest and most diverse transcription factors in eukaryotes participating in many essential plant processes. We identified 141 bZIP proteins encoded by 89 genes from the Hordeum vulgare genome. HvbZIPs were classified into 11 groups based on their DNA-binding motif. Amino acid sequence alignment of the HvbZIPs basic-hinge regions revealed some highly conserved residues within each group. The leucine zipper heptads were analyzed predicting their dimerization properties. 34 conserved motifs were identified outside the bZIP domain. Phylogenetic analysis indicated that major diversification within the bZIP family predated the monocot/dicot divergence, although intra-species duplication and parallel evolution seems to be occurred afterward. Localization of HvbZIPs on the barley chromosomes revealed that different groups have been distributed on seven chromosomes of barley. Six types of intron pattern were detected within the basic-hinge regions. Most of the detected cis-elements in the promoter and UTR sequences were involved in seed development or abiotic stress response. Microarray data analysis revealed differential expression pattern of HvbZIPs in response to ABA treatment, drought, and cold stresses and during barley grain development and germination. This information would be helpful for functional characterization of bZIP transcription factors in barley.

  6. Population genetic structure in a social landscape: barley in a traditional Ethiopian agricultural system

    PubMed Central

    Samberg, Leah H; Fishman, Lila; Allendorf, Fred W

    2013-01-01

    Conservation strategies are increasingly driven by our understanding of the processes and patterns of gene flow across complex landscapes. The expansion of population genetic approaches into traditional agricultural systems requires understanding how social factors contribute to that landscape, and thus to gene flow. This study incorporates extensive farmer interviews and population genetic analysis of barley landraces (Hordeum vulgare) to build a holistic picture of farmer-mediated geneflow in an ancient, traditional agricultural system in the highlands of Ethiopia. We analyze barley samples at 14 microsatellite loci across sites at varying elevations and locations across a contiguous mountain range, and across farmer-identified barley types and management strategies. Genetic structure is analyzed using population-based and individual-based methods, including measures of population differentiation and genetic distance, multivariate Principal Coordinate Analysis, and Bayesian assignment tests. Phenotypic analysis links genetic patterns to traits identified by farmers. We find that differential farmer management strategies lead to markedly different patterns of population structure across elevation classes and barley types. The extent to which farmer seed management appears as a stronger determinant of spatial structure than the physical landscape highlights the need for incorporation of social, landscape, and genetic data for the design of conservation strategies in human-influenced landscapes. PMID:24478796

  7. Early Iron Deficiency Has Brain and Behavior Effects Consistent with Dopaminergic Dysfunction123

    PubMed Central

    Lozoff, Betsy

    2011-01-01

    To honor the late John Beard’s many contributions regarding iron and dopamine biology, this review focuses on recent human studies that test specific hypotheses about effects of early iron deficiency on dopamine system functioning. Short- and long-term alterations associated with iron deficiency in infancy can be related to major dopamine pathways (mesocortical, mesolimbic, nigrostriatal, tuberohypophyseal). Children and young adults who had iron deficiency anemia in infancy show poorer inhibitory control and executive functioning as assessed by neurocognitive tasks where pharmacologic and neuroimaging studies implicate frontal-striatal circuits and the mesocortical dopamine pathway. Alterations in the mesolimbic pathway, where dopamine plays a major role in behavioral activation and inhibition, positive affect, and inherent reward, may help explain altered social-emotional behavior in iron-deficient infants, specifically wariness and hesitance, lack of positive affect, diminished social engagement, etc. Poorer motor sequencing and bimanual coordination and lower spontaneous eye blink rate in iron-deficient anemic infants are consistent with impaired function in the nigrostriatal pathway. Short- and long-term changes in serum prolactin point to dopamine dysfunction in the tuberohypophyseal pathway. These hypothesis-driven findings support the adverse effects of early iron deficiency on dopamine biology. Iron deficiency also has other effects, specifically on other neurotransmitters, myelination, dendritogenesis, neurometabolism in hippocampus and striatum, gene and protein profiles, and associated behaviors. The persistence of poorer cognitive, motor, affective, and sensory system functioning highlights the need to prevent iron deficiency in infancy and to find interventions that lessen the long-term effects of this widespread nutrient disorder. PMID:21346104

  8. Social Exchange and Sexual Behavior in Young Women’s Premarital Relationships in Kenya

    PubMed Central

    Luke, Nancy; Goldberg, Rachel E.; Mberu, Blessing U.; Zulu, Eliya M.

    2011-01-01

    Transactional sex, or the exchange of money and gifts for sexual activities within nonmarital relationships, has been widely considered a contributing factor to the disproportionate prevalence of HIV/AIDS among young women in sub-Saharan Africa. This study applied social exchange theory to premarital relationships in order to investigate the linkages between a variety of young women’s resources—including employment and material transfers from male partners—and sexual behaviors. Data on the first month of premarital relationships (N=551 relationships) were collected from a random sample of young adult women ages 18–24 in Kisumu, Kenya, using a retrospective life history calendar. Consistent with the hypotheses, results showed that young women’s income increases the likelihood of safer sexual activities, including delaying sex and using condoms consistently. Material transfers from the male partner displayed the opposite effect, supporting the view that resources obtained from within the relationship decrease young women’s negotiating power. PMID:22180665

  9. Two episodes of hemoperitoneum from luteal cysts rupture in a patient with congenital factor X deficiency.

    PubMed

    Dafopoulos, Konstantinos; Galazios, Georgios; Georgadakis, Georgios; Boulbou, Maria; Koutsoyiannis, Dimitrios; Plakopoulos, Apostolos; Anastasiadis, Panagiotis

    2003-01-01

    The clinical manifestation of two episodes of hemoperitoneum from ruptured corpus luteum cysts, during the luteal phase of the cycle in a young patient with the rare congenital factor X deficiency, is reported for the first time in literature. The correct diagnosis of the underlying disorder, the gynecological management and the regular follow-up can minimize the risks of this potentially life-threatening hematological disorder. Copyright 2003 S. Karger AG, Basel

  10. Macroarray expression analysis of barley susceptibility and nonhost resistance to Blumeria graminis.

    PubMed

    Eichmann, Ruth; Biemelt, Sophia; Schäfer, Patrick; Scholz, Uwe; Jansen, Carin; Felk, Angelika; Schäfer, Wilhelm; Langen, Gregor; Sonnewald, Uwe; Kogel, Karl-Heinz; Hückelhoven, Ralph

    2006-04-01

    Different formae speciales of the grass powdery mildew fungus Blumeria graminis undergo basic-compatible or basic-incompatible (nonhost) interactions with barley. Background resistance in compatible interactions and nonhost resistance require common genetic and mechanistic elements of plant defense. To build resources for differential screening for genes that potentially distinguish a compatible from an incompatible interaction on the level of differential gene expression of the plant, we constructed eight dedicated cDNA libraries, established 13.000 expressed sequence tag (EST) sequences and designed DNA macroarrays. Using macroarrays based on cDNAs derived from epidermal peels of plants pretreated with the chemical resistance activating compound acibenzolar-S-methyl, we compared the expression of barley gene transcripts in the early host interaction with B. graminis f.sp. hordei or the nonhost pathogen B. graminis f.sp. tritici, respectively. We identified 102 spots corresponding to 94 genes on the macroarray that gave significant B. graminis-responsive signals at 12 and/or 24 h after inoculation. In independent expression analyses, we confirmed the macroarray results for 11 selected genes. Although the majority of genes showed a similar expression profile in compatible versus incompatible interactions, about 30 of the 94 genes were expressed on slightly different levels in compatible versus incompatible interactions.

  11. Genetic Diversity and Ecological Niche Modelling of Wild Barley: Refugia, Large-Scale Post-LGM Range Expansion and Limited Mid-Future Climate Threats?

    PubMed Central

    Russell, Joanne; van Zonneveld, Maarten; Dawson, Ian K.; Booth, Allan; Waugh, Robbie; Steffenson, Brian

    2014-01-01

    Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security. PMID:24505252

  12. Effects of dietary oat, barley, and guar gums on serum and liver lipid concentrations in diet-induced hypertriglyceridemic rats.

    PubMed

    Oda, T; Aoe, S; Imanishi, S; Kanazawa, Y; Sanada, H; Ayano, Y

    1994-04-01

    Effects of dietary oat, barley, and guar gums on serum and liver triglyceride or cholesterol concentrations were examined in diet-induced hypertriglyceridemic rats. Male Sprague-Dawley rats were fed a hypertriglyceridemic diet that contained 20% coconut oil, 17.5% fructose, 17.5% sucrose, and 5% cellulose at 4 weeks of age for 14 days. In the gum-supplemented diets, 2% cellulose was replaced by oat gum, barley gum, or guar gum. Hypertriglyceridemia was observed in the control group, whereas serum cholesterol concentration was not increased. All of the gums lowered serum and liver cholesterol concentrations except barley gum which had no significant effect on liver cholesterol. Both oat and barley gums suppressed the elevation of serum and liver triglyceride concentrations but guar gum had no effect.

  13. Dietary fiber and flavan-3-ols in shortbread biscuits enriched with barley flours co-products.

    PubMed

    Verardo, Vito; Riciputi, Ylenia; Messia, Maria Cristina; Vallicelli, Melania; Falasca, Luisa; Marconi, Emanuele; Caboni, Maria Fiorenza

    2011-05-01

    The coarse fraction obtained by air classification of barley flour, rich in dietary fiber and flavan-3-ols, was utilized to develop functional biscuits. The flavan-3-ol content, antioxidant activity and oxidative stability of biscuits were measured during storage under retail conditions for 1 year. The replacement of 60% (w/w) refined wheat flour with barley coarse fraction increased the ash, fiber and flavan-3-ol contents significantly. Biscuit samples enriched with barley coarse fraction had a significantly higher amount of fiber compared with the control sample (six times higher). The β-glucan content in enriched samples was 15 times higher than control samples. The flavan-3-ol loss in biscuits after baking was about 67%. The initial content of flavan-3-ols increased from 0.6 to 4.3 mg/100 g in biscuits formulated with barley coarse fraction and showed improved antioxidant properties. Lipid oxidation increased during the shelf-life; the enriched biscuit showed the higher lipid oxidation status, but the level reached during the shelf-life was lower than the limit of acceptance reported for bakery products and, for this reason, does not compromise the safety.

  14. Structure, morphology and functionality of acetylated and oxidised barley starches.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-02-01

    Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The effect of ingesting a saltbush and barley ration on the carcass and eating quality of sheepmeat.

    PubMed

    Pearce, K L; Pethick, D W; Masters, D G

    2008-03-01

    Forage halophytes such as saltbush (Atriplex spp.) are widely used to revegetate Australian saline land and can provide a medium-quality fodder source. An animal house experiment was conducted to investigate differences in the carcass and eating quality of sheep ingesting saltbush from saline land in combination with a barley supplement. Twenty-six merino hoggets (two groups of 13) were fed either a 60 : 40 dried saltbush (Atriplex nummularia): barley (S + B) ration or a 33 : 25 : 42 lupins : barley : oaten hay ration (C) for 10 weeks prior to commercial slaughter. After 10 weeks, all sheep were commercially slaughtered and a single loin (from 12th rib to chump) collected from each animal for taste-panel analysis. Carcass weight, total tissue depth over the 12th rib 110 mm from the midline (GR fat depth), ultimate pH and colour were determined and X-ray bone densitometry used to estimate the fat content of the carcass. Blood samples were taken to assess the hormonal response to ingesting these diets and fatty acid profiles of the subcutaneous and intramuscular fat were determined. Both groups grew at the same rate (62 g/day) and had similar hot carcass weights (P > 0.01) (17.2 ± 0.3 kg for S + B and 17.9 ± 0.3 kg for C). However, these live weights may not be high enough to be commercially viable such that saltbush and barley may only be suitable as a maintenance feed. The S + B-fed sheep had a significantly (P = 0.055) lower fat and higher lean content (P < 0.05) than the C group. This is a positive finding as fat denudation is a significant cost to processors and farmers can produce sheep that are depositing less fat or more lean per unit of live-weight gain. The decreased fat and increased lean content were attributed to the higher protein : energy ratio available for production and lower circulating insulin and higher growth hormone of the S + B-fed sheep. The lower body-fat content and lower metabolisable energy and digestible organic matter intake did

  16. Nickel Deficiency Disrupts Metabolism of Ureides, Amino Acids, and Organic Acids of Young Pecan Foliage[OA

    PubMed Central

    Bai, Cheng; Reilly, Charles C.; Wood, Bruce W.

    2006-01-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan. PMID:16415214

  17. Genetic Dissection of Photoperiod Response Based on GWAS of Pre-Anthesis Phase Duration in Spring Barley

    PubMed Central

    Alqudah, Ahmad M.; Sharma, Rajiv; Pasam, Raj K.; Graner, Andreas; Kilian, Benjamin; Schnurbusch, Thorsten

    2014-01-01

    Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions), comprising of 95 photoperiod-sensitive (Ppd-H1) and 123 accessions with reduced photoperiod sensitivity (ppd-H1) to long-day (LD) through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH) conditions (LD; 16/8 h; ∼20/∼16°C day/night). Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs) chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS). GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1) and BFL (BARLEY FLORICAULA/LEAFY) genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley. PMID:25420105

  18. Bioaccessible mineral content of malted finger millet (Eleusine coracana), wheat (Triticum aestivum), and barley (Hordeum vulgare).

    PubMed

    Platel, Kalpana; Eipeson, Sushma W; Srinivasan, Krishnapura

    2010-07-14

    Malted grains are extensively used in weaning and geriatric foods. Malting generally improves the nutrient content and digestibility of foods. The present investigation examined the influence of malting of finger millet, wheat, and barley on the bioaccessibility of iron, zinc, calcium, copper, and manganese. Malting increased the bioaccessibility of iron by >3-fold from the two varieties of finger millet and by >2-fold from wheat, whereas such a beneficial influence was not seen in barley. The bioaccessibility of zinc from wheat and barley increased to an extent of 234 and 100%, respectively, as a result of malting. However, malting reduced the bioaccessibility of zinc from finger millet. Malting marginally increased the bioaccessibility of calcium from white finger millet and wheat. Whereas malting did not exert any influence on bioaccessibility of copper from finger millet and wheat, it significantly decreased (75%) the same from barley. Malting did increase the bioaccessibility of manganese from brown finger millet (17%) and wheat (42%). Thus, malting could be an appropriate food-based strategy to derive iron and other minerals maximally from food grains.

  19. Automated Analysis of Barley Organs Using 3D Laser Scanning: An Approach for High Throughput Phenotyping

    PubMed Central

    Paulus, Stefan; Dupuis, Jan; Riedel, Sebastian; Kuhlmann, Heiner

    2014-01-01

    Due to the rise of laser scanning the 3D geometry of plant architecture is easy to acquire. Nevertheless, an automated interpretation and, finally, the segmentation into functional groups are still difficult to achieve. Two barley plants were scanned in a time course, and the organs were separated by applying a histogram-based classification algorithm. The leaf organs were represented by meshing algorithms, while the stem organs were parameterized by a least-squares cylinder approximation. We introduced surface feature histograms with an accuracy of 96% for the separation of the barley organs, leaf and stem. This enables growth monitoring in a time course for barley plants. Its reliability was demonstrated by a comparison with manually fitted parameters with a correlation R2 = 0.99 for the leaf area and R2 = 0.98 for the cumulated stem height. A proof of concept has been given for its applicability for the detection of water stress in barley, where the extension growth of an irrigated and a non-irrigated plant has been monitored. PMID:25029283

  20. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    PubMed

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Anthocyanin composition and oxygen radical scavenging capacity (ORAC) of milled and pearled purple, black, and common barley.

    PubMed

    Bellido, Guillermo G; Beta, Trust

    2009-02-11

    The importance of anthocyanins to the total antioxidant capacity of various fruits and vegetables has been well established, but less attention has been focused on cereal grains. This study investigated the antioxidant capacity and anthocyanin composition of a bran-rich pearling fraction (10% outer kernel layers) and whole kernel flour of purple (CI-1248), black (PERU-35), and yellow (EX-83) barley genotypes. HPLC analysis showed that as much as 6 times more anthocyanin per unit weight (microg/g) was present in the bran-rich fractions of yellow and purple barley (1587 and 3534, respectively) than in their corresponding whole kernel flours (210 and 573, respectively). Delphinidin 3-glucoside, delphinidin 3-rutinoside, cyanidin 3-glucoside, petunidin 3-glucoside, and cyanidin chloride were positively identified in barley, with as many as 9 and 15 anthocyanins being detected in yellow and purple barley, respectively. Antioxidant activity analysis showed that the ORAC values for the bran-rich fractions were significantly (p < 0.05) higher than for the whole kernel flour.

  2. Mid-Infrared (MIR) and Near-Infrared (NIR) Detection of Rhizoctonia solani AG 2-2 IIIB on Barley-Based Artificial Inoculum.

    PubMed

    Webb, Kimberly M; Calderón, Francisco J

    2015-10-01

    The amount of Rhizoctonia solani in the soil and how much must be present to cause disease in sugar beet (Beta vulgaris L.) is relatively unknown. This is mostly because of the usually low inoculum densities found naturally in soil and the low sensitivity of traditional serial dilution assays. We investigated the usefulness of Fourier transform mid-infrared (MIR) and near-infrared (NIR) spectroscopic properties in identifying the artificial colonization of barley grains with R. solani AG 2-2 IIIB and in detecting R. solani populations in plant tissues and inoculants. The objectives of this study were to compare the ability of traditional plating assays to NIR and MIR spectroscopies to identify R. solani in different-size fractions of colonized ground barley (used as an artificial inoculum) and to differentiate colonized from non-inoculated barley. We found that NIR and MIR spectroscopies were sensitive in resolving different barley particle sizes, with particles that were <0.25 and 0.25-0.5 mm having different spectral properties than coarser particles. Moreover, we found that barley colonized with R. solani had different MIR spectral properties than the non-inoculated samples for the larger fractions (0.5-1.0, 1.0-2.0, and >2.0 mm) of the ground barley. This colonization was confirmed using traditional plating assays. Comparisons with the spectra from pure fungal cultures and non-inoculated barley suggest that the MIR spectrum of colonized barley is different because of the consumption of C substrates by the fungus rather than because of the presence of fungal bands in the spectra of the colonized samples. We found that MIR was better than NIR spectroscopy in differentiating the colonized from the control samples.

  3. The Meniscus-Deficient Knee

    PubMed Central

    Rao, Allison J.; Erickson, Brandon J.; Cvetanovich, Gregory L.; Yanke, Adam B.; Bach, Bernard R.; Cole, Brian J.

    2015-01-01

    Meniscal tears are the most common knee injury, and partial meniscectomies are the most common orthopaedic surgical procedure. The injured meniscus has an impaired ability to distribute load and resist tibial translation. Partial or complete loss of the meniscus promotes early development of chondromalacia and osteoarthritis. The primary goal of treatment for meniscus-deficient knees is to provide symptomatic relief, ideally to delay advanced joint space narrowing, and ultimately, joint replacement. Surgical treatments, including meniscal allograft transplantation (MAT), high tibial osteotomy (HTO), and distal femoral osteotomy (DFO), are options that attempt to decrease the loads on the articular cartilage of the meniscus-deficient compartment by replacing meniscal tissue or altering joint alignment. Clinical and biomechanical studies have reported promising outcomes for MAT, HTO, and DFO in the postmeniscectomized knee. These procedures can be performed alone or in conjunction with ligament reconstruction or chondral procedures (reparative, restorative, or reconstructive) to optimize stability and longevity of the knee. Complications can include fracture, nonunion, patella baja, compartment syndrome, infection, and deep venous thrombosis. MAT, HTO, and DFO are effective options for young patients suffering from pain and functional limitations secondary to meniscal deficiency. PMID:26779547

  4. The effects of iodine deficiency in pregnancy and infancy.

    PubMed

    Zimmermann, Michael B

    2012-07-01

    Iodine requirements are increased ≥ 50% during pregnancy. Iodine deficiency during pregnancy can cause maternal and fetal hypothyroidism and impair neurological development of the fetus. The consequences depend upon the timing and severity of the hypothyroidism; the most severe manifestation is cretinism. In moderate-to-severely iodine-deficient areas, controlled studies have demonstrated that iodine supplementation before or during early pregnancy eliminates new cases of cretinism, increases birthweight, reduces rates of perinatal and infant mortality and generally increases developmental scores in young children by 10-20%. Mild maternal iodine deficiency can cause thyroid dysfunction but whether it impairs cognitive and/or neurologic function in the offspring remains uncertain. Two meta-analyses have estimated that iodine-deficient populations experience a mean reduction in IQ of 12-13.5 points. In nearly all regions affected by iodine deficiency, salt iodisation is the most cost-effective way of delivering iodine and improving maternal and infant health. © 2012 Blackwell Publishing Ltd.

  5. Development and Genetic Characterization of an Advanced Backcross-Nested Association Mapping (AB-NAM) Population of Wild × Cultivated Barley

    PubMed Central

    Nice, Liana M.; Steffenson, Brian J.; Brown-Guedira, Gina L.; Akhunov, Eduard D.; Liu, Chaochih; Kono, Thomas J. Y.; Morrell, Peter L.; Blake, Thomas K.; Horsley, Richard D.; Smith, Kevin P.; Muehlbauer, Gary J.

    2016-01-01

    The ability to access alleles from unadapted germplasm collections is a long-standing problem for geneticists and breeders. Here we developed, characterized, and demonstrated the utility of a wild barley advanced backcross-nested association mapping (AB-NAM) population. We developed this population by backcrossing 25 wild barley accessions to the six-rowed malting barley cultivar Rasmusson. The 25 wild barley parents were selected from the 318 accession Wild Barley Diversity Collection (WBDC) to maximize allelic diversity. The resulting 796 BC2F4:6 lines were genotyped with 384 SNP markers, and an additional 4022 SNPs and 263,531 sequence variants were imputed onto the population using 9K iSelect SNP genotypes and exome capture sequence of the parents, respectively. On average, 96% of each wild parent was introgressed into the Rasmusson background, and the population exhibited low population structure. While linkage disequilibrium (LD) decay (r2 = 0.2) was lowest in the WBDC (0.36 cM), the AB-NAM (9.2 cM) exhibited more rapid LD decay than comparable advanced backcross (28.6 cM) and recombinant inbred line (32.3 cM) populations. Three qualitative traits: glossy spike, glossy sheath, and black hull color were mapped with high resolution to loci corresponding to known barley mutants for these traits. Additionally, a total of 10 QTL were identified for grain protein content. The combination of low LD, negligible population structure, and high diversity in an adapted background make the AB-NAM an important tool for high-resolution gene mapping and discovery of novel allelic variation using wild barley germplasm. PMID:27182953

  6. Barley 4H QTL confers NFNB resistance to a global set of P. teres f. teres isolates

    USDA-ARS?s Scientific Manuscript database

    Net form net blotch (NFNB), caused by Pyrenophora teres f. teres Drechs., is prevalent in barley-growing regions worldwide. A population of 132 recombinant inbred lines (RILs) developed from a cross of the barley varieties 'Falcon' and 'Azhul' were used to evaluate resistance to NFNB due to their di...

  7. Economic analysis of fuel ethanol production from hulled barley by the EDGE (Enhanced Dry Grind Enzymatic) process

    USDA-ARS?s Scientific Manuscript database

    A cost model was developed for fuel ethanol production from barley based on the EDGE (Enhanced Dry Grind Enzymatic) process (Nghiem, et al., 2008). In this process, in addition to beta-glucanases, which is added to reduce the viscosity of the barley mash for efficient mixing, another enzyme, beta-...

  8. Manganese Deficiency Leads to Genotype-Specific Changes in Fluorescence Induction Kinetics and State Transitions1[C][OA

    PubMed Central

    Husted, Søren; Laursen, Kristian H.; Hebbern, Christopher A.; Schmidt, Sidsel B.; Pedas, Pai; Haldrup, Anna; Jensen, Poul E.

    2009-01-01

    Barley (Hordeum vulgare) genotypes display a marked difference in their ability to tolerate growth at low manganese (Mn) concentrations, a phenomenon designated as differential Mn efficiency. Induction of Mn deficiency in two genotypes differing in Mn efficiency led to a decline in the quantum yield efficiency for both, although faster in the Mn-inefficient genotype. Leaf tissue and thylakoid Mn concentrations were reduced under Mn deficiency, but no difference between genotypes was observed and no visual Mn deficiency symptoms were developed. Analysis of the fluorescence induction kinetics revealed that in addition to the usual O-J-I-P steps, clear K and D steps were developed in the Mn-inefficient genotype under Mn deficiency. These marked changes indicated damages to photosystem II (PSII). This was further substantiated by state transition measurements, indicating that the ability of plants to redistribute excitation energy was reduced. The percentage change in state transitions for control plants with normal Mn supply of both genotypes was 9% to 11%. However, in Mn-deficient leaves of the Mn-inefficient genotypes, state transitions were reduced to less than 1%, whereas no change was observed for the Mn-efficient genotypes. Immunoblotting and the chlorophyll a/b ratio confirmed that Mn deficiency in general resulted in a significant reduction in abundance of PSII reaction centers relative to the peripheral antenna. In addition, PSII appeared to be significantly more affected by Mn limitation than PSI. However, the striking genotypic differences observed in Mn-deficient plants, when analyzing state transitions and fluorescence induction kinetics, could not be correlated with specific changes in photosystem proteins. Thus, there is no simple linkage between protein expression and the differential reduction in state transition and fluorescence induction kinetics observed for the genotypes under Mn deficiency. PMID:19369593

  9. Effects of hydrolyzed Chlorella vulgaris by malted barley on the immunomodulatory response in ICR mice and in Molt-4 cells.

    PubMed

    Kim, Na-Hyung; Kim, Kyu-Yeob; Jeong, Hyun-Ja; Kim, Hyung-Min; Hong, Seung-Heon; Um, Jae-Young

    2010-07-01

    Chlorella vulgaris is a unicellular and microscopic algae that is currently used in a variety of forms of tablets, capsules and liquid as a biological response modifier. The aim of this study was to investigate the effects of hydrolyzed Chlorella vulgaris by malted barley for its potential reduction of the immobility time in ICR mice and on the cytokine regulation in human T cell line, Molt-4. After a forced swimming test, the changes in aspects of blood biochemical parameters due to the administration of hydrolyzed Chlorella vulgaris by malted barley were examined. The effect of hydrolyzed Chlorella vulgaris by the malted barley-treated group for 14 days on the immobility time was significantly reduced in comparison with that of the control group (P < 0.01). The plasma level of blood urea nitrogen was significantly decreased in hydrolyzed Chlorella vulgaris by malted barley-treated group compared with the control group (P < 0.05). In addition, hydrolyzed Chlorella vulgaris by malted barley increased interferon-gamma and interlukin-2 levels in Molt-4 cells. These results indicate that hydrolyzed Chlorella vulgaris by malted barley is useful for immune function improvements, enhanced physical stamina, and as a candidate for an anti-fatigue or antidepressant agent.

  10. The fifth leaf and spike organs of barley (Hordeum vulgare L.) display different physiological and metabolic responses to drought stress.

    PubMed

    Hein, Jordan A; Sherrard, Mark E; Manfredi, Kirk P; Abebe, Tilahun

    2016-11-09

    Photosynthetic organs of the cereal spike (ear) provide assimilate for grain filling, but their response to drought is poorly understood. In this study, we characterized the drought response of individual organs of the barley spike (awn, lemma, and palea) and compared them with a vegetative organ (fifth leaf). Understanding differences in physiological and metabolic responses between the leaf and spike organs during drought can help us develop high yielding cultivars for environments where terminal drought is prevalent. We exposed barley plants to drought by withholding water for 4 days at the grain filling stage and compared changes in: (1) relative water content (RWC), (2) osmotic potential (Ψ s ), (3) osmotic adjustment (OA), (4) gas exchange, and (5) metabolite content between organs. Drought reduced RWC and Ψ s in all four organs, but the decrease in RWC was greater and there was a smaller change in Ψ s in the fifth leaf than the spike organs. We detected evidence of OA in the awn, lemma, and palea, but not in the fifth leaf. Rates of gas exchange declined more rapidly in the fifth leaf than awn during drought. We identified 18 metabolites but, only ten metabolites accumulated significantly during drought in one or more organs. Among these, proline accumulated in all organs during drought while accumulation of the other metabolites varied between organs. This may suggest that each organ in the same plant uses a different set of osmolytes for drought resistance. Our results suggest that photosynthetic organs of the barley spike maintain higher water content, greater osmotic adjustment, and higher rates of gas exchange than the leaf during drought.

  11. Viability and Biological Properties of Barley Seeds Expose to Outside of International Space Station

    NASA Astrophysics Data System (ADS)

    Sugimoto, Manabu; Ishii, Makoto; Mori, Izumi; Shagimardanova, Elena; Gusev, Oleg; Sychev, Vladimir; Levinskikh, Margarita; Novikova, Nataliya; Grigoriev, Anatoly

    Plants play an important role in supplying nutrients and oxygen to human under material recycle system in space as well as on earth, therefore, seed storage in space should be necessary to self-supply foods when number of astronauts would stay and investigate for a long-term habitation of orbit and the bases of the Moon and Mars. In order to understand the effect of real space environment on the preservation of seeds, the seeds of malting barley, Haruna Nijo, were exposed to outside of the Pier docking station of International Space Station in the framework of the Biorisk-MSN program. After exposure to outside of International Space Station for 13 months, the seeds (SP) were transported to Earth, soaked in water, and germinated on the filter paper filled with water. The germination ratio of SP was 82%, while that of the ground control was 96%, showing that the barley seeds survived cosmic radiation, vacuum, and temperature excursion in space. The germinated seeds of SP and ground control were transplanted to the Wagner pots filled with soil and grown for 5 months in the greenhouse. The agronomic character, such as number of main stem leaf and ear, straw weight, culm length, ear length, thousand kernel weight, and percentage of ripening, were not different significantly between SP and ground control. The germination ratio of the harvested SP was 96% as same as that of the harvested ground control. Genomic DNA and protein were extracted from leaves of the barleys and analyzed by AFLP and 2-DE, respectively. The results demonstrated no significant difference in genetic polymorphism and protein production in these barleys. From our results, barley seeds could survive real space environment for the long-term habitation without phenotypic and genotypic damages.

  12. Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1.

    PubMed

    Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A; Tyerman, Stephen D; Langridge, Peter; Sutton, Tim

    2010-08-01

    Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley.

  13. Abiotic stresses modulate expression of major intrinsic proteins in barley (Hordeum vulgare).

    PubMed

    Ligaba, Ayalew; Katsuhara, Maki; Shibasaka, Mineo; Djira, Gemechis

    2011-02-01

    In one of the most important crops, barley (Hordeum vulgare L.), gene expression and physiological roles of most major intrinsic proteins (MIPs) remained to be elucidated. Here we studied expression of five tonoplast intrinsic protein isoforms (HvTIP1;2, HvTIP2;1, HvTIP2;2, HvTIP2;3 and HvTIP4;1), a NOD26-like intrinsic protein (HvNIP2;1) and a plasma membrane intrinsic protein (HvPIP2;1) by using the quantitative real-time RT-PCR. Five-day-old seedlings were exposed to abiotic stresses (salt, heavy metals and nutrient deficiency), abscisic acid (ABA) and gibberellic acid (GA) for 24 h. Treatment with 100 mM NaCl, 0.1 mM ABA and 1 mM GA differentially regulated gene expression in roots and shoots. Nitrogen and prolonged P-deficiency downregulated expression of most MIP genes in roots. Intriguingly, gene expression was restored to the values in the control three days after nutrient supply was resumed. Heavy metals (0.2 mM each of Cd, Cu, Zn and Cr) downregulated the transcript levels by 60-80% in roots, whereas 0.2 mM Hg upregulated expressions of most genes in roots. This was accompanied by a 45% decrease in the rate of transpiration. In order to study the physiological role of the MIPs, cDNA of three genes (HvTIP2;1, HvTIP2;3 and HvNIP2;1) have been cloned and heterologous expression was performed in Xenopus laevis oocytes. Osmotic water permeability was determined by a swelling assay. However, no water uptake activity was observed for the three proteins. Hence, the possible physiological role of the proteins is discussed. Copyright © 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  14. New starch phenotypes produced by TILLING in barley.

    PubMed

    Sparla, Francesca; Falini, Giuseppe; Botticella, Ermelinda; Pirone, Claudia; Talamè, Valentina; Bovina, Riccardo; Salvi, Silvio; Tuberosa, Roberto; Sestili, Francesco; Trost, Paolo

    2014-01-01

    Barley grain starch is formed by amylose and amylopectin in a 1:3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING) approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i) a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv) the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications.

  15. Moving off the Page: Tapping into Young Children's Imagination

    ERIC Educational Resources Information Center

    Miranda, Martina

    2015-01-01

    This article explores the interplay between young children's spontaneous engagement in learning through their imagination, and the mind-set of the teacher when approaching planning for instruction. Perhaps by connecting with our own imaginative thinking, we can gain insights about our young learners, and find additional strategies to promote…

  16. Differential disease resistance response in the barley necrotic mutant nec1.

    PubMed

    Keisa, Anete; Kanberga-Silina, Krista; Nakurte, Ilva; Kunga, Laura; Rostoks, Nils

    2011-04-15

    Although ion fluxes are considered to be an integral part of signal transduction during responses to pathogens, only a few ion channels are known to participate in the plant response to infection. CNGC4 is a disease resistance-related cyclic nucleotide-gated ion channel. Arabidopsis thaliana CNGC4 mutants hlm1 and dnd2 display an impaired hypersensitive response (HR), retarded growth, a constitutively active salicylic acid (SA)-mediated pathogenesis-related response and elevated resistance against bacterial pathogens. Barley CNGC4 shares 67% aa identity with AtCNGC4. The barley mutant nec1 comprising of a frame-shift mutation of CNGC4 displays a necrotic phenotype and constitutively over-expresses PR-1, yet it is not known what effect the nec1 mutation has on barley resistance against different types of pathogens. nec1 mutant accumulated high amount of SA and hydrogen peroxide compared to parental cv. Parkland. Experiments investigating nec1 disease resistance demonstrated positive effect of nec1 mutation on non-host resistance against Pseudomonas syringae pv. tomato (Pst) at high inoculum density, whereas at normal Pst inoculum concentration nec1 resistance did not differ from wt. In contrast to augmented P. syringae resistance, penetration resistance against biotrophic fungus Blumeria graminis f. sp. hordei (Bgh), the causal agent of powdery mildew, was not altered in nec1. The nec1 mutant significantly over-expressed race non-specific Bgh resistance-related genes BI-1 and MLO. Induction of BI-1 and MLO suggested putative involvement of nec1 in race non-specific Bgh resistance, therefore the effect of nec1on mlo-5-mediated Bgh resistance was assessed. The nec1/mlo-5 double mutant was as resistant to Bgh as Nec1/mlo-5 plants, suggesting that nec1 did not impair mlo-5 race non-specific Bgh resistance. Together, the results suggest that nec1 mutation alters activation of systemic acquired resistance-related physiological markers and non-host resistance in barley

  17. Effect of partially replacing a barley-based concentrate with flaxseed-based products on the rumen bacterial population of lactating Holstein dairy cows.

    PubMed

    Castillo-Lopez, E; Moats, J; Aluthge, N D; Ramirez Ramirez, H A; Christensen, D A; Mutsvangwa, T; Penner, G B; Fernando, S C

    2018-01-01

    The effects of partial replacement of a barley-based concentrate with flaxseed-based products on the rumen bacterial population of lactating Holstein dairy cows were evaluated. Treatments fed were CONT, a normal diet that included barley silage, alfalfa hay and a barley-based concentrate that contained no flaxseed or faba beans; FLAX, inclusion of a nonextruded flaxseed-based product containing 55·0% flaxseed, 37·8% field peas and 6·9% alfalfa; EXT, similar to FLAX, but the product was extruded and EXTT, similar to FLAX, but product was extruded and field peas were replaced by high-tannin faba beans. The rumen bacterial population was evaluated by utilizing 16S rRNA gene sequencing. Most abundant phyla, families and genera were unaffected. However, some taxa were affected; for example, unsaturated fatty acid content was negatively correlated with Clostridiaceae, and tannin content was negatively correlated with BS11 and Paraprevotellaceae. Predominant rumen bacterial taxa were not affected, but the abundance of some taxa found in lower proportions shifted, possibly due to sensitivity to unsaturated fatty acids or tannins. Flaxseed-based products were effective for partially replacing barley-based concentrate in rations of lactating dairy cows. No negative effects of these products were observed on the abundance of predominant rumen bacterial taxa, with only minor shifts in less abundant bacteria. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  18. Registration of STARS 1501B and STARS 1502B barley germplasm with Rsg2 resistance to greenbug

    USDA-ARS?s Scientific Manuscript database

    STARS 1501B (Reg. No. GP- , PI 675335) greenbug-resistant, six-rowed, spring, feed barley (Hordeum vulgare L.) germplasm and STARS 1502B (Reg. No. GP-, PI 675336) greenbug-resistant, six-rowed, winter, feed barley germplasm, tested as GR 001 and GR 010 respectively, were developed and released by US...

  19. Whole Tibetan Hull-Less Barley Exhibit Stronger Effect on Promoting Growth of Genus Bifidobacterium than Refined Barley In Vitro.

    PubMed

    Gong, Lingxiao; Cao, Wenyan; Gao, Jie; Wang, Jing; Zhang, Huijuan; Sun, Baoguo; Yin, Meng

    2018-04-01

    The gut microbiota has recently become a new route for research at the intersection of diet and human health. The aim of this study was to investigate whether whole Tibetan hull-less barley (WHB) and refined Tibetan hull-less barley (RHB) caused differentiation of the fecal microbiota in vitro. The microbiota-accessible ingredients in the 2 barley samples were studied using an in vitro enzymatic digestion procedure. After in vitro digestion, insoluble dietary fiber, phenolic compounds, proteins, and β-glucans were 93.2%, 103.4%. 18.8%, and 10.2% higher provided by WHB flour as compared with RHB flour based on the same mass amount. However, due to the significantly higher content of insoluble dietary fiber, WHB digesta had lower percentage contents of fast fermentable substrates including dietary fiber and starch as compared with RHB digesta. The results of Next-generation sequencing of the bacterial 16SrRNA gene showed that both WHB and RHB fermentation had significantly promoted the growth of Bifidobacterium and inhibited the growth of pathogenic bacteria such as Dorea, Escherichia, Oscillopira, and Ruminococcus. Moreover, in response to WHB fermentation, the relative abundance of Bifidobacterium increased by 78.5% and 92.8% as compared with RHB and fructo-oligosaccharides (FOs). Both WHB and RHB are good sources of fermentable dietary fiber with the ability to yield high concentration of short chain fatty acids (SCFAs) as compared to FOs. However, the higher fraction of soluble fiber in RHB digesta increase higher amounts of SCFA compared with WHB digesta. Our findings shed light on the complex interactions of whole cereals with gut microbiota and the possible impact on host health. Until now, only few reports have regarded the impact of in vitro digestion in components of whole grain with complex food matrix. Moreover, our findings shed light on the complex interactions of whole cereals with gut microbiota and the possible impact on host health. © 2018

  20. HvFT1 polymorphism and effect—survey of barley germplasm and expression analysis

    PubMed Central

    Loscos, Jorge; Igartua, Ernesto; Contreras-Moreira, Bruno; Gracia, M. Pilar; Casas, Ana M.

    2014-01-01

    Flowering time in plants is a tightly regulated process. In barley (Hordeum vulgare L.), HvFT1, ortholog of FLOWERING LOCUS T, is the main integrator of the photoperiod and vernalization signals leading to the transition from vegetative to reproductive state of the plant. This gene presents sequence polymorphisms affecting flowering time in the first intron and in the promoter. Recently, copy number variation (CNV) has been described for this gene. An allele with more than one copy was linked to higher gene expression, earlier flowering, and an overriding effect of the vernalization mechanism. This study aims at (1) surveying the distribution of HvFT1 polymorphisms across barley germplasm and (2) assessing gene expression and phenotypic effects of HvFT1 alleles. We analyzed HvFT1 CNV in 109 winter, spring, and facultative barley lines. There was more than one copy of the gene (2–5) only in spring or facultative barleys without a functional vernalization VrnH2 allele. CNV was investigated in several regions inside and around HvFT1. Two models of the gene were found: one with the same number of promoters and transcribed regions, and another with one promoter and variable number of transcribed regions. This last model was found in Nordic barleys only. Analysis of HvFT1 expression showed that association between known polymorphisms at the HvFT1 locus and the expression of the gene was highly dependent on the genetic background. Under long day conditions the earliest flowering lines carried a sensitive PpdH1 allele. Among spring cultivars with different number of copies, no clear relation was found between CNV, gene expression and flowering time. This was confirmed in a set of doubled haploid lines of a population segregating for HvFT1 CNV. Earlier flowering in the presence of several copies of HvFT1 was only seen in cultivar Tammi, which carries one promoter, suggesting a relation of gene structure with its regulation. HvCEN also affected to a large extent flowering

  1. Educational inequalities in young-adult mortality between the 1990s and the 2000s: regional differences in Belgium.

    PubMed

    De Grande, Hannelore; Vandenheede, Hadewijch; Deboosere, Patrick

    2015-01-01

    This study addresses educational inequalities in young-adult mortality between the 1990s and the 2000s by comparing trends in the three different regions in Belgium stratified by sex. Social inequalities in mortality are of major concern to public health but are rarely studied at young ages. Substantial health differences have been found between the Flemish (FR) and Walloon region (WR) concerning (healthy) life expectancy and avoidable mortality, but little is known about regional differentials in young-adult mortality, and comparisons with the Brussels-Capital Region (BCR) have thus far never been made. Data are derived from record linkage between the Belgian censuses of 1991 and 2001 and register data on death and emigration for the periods 01/03/1991-01/03/1999 and 01/10/2001-01/10/2009. Analyses are restricted to young adults aged 25 to 34 years at the moment of each of the censuses. Absolute (directly standardized mortality rates (ASMRs)) and relative (mortality rate ratio using Poisson regression) measures were calculated. There is a significant drop in young-adult mortality between the 1990s and the 2000s in all regions and both sexes, with the strongest decline in the BCR (e.g. ASMR of men declined from 165.6 [151.1-180.1] per 100,000 person years to 73.8 [88.3-98.3]). The mortality rates remain highest in the WR in the 2000s Between the 1990s and the 2000s, a remarkable change in the educational distribution occurred as well, with much lower proportions of primary educated in all regions in the 2000s in favour of higher proportions in all other educational levels, especially in higher education. All educational groups show lower mortality over time, except for lower educated men in the FR. There is a positive evolution towards lower mortality among the young-adult Belgian population. The WR trails behind in this evolution, which calls for tailored preventive actions. Educational inequalities are marked in all regions and time periods. A more general

  2. Molecular breeding of Aspergillus kawachii overproducing cellulase and its application to brewing barley shochu.

    PubMed

    Nomachi, Wataru; Urago, Ken-Ichi; Oka, Takuji; Ekino, Keisuke; Matsuda, Minoru; Goto, Masatoshi; Furukawa, Kensuke

    2002-01-01

    In order to improve fermentation of barley without addition of commercial cellulase, a white koji mold, Aspergillus kawachii IFO4308, was transformed with the egl1 gene encoding endoglucanase I (EGI) of Trichoderma viride and the endogenous cekA gene encoding endoglucanase (CekA). Transformants with egl1 under the control of the strong glaA promoter produced EGI in both submerged and solid-state cultures. However, the EGI produced in solid-state culture was unstable due to the acidic condition of this culture. A transformant N10 with two additional copies of the cekA gene exhibited endoglucanase activities against carboxymethyl-cellulose, which are 21- and 1.8-fold higher than that of the wild-type (wt) strain when the cells were cultivated in submerged and solid-state cultures, respectively. Cultivation of strain N10 in steamed barley for preparing koji followed by fermentation with Saccharomyces cerevisiae resulted in improved fermentation assessed based on higher productions of ethanol, amino acids, and organic acids, the reduction of residual sugar, and the low viscosity of barley mash. The overall fermentation result for the transformant carrying cekA was comparable with that for the wt strain using commercial cellulase. These results demonstrate that acquisition of only two-fold CekA activity by A. kawachii in the solid-state culture allows us to improve the brewing of barley shochu.

  3. Molecular Farming in Barley: Development of a Novel Production Platform to Produce Human Antimicrobial Peptide LL-37.

    PubMed

    Holásková, Edita; Galuszka, Petr; Mičúchová, Alžbeta; Šebela, Marek; Öz, Mehmet Tufan; Frébort, Ivo

    2018-06-01

    The peptide LL-37, a component of the human innate immune system, represents a promising drug candidate. In particular, the development of low-cost production platform technology is a critical bottleneck in its use in medicine. In the present study, a viable approach for the LL-37 production in transgenic barley is developed. First, comparative analyses of the effects of different fused peptide epitope tags applicable for accumulation and purification on LL-37 production yield are performed using transient expression in tobacco leaves. Following the selection of the most yielding fusion peptide strategies, eight different constructs for the expression of codon optimized chimeric LL-37 genes in transgenic barley plants are created. The expression of individual constructs is driven either by an endosperm-specific promoter of the barley B1 hordein gene or by the maize ubiquitin promoter. The transgenes are stably integrated into the barley genome and inherited in the subsequent generation. All transgenic lines show normal phenotypes and are fertile. LL-37 accumulated in the barley seeds up to 0.55 mg per 1 kg of grain. The fused epitope tags are cleaved off by the use of enterokinase. Furthermore, in planta produced LL-37 including the fused versions is biologically active. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hypoglycaemic action of stevioside and a barley and brewer’s yeast based preparation in the experimental model on mice

    PubMed Central

    Cekic, Vlada; Vasovic, Velibor; Jakovljevic, Vida; Mikov, Momir; Sabo, Ana

    2011-01-01

    The aim of this study was to investigate influence of the preparation based on barley and brewer’s yeast extracts with chromium (BBCr) and stevioside (S) on fasting glycaemia and glycaemia in mice after glucose, adrenalin and alloxan application. The animals were divided into three groups: glucose 500 mgkg-1 (I); adrenalin 0.2 mgkg-1(II) and alloxan 100 mg kg-1 (III) and into subgroups according to the substance they received: stevioside 20 mg kg-1 (I-S, II-S, III-S); BBCr 750 mg kg-1(I-BBCr, II-BBCr, III-BBCr) and saline 1ml/100g (III-placebo). Glycaemia was measured before and after 7-day treatment with stevioside or BBCr in the following conditions: fasting, 30min after glucose load (I) or 45min after adrenaline load (II). In group III glycaemia was measured before and after 12-day treatment with S, BBCr or placebo and alloxan application (7th, 8th and 10th days of treatment ). BBCr significantly reduced fasting glycaemia in I and II groups and glycaemia values after the glucose load (I-BBCr: 9.20 ± 0.61 vs. 7.42 ± 0.59 mmol/L, p = 0.01). Stevioside significantly reduced glycaemia after the adrenalin load (II-S: 13.45 ± 0.71 vs. 11.65 ± 1.19 mmol/L; p = 0.03). In the III-BBCr glycaemia values did not indicate the development of alloxan-induced diabetes and were significantly lower than in the III-placebo (8.6 ± 3.16 vs. 18.8 ± 5.53 mmol/L; p < 0.05). In conclusion, BBCr caused a significant decrease of fasting glycaemia, significant reduction of glycaemia after glucose load and prevented onset of alloxan-induced diabetes. Stevioside caused the decrease of adrenalin-induced hyperglycaemia. PMID:21342135

  5. Investigating Young Children's Learning of Mass Measurement

    ERIC Educational Resources Information Center

    Cheeseman, Jill; McDonough, Andrea; Ferguson, Sarah

    2014-01-01

    This paper reports results of a design experiment regarding young children's concepts of mass measurement. The research built on an earlier study in which a framework of "growth points" in early mathematics learning and a related, task-based, one-to-one interview to assess children's understanding of the measurement of mass…

  6. Capturing pair-wise epistatic effects associated with three agronomic traits in barley.

    PubMed

    Xu, Yi; Wu, Yajun; Wu, Jixiang

    2018-04-01

    Genetic association mapping has been widely applied to determine genetic markers favorably associated with a trait of interest and provide information for marker-assisted selection. Many association mapping studies commonly focus on main effects due to intolerable computing intensity. This study aims to select several sets of DNA markers with potential epistasis to maximize genetic variations of some key agronomic traits in barley. By doing so, we integrated a MDR (multifactor dimensionality reduction) method with a forward variable selection approach. This integrated approach was used to determine single nucleotide polymorphism pairs with epistasis effects associated with three agronomic traits: heading date, plant height, and grain yield in barley from the barley Coordinated Agricultural Project. Our results showed that four, seven, and five SNP pairs accounted for 51.06, 45.66 and 40.42% for heading date, plant height, and grain yield, respectively with epistasis being considered, while corresponding contributions to these three traits were 45.32, 31.39, 31.31%, respectively without epistasis being included. The results suggested that epistasis model was more effective than non-epistasis model in this study and can be more preferred for other applications.

  7. Metabolism of hydroxypyruvate in a mutant of barley lacking NADH-dependent hydroxypyruvate reductase, an important photorespiratory enzyme activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, A.J.S.; Blackwell, R.D.; Lea, P.J.

    1989-09-01

    A mutant of barley (Hordeum vulgare L.), LaPr 88/29, deficient in NADH-dependent hydroxypyruvate reductase (HPR) activity has been isolated. The activities of both NADH (5%) and NADPH-dependent (19%) HPR were severely reduced in this mutant compared to the wild type. Although lacking an enzyme in the main carbon pathway of photorespiration, this mutant was capable of CO{sub 2} fixation rates equivalent to 75% of that of the wild type, in normal atmospheres and 50% O{sub 2}. There also appeared to be little disruption to the photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{supmore » 14}C)serine feeding were similar in both mutant and wild-type leaves. When leaves of LaPr 88/29 were fed either ({sup 14}C)serine or {sup 14}CO{sub 2}, the accumulation of radioactivity was in serine and not in hydroxypyruvate, although the mutant was still able to metabolize over 25% of the supplied ({sup 14}C)serine into sucrose. After 3 hours in air the soluble amino acid pool was almost totally dominated by serine and glycine. LaPr 88/29 has also been used to show that NADH-glyoxylate reductase and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-dependent HPR activity is due to the NADH-dependent enzyme. We also suggest that the alternative NADPH activity can metabolize a proportion, but not all, of the hydroxypyruvate produced during photorespiration and may thus form a useful backup to the NADH-dependent enzyme under conditions of maximal photorespiration.« less

  8. Protein C and protein S deficiencies: similarities and differences between two brothers playing in the same game.

    PubMed

    Bereczky, Zsuzsanna; Kovács, Kitti B; Muszbek, László

    2010-12-01

    Protein C (PC) and protein S (PS) are vitamin K-dependent glycoproteins that play an important role in the regulation of blood coagulation as natural anticoagulants. PC is activated by thrombin and the resulting activated PC (APC) inactivates membrane-bound activated factor VIII and factor V. The free form of PS is an important cofactor of APC. Deficiencies in these proteins lead to an increased risk of venous thromboembolism; a few reports have also associated these deficiencies with arterial diseases. The degree of risk and the prevalence of PC and PS deficiency among patients with thrombosis and in those in the general population have been examined by several population studies with conflicting results, primarily due to methodological variability. The molecular genetic background of PC and PS deficiencies is heterogeneous. Most of the mutations cause type I deficiency (quantitative disorder). Type II deficiency (dysfunctional molecule) is diagnosed in approximately 5%-15% of cases. The diagnosis of PC and PS deficiencies is challenging; functional tests are influenced by several pre-analytical and analytical factors, and the diagnosis using molecular genetics also has special difficulties. Large gene segment deletions often remain undetected by DNA sequencing methods. The presence of the PS pseudogene makes genetic diagnosis even more complicated.

  9. Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons

    USDA-ARS?s Scientific Manuscript database

    Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known so...

  10. Inferring geographic origin of barley accessions using molecular markers

    USDA-ARS?s Scientific Manuscript database

    The USDA Agricultural Research Service (ARS) National Small Grains Collection (NSGC) has 207 landrace barleys obtained from a nursery grown in the Ukraine in 1930 by N.I. Vavilov, many of which have multiple resistance (MR) to disease similar to accessions from Ethiopia. Vavilov collected germplasm ...

  11. Adaptive microclimatic evolution of the dehydrin 6 gene in wild barley at "Evolution Canyon", Israel.

    PubMed

    Yang, Zujun; Zhang, Tao; Li, Guangrong; Nevo, Eviatar

    2011-12-01

    Dehydrins are one of the major stress-induced gene families, and the expression of dehydrin 6 (Dhn6) is strictly related to drought in barley. In order to investigate how the evolution of the Dhn6 gene is associated with adaptation to environmental changes, we examined 48 genotypes of wild barley, Hordeum spontaneum, from "Evolution Canyon" at Mount Carmel, Israel. The Dhn6 sequences of the 48 genotypes were identified, and a recent insertion of 342 bp at 5'UTR was found in the sequences of 11 genotypes. Both nucleotide and haplotype diversity of single nucleotide polymorphism in Dhn6 coding regions were higher on the AS ("African" slope or dry slope) than on the ES ("European" slope or humid slope), and the applied Tajima D and Fu-Li test rejected neutrality of SNP diversity. Expression analysis indicated that the 342 bp insertion at 5'UTR was associated with the earlier up-regulation of Dhn6 after dehydration. The genetic divergence of amino acids sequences indicated significant positive selection of Dhn6 among the wild barley populations. The diversity of Dhn6 in microclimatic divergence slopes suggested that Dhn6 has been subjected to natural selection and adaptively associated with drought resistance of wild barley at "Evolution Canyon".

  12. Chlorophyll Fluorescence as a Possible Tool for Salinity Tolerance Screening in Barley (Hordeum vulgare L.).

    PubMed Central

    Belkhodja, R.; Morales, F.; Abadia, A.; Gomez-Aparisi, J.; Abadia, J.

    1994-01-01

    The application of chlorophyll fluorescence measurements to screening barley (Hordeum vulgare L.) genotypes for salinity tolerance has been investigated. Excised barley leaves were cut under water and incubated with the cut end immersed in water or in a 100-mM NaCl solution, either in the dark or in high light. Changes in rapid fluorescence kinetics occurred in excised barley leaves exposed to the saline solution only when the incubation was carried out in the presence of high light. Fluorescence changes consisted of decreases in the variable to maximum fluorescence ratio and in increases in the relative proportion of variable fluorescence leading to point I in the Kautsky fluorescence induction curve. These relative increases in fluorescence at point I appeared to arise from a delayed plastoquinone reoxidation in the dark, since they disappeared after short, far-red illumination, which is known to excite photosystem I preferentially. We show that a significant correlation existed between some fluorescence parameters, measured after a combined salt and high-light treatment, and other independent measurements of salinity tolerance. These results suggest that chlorophyll fluorescence, and especially the relative fluorescence at point I in the Kautsky fluorescence induction curve, could be used for the screening of barley genotypes for salinity tolerance. PMID:12232117

  13. The β-Ketoacyl-CoA Synthase HvKCS1, Encoded by Cer-zh, Plays a Key Role in Synthesis of Barley Leaf Wax and Germination of Barley Powdery Mildew.

    PubMed

    Li, Chao; Haslam, Tegan M; Krüger, Anna; Schneider, Lizette M; Mishina, Kohei; Samuels, Lacey; Yang, Hongxing; Kunst, Ljerka; Schaffrath, Ulrich; Nawrath, Christiane; Chen, Guoxiong; Komatsuda, Takao; von Wettstein-Knowles, Penny

    2018-04-01

    The cuticle coats the primary aerial surfaces of land plants. It consists of cutin and waxes, which provide protection against desiccation, pathogens and herbivores. Acyl cuticular waxes are synthesized via elongase complexes that extend fatty acyl precursors up to 38 carbons for downstream modification pathways. The leaves of 21 barley eceriferum (cer) mutants appear to have less or no epicuticular wax crystals, making these mutants excellent tools for identifying elongase and modification pathway biosynthetic genes. Positional cloning of the gene mutated in cer-zh identified an elongase component, β-ketoacyl-CoA synthase (CER-ZH/HvKCS1) that is one of 34 homologous KCSs encoded by the barley genome. The biochemical function of CER-ZH was deduced from wax and cutin analyses and by heterologous expression in yeast. Combined, these experiments revealed that CER-ZH/HvKCS1 has a substrate specificity for C16-C20, especially unsaturated, acyl chains, thus playing a major role in total acyl chain elongation for wax biosynthesis. The contribution of CER-ZH to water barrier properties of the cuticle and its influence on the germination of barley powdery mildew fungus were also assessed.

  14. Global Identification of MicroRNAs and Their Targets in Barley under Salinity Stress

    PubMed Central

    Cui, Licao; Feng, Kewei; Liu, Fuyan; Du, Xianghong; Tong, Wei; Nie, Xiaojun; Ji, Wanquan; Weining, Song

    2015-01-01

    Salinity is a major limiting factor for agricultural production worldwide. A better understanding of the mechanisms of salinity stress response will aid efforts to improve plant salt tolerance. In this study, a combination of small RNA and mRNA degradome sequencing was used to identify salinity responsive-miRNAs and their targets in barley. A total of 152 miRNAs belonging to 126 families were identified, of which 44 were found to be salinity responsive with 30 up-regulated and 25 down-regulated respectively. The majority of the salinity-responsive miRNAs were up-regulated at the 8h time point, while down-regulated at the 3h and 27h time points. The targets of these miRNAs were further detected by degradome sequencing coupled with bioinformatics prediction. Finally, qRT-PCR was used to validate the identified miRNA and their targets. Our study systematically investigated the expression profile of miRNA and their targets in barley during salinity stress phase, which can contribute to understanding how miRNAs respond to salinity stress in barley and other cereal crops. PMID:26372557

  15. Metal availability in technosols prepared with composted sewage sludge and limestone outcrop affected by the presence of barley

    NASA Astrophysics Data System (ADS)

    Román, Alejandro; Navarro-Pedreño, José; Belén Almendro-Candel, María; Gómez, Ignacio; Jordán, Manuel M.; Bech, Jaume

    2017-04-01

    The use of composted sewage sludge (SSC), and limestone outcrop residue (LOR), is a common practice in soil and land rehabilitation, technosol making, and quarry restoration (Jordán et al. 2008). Both wastes are used to improve the physical, chemical, and biological properties of impoverished soils (Karaca 2004; Jordão et al. 2006; Lovieno et al. 2009). However, the use of compost may have some negative effects on the environment (Navarro-Pedreño et al. 2004; Elridge et al. 2009). Moreover, plants cultivated in technosols can produced changes on the availability of essential and harmful metals and, for this reason, is necessary to made studies to evaluate the availability of metals and the effect of plants in their mobility and toxicity. In this experiment, it has been analyzed the effect of barley in metals availability in four technosols prepared mixing volumes of LOR (100, 98, 95 and 90 %) and SSC (0, 2, 5 and 10%). To determine the solubility and availability, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured by Lindsay-Norvell extraction procedure. For each technosoil, tree pots with barley (three plants) and three without barley were checked after 3 months A of them were irrigated with 1.5 L/week of tap water. At the end of this time, the metal solubility and availability were higher in soils with the presence of barley than the others. This was especially notorious for Fe and Zn. The presence of root exudates and the reduction of lixiviation due to plant transpiration can explain the highest presence of metals. This result may be considered in rhizosphere related to possible metal toxicity. Keywords: compost, limestone outcrop residues, heavy metals, barley. References: Eldridge SM, Chan KY, Barchia I, Pengelly PK, Katupitiya S, Davis JM (2009) A comparison of surface applied granulated biosolids and poultry litter in terms of risk to runoff water quality on turf farms in Western Sydney, Australia. Agr Ecosyst Environ doi:10.1016/j.agee.2009.07.007 Iovieno

  16. Spatio-temporal distribution and environmental drivers of Barley yellow dwarf virus and vector abundance in Kansas.

    PubMed

    Enders, Laramy; Hefley, Trevor; Girvin, John; Whitworth, Robert; Smith, Charles

    2018-05-11

    Several aphid species transmit barley yellow dwarf, a globally destructive disease caused by viruses that infect cereal grain crops. Data from >400 samples collected across Kansas wheat fields in 2014 and 2015 were used to develop spatio-temporal models predicting the extent to which landcover, temperature and precipitation affect spring aphid vector abundance and presence of individuals carrying Barley yellow dwarf virus (BYDV). The distribution of Rhopalosiphum padi abundance was not correlated with climate or landcover, but Sitobion avenae abundance was positively correlated to fall temperature and negatively correlated to spring temperature and precipitation. The abundance of Schizaphis graminum was negatively correlated with fall precipitation and winter temperature. The incidence of viruliferous (+BYDV) R. padi was positively correlated with fall precipitation but negatively correlated with winter precipitation. In contrast, the probability of +BYDV S. avenae was unaffected by precipitation but was positively correlated with average fall temperatures and distance to nearest forest or shrubland. R. padi and S. avenae were more prevalent at Eastern sample sites where ground cover is more grassland than cropland, suggesting that grassland may provide over-summering sites for vectors and pose a risk as potential BYDV reservoirs. Nevertheless, land cover patterns were not strongly associated with differences in abundance or probability that viruliferous aphids were present.

  17. Natural occurrence of the mycotoxin viomellein in barley and the associated quinone-producing penicillia.

    PubMed Central

    Hald, B; Christensen, D H; Krogh, P

    1983-01-01

    In a batch of barley associated with field cases of mycotoxic porcine nephropathy and containing ochratoxin A and citrinin, the mycoflora were isolated by parallel incubation at 10 and 25 degrees C. Subsequently, the isolated cultures were checked for production of nephrotoxins (xanthomegnin, viomellein, ochratoxin, and citrinin). The nephrotoxin producers, all isolated by incubation at 10 degrees C, were comprised of one culture of Penicillium viridicatum, five cultures of Penicillium cyclopium, and one culture of Penicillium crustosum, all producing xanthomegnin and viomellein. One culture of P. cyclopium produced citrinin. Viomellein was detected in the barley at a concentration of approximately 1 mg/kg. The method of analysis for xanthomegnin and viomellein included extraction with chloroform, partitioning in hexane-acetone, and thin-layer chromatographic separation and identification. The identity of the xanthomegnin and viomellein produced by the isolated fungi and of viomellein detected in the barley was supported by infrared spectroscopy. This is the first report of viomellein as a natural contaminant of foodstuffs. Images PMID:6660870

  18. Total antioxidant capacity and starch digestibility of muffins baked with rice, wheat, oat, corn and barley flour.

    PubMed

    Soong, Yean Yean; Tan, Seow Peng; Leong, Lai Peng; Henry, Jeya Kumar

    2014-12-01

    Muffins are a popular snack consumed in western and emerging countries. Increased glycemic load has been implicated in the aetiology of diabetes. This study examined the starch digestibility of muffins baked with rice, wheat, corn, oat and barley flour. Rapidly digested starch (RDS) was greatest in rice (445 mg/g) and wheat (444 mg/g) muffins, followed by oat (416 mg/g), corn (402 mg/g) and barley (387 mg/g). Total phenolic content was found to be positively correlated with total antioxidative capacity and inversely related to the RDS of muffins. The phenolic content was highest in muffin baked with barley flour (1,687 μg/g), followed by corn (1,454 μg/g), oat (945 μg/g), wheat (705 μg/g), and rice (675 μg/g) flour. Browning was shown not to correlate with free radical scavenging capacity and digestibility of muffins. The presence of high phenolic content and low RDS makes barley muffin an ideal snack to modulate glycemic response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Overexpression of HvIcy6 in Barley Enhances Resistance against Tetranychus urticae and Entails Partial Transcriptomic Reprogramming.

    PubMed

    Santamaria, M Estrella; Diaz-Mendoza, Mercedes; Perez-Herguedas, David; Hensel, Goetz; Kumlehn, Jochen; Diaz, Isabel; Martinez, Manuel

    2018-03-01

    Cystatins have been largely used for pest control against phytophagous species. However, cystatins have not been commonly overexpressed in its cognate plant species to test their pesticide capacity. Since the inhibitory role of barley HvCPI-6 cystatin against the phytophagous mite Tetranychus urticae has been previously demonstrated, the purpose of our study was to determine if barley transgenic lines overexpressing its own HvIcy6 gene were more resistant against this phytophagous infestation. Besides, a transcriptomic analysis was done to find differential expressed genes among wild-type and transformed barley plants. Barley plants overexpressing HvIcy6 cystatin gene remained less susceptible to T. urticae attack when compared to wild-type plants, with a significant lesser foliar damaged area and a lower presence of the mite. Transcriptomic analysis revealed a certain reprogramming of cellular metabolism and a lower expression of several genes related to photosynthetic activity. Therefore, although caution should be taken to discard potential deleterious pleiotropic effects, cystatins may be used as transgenes with impact on agricultural crops by conferring enhanced levels of resistance to phytophagous pests.

  20. Effect of soaking in water and rumen digeta solutions on metabolizable energy content and chemical composition of barley seeds for use in poultry diet.

    PubMed

    Tabatabee, S N; Sadeghi, G H; Tabeidian, S A

    2007-03-15

    An experiment was carried out to evaluate the effect of soaking in water and different rumen digesta solutions on nutritional value of dry barley seeds. Treatments were included distilled water as control and rumen digesta that diluted with distilled water to obtain 20, 40 and 60% digesta solutions. Solutions have added to 10 kg of barley seed samples to achieve final 30% moisture content. After 21 days the chemical composition and energy content of barley seed were determined. Gross energy of barley seeds did not affected by different experimental treatments. Use of 20% rumen digesta solution resulted to a significant (p<0.01) increase in AME and AMEn content of barley seeds. Barley seed that treated with 40% of rumen digesta solution had highest TME and TMEn content and its different from seeds that treated with 60 and 100% rumen digesta solutions was significant (p<0.05). The chemical composition such as dry matter, crud protein, crude fat, crud fiber, ash and NFE were found to be similar and there was no significant difference. However, soaking in rumen digesta solutions increased crud protein, ether extract, crude fiber and ash content of barley seeds numerically.

  1. Evaluation of Kojima-Matsubara color vision test plates: validity in young children.

    PubMed

    Lee, D Y; Cotter, S A; French, A L

    1997-09-01

    We examined a pseudoisochromatic color plate test by Kojima and Matsubara for young children which uses drawings of familiar objects rather than letters or numbers. First, we evaluated the test's efficacy as a color deficiency screener and its validity in classifying the types of color deficiencies by comparing its results with those from the Moreland anomaloscope. Second, we eliminated the chromatic factor and evaluated the functional ability of young children to perform the task by determining how many correct responses were obtained using modified black/white replicas of the test plates. Part 1: Twenty color-normal and 13 color-deficient adults were diagnosed and classified with the Ishihara test, Panel D-15 test, and anomaloscope. Subjects were then tested with the Kojima-Matsubara test and result were compared with those from the anomaloscope. Part 2: Fifty children aged 3 to 7 years were tested with modified black/white test plate replicas. The number of correct responses for each plate was determined for five different age groups. Part 1: Among the 20 color-normal subjects, 18 read all 10 plates correctly and 2 subjects missed 1 of the 10. Only 1 of the 13 color-deficient subjects exhibited the expected responses for plates 2 to 6 (used for color deficiency screening). The color-deficient subjects' responses for plates 7 to 10, which are used to classify red-green defects, were varied and only the protanomalous subjects (n = 2) followed the expected response pattern. Part 2: Of the 10 black/white modified plates, only 2 were correctly identified by all 50 children. The other plates had a recognition rate that ranged from 32 to 98%. Because the response patterns given by most of the color-deficient adult subjects were different from those in the test manual, ambiguous results would occur if the Kojima-Matsubara test were used for color vision screening or the diagnosis of color deficiency. In addition, the difficulty that many of the young children exhibited

  2. Barley β-glucan increases fecal bile acid excretion and short chain fatty acid levels in mildly hypercholesterolemic individuals.

    PubMed

    Thandapilly, Sijo J; Ndou, Saymore P; Wang, Yanan; Nyachoti, Charles M; Ames, Nancy P

    2018-06-20

    The cholesterol-lowering effect of barley β-glucan has been proposed to be the result of a pleiotropic effect, which involves several biological mechanisms such as gut fermentation, inhibition of intestinal cholesterol absorption and increased bile acid excretion and its synthesis. However, one of the recent studies from our laboratory indicated that increased bile acid excretion and subsequent increase in its synthesis, but not the inhibition of cholesterol absorption or synthesis might be responsible for the cholesterol-lowering effect of barley β-glucan. Accordingly, the primary objective of the present study was to investigate the concentration of bile acids (BA), neutral sterols (NS) and short chain fatty acids (SCFA) excreted through the feces by mildly hypercholesterolemic subjects who consumed diets containing barley β-glucan with varying molecular weights (MW) and concentrations. In a controlled, four phase, crossover trial, 30 mildly hypercholesterolemic but otherwise healthy subjects were randomly assigned to receive breakfast containing 3 g high MW (HMW), 5 g low MW (LMW), 3 g LMW barley β-glucan or a control diet for 5 weeks. The concentrations of BA, NS and SCFA in the feces were measured at the end of each treatment phase. Compared to the other treatment groups, 3 g day-1 HMW barley β-glucan consumption resulted in increased lithocholic acid (LCA) excretion (P < 0.001) but not LMW β-glucan, even at the high dose of 5 g day-1. Increased fermentability of fibre was also evident from a significant increase in fecal total SCFA concentrations in response to the 3 g HMW β-glucan diet compared to the 3 g LMW barley β-glucan and control diet (P = 0.0015). In summary, the current results validate our previous report on the role of fecal bile acid excretion in cholesterol lowering through the consumption of barley β-glucan. In addition, increased SCFA concentrations indicate that an increase in β-glucan molecular weight promotes hindgut fermentation

  3. Inducers of Glycinebetaine Synthesis in Barley1

    PubMed Central

    Jagendorf, André T.; Takabe, Tetsuko

    2001-01-01

    Glycinebetaine is an osmoprotectant accumulated by barley (Hordeum vulgare) plants in response to high levels of NaCl, drought, and cold stress. Using barley seedlings in hydroponic culture, we characterized additional inducers of glycinebetaine accumulation. These included other inorganic salts (KCl, MgCl2, LiCl, and Na2SO4), oxidants (H2O2 and cumene hydroperoxide), and organic compounds (abscisic acid, polymixin B, n-butanol, salicylic acid, and aspirin). Stress symptoms brought on by high NaCl and other inducers, and not necessarily correlated with glycinebetaine accumulation, include wilting, loss of chlorophyll, and increase in thiobarbituric acid reacting substances. For NaCl, Ca2+ ions at 10 to 20 mm decrease these stress symptoms without diminishing, or even increasing, glycinebetaine induction. Abscisic acid induces glycinebetaine accumulation without causing any of the stress symptoms. NaCl, KCl, and H2O2 (but not other inducers) induce glycinebetaine at concentrations below those needed for the other stress symptoms. Mg2+ at 10 to 20 mm induces both stress symptoms and glycinebetaine, but only at low (0.2 mm) Ca2+. Although illumination is needed for optimal induction, a significant increase in the leaf glycinebetaine level is found in complete darkness, also. PMID:11743126

  4. Calcium Deficiency in Bangladesh: Burden and Proposed Solutions for the First 1000 Days.

    PubMed

    Bromage, Sabri; Ahmed, Tahmeed; Fawzi, Wafaie W

    2016-12-01

    Bangladesh incurs among the highest prevalence of stunting and micronutrient deficiencies in the world, despite efforts against diarrheal disease, respiratory infections, and protein-energy malnutrition which have led to substantial and continuous reductions in child mortality over the past 35 years. Although programs have generally paid more attention to other micronutrients, the local importance of calcium to health has been less recognized. To synthesize available information on calcium deficiency in Bangladesh in order to inform the design of an effective national calcium program. We searched 3 online databases and a multitude of survey reports to conduct a narrative review of calcium epidemiology in Bangladesh, including population intake, determinants and consequences of deficiency, and tested interventions, with particular reference to young children and women of childbearing age. This was supplemented with secondary analysis of a national household survey in order to map the relative extent of calcium adequacy among different demographics. Intake of calcium is low in the general population of Bangladesh, with potentially serious and persistent effects on public health. These effects are especially pertinent to young children and reproductive-age women, by virtue of increased physiologic needs, disproportionately poor access to dietary calcium sources, and a confluence of other local determinants of calcium status in these groups. A tablet supplementation program for pregnant women is an appealing approach for the reduction in preeclampsia and preterm birth. Further research is warranted to address the comparative benefit of different promising approaches in children for the prevention of rickets. © The Author(s) 2016.

  5. The viscoelastic properties of the protein-rich materials from the fermented hard wheat, soft wheat and barley flours

    USDA-ARS?s Scientific Manuscript database

    The linear and non-linear rheological properties of the suspensions for the hard red spring wheat (HRS) flour, soft wheat (Pastry) flour, barley flour, as well as the remain residues of HRS flour, Pastry flour, and barley flour after fermentation were investigated. The linear and non-linear rheologi...

  6. Rapid nested PCR-based detection of Ramularia collo-cygni direct from barley.

    PubMed

    Havis, Neil D; Oxley, Simonj P; Piper, Stephen R; Langrell, Stephen R H

    2006-03-01

    Ramularia collo-cygni is a barley pathogen of increasing importance in Northern and Central Europe, New Zealand and South America. Accurate visual and microscopic identification of the pathogen from diseased tissue is difficult. A nested PCR-based diagnostic test has been developed as part of an initiative to map the distribution of the pathogen in Scotland. The entire nuclear ribosomal internal transcribed spacer and 5.8S rRNA gene regions from 14 isolates of diverse global origin exhibited complete homology following sequence characterization. Two pairs of species-specific primers, based on inter-specific sequence divergence with closely related species, were designed and empirically evaluated for diagnostic nested PCR. Nested primers Rcc3 and Rcc4 consistently amplified a single product of 256 bp from DNA of 24 R. collo-cygni isolates of diverse global provenance, but not from other Ramularia species, or other fungi commonly encountered in cereal pathosystems, as well as Hordeum or Secale DNA preparations. Using this approach, R. collo-cygni was successfully identified from naturally infected barley leaf, awn and grain samples of diverse geographical provenance, in particular from symptoms that lacked the presence of characteristic conidiophores. It is envisaged that this assay will become established as an important tool in continuing studies into the ecology, aetiology and epidemiology of this poorly understood yet economically damaging plant pathogen.

  7. Wheat and barley exposure to nanoceria: Implications for agricultural productivity

    EPA Science Inventory

    The impacts of man-made nanomaterials on agricultural productivity are not yet well understood. A soil microcosm study was performed to assess the physiological, phenological, and yield responses of wheat (Triticum aestivum) and barley (Hordeum vulgare L.) exposed to nanoceria (n...

  8. Acquired color vision deficiency.

    PubMed

    Simunovic, Matthew P

    2016-01-01

    Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Towards Positional Isolation of Three Quantitative Trait Loci Conferring Resistance to Powdery Mildew in Two Spanish Barley Landraces

    PubMed Central

    Silvar, Cristina; Perovic, Dragan; Nussbaumer, Thomas; Spannagl, Manuel; Usadel, Björn; Casas, Ana; Igartua, Ernesto; Ordon, Frank

    2013-01-01

    Three quantitative trait loci (QTL) conferring broad spectrum resistance to powdery mildew, caused by the fungus Blumeria graminis f. sp. hordei, were previously identified on chromosomes 7HS, 7HL and 6HL in the Spanish barley landrace-derived lines SBCC097 and SBCC145. In the present work, a genome-wide putative linear gene index of barley (Genome Zipper) and the first draft of the physical, genetic and functional sequence of the barley genome were used to go one step further in the shortening and explicit demarcation on the barley genome of these regions conferring resistance to powdery mildew as well as in the identification of candidate genes. First, a comparative analysis of the target regions to the barley Genome Zippers of chromosomes 7H and 6H allowed the development of 25 new gene-based molecular markers, which slightly better delimit the QTL intervals. These new markers provided the framework for anchoring of genetic and physical maps, figuring out the outline of the barley genome at the target regions in SBCC097 and SBCC145. The outermost flanking markers of QTLs on 7HS, 7HL and 6HL defined a physical area of 4 Mb, 3.7 Mb and 3.2 Mb, respectively. In total, 21, 10 and 16 genes on 7HS, 7HL and 6HL, respectively, could be interpreted as potential candidates to explain the resistance to powdery mildew, as they encode proteins of related functions with respect to the known pathogen defense-related processes. The majority of these were annotated as belonging to the NBS-LRR class or protein kinase family. PMID:23826271

  10. Composition of clusters and building blocks in amylopectins from maize mutants deficient in starch synthase III.

    PubMed

    Zhu, Fan; Bertoft, Eric; Seetharaman, Koushik

    2013-12-18

    Branches in amylopectin are distributed along the backbone. Units of the branches are building blocks (smaller) and clusters (larger) based on the distance between branches. In this study, composition of clusters and building blocks of amylopectins from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Clusters were produced from amylopectins by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens and were subsequently treated with phosphorylase a and β-amylase to produce φ,β-limit dextrins. Clusters were further extensively hydrolyzed with the α-amylase to produce building blocks. Structures of clusters and building blocks were analyzed by diverse chromatographic techniques. The results showed that the dull1 mutation resulted in larger clusters with more singly branched building blocks. The average cluster contained ~5.4 blocks in dull1 mutants and ~4.2 blocks in the wild type. The results are compared with previous results from SSIII-deficient amo1 barley and suggest fundamental differences in the cluster structures.

  11. Characterization of protected designation of origin Italian meat products obtained from heavy pigs fed barley-based diets.

    PubMed

    Prandini, A; Sigolo, S; Gallo, A; Faeti, V; Della Casa, G

    2015-09-01

    A study was conducted to evaluate the quality and sensory properties of protected designation of origin (PDO) Parma ham and Piacentina neck obtained from heavy pigs (Italian Duroc × Italian Large White) fed barley-based diets. Four diets were tested: 1) a corn-based diet (control), 2) the control diet with 80% of a normal-amylose hulled barley variety (Cometa), 3) the control diet with 80% of a normal-amylose hulless barley variety (Astartis), and 4) the control diet with 80% of a low-amylose hulless barley variety (Alamo). All the meat products were analyzed for physicochemical and color parameters. The dry-cured hams and necks were also evaluated for sensory properties. The data of physicochemical, color, and sensory parameters were separately analyzed by multivariate factor analysis, and interpretation of each extracted factor was based on specific original variables loading on each one. The meat products obtained from pigs fed the barley-based diets differed from those obtained from the control pigs on the PUFA factors characterized by C18:2-6 and omega-3:omega-6 ratio. In particular, the meat products obtained from pigs fed the barley-based diets had a lower content of C18:2-6 and a higher omega-3:omega-6 ratio ( < 0.05) than the control. In fresh hams, iodine number and SFA (C16:0 and C18:0) in addition to PUFA and omega-3:omega-6 ratio loaded on the PUFA/SFA factor. The fresh hams produced from pigs fed the barley-based diets had subcutaneous fat (SC) with a lower iodine number and a higher SFA level compared with those produced from the control pigs ( < 0.05). A sex effect was measured for PUFA/SFA and oleic acid factors. In particular, the barrow SC had a lower SFA content, higher PUFA and C18:1-9 levels, and a higher iodine number ( < 0.05) than the gilt SC. There were no appreciable differences in the color and sensory properties of meat products obtained from pigs fed the different diets. The hams from barrows differed from those obtained from gilts on

  12. Discovery of novel cold-induced CISP genes encoding small RNA-binding proteins related to cold adaptation in barley.

    PubMed

    Ying, Mengchao; Kidou, Shin-Ichiro

    2017-07-01

    To adapt to cold conditions, barley plants rely on specific mechanisms, which have not been fully understood. In this study, we characterized a novel barley cold-induced gene identified using a PCR-based high coverage gene expression profiling method. The identified gene encodes a small protein that we named CISP1 (Cold-induced Small Protein 1). Homology searches of sequence databases revealed that CISP1 homologs (CISP2 and CISP3) exist in barley genome. Further database analyses showed that the CISP1 homologs were widely distributed in cold-tolerant plants such as wheat and rye. Quantitative reverse transcription PCR analyses indicated that the expression of barley CISP genes was markedly increased in roots exposed to cold conditions. In situ hybridization analyses showed that the CISP1 transcripts were localized in the root tip and lateral root primordium. We also demonstrated that the CISP1 protein bound to RNA. Taken together, these findings indicate that CISP1 and its homologs encoding small RNA-binding proteins may serve as RNA chaperones playing a vital role in the cold adaptation of barley root. This is the first report describing the likely close relationship between root-specific genes and the cold adaptation process, as well as the potential function of the identified genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Starch granule-associated proteins of hull-less barley (Hordeum vulgare L.) from the Qinghai-Tibet Plateau in China.

    PubMed

    Wang, Chun-Ping; Pan, Zhi-Fen; Nima, Zha-Xi; Tang, Ya-Wei; Cai, Peng; Liang, Jun-Jun; Deng, Guang-Bing; Long, Hai; Yu, Mao-Qun

    2011-03-15

    The starch granule-associated proteins (SGAPs) are the minor components of the starch granules and a majority of them are believed to be starch biosynthetic enzymes. The Qinghai-Tibet Plateau in China, one of the centres of origin of cultivated barley, is abundant in hull-less barley resources which exhibit high polymorphism in SGAPs. The SGAPs of hull-less barley from Qinghai-Tibet Plateau were analysed by one-dimensional (1-D) SDS-PAGE, 2-D PAGE and ESI-Q-TOF MS/MS. In the 1-D SDS-PAGE gel, four proteins including a 80 kDa starch synthase, actin, actin 4 and ATP synthase β-subunit were identified as novel SGAPs. A total of six different bands were identified as starch granule-bound starch synthase I (GBSSI) and the segregation of the novel GBSSI bands in F(1) and F(2) seeds derived from yf127 × yf70 was in accordance with Mendel's law. In the 2-D PAGE gel, 92 spots were identified as 42 protein species which could be classified into 15 functional groups. Thirteen protein species were identified as SGAPs for the first time and multiple spots were identified as GBSSI. This study revealed novel SGAPs in hull-less barley from the Qinghai-Tibet Plateau in China and these will be significant in further studies of starch biosynthesis in barley. Copyright © 2011 Society of Chemical Industry.

  14. Mapping and validation of major quantitative trait loci for kernel length in wild barley (Hordeum vulgare ssp. spontaneum).

    PubMed

    Zhou, Hong; Liu, Shihang; Liu, Yujiao; Liu, Yaxi; You, Jing; Deng, Mei; Ma, Jian; Chen, Guangdeng; Wei, Yuming; Liu, Chunji; Zheng, Youliang

    2016-09-13

    Kernel length is an important target trait in barley (Hordeum vulgare L.) breeding programs. However, the number of known quantitative trait loci (QTLs) controlling kernel length is limited. In the present study, we aimed to identify major QTLs for kernel length, as well as putative candidate genes that might influence kernel length in wild barley. A recombinant inbred line (RIL) population derived from the barley cultivar Baudin (H. vulgare ssp. vulgare) and the long-kernel wild barley genotype Awcs276 (H.vulgare ssp. spontaneum) was evaluated at one location over three years. A high-density genetic linkage map was constructed using 1,832 genome-wide diversity array technology (DArT) markers, spanning a total of 927.07 cM with an average interval of approximately 0.49 cM. Two major QTLs for kernel length, LEN-3H and LEN-4H, were detected across environments and further validated in a second RIL population derived from Fleet (H. vulgare ssp. vulgare) and Awcs276. In addition, a systematic search of public databases identified four candidate genes and four categories of proteins related to LEN-3H and LEN-4H. This study establishes a fundamental research platform for genomic studies and marker-assisted selection, since LEN-3H and LEN-4H could be used for accelerating progress in barley breeding programs that aim to improve kernel length.

  15. Iron deficiency alters megakaryopoiesis and platelet phenotype independent of thrombopoietin.

    PubMed

    Evstatiev, Rayko; Bukaty, Adam; Jimenez, Kristine; Kulnigg-Dabsch, Stefanie; Surman, Lidia; Schmid, Werner; Eferl, Robert; Lippert, Kathrin; Scheiber-Mojdehkar, Barbara; Kvasnicka, Hans Michael; Khare, Vineeta; Gasche, Christoph

    2014-05-01

    Iron deficiency is a common cause of reactive thrombocytosis, however, the exact pathways have not been revealed. Here we aimed to study the mechanisms behind iron deficiency-induced thrombocytosis. Within few weeks, iron-depleted diet caused iron deficiency in young Sprague-Dawley rats, as reflected by a drop in hemoglobin, mean corpuscular volume, hepatic iron content and hepcidin mRNA in the liver. Thrombocytosis established in parallel. Moreover, platelets produced in iron deficient animals displayed a higher mean platelet volume and increased aggregation. Bone marrow studies revealed subtle alterations that are suggestive of expansion of megakaryocyte progenitors, an increase in megakaryocyte ploidy and accelerated megakaryocyte differentiation. Iron deficiency did not alter the production of hematopoietic growth factors such as thrombopoietin, interleukin 6 or interleukin 11. Megakaryocytic cell lines grown in iron-depleted conditions exhibited reduced proliferation but increased ploidy and cell size. Our data suggest that iron deficiency increases megakaryopoietic differentiation and alters platelet phenotype without changes in megakaryocyte growth factors, specifically TPO. Iron deficiency-induced thrombocytosis may have evolved to maintain or increase the coagulation capacity in conditions with chronic bleeding. Copyright © 2014 Wiley Periodicals, Inc.

  16. The study of two barley Type I-like MADS-box genes as potential targets of epigenetic regulation during seed development

    PubMed Central

    2012-01-01

    Background MADS-box genes constitute a large family of transcription factors functioning as key regulators of many processes during plant vegetative and reproductive development. Type II MADS-box genes have been intensively investigated and are mostly involved in vegetative and flowering development. A growing number of studies of Type I MADS-box genes in Arabidopsis, have assigned crucial roles for these genes in gamete and seed development and have demonstrated that a number of Type I MADS-box genes are epigenetically regulated by DNA methylation and histone modifications. However, reports on agronomically important cereals such as barley and wheat are scarce. Results Here we report the identification and characterization of two Type I-like MADS-box genes, from barley (Hordeum vulgare), a monocot cereal crop of high agronomic importance. Protein sequence and phylogenetic analysis showed that the putative proteins are related to Type I MADS-box proteins, and classified them in a distinct cereal clade. Significant differences in gene expression among seed developmental stages and between barley cultivars with varying seed size were revealed for both genes. One of these genes was shown to be induced by the seed development- and stress-related hormones ABA and JA whereas in situ hybridizations localized the other gene to specific endosperm sub-compartments. The genomic organization of the latter has high conservation with the cereal Type I-like MADS-box homologues and the chromosomal position of both genes is close to markers associated with seed quality traits. DNA methylation differences are present in the upstream and downstream regulatory regions of the barley Type I-like MADS-box genes in two different developmental stages and in response to ABA treatment which may be associated with gene expression differences. Conclusions Two barley MADS-box genes were studied that are related to Type I MADS-box genes. Differential expression in different seed developmental

  17. The low molecular weight fraction of compounds released from immature wheat pistils supports barley pollen embryogenesis.

    PubMed

    Lippmann, Rico; Friedel, Swetlana; Mock, Hans-Peter; Kumlehn, Jochen

    2015-01-01

    Pollen embryogenesis provides a useful means of generating haploid plants for plant breeding and basic research. Although it is well-established that the efficacy of the process can be enhanced by the provision of immature pistils as a nurse tissue, the origin and compound class of the signal molecule(s) involved is still elusive. Here, a micro-culture system was established to enable the culturing of populations of barley pollen at a density too low to allow unaided embryogenesis to occur, and this was then exploited to assess the effect of using various parts of the pistil as nurse tissue. A five-fold increase in the number of embryogenic calli formed was obtained by simply cutting the pistils in half. The effectiveness of the pistil-conditioned medium was transitory, since it needed replacement at least every 4 days to measurably ensure embryogenic development. The differential effect of various size classes of compounds present in the pistil-conditioned medium showed that the relevant molecule(s) was of molecular weight below 3 kDa. This work narrows down possible feeder molecules to lower molecular weight compounds and showed that the cellular origin of the active compound(s) is not specific to any tested part of the pistil. Furthermore, the increased recovery of calli during treatment with cut pistils may provide a useful tool for plant breeders and researchers using haploid technology in barley and other plant species.

  18. In situ identification and quantification of protein-hydrolyzing ruminal bacteria associated with the digestion of barley and corn grain.

    PubMed

    Xia, Yun; Kong, Yunhong; Huang, Heping; Yang, Hee Eun; Forster, Robert; McAllister, Tim A

    2016-12-01

    In this study, BODIPY FL DQ™ casein staining combined with fluorescence in situ hybridization (FISH) was used to detect and identify protein-hydrolyzing bacteria within biofilms that produced active cell-surface-associated serine- and metallo-proteases during the ruminal digestion of barley and corn grain in cows fed barley-based diets at 2 different levels. A doublet coccoid bacterial morphotype associated with barley and corn grain particles fluoresced after BODIPY FL DQ™ casein staining. Bacteria with this morphotype accounted for 3%-10% of the total bacteria attached to surface of cereal grain particles, possibly indicative of an important role in the hydrolysis of the protein matrix within the endosperm. However, the identity of these predominant proteolytic bacteria could not be determined using FISH. Quantitative FISH revealed that known proteolytic species, Prevotella ruminicola, Ruminobacter amylophilus, and Butyrivibrio fibrisolvens, were attached to particles of various cultivars of barley grain and corn, confirming their role in the proteolysis of cereal grains. Differences in chemical composition among different barley cultivars did not affect the composition of proteolytic bacterial populations. However, the concentrate level in the basal diet did have an impact on the relative abundance of proteolytic bacteria and thus possibly their overall contribution to the proteolysis of cereal grains.

  19. The effects of reduced gluten barley diet on humoral and cell-mediated systemic immune responses of gluten-sensitive rhesus macaques.

    PubMed

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Aye, Pyone P; Liu, David X; Moehs, Charles P

    2015-03-06

    Celiac disease (CD) affects approximately 1% of the general population while an estimated additional 6% suffers from a recently characterized, rapidly emerging, similar disease, referred to as non-celiac gluten sensitivity (NCGS). The only effective treatment of CD and NCGS requires removal of gluten sources from the diet. Since required adherence to a gluten-free diet (GFD) is difficult to accomplish, efforts to develop alternative treatments have been intensifying in recent years. In this study, the non-human primate model of CD/NCGS, e.g., gluten-sensitive rhesus macaque, was utilized with the objective to evaluate the treatment potential of reduced gluten cereals using a reduced gluten (RG; 1% of normal gluten) barley mutant as a model. Conventional and RG barleys were used for the formulation of experimental chows and fed to gluten-sensitive (GS) and control macaques to determine if RG barley causes a remission of dietary gluten-induced clinical and immune responses in GS macaques. The impacts of the RG barley diet were compared with the impacts of the conventional barley-containing chow and the GFD. Although remission of the anti-gliadin antibody (AGA) serum responses and an improvement of clinical diarrhea were noted after switching the conventional to the RG barley diet, production of inflammatory cytokines, e.g., interferon-gamma (IFN-γ), tumor necrosis factor (TNF) and interleukin-8 (IL-8) by peripheral CD4+ T helper lymphocytes, persisted during the RG chow treatment and were partially abolished only upon re-administration of the GFD. It was concluded that the RG barley diet might be used for the partial improvement of gluten-induced disease but its therapeutic value still requires upgrading-by co-administration of additional treatments.

  20. The Effects of Reduced Gluten Barley Diet on Humoral and Cell-Mediated Systemic Immune Responses of Gluten-Sensitive Rhesus Macaques

    PubMed Central

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Aye, Pyone P.; Liu, David X.; Moehs, Charles P.

    2015-01-01

    Celiac disease (CD) affects approximately 1% of the general population while an estimated additional 6% suffers from a recently characterized, rapidly emerging, similar disease, referred to as non-celiac gluten sensitivity (NCGS). The only effective treatment of CD and NCGS requires removal of gluten sources from the diet. Since required adherence to a gluten-free diet (GFD) is difficult to accomplish, efforts to develop alternative treatments have been intensifying in recent years. In this study, the non-human primate model of CD/NCGS, e.g., gluten-sensitive rhesus macaque, was utilized with the objective to evaluate the treatment potential of reduced gluten cereals using a reduced gluten (RG; 1% of normal gluten) barley mutant as a model. Conventional and RG barleys were used for the formulation of experimental chows and fed to gluten-sensitive (GS) and control macaques to determine if RG barley causes a remission of dietary gluten-induced clinical and immune responses in GS macaques. The impacts of the RG barley diet were compared with the impacts of the conventional barley-containing chow and the GFD. Although remission of the anti-gliadin antibody (AGA) serum responses and an improvement of clinical diarrhea were noted after switching the conventional to the RG barley diet, production of inflammatory cytokines, e.g., interferon-gamma (IFN-γ), tumor necrosis factor (TNF) and interleukin-8 (IL-8) by peripheral CD4+ T helper lymphocytes, persisted during the RG chow treatment and were partially abolished only upon re-administration of the GFD. It was concluded that the RG barley diet might be used for the partial improvement of gluten-induced disease but its therapeutic value still requires upgrading—by co-administration of additional treatments. PMID:25756783

  1. Evolutionary history of barley cultivation in Europe revealed by genetic analysis of extant landraces

    PubMed Central

    2011-01-01

    Background Understanding the evolution of cultivated barley is important for two reasons. First, the evolutionary relationships between different landraces might provide information on the spread and subsequent development of barley cultivation, including the adaptation of the crop to new environments and its response to human selection. Second, evolutionary information would enable landraces with similar traits but different genetic backgrounds to be identified, providing alternative strategies for the introduction of these traits into modern germplasm. Results The evolutionary relationships between 651 barley landraces were inferred from the genotypes for 24 microsatellites. The landraces could be divided into nine populations, each with a different geographical distribution. Comparisons with ear row number, caryopsis structure, seasonal growth habit and flowering time revealed a degree of association between population structure and phenotype, and analysis of climate variables indicated that the landraces are adapted, at least to some extent, to their environment. Human selection and/or environmental adaptation may therefore have played a role in the origin and/or maintenance of one or more of the barley landrace populations. There was also evidence that at least some of the population structure derived from geographical partitioning set up during the initial spread of barley cultivation into Europe, or reflected the later introduction of novel varieties. In particular, three closely-related populations were made up almost entirely of plants with the daylength nonresponsive version of the photoperiod response gene PPD-H1, conferring adaptation to the long annual growth season of northern Europe. These three populations probably originated in the eastern Fertile Crescent and entered Europe after the initial spread of agriculture. Conclusions The discovery of population structure, combined with knowledge of associated phenotypes and environmental adaptations

  2. The IOC consensus statement: beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S).

    PubMed

    Mountjoy, Margo; Sundgot-Borgen, Jorunn; Burke, Louise; Carter, Susan; Constantini, Naama; Lebrun, Constance; Meyer, Nanna; Sherman, Roberta; Steffen, Kathrin; Budgett, Richard; Ljungqvist, Arne

    2014-04-01

    Protecting the health of the athlete is a goal of the International Olympic Committee (IOC). The IOC convened an expert panel to update the 2005 IOC Consensus Statement on the Female Athlete Triad. This Consensus Statement replaces the previous and provides guidelines to guide risk assessment, treatment and return-to-play decisions. The IOC expert working group introduces a broader, more comprehensive term for the condition previously known as 'Female Athlete Triad'. The term 'Relative Energy Deficiency in Sport' (RED-S), points to the complexity involved and the fact that male athletes are also affected. The syndrome of RED-S refers to impaired physiological function including, but not limited to, metabolic rate, menstrual function, bone health, immunity, protein synthesis, cardiovascular health caused by relative energy deficiency. The cause of this syndrome is energy deficiency relative to the balance between dietary energy intake and energy expenditure required for health and activities of daily living, growth and sporting activities. Psychological consequences can either precede RED-S or be the result of RED-S. The clinical phenomenon is not a 'triad' of the three entities of energy availability, menstrual function and bone health, but rather a syndrome that affects many aspects of physiological function, health and athletic performance. This Consensus Statement also recommends practical clinical models for the management of affected athletes. The 'Sport Risk Assessment and Return to Play Model' categorises the syndrome into three groups and translates these classifications into clinical recommendations.

  3. [Cytochrome c oxydase-deficient Leigh syndrome with homozygous mutation in SURF1 gene].

    PubMed

    Monnot, S; Chabrol, B; Cano, A; Pellissier, J F; Collignon, P; Montfort, M F; Paquis-Flucklinger, V

    2005-05-01

    Leigh syndrome is a heterogeneous disorder, usually due to a defect in oxidative metabolism. Mutations in SURF1 gene have been identified in patients with cytochrome c oxidase deficiency. We report a homozygous splice site deletion [516-2_516-1delAG] in a young girl presenting with cytochrome c oxidase-deficient Leigh syndrome. Identification of molecular defect is indispensable for genetic counselling and prenatal diagnosis.

  4. Differential heat sensitivity index in barley cultivars (Hordeum vulgare L.) monitored by chlorophyll a fluorescence OKJIP.

    PubMed

    Oukarroum, Abdallah; El Madidi, Saïd; Strasser, Reto J

    2016-08-01

    The objective of this study was to differentiate the heat tolerance in ten varieties of barley (Hordeum vulgare L.) originating from Morocco. Five modern varieties and five landraces (local varieties) collected at five different geographical localities in the south of Morocco were investigated in the present study. After two weeks of growth, detached leaves were short term exposure to various temperatures (25, 30, 35, 40, and 45 °C) for 10 min in the dark. Two chlorophyll a fluorescence parameters derived from chlorophyll a fluorescence transient (OKJIP) (performance index (PIABS) and relative variable fluorescence at the K-step (VK)) were analysed. Heat treatment had a significant effect on the PIABS and VK at 45 °C treatment and the analysis of variance for PIABS and VK is highly significant between all varieties. The slope of the relationship between logPIABS and VK named heat sensitivity index (HSI) was used to evaluate the thermotolerance of photosystem II (PSII) between the studied barley varieties. According to this approach, barley varieties were screened and ranked for improving heat tolerance. HSI was found to be a new indicator with regard to distinguishing heat tolerance of different barley cultivars. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. The impaired intestinal mucosal immune system by valine deficiency for young grass carp (Ctenopharyngodon idella) is associated with decreasing immune status and regulating tight junction proteins transcript abundance in the intestine.

    PubMed

    Luo, Jian-Bo; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Zhang, Yong-An; Zhou, Xiao-Qiu

    2014-09-01

    This study investigated the effects of dietary valine on the growth, intestinal immune response, tight junction proteins transcript abundance and gene expression of immune-related signaling molecules in the intestine of young grass carp (Ctenopharyngodon idella). Six iso-nitrogenous diets containing graded levels of valine (4.3-19.1 g kg(-)(1) diet) were fed to the fish for 8 weeks. The results showed that percentage weight gain (PWG), feed intake and feed efficiency of fish were the lowest in fish fed the valine-deficient diet (P < 0.05). In addition, valine deficiency decreased lysozyme, acid phosphatase activities and complement 3 content in the intestine (P < 0.05), down-regulated mRNA levels of interleukin 10, transforming growth factor β1, IκBα and target of rapamycin (TOR) (P < 0.05), and up-regulated tumor necrosis factor α, interleukin 8 and nuclear factor κB P65 (NF-κB P65) gene expression (P < 0.05). Additionally, valine deficiency significantly decreased transcript of Occludin, Claudin b, Claudin c, Claudin 3, and ZO-1 (P < 0.05), and improved Claudin 15 expression in the fish intestine (P < 0.05). However, valine did not have a significant effect on expression of Claudin 12 in the intestine of grass carp (P > 0.05). In conclusion, valine deficiency decreased fish growth and intestinal immune status, as well as regulated gene expression of tight junction proteins, NF-κB P65, IκBα and TOR in the fish intestine. Based on the quadratic regression analysis of lysozyme activity or PWG, the dietary valine requirement of young grass carp (268-679 g) were established to be 14.47 g kg(-1) diet (4.82 g 100 g(-1) CP) or 14.00 g kg(-1) diet (4.77 g 100 g(-1) CP), respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Transgenic Wheat, Barley and Oats: Future Prospects

    NASA Astrophysics Data System (ADS)

    Dunwell, Jim M.

    Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.

  7. Improved palatability and bio-functionality of super-hard rice by soaking in a barley-koji miso suspension.

    PubMed

    Nakamura, Sumiko; Nakano, Yohei; Satoh, Hikaru; Ohtsubo, Ken'ichi

    2013-01-01

    Cooked grains of ae rice cultivars are too hard and non-sticky due to the presence of long-chain amylopectin, and ae rice cultivars are therefore called ``super-hard rice'' and cannot be used as table rice. However, they are promising in terms of their bio-functionality such as preventing diabetes. Miso (soybean paste) is a yeast-fermented food, made from steamed soybeans, salt, and inoculated cereals known as koji, made from rice, barley, or soybeans.We investigated the effects of soaking ae mutant rice cultivars in a miso suspension. Their chemical components, physical properties, and enzyme activities were measured under different conditions (milled rice before or after soaking in a 5% barley-koji miso suspension). Rice grains cooked after soaking in the miso suspension were less hard and more sticky than those cooked after soaking in water. Rice grains cooked after soaking in a 5% barley-koji miso suspension maintained high amounts of resistant starch and dietary fiber, and were fortified with polyphenols and isoflavones. Palatable and bio-functional ae rice could therefore be produced by cooking after soaking in a 5% barley-koji miso suspension.

  8. New Starch Phenotypes Produced by TILLING in Barley

    PubMed Central

    Sparla, Francesca; Falini, Giuseppe; Botticella, Ermelinda; Pirone, Claudia; Talamè, Valentina; Bovina, Riccardo; Salvi, Silvio; Tuberosa, Roberto; Sestili, Francesco; Trost, Paolo

    2014-01-01

    Barley grain starch is formed by amylose and amylopectin in a 1∶3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING) approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i) a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv) the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications. PMID:25271438

  9. Glycemic potency of muffins made with wheat, rice, corn, oat and barley flours: a comparative study between in vivo and in vitro.

    PubMed

    Soong, Yean Yean; Quek, Rina Yu Chin; Henry, Christiani Jeyakumar

    2015-12-01

    Muffins made with wheat flour are a popular snack consumed in western and emerging countries. This study aimed to examine the content of amylose, glycemic response (GR) and glycemic index (GI) of muffins baked with refined wheat and rice flours, as well as wholegrain corn, oat and barley flours. This study adopted a randomized, controlled, crossover, non-blind design. Twelve healthy participants consumed wheat, rice, corn, oat and barley muffins once and the reference glucose solution three times in a random order on non-consecutive day. Capillary blood samples were taken every 15 min in the first 60 min and every 30 min for the remaining 60 min for blood glucose analysis. The Megazyme amylose/amylopectin assay procedure was employed to measure amylose content. The GR elicited from the consumption of wheat, rice and corn muffins was comparable between these samples but significantly greater when compared with oat and barley muffins. Consumption of wholegrain muffins, apart from corn muffin, blunted postprandial GR when compared with muffins baked with refined cereal flours. Muffins baked with wheat, rice, corn, oat and barley flours gave rise to GI values of 74, 79, 74, 53 and 55, respectively. The content of amylose was significantly higher in corn, oat and barley muffins than wheat and rice muffins. The greater content of amylose and fibre may play a part in the reduced glycemic potency of oat and barley muffins. Wheat flour can be substituted with oat and barley flours for healthier muffins and other bakery products.

  10. Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts

    PubMed Central

    Hacquard, Stéphane; Kracher, Barbara; Maekawa, Takaki; Vernaldi, Saskia; Schulze-Lefert, Paul; Ver Loren van Themaat, Emiel

    2013-01-01

    Barley powdery mildew, Blumeria graminis f. sp. hordei (Bgh), is an obligate biotrophic ascomycete fungal pathogen that can grow and reproduce only on living cells of wild or domesticated barley (Hordeum sp.). Domestication and deployment of resistant barley cultivars by humans selected for amplification of Bgh isolates with different virulence combinations. We sequenced the genomes of two European Bgh isolates, A6 and K1, for comparative analysis with the reference genome of isolate DH14. This revealed a mosaic genome structure consisting of large isolate-specific DNA blocks with either high or low SNP densities. Some of the highly polymorphic blocks likely accumulated SNPs for over 10,000 years, well before the domestication of barley. These isolate-specific blocks of alternating monomorphic and polymorphic regions imply an exceptionally large standing genetic variation in the Bgh population and might be generated and maintained by rare outbreeding and frequent clonal reproduction. RNA-sequencing experiments with isolates A6 and K1 during four early stages of compatible and incompatible interactions on leaves of partially immunocompromised Arabidopsis mutants revealed a conserved Bgh transcriptional program during pathogenesis compared with the natural host barley despite ∼200 million years of reproductive isolation of these hosts. Transcripts encoding candidate-secreted effector proteins are massively induced in successive waves. A specific decrease in candidate-secreted effector protein transcript abundance in the incompatible interaction follows extensive transcriptional reprogramming of the host transcriptome and coincides with the onset of localized host cell death, suggesting a host-inducible defense mechanism that targets fungal effector secretion or production. PMID:23696672

  11. Boron Toxicity Tolerance in Barley through Reduced Expression of the Multifunctional Aquaporin HvNIP2;11[W

    PubMed Central

    Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A.; Tyerman, Stephen D.; Langridge, Peter; Sutton, Tim

    2010-01-01

    Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley. PMID:20581256

  12. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism.

    PubMed

    Xu, Muyun; Gruber, Benjamin D; Delhaize, Emmanuel; White, Rosemary G; James, Richard A; You, Jiangfeng; Yang, Zhenming; Ryan, Peter R

    2015-01-01

    The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue-specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18-30% of wild-type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue-specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed. © 2014 Scandinavian Plant Physiology Society.

  13. Milk production is unaffected by replacing barley or sodium hydroxide wheat with maize cob silage in rations for dairy cows.

    PubMed

    Hymøller, L; Hellwing, A L F; Lund, P; Weisbjerg, M R

    2014-05-01

    Starch is an important energy-providing nutrient for dairy cows that is most commonly provided from cereal grains. However, ruminal fermentation of large amounts of easily degradable starch leads to excessive production and accumulation of volatile fatty acids (VFA). VFA not only play a vital role in the energy metabolism of dairy cows but are also the main cause of ruminal acidosis and depressed feed intake. The aim of the present study was to compare maize cob silage (MCS) as an energy supplement in rations for dairy cows with highly rumen-digestible rolled barley and with sodium hydroxide wheat (SHW), which has a higher proportion of by-pass starch than barley. Two studies were carried out: (1) a production study on 45 Danish Holstein cows and (2) an intensive study to determine digestibilities, rumen fermentation patterns and methane emission using three rumen-cannulated Danish Holstein cows. Both studies were organised as a 3×3 Latin square with three experimental periods and three different mixed rations. The rations consisted of grass-clover silage and maize silage (~60% of dry matter (DM)), rapeseed cake, soybean meal, sugar beet pulp and one of three different cereals as a major energy supplement: MCS, SHW or rolled barley (~25% of DM). When MCS replaced barley or SHW as an energy supplement in the mixed rations, it resulted in a lower dry matter intake; however, the apparent total tract digestibilities of DM, organic matter, NDF, starch and protein were not different between treatments. The energy-corrected milk yield was unaffected by treatment. The fat content of the milk on the MCS ration was not different from the SHW ration, whereas it was higher on the barley ration. The protein content of the milk decreased when MCS was used in the ration compared with barley and SHW. From ruminal VFA patterns and pH measures, it appeared that MCS possessed roughage qualities with respect to rumen environment, while at the same time being sufficiently energy rich

  14. Iron Deficiency in Preschool Children with Autistic Spectrum Disorders

    ERIC Educational Resources Information Center

    Bilgic, Ayhan; Gurkan, Kagan; Turkoglu, Serhat; Akca, Omer Faruk; Kilic, Birim Gunay; Uslu, Runa

    2010-01-01

    Iron deficiency (ID) causes negative outcomes on psychomotor and behavioral development of infants and young children. Children with autistic spectrum disorders (ASD) are under risk for ID and this condition may increase the severity of psychomotor and behavioral problems, some of which already inherently exist in these children. In the present…

  15. Identification and characterisation of a previously unknown drought tolerance-associated microRNA in barley.

    PubMed

    Zhou, Hui; Hussain, Syed Sarfraz; Hackenberg, Michael; Bazanova, Natalia; Eini, Omid; Li, Jie; Gustafson, Perry; Shi, Bujun

    2018-04-22

    Drought is the most serious abiotic stress, which causes crop losses on worldwide scale. The present study identified a previously unknown microRNA (designated as hvu-miRX) of 21 nucleotides (nt) in barley. Its precursor (designated pre-miRX) and primary transcript (designated pri-miRX) were also identified, with lengths of 73 nt and 559 nt, respectively. The identified upstream sequence of pri-miRX contains both the TATA box and the CAAT box, which are both required for transcription initiation. Transient promoter activation assays showed that the core promoter region of pri-miRX ranged 500 nt from the transcription start site. In transgenic barley over-expressing the wheat DREB3 transcription factor (TaDREB3) caused hvu-miRX to be highly expressed as compared to the same miRNA in non-transgenic barley. However, the high expression was not directly associated with TaDREB3. Genomic analysis revealed that the hvu-miRX gene was a single copy located on the short arm of chromosome 2 and appeared to be only conserved in Triticeae, but not in other plant species. Notably, transgenic barley overexpressing hvu-miRX showed drought tolerance. Degradome library analysis and other tests showed that hvu-miRX targeted various genes including transcription factors via the cleavage mode. Our data open an excellent opportunity to develop drought stress tolerant cereals with hvu-miRX. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Sulfur dioxide alleviates programmed cell death in barley aleurone by acting as an antioxidant

    PubMed Central

    Yang, Feng; Huang, Zhong-Qin; Tang, Jun; Hu, Kang-Di

    2017-01-01

    Sulfur dioxide (SO2), a gaseous signaling molecule in animal cells, has recently been found to play a physiological role in plants. Here we studied the role of SO2 in gibberellic acid (GA3)-induced programmed cell death (PCD) in barley (Hordeum vulgare L.) aleurone layers. The application of the SO2 donor (NaHSO3/Na2SO3, 1:3 M/M) effectively alleviated PCD in barley aleurone layers in a dose-dependent manner with an optimal concentration of 50 μM. Further investigations showed that SO2 reduced the accumulation of hydrogen peroxide (H2O2), superoxide anion (⋅O2−) and malondialdehyde (MDA) in aleurone layers. Moreover, the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR) and guaiacol peroxidase (POD) were enhanced by SO2 donor treatment. Meanwhile, lipoxygenase (LOX) activity was attenuated by SO2 donor treatment. Furthermore, an induction of endogenous H2S and NO were also observed in SO2-treated aleurone layers, suggesting interactions of SO2 with other well-known signaling molecules. Taken together, we show that SO2 negatively regulated PCD by acting as an antioxidant to scavenge excessive reactive oxygen species (ROS) generated during PCD. PMID:29155872

  17. Complex carbohydrates in the dietary management of patients with glycogenosis caused by glucose-6-phosphatase deficiency.

    PubMed

    Smit, G P; Ververs, M T; Belderok, B; Van Rijn, M; Berger, R; Fernandes, J

    1988-07-01

    Carbohydrates with digestion characteristics between those of lente uncooked starches and rapidly digestible oligosaccharides were administered in a dose of 1.5 g/kg body weight to five patients with glycogenosis from glucose-6-phosphatase deficiency. Postprandial duration of normoglycemia and concentrations of blood insulin and lactate were determined. Uncooked barley groats in water, or incorporated in a meal turned out to behave as lente carbohydrates. Uncooked couscous in water, couscous incorporated in a meal, and partially cooked macaroni given as a meal behaved as semilente carbohydrates as compared with uncooked cornstarch and glucose. The in vitro determination of the digestibility index along with the in vivo tolerance test enables us to choose and incorporate semilente carbohydrates in the day-time treatment of patients.

  18. Spectra of normal and nutrient-deficient maize leaves

    NASA Technical Reports Server (NTRS)

    Al-Abbas, A. H.; Barr, R.; Hall, J. D.; Crane, F. L.; Baumgardner, M. F.

    1973-01-01

    Reflectance, transmittance and absorptance spectra of normal and six types of nutrient-deficient (N, P, K, S, Mg, and Ca) maize (Zea mays L.) leaves were analyzed at 30 selected wavelengths from 500 to 2600 nm. The analysis of variance showed significant differences in reflectance, transmittance and absorptance in the visible wavelengths among leaf numbers 3, 4, and 5, among the seven treatments, and among the interactions of leaf number and treatments. In the infrared wavelengths only treatments produced significant differences. The chlorophyll content of leaves was reduced in all nutrient-deficient treatments. Percent moisture was increased in S-, Mg-, and N-deficiencies. Polynomial regression analysis of leaf thickness and leaf moisture content showed that these two variables were significantly and directly related. Leaves from the P- and Ca-deficient plants absorbed less energy in the near infrared than the normal plants; S-, Mg-, K-, and N-deficient leaves absorbed more than the normal. Both S- and N-deficient leaves had higher temperatues than normal maize leaves.

  19. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines.

    PubMed

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families.

  20. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines

    PubMed Central

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families. PMID:27783639

  1. Genetics Home Reference: fumarase deficiency

    MedlinePlus

    ... C, Knape M, Zierz S, Gellerich FN. Molecular and biochemical investigations in fumarase deficiency. Mol Genet Metab. 2006 ... Y, Toulhoat H, de Lonlay P. Clinical and biochemical heterogeneity associated with fumarase deficiency. Hum Mutat. 2011 ...

  2. Tocotrienols and tocopherols in colored-grain wheat, tritordeum and barley.

    PubMed

    Lachman, Jaromír; Hejtmánková, Alena; Orsák, Matyáš; Popov, Marek; Martinek, Petr

    2018-02-01

    Colored-grain spring and winter wheat, spring tritordeum and barley (blue aleurone, purple pericarp, and yellow endosperm) from the harvests 2014 and 2015 were evaluated for tocol contents by HPLC-FD. Higher content of total tocols was found in spring wheat varieties compared with winter varieties. Four tocols (β-tocotrienol, α-tocotrienol, β-tocopherol, and α-tocopherol) were identified in wheat and tritordeum varieties. Dominant tocols in purple- and blue-grained wheat and yellow-grained tritordeum were α-tocopherol and β-tocotrienol, whereas spring barley varieties differed from wheat and tritordeum by high α-tocotrienol content. Tocol content was significantly affected by genotype and in a lesser extent in some varieties and lines also by rainfall and temperatures during crop year. Higher rainfall and lower temperatures caused in most varieties higher tocol contents. Purple- and blue-grained wheat lines with higher tocol, anthocyanin and phenolic acids with health benefits may be useful for breeding new varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The knottin-like Blufensin family regulates genes involved in nuclear import and the secretory pathway in barley-powdery mildew interactions

    PubMed Central

    Xu, Weihui; Meng, Yan; Surana, Priyanka; Fuerst, Greg; Nettleton, Dan; Wise, Roger P.

    2015-01-01

    Plants have evolved complex regulatory mechanisms to control a multi-layered defense response to microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSINs, small knottin-like peptides in barley, wheat, and rice, are highly induced by attack from fungal pathogens, in particular, the obligate biotrophic fungus, Blumeria graminis f. sp. hordei (Bgh), causal agent of barley powdery mildew. Previous research indicated that Blufensin1 (Bln1) functions as a negative regulator of basal defense mechanisms. In the current report, we show that BLN1 and BLN2 can both be secreted to the apoplast and Barley stripe mosaic virus (BSMV)-mediated overexpression of Bln2 increases susceptibility of barley to Bgh. Bimolecular fluorescence complementation (BiFC) assays signify that BLN1 and BLN2 can interact with each other, and with calmodulin. We then used BSMV-induced gene silencing to knock down Bln1, followed by Barley1 GeneChip transcriptome analysis, to identify additional host genes influenced by Bln1. Analysis of differential expression revealed a gene set enriched for those encoding proteins annotated to nuclear import and the secretory pathway, particularly Importin α1-b and Sec61 γ subunits. Further functional analysis of these two affected genes showed that when silenced, they also reduced susceptibility to Bgh. Taken together, we postulate that Bln1 is co-opted by Bgh to facilitate transport of disease-related host proteins or effectors, influencing the establishment of Bgh compatibility on its barley host. PMID:26089830

  4. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    PubMed

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  5. Investigation of the Germination of Barley and Wheat Grains with a Design of Experiments for the Production of Hydrolases

    PubMed Central

    Kranz, Bertolt; Koch, Milena; Schapfl, Matthias

    2015-01-01

    Summary The production of hydrolases from cereals has been examined in order to investigate food-derived enzymes as an alternative source to microbial enzymes for the use in food processes. For that, the influence of temperature on the pretreatment, imbibition and germination of barley and wheat grains was determined by measuring the β-glucosidase, β-galactosidase and lipase activities using a design of experiments. The evaluation of the statistical model showed an increase of the β-glucosidase activity with low imbibition and low germination temperature for barley grains and low imbibition and high germination temperature for wheat grains. The maximum β-glucosidase activity in wheat extracts was (585±151) nkat per g of dry mass (dm), while in barley extracts it was (109±15) nkat per g of dm. The maximum β-galactosidase activities in barley and wheat extracts were (34±12) and (63±23) nkat per g of dm, respectively. The maximum lipase activities of (6.7±0.1) and (4.6±4.4) nkat per g of dm in barley and wheat extracts, respectively, were rather low compared to the glycosidase activities. The extracts were also tested for other hydrolase activities (e.g. peptidase and α-amylase activities). The insights obtained enable the basis for the potential use of cereal hydrolases in food processing, which might be attractive to consumers. PMID:27904341

  6. EARLY FLOWERING3 Regulates Flowering in Spring Barley by Mediating Gibberellin Production and FLOWERING LOCUS T Expression[C][W

    PubMed Central

    Boden, Scott A.; Weiss, David; Ross, John J.; Davies, Noel W.; Trevaskis, Ben; Chandler, Peter M.; Swain, Steve M.

    2014-01-01

    EARLY FLOWERING3 (ELF3) is a circadian clock gene that contributes to photoperiod-dependent flowering in plants, with loss-of-function mutants in barley (Hordeum vulgare), legumes, and Arabidopsis thaliana flowering early under noninductive short-day (SD) photoperiods. The barley elf3 mutant displays increased expression of FLOWERING LOCUS T1 (FT1); however, it remains unclear whether this is the only factor responsible for the early flowering phenotype. We show that the early flowering and vegetative growth phenotypes of the barley elf3 mutant are strongly dependent on gibberellin (GA) biosynthesis. Expression of the central GA biosynthesis gene, GA20oxidase2, and production of the bioactive GA, GA1, were significantly increased in elf3 leaves under SDs, relative to the wild type. Inhibition of GA biosynthesis suppressed the early flowering of elf3 under SDs independently of FT1 and was associated with altered expression of floral identity genes at the developing apex. GA is also required for normal flowering of spring barley under inductive photoperiods, with chemical and genetic attenuation of the GA biosynthesis and signaling pathways suppressing inflorescence development under long-day conditions. These findings illustrate that GA is an important floral promoting signal in barley and that ELF3 suppresses flowering under noninductive photoperiods by blocking GA production and FT1 expression. PMID:24781117

  7. Betaine deficiency in maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerma, C.; Rich, P.J.; Ju, G.C.

    1991-04-01

    Maize (Zea mays L.) is a betaine-accumulating species, but certain maize genotypes lack betaine almost completely; a single recessive gene has been implicated as the cause of this deficiency. This study was undertaken to determine whether betaine deficiency in diverse maize germplasm is conditioned by the same genetic locus, and to define the biochemical lesion(s) involved. Complementation tests indicated that all 13 deficient genotypes tested shared a common locus. One maize population (P77) was found to be segregating for betaine deficiency, and true breeding individuals were used to produce related lines with and without betaine. Leaf tissue of both betaine-positivemore » and betaine-deficient lines readily converted supplied betaine aldehyde to betaine, but only the betaine-containing line was able to oxidize supplied choline to betaine. This locates the lesion in betaine-deficient plants at the choline {r arrow} betaine aldehyde step of betaine synthesis. Consistent with this location, betaine-deficient plants were shown to have no detectable endogenous pool of betaine aldehyde.« less

  8. Isolation and purification of a papain inhibitor from Egyptian genotypes of barley seeds and its in vitro and in vivo effects on the cowpea bruchid, Callosobruchus maculatus (F.).

    PubMed

    Abd El-Latif, Ashraf Oukasha

    2015-02-01

    The cysteine inhibitors that are known as cystatin have been identified and characterized from several plant species. In the current study, 44 barley (Hordeum vulgare) genotypes including 3 varieties and 41 promising lines were screened for their potential as protease inhibitors. The barley genotypes showed low inhibitory activity against trypsin and chymotrypsin enzymes with a mean of 4.15 TIU/mg protein and 4.40 CIU/mg protein. The barley variety, Giza 123, showed strong papain inhibitory activity of 97.09 PIU/mg proteins and was subjected for further purification studies using ammonium sulfate fractionation and DEAE-Sephadex A-25 column. Barley purified proteins showed two bands on SDS-PAGE corresponding to a molecular mass of 12.4-54.8 kDa. The purified barley PI was found to be stable at a temperature below 80 °C and at a wide range of pH from 2 to 12. Barley PI was found to have higher potential inhibitory activity against papain enzyme compared to the standard papain inhibitor, E-64 with an IC50 value of 21.04 µg/ml and 25.62 µg/ml for barley PI and E-64, respectively. The kinetic analysis revealed a non-competitive type of inhibition with a Ki value of 1.95 × 10(-3 )µM. The antimetabolic effect of barley PI was evaluated against C. maculatus by incorporating the F30-60 protein of the purified inhibitor into the artificial diet using artificial seeds. Barley PI significantly prolonged the development of C. maculatus in proportion to PI concentration. Barley PI significantly increased the mortality of C. maculatus and caused a significant reduction in its fecundity. On the other hand, barley PI seemed to have non-significant effects on the adult longevity and the adult dry weight. The in vitro and in vivo results proved the efficiency of the papain inhibitory protein isolated from barley as a tool for managing the cowpea bruchid, C. maculatus. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Cloning and Characterization of Purple Acid Phosphatase Phytases from Wheat, Barley, Maize, and Rice[W][OA

    PubMed Central

    Dionisio, Giuseppe; Madsen, Claus K.; Holm, Preben B.; Welinder, Karen G.; Jørgensen, Malene; Stoger, Eva; Arcalis, Elsa; Brinch-Pedersen, Henrik

    2011-01-01

    Barley (Hordeum vulgare) and wheat (Triticum aestivum) possess significant phytase activity in the mature grains. Maize (Zea mays) and rice (Oryza sativa) possess little or virtually no preformed phytase activity in the mature grain and depend fully on de novo synthesis during germination. Here, it is demonstrated that wheat, barley, maize, and rice all possess purple acid phosphatase (PAP) genes that, expressed in Pichia pastoris, give fully functional phytases (PAPhys) with very similar enzyme kinetics. Preformed wheat PAPhy was localized to the protein crystalloid of the aleurone vacuole. Phylogenetic analyses indicated that PAPhys possess four conserved domains unique to the PAPhys. In barley and wheat, the PAPhy genes can be grouped as PAPhy_a or PAPhy_b isogenes (barley, HvPAPhy_a, HvPAPhy_b1, and HvPAPhy_b2; wheat, TaPAPhy_a1, TaPAPhy_a2, TaPAPhy_b1, and TaPAPhy_b2). In rice and maize, only the b type (OsPAPhy_b and ZmPAPhy_b, respectively) were identified. HvPAPhy_a and HvPAPhy_b1/b2 share 86% and TaPAPhya1/a2 and TaPAPhyb1/b2 share up to 90% (TaPAPhy_a2 and TaPAPhy_b2) identical amino acid sequences. despite of this, PAPhy_a and PAPhy_b isogenes are differentially expressed during grain development and germination. In wheat, it was demonstrated that a and b isogene expression is driven by different promoters (approximately 31% identity). TaPAPhy_a/b promoter reporter gene expression in transgenic grains and peptide mapping of TaPAPhy purified from wheat bran and germinating grains confirmed that the PAPhy_a isogene set present in wheat/barley but not in rice/maize is the origin of high phytase activity in mature grains. PMID:21220762

  10. Stimulation of Phenolics, Antioxidant and α-Glucosidase Inhibitory Activities During Barley (Hordeum vulgare L.) Seed Germination.

    PubMed

    Ha, K-S; Jo, S-H; Mannam, V; Kwon, Y-I; Apostolidis, E

    2016-06-01

    The rationale of this study was to enhance the nutritional quality of dry barley seeds. In this study we are evaluating the effect of germination on barley seeds relevant to total phenolic contents, antioxidant activity (in terms of DPPH free-radical scavenging) and the in vitro α-glucosidase inhibitory activities. Barley seeds were germinated for 18.5, 24, 30, 48, and 67 h and then extracted in water. The total phenolic contents, antioxidant activities and α-glucosidase inhibitory activities changed with germination time. More specifically, within the first 48 h of germination the total phenolic content increased from 1.1 mg/g fresh weight (0 h) to 3.4 mg/g fresh weight (48 h) and then slightly reduced by 67 h. Similarly, α-glucosidase inhibitory activity was significantly increased from an IC50 128.82 mg/mL (0 h) to an IC50 18.88 mg/mL (48 h) and then slightly reduced by 67 h. Significant maltase inhibitory activity was observed only with 48 h-germinated extract. Antioxidant activities increased continuously from an IC50 15.72 mg/mL at 0 h to and IC50 5.72 mg/mL after 48 h of germination. Based on our observations, barley seed germination was over after 48 h. During the progress of germination phenolic compounds are becoming available and are more easily extracted. After 48 h, lignification is initiated resulting to the decreased total phenolic content and observed antioxidant and carbohydrate hydrolyzing enzyme inhibition activities. The above results indicate the positive effect of germination in barley seeds for enhanced antioxidant and α-glucosidase inhibitory activities.

  11. 7 CFR 457.118 - Malting barley price and quality endorsement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and succeeding crop years are as follows: FCIC policies United States Department of Agriculture... the class barley in accordance with the Official United States Standards for Grain; and (3) Is not... identified by the Food and Drug Administration or other public health organizations of the United States as...

  12. 7 CFR 457.118 - Malting barley price and quality endorsement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and succeeding crop years are as follows: FCIC policies United States Department of Agriculture... the class barley in accordance with the Official United States Standards for Grain; and (3) Is not... identified by the Food and Drug Administration or other public health organizations of the United States as...

  13. Vitamin D deficiency in early pregnancy.

    PubMed

    Flood-Nichols, Shannon K; Tinnemore, Deborah; Huang, Raywin R; Napolitano, Peter G; Ippolito, Danielle L

    2015-01-01

    Vitamin D deficiency is a common problem in reproductive-aged women in the United States. The effect of vitamin D deficiency in pregnancy is unknown, but has been associated with adverse pregnancy outcomes. The objective of this study was to analyze the relationship between vitamin D deficiency in the first trimester and subsequent clinical outcomes. This is a retrospective cohort study. Plasma was collected in the first trimester from 310 nulliparous women with singleton gestations without significant medical problems. Competitive enzymatic vitamin D assays were performed on banked plasma specimens and pregnancy outcomes were collected after delivery. Logistic regression was performed on patients stratified by plasma vitamin D concentration and the following combined clinical outcomes: preeclampsia, preterm delivery, intrauterine growth restriction, gestational diabetes, and spontaneous abortion. Vitamin D concentrations were obtained from 235 patients (mean age 24.3 years, range 18-40 years). Seventy percent of our study population was vitamin D insufficient with a serum concentration less than 30 ng/mL (mean serum concentration 27.6 ng/mL, range 13-71.6 ng/mL). Logistic regression was performed adjusting for age, race, body mass index, tobacco use, and time of year. Adverse pregnancy outcomes included preeclampsia, growth restriction, preterm delivery, gestational diabetes, and spontaneous abortion. There was no association between vitamin D deficiency and composite adverse pregnancy outcomes with an adjusted odds ratio of 1.01 (p value 0.738, 95% confidence intervals 0.961-1.057). Vitamin D deficiency did not associate with adverse pregnancy outcomes in this study population. However, the high percentage of affected individuals highlights the prevalence of vitamin D deficiency in young, reproductive-aged women.

  14. Aged PROP1 Deficient Dwarf Mice Maintain ACTH Production

    PubMed Central

    Bavers, David L.; Beuschlein, Felix; Mortensen, Amanda H.; Keegan, Catherine E.; Hammer, Gary D.; Camper, Sally A.

    2011-01-01

    Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD) that typically advance from growth insufficiency diagnosed in infancy to include more severe growth hormone (GH) deficiency and progressive reduction in other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH) deficiency and hypocortisolism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1null (Prop1-/-) and the Ames dwarf (Prop1df/df) mouse models, but corticotroph and pituitary adrenal axis function have not been thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis. Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive hormone loss and hypocortisolism. PMID:22145038

  15. Characteristics of injury and recovery of net NO3- transport of barley seedlings from treatments of NaCl

    NASA Technical Reports Server (NTRS)

    Klobus, G.; Ward, M. R.; Huffaker, R. C.

    1988-01-01

    The nature of the injury and recovery of nitrate uptake (net uptake) from NaCl stress in young barley (Hordeum vulgare L, var CM 72) seedlings was investigated. Nitrate uptake was inhibited rapidly by NaCl, within 1 minute after exposure to 200 millimolar NaCl. The duration of exposure to saline conditions determined the time of recovery of NO3- uptake from NaCl stress. Recovery was dependent on the presence of NO3- and was inhibited by cycloheximide, 6-methylpurine, and cerulenin, respective inhibitors of protein, RNA, and sterol/fatty acid synthesis. These inhibitors also prevented the induction of the NO3- uptake system in uninduced seedlings. Uninduced seedlings exhibited endogenous NO3- transport activity that appeared to be constitutive. This constitutive activity was also inhibited by NaCl. Recovery of constitutive NO3- uptake did not require the presence of NO3-.

  16. Gibberellic acid (GA3) induced changes in proanthocyanidins and malt quality of two- and six-row husked barleys.

    PubMed

    Yadav, S K; Luthra, Y P; Sood, D R; Aggarwal, N K

    2000-01-01

    Analysis of husked barleys for proanthocyanidins and malt quality attributes has shown that not a single variety is free of proanthocyanidins. The proanthocyanidins in barley grains varied from 3.85 to 4.94 mg/g as catechin equivalent. The concentration of proanthocyanidins decreased, while total soluble sugars, reducing sugars, diastatic power and beta-amylase activity increased during maltings as well as with exogenous gibberellic acid (GA3) application. Alfa 93 (two-row) and RD2560 (six-row) varieties appeared to be superior for malting and brewing purposes on the basis of proanthocyanidins, total phenols, diastatic power and beta-amylase activity. It is suggested that exogenous application of GA3 at 15 ppm may be useful for producing good quality malt from barley grains.

  17. Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense

    PubMed Central

    Templer, Sven Eduard; Ammon, Alexandra; Pscheidt, David; Ciobotea, Otilia; Schuy, Christian; McCollum, Christopher; Sonnewald, Uwe; Hanemann, Anja; Förster, Jutta; Ordon, Frank; von Korff, Maria

    2017-01-01

    Abstract Barley (Hordeum vulgare L.) is among the most stress-tolerant crops; however, not much is known about the genetic and environmental control of metabolic adaptation of barley to abiotic stresses. We have subjected a genetically diverse set of 81 barley accessions, consisting of Mediterranean landrace genotypes and German elite breeding lines, to drought and combined heat and drought stress at anthesis. Our aim was to (i) investigate potential differences in morphological, physiological, and metabolic adaptation to the two stress scenarios between the Mediterranean and German barley genotypes and (ii) identify metabolic quantitative trait loci (mQTLs). To this end, we have genotyped the investigated barley lines with an Illumina iSelect 9K array and analyzed a set of 57 metabolites from the primary C and N as well as antioxidant metabolism in flag leaves under control and stress conditions. We found that drought-adapted genotypes attenuate leaf carbon metabolism much more strongly than elite lines during drought stress adaptation. Furthermore, we identified mQTLs for flag leaf γ-tocopherol, glutathione, and succinate content by association genetics that co-localize with genes encoding enzymes of the pathways producing these antioxidant metabolites. Our results provide the molecular basis for breeding barley cultivars with improved abiotic stress tolerance. PMID:28338908

  18. Genetic differentiation and geographical relationship of Asian barley landraces using SSRs

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity in 403 morphologically distinctive landraces of barley (Hordeum vulgare L. subsp. vulgare) originating from seven geographical zones of Asia was studied using simple sequence repeat (SSR) markers. The seven polymorphic SSR markers representing each chromosome chosen for this study ...

  19. Enrichment of Antioxidant Capacity and Vitamin E in Pita Made from Barley.

    PubMed

    Do, Thi Thu Dung; Muhlhausler, Beverly; Box, Amanda; Able, Amanda J

    2016-03-01

    This study aimed to enhance total antioxidant and vitamin E content of pita bread, by replacing 50% of the standard baker's flour with flours milled from covered (WI2585 and Harrington) or hulless (Finniss) barley genotypes, previously shown to have high antioxidant and vitamin E levels at harvest. Pita breads were made from either 100% baker's flour (control) or 50% malt flour, whole-grain flour, or flour from barley grains pearled at 10%, 15%, and 20% grain weight. Antioxidant capacity and vitamin E content of flours and pitas were determined by their ability to scavenge 2,2-diphenyl-1-picrylhydrazyl radicals and high performance liquid chromatography, respectively. The physical and sensory properties of the pitas were also assessed. All pitas made from either whole grain or pearled barley flour had a higher antioxidant capacity and most also had higher vitamin E content than standard pita. The antioxidant and vitamin E levels were reduced in pearled compared to whole grains, however the extent of that reduction varied among genotypes. The greatest antioxidant and vitamin E levels were found in pita made from malt flour or Finniss whole grain flour. Furthermore, sensory analysis suggested these pitas were acceptable to consumers and retained similar physical and sensory properties to those in the control pita. © 2016 Institute of Food Technologists®

  20. Some quality attributes of low fat ice cream substituted with hulless barley flour and barley ß-glucan.

    PubMed

    Abdel-Haleem, Amal M H; Awad, R A

    2015-10-01

    The purpose of this paper is to investigate some quality attributes of low fat ice cream (LFIC) substituted with hulless barley flour (HBF) and barley ß-glucan (BBG). The methodology included in this paper is based on adding HBF (1, 2, 3 and 4 %) as a partial substitution of skim milk powder (SMP) and BBG (0.40 %) as a complete substitution of carboxy methyl cellulose (CMC). All mixes and resultant ice cream samples were evaluated for their physicochemical properties as well as the sensory quality attributes.The results indicated that substitution of SMP with HBF significantly increased total solids (TS), fat and crude fiber, while crude protein and ash significantly decreased in ice cream mixes. BBG exhibited the same manner of control. Specific gravity was gradually increased with adding HBFand BBG in the mixes and therefore the overrun percent was significantly changed in the resultant ice cream. Adding HBF in ice cream formula led to significant decrease in acidity with higher freezing point and the product showed higher ability to meltdown. BBG treatment showed the same trend of control. Values of flow time and viscosity significantly increased with increasing HBF in the ice cream mixes, but these values significantly decreased in BBG mix. The time required to freeze ice cream mixes was decreased with increasing the ratio of HBF but, increased in BBG treatment. The substitution of SMP with 1 and 2 % HBF significantly (P ≤ 0.05) enhanced sensory attributes of ice cream samples. While, BBG treatment achieved mild score and acceptability.

  1. Supplementation of a high-carbohydrate breakfast with barley beta-glucan improves postprandial glycaemic response for meals but not beverages.

    PubMed

    Poppitt, Sally D; van Drunen, Jenneke D E; McGill, Anne-Thea; Mulvey, Tom B; Leahy, Fiona E

    2007-01-01

    There is growing support for the protective role of soluble fibre in type II diabetes. Soluble fibre beta-glucan found in cereal products including oats and barley may be the active component. There is evidence of postprandial blunting of blood glucose and insulin responses to dietary carbohydrates when oat soluble fibre is supplemented into the diet but few trials have been carried out using natural barley or enriched barley beta-glucan products. The aim of this trial was to investigate the postprandial effect of a highly enriched barley beta -glucan product on blood glucose, insulin and lipids when given with a high-CHO food and a high-CHO drink. 18 lean, healthy men completed a 4 treatment intervention trial comprising (i) high-CHO(food control), (ii) high-CHO(food+fibre), (iii) high-CHO(drink control), (iv) high-CHO(drink+fibre) where a 10g dose of barley beta-glucan fibre supplement (Cerogen) containing 6.31g beta-glucan was added to food and drink controls. There was an increase of glucose and insulin following all 4 treatments. Addition of the beta -glucan supplement significantly blunted the glycaemic and insulinaemic responses on the food (p<0.05) but not drink (p>0.05) treatments when compared to controls. The high-CHO breakfasts decreased total, LDL- and HDL-cholesterol from baseline to 60 mins postprandially but there were no differential effects of beta-glucan treatment on circulating lipids. We conclude that a high dose barley beta-glucan supplement can improve glucose control when added to a high-CHO starchy food, probably due to increased gastro-intestinal viscosity, but not when added to a high-CHO beverage where rapid absorption combined with decreased beta-glucan concentration and viscosity may obviate this mechanism.

  2. Variation between Ethiopian and North American barley varieties (Hordeum vulgare) in response to Russian wheat aphid (Diuraphis noxia) populations.

    PubMed

    Araya, Alemu; Belay, Tesfay; Hussein, Temam

    2014-03-15

    The Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae), causes severe damage to barley, Hordeum vulgare L. (Poales: Poaceae), in the highlands of Ethiopia. Little information is available on the control of this pest in Ethiopia. An experiment aimed at evaluating the resistance of barley varieties from the USA to D. noxia populations and determining biotypic variation between Ethiopian and North American D. noxia populations was conducted. The D. noxia-resistant barley varieties Burton and RWA-1758 from the USA, the resistant barley line 3296-15 from Ethiopia, and a local Ethiopian susceptible variety were included in a randomized design in a greenhouse under natural light conditions. There were highly significant differences (P < 0.001) in the mean D. noxia population, leaf chlorosis, leaf rolling, plant stunting, number of tillers per plant, and the percentage of infested tillers per plant between the resistant and susceptible varieties. The aphid population per tiller was lower on the resistant barley plants than on the susceptible plants. Severe plant damage was observed on the local barley variety, while the least damage was observed on Burton, followed by RWA-1758. Burton and RWA-1758 were therefore highly resistant and moderately resistant, respectively, to the northern Ethiopian D. noxia populations, indicating similarities in biotypes between the United States and northern Ethiopian D. noxia populations. The damage to variety 3296-15 was greater than to Burton and RWA-1758. Leaf chlorosis scores and leaf rolling scores for variety 3296-15 upon treatment with the north Ethiopian D. noxia population indicate likely biotypic variation between D. noxia populations of northern and central Ethiopia. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  3. Weather analysis and interpretation procedures developed for the US/Canada wheat and barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Trenchard, M. H. (Principal Investigator)

    1980-01-01

    Procedures and techniques for providing analyses of meteorological conditions at segments during the growing season were developed for the U.S./Canada Wheat and Barley Exploratory Experiment. The main product and analysis tool is the segment-level climagraph which depicts temporally meteorological variables for the current year compared with climatological normals. The variable values for the segment are estimates derived through objective analysis of values obtained at first-order station in the region. The procedures and products documented represent a baseline for future Foreign Commodity Production Forecasting experiments.

  4. Studies on the riboflavin, niacin, pantothenic acid and choline requirements of young bobwhite quail

    USGS Publications Warehouse

    Serafin, J.A.

    1974-01-01

    Four experiments were conducted to examine the riboflavin, niacin, pantothenic acid and choline requirements of young Bobwhite quail. Quail fed purified diets deficient in either riboflavin, niacin, pantothenic acid or choline grew poorly and high mortality occurred by 5 weeks of age. Under the conditions of these experiments, it was found that: (1) young quail require approximately 3.8 mg. riboflavin/kg. diet for satisfactory growth and survival; (2) no more than 31 mg. niacin/kg. diet are required for normal growth and survival of young quail; (3) the requirement for pantothenic acid is higher than has previously been reported, quail in these studies requiring 12.6 mg. pantothenic acid/kg. feed for growth and survival; and (4) the requirement for choline for reducing mortality is approximately 1000 mg./kg., while the amount necessary for normal growth of young quail is no greater than 1500 mg./kg. when the diet contains ample amounts of methionine. Quail fed a niacin-deficient diet developed stiff, shortened feathers and an erythema about the head; those receiving a riboflavin-deficient ration developed enlarged hocks and bowed legs, as did quail fed diets low or devoid of choline. Aside from slow growth, poor feathering was the only other indication that a deficient diet was being fed when quail were placed on a basal ration without pantothenic acid for five weeks.

  5. Iron deficiency beyond erythropoiesis: should we be concerned?

    PubMed

    Musallam, Khaled M; Taher, Ali T

    2018-01-01

    To consider the key implications of iron deficiency for biochemical and physiological functions beyond erythropoiesis. PubMed was searched for relevant journal articles published up to August 2017. Anemia is the most well-recognized consequence of persisting iron deficiency, but various other unfavorable consequences can develop either before or concurrently with anemia. Mitochondrial function can be profoundly disturbed since iron is a cofactor for heme-containing enzymes and non-heme iron-containing enzymes in the mitochondrial electron transport chain. Biosynthesis of heme and iron-sulfur clusters in the mitochondria is inhibited, disrupting synthesis of compounds such as hemoglobin, myoglobin, cytochromes and nitric oxide synthase. The physiological consequences include fatigue, lethargy, and dyspnea; conversely, iron repletion in iron-deficient individuals has been shown to improve exercise capacity. The myocardium, with its high energy demands, is particularly at risk from the effects of iron deficiency. Randomized trials have found striking improvements in disease severity in anemic but also non-anemic chronic heart failure patients with iron deficiency after iron therapy. In vitro and pre-clinical studies have demonstrated that iron is required by numerous enzymes involved in DNA replication and repair, and for normal cell cycle regulation. Iron is also critical for immune cell growth, proliferation, and differentiation, and for specific cell-mediated effector pathways. Observational studies have shown that iron-deficient individuals have defective immune function, particularly T-cell immunity, but more evidence is required. Pre-clinical models have demonstrated abnormal myelogenesis, brain cell metabolism, neurotransmission, and hippocampal formation in iron-deficient neonates and young animals. In humans, iron deficiency anemia is associated with poorer cognitive and motor skills. However, the impact of iron deficiency without anemia is less clear. The

  6. Dietary vitamin C deficiency depresses the growth, head kidney and spleen immunity and structural integrity by regulating NF-κB, TOR, Nrf2, apoptosis and MLCK signaling in young grass carp (Ctenopharyngodon idella).

    PubMed

    Xu, Hui-Jun; Jiang, Wei-Dan; Feng, Lin; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-05-01

    This study investigated the effects of dietary vitamin C on the growth, and head kidney, spleen and skin immunity, structural integrity and related signaling molecules mRNA expression levels of young grass carp (Ctenopharyngodon idella). A total of 540 grass carp (264.37 ± 0.66 g) were fed six diets with graded levels of vitamin C (2.9, 44.2, 89.1, 133.8, 179.4 and 224.5 mg/kg diet) for 10 weeks. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila and the survival rate recorded for 14 days. The results indicated that compared with optimal vitamin C supplementation, vitamin C deficiency (2.9 mg/kg diet) decreased lysozyme (LA) and acid phosphatase (ACP) activities, and complement 3 and complement 4 (C4) contents (P < 0.05), down-regulated the mRNA levels of antimicrobial peptides [liver expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, hepcidin, β-defensin] and anti-inflammatory cytokines-related factors, interleukin (IL) 4/13A, IL-4/13B (only in head kidney), IL-10, IL-11, transforming growth factor (TGF) β1, TGF-β2, inhibitor of κBα and eIF4E-binding protein 1 (P < 0.05), and up-regulated pro-inflammatory cytokines-related factors, tumor necrosis factor α, interferon γ2, IL-1β, IL-6, IL-8, IL-12 P35 (only in spleen), IL-12 P40, IL-15, IL-17D, nuclear factor κB p65, IκB kinases (IKKα, IKKβ, IKKγ), target of rapamycin and ribosomal protein S6 kinase 1 mRNA levels (P < 0.05) in the head kidney and spleen under injection fish of A. hydrophila, suggesting that vitamin C deficiency could decrease fish head kidney and spleen immunity and cause inflammation. Meanwhile, compared with optimal vitamin C supplementation, vitamin C deficiency decreased the activities and mRNA levels of copper/zinc superoxide dismutase, manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase, glutathione S-transferases and glutathione reductase (P < 0.05), and down-regulated zonula occludens (ZO) 1, ZO-2, Claudin-b, -c, -3c, -7a, -7

  7. An eQTL Analysis of Partial Resistance to Puccinia hordei in Barley

    PubMed Central

    Chen, Xinwei; Hackett, Christine A.; Niks, Rients E.; Hedley, Peter E.; Booth, Clare; Druka, Arnis; Marcel, Thierry C.; Vels, Anton; Bayer, Micha; Milne, Iain; Morris, Jenny; Ramsay, Luke; Marshall, David; Cardle, Linda; Waugh, Robbie

    2010-01-01

    Background Genetic resistance to barley leaf rust caused by Puccinia hordei involves both R genes and quantitative trait loci. The R genes provide higher but less durable resistance than the quantitative trait loci. Consequently, exploring quantitative or partial resistance has become a favorable alternative for controlling disease. Four quantitative trait loci for partial resistance to leaf rust have been identified in the doubled haploid Steptoe (St)/Morex (Mx) mapping population. Further investigations are required to study the molecular mechanisms underpinning partial resistance and ultimately identify the causal genes. Methodology/Principal Findings We explored partial resistance to barley leaf rust using a genetical genomics approach. We recorded RNA transcript abundance corresponding to each probe on a 15K Agilent custom barley microarray in seedlings from St and Mx and 144 doubled haploid lines of the St/Mx population. A total of 1154 and 1037 genes were, respectively, identified as being P. hordei-responsive among the St and Mx and differentially expressed between P. hordei-infected St and Mx. Normalized ratios from 72 distant-pair hybridisations were used to map the genetic determinants of variation in transcript abundance by expression quantitative trait locus (eQTL) mapping generating 15685 eQTL from 9557 genes. Correlation analysis identified 128 genes that were correlated with resistance, of which 89 had eQTL co-locating with the phenotypic quantitative trait loci (pQTL). Transcript abundance in the parents and conservation of synteny with rice allowed us to prioritise six genes as candidates for Rphq11, the pQTL of largest effect, and highlight one, a phospholipid hydroperoxide glutathione peroxidase (HvPHGPx) for detailed analysis. Conclusions/Significance The eQTL approach yielded information that led to the identification of strong candidate genes underlying pQTL for resistance to leaf rust in barley and on the general pathogen response pathway

  8. Low-molecular-weight-heparin can benefit women with recurrent pregnancy loss and sole protein S deficiency: a historical control cohort study from Taiwan.

    PubMed

    Shen, Ming-Ching; Wu, Wan-Ju; Cheng, Po-Jen; Ma, Gwo-Chin; Li, Wen-Chu; Liou, Jui-Der; Chang, Cheng-Shyong; Lin, Wen-Hsiang; Chen, Ming

    2016-01-01

    Heritable thrombophilias are assumed important etiologies for recurrent pregnancy loss. Unlike in the Caucasian populations, protein S and protein C deficiencies, instead of Factor V Lieden and Prothrombin mutations, are relatively common in the Han Chinese population. In this study we aimed to investigate the therapeutic effect of low molecular weight heparin upon women with recurrent pregnancy loss and documented protein S deficiency. During 2011-2016, 68 women with recurrent pregnancy loss (RPL) and protein S deficiency (both the free antigen and function of protein S were reduced) were initially enrolled. All the women must have experienced at least three recurrent miscarriages. After excluding those carrying balanced translocation, medical condition such as diabetes mellitus, chronic hypertension, and autoimmune disorders (including systemic lupus erythematosus and anti-phospholipid syndrome), coexisting thrombophilias other than persistent protein S deficiency (including transient low protein S level, protein C deficiency, and antithrombin III), only 51 women with RPL and sole protein S deficiency were enrolled. Initially they were prescribed low dose Aspirin (ASA: 100 mg/day) and unfortunately there were still 39 women ended up again with early pregnancy loss (12 livebirths were achieved though). Low-molecular-weight-heparin (LMWH) was given for the 39 women in a dose of 1 mg/Kg every 12 h from the day when the next clinical pregnancy was confirmed to the timing at least 24 h before delivery. The perinatal outcomes were assessed. Of 50 treatment subjects performed for the 39 women (i.e. 11 women enrolled twice for two pregnancies), 46 singletons and one twin achieved livebirths. The successful live-birth rate in the whole series was 94 % (47/50). Nineteen livebirths delivered vaginally whereas 28 delivered by cesarean section. The cesarean delivery rate is thus 59.57 %. Emergent deliveries occurred in 3 but no postpartum hemorrhage had been noted. Our

  9. Registration of 'Mesa' Russian wheat aphid-resistant winter feed barley

    USDA-ARS?s Scientific Manuscript database

    'Mesa' (Reg. No., PI 659768), Russian wheat aphid [RWA, Diruaphis noxia (Kurdjumov)]-resistant six-rowed winter feed barley Hordeum vulgare L.) tested as 97BX 43-99A and STARS 1401B, was developed and released by USDA-ARS, Stillwater, OK. Although all crossing, selection, and evaluation was done by...

  10. High Diversity of Genes for Nonhost Resistance of Barley to Heterologous Rust Fungi

    PubMed Central

    Jafary, Hossein; Albertazzi, Giorgia; Marcel, Thierry C.; Niks, Rients E.

    2008-01-01

    Inheritance studies on the nonhost resistance of plants would normally require interspecific crosses that suffer from sterility and abnormal segregation. Therefore, we developed the barley–Puccinia rust model system to study, using forward genetics, the specificity, number, and diversity of genes involved in nonhost resistance. We developed two mapping populations by crossing the line SusPtrit, with exceptional susceptibility to heterologous rust species, with the immune barley cultivars Vada and Cebada Capa. These two mapping populations along with the Oregon Wolfe Barley population, which showed unexpected segregation for resistance to heterologous rusts, were phenotyped with four heterologous rust fungal species. Positions of QTL conferring nonhost resistance in the three mapping populations were compared using an integrated consensus map. The results confirmed that nonhost resistance in barley to heterologous rust species is controlled by QTL with different and overlapping specificities and by an occasional contribution of an R-gene for hypersensitivity. In each population, different sets of loci were implicated in resistance. Few genes were common between the populations, suggesting a high diversity of genes conferring nonhost resistance to heterologous pathogens. These loci were significantly associated with QTL for partial resistance to the pathogen Puccinia hordei and with defense-related genes. PMID:18430953

  11. Adaptation and diversity along an altitudinal gradient in Ethiopian barley (Hordeum vulgare L.) landraces revealed by molecular analysis

    PubMed Central

    2010-01-01

    Background Among the cereal crops, barley is the species with the greatest adaptability to a wide range of environments. To determine the level and structure of genetic diversity in barley (Hordeum vulgare L.) landraces from the central highlands of Ethiopia, we have examined the molecular variation at seven nuclear microsatellite loci. Results A total of 106 landrace populations were sampled in the two growing seasons (Meher and Belg; the long and short rainy seasons, respectively), across three districts (Ankober, Mojanawadera and Tarmaber), and within each district along an altitudinal gradient (from 1,798 to 3,324 m a.s.l). Overall, although significant, the divergence (e.g. FST) is very low between seasons and geographical districts, while it is high between different classes of altitude. Selection for adaptation to different altitudes appears to be the main factor that has determined the observed clinal variation, along with population-size effects. Conclusions Our data show that barley landraces from Ethiopia are constituted by highly variable local populations (farmer's fields) that have large within-population diversity. These landraces are also shown to be locally adapted, with the major driving force that has shaped their population structure being consistent with selection for adaptation along an altitudinal gradient. Overall, our study highlights the potential of such landraces as a source of useful alleles. Furthermore, these landraces also represent an ideal system to study the processes of adaptation and for the identification of genes and genomic regions that have adaptive roles in crop species. PMID:20565982

  12. Barley yellow dwarf virus Infection Leads to Higher Chemical Defense Signals and Lower Electrophysiological Reactions in Susceptible Compared to Tolerant Barley Genotypes.

    PubMed

    Paulmann, Maria K; Kunert, Grit; Zimmermann, Matthias R; Theis, Nina; Ludwig, Anatoli; Meichsner, Doreen; Oelmüller, Ralf; Gershenzon, Jonathan; Habekuss, Antje; Ordon, Frank; Furch, Alexandra C U; Will, Torsten

    2018-01-01

    Barley yellow dwarf virus (BYDV) is a phloem limited virus that is persistently transmitted by aphids. Due to huge yield losses in agriculture, the virus is of high economic relevance. Since the control of the virus itself is not possible, tolerant barley genotypes are considered as the most effective approach to avoid yield losses. Although several genes and quantitative trait loci are known and used in barley breeding for virus tolerance, little is known about molecular and physiological backgrounds of this trait. Therefore, we compared the anatomy and early defense responses of a virus susceptible to those of a virus-tolerant cultivar. One of the very early defense responses is the transmission of electrophysiological reactions. Electrophysiological reactions to BYDV infection might differ between susceptible and tolerant cultivars, since BYDV causes disintegration of sieve elements in susceptible cultivars. The structure of vascular bundles, xylem vessels and sieve elements was examined using microscopy. All three were significantly decreased in size in infected susceptible plants where the virus causes disintegration of sieve elements. This could be associated with an uncontrolled ion exchange between the sieve-element lumen and apoplast. Further, a reduced electrophysiological isolation would negatively affect the propagation of electrophysiological reactions. To test the influence of BYDV infection on electrophysiological reactions, electropotential waves (EPWs) induced by leaf-tip burning were recorded using aphids as bioelectrodes. EPWs in infected susceptible plants disappeared already after 10 cm in contrast to those in healthy susceptible or infected tolerant or healthy tolerant plants. Another early plant defense reaction is an increase in reactive oxygen species (ROS). Using a fluorescent dye, we found a significant increase in ROS content in infected susceptible plants but not in infected tolerant plants. Similar results were found for the

  13. Barley yellow dwarf virus Infection Leads to Higher Chemical Defense Signals and Lower Electrophysiological Reactions in Susceptible Compared to Tolerant Barley Genotypes

    PubMed Central

    Paulmann, Maria K.; Kunert, Grit; Zimmermann, Matthias R.; Theis, Nina; Ludwig, Anatoli; Meichsner, Doreen; Oelmüller, Ralf; Gershenzon, Jonathan; Habekuss, Antje; Ordon, Frank; Furch, Alexandra C. U.; Will, Torsten

    2018-01-01

    Barley yellow dwarf virus (BYDV) is a phloem limited virus that is persistently transmitted by aphids. Due to huge yield losses in agriculture, the virus is of high economic relevance. Since the control of the virus itself is not possible, tolerant barley genotypes are considered as the most effective approach to avoid yield losses. Although several genes and quantitative trait loci are known and used in barley breeding for virus tolerance, little is known about molecular and physiological backgrounds of this trait. Therefore, we compared the anatomy and early defense responses of a virus susceptible to those of a virus-tolerant cultivar. One of the very early defense responses is the transmission of electrophysiological reactions. Electrophysiological reactions to BYDV infection might differ between susceptible and tolerant cultivars, since BYDV causes disintegration of sieve elements in susceptible cultivars. The structure of vascular bundles, xylem vessels and sieve elements was examined using microscopy. All three were significantly decreased in size in infected susceptible plants where the virus causes disintegration of sieve elements. This could be associated with an uncontrolled ion exchange between the sieve-element lumen and apoplast. Further, a reduced electrophysiological isolation would negatively affect the propagation of electrophysiological reactions. To test the influence of BYDV infection on electrophysiological reactions, electropotential waves (EPWs) induced by leaf-tip burning were recorded using aphids as bioelectrodes. EPWs in infected susceptible plants disappeared already after 10 cm in contrast to those in healthy susceptible or infected tolerant or healthy tolerant plants. Another early plant defense reaction is an increase in reactive oxygen species (ROS). Using a fluorescent dye, we found a significant increase in ROS content in infected susceptible plants but not in infected tolerant plants. Similar results were found for the

  14. Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes.

    PubMed

    Gonzalez, Daniel R; Beigi, Farideh; Treuer, Adriana V; Hare, Joshua M

    2007-12-18

    Altered Ca(2+) homeostasis is a salient feature of heart disease, where the calcium release channel ryanodine receptor (RyR) plays a major role. Accumulating data support the notion that neuronal nitric oxide synthase (NOS1) regulates the cardiac RyR via S-nitrosylation. We tested the hypothesis that NOS1 deficiency impairs RyR S-nitrosylation, leading to altered Ca(2+) homeostasis. Diastolic Ca(2+) levels are elevated in NOS1(-/-) and NOS1/NOS3(-/-) but not NOS3(-/-) myocytes compared with wild-type (WT), suggesting diastolic Ca(2+) leakage. Measured leak was increased in NOS1(-/-) and NOS1/NOS3(-/-) but not in NOS3(-/-) myocytes compared with WT. Importantly, NOS1(-/-) and NOS1/NOS3(-/-) myocytes also exhibited spontaneous calcium waves. Whereas the stoichiometry and binding of FK-binding protein 12.6 to RyR and the degree of RyR phosphorylation were not altered in NOS1(-/-) hearts, RyR2 S-nitrosylation was substantially decreased, and the level of thiol oxidation increased. Together, these findings demonstrate that NOS1 deficiency causes RyR2 hyponitrosylation, leading to diastolic Ca(2+) leak and a proarrhythmic phenotype. NOS1 dysregulation may be a proximate cause of key phenotypes associated with heart disease.

  15. A comparative assessment of antioxidant properties, total phenolic content of einkorn, wheat, barley and their malts.

    PubMed

    Fogarasi, Attila-Levente; Kun, Szilárd; Tankó, Gabriella; Stefanovits-Bányai, Eva; Hegyesné-Vecseri, Beáta

    2015-01-15

    Two einkorn wheat, one barley, three optional winter cultivation wheat and five winter cultivation wheat samples harvested in Hungary in 2011, and their malts were evaluated for their DPPH radical and ABTS radical cation scavenging activity, ferric reduction capacity (FRAP) and total phenolic content (TPC). All einkorn and barley samples exhibited significant antioxidant activities determined by DPPH and ABTS radical scavenging activities. The einkorn samples show higher polyphenol content than the other wheat samples. In all cases the barley sample had the highest antioxidant potential and polyphenol content. The einkorn malts had high DPPH and ABTS radical cation scavenging activities, but the phenolic content was lower against wheat samples. There was significant difference between the antioxidant potential of optional and winter cultivation wheat samples except on ABTS scavenging activities. Einkorn wheat is potentially a new raw material to produce organic beer that might have beneficial effects with its increased antioxidant potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Prevalence of anaemia and iron deficiency in Portugal: the EMPIRE study.

    PubMed

    Fonseca, C; Marques, F; Robalo Nunes, A; Belo, A; Brilhante, D; Cortez, J

    2016-04-01

    Anaemia and iron deficiency are major public health problems with great implications on quality of life. To establish the general prevalence of anaemia and iron deficiency in the adult Portuguese population and the prevalence by age, gender and region. This was a population-based, cross-sectional study (EMPIRE study) based on a representative sample of 7980 adults residing in mainland Portugal, which were selected using a random route sampling method. Levels of haemoglobin, ferritin, creatinine and C-reactive protein were measured by Point-of-Care assays; participants also completed a questionnaire about demography and medical history. The measured prevalence of anaemia was 19.9% (95% confidence interval: 19.0-20.8%); 84% of cases were previously undiagnosed. Anaemia was more prevalent among women (20.8%), young adults (18-34 years) (22.8-30.5%), older adults (21.0%), and pregnant women (54.2%). Anaemia varied across regions: from 15.5% in the Center region to 24.9% in the South. Iron deficiency was also highly prevalent: 16.7% (ferritin <15 ng/mL), 31.9% (<30 ng/mL), 53.3% (<50 ng/mL) and 84.3% (<100 ng/mL). Iron deficiency anaemia represented most anaemia cases: 29.0% (ferritin <15 ng/mL), 54.8% (<30 ng/mL), 75.4% (<50 ng/mL) and 92.5% (<100 ng/mL). Anaemia and iron deficiency are highly prevalent in Portugal and largely undiagnosed. Women, young adults and older individuals are more prone to present these conditions and there are marked regional asymmetries. Nationwide strategies for prevention, diagnosis and treatment of these conditions should be implemented. © 2016 Royal Australasian College of Physicians.

  17. A Metabolic Gene Cluster in the Wheat W1 and the Barley Cer-cqu Loci Determines β-Diketone Biosynthesis and Glaucousness

    PubMed Central

    Lee, Wing-Sham; Malitsky, Sergey; Almekias-Siegl, Efrat; Levy, Matan; Ben-Zvi, Gil; Alkan, Noam; Uauy, Cristobal; Jetter, Reinhard

    2016-01-01

    The glaucous appearance of wheat (Triticum aestivum) and barley (Hordeum vulgare) plants, that is the light bluish-gray look of flag leaf, stem, and spike surfaces, results from deposition of cuticular β-diketone wax on their surfaces; this phenotype is associated with high yield, especially under drought conditions. Despite extensive genetic and biochemical characterization, the molecular genetic basis underlying the biosynthesis of β-diketones remains unclear. Here, we discovered that the wheat W1 locus contains a metabolic gene cluster mediating β-diketone biosynthesis. The cluster comprises genes encoding proteins of several families including type-III polyketide synthases, hydrolases, and cytochrome P450s related to known fatty acid hydroxylases. The cluster region was identified in both genetic and physical maps of glaucous and glossy tetraploid wheat, demonstrating entirely different haplotypes in these accessions. Complementary evidence obtained through gene silencing in planta and heterologous expression in bacteria supports a model for a β-diketone biosynthesis pathway involving members of these three protein families. Mutations in homologous genes were identified in the barley eceriferum mutants defective in β-diketone biosynthesis, demonstrating a gene cluster also in the β-diketone biosynthesis Cer-cqu locus in barley. Hence, our findings open new opportunities to breed major cereal crops for surface features that impact yield and stress response. PMID:27225753

  18. A Metabolic Gene Cluster in the Wheat W1 and the Barley Cer-cqu Loci Determines β-Diketone Biosynthesis and Glaucousness.

    PubMed

    Hen-Avivi, Shelly; Savin, Orna; Racovita, Radu C; Lee, Wing-Sham; Adamski, Nikolai M; Malitsky, Sergey; Almekias-Siegl, Efrat; Levy, Matan; Vautrin, Sonia; Bergès, Hélène; Friedlander, Gilgi; Kartvelishvily, Elena; Ben-Zvi, Gil; Alkan, Noam; Uauy, Cristobal; Kanyuka, Kostya; Jetter, Reinhard; Distelfeld, Assaf; Aharoni, Asaph

    2016-06-01

    The glaucous appearance of wheat (Triticum aestivum) and barley (Hordeum vulgare) plants, that is the light bluish-gray look of flag leaf, stem, and spike surfaces, results from deposition of cuticular β-diketone wax on their surfaces; this phenotype is associated with high yield, especially under drought conditions. Despite extensive genetic and biochemical characterization, the molecular genetic basis underlying the biosynthesis of β-diketones remains unclear. Here, we discovered that the wheat W1 locus contains a metabolic gene cluster mediating β-diketone biosynthesis. The cluster comprises genes encoding proteins of several families including type-III polyketide synthases, hydrolases, and cytochrome P450s related to known fatty acid hydroxylases. The cluster region was identified in both genetic and physical maps of glaucous and glossy tetraploid wheat, demonstrating entirely different haplotypes in these accessions. Complementary evidence obtained through gene silencing in planta and heterologous expression in bacteria supports a model for a β-diketone biosynthesis pathway involving members of these three protein families. Mutations in homologous genes were identified in the barley eceriferum mutants defective in β-diketone biosynthesis, demonstrating a gene cluster also in the β-diketone biosynthesis Cer-cqu locus in barley. Hence, our findings open new opportunities to breed major cereal crops for surface features that impact yield and stress response. © 2016 American Society of Plant Biologists. All rights reserved.

  19. Genetics Home Reference: carnitine palmitoyltransferase II deficiency

    MedlinePlus

    ... Zierz S. Muscle carnitine palmitoyltransferase II deficiency: clinical and molecular genetic features and diagnostic aspects. Arch Neurol. 2005 Jan; ... K, Hermann T, Zierz S. Carnitine palmitoyltransferase II deficiency: molecular and biochemical analysis of 32 ... Bulletins Genetics Home Reference Celebrates Its ...

  20. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins

    PubMed Central

    Diaz, Isabel

    2012-01-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described PMID:22791822