Sample records for s-enhanced metal-poor giant

  1. METAL-POOR LITHIUM-RICH GIANTS IN THE RADIAL VELOCITY EXPERIMENT SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruchti, Gregory R.; Fulbright, Jon P.; Wyse, Rosemary F. G.

    We report the discovery of eight lithium-rich field giants found in a high-resolution spectroscopic sample of over 700 metal-poor stars ([Fe/H] < -0.5) selected from the Radial Velocity Experiment survey. The majority of the Li-rich giants in our sample are very metal-poor ([Fe/H] {approx}< -1.9), and have a Li abundance (in the form of {sup 7}Li), A(Li) = log (n(Li)/n(H)) + 12, between 2.30 and 3.63, well above the typical upper red giant branch (RGB) limit, A(Li) < 0.5, while two stars, with A(Li) {approx} 1.7-1.8, show similar lithium abundances to normal giants at the same gravity. We further includedmore » two metal-poor, Li-rich globular cluster giants in our sample, namely the previously discovered M3-IV101 and newly discovered (in this work) M68-A96. This comprises the largest sample of metal-poor Li-rich giants to date. We performed a detailed abundance analysis of all stars, finding that the majority of our sample stars have elemental abundances similar to that of Li-normal halo giants. Although the evolutionary phase of each Li-rich giant cannot be definitively determined, the Li-rich phase is likely connected to extra mixing at the RGB bump or early asymptotic giant branch that triggers cool bottom processing in which the bottom of the outer convective envelope is connected to the H-burning shell in the star. The surface of a star becomes Li-enhanced as {sup 7}Be (which burns to {sup 7}Li) is transported to the stellar surface via the Cameron-Fowler mechanism. We discuss and discriminate among several models for the extra mixing that can cause Li production, given the detailed abundances of the Li-rich giants in our sample.« less

  2. Infrared colours and inferred masses of metal-poor giant stars in the Keplerfield

    NASA Astrophysics Data System (ADS)

    Casey, A. R.; Kennedy, G. M.; Hartle, T. R.; Schlaufman, Kevin C.

    2018-05-01

    Intrinsically luminous giant stars in the Milky Way are the only potential volume-complete tracers of the distant disk, bulge, and halo. The chemical abundances of metal-poor giants also reflect the compositions of the earliest star-forming regions, providing the initial conditions for the chemical evolution of the Galaxy. However, the intrinsic rarity of metal-poor giants combined with the difficulty of efficiently identifying them with broad-band optical photometry has made it difficult to exploit them for studies of the Milky Way. One long-standing problem is that photometric selections for giant and/or metal-poor stars frequently include a large fraction of metal-rich dwarf contaminants. We re-derive a giant star photometric selection using existing public g-band and narrow-band DDO51photometry obtained in the Keplerfield. Our selection is simple and yields a contamination rate of main-sequence stars of ≲1% and a completeness of about 80 % for giant stars with Teff ≲ 5250 K - subject to the selection function of the spectroscopic surveys used to estimate these rates, and the magnitude range considered (11 ≲ g ≲ 15). While the DDO51filter is known to be sensitive to stellar surface gravity, we further show that the mid-infrared colours of DDO51-selected giants are strongly correlated with spectroscopic metallicity. This extends the infrared metal-poor selection developed by Schlaufman & Casey, demonstrating that the principal contaminants in their selection can be efficiently removed by the photometric separation of dwarfs and giants. This implies that any similarly efficient dwarf/giant discriminant (e.g., Gaiaparallaxes) can be used in conjunction with WISEcolours to select samples of giant stars with high completeness and low contamination. We employ our photometric selection to identify three metal-poor giant candidates in the Keplerfield with global asteroseismic parameters and find that masses inferred for these three stars using standard

  3. Oxygen abundances in halo giants. I - Giants in the very metal-poor globular clusters M92 and M15 and the metal-poor halo field

    NASA Astrophysics Data System (ADS)

    Sneden, Christopher; Kraft, Robert P.; Prosser, Charles F.; Langer, G. E.

    1991-12-01

    Oxygen, iron, vanadium, and scandium abundances are derived for very metal-poor giants in the globular clusters M92 and M15, and giants of comparable metallicity in the local halo field. The forbidden O I line dublet (6300, 6363) and nearby metallic lines in spectra are analyzed using line analysis and spectral synthesis codes. The Fe/H abundance for M92 is estimated at -2.25 +/-0.02 based on nine giants with a range of 500 K in effective temperature. No evidence for star-to-star variations in the Fe/H abundance was found. O-rich and O-poor stars appear intermixed in the H-R diagram. O - N nuclear synthesis and mixing to the surface are proposed as the best explanation for the low-oxygen giants. The nitrogen abundances obtained earlier for nine of the ten halo field giants in this sample are incompatible with the very large nitrogen abundances expected of the O/Fe abundance of about + 1.2 in halo field subdwarfs, as found by Abia and Rebolo (1989), and not more than 0.6 in halo giants, as found in this and other studies.

  4. A Search for Nitrogen-enhanced Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer A.; Herwig, Falk; Beers, Timothy C.; Christlieb, Norbert

    2007-04-01

    Theoretical models of very metal-poor intermediate-mass asymptotic giant branch (AGB) stars predict a large overabundance of primary nitrogen. The very metal-poor, carbon-enhanced, s-process-rich stars, which are thought to be the polluted companions of now extinct AGB stars, provide direct tests of the predictions of these models. Recent studies of the carbon and nitrogen abundances in metal-poor stars have focused on the most carbon-rich stars, leading to a potential selection bias against stars that have been polluted by AGB stars that produced large amounts of nitrogen and hence have small [C/N] ratios. We call these stars nitrogen-enhanced metal-poor (NEMP) stars and define them as having [N/Fe]>+0.5 and [C/N]<-0.5. In this paper we report on the [C/N] abundances of a sample of 21 carbon-enhanced stars, all but three of which have [C/Fe]<+2.0. If NEMP stars were made as easily as carbon-enhanced metal-poor (CEMP) stars, then we expected to find between two and seven NEMP stars. Instead, we found no NEMP stars in our sample. Therefore, this observational bias is not an important contributor to the apparent dearth of N-rich stars. Our [C/N] values are in the same range as values reported previously in the literature (-0.5 to +2.0), and all stars are in disagreement with the predicted [C/N] ratios for both low- and high-mass AGB stars. We suggest that the decrease in [C/N] from the low-mass AGB models is due to enhanced extramixing, while the lack of NEMP stars may be caused by unfavorable mass ratios in binaries or the difficulty of mass transfer in binary systems with large mass ratios. Based on observations obtained at Cerro Tololo Inter-American Observatory and Kitt Peak National Observatory, a division of the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

  5. The s-Process Nucleosynthesis in Extremely Metal-Poor Stars as the Generating Mechanism of Carbon Enhanced Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Suda, Takuma; Yamada, Shimako; Fujimoto, Masayuki Y.

    The origin of carbon-enhanced metal-poor (CEMP) stars plays a key role in characterising the formation and evolution of the first stars and the Galaxy since the extremely-metal-poor (EMP) stars with [Fe/H] ≤ -2.5 share the common features of carbon enhancement in their surface chemical compositions. The origin of these stars is not yet established due to the controversy of the origin of CEMP stars without the enhancement of s-process element abundances, i.e., so called CEMP-no stars. In this paper, we elaborate the s-process nucleosynthesis in the EMP AGB stars and explore the origin of CEMP stars. We find that the efficiency of the s-process is controlled by O rather than Fe at [Fe/H] ≲ -2. We demonstrate that the relative abundances of Sr, Ba, Pb to C are explained in terms of the wind accretion from AGB stars in binary systems.

  6. Abundances in the Very Metal Poor s-Process-rich Star CS 22183-015

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer A.; Bolte, Michael

    2002-11-01

    We report on the abundances for 13 elements in CS 22183-015, the most metal-poor, s-process-rich star yet discovered. We measure [Fe/H]=-3.12 and large overabundances compared to scaled solar values for 11 heavy elements with s-process origin. The low luminosity of the star suggests that it is a CH star, a giant that has accreted s-processed material from an evolved, very metal poor companion. We find a [Pb/Ba] value of 1.1 dex and, more generally, that the ratio of heavy to light s-process elements is larger than seen in the solar system. This result is consistent with theoretical expectations for the s-process in metal-poor stars. [Eu/La] is higher than predicted from the solar system s-process abundance ratios. We argue that the s-process in metal-poor stars is more efficient at producing Eu that in asymptotic giant branch stars of solar metallicity. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  7. The Chemical Abundances of New Extremely Metal-Poor Giants with [Fe/H] < -3.0

    NASA Astrophysics Data System (ADS)

    Rhee, Jaehyon; Fink, M.; Rhee, W.

    2012-01-01

    Extremely metal-poor (EMP) stars with [Fe/H] < -3.0 observable in the Galactic halo and thick disk today are believed to be the second-generation stars born out of those materials that were slightly chemically polluted by the extinct, metal-free first stars. If true, these oldest surviving stars with the lowest metal abundances are astrophysical laboratories that may shed essential light on the origins and evolution of the chemical elements and on the formation of the Milky Way. In order to newly discover field metal-deficient stars in the inner halo of the Galaxy, the Purdue Ultra Metal-Poor Star Survey (PUMPSS) program was conducted. Candidate metal-poor stars were initially selected utilizing the photometric data of the GALEX and the 2MASS, and subsequent medium- and high-resolution spectroscopy were carried out for the identification of true metal-poor giant stars and detailed chemical abundance analyses, respectively. We present an overview of the PUMPSS program and the results of the abundance analysis for high-dispersion spectra of EMP giant stars taken at the KPNO 4m telescope. We acknowledge support for this work from NASA grants 07-ADP07-0080 and 05-GALEX05-27.

  8. Rotational mixing in carbon-enhanced metal-poor stars with s-process enrichment

    NASA Astrophysics Data System (ADS)

    Matrozis, E.; Stancliffe, R. J.

    2017-10-01

    Carbon-enhanced metal-poor (CEMP) stars with s-process enrichment (CEMP-s) are believed to be the products of mass transfer from an asymptotic giant branch (AGB) companion, which has long since become a white dwarf. The surface abundances of CEMP-s stars are thus commonly assumed to reflect the nucleosynthesis output of the first AGB stars. We have previously shown that, for this to be the case, some physical mechanism must counter atomic diffusion (gravitational settling and radiative levitation) in these nearly fully radiative stars, which otherwise leads to surface abundance anomalies clearly inconsistent with observations. Here we take into account angular momentum accretion by these stars. We compute in detail the evolution of typical CEMP-s stars from the zero-age main sequence, through the mass accretion, and up the red giant branch for a wide range of specific angular momentum ja of the accreted material, corresponding to surface rotation velocities, vrot, between about 0.3 and 300 kms-1. We find that only for ja ≳ 1017 cm2s-1 (vrot > 20 kms-1, depending on mass accreted) angular momentum accretion directly causes chemical dilution of the accreted material. This could nevertheless be relevant to CEMP-s stars, which are observed to rotate more slowly, if they undergo continuous angular momentum loss akin to solar-like stars. In models with rotation velocities characteristic of CEMP-s stars, rotational mixing primarily serves to inhibit atomic diffusion, such that the maximal surface abundance variations (with respect to the composition of the accreted material) prior to first dredge-up remain within about 0.4 dex without thermohaline mixing or about 0.5-1.5 dex with thermohaline mixing. Even in models with the lowest rotation velocities (vrot ≲ 1 kms-1), rotational mixing is able to severely inhibit atomic diffusion, compared to non-rotating models. We thus conclude that it offers a natural solution to the problem posed by atomic diffusion and cannot be

  9. Lithium-rich very metal-poor stars discovered with LAMOST and Subaru

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Li, Haining; Matsuno, Tadafumi; Kumar, Yerra Bharat; Shi, Jianrong; Suda, Takuma; Zhao, Gang

    2018-04-01

    Lithium is a unique element that is produced in the Big Bang nucleosynthesis but is destroyed by nuclear reactions inside stars. As a result, almost constant lithium abundance is found in unevolved main-sequence metal-poor stars, although the value is systematically lower than that expected from the standard Big Bang nucleosynthesis models, whereas lithium abundances of red giants are more than one order of magnitudes lower than those of unevolved stars. There are, however, a small fraction of metal-poor stars that show extremely high lithium abundances, which is not explained by standard stellar evolution models. We have discovered 12 new very metal-poor stars that have enhancement of lithium by more than 10 times compared with typical metal-poor stars at similar evolutionary stages by the large-scale spectroscopic survey with LAMOST and the follow-up high-resolution spectroscopy with the Subaru Telescope. The sample shows a wide distribution of evolutionary stages from subgiants to red giants with the metallicity of -3.3 <[Fe/H]< -1.6. The chemical abundance ratios of other elements have been obtained by our spectroscopic study, and an estimate of the binary frequency by radial velocity monitoring is ongoing. The observational results provide new constraints on the scenarios to explain lithium-rich metal-poor stars, such as extra mixing during the evolution along the red giant branch, mass-transfer from a companion AGB star, and engulfment of planet-like objects. These explanations are very unlikely for at least some of lithium-rich objects in our sample, suggesting a new mechanism that enhances lithium during the low-mass star evolution.

  10. Binary properties of CH and carbon-enhanced metal-poor stars

    NASA Astrophysics Data System (ADS)

    Jorissen, A.; Van Eck, S.; Van Winckel, H.; Merle, T.; Boffin, H. M. J.; Andersen, J.; Nordström, B.; Udry, S.; Masseron, T.; Lenaerts, L.; Waelkens, C.

    2016-02-01

    The HERMES spectrograph installed on the 1.2-m Mercator telescope has been used to monitor the radial velocity of 13 low-metallicity carbon stars, among which seven carbon-enhanced metal-poor (CEMP) stars and six CH stars (including HIP 53522, a new member of the family, as revealed by a detailed abundance study). All stars but one show clear evidence for binarity. New orbits are obtained for eight systems. The sample covers an extended range in orbital periods, extending from 3.4 d (for the dwarf carbon star HE 0024-2523) to about 54 yr (for the CH star HD 26, the longest known among barium, CH, and extrinsic S stars). Three systems exhibit low-amplitude velocity variations with periods close to 1 yr superimposed on a long-term trend. In the absence of an accurate photometric monitoring of these systems, it is not clear yet whether these variations are the signature of a very low-mass companion or of regular envelope pulsations. The period - eccentricity (P - e) diagram for the 40 low-metallicity carbon stars with orbits now available shows no difference between CH and CEMP-s stars (the latter corresponding to those CEMP stars enriched in s-process elements, as are CH stars). We suggest that they must be considered as one and the same family and that their different names only stem from historical reasons. Indeed, these two families have as well very similar mass-function distributions, corresponding to companions with masses in the range 0.5-0.7 M⊙, indicative of white-dwarf companions, adopting 0.8-0.9 M⊙ for the primary component. This result confirms that CH and CEMP-s stars obey the same mass-transfer scenario as their higher-metallicity analogues, barium stars. The P - e diagrams of barium, CH, and CEMP-s stars are indeed very similar. They reveal two different groups of systems: one with short orbital periods (P< 1000 d) and mostly circular or almost circular orbits, and another with longer period and eccentric (e> 0.1) orbits. These two groups either

  11. Abundances of carbon-enhanced metal-poor stars as constraints on their formation

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Nordström, B.; Hansen, T. T.; Kennedy, C. R.; Placco, V. M.; Beers, T. C.; Andersen, J.; Cescutti, G.; Chiappini, C.

    2016-04-01

    Context. An increasing fraction of carbon-enhanced metal-poor (CEMP) stars is found as their iron abundance, [Fe/H], decreases below [Fe/H] =-2.0. The CEMP-s stars have the highest absolute carbon abundances, [C/H], and are thought to owe their enrichment in carbon and the slow neutron-capture (s-process) elements to mass transfer from a former asymptotic giant branch (AGB) binary companion. The most Fe-poor CEMP stars are normally single, exhibit somewhat lower [C/H] than CEMP-s stars, but show no s-process element enhancement (CEMP-no stars). Abundance determinations of CNO offer clues to their formation sites. Aims: Our aim is to use the medium-resolution spectrograph X-Shooter/VLT to determine stellar parameters and abundances for C, N, Sr, and Ba in several classes of CEMP stars in order to further classify and constrain the astrophysical formation sites of these stars. Methods: Atmospheric parameters for our programme stars were estimated from a combination of V-K photometry, model isochrone fits, and estimates from a modified version of the SDSS/SEGUE spectroscopic pipeline. We then used X-Shooter spectra in conjunction with the 1D local thermodynamic equilibrium spectrum synthesis code MOOG, 1D ATLAS9 atmosphere models to derive stellar abundances, and, where possible, isotopic 12C/13C ratios. Results: Abundances (or limits) of C, N, Sr, and Ba are derived for a sample of 27 faint metal-poor stars for which the X-Shooter spectra have sufficient signal-to-noise ratios (S/N). These moderate resolution, low S/N (~10-40) spectra prove sufficient to perform limited chemical tagging and enable assignment of these stars into the CEMP subclasses (CEMP-s and CEMP-no). According to the derived abundances, 17 of our sample stars are CEMP-s and 3 are CEMP-no, while the remaining 7 are carbon-normal. For four CEMP stars, the subclassification remains uncertain, and two of them may be pulsating AGB stars. Conclusions: The derived stellar abundances trace the formation

  12. The Most Metal-poor Stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Schlaufman, Kevin C.

    2018-06-01

    The chemical abundances of the most metal-poor stars in a galaxy can be used to investigate the earliest stages of its formation and chemical evolution. Differences between the abundances of the most metal-poor stars in the Milky Way and in its satellite dwarf galaxies have been noted and provide the strongest available constraints on the earliest stages of general galactic chemical evolution models. However, the masses of the Milky Way and its satellite dwarf galaxies differ by four orders of magnitude, leaving a gap in our knowledge of the early chemical evolution of intermediate mass galaxies like the Magellanic Clouds. To close that gap, we have initiated a survey of the metal-poor stellar populations of the Magellanic Clouds using the mid-infrared metal-poor star selection of Schlaufman & Casey (2014). We have discovered the three most metal-poor giant stars known in the Large Magellanic Cloud (LMC) and reobserved the previous record holder. The stars have metallicities in the range -2.70 < [Fe/H] < -2.00 and three show r-process enhancement: one has [Eu II/Fe] = +1.65 and two others have [Eu II/Fe] = +0.65. The probability that four randomly selected very metal-poor stars in the halo of the Milky Way are as r-process enhanced is 0.0002. For that reason, the early chemical enrichment of the heaviest elements in the LMC and Milky Way were qualitatively different. It is also suggestive of a possible chemical link between the LMC and the ultra-faint dwarf galaxies nearby with evidence of r-process enhancement (e.g., Reticulum II and Tucana III). Like Reticulum II, the most metal-poor star in our LMC sample is the only one not enhanced in r-process elements.

  13. Fast Winds and Mass Loss from Metal-Poor Field Giants

    NASA Astrophysics Data System (ADS)

    Dupree, A. K.; Smith, Graeme H.; Strader, Jay

    2009-11-01

    Echelle spectra of the infrared He I λ10830 line were obtained with NIRSPEC on the Keck 2 telescope for 41 metal-deficient field giant stars including those on the red giant branch (RGB), asymptotic giant branch (AGB), and red horizontal branch (RHB). The presence of this He I line is ubiquitous in stars with T effgsim 4500 K and MV fainter than -1.5, and reveals the dynamics of the atmosphere. The line strength increases with effective temperature for T effgsim 5300 K in RHB stars. In AGB and RGB stars, the line strength increases with luminosity. Fast outflows (gsim 60 km s-1) are detected from the majority of the stars and about 40% of the outflows have sufficient speed as to allow escape of material from the star as well as from a globular cluster. Outflow speeds and line strengths do not depend on metallicity for our sample ([Fe/H]= -0.7 to -3.0), suggesting the driving mechanism for these winds derives from magnetic and/or hydrodynamic processes. Gas outflows are present in every luminous giant, but are not detected in all stars of lower luminosity indicating possible variability. Mass loss rates ranging from ~3 × 10-10 to ~6 × 10-8 M sun yr-1 estimated from the Sobolev approximation for line formation represent values with evolutionary significance for red giants and RHB stars. We estimate that 0.2 M sun will be lost on the RGB, and the torque of this wind can account for observations of slowly rotating RHB stars in the field. About 0.1-0.2 M sun will be lost on the RHB itself. This first empirical determination of mass loss on the RHB may contribute to the appearance of extended horizontal branches in globular clusters. The spectra appear to resolve the problem of missing intracluster material in globular clusters. Opportunities exist for "wind smothering" of dwarf stars by winds from the evolved population, possibly leading to surface pollution in regions of high stellar density. Data presented herein were obtained at the W. M. Keck Observatory, which

  14. Clear Evidence for the Presence of Second-generation Asymptotic Giant Branch Stars in Metal-poor Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Mészáros, Sz.; Monelli, M.; Cassisi, S.; Stetson, P. B.; Zamora, O.; Shetrone, M.; Lucatello, S.

    2015-12-01

    Galactic globular clusters (GCs) are known to host multiple stellar populations: a first generation (FG) with a chemical pattern typical of halo field stars and a second generation (SG) enriched in Na and Al and depleted in O and Mg. Both stellar generations are found at different evolutionary stages (e.g., the main-sequence turnoff, the subgiant branch, and the red giant branch (RGB)). The non detection of SG asymptotic giant branch (AGB) stars in several metal-poor ([Fe/H] < -1) GCs suggests that not all SG stars ascend the AGB phase, and that failed AGB stars may be very common in metal-poor GCs. This observation represents a serious problem for stellar evolution and GC formation/evolution theories. We report fourteen SG-AGB stars in four metal-poor GCs (M13, M5, M3, and M2) with different observational properties: horizontal branch (HB) morphology, metallicity, and age. By combining the H-band Al abundances obtained by the Apache Point Observatory Galactic Evolution Experiment survey with ground-based optical photometry, we identify SG Al-rich AGB stars in these four GCs and show that Al-rich RGB/AGB GC stars should be Na-rich. Our observations provide strong support for present, standard stellar models, i.e., without including a strong mass-loss efficiency, for low-mass HB stars. In fact, current empirical evidence is in agreement with the predicted distribution of FG and SG stars during the He-burning stages based on these standard stellar models.

  15. Oxygen and iron abundances in two metal-poor dwarfs

    NASA Astrophysics Data System (ADS)

    Spiesman, William J.; Wallerstein, George

    1991-11-01

    Oxygen abundances from the O I line at 6300 A in two metal-poor K dwarfs, HD 25329 and HD 134440, are derived. The spectra were obtained with the KPNO 4-m echelle spectrograph and long camera, yielding a resolution of 32,000 and an S/N of about 125. Model atmospheres with Te of 4770 were appropriate to both stars, whose metallicities were found to be -1.74 and -1.43 for HD 25329 and HD 134440, respectively. These oxygen abundances are 0.3 and 0.4 for the two stars. From the resolution an S/N a 3(sigma) upper limit of 0.8 is derived for each star, which may be combined into an upper limit of O/Fe of 0.6 for a generic K dwarf with Fe/H of 1.6. These values are more in line with O/Fe as seen in similarly metal-poor red giant than those reported in metal-poor subdwarfs by Abia and Rebolo (1989).

  16. The HK-II Survey: Kinematics of Metal-Poor Stars in the Galaxy

    NASA Astrophysics Data System (ADS)

    Rhee, J.; Beers, T. C.

    2003-12-01

    The digitized HK-II survey (Rhee 2000, Ph.D. thesis, MSU) was originated as a follow-on to the HK-I survey of Beers and colleagues (e.g., Beers et al. 1992, AJ, 103, 1987). HK-I was based on visually-selected candidate metal-poor stars from objective-prism plates. Unfortunately, in the absence of color information, this selection technique introduced a rather severe temperature-related bias. As a result, the HK-I candidates do not include large numbers of metal-deficient giants. In HK-II, candidate metal-poor stars are quantitatively selected from digitized objective-prism spectra with JHK color information from the recently completeted 2MASS catalog. This approach eliminates much of the temperature bias. We have begun to survey candidate very metal-poor ([Fe/H] ≤ -2.0) giants from HK-II, over the magnitude range 11.0 ≤ B ≤ 16.0, covering some ˜7000 deg2 of intermediate to high Galactic-latitudes. Ongoing medium-resolution ( ˜ 1-2Å ) spectroscopic follow-up using NOAO observing facilities has allowed us to obtain, to date, some 1000 spectra (400, 450, and 150 spectra for red giants, subgiants near the main-sequence turnoff, and FHB/A stars, respectively) for the HK-II metal-poor star candidates. In particular, the detection rate of bona fide very metal-poor giants is about 45 %, which is quite encouraging. Most of the "mistakes" are slightly more metal-rich giants, with -2.0 < [Fe/H] < -1.0. Metallicities and radial velocities are determined from our spectroscopy, and proper motions for most of the program stars are obtained from the recently released UCAC2 astrometric survey catalog. Here we present an analysis of the full space motions for numerous metal-poor stars from the HK-II survey. A comparision of the chemical and kinematic properties between high- and low-halo populations (that is, giants vs. sub-giants) will aid us in understanding the formation history of the Milky Way. J.R. acknowledges partial support for this work by NASA through the AAS

  17. SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hai-Ning; Zhao, Gang; Wang, Liang

    2015-01-10

    We report on early results from a pilot program searching for metal-poor stars with LAMOST and follow-up high-resolution observation acquired with the MIKE spectrograph attached to the Magellan II telescope. We performed detailed abundance analysis for eight objects with iron abundances [Fe/H] < -2.0, including five extremely metal-poor (EMP; [Fe/H] < -3.0) stars with two having [Fe/H] < -3.5. Among these objects, three are newly discovered EMP stars, one of which is confirmed for the first time with high-resolution spectral observations. Three program stars are regarded as carbon-enhanced metal-poor (CEMP) stars, including two stars with no enhancement in their neutron-capturemore » elements, which thus possibly belong to the class of CEMP-no stars; one of these objects also exhibits significant enhancement in nitrogen, and is thus a potential carbon and nitrogen-enhanced metal-poor star. The [X/Fe] ratios of the sample stars generally agree with those reported in the literature for other metal-poor stars in the same [Fe/H] range. We also compared the abundance patterns of individual program stars with the average abundance pattern of metal-poor stars and find only one chemically peculiar object with abundances of at least two elements (other than C and N) showing deviations larger than 0.5 dex. The distribution of [Sr/Ba] versus [Ba/H] agrees that an additional nucleosynthesis mechanism is needed aside from a single r-process. Two program stars with extremely low abundances of Sr and Ba support the prospect that both main and weak r-processes may have operated during the early phase of Galactic chemical evolution. The distribution of [C/N] shows that there are two groups of carbon-normal giants with different degrees of mixing. However, it is difficult to explain the observed behavior of the [C/N] of the nitrogen-enhanced unevolved stars based on current data.« less

  18. THE INTERMEDIATE NEUTRON-CAPTURE PROCESS AND CARBON-ENHANCED METAL-POOR STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampel, Melanie; Stancliffe, Richard J.; Lugaro, Maria

    Carbon-enhanced metal-poor (CEMP) stars in the Galactic Halo display enrichments in heavy elements associated with either the s (slow) or the r (rapid) neutron-capture process (e.g., barium and europium, respectively), and in some cases they display evidence of both. The abundance patterns of these CEMP- s / r stars, which show both Ba and Eu enrichment, are particularly puzzling, since the s and the r processes require neutron densities that are more than ten orders of magnitude apart and, hence, are thought to occur in very different stellar sites with very different physical conditions. We investigate whether the abundance patternsmore » of CEMP- s / r stars can arise from the nucleosynthesis of the intermediate neutron-capture process (the i process), which is characterized by neutron densities between those of the s and the r processes. Using nuclear network calculations, we study neutron capture nucleosynthesis at different constant neutron densities n ranging from 10{sup 7}–10{sup 15} cm{sup -3}. With respect to the classical s process resulting from neutron densities on the lowest side of this range, neutron densities on the highest side result in abundance patterns, which show an increased production of heavy s -process and r -process elements, but similar abundances of the light s -process elements. Such high values of n may occur in the thermal pulses of asymptotic giant branch stars due to proton ingestion episodes. Comparison to the surface abundances of 20 CEMP- s / r stars shows that our modeled i -process abundances successfully reproduce observed abundance patterns, which could not be previously explained by s -process nucleosynthesis. Because the i -process models fit the abundances of CEMP- s / r stars so well, we propose that this class should be renamed as CEMP- i .« less

  19. Seven new carbon-enhanced metal-poor RR Lyrae stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Catherine R.; Stancliffe, Richard J.; Kuehn, Charles

    2014-05-20

    We report estimated carbon-abundance ratios, [C/Fe], for seven newly discovered carbon-enhanced metal-poor (CEMP) RR Lyrae stars. These are well-studied RRab stars that had previously been selected as CEMP candidates based on low-resolution spectra. For this pilot study, we observed eight of these CEMP RR Lyrae candidates with the Wide Field Spectrograph on the ANU 2.3 m telescope. Prior to this study, only two CEMP RR Lyrae stars had been discovered: TY Gru and SDSS J1707+58. We compare our abundances to new theoretical models of the evolution of low-mass stars in binary systems. These simulations evolve the secondary stars, post accretionmore » from an asymptotic giant-branch (AGB) donor, all the way to the RR Lyrae stage. The abundances of CEMP RR Lyrae stars can be used as direct probes of the nature of the donor star, such as its mass, and the amount of material accreted onto the secondary. We find that the majority of the sample of CEMP RR Lyrae stars is consistent with AGB donor masses of around 1.5-2.0 M {sub ☉} and accretion masses of a few hundredths of a solar mass. Future high-resolution studies of these newly discovered CEMP RR Lyrae stars will help disentangle the effects of the proposed mixing processes that occur in such objects.« less

  20. METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING s-PROCESS NUCLEOSYNTHESIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placco, Vinicius M.; Rossi, Silvia; Frebel, Anna

    2013-06-20

    We present a comprehensive abundance analysis of two newly discovered carbon-enhanced metal-poor (CEMP) stars. HE 2138-3336 is a s-process-rich star with [Fe/H] = -2.79, and has the highest [Pb/Fe] abundance ratio measured thus far, if non-local thermodynamic equilibrium corrections are included ([Pb/Fe] = +3.84). HE 2258-6358, with [Fe/H] = -2.67, exhibits enrichments in both s- and r-process elements. These stars were selected from a sample of candidate metal-poor stars from the Hamburg/ESO objective-prism survey, and followed up with medium-resolution (R {approx} 2000) spectroscopy with GEMINI/GMOS. We report here on derived abundances (or limits) for a total of 34 elements inmore » each star, based on high-resolution (R {approx} 30, 000) spectroscopy obtained with Magellan-Clay/MIKE. Our results are compared to predictions from new theoretical asymptotic giant branch (AGB) nucleosynthesis models of 1.3 M{sub Sun} with [Fe/H] = -2.5 and -2.8, as well as to a set of AGB models of 1.0 to 6.0 M{sub Sun} at [Fe/H] = -2.3. The agreement with the model predictions suggests that the neutron-capture material in HE 2138-3336 originated from mass transfer from a binary companion star that previously went through the AGB phase, whereas for HE 2258-6358, an additional process has to be taken into account to explain its abundance pattern. We find that a narrow range of progenitor masses (1.0 {<=} M(M{sub Sun }) {<=} 1.3) and metallicities (-2.8 {<=} [Fe/H] {<=}-2.5) yield the best agreement with our observed elemental abundance patterns.« less

  1. Detection of a Population of Carbon-enhanced Metal-poor Stars in the Sculptor Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Chiti, Anirudh; Simon, Joshua D.; Frebel, Anna; Thompson, Ian B.; Shectman, Stephen A.; Mateo, Mario; Bailey, John I., III; Crane, Jeffrey D.; Walker, Matthew

    2018-04-01

    The study of the chemical abundances of metal-poor stars in dwarf galaxies provides a venue to constrain paradigms of chemical enrichment and galaxy formation. Here we present metallicity and carbon abundance measurements of 100 stars in Sculptor from medium-resolution (R ∼ 2000) spectra taken with the Magellan/Michigan Fiber System mounted on the Magellan-Clay 6.5 m telescope at Las Campanas Observatory. We identify 24 extremely metal-poor star candidates ([Fe/H] < ‑3.0) and 21 carbon-enhanced metal-poor (CEMP) star candidates. Eight carbon-enhanced stars are classified with at least 2σ confidence, and five are confirmed as such with follow-up R ∼ 6000 observations using the Magellan Echellette Spectrograph on the Magellan-Baade 6.5 m telescope. We measure a CEMP fraction of 36% for stars below [Fe/H] = ‑3.0, indicating that the prevalence of carbon-enhanced stars in Sculptor is similar to that of the halo (∼43%) after excluding likely CEMP-s and CEMP-r/s stars from our sample. However, we do not detect that any CEMP stars are strongly enhanced in carbon ([C/Fe] > 1.0). The existence of a large number of CEMP stars both in the halo and in Sculptor suggests that some halo CEMP stars may have originated from accreted early analogs of dwarf galaxies. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  2. Oxygen abundance in metal-poor dwarfs, derived from the forbidden line

    NASA Astrophysics Data System (ADS)

    Spite, M.; Spite, F.

    1991-12-01

    The oxygen abundance is redetermined in a few metal-poor dwarfs, using the oxygen forbidden line at 630 nm rather than the oxygen triplet at 777 nm previously used by Abia and Rebolo (1989). The ratios form O/Fe are clearly lower than the previous ones and are in agreement with the ratios found in the metal-poor red giants, suggesting that no real difference exists between dwarfs and giants. Finally, it can be argued that, pending the acquisition of additional information, the oxygen abundances derived from the forbidden line are more reliable than the abundances found from the triplet.

  3. DETECTION OF PHOSPHORUS, SULPHUR, AND ZINC IN THE CARBON-ENHANCED METAL-POOR STAR BD+44 493

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Placco, Vinicius M.; Beers, Timothy C., E-mail: iur@umich.edu

    2016-06-20

    The carbon-enhanced metal-poor star BD+44°493 ([Fe/H] = −3.9) has been proposed as a candidate second-generation star enriched by metals from a single Pop III star. We report the first detections of P and S and the second detection of Zn in any extremely metal-poor carbon-enhanced star, using new spectra of BD+44°493 collected by the Cosmic Origins Spectrograph on the Hubble Space Telescope . We derive [P/Fe] = −0.34 ± 0.21, [S/Fe] = +0.07 ± 0.41, and [Zn/Fe] = −0.10 ± 0.24. We increase by 10-fold the number of Si i lines detected in BD+44°493, yielding [Si/Fe] = +0.15 ± 0.22.more » The [S/Fe] and [Zn/Fe] ratios exclude the hypothesis that the abundance pattern in BD+44°493 results from depletion of refractory elements onto dust grains. Comparison with zero-metallicity supernova (SN) models suggests that the stellar progenitor that enriched BD+44°493 was massive and ejected much less than 0.07 M {sub ⊙} of {sup 56}Ni, characteristic of a faint SN.« less

  4. Neutron-Capture Elements in Very Metal-Poor Halo Stars

    NASA Astrophysics Data System (ADS)

    French, R. S.; Sneden, C.; Cowan, J. J.; Lawler, J. E.; Primas, F.; Beers, T. C.; Truran, J. W.

    2000-05-01

    Abundances of the most massive stable elements (Os -> Pb or 76 <= Z <= 82) in metal-poor stars can provide crucial information about the so-called ``third neutron-capture peak,'' and are critical to the radioactive-dating technique that uses unstable thorium and uranium as chronometers. As the relevant transitions occur in the UV and are inaccessable to ground-based telescopes, we have obtained high resolution (R ~= 30,000) UV spectra of 10 very metal-poor (--3.0 <= [Fe/H] <= --1.4) halo giants using the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope. Using iterative spectrum synthesis techniques, we derive abundances for some of these heavy elements. We compare our abundances to those predicted for very metal-poor stars based on a scaled solar system rapid-process (production in rapid neutron-capture synthesis events, such as occurs during supernovae explosions). This research is supported by NASA STScI grant GO-08342 and NSF grants AST-9618364 to C.S. and AST-9618332 to J.J.C.

  5. Extremely metal-deficient red giants. IV - Equivalent widths for 36 halo giants

    NASA Technical Reports Server (NTRS)

    Luck, R. E.; Bond, H. E.

    1985-01-01

    Further work on a study of 36 metal-poor field red giants is reported. Chemical abundances previously determined were based on model stellar atmosphere analyses of equivalent widths from photographic image-tube echelle spectrograms obtained with with 4-m reflectors at Kitt Peak and Cerro Tololo. A tabulation of the equivalent-width data (a total of 18, 275 equivalent widths) is presented.

  6. Europium s-process Signature at Close-to-solar Metallicity in Stardust SiC Grains from Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Ávila, Janaína N.; Ireland, Trevor R.; Lugaro, Maria; Gyngard, Frank; Zinner, Ernst; Cristallo, Sergio; Holden, Peter; Rauscher, Thomas

    2013-05-01

    Individual mainstream stardust silicon carbide (SiC) grains and a SiC-enriched bulk sample from the Murchison carbonaceous meteorite have been analyzed by the Sensitive High Resolution Ion Microprobe-Reverse Geometry for Eu isotopes. The mainstream grains are believed to have condensed in the outflows of ~1.5-3 M ⊙ carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The 151Eu fractions [fr(151Eu) = 151Eu/(151Eu+153Eu)] derived from our measurements are compared with previous astronomical observations of carbon-enhanced metal-poor stars enriched in elements made by slow neutron captures (the s-process). Despite the difference in metallicity between the parent stars of the grains and the metal-poor stars, the fr(151Eu) values derived from our measurements agree well with fr(151Eu) values derived from astronomical observations. We have also compared the SiC data with theoretical predictions of the evolution of Eu isotopic ratios in the envelope of AGB stars. Because of the low Eu abundances in the SiC grains, the fr(151Eu) values derived from our measurements show large uncertainties, in most cases being larger than the difference between solar and predicted fr(151Eu) values. The SiC aggregate yields a fr(151Eu) value within the range observed in the single grains and provides a more precise result (fr(151Eu) = 0.54 ± 0.03, 95% conf.), but is approximately 12% higher than current s-process predictions. The AGB models can match the SiC data if we use an improved formalism to evaluate the contribution of excited nuclear states in the calculation of the 151Sm(n, γ) stellar reaction rate.

  7. CN anomalies in extremely metal-deficient red giants

    NASA Technical Reports Server (NTRS)

    Anthony-Twarog, Barbara J.; Shawl, Stephen J.; Twarog, Bruce A.

    1992-01-01

    New photometric and UV spectroscopic data for the metal-deficient red giants CD -38 deg 245 and BD -18 deg 5550 are presented and discussed in light of recently noted photometric anomalies. From the IUE spectra it is aparent that the UV excess found in BD -18 deg 5550 is not the result of a hot companion. The IUE spectra, in conjunction with other observations, point to anomalous nitrogen abundances as the source of the discrepancies between the photometric and spectroscopic abundances for these stars. CD -38 deg 245 appears to be exceptionally nitrogen-rich while BD -18 deg 5550 is anomalously nitrogen-poor with respect to stars of comparable metallicities. While BD -18 deg 5550 appears to be an exception to the rule for its metallicity, the confirmation of a similar photometric pattern for CS 22885-96 may be an indication that the nitrogen overabundance in CD -38 deg 245 is typical for giants of extreme metal-deficiency.

  8. Near-infrared Stellar Populations in the Metal-poor, Dwarf Irregular Galaxies Sextans A and Leo A

    NASA Astrophysics Data System (ADS)

    Jones, Olivia C.; Maclay, Matthew T.; Boyer, Martha L.; Meixner, Margaret; McDonald, Iain; Meskhidze, Helen

    2018-02-01

    We present JHK s observations of the metal-poor ([Fe/H] < ‑1.40) dwarf-irregular galaxies, Leo A and Sextans A, obtained with the WIYN High-resolution Infrared Camera at Kitt Peak. Their near-IR stellar populations are characterized by using a combination of color–magnitude diagrams and by identifying long-period variable stars. We detected red giant and asymptotic giant branch stars, consistent with membership of the galaxy’s intermediate-age populations (2–8 Gyr old). Matching our data to broadband optical and mid-IR photometry, we determine luminosities, temperatures, and dust-production rates (DPR) for each star. We identify 32 stars in Leo A and 101 stars in Sextans A with a DPR > {10}-11 {M}ȯ {yr}}-1, confirming that metal-poor stars can form substantial amounts of dust. We also find tentative evidence for oxygen-rich dust formation at low metallicity, contradicting previous models that suggest oxygen-rich dust production is inhibited in metal-poor environments. The total rates of dust injection into the interstellar medium of Leo A and Sextans A are (8.2+/- 1.8)× {10}-9 {M}ȯ {yr}}-1 and (6.2+/- 0.2)× {10}-7 {M}ȯ {yr}}-1, respectively. The majority of this dust is produced by a few very dusty evolved stars and does not vary strongly with metallicity.

  9. Chemical Analysis of a Carbon-enhanced Very Metal-poor Star: CD-27 14351

    NASA Astrophysics Data System (ADS)

    Karinkuzhi, Drisya; Goswami, Aruna; Masseron, Thomas

    2017-01-01

    We present, for the first time, an abundance analysis of a very metal-poor carbon-enhanced star CD-27 14351 based on a high-resolution (R ˜ 48,000) FEROS spectrum. Our abundance analysis performed using local thermodynamic equilibrium model atmospheres shows that the object is a cool star with stellar atmospheric parameters, effective temperature Teff = 4335 K, surface gravity log g = 0.5, microturbulence ξ = 2.42 km s-1, and metallicity [Fe/H] = -2.6. The star exhibits high carbon and nitrogen abundances with [C/Fe] = 2.89 and [N/Fe] = 1.89. Overabundances of neutron-capture elements are evident in Ba, La, Ce, and Nd, with estimated [X/Fe] > 1, the largest enhancement being seen in Ce with [Ce/Fe] = 2.63. While the first peak s-process elements Sr and Y are found to be enhanced with respect to Fe, ([Sr/Fe] = 1.73 and [Y/Fe] = 1.91), the third peak s-process element Pb could not be detected in our spectrum at the given resolution. Europium, primarily an r-process element also shows an enhancement with [Eu/Fe] = 1.65. With [Ba/Eu] = 0.12, the object CD-27 14351 satisfies the classification criterion for a CEMP-r/s star. The elemental abundance distributions observed in this star are discussed in light of the chemical abundances observed in other CEMP stars in the literature.

  10. Kinematics of metal-poor giants in an inner-halo field, with implications for disk formation

    NASA Technical Reports Server (NTRS)

    Morrison, Heather L.

    1993-01-01

    A sample of approximately 100 predominantly metal-weak giants, identified in a high-latitude field towards the galactic center using an automated objective-prism survey technique, is presented. Abundances and radial velocities have been measured for these giants, whose distances from the Sun range from 1 to 18 kpc. While the extremely metal-weak stars in the field have halo kinematics, the majority of the stars with intermediate abundance have thick disk kinematics, despite the fact that their average distance from the galactic plane is 3 kpc. The most satisfactory explanation for this effect is that the inner halo is moderately flattened, and the metal-weak stars of the thick disk have a scale height of about 2 kpc. It is suggested that the thick disk may have formed in a dissipational collapse, rather than in a separate event such as the accretion of a small satellite galaxy.

  11. From K giants to G dwarfs: stellar lifetime effects on metallicity distributions derived from red giants

    NASA Astrophysics Data System (ADS)

    Manning, Ellen M.; Cole, Andrew A.

    2017-11-01

    We examine the biases inherent to chemical abundance distributions when targets are selected from the red giant branch (RGB), using simulated giant branches created from isochrones. We find that even when stars are chosen from the entire colour range of RGB stars and over a broad range of magnitudes, the relative numbers of stars of different ages and metallicities, integrated over all stellar types, are not accurately represented in the giant branch sample. The result is that metallicity distribution functions derived from RGB star samples require a correction before they can be fitted by chemical evolution models. We derive simple correction factors for over- and under-represented populations for the limiting cases of single-age populations with a broad range of metallicities and of continuous star formation at constant metallicity; an important general conclusion is that intermediate-age populations (≈1-4 Gyr) are over-represented in RGB samples. We apply our models to the case of the Large Magellanic Cloud bar and show that the observed metallicity distribution underestimates the true number of metal-poor stars by more than 25 per cent; as a result, the inferred importance of gas flows in chemical evolution models could potentially be overestimated. The age- and metallicity-dependences of RGB lifetimes require careful modelling if they are not to lead to spurious conclusions about the chemical enrichment history of galaxies.

  12. AN ELEMENTAL ASSAY OF VERY, EXTREMELY, AND ULTRA-METAL-POOR STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, T.; Christlieb, N.; Hansen, C. J.

    2015-07-10

    We present a high-resolution elemental-abundance analysis for a sample of 23 very metal-poor ([Fe/H] < −2.0) stars, 12 of which are extremely metal-poor ([Fe/H] < −3.0), and 4 of which are ultra-metal-poor ([Fe/H] < −4.0). These stars were targeted to explore differences in the abundance ratios for elements that constrain the possible astrophysical sites of element production, including Li, C, N, O, the α-elements, the iron-peak elements, and a number of neutron-capture elements. This sample substantially increases the number of known carbon-enhanced metal-poor (CEMP) and nitrogen-enhanced metal-poor (NEMP) stars—our program stars include eight that are considered “normal” metal-poor stars, sixmore » CEMP-no stars, five CEMP-s stars, two CEMP-r stars, and two CEMP-r/s stars. One of the CEMP-r stars and one of the CEMP-r/s stars are possible NEMP stars. We detect lithium for three of the six CEMP-no stars, all of which are Li depleted with respect to the Spite plateau. The majority of the CEMP stars have [C/N] > 0. The stars with [C/N] < 0 suggest a larger degree of mixing; the few CEMP-no stars that exhibit this signature are only found at [Fe/H] < −3.4, a metallicity below which we also find the CEMP-no stars with large enhancements in Na, Mg, and Al. We confirm the existence of two plateaus in the absolute carbon abundances of CEMP stars, as suggested by Spite et al. We also present evidence for a “floor” in the absolute Ba abundances of CEMP-no stars at A(Ba) ∼ −2.0.« less

  13. Carbon-enhanced metal-poor stars: CEMP-s and CEMP-no subclasses in the halo system of the Milky Way

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carollo, Daniela; Freeman, Ken; Beers, Timothy C.

    2014-06-20

    We explore the kinematics and orbital properties of a sample of 323 very metal-poor stars in the halo system of the Milky Way, selected from the high-resolution spectroscopic follow-up studies of Aoki et al. and Yong et al. The combined sample contains a significant fraction of carbon-enhanced metal-poor (CEMP) stars (22% or 29%, depending on whether a strict or relaxed criterion is applied for this definition). Barium abundances (or upper limits) are available for the great majority of the CEMP stars, allowing for their separation into the CEMP-s and CEMP-no subclasses. A new method to assign membership to the inner-more » and outer-halo populations of the Milky Way is developed, making use of the integrals of motion, and applied to determine the relative fractions of CEMP stars in these two subclasses for each halo component. Although limited by small-number statistics, the data suggest that the inner halo of the Milky Way exhibits a somewhat higher relative number of CEMP-s stars than CEMP-no stars (57% versus 43%), while the outer halo possesses a clearly higher fraction of CEMP-no stars than CEMP-s stars (70% versus 30%). Although larger samples of CEMP stars with known Ba abundances are required, this result suggests that the dominant progenitors of CEMP stars in the two halo components were different; massive stars for the outer halo, and intermediate-mass stars in the case of the inner halo.« less

  14. VizieR Online Data Catalog: Carbon-enhanced metal-poor (CEMP) star abundances (Yoon+, 2016)

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Beers, T. C.; Placco, V. M.; Rasmussen, K. C.; Carollo, D.; He, S.; Hansen, T. T.; Roederer, I. U.; Zeanah, J.

    2017-03-01

    We have endeavored to compile a list that is as complete as possible of carbon-enhanced metal-poor (CEMP); CEMP-s (and CEMP-r/s) and CEMP-no stars having [Fe/H]<-1.0 and [C/Fe]>=+0.7 with available high-resolution spectroscopic abundance information. We have only considered stars with claimed detections or lower limits for carbon, along with several critical elemental-abundance ratios, such as [Ba/Fe] and [Eu/Fe]. The great majority of our sample comes from the literature compilation of Placco+ (2014, J/ApJ/797/21). See section 2 for further details. (2 data files).

  15. New and updated stellar parameters for 71 evolved planet hosts. On the metallicity-giant planet connection

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Santos, N. C.; Sousa, S. G.; Adibekyan, V. Zh.; Delgado Mena, E.; Tsantaki, M.; Israelian, G.; Mayor, M.

    2013-09-01

    Context. It is still being debated whether the well-known metallicity-giant planet correlation for dwarf stars is also valid for giant stars. For this reason, having precise metallicities is very important. Precise stellar parameters are also crucial to planetary research for several other reasons. Different methods can provide different results that lead to discrepancies in the analysis of planet hosts. Aims: To study the impact of different analyses on the metallicity scale for evolved stars, we compare different iron line lists to use in the atmospheric parameter derivation of evolved stars. Therefore, we use a sample of 71 evolved stars with planets. With these new homogeneous parameters, we revisit the metallicity-giant planet connection for evolved stars. Methods: A spectroscopic analysis based on Kurucz models in local thermodynamic equilibrium (LTE) was performed through the MOOG code to derive the atmospheric parameters. Two different iron line list sets were used, one built for cool FGK stars in general, and the other for giant FGK stars. Masses were calculated through isochrone fitting, using the Padova models. Kolmogorov-Smirnov tests (K-S tests) were then performed on the metallicity distributions of various different samples of evolved stars and red giants. Results: All parameters compare well using a line list set, designed specifically for cool and solar-like stars to provide more accurate temperatures. All parameters derived with this line list set are preferred and are thus adopted for future analysis. We find that evolved planet hosts are more metal-poor than dwarf stars with giant planets. However, a bias in giant stellar samples that are searched for planets is present. Because of a colour cut-off, metal-rich low-gravity stars are left out of the samples, making it hard to compare dwarf stars with giant stars. Furthermore, no metallicity enhancement is found for red giants with planets (log g < 3.0 dex) with respect to red giants without

  16. CHEMICAL ANALYSIS OF A CARBON-ENHANCED VERY METAL-POOR STAR: CD-27 14351

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karinkuzhi, Drisya; Goswami, Aruna; Masseron, Thomas

    2017-01-01

    We present, for the first time, an abundance analysis of a very metal-poor carbon-enhanced star CD-27 14351 based on a high-resolution ( R  ∼ 48,000) FEROS spectrum. Our abundance analysis performed using local thermodynamic equilibrium model atmospheres shows that the object is a cool star with stellar atmospheric parameters, effective temperature T {sub eff} = 4335 K, surface gravity log g  = 0.5, microturbulence ξ  = 2.42 km s{sup −1}, and metallicity [Fe/H] = −2.6. The star exhibits high carbon and nitrogen abundances with [C/Fe] = 2.89 and [N/Fe] = 1.89. Overabundances of neutron-capture elements are evident in Ba, La, Ce, and Nd, with estimated [X/Fe] > 1, the largest enhancementmore » being seen in Ce with [Ce/Fe] = 2.63. While the first peak s -process elements Sr and Y are found to be enhanced with respect to Fe, ([Sr/Fe] = 1.73 and [Y/Fe] = 1.91), the third peak s -process element Pb could not be detected in our spectrum at the given resolution. Europium, primarily an r -process element also shows an enhancement with [Eu/Fe] = 1.65. With [Ba/Eu] = 0.12, the object CD-27 14351 satisfies the classification criterion for a CEMP-r/s star. The elemental abundance distributions observed in this star are discussed in light of the chemical abundances observed in other CEMP stars in the literature.« less

  17. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R.

    2013-04-10

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403more » giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.« less

  18. A Differential Chemical Element Analysis of the Metal-poor Globular Cluster NGC 6397

    NASA Astrophysics Data System (ADS)

    Koch, Andreas; McWilliam, Andrew

    2011-08-01

    We present chemical abundances in three red giants and two turnoff (TO) stars in the metal-poor Galactic globular cluster (GC) NGC 6397 based on spectroscopy obtained with the Magellan Inamori Kyocera Echelle high-resolution spectrograph on the Magellan 6.5 m Clay telescope. Our results are based on a line-by-line differential abundance analysis relative to the well-studied red giant Arcturus and the Galactic halo field star Hip 66815. At a mean of -2.10 ± 0.02 (stat.) ±0.07 (sys.), the differential iron abundance is in good agreement with other studies in the literature based on gf-values. As in previous differential works we find a distinct departure from ionization equilibrium in that the abundances of Fe I and Fe II differ by ~0.1 dex, with opposite signs for the red giant branch (RGB) and TO stars. The α-element ratios are enhanced to 0.4 (RGB) and 0.3 dex (TO), respectively, and we also confirm strong variations in the O, Na, and Al/Fe abundance ratios. Accordingly, the light-element abundance patterns in one of the red giants can be attributed to pollution by an early generation of massive Type II supernovae. TO and RGB abundances are not significantly different, with the possible exception of Mg and Ti, which are, however, amplified by the patterns in one TO star additionally belonging to this early generation of GC stars. We discuss interrelations of these light elements as a function of the GC metallicity. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  19. Exploring the Relationship Between Planet Mass and Atmospheric Metallicity for Cool Giant Planets

    NASA Astrophysics Data System (ADS)

    Thomas, Nancy H.; Wong, Ian; Knutson, Heather; Deming, Drake; Desert, Jean-Michel; Fortney, Jonathan J.; Morley, Caroline; Kammer, Joshua A.; Line, Michael R.

    2016-10-01

    Measurements of the average densities of exoplanets have begun to help constrain their bulk compositions and to provide insight into their formation locations and accretionary histories. Current mass and radius measurements suggest an inverse relationship between a planet's bulk metallicity and its mass, a relationship also seen in the gas and ice giant planets of our own solar system. We expect atmospheric metallicity to similarly increase with decreasing planet mass, but there are currently few constraints on the atmospheric metallicities of extrasolar giant planets. For hydrogen-dominated atmospheres, equilibrium chemistry models predict a transition from CO to CH4 below ~1200 K. However, with increased atmospheric metallicity the relative abundance of CH4 is depleted and CO is enhanced. In this study we present new secondary eclipse observations of a set of cool (<1200 K) giant exoplanets at 3.6 and 4.5 microns using the Spitzer Space Telescope, which allow us to constrain their relative abundances of CH4 and CO and corresponding atmospheric metallicities. We discuss the implications of our results for the proposed correlation between planet mass and atmospheric metallicity as predicted by the core accretion models and observed in our solar system.

  20. A Giant Planet Around a Metal-Poor Star of Extragalactic Origin

    NASA Astrophysics Data System (ADS)

    Setiawan, Johny; Klement, Rainer J.; Henning, Thomas; Rix, Hans-Walter; Rochau, Boyke; Rodmann, Jens; Schulze-Hartung, Tim

    2010-12-01

    Stars in their late stage of evolution, such as horizontal branch stars, are still largely unexplored for planets. We detected a planetary companion around HIP 13044, a very metal-poor star on the red horizontal branch, on the basis of radial velocity observations with a high-resolution spectrograph at the 2.2-meter Max-Planck Gesellschaft-European Southern Observatory telescope. The star’s periodic radial velocity variation of P = 16.2 days caused by the planet can be distinguished from the periods of the stellar activity indicators. The minimum mass of the planet is 1.25 times the mass of Jupiter and its orbital semimajor axis is 0.116 astronomical units. Because HIP 13044 belongs to a group of stars that have been accreted from a disrupted satellite galaxy of the Milky Way, the planet most likely has an extragalactic origin.

  1. Enormous Li Enhancement Preceding Red Giant Phases in Low-mass Stars in the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Li, Haining; Aoki, Wako; Matsuno, Tadafumi; Bharat Kumar, Yerra; Shi, Jianrong; Suda, Takuma; Zhao, Gang

    2018-01-01

    Li abundances in the bulk of low-mass metal-poor stars are well reproduced by stellar evolution models adopting a constant initial abundance. However, a small number of stars have exceptionally high Li abundances, for which no convincing models have been established. We report on the discovery of 12 very metal-poor stars that have large excesses of Li, including an object having more than 100 times higher Li abundance than the values found in usual objects, which is the largest excess in metal-poor stars known to date. The sample is distributed over a wide range of evolutionary stages, including five unevolved stars, showing no clear abundance anomaly in other elements. The results indicate the existence of an efficient process to enrich Li in a small fraction of low-mass stars at the main-sequence or subgiant phase. The wide distribution of Li-rich stars along the red giant branch could be explained by the dilution of surface Li by mixing that occurs when the stars evolve into red giants. Our study narrows down the problem to be solved in order to understand the origins of Li excess found in low-mass stars, suggesting the presence of an unknown process that affects the surface abundances preceding red giant phases. This work is based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  2. Carbon-enhanced metal-poor stars: relics from the dark ages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, Ryan J.; Madau, Piero, E-mail: rcooke@ucolick.org

    2014-08-20

    We use detailed nucleosynthesis calculations and a realistic prescription for the environment of the first stars to explore the first episodes of chemical enrichment that occurred during the dark ages. Based on these calculations, we propose a novel explanation for the increased prevalence of carbon-enhanced metal-poor (CEMP) stars with decreasing Fe abundance: the observed chemistry for the most metal-poor Galactic halo stars is the result of an intimate link between the explosions of the first stars and their host minihalo's ability to retain its gas. Specifically, high-energy supernovae produce a near solar ratio of C/Fe, but are effective in evacuatingmore » the gas from their host minihalo, thereby suppressing the formation of a second generation of stars. On the other hand, minihalos that host low-energy supernovae are able to retain their gas and form a second stellar generation, but, as a result, the second stars are born with a supersolar ratio of C/Fe. Our models are able to accurately reproduce the observed distributions of [C/Fe] and [Fe/H], as well as the fraction of CEMP stars relative to non-CEMP stars as a function of [Fe/H] without any free parameters. We propose that the present lack of chemical evidence for very massive stars (≳ 140 M {sub ☉}) that ended their lives as a highly energetic pair-instability supernova does not imply that such stars were rare or did not exist; the chemical products of these very massive first stars may have been evacuated from their host minihalos and were never incorporated into subsequent generations of stars. Finally, our models suggest that the most Fe-poor stars currently known may have seen the enrichment from a small multiple of metal-free stars, and need not have been exclusively enriched by a solitary first star. These calculations also add further support to the possibility that some of the surviving dwarf satellite galaxies of the Milky Way are the relics of the first galaxies.« less

  3. DISCOVERY OF SUPER-Li-RICH RED GIANTS IN DWARF SPHEROIDAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, Evan N.; Fu, Xiaoting; Deng, Licai

    2012-06-10

    Stars destroy lithium (Li) in their normal evolution. The convective envelopes of evolved red giants reach temperatures of millions of kelvin, hot enough for the {sup 7}Li(p, {alpha}){sup 4}He reaction to burn Li efficiently. Only about 1% of first-ascent red giants more luminous than the luminosity function bump in the red giant branch exhibit A(Li) > 1.5. Nonetheless, Li-rich red giants do exist. We present 15 Li-rich red giants-14 of which are new discoveries-among a sample of 2054 red giants in Milky Way dwarf satellite galaxies. Our sample more than doubles the number of low-mass, metal-poor ([Fe/H] {approx}< -0.7) Li-richmore » red giants, and it includes the most-metal-poor Li-enhanced star known ([Fe/H] = -2.82, A(Li){sub NLTE} = 3.15). Because most of the stars have Li abundances larger than the universe's primordial value, the Li in these stars must have been created rather than saved from destruction. These Li-rich stars appear like other stars in the same galaxies in every measurable regard other than Li abundance. We consider the possibility that Li enrichment is a universal phase of evolution that affects all stars, and it seems rare only because it is brief.« less

  4. Chemical composition of the metal-poor carbon star HD 187216.

    NASA Astrophysics Data System (ADS)

    Kipper, T.; Jorgensen, U. G.

    1994-10-01

    We have derived C, N and metal abundances for the metal-deficient late-type (C3,3CH) CH giant HD 187216 (α_2000.0_=19h24m18.6s, δ_2000.0_=+85deg21'56.5"). The oxygen abundance was fixed at logA(O)=7.0, assuming that it follows the trend of oxygen overabundance relative to iron found in halo stars in general. New model atmospheres of metal-poor carbon stars were calculated with continuum opacity sources and molecular lines of CO, CN, C_2_, HCN, C_2_H_2_ and C_3_. Numerical experiments with various assumed input parameters, such as effective temperature, T_eff_, surface gravity, logg, microturbulent velocity, ξ_t_, and dissociation energy of the CN molecule, D_0_(CN), were performed when constructing the model atmospheres and calculating the synthetic spectra. The atmospheric model with T_eff_=3500K, logg=0.4, ξ_t_=3km/s, ^12^C/^13^C=8 and D_0_(CN)=7.9eV was adopted for abundance analysis. The star was found to be extremely metal-deficient, [Fe/H]=-2.48. The carbon abundance is logA(C)=7.33, the nitrogen abundance is logA(N)=5.60 corresponding to [C/Fe]=+1.3, [N/Fe]=+0.2, and [N/C]=-1.1. The carbon isotopic abundance ratio is ^12^C/^13^C=7.0. The abundances of heavy elements produced in the s-process are larger than in early-type CH stars. The ratio of overabundance of heavier s-process elements to that of lighter ones, [hs/ls]=1.0, points to a very high neutron exposure in a single irradiation event. Search for binarity of HD 187216 has failed, and the star can be an intrinsic asymptotic giant branch (AGB) carbon star with some similarities to the C stars in the dwarf galaxies. If the CH characteristics are due to mass transfer it is most likely oxygen-rich material that has been donated. The star possesses both a low nitrogen abundance and a low ^12^C/^13^C ratio, in conflict with the standard stellar evolution theory.

  5. Elemental abundances and classification of carbon-enhanced metal-poor stars

    NASA Astrophysics Data System (ADS)

    Allen, D. M.; Ryan, S. G.; Rossi, S.; Beers, T. C.; Tsangarides, S. A.

    2012-12-01

    We present a detailed study of carbon-enhanced metal-poor (CEMP) stars, based on high-resolution spectroscopic observations of a sample of 18 stars. The stellar spectra for this sample were obtained at the 4.2 m William Herschel Telescope in 2001 and 2002, using the Utrecht Echelle Spectrograph, at a resolving power R ~ 52 000 and S/N ~ 40, covering the wavelength range λλ3700-5700 Å. The atmospheric parameters determined for this sample indicate temperatures ranging from 4750 K to 7100 K, log g from 1.5 to 4.3, and metallicities -3.0 ≤ [Fe/H] ≤ -1.7. Elemental abundances for C, Na, Mg, Sc, Ti, Cr, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu, Gd, Dy are determined. Abundances for an additional 109 stars were taken from the literature and combined with the data of our sample. The literature sample reveals a lack of reliable abundance estimates for species that might be associated with the r-process elements for about 67% of CEMP stars, preventing a complete understanding of this class of stars, since [Ba/Eu] ratios are used to classify them. Although eight stars in our observed sample are also found in the literature sample, Eu abundances or limits are determined for four of these stars for the first time. From the observed correlations between C, Ba, and Eu, we argue that the CEMP-r/s class has the same astronomical origin as CEMP-s stars, highlighting the need for a more complete understanding of Eu production. Tables 1, 3, 4, 8-10, A.1, and B.1-B.4 are available in electronic form at http://www.aanda.orgFull Tables 2, 5, and 7 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/548/A34

  6. Prospecting for Precious Metals in Ultra-Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    French, R. S.

    2000-05-01

    The chemical compositions of the most metal-poor halo stars are living records of the very early nucleosynthetic history of the Galaxy. Only a few prior generations, if not a single one, of element-donating supernovae could have been responsible for the heavy elements observed in ultra-metal-poor (UMP; [Fe/H] < --2.5) stars. Abundances of the heavy neutron-capture elements (Z > 30) can yield direct information about the supernova progenitors to UMP stars, and abundances of unstable thorium and uranium (Z = 90, 92) can potentially provide age estimates for the Galactic halo. Already, many studies have demonstrated that abundances of rare-earth elements (56 <= Z <= 72) in UMP stars are completely consistent with their production in rapid neutron-capture synthesis (r-process) events, usually believed to occur during supernovae explosions. Therefore, mapping the entire abundance pattern of UMP stars is of significant interest. In particular, abundances of the most massive stable elements (Os -> Pb or 76 <= Z <= 82) could provide crucial information about the so-called ``third r-process peak,'' and are critical to the radioactive-dating technique that uses unstable thorium as a chronometer. Until recently, abundance determinations for these elements have been virtually non-existent, as the strongest relevant transitions lay in the vacuum UV, inaccessible to ground-based observation. The availability of high-resolution space-based spectrometers has opened up new regions of spectral coverage, including precisely the range in wavelength needed to make these sensitive measurements. We have undertaken a study of about 10 metal-poor halo giants to determine the abundances of several of the heaviest neutron-capture elements including platinum, osmium, lead, and gold. Preliminary results indicate that the abundance pattern of heavy neutron-capture elements (56 <= Z <= 82) in UMP stars does mimic a scaled solar system r-process. Thus, the ability to estimate the initial

  7. Metal-poor stars. IV - The evolution of red giants.

    NASA Technical Reports Server (NTRS)

    Rood, R. T.

    1972-01-01

    Detailed evolutionary calculations for six Population-II red giants are presented. The first five of these models are followed from the zero age main sequence to the onset of the helium flash. The sixth model allows the effect of direct electron-neutrino interactions to be estimated. The updated input physics and evolutionary code are described briefly. The results of the calculations are presented in a manner pertinent to later stages of evolutions and suitable for comparison with observations.

  8. Investigation of a sample of carbon-enhanced metal-poor stars observed with FORS and GMOS

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Gallagher, A. J.; Bonifacio, P.; Spite, M.; Duffau, S.; Spite, F.; Monaco, L.; Sbordone, L.

    2018-06-01

    Aims: Carbon-enhanced metal-poor (CEMP) stars represent a sizeable fraction of all known metal-poor stars in the Galaxy. Their formation and composition remains a significant topic of investigation within the stellar astrophysics community. Methods: We analysed a sample of low-resolution spectra of 30 dwarf stars, obtained using the visual and near UV FOcal Reducer and low dispersion Spectrograph for the Very Large Telescope (FORS/VLT) of the European Southern Observatory (ESO) and the Gemini Multi-Object Spectrographs (GMOS) at the GEMINI telescope, to derive their metallicity and carbon abundance. Results: We derived C and Ca from all spectra, and Fe and Ba from the majority of the stars. Conclusions: We have extended the population statistics of CEMP stars and have confirmed that in general, stars with a high C abundance belonging to the high C band show a high Ba-content (CEMP-s or -r/s), while stars with a normal C abundance or that are C-rich, but belong to the low C band, are normal in Ba (CEMP-no). Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 099.D-0791.Based on observations obtained at the Gemini Observatory (processed using the Gemini IRAF package), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).Tables 1 and 2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A68

  9. Enhanced current-perpendicular-to-plane giant magnetoresistance effect in half-metallic NiMnSb based nanojunctions with multiple Ag spacers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Zhenchao; Yamamoto, Tatsuya; Kubota, Takahide

    2016-06-06

    Current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) heterostructure devices using half-metallic NiMnSb Heusler alloy electrodes with single, dual, and triple Ag spacers were fabricated. The NiMnSb alloy films and Ag spacers show (001) epitaxial growth in all CPP-GMR multilayer structures. The dual-spacer CPP-GMR nanojunction exhibited an enhanced CPP-GMR ratio of 11% (a change in the resistance-area product, ΔRA, of 3.9 mΩ μm{sup 2}) at room temperature, which is approximately twice (thrice) of 6% (1.3 mΩ μm{sup 2}) in the single-spacer device. The enhancement of the CPP-GMR effects in the dual-spacer devices could be attributed to improved interfacial spin asymmetry. Moreover, it was observedmore » that the CPP-GMR ratios increased monotonically as the temperatures decreased. At 4.2 K, a CPP-GMR ratio of 41% (ΔRA = 10.5 mΩ μm{sup 2}) was achieved in the dual-spacer CPP-GMR device. This work indicates that multispacer structures provide an efficient enhancement of CPP-GMR effects in half-metallic material-based CPP-GMR systems.« less

  10. New ultra metal-poor stars from SDSS: follow-up GTC medium-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Aguado, D. S.; Allende Prieto, C.; González Hernández, J. I.; Rebolo, R.; Caffau, E.

    2017-07-01

    Context. The first generation of stars formed in the Galaxy left behind the chemical signatures of their nucleosynthesis in the interstellar medium, visible today in the atmospheres of low-mass stars that formed afterwards. Sampling the chemistry of those low-mass provides insight into the first stars. Aims: We aim to increase the samples of stars with extremely low metal abundances, identifying ultra metal-poor stars from spectra with modest spectral resolution and signal-to-noise ratio (S/N). Achieving this goal involves deriving reliable metallicities and carbon abundances from such spectra. Methods: We carry out follow-up observations of faint, V > 19, metal-poor candidates selected from SDSS spectroscopy and observed with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at GTC. The SDSS and follow-up OSIRIS spectra were analyzed using the FERRE code to derive effective temperatures, surface gravities, metallicities and carbon abundances. In addition, a well-known extremely metal-poor star has been included in our sample to calibrate the analysis methodology. Results: We observed and analyzed five metal-poor candidates from modest-quality SDSS spectra. All stars in our sample have been confirmed as extremely metal-poor stars, in the [Fe/H] < -3.3 regime. We report the recognition of J173403+644632, a carbon-enhanced ultra metal-poor dwarf star with [Fe/H] = -4.3 and [C/Fe] = + 3.1. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Programme ID GTC2E-16A and ID GTC65-16B.

  11. The r-process Pattern of a Bright, Highly r-process-enhanced Metal-poor Halo Star at [Fe/H] ∼ ‑2

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Placco, Vinicius M.; Hansen, Terese; Holmbeck, Erika M.; Beers, Timothy C.; Frebel, Anna; Roederer, Ian U.; Venn, Kim A.; Wallerstein, George; Davis, Christopher Evan; Farrell, Elizabeth M.; Yong, David

    2018-02-01

    A high-resolution spectroscopic analysis is presented for a new highly r-process-enhanced ([Eu/Fe] = 1.27, [Ba/Eu] = ‑0.65), very metal-poor ([Fe/H] = ‑2.09), retrograde halo star, RAVE J153830.9–180424, discovered as part of the R-Process Alliance survey. At V = 10.86, this is the brightest and most metal-rich r-II star known in the Milky Way halo. Its brightness enables high-S/N detections of a wide variety of chemical species that are mostly created by the r-process, including some infrequently detected lines from elements like Ru, Pd, Ag, Tm, Yb, Lu, Hf, and Th, with upper limits on Pb and U. This is the most complete r-process census in a very metal-poor r-II star. J1538–1804 shows no signs of s-process contamination, based on its low [Ba/Eu] and [Pb/Fe]. As with many other r-process-enhanced stars, J1538–1804's r-process pattern matches that of the Sun for elements between the first, second, and third peaks, and does not exhibit an actinide boost. Cosmo-chronometric age-dating reveals the r-process material to be quite old. This robust main r-process pattern is a necessary constraint for r-process formation scenarios (of particular interest in light of the recent neutron star merger, GW170817), and has important consequences for the origins of r-II stars. Additional r-I and r-II stars will be reported by the R-Process Alliance in the near future.

  12. Ages and Heavy Element Abundances from Very Metal-poor Stars in the Sagittarius Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Hansen, Camilla Juul; El-Souri, Mariam; Monaco, Lorenzo; Villanova, Sandro; Bonifacio, Piercarlo; Caffau, Elisabetta; Sbordone, Luca

    2018-03-01

    Sagittarius (Sgr) is a massive disrupted dwarf spheroidal galaxy in the Milky Way halo that has undergone several stripping events. Previous chemical studies were restricted mainly to a few, metal-rich ([Fe/H] \\gtrapprox -1) stars that suggested a top-light initial mass function (IMF). Here we present the first high-resolution, very metal-poor ([Fe/H] =‑1 to ‑3) sample of 13 giant stars in the main body of Sgr. We derive abundances of 13 elements, namely C, Ca, Co, Fe, Sr, Ba, La, Ce, Nd, Eu, Dy, Pb, and Th, that challenge the interpretation based on previous studies. Our abundances from Sgr mimic those of the metal-poor halo, and our most metal-poor star ([Fe/H] ∼ -3) indicates a pure r-process pollution. Abundances of Sr, Pb, and Th are presented for the first time in Sgr, allowing for age determination using nuclear cosmochronology. We calculate ages of 9+/- 2.5 {Gyr}. Most of the sample stars have been enriched by a range of asymptotic giant branch (AGB) stars with masses between 1.3 and 5 M ⊙. Sgr J190651.47–320147.23 shows a large overabundance of Pb (2.05 dex) and a peculiar abundance pattern best fit by a 3 M ⊙ AGB star. Based on star-to-star scatter and observed abundance patterns, a mixture of low- and high-mass AGB stars and supernovae (15–25 M ⊙) is necessary to explain these patterns. The high level (0.29 ± 0.05 dex) of Ca indicates that massive supernovae must have existed and polluted the early ISM of Sgr before it lost its gas. This result is in contrast with a top-light IMF with no massive stars polluting Sgr. Based on data obtained UVES/VLT ID: 083.B-0774, 075.B-0127.

  13. Dust & Abundances of Metal-Poor Planetary Nebulae in the Galactic Anti-Center

    NASA Astrophysics Data System (ADS)

    Pagomenos, George J. S.; Bernard-Salas, Jeronimo; Sloan, G. C.

    2017-10-01

    Much of the new dust in the local ISM is produced in the last phases of stellar evolution of low- and intermediate-mass stars on the Asymptotic Giant Branch (AGB). Despite its importance, our knowledge of how dust properties depend on metallicity is limited. Studies of planetary nebulae in irregular galaxies in the Local Group (mostly focused on the LMC and SMC) have revealed a diverse spectral zoo and shown that low metallicity favours carbon-rich dust production by AGB stars. However, at ~1/3 and ~1/5 times the solar metallicity respectively, they provide two snapshots of dust composition at low metallicity, emphasising the need to investigate a region with a range of metallicity values. With its abundance gradient, the Milky Way fits this criterion and provides a good opportunity to observe the dust composition over a large metallicity range. In particular the Galactic anti-center, which is largely unexplored beyond galactocentric distances of 10 kpc, allows us to study the AGB dust a priori assumed to be metal-poor as well as exploring the extent of the Galactic abundance gradient. We analyse a Spitzer spectroscopic sample of 23 planetary nebulae towards the anti-center in order to understand how the metallicity gradient extends beyond 10 kpc from the Galactic center and to observe the dust composition in this region of our Galaxy. We find that the abundance gradients of Ne, S and Ar continue to distances of around 20 kpc (albeit with a large scatter) and the dust emission shows a carbon-rich chemistry similar to that in the Magellanic Clouds.

  14. Deep Imaging of Extremely Metal-Poor Galaxies

    NASA Astrophysics Data System (ADS)

    Corbin, Michael

    2006-07-01

    Conflicting evidence exists regarding whether the most metal-poor and actively star-forming galaxies in the local universe such as I Zw 18 contain evolved stars. We propose to help settle this issue by obtaining deep ACS/HRC U, narrow-V, I, and H-alpha images of nine nearby {z < 0.01} extremely metal-poor {12 + O/H < 7.65} galaxies selected from the Sloan Digital Sky Survey. These objects are only marginally resolved from the ground and appear uniformly blue, strongly motivating HST imaging. The continuum images will establish: 1.} If underlying populations of evolved stars are present, by revealing the objects' colors on scales 10 pc, and 2.} The presence of any faint tidal features, dust lanes, and globular or super star clusters, all of which constrain the objects' evolutionary states. The H-alpha images, in combination with ground-based echelle spectroscopy, will reveal 1.} Whether the objects are producing "superwinds" that are depleting them of their metals; ground-based images of some of them indeed show large halos of ionized gas, and 2.} The correspondence of their nebular and stellar emission on scales of a few parsecs, which is important for understanding the "feedback" process by which supernovae and stellar winds regulate star formation. One of the sample objects, CGCG 269-049, lies only 2 Mpc away, allowing the detection of individual red giant stars in it if any are present. We have recently obtained Spitzer images and spectra of this galaxy to determine its dust content and star formation history, which will complement the proposed HST observations. [NOTE: THIS PROPOSAL WAS REDUCED TO FIVE ORBITS, AND ONLY ONE OF THE ORIGINAL TARGETS, CGCG 269-049, AFTER THE PHASE I REVIEW

  15. Metallicity and Kinematics of M31's Outer Stellar Halo from a Keck Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Reitzel, David B.; Guhathakurta, Puragra

    2002-07-01

    We present first results from a spectroscopic survey designed to examine the metallicity and kinematics of individual red giant branch stars in the outer halo of the Andromeda spiral galaxy (M31). This study is based on multislit spectroscopy with the Keck II 10 m telescope and Low Resolution Imaging Spectrograph of the Ca II near-infrared triplet in 99 M31 halo candidates in a field at R=19 kpc on the southeast minor axis with brightnesses from 20giants from foreground Milky Way dwarf stars, faint compact background galaxies, and M31 disk giants. The observed distribution of radial velocities is well fitted by an equal mix of foreground Milky Way dwarf stars, drawn from a standard Galactic model and with velocities v<~0 km s-1, and M31 halo giants represented by a Gaussian of width σM31v~150 km s-1 centered on its systemic velocity of vM31sys~-300 km s-1. A secure sample of 29 M31 red giant stars is identified on the basis of radial velocity (v<-220 km s-1) and, in the case of four intermediate-velocity stars (-160s-1), broadband B-I color. For this sample of objects, there is rough agreement between the metallicities derived in independent ways: two different calibrations of the Ca II absorption-line strength and a photometric estimate based on fitting model stellar isochrones to an object's location in a (B-I, I) color-magnitude diagram. The [Fe/H] distribution of M31 halo giants has an rms spread of at least 0.6 dex and spans the >~2 dex range over which the abundance measurement methods are calibrated. The mean/median metallicity of the M31 halo is about <[Fe/H]>=-1.9 to -1.1 dex (depending on the details of metallicity calibration and sample selection) and possibly higher: the high-metallicity end of the distribution is poorly constrained by our data since the selection function for the secure M31 sample excludes over 80% of the giants in solar/supersolar metallicity range. Possible reasons are

  16. A giant planet around a metal-poor star of extragalactic origin.

    PubMed

    Setiawan, Johny; Klement, Rainer J; Henning, Thomas; Rix, Hans-Walter; Rochau, Boyke; Rodmann, Jens; Schulze-Hartung, Tim

    2010-12-17

    Stars in their late stage of evolution, such as horizontal branch stars, are still largely unexplored for planets. We detected a planetary companion around HIP 13044, a very metal-poor star on the red horizontal branch, on the basis of radial velocity observations with a high-resolution spectrograph at the 2.2-meter Max-Planck Gesellschaft-European Southern Observatory telescope. The star's periodic radial velocity variation of P = 16.2 days caused by the planet can be distinguished from the periods of the stellar activity indicators. The minimum mass of the planet is 1.25 times the mass of Jupiter and its orbital semimajor axis is 0.116 astronomical units. Because HIP 13044 belongs to a group of stars that have been accreted from a disrupted satellite galaxy of the Milky Way, the planet most likely has an extragalactic origin.

  17. Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity

    NASA Astrophysics Data System (ADS)

    Sreekanth, Kandammathe Valiyaveedu; Ouyang, Qingling; Han, Song; Yong, Ken-Tye; Singh, Ranjan

    2018-04-01

    In this letter, we experimentally demonstrate thirtyfold enhancement in Goos-Hänchen shift at the Brewster angle of a nanophotonic cavity that operates at the wavelength of 632.8 nm. In particular, the point-of-darkness and the singular phase are achieved using a four-layered metal-dielectric-dielectric-metal asymmetric Fabry-Perot cavity. A highly absorbing ultra-thin layer of germanium in the stack gives rise to the singular phase and the enhanced Goos-Hänchen shift at the point-of-darkness. The obtained giant Goos-Hänchen shift in the lithography-free nanophotonic cavity could enable many intriguing applications including cost-effective label-free biosensors.

  18. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: BOÖTES II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.

    2016-01-20

    We present high-resolution Magellan/MIKE spectra of the four brightest confirmed red giant stars in the ultra-faint dwarf galaxy Boötes II (Boo II). These stars all inhabit the metal-poor tail of the Boo II metallicity distribution function. The chemical abundance pattern of all detectable elements in these stars is consistent with that of the Galactic halo. However, all four stars have undetectable amounts of neutron-capture elements Sr and Ba, with upper limits comparable to the lowest ever detected in the halo or in other dwarf galaxies. One star exhibits significant radial velocity variations over time, suggesting it to be in a binary system. Itsmore » variable velocity has likely increased past determinations of the Boo II velocity dispersion. Our four stars span a limited metallicity range, but their enhanced α-abundances and low neutron-capture abundances are consistent with the interpretation that Boo II has been enriched by very few generations of stars. The chemical abundance pattern in Boo II confirms the emerging trend that the faintest dwarf galaxies have neutron-capture abundances distinct from the halo, suggesting the dominant source of neutron-capture elements in halo stars may be different than in ultra-faint dwarfs.« less

  19. Evolution and nucleosynthesis of extremely metal-poor and metal-free low- and intermediate-mass stars. II. s-process nucleosynthesis during the core He flash

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Lugaro, M.; Karakas, A. I.

    2010-11-01

    Context. Models of primordial and hyper-metal-poor stars that have masses similar to the Sun are known to experience an ingestion of protons into the hot core during the core helium flash phase at the end of their red giant branch evolution. This produces a concurrent secondary flash powered by hydrogen burning that gives rise to further nucleosynthesis in the core. Aims: We aim to model the nucleosynthesis occurring during the proton ingestion event to ascertain if any significant neutron-capture nucleosynthesis occurs. Methods: We perform post-process nucleosynthesis calculations on a one-dimensional stellar evolution calculation of a star with mass 1 M_⊙ and a metallicity of [Fe/H] = -6.5 that suffers a proton ingestion episode. Our network includes 320 nuclear species and 2366 reactions and treats mixing and burning simultaneously. Results: We find that the mixing and burning of protons into the hot convective core leads to the production of 13C, which then burns via the 13C(α, n)16O reaction, releasing a large number of free neutrons. During the first two years of neutron production the neutron poison 14N abundance is low, allowing the prodigious production of heavy elements such as strontium, barium, and lead via slow neutron captures (the s process). These nucleosynthetic products are later carried to the stellar surface and ejected via stellar winds. We compare our results with observations of the hyper-metal-poor halo star HE 1327-2326, which shows a strong Sr overabundance. Conclusions: Our model provides the possibility of self-consistently explaining the Sr overabundance in HE 1327-2326 together with its C, N, and O overabundances (all within a factor of ˜ ~4) if the material were heavily diluted, for example, via mass transfer in a wide binary system. The model produces at least 18 times too much Ba than observed, but this may be within the large modelling uncertainties. In this scenario, binary systems of low mass must have formed in the early

  20. Insights into the chemical composition of the metal-poor Milky Way halo globular cluster NGC 6426

    NASA Astrophysics Data System (ADS)

    Hanke, M.; Koch, A.; Hansen, C. J.; McWilliam, A.

    2017-03-01

    We present our detailed spectroscopic analysis of the chemical composition of four red giant stars in the halo globular cluster NGC 6426. We obtained high-resolution spectra using the Magellan2/MIKE spectrograph, from which we derived equivalent widths and subsequently computed abundances of 24 species of 22 chemical elements. For the purpose of measuring equivalent widths, we developed a new semi-automated tool, called EWCODE. We report a mean Fe content of [Fe/H] =-2.34 ± 0.05 dex (stat.) in accordance with previous studies. At a mean α-abundance of [(Mg, Si, Ca)/3 Fe] = 0.39 ± 0.03 dex, NGC 6426 falls on the trend drawn by the Milky Way halo and other globular clusters at comparably low metallicities. The distribution of the lighter α-elements as well as the enhanced ratio [Zn/Fe] = 0.39 dex could originate from hypernova enrichment of the pre-cluster medium. We find tentative evidence for a spread in the elements Mg, Si, and Zn, indicating an enrichment scenario, where ejecta of evolved massive stars of a slightly older population have polluted a newly born younger one. The heavy element abundances in this cluster fit well into the picture of metal-poor globular clusters, which in that respect appear to be remarkably homogeneous. The pattern of the neutron-capture elements heavier than Zn points toward an enrichment history governed by the r-process with little, if any, sign of s-process contributions. This finding is supported by the striking similarity of our program stars to the metal-poor field star HD 108317. This paper includes data gathered with the 6.5-m Magellan Telescopes located at Las Campanas Observatory, Chile.Equivalent widths and full Table 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A97

  1. TOPoS. IV. Chemical abundances from high-resolution observations of seven extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; Sbordone, L.; Monaco, L.; François, P.; Plez, B.; Molaro, P.; Gallagher, A. J.; Cayrel, R.; Christlieb, N.; Klessen, R. S.; Koch, A.; Ludwig, H.-G.; Steffen, M.; Zaggia, S.; Abate, C.

    2018-04-01

    Context. Extremely metal-poor (EMP) stars provide us with indirect information on the first generations of massive stars. The TOPoS survey has been designed to increase the census of these stars and to provide a chemical inventory that is as detailed as possible. Aims: Seven of the most iron-poor stars have been observed with the UVES spectrograph at the ESO VLT Kueyen 8.2 m telescope to refine their chemical composition. Methods: We analysed the spectra based on 1D LTE model atmospheres, but also used 3D hydrodynamical simulations of stellar atmospheres. Results: We measured carbon in six of the seven stars: all are carbon-enhanced and belong to the low-carbon band, defined in the TOPoS II paper. We measured lithium (A(Li) = 1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H] <-5.2). We were also able to measure Li in three stars at [Fe/H] -4.0, two of which lie on the Spite plateau. We confirm that SDSS J1349+1407 is extremely rich in Mg, but not in Ca. It is also very rich in Na. Several of our stars are characterised by low α-to-iron ratios. Conclusions: The lack of high-carbon band stars at low metallicity can be understood in terms of evolutionary timescales of binary systems. The detection of Li in SDSS J1035+0641 places a strong constraint on theories that aim at solving the cosmological lithium problem. The Li abundance of the two warmer stars at [Fe/H] -4.0 places them on the Spite plateau, while the third, cooler star, lies below. We argue that this suggests that the temperature at which Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407 may belong to a class of Mg-rich EMP stars. We cannot assess if there is a scatter in α-to-iron ratios among the EMP stars or if there are several discrete populations. However, the existence of stars with low α-to-iron ratios is supported by our observations. Based on observations obtained at ESO Paranal Observatory, Programmes 189.D-0165,090.D-0306, 093.D-0136, and 096.D-0468.

  2. CARBON ABUNDANCES FOR RED GIANTS IN THE DRACO DWARF SPHEROIDAL GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetrone, Matthew D.; Stanford, Laura M.; Smith, Graeme H.

    2013-05-15

    Measurements of [C/Fe], [Ca/H], and [Fe/H] have been derived from Keck I LRISb spectra of 35 giants in the Draco dwarf spheroidal galaxy. The iron abundances are derived by a spectrum synthesis modeling of the wavelength region from 4850 to 5375 A, while calcium and carbon abundances are obtained by fitting the Ca II H and K lines and the CH G band, respectively. A range in metallicity of -2.9 {<=} [Fe/H] {<=} -1.6 is found within the giants sampled, with a good correlation between [Fe/H] and [Ca/H]. The great majority of stars in the sample would be classified asmore » having weak absorption in the {lambda}3883 CN band, with only a small scatter in band strengths at a given luminosity on the red giant branch. In this sense the behavior of CN among the Draco giants is consistent with the predominantly weak CN bands found among red giants in globular clusters of metallicity [Fe/H] < -1.8. Over half of the giants in the Draco sample have [Fe/H] > -2.25, and among these there is a trend for the [C/Fe] abundance to decrease with increasing luminosity on the red giant branch. This is a phenomenon that is also seen among both field and globular cluster giants of the Galactic halo, where it has been interpreted as a consequence of deep mixing of material between the base of the convective envelope and the outer limits of the hydrogen-burning shell. However, among the six Draco giants observed that turn out to have metallicities -2.65 < [Fe/H] < -2.25 there is no such trend seen in the carbon abundance. This may be due to small sample statistics or primordial inhomogeneities in carbon abundance among the most metal-poor Draco stars. We identify a potential carbon-rich extremely metal-poor star in our sample. This candidate will require follow-up observations for confirmation.« less

  3. The R-Process Alliance: 2MASS J09544277+5246414, the Most Actinide-enhanced R-II Star Known

    NASA Astrophysics Data System (ADS)

    Holmbeck, Erika M.; Beers, Timothy C.; Roederer, Ian U.; Placco, Vinicius M.; Hansen, Terese T.; Sakari, Charli M.; Sneden, Christopher; Liu, Chao; Lee, Young Sun; Cowan, John J.; Frebel, Anna

    2018-06-01

    We report the discovery of a new actinide-boost star, 2MASS J09544277+5246414, originally identified as a very bright (V = 10.1), extremely metal-poor ([Fe/H] = ‑2.99) K giant in the LAMOST survey, and found to be highly r-process-enhanced (r-II; [Eu/Fe] = +1.28]), during the snapshot phase of the R-Process Alliance (RPA). Based on a high signal-to-noise ratio (S/N), high-resolution spectrum obtained with the Harlan J. Smith 2.7 m telescope, this star is the first confirmed actinide-boost star found by RPA efforts. With an enhancement of [Th/Eu] = +0.37, 2MASS J09544277+5246414 is also the most actinide-enhanced r-II star yet discovered, and only the sixth metal-poor star with a measured uranium abundance ([U/Fe] = +1.40). Using the Th/U chronometer, we estimate an age of 13.0 ± 4.7 Gyr for this star. The unambiguous actinide-boost signature of this extremely metal-poor star, combined with additional r-process-enhanced and actinide-boost stars identified by the RPA, will provide strong constraints on the nature and origin of the r-process at early times.

  4. Searching for Dust around Hyper Metal Poor Stars

    NASA Astrophysics Data System (ADS)

    Venn, Kim A.; Puzia, Thomas H.; Divell, Mike; Côté, Stephanie; Lambert, David L.; Starkenburg, Else

    2014-08-01

    We examine the mid-infrared fluxes and spectral energy distributions for stars with iron abundances [Fe/H] <-5, and other metal-poor stars, to eliminate the possibility that their low metallicities are related to the depletion of elements onto dust grains in the formation of a debris disk. Six out of seven stars examined here show no mid-IR excesses. These non-detections rule out many types of circumstellar disks, e.g., a warm debris disk (T <= 290 K), or debris disks with inner radii <=1 AU, such as those associated with the chemically peculiar post-asymptotic giant branch spectroscopic binaries and RV Tau variables. However, we cannot rule out cooler debris disks, nor those with lower flux ratios to their host stars due to, e.g., a smaller disk mass, a larger inner disk radius, an absence of small grains, or even a multicomponent structure, as often found with the chemically peculiar Lambda Bootis stars. The only exception is HE0107-5240, for which a small mid-IR excess near 10 μm is detected at the 2σ level; if the excess is real and associated with this star, it may indicate the presence of (recent) dust-gas winnowing or a binary system.

  5. THE ORIGIN OF LOW [α/Fe] RATIOS IN EXTREMELY METAL-POOR STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Chiaki; Ishigaki, Miho N.; Tominaga, Nozomu

    2014-04-10

    We show that the low ratios of α elements (Mg, Si, and Ca) to Fe recently found for a small fraction of extremely metal-poor stars can be naturally explained with the nucleosynthesis yields of core-collapse supernovae, i.e., 13-25 M {sub ☉} supernovae, or hypernovae. For the case without carbon enhancement, the ejected iron mass is normal, consistent with observed light curves and spectra of nearby supernovae. On the other hand, the carbon enhancement requires much smaller iron production, and the low [α/Fe] of carbon-enhanced metal-poor stars can also be reproduced with 13-25 M {sub ☉} faint supernovae or faint hypernovae.more » Iron-peak element abundances, in particular Zn abundances, are important to put further constraints on the enrichment sources from galactic archaeology surveys.« less

  6. Fluorine and Sodium in C-rich Low-metallicity Stars

    NASA Astrophysics Data System (ADS)

    Lucatello, Sara; Masseron, Thomas; Johnson, Jennifer A.; Pignatari, Marco; Herwig, Falk

    2011-03-01

    We present the N, O, F, and Na abundance and 12C/13C isotopic ratio measurements or upper limits for a sample of 10 C-rich, metal-poor giant stars: 8 enhanced in s-process (CEMP-s) elements and 2 poor in n-capture elements (CEMP-no). The abundances are derived from IR, K-band, high-resolution CRIRES@VLT obtained spectra. The metallicity of our sample ranges from [Fe/H] = -3.4 to -1.3. F abundance could be measured only in two CEMP-s stars. With [F/Fe] = 0.64, one is mildly F-overabundant, while the other is F-rich, at [F/Fe] = 1.44. For the remaining eight objects, including both CEMP-no stars in our sample, only upper limits on F abundance could be placed. Our measurements and upper limits show that there is a spread in the [F/C+N] ratio in CEMP-s stars as predicted by theory. Predictions from nucleosynthetic models for low-mass, low-metallicity asymptotic giant branch (AGB) stars account for the derived F abundances, while the upper limits on F content derived for most of the stars are lower than the predicted values. The measured Na content is accounted for by AGB models in the 1.25-1.75 M sun range, confirming that the stars responsible for the peculiar abundance pattern observed in CEMP-s stars are low-mass, low-metallicity AGB stars in agreement with the most accepted astrophysical scenario. We conclude that the mechanism of F production in current state-of-the-art low-metallicity low-mass AGB models needs further scrutiny and that F measurements in a larger number of metal-poor stars are needed to better constrain the models. Based on observations made with ESO Telescopes at Paranal Observatories under program ID 080.D-0606A. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration and the National Science Foundation.

  7. Standard Giant Branches in the Washington Photometric System

    NASA Technical Reports Server (NTRS)

    Geisler, Doug; Sarajedini, Ata

    1998-01-01

    We have obtained CCD photometry in the Washington system C, T(sub 1) filters for some 850,000 objects associated with 10 Galactic globular clusters and 2 old open clusters. These clusters have well-known metal abundances, spanning a metallicity range of 2.5 dex from [Fe/H] approx -2.25 to +0.25 at a spacing of approx. 0.2 dex. Two independent observations were obtained for each cluster and internal checks, as well as external comparisons with existing photoelectric photometry, indicate that the final colors and magnitudes have overall uncertainties of 0.03 mag. Analogous to the method employed by Da Costa and Armandroff for V, I photometry , we then proceed to construct standard ((M(sub T),(C - T(sub 1))(sub 0)) giant branches for these clusters adopting the Lee et distance scale, using some 350 stars per globular cluster to define the giant branch. We then determine the metallicity sensitivity of the ((C - T(sub 1))(sub 0) color at a given M((sub T)(sub 1)) value. The Washington system technique is found to have three times the metallicity sensitivity of the V, I technique. At M((sub T)(sub 1)) = -2 (about a magnitude below the tip of the giant branch, roughly equivalent to M(sub I) = -3), the giant branches of 47 Tuc and M15 are separated by 1.16 magnitudes in (V - l)(sub 0) and only 0.38 magnitudes in (V - I)(sub 0). Thus, for a given photometric accuracy, metallicities can be determined three times more precisely with the Washington technique. We find a linear relationship between (C - T(sub l)(sub 0) (at M(sub T)(sub 1) = -2) and metallicity exists over the full metallicity range, with an rms of only 0.04 dex. We also derive metallicity calibrations for M(sub T)(sub 1) = -2.5 and -1.5, as well as for two other metallicity scales. The Washington technique retains almost the same metallicity sensitivity at faint magnitudes , and indeed the standard giant branches are still well separated even below the horizontal branch. The photometry is used to set upper

  8. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Philip F.; Conroy, Charlie, E-mail: phopkins@caltech.edu

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances ofmore » these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.« less

  9. Giant positive magnetoresistance in half-metallic double-perovskite Sr2CrWO6 thin films

    PubMed Central

    Zhang, Ji; Ji, Wei-Jing; Xu, Jie; Geng, Xiao-Yu; Zhou, Jian; Gu, Zheng-Bin; Yao, Shu-Hua; Zhang, Shan-Tao

    2017-01-01

    Magnetoresistance (MR) is the magnetic field–induced change of electrical resistance. The MR effect not only has wide applications in hard drivers and sensors but also is a long-standing scientific issue for complex interactions. Ferromagnetic/ferrimagnetic oxides generally show negative MR due to the magnetic field–induced spin order. We report the unusually giant positive MR up to 17,200% (at 2 K and 7 T) in 12-nm Sr2CrWO6 thin films, which show metallic behavior with high carrier density of up to 2.26 × 1028 m−3 and high mobility of 5.66 × 104 cm2 V−1 s−1. The possible mechanism is that the external magnetic field suppresses the long-range antiferromagnetic order to form short-range antiferromagnetic fluctuations, which enhance electronic scattering and lead to the giant positive MR. The high mobility may also have contributions to the positive MR. These results not only experimentally confirm that the giant positive MR can be realized in oxides but also open up new opportunities for developing and understanding the giant positive MR in oxides. PMID:29119138

  10. TOPoS: chemical study of extremely metal-poor stars.

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Sbordone, L.; Bonifacio, P.; Cayrel, R.; Christlieb, N.; Clark, P.; François, P.; Glover, S.; Klessen, R.; Koch, A.; Ludwig, H.-G.; Monaco, L.; Plez, B.; Spite, F.; Spite, M.; Steffen, M.; Zaggia, S.

    The extremely metal-poor (EMP) stars hold in their atmospheres the fossil record of the chemical composition of the early phases of the Galactic evolution. The chemical analysis of such objects provides important constraints on these early phases. EMP stars are very rare objects; to dig them out, large amounts of data have to be processed. With an automatic procedure, we analysed objects with colours of Turn-Off stars from the Sloan Digital Sky Survey to select a sample of good candidate EMP stars. In the latest years, we observed a sample of these candidates with X-Shooter and UVES, and we have an ongoing ESO large programme to use these spectrographs to observe EMP stars. I will report here the results on metallicity and Strontium abundance. Based on observations obtained at ESO Paranal Observatory, programme 189.D-0165(A)

  11. Tracing the Metal-poor M31 Stellar Halo with Blue Horizontal Branch Stars

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Bell, Eric F.; Gilbert, Karoline M.; Guhathakurta, Puragra; Dorman, Claire; Lauer, Tod R.; Seth, Anil C.; Kalirai, Jason S.; Rosenfield, Philip; Girardi, Leo

    2015-03-01

    We have analyzed new Hubble Space Telescope (HST)/Advanced Camera for Surveys and HST/WFC3 imaging in F475W and F814W of two previously unobserved fields along the M31 minor axis to confirm our previous constraints on the shape of M31's inner stellar halo. Both of these new data sets reach a depth of at least F814W <27 and clearly detect the blue horizontal branch (BHB) of the field as a distinct feature of the color-magnitude diagram. We measure the density of BHB stars and the ratio of BHB to red giant branch (RGB) stars in each field using techniques identical to our previous work. We find excellent agreement with our previous measurement of a power law for the 2D projected surface density with an index of 2.6-0.2+0.3 outside of 3 kpc, which flattens to α < 1.2 inside of 3 kpc. Our findings confirm our previous suggestion that the field BHB stars in M31 are part of the halo population. However, the total halo profile is now known to differ from this BHB profile, which suggests that we have isolated the metal-poor component. This component appears to have an unbroken power-law profile from 3-150 kpc but accounts for only about half of the total halo stellar mass. Discrepancies between the BHB density profile and other measurements of the inner halo are therefore likely due to the different profile of the metal-rich halo component, which is not only steeper than the profile of the metal-poor component, but also has a larger core radius. These profile differences also help to explain the large ratio of BHB/RGB stars in our observations.

  12. Exposure to Odors of Rivals Enhances Sexual Motivation in Male Giant Pandas

    PubMed Central

    Bian, Xiaoxing; Liu, Dingzhen; Zeng, Hua; Zhang, Guiquan; Wei, Rongping; Hou, Rong

    2013-01-01

    Males will alter their mating behavior to cope with the presence of their competitors. Even exposure to odors from potential competitors can greatly increase male ejaculate expenditure in a variety of animals including insects, fishes, birds and rodents. Major efforts have been made to examine males' plastic responses to sperm competition and its fitness benefits. However, the effects of competitor absence on male's sexual motivation and behaviors remain unclear, which has been proposed to be one of the causes for the poor sexual performance of some captive mammals. This study revealed that sexual motivation can be greatly enhanced in captive male giant pandas (Ailuropoda melanoleuca) by exposure to chemosensory cues from either one or three conspecifics males. It had been shown that potential rivals' odors increased males' chemosensory investigation behavior, as well as their observing, following and sniffing behaviors towards estrous females. Behaviors changed regardless of the number of rivals (one or three). Our results demonstrate the effects of potential competition on male giant pandas' sexual motivation and behavioral coping strategy. We anticipate that our research will provide a fresh insight into the mechanisms underlying poor sexual performance in male captive mammals, and valuable information for the practical management and ex situ conservation of endangered species. PMID:23940532

  13. Exposure to odors of rivals enhances sexual motivation in male giant pandas.

    PubMed

    Bian, Xiaoxing; Liu, Dingzhen; Zeng, Hua; Zhang, Guiquan; Wei, Rongping; Hou, Rong

    2013-01-01

    Males will alter their mating behavior to cope with the presence of their competitors. Even exposure to odors from potential competitors can greatly increase male ejaculate expenditure in a variety of animals including insects, fishes, birds and rodents. Major efforts have been made to examine males' plastic responses to sperm competition and its fitness benefits. However, the effects of competitor absence on male's sexual motivation and behaviors remain unclear, which has been proposed to be one of the causes for the poor sexual performance of some captive mammals. This study revealed that sexual motivation can be greatly enhanced in captive male giant pandas (Ailuropoda melanoleuca) by exposure to chemosensory cues from either one or three conspecifics males. It had been shown that potential rivals' odors increased males' chemosensory investigation behavior, as well as their observing, following and sniffing behaviors towards estrous females. Behaviors changed regardless of the number of rivals (one or three). Our results demonstrate the effects of potential competition on male giant pandas' sexual motivation and behavioral coping strategy. We anticipate that our research will provide a fresh insight into the mechanisms underlying poor sexual performance in male captive mammals, and valuable information for the practical management and ex situ conservation of endangered species.

  14. s-Process in low metallicity Pb stars.

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Gallino, R.; Straniero, O.; Ivans, I. I.; Käppeler, F.; Aoki, W.

    We consider a sample of very metal-poor, C-rich, s-rich and lead-rich stars observed at high-resolution spectroscopy, and some recent spectroscopic data of C+s-rich stars obtained at moderate resolution. The spectroscopic data of these stars are interpreted with AGB theoretical models of different 13C-pocket efficiencies, initial mass and initial r-enrichment. When lead is not measured we give our theoretical prediction. The observed stars are not on the AGB phase, but are main sequence or giant stars. They acquired the C and s enrichments by mass transfer in a close binary system from the more massive companion while on the AGB (now a white dwarf). A considerable fraction of the stars show both high s and r enrichments. To explain the s+r enriched stars we assume a parental cloud already enriched in r-elements. The measurement of Nb is an indicator of an extrinsic AGB in a binary system. The intrinsic indicator [hs/ls] constrains the initial mass, while [Pb/hs] and [Pb/ls] are a measure of the s-process efficiency. The apparent discrepancies of C and N abundances may be reconciled by assuming a strong cool bottom process occurring during the AGB. An important primary production of light elements, from Ne to Si, increasing with the star mass, is predicted for AGB models at very low metallicity, induced by n capture on primary 22Ne and its progenies.

  15. Direct Evidence for an Enhancement of Helium in Giant Stars in Omega Centauri

    NASA Astrophysics Data System (ADS)

    Dupree, A. K.; Strader, Jay; Smith, Graeme H.

    2011-02-01

    The double main sequence identified in the globular cluster Omega Centauri has been interpreted using isochrones to indicate a large variation in the abundance of helium. If true, a helium enhancement carries strong implications for the chemical and stellar evolutionary history of this cluster. However, only indirect measures currently support this conjecture. We report the discovery of a variation in the line strength of the near-infrared He I 10830 Å transition in 12 similar red giants in Omega Centauri observed with PHOENIX on Gemini-S. Abundances of these stars derived from Magellan/MIKE spectra taken at the Las Campanas Observatory show that the helium transition is not detected in the most metal-poor population ([Fe/H] < -1.8), yet is present in the majority of stars with [Fe/H] >= -1.8. These observations give the first direct evidence for an enhancement of helium in Omega Centauri. The appearance of helium appears better correlated with increased [Al/Fe] and [Na/Fe] abundances than as a function of [Fe/H], giving observational support to the presence of high-temperature H burning in a prior generation of stars. Data presented herein were obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). This paper also includes spectra gathered with the 6.5 m Magellan Telescope/CLAY located at Las Campanas Observatory, Chile.

  16. Dredge-up and Envelope Burning in Intermediate-Mass Giants of Very Low Metallicity

    NASA Astrophysics Data System (ADS)

    Herwig, Falk

    2004-04-01

    larger, then dredge-up H burning causes a further increase in the dredge-up efficiency. After some thermal pulses, the dredge-up proceeds through the He shell and into the CO core beneath. Then neutrons may not be released from 13C in radiative conditions during the interpulse phase because of the scarcity of α-particles for the 13C(α,n)16O reactions. Conditions for the s-process are discussed qualitatively. The abundance evolution of H, He, C, N, O, and Na is described. Finally, the model predictions for sodium and oxygen are compared with observed abundances. The notion that massive AGB stars are the origin of the O-Na abundance anticorrelation in globular cluster giants is not consistent with the model predictions of this study. The abundance of the C-rich extremely metal-poor binaries LP 625-44, CS 29497-030, and HE 0024-2523 is discussed.

  17. On 7Li Enrichment by Low-Mass Metal-Poor Red Giant Branch Stars.

    PubMed

    de La Reza R; da Silva L; Drake; Terra

    2000-06-01

    First-ascent red giants with strong and very strong Li lines have just been discovered in globular clusters. Using the stellar internal prompt (7)Li enrichment-mass-loss scenario, we explore the possibility of (7)Li enrichment in the interstellar matter of the globular cluster M3 produced by these Li-rich giants. We found that enrichment as large as 70% or more compared to the initial (7)Li content of M3 can be obtained during the entire life of this cluster. However, because M3 will cross into the Galactic plane several times, the new (7)Li will be very probably removed by ram pressure into the disk. Globular clusters appear then as possible new sources of (7)Li in the Galactic disk. It is also suggested that the known Na/Al variations in stars of globular clusters could be somehow related to the (7)Li variations and that the cool bottom process mixing mechanism acting in the case of (7)Li could also play a role in the case of Na and Al surface enrichments.

  18. Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers.

    PubMed

    Yu, Yiling; Yu, Yifei; Huang, Lujun; Peng, Haowei; Xiong, Liwei; Cao, Linyou

    2017-06-14

    We report that the refractive index of transition metal dichacolgenide (TMDC) monolayers, such as MoS 2 , WS 2 , and WSe 2 , can be substantially tuned by >60% in the imaginary part and >20% in the real part around exciton resonances using complementary metal-oxide-semiconductor (CMOS) compatible electrical gating. This giant tunablility is rooted in the dominance of excitonic effects in the refractive index of the monolayers and the strong susceptibility of the excitons to the influence of injected charge carriers. The tunability mainly results from the effects of injected charge carriers to broaden the spectral width of excitonic interband transitions and to facilitate the interconversion of neutral and charged excitons. The other effects of the injected charge carriers, such as renormalizing bandgap and changing exciton binding energy, only play negligible roles. We also demonstrate that the atomically thin monolayers, when combined with photonic structures, can enable the efficiencies of optical absorption (reflection) tuned from 40% (60%) to 80% (20%) due to the giant tunability of the refractive index. This work may pave the way toward the development of field-effect photonics in which the optical functionality can be controlled with CMOS circuits.

  19. THE SEGUE K GIANT SURVEY. III. QUANTIFYING GALACTIC HALO SUBSTRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janesh, William; Morrison, Heather L.; Ma, Zhibo

    2016-01-10

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5–125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position–velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earliermore » work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (∼33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.« less

  20. Testing Metal-Poor Stellar Models and Isochrones with HST Parallaxes of Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Chaboyer, B.; McArthur, B. E.; O'Malley, E.; Benedict, G. F.; Feiden, G. A.; Harrison, T. E.; McWilliam, A.; Nelan, E. P.; Patterson, R. J.; Sarajedini, A.

    2017-02-01

    Hubble Space Telescope (HST) fine guidance sensor observations were used to obtain parallaxes of eight metal-poor ([Fe/H] < -1.4) stars. The parallaxes of these stars determined by the new Hipparcos reduction average 17% accuracy, in contrast to our new HST parallaxes, which average 1% accuracy and have errors on the individual parallaxes ranging from 85 to 144 μas. These parallax data were combined with HST Advanced Camera for Surveys photometry in the F606W and F814W filters to obtain the absolute magnitudes of the stars with an accuracy of 0.02-0.03 mag. Six of these stars are on the main sequence (MS) (with -2.7 < [Fe/H] < -1.8) and are suitable for testing metal-poor stellar evolution models and determining the distances to metal-poor globular clusters (GCs). Using the abundances obtained by O’Malley et al., we find that standard stellar models using the VandenBerg & Clem color transformation do a reasonable job of matching five of the MS stars, with HD 54639 ([Fe/H] = -2.5) being anomalous in its location in the color-magnitude diagram. Stellar models and isochrones were generated using a Monte Carlo analysis to take into account uncertainties in the models. Isochrones that fit the parallax stars were used to determine the distances and ages of nine GCs (with -2.4 ≤ [Fe/H] ≤ -1.9). Averaging together the age of all nine clusters led to an absolute age of the oldest, most metal-poor GCs of 12.7 ± 1.0 Gyr, where the quoted uncertainty takes into account the known uncertainties in the stellar models and isochrones, along with the uncertainty in the distance and reddening of the clusters.

  1. The RAVE Survey: Rich in Very Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Fulbright, Jon P.; Wyse, Rosemary F. G.; Ruchti, Gregory R.; Gilmore, G. F.; Grebel, Eva; Bienaymé, O.; Binney, J.; Bland-Hawthorn, J.; Campbell, R.; Freeman, K. C.; Gibson, B. K.; Helmi, A.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Reid, W.; Seabroke, G. M.; Siebert, A.; Siviero, A.; Steinmetz, M.; Watson, F. G.; Williams, M.; Zwitter, T.

    2010-11-01

    Very metal-poor stars are of obvious importance for many problems in chemical evolution, star formation, and galaxy evolution. Finding complete samples of such stars which are also bright enough to allow high-precision individual analyses is of considerable interest. We demonstrate here that stars with iron abundances [Fe/H] <-2 dex, and down to below -4 dex, can be efficiently identified within the Radial Velocity Experiment (RAVE) survey of bright stars, without requiring additional confirmatory observations. We determine a calibration of the equivalent width of the calcium triplet lines measured from the RAVE spectra onto true [Fe/H], using high spectral resolution data for a subset of the stars. These RAVE iron abundances are accurate enough to obviate the need for confirmatory higher-resolution spectroscopy. Our initial study has identified 631 stars with [Fe/H] <=-2, from a RAVE database containing approximately 200,000 stars. This RAVE-based sample is complete for stars with [Fe/H] lsim-2.5, allowing statistical sample analysis. We identify three stars with [Fe/H] lsim-4. Of these, one was already known to be "ultra metal-poor," one is a known carbon-enhanced metal-poor star, but we obtain [Fe/H] = -4.0, rather than the published [Fe/H] = -3.3, and derive [C/Fe] = +0.9, and [N/Fe] = +3.2, and the third is at the limit of our signal-to-noise ratio. RAVE observations are ongoing and should prove to be a rich source of bright, easily studied, very metal-poor stars. Based in part on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile, in the framework of proposals 081.B-0900 and 080.B-0927.

  2. Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Ndiaye, C.; Zerrad, M.; Lereu, A. L.; Roche, R.; Dumas, Ph.; Lemarchand, F.; Amra, C.

    2013-09-01

    Dielectric optical thin films, as opposed to metallic, have been very sparsely explored as good candidates for absorption-based optical field enhancement. In such materials, the low imaginary part of the refractive index implies that absorption processes are usually not predominant. This leads to dielectric-based optical resonances mainly via waveguiding modes. We show here that when properly designed, a multi-layered dielectric thin films stack can give rise to optical resonances linked to total absorption. We report here, on such dielectric stack designed to possess a theoretical optical field enhancement above 1000. Using photon scanning tunneling microscopy, we experimentally evaluate the resulting field enhancement of the stack as well as the associated penetration depth. We thus demonstrate the capability of multi-dielectric stacks in generating giant optical field with tunable penetration depth (down to few dozens of nm).

  3. Atmospheric parameters and magnesium and calcium NLTE abundances for a sample of 16 ultra metal-poor stars

    NASA Astrophysics Data System (ADS)

    Sitnova, Tatyana; Mashonkina, Lyudmila; Ezzeddine, Rana; Frebel, Anna

    2018-06-01

    The most metal-poor stars provide important observational clues to the astrophysical objects that enriched the primordial gas with heavy elements. Accurate atmospheric parameters is a prerequisite of determination of accurate abundances. We present atmospheric parameters and abundances of calcium and magnesium for a sample of 16 ultra-metal poor (UMP) stars. In spectra of UMP stars, iron is represented only by lines of Fe I, while calcium is represented with lines of Ca I and Ca II, which can be used for determination/checking of effective temperature and surface gravity. Accurate calculations of synthetic spectra of UMP stars require non-local thermodynamic equilibrium (NLTE) treatment of line formation, since deviations from LTE grow with metallicity decreasing. The method of atmospheric parameter determination is based on NLTE analysis of lines of Ca I and Ca II, multi-band photometry, and isochrones. The method was tested in advance with the ultra metal-poor giant CD-38 245, where, in addition, trigonometric parallax measurements from Gaia DR1 and lines of Fe I and Fe II are available. Using photometric Teff = 4900 K and distance based log g = 2.0 for CD-38 245, we derived consistent within error bars NLTE abundances from Fe I and Fe II and Ca I and Ca II, while LTE leads to a discrepancy of 0.6 dex between Ca I and Ca II. We determined NLTE and LTE abundances of magnesium and calcium in 16 stars of the sample. For the majority of stars, as expected, [Ca/Mg] NLTE abundance ratios are close to 0, while LTE leads to systematically higher [Ca/Mg], by up to 0.3 dex, and larger spread of [Ca/Mg] for different stars. Three stars of our sample are strongly enhanced in magnesium, with [Mg/Ca] of 1.3 dex. It is worth noting that, for these three stars, we got very similar [Mg/Ca] of 1.30, 1.45, and 1.29, in contrast to the data from the literature, where, for the same stars, [Mg/Ca] vary from 0.7 to 1.4. Very similar [Mg/Ca] abundance ratios of these stars argue that

  4. The best and brightest metal-poor stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaufman, Kevin C.; Casey, Andrew R., E-mail: kschlauf@mit.edu, E-mail: arc@ast.cam.ac.uk

    2014-12-10

    The chemical abundances of large samples of extremely metal-poor (EMP) stars can be used to investigate metal-free stellar populations, supernovae, and nucleosynthesis as well as the formation and galactic chemical evolution of the Milky Way and its progenitor halos. However, current progress on the study of EMP stars is being limited by their faint apparent magnitudes. The acquisition of high signal-to-noise spectra for faint EMP stars requires a major telescope time commitment, making the construction of large samples of EMP star abundances prohibitively expensive. We have developed a new, efficient selection that uses only public, all-sky APASS optical, 2MASS near-infrared,more » and WISE mid-infrared photometry to identify bright metal-poor star candidates through their lack of molecular absorption near 4.6 microns. We have used our selection to identify 11,916 metal-poor star candidates with V < 14, increasing the number of publicly available candidates by more than a factor of five in this magnitude range. Their bright apparent magnitudes have greatly eased high-resolution follow-up observations that have identified seven previously unknown stars with [Fe/H] ≲ –3.0. Our follow-up campaign has revealed that 3.8{sub −1.1}{sup +1.3}% of our candidates have [Fe/H] ≲ –3.0 and 32.5{sub −2.9}{sup +3.0}% have –3.0 ≲ [Fe/H] ≲ –2.0. The bulge is the most likely location of any existing Galactic Population III stars, and an infrared-only variant of our selection is well suited to the identification of metal-poor stars in the bulge. Indeed, two of our confirmed metal-poor stars with [Fe/H] ≲ –2.7 are within about 2 kpc of the Galactic center. They are among the most metal-poor stars known in the bulge.« less

  5. Metallicity inhomogeneities in local star-forming galaxies as a sign of recent metal-poor gas accretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez Almeida, J.; Morales-Luis, A. B.; Muñoz-Tuñón, C.

    2014-03-01

    We measure the oxygen metallicity of the ionized gas along the major axis of seven dwarf star-forming galaxies. Two of them, SDSSJ1647+21 and SDSSJ2238+14, show ≅0.5 dex metallicity decrements in inner regions with enhanced star formation activity. This behavior is similar to the metallicity drop observed in a number of local tadpole galaxies by Sánchez Almeida et al., and was interpreted as showing early stages of assembling in disk galaxies, with the star formation sustained by external metal-poor gas accretion. The agreement with tadpoles has several implications. (1) It proves that galaxies other than the local tadpoles present the samemore » unusual metallicity pattern. (2) Our metallicity inhomogeneities were inferred using the direct method, thus discarding systematic errors usually attributed to other methods. (3) Taken together with the tadpole data, our findings suggest a threshold around one-tenth the solar value for the metallicity drops to show up. Although galaxies with clear metallicity drops are rare, the physical mechanism responsible for them may sustain a significant part of the star formation activity in the local universe. We argue that the star formation dependence of the mass-metallicity relationship, as well as other general properties followed by most local disk galaxies, is naturally interpreted as side effects of pristine gas infall. Alternatives to the metal-poor gas accretion are examined as well.« less

  6. Searching for chemical classes among metal-poor stars using medium-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Cruz, Monique A.; Cogo-Moreira, Hugo; Rossi, Silvia

    2018-04-01

    Astronomy is in the era of large spectroscopy surveys, with the spectra of hundreds of thousands of stars in the Galaxy being collected. Although most of these surveys have low or medium resolution, which makes precise abundance measurements not possible, there is still important information to be extracted from the available data. Our aim is to identify chemically distinct classes among metal-poor stars, observed by the Sloan Digital Sky Survey, using line indices. The present work focused on carbon-enhanced metal-poor (CEMP) stars and their subclasses. We applied the latent profile analysis technique to line indices for carbon, barium, iron and europium, in order to separate the sample into classes with similar chemical signatures. This technique provides not only the number of possible groups but also the probability of each object to belong to each class. The method was able to distinguish at least two classes among the observed sample, with one of them being probable CEMP stars enriched in s-process elements. However, it was not able to separate CEMP-no stars from the rest of the sample. Latent profile analysis is a powerful model-based tool to be used in the identification of patterns in astrophysics. Our tests show the potential of the technique for the attainment of additional chemical information from `poor' data.

  7. A search for stars of very low metal abundance. VI. Detailed abundances of 313 metal-poor stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.

    2014-06-01

    We present radial velocities, equivalent widths, model atmosphere parameters, and abundances or upper limits for 53 species of 48 elements derived from high resolution optical spectroscopy of 313 metal-poor stars. A majority of these stars were selected from the metal-poor candidates of the HK Survey of Beers, Preston, and Shectman. We derive detailed abundances for 61% of these stars for the first time. Spectra were obtained during a 10 yr observing campaign using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coudé Spectrograph on the Harlan J. Smith Telescope atmore » McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We perform a standard LTE abundance analysis using MARCS model atmospheres, and we apply line-by-line statistical corrections to minimize systematic abundance differences arising when different sets of lines are available for analysis. We identify several abundance correlations with effective temperature. A comparison with previous abundance analyses reveals significant differences in stellar parameters, which we investigate in detail. Our metallicities are, on average, lower by ≈0.25 dex for red giants and ≈0.04 dex for subgiants. Our sample contains 19 stars with [Fe/H] ≤–3.5, 84 stars with [Fe/H] ≤–3.0, and 210 stars with [Fe/H] ≤–2.5. Detailed abundances are presented here or elsewhere for 91% of the 209 stars with [Fe/H] ≤–2.5 as estimated from medium resolution spectroscopy by Beers, Preston, and Shectman. We will discuss the interpretation of these abundances in subsequent papers.« less

  8. The Segue K giant survey. II. A catalog of distance determinations for the Segue K giants in the galactic halo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Xiang-Xiang; Rix, Hans-Walter; Ma, Zhibo

    2014-04-01

    We present an online catalog of distance determinations for 6036 K giants, most of which are members of the Milky Way's stellar halo. Their medium-resolution spectra from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration are used to derive metallicities and rough gravity estimates, along with radial velocities. Distance moduli are derived from a comparison of each star's apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed (g – r){sub 0} color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to properly propagate the errors in metallicities, magnitudes,more » and colors into distance uncertainties. We also fold in prior information about the giant-branch luminosity function and the different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays a small role in the distance estimates, but that neglecting the luminosity prior could lead to a systematic distance modulus bias of up to 0.25 mag, compared to the case of using the luminosity prior. We find a median distance precision of 16%, with distance estimates most precise for the least metal-poor stars near the tip of the red giant branch. The precision and accuracy of our distance estimates are validated with observations of globular and open clusters. The stars in our catalog are up to 125 kpc from the Galactic center, with 283 stars beyond 50 kpc, forming the largest available spectroscopic sample of distant tracers in the Galactic halo.« less

  9. The metallicity of M4: Accurate spectroscopic fundamental parameters for four giants

    NASA Technical Reports Server (NTRS)

    Drake, J. J.; Smith, V. V.; Suntzeff, N. B.

    1994-01-01

    High-quality spectra, covering the wavelength range 5480 to 7080 A, have been obtained for four giant stars in the intermediate-metallicity CN-bimodal globular cluster M4 (NGC 6121). We have employed a model atmosphere analysis that is entirely independent from cluster parameters, such as distance, age, and reddening, in order to derive accurate values for the stellar parameters effective temperature, surface gravity, and microturbulence, and for the abundance of iron relative to the Sun, (Fe/H), and of calcium, Ca/H, for each of the four stars. Detailed radiative transfer and statistical equilibrium calculations carried out for iron and calcium suggest that departures from local thermodynamic equilibrium are not significant for the purposes of our analysis. The spectroscopically derived effective temperatures for our program stars are hotter by about 200 K than existing photometric calibrations suggest. We conclude that this is due partly to the uncertain reddening of M4 and to the existing photometric temperature calibration for red giants being too cool by about 100 K. Comparison of our spectroscopic and existing photometric temperatures supports the prognosis of a significant east-west gradient in the reddening across M4. Our derived iron abundances are slightly higher than previous high-resolution studies suggested; the differences are most probably due to the different temperature scale and choice of microturbulent velocities adopted by earlier workers. The resulting value for the metallicity of M4 is (Fe/H )(sub M4) = -1.05 + or - 0.15. Based on this result, we suggest that metallicities derived in previous high-dispersion globular cluster abundance analyses could be too low by 0.2 to 0.3 dex. Our calcium abundances suggest an enhancement of calcium, an alpha element, over iron, relative to the Sun, in M4 of (Ca/H) = 0.23.

  10. High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Keller, Stefan; Frebel, Anna; Casey, Andrew R.; Asplund, Martin; Bessell, Michael S.; Da Costa, Gary S.; Lind, Karin; Marino, Anna F.; Norris, John E.; Peña, José M.; Schmidt, Brian P.; Tisserand, Patrick; Walsh, Jennifer M.; Yong, David; Yu, Qinsi

    2015-07-01

    The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set which allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca ii K 3933 Å line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan Inamori Kyocera Echelle high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. Forty-one stars have [{Fe}/{{H}}]≤slant -3.0. Nine have [{Fe}/{{H}}]≤slant -3.5, with three at [{Fe}/{{H}}]∼ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba, and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] values appears to be “Fe-enhanced,” while another star has an extremely large [Sr/Ba] ratio: \\gt 2. Only one other star is known to have a comparable value. Seven stars are “CEMP-no” stars ([{{C}}/{Fe}]\\gt 0.7, [{Ba}/{Fe}]\\lt 0). 21 stars exhibit mild r-process element enhancements (0.3≤slant [{Eu}/{Fe}]\\lt 1.0), while four stars have [{Eu}/{Fe}]≥slant 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  11. Follow-up observations of extremely metal-poor stars identified from SDSS

    NASA Astrophysics Data System (ADS)

    Aguado, D. S.; Allende Prieto, C.; González Hernández, J. I.; Carrera, R.; Rebolo, R.; Shetrone, M.; Lambert, D. L.; Fernández-Alvar, E.

    2016-08-01

    Context. The most metal-poor stars in the Milky Way witnessed the early phases of formation of the Galaxy, and have chemical compositions that are close to the pristine mixture from Big Bang nucleosynthesis, polluted by one or few supernovae. Aims: Only two dozen stars with ([Fe/H] < -4) are known, and they show a wide range of abundance patterns. It is therefore important to enlarge this sample. We present the first results of an effort to identify new extremely metal-poor stars in the Milky Way halo. Methods: Our targets have been selected from low-resolution spectra obtained as part of the Sloan Digital Sky Survey, and followed-up with medium resolution spectroscopy on the 4.2 m William Herschel Telescope and, in a few cases, at high resolution on the 9.2 m Hobby-Eberly Telescope. Stellar parameters and the abundances of magnesium, calcium, iron, and strontium have been inferred from the spectra using classical model atmospheres. We have also derived carbon abundances from the G band. Results: We find consistency between the metallicities estimated from SDSS and those from new data at the level of 0.3 dex. The analysis of medium resolution data obtained with ISIS on the WHT allows us to refine the metallicities and in some cases measure other elemental abundances. Our sample contains 11 new metal-poor stars with [Fe/H] < -3.0, one of them with an estimated metallicity of [Fe/H] ~ -4.0. We also discuss metallicity discrepancies of some stars in common with previous works in the literature. Only one of these stars is found to be C-enhanced at about [C/Fe] ~ + 1, whereas the other metal-poor stars show C abundances at the level of [C/Fe] ~ + 0.45. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.The reduced spectra as FITS files are only available at

  12. Kinematics and Metallicity of M31 Red Giants: The Giant Southern Stream and Discovery of a Second Cold Component at R=20 kpc

    NASA Astrophysics Data System (ADS)

    Kalirai, Jasonjot S.; Guhathakurta, Puragra; Gilbert, Karoline M.; Reitzel, David B.; Majewski, Steven R.; Rich, R. Michael; Cooper, Michael C.

    2006-04-01

    We present spectroscopic observations of red giant branch (RGB) stars in the Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck II 10 m telescope. The three fields targeted in this study are in the M31 spheroid, outer disk, and giant southern stream. In this paper, we focus on the kinematics and chemical composition of RGB stars in the stream field located at a projected distance of R=20 kpc from M31's center. A mix of stellar populations is found in this field. M31 RGB stars are isolated from Milky Way dwarf star contaminants using a variety of spectral and photometric diagnostics. The radial velocity distribution of RGB stars displays a clear bimodality-a primary peak centered at v¯1=-513 km s-1 and a secondary one at v¯2=-417 km s-1-along with an underlying broad component that is presumably representative of the smooth spheroid of M31. Both peaks are found to be dynamically cold with intrinsic velocity dispersions of σ(v)~16 km s-1. The mean metallicity and metallicity dispersion of stars in the two peaks is also found to be similar: <[Fe/H]>~-0.45 and σ([Fe/H])=0.2. The observed velocity of the primary peak is consistent with that predicted by dynamical models for the stream, but there is no obvious explanation for the secondary peak. The nature of the secondary cold population is unclear: it may represent (1) tidal debris from a satellite merger event that is superimposed on, but unrelated to, the giant southern stream; (2) a wrapped around component of the giant southern stream; or (3) a warp or overdensity in M31's disk at Rdisk>50 kpc (this component is well above the outward extrapolation of the smooth exponential disk brightness profile). Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the

  13. The mass-ratio and eccentricity distributions of barium and S stars, and red giants in open clusters

    NASA Astrophysics Data System (ADS)

    Van der Swaelmen, M.; Boffin, H. M. J.; Jorissen, A.; Van Eck, S.

    2017-01-01

    Context. A complete set of orbital parameters for barium stars, including the longest orbits, has recently been obtained thanks to a radial-velocity monitoring with the HERMES spectrograph installed on the Flemish Mercator telescope. Barium stars are supposed to belong to post-mass-transfer systems. Aims: In order to identify diagnostics distinguishing between pre- and post-mass-transfer systems, the properties of barium stars (more precisely their mass-function distribution and their period-eccentricity (P-e) diagram) are compared to those of binary red giants in open clusters. As a side product, we aim to identify possible post-mass-transfer systems among the cluster giants from the presence of s-process overabundances. We investigate the relation between the s-process enrichment, the location in the (P-e) diagram, and the cluster metallicity and turn-off mass. Methods: To invert the mass-function distribution and derive the mass-ratio distribution, we used the method pioneered by Boffin et al. (1992) that relies on a Richardson-Lucy deconvolution algorithm. The derivation of s-process abundances in the open-cluster giants was performed through spectral synthesis with MARCS model atmospheres. Results: A fraction of 22% of post-mass-transfer systems is found among the cluster binary giants (with companion masses between 0.58 and 0.87 M⊙, typical for white dwarfs), and these systems occupy a wider area than barium stars in the (P-e) diagram. Barium stars have on average lower eccentricities at a given orbital period. When the sample of binary giant stars in clusters is restricted to the subsample of systems occupying the same locus as the barium stars in the (P-e) diagram, and with a mass function compatible with a WD companion, 33% (=4/12) show a chemical signature of mass transfer in the form of s-process overabundances (from rather moderate - about 0.3 dex - to more extreme - about 1 dex). The only strong barium star in our sample is found in the cluster with

  14. The Lithium Abundances of a Large Sample of Red Giants

    NASA Astrophysics Data System (ADS)

    Liu, Y. J.; Tan, K. F.; Wang, L.; Zhao, G.; Sato, Bun'ei; Takeda, Y.; Li, H. N.

    2014-04-01

    The lithium abundances for 378 G/K giants are derived with non-local thermodynamic equilibrium correction considered. Among these are 23 stars that host planetary systems. The lithium abundance is investigated, as a function of metallicity, effective temperature, and rotational velocity, as well as the impact of a giant planet on G/K giants. The results show that the lithium abundance is a function of metallicity and effective temperature. The lithium abundance has no correlation with rotational velocity at v sin i < 10 km s-1. Giants with planets present lower lithium abundance and slow rotational velocity (v sin i < 4 km s-1). Our sample includes three Li-rich G/K giants, 36 Li-normal stars, and 339 Li-depleted stars. The fraction of Li-rich stars in this sample agrees with the general rate of less than 1% in the literature, and the stars that show normal amounts of Li are supposed to possess the same abundance at the current interstellar medium. For the Li-depleted giants, Li-deficiency may have already taken place at the main sequence stage for many intermediate mass (1.5-5 M ⊙) G/K giants. Finally, we present the lithium abundance and kinematic parameters for an enlarged sample of 565 giants using a compilation of the literature, and confirm that the lithium abundance is a function of metallicity and effective temperature. With the enlarged sample, we investigate the differences between the lithium abundance in thin-/thick-disk giants, which indicate that the lithium abundance in thick-disk giants is more depleted than that in thin-disk giants.

  15. The lithium abundances of a large sample of red giants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y. J.; Tan, K. F.; Wang, L.

    2014-04-20

    The lithium abundances for 378 G/K giants are derived with non-local thermodynamic equilibrium correction considered. Among these are 23 stars that host planetary systems. The lithium abundance is investigated, as a function of metallicity, effective temperature, and rotational velocity, as well as the impact of a giant planet on G/K giants. The results show that the lithium abundance is a function of metallicity and effective temperature. The lithium abundance has no correlation with rotational velocity at v sin i < 10 km s{sup –1}. Giants with planets present lower lithium abundance and slow rotational velocity (v sin i < 4more » km s{sup –1}). Our sample includes three Li-rich G/K giants, 36 Li-normal stars, and 339 Li-depleted stars. The fraction of Li-rich stars in this sample agrees with the general rate of less than 1% in the literature, and the stars that show normal amounts of Li are supposed to possess the same abundance at the current interstellar medium. For the Li-depleted giants, Li-deficiency may have already taken place at the main sequence stage for many intermediate mass (1.5-5 M {sub ☉}) G/K giants. Finally, we present the lithium abundance and kinematic parameters for an enlarged sample of 565 giants using a compilation of the literature, and confirm that the lithium abundance is a function of metallicity and effective temperature. With the enlarged sample, we investigate the differences between the lithium abundance in thin-/thick-disk giants, which indicate that the lithium abundance in thick-disk giants is more depleted than that in thin-disk giants.« less

  16. Chromospheres of two red giants in NGC 6752

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Hartmann, L.; Harper, G. M.; Jordan, Carole; Rodgers, A. W.

    1990-01-01

    Two red giant stars, A31 and A59, in the globular cluster NGC 6752 exhibit Mg II (2800 A) emission with surface fluxes comparable to those observed among metal-deficient halo field giants, and among low-activity Population I giants. Optical echelle spectra of these cluster giants reveal emission in the core of the Ca II K (3933.7 A) line, and in the wing of the H-alpha (6562.8 A) profile. Asymmetries exist both in the emission profiles and the line cores. These observations demonstrate unequivocally the existence of chromospheres among old halo population giants, and the presence of mass outflow in their atmospheres. Maintenance of a relatively constant level of chromospheric activity on the red giant branch contrasts with the decay of magnetic dynamo activity exhibited by dwarf stars and younger giants. A purely hydrodynamic phenomenon may be responsible for heating the outer atmospheres of these stars, enhancing chromospheric emission, thus extending the atmospheres and facilitating mass loss.

  17. The Epoch of the First Star Formation in the Closest Metal-Poor Blue Compact Dwarf Galaxy UGC 4483

    NASA Astrophysics Data System (ADS)

    Aloisi, Alessandra

    2017-08-01

    Metal-poor Blue Compact Dwarf (BCD) galaxies have been interpreted as nearby galaxies in formation. This view has been challenged by HST detection of Red Giant Branch (RGB) stars in all metal-poor BCDs where an RGB tip (TRGB, brightest RGB phase) has been searched for, impling the presence of stars at least 1 Gyr old. Due to the age-metallicity degeneracy, the RGB color provides little insight into the exact star formation history (SFH) beyond 1 Gyr. So, the first SF epoch may have occurred anywhere between 13 and 1 Gyr ago. To resolve this, it is necessary to reach features in the color-magnitude diagram (CMD) that are much fainter than the TRGB. Here we propose new WFC3/UVIS observations (with ACS/WFC in parallel) of the closest metal-poor BCD, UGC 4483. These data will yield an I vs. V-I CMD that goes 4 mag deeper than the TRGB allowing to detect red clump (RC) and horizontal branch (HB) stars. Variable stars of RR Lyrae type will also be detected. With their mere presence, these variables will indisputably prove the existence of a population at least 10 Gyr old. Apparent mag and width of RC, HB and RGB will independently constrain age and metallicity of the old/evolved stars, the presence of multiple SF episodes, their duration and metallicity spread. This deep crowded-field photometric project is only possible with HST. Due to UGC 4483 location in CVZ, it can be done in half the number of orbits that it would otherwise take. Since UGC 4483 is so close, it may be the only BCD for which these questions can be answered in the near future. It provides our best chance for learning about the true cosmological age and evolutionary state of these enigmatic galaxies.

  18. Chromospheric Activity in Population II Giants

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2004-01-01

    One of the mysteries of Population II giants is that they still show chromospheric emission despite their great age. The global dynamo which was active during their main-sequence lifetimes is expected to become extremely weak through magnetic rotational braking. The nature of the observed emission is not understood; although acoustic shock waves might provide the heating, acoustic waves are not predicted to drive the observed mass loss - which in turn requires the dissipation of magneto-hydrodynamic waves. This program was designed to search for the faint stellar H Ly beta emission wings and the fluorescent Fe II and H2 emission from one of the brightest, metal poor, Population II stars. These FUSE diagnostics, when combined with existing UV and optical spectra, help determine the major radiative cooling channels for the chromosphere. This observation was to complement that previously planned for the mildly metal deficient giant alpha Boo (K2 III). However, alpha Boo has yet to be observed with FUSE.

  19. Carbon and nitrogen abundances in red giant stars in the globular cluster 47 Tucanae

    NASA Technical Reports Server (NTRS)

    Dickens, R. J.; Bell, R. A.; Gustafsson, B.

    1979-01-01

    The effects of changes in temperature, gravity, overall metal abundance, and carbon and nitrogen abundances have been investigated for model stellar spectra and colors representing globular-cluster giants of moderate metal deficiency. The results are presented in the form of spectral atlases and theoretical color-color diagrams. Using these results, approximate abundances of carbon and nitrogen have been derived for some red giant stars in 47 Tuc, from intermediate- and low-dispersion spectra and from intermediate- and narrow-band photometry. In all the normal giants studied, nitrogen is overabundant by up to about a factor of 5 (the precise value depends on the adopted carbon abundance), with different enhancements for different giants. The observational material is not sufficient to distinguish between a normal carbon abundance and a slight carbon depletion for the giant-branch stars, but carbon appears to be somewhat depleted in stars on the asymptotic giant branch. A most probable value of M/H = -0.8 for the overall cluster metal abundance is suggested from analysis of Stromgren photometry of red horizontal-branch stars.

  20. Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars

    NASA Astrophysics Data System (ADS)

    Jones, M. I.; Jenkins, J. S.; Brahm, R.; Wittenmyer, R. A.; Olivares E., F.; Melo, C. H. F.; Rojo, P.; Jordán, A.; Drass, H.; Butler, R. P.; Wang, L.

    2016-05-01

    Context. Exoplanet searches have revealed interesting correlations between the stellar properties and the occurrence rate of planets. In particular, different independent surveys have demonstrated that giant planets are preferentially found around metal-rich stars and that their fraction increases with the stellar mass. Aims: During the past six years we have conducted a radial velocity follow-up program of 166 giant stars to detect substellar companions and to characterize their orbital properties. Using this information, we aim to study the role of the stellar evolution in the orbital parameters of the companions and to unveil possible correlations between the stellar properties and the occurrence rate of giant planets. Methods: We took multi-epoch spectra using FEROS and CHIRON for all of our targets, from which we computed precision radial velocities and derived atmospheric and physical parameters. Additionally, velocities computed from UCLES spectra are presented here. By studying the periodic radial velocity signals, we detected the presence of several substellar companions. Results: We present four new planetary systems around the giant stars HIP 8541, HIP 74890, HIP 84056, and HIP 95124. Additionally, we study the correlation between the occurrence rate of giant planets with the stellar mass and metallicity of our targets. We find that giant planets are more frequent around metal-rich stars, reaching a peak in the detection of f = 16.7+15.5-5.9% around stars with [Fe/H] ~ 0.35 dex. Similarly, we observe a positive correlation of the planet occurrence rate with the stellar mass, between M⋆ ~ 1.0 and 2.1 M⊙, with a maximum of f = 13.0+10.1-4.2% at M⋆ = 2.1 M⊙. Conclusions: We conclude that giant planets are preferentially formed around metal-rich stars. In addition, we conclude that they are more efficiently formed around more massive stars, in the stellar mass range of ~1.0-2.1 M⊙. These observational results confirm previous findings for solar

  1. Milky Way globular cluster metallicity and low-mass X-ray binaries: the red giant influence

    NASA Astrophysics Data System (ADS)

    Vulic, N.; Barmby, P.; Gallagher, S. C.

    2018-02-01

    Galactic and extragalactic studies have shown that metal-rich globular clusters (GCs) are approximately three times more likely to host bright low-mass X-ray binaries (LMXBs) than metal-poor GCs. There is no satisfactory explanation for this metallicity effect. We tested the hypothesis that the number density of red giant branch (RGB) stars is larger in metal-rich GCs, and thus potentially the cause of the metallicity effect. Using Hubble Space Telescope photometry for 109 unique Milky Way GCs, we investigated whether RGB star density was correlated with GC metallicity. Isochrone fitting was used to calculate the number of RGB stars, which were normalized by the GC mass and fraction of observed GC luminosity, and determined density using the volume at the half-light radius (rh). The RGB star number density was weakly correlated with metallicity [Fe/H], giving Spearman and Kendall Rank test p-values of 0.000 16 and 0.000 21 and coefficients rs = 0.35 and τ = 0.24, respectively. This correlation may be biased by a possible dependence of rh on [Fe/H], although studies have shown that rh is correlated with Galactocentric distance and independent of [Fe/H]. The dynamical origin of the rh-metallicity correlation (tidal stripping) suggests that metal-rich GCs may have had more active dynamical histories, which would promote LMXB formation. No correlation between the RGB star number density and metallicity was found when using only the GCs that hosted quiescent LMXBs. A complete census of quiescent LMXBs in our Galaxy is needed to further probe the metallicity effect, which will be possible with the upcoming launch of eROSITA.

  2. Observing metal-poor stars with X-Shooter

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Bonifacio, P.; Sbordone, L.; Monaco, L.; François; , P.

    The extremely metal-poor stars (EMP) hold in their atmospheres the fossil record of the chemical composition of the early phases of the Galactic evolution. The chemical analysis of such objects provides important constraints on these early phases. EMP stars are very rare objects; to dig them out large amounts of data have to be considered. With an automatic procedure, we analysed objects with colours of Turn-Off stars from the Sloan Digital Sky Survey to select a sample of good candidate EMP stars. During the French-Italian GTO of the spectrograph X-Shooter, we observed a sample of these candidates. We could confirm the low metallicity of our sample of stars, and we succeeded in finding a record metal-poor star.

  3. CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from highmore » levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.« less

  4. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XII. MAPPING STELLAR METALLICITY DISTRIBUTIONS IN M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregersen, Dylan; Seth, Anil C.; Williams, Benjamin F.

    We present a study of spatial variations in the metallicity of old red giant branch stars in the Andromeda galaxy. Photometric metallicity estimates are derived by interpolating isochrones for over seven million stars in the Panchromatic Hubble Andromeda Treasury (PHAT) survey. This is the first systematic study of stellar metallicities over the inner 20 kpc of Andromeda’s galactic disk. We see a clear metallicity gradient of −0.020 ± 0.004 dex kpc{sup −1} from ∼4–20 kpc assuming a constant red giant branch age. This metallicity gradient is derived after correcting for the effects of photometric bias and completeness and dust extinction, and ismore » quite insensitive to these effects. The unknown age gradient in M31's disk creates the dominant systematic uncertainty in our derived metallicity gradient. However, spectroscopic analyses of galaxies similar to M31 show that they typically have small age gradients that make this systematic error comparable to the 1σ error on our metallicity gradient measurement. In addition to the metallicity gradient, we observe an asymmetric local enhancement in metallicity at radii of 3–6 kpc that appears to be associated with Andromeda’s elongated bar. This same region also appears to have an enhanced stellar density and velocity dispersion.« less

  5. EXCESS OPTICAL ENHANCEMENT OBSERVED WITH ARCONS FOR EARLY CRAB GIANT PULSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strader, M. J.; Mazin, B. A.; Spiro Jaeger, G. V.

    2013-12-10

    We observe an extraordinary link in the Crab pulsar between the enhancement of an optical pulse and the timing of the corresponding giant radio pulse. At optical through infrared wavelengths, our observations use the high time resolution of ARray Camera for Optical to Near-IR Spectrophotometry, a unique superconducting energy-resolving photon-counting array at the Palomar 200 inch telescope. At radio wavelengths, we observe with the Robert C. Byrd Green Bank Telescope and the Green Bank Ultimate Pulsar Processing Instrument backend. We see an 11.3% ± 2.5% increase in peak optical flux for pulses that have an accompanying giant radio pulse arrivingmore » near the peak of the optical main pulse, in contrast to a 3.2% ± 0.5% increase when an accompanying giant radio pulse arrives soon after the optical peak. We also observe that the peak of the optical main pulse is 2.8% ± 0.8% enhanced when there is a giant radio pulse accompanying the optical interpulse. We observe no statistically significant spectral differences between optical pulses accompanied by and not accompanied by giant radio pulses. Our results extend previous observations of optical-radio correlation to the time and spectral domains. Our refined temporal correlation suggests that optical and radio emission are indeed causally linked, and the lack of spectral differences suggests that the same mechanism is responsible for all optical emission.« less

  6. Excess optical enhancement observed with arcons for early crab giant pulses

    DOE PAGES

    Strader, M. J.; Johnson, M. D.; Mazin, B. A.; ...

    2013-11-26

    Here, we observe an extraordinary link in the Crab pulsar between the enhancement of an optical pulse and the timing of the corresponding giant radio pulse. At optical through infrared wavelengths, our observations use the high time resolution of ARray Camera for Optical to Near-IR Spectrophotometry, a unique superconducting energy-resolving photon-counting array at the Palomar 200 inch telescope. At radio wavelengths, we observe with the Robert C. Byrd Green Bank Telescope and the Green Bank Ultimate Pulsar Processing Instrument backend. We see an 11.3% ± 2.5% increase in peak optical flux for pulses that have an accompanying giant radio pulsemore » arriving near the peak of the optical main pulse, in contrast to a 3.2% ± 0.5% increase when an accompanying giant radio pulse arrives soon after the optical peak. We also observe that the peak of the optical main pulse is 2.8% ± 0.8% enhanced when there is a giant radio pulse accompanying the optical interpulse. We also observe no statistically significant spectral differences between optical pulses accompanied by and not accompanied by giant radio pulses. These results extend previous observations of optical-radio correlation to the time and spectral domains. Our refined temporal correlation suggests that optical and radio emission are indeed causally linked, and the lack of spectral differences suggests that the same mechanism is responsible for all optical emission.« less

  7. MASS OUTFLOW AND CHROMOSPHERIC ACTIVITY OF RED GIANT STARS IN GLOBULAR CLUSTERS. II. M13 AND M92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meszaros, Sz.; Dupree, A. K.; Szalai, T.

    High-resolution spectra of 123 red giant stars in the globular cluster M13 and 64 red giant stars in M92 were obtained with Hectochelle at the MMT telescope. Emission and line asymmetries in H{alpha} and Ca II K are identified, characterizing motions in the extended atmospheres and seeking differences attributable to metallicity in these clusters and M15. On the red giant branch, emission in H{alpha} generally appears in stars with T {sub eff} {approx}< 4500 K and log L/L {sub sun}{approx}> 2.75. Fainter stars showing emission are asymptotic giant branch (AGB) stars or perhaps binary stars. The line-bisector for H{alpha} revealsmore » the onset of chromospheric expansion in stars more luminous than log (L/L {sub sun}) {approx} 2.5 in all clusters, and this outflow velocity increases with stellar luminosity. However, the coolest giants in the metal-rich M13 show greatly reduced outflow in H{alpha} most probably due to decreased T {sub eff} and changing atmospheric structure. The Ca II K{sub 3} outflow velocities are larger than shown by H{alpha} at the same luminosity and signal accelerating outflows in the chromospheres. Stars clearly on the AGB show faster chromospheric outflows in H{alpha} than RGB objects. While the H{alpha} velocities on the RGB are similar for all metallicities, the AGB stars in the metal-poor M15 and M92 have higher outflow velocities than in the metal-rich M13. Comparison of these chromospheric line profiles in the paired metal-poor clusters, M15 and M92, shows remarkable similarities in the presence of emission and dynamical signatures, and does not reveal a source of the 'second-parameter' effect.« less

  8. Heavy-element yields and abundances of asymptotic giant branch models with a Small Magellanic Cloud metallicity

    NASA Astrophysics Data System (ADS)

    Karakas, Amanda I.; Lugaro, Maria; Carlos, Marília; Cseh, Borbála; Kamath, Devika; García-Hernández, D. A.

    2018-06-01

    We present new theoretical stellar yields and surface abundances for asymptotic giant branch (AGB) models with a metallicity appropriate for stars in the Small Magellanic Cloud (SMC, Z = 0.0028, [Fe/H] ≈ -0.7). New evolutionary sequences and post-processing nucleosynthesis results are presented for initial masses between 1 and 7 M⊙, where the 7 M⊙ is a super-AGB star with an O-Ne core. Models above 1.15 M⊙ become carbon rich during the AGB, and hot bottom burning begins in models M ≥ 3.75 M⊙. We present stellar surface abundances as a function of thermal pulse number for elements between C to Bi and for a selection of isotopic ratios for elements up to Fe and Ni (e.g. 12C/13C), which can be compared to observations. The integrated stellar yields are presented for each model in the grid for hydrogen, helium, and all stable elements from C to Bi. We present evolutionary sequences of intermediate-mass models between 4 and 7 M⊙ and nucleosynthesis results for three masses (M = 3.75, 5, and 7 M⊙) including s-process elements for two widely used AGB mass-loss prescriptions. We discuss our new models in the context of evolved AGB and post-AGB stars in the SMCs, barium stars in our Galaxy, the composition of Galactic globular clusters including Mg isotopes with a similar metallicity to our models, and to pre-solar grains which may have an origin in metal-poor AGB stars.

  9. THE SPLASH SURVEY: A SPECTROSCOPIC ANALYSIS OF THE METAL-POOR, LOW-LUMINOSITY M31 dSph SATELLITE ANDROMEDA X ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalirai, Jason S.; Zucker, Daniel B.; Kniazev, Alexei Y.

    2009-11-01

    Andromeda X (And X) is a newly discovered low-luminosity M31 dwarf spheroidal galaxy (dSph) found by Zucker et al. in the Sloan Digital Sky Survey (SDSS; York et al.). In this paper, we present the first spectroscopic study of individual red giant branch stars in And X, as a part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) Survey. Using the Keck II telescope and multiobject DEIMOS spectrograph, we target two spectroscopic masks over the face of the galaxy and measure radial velocities for approx100 stars with a median accuracy of sigma {sub v} approx 3 kmmore » s{sup -1}. The velocity histogram for this field confirms three populations of stars along the sight line: foreground Milky Way dwarfs at small negative velocities, M31 halo red giants over a broad range of velocities, and a very cold velocity 'spike' consisting of 22 stars belonging to And X with v {sub rad} = -163.8 +- 1.2 km s{sup -1}. By carefully considering both the random and systematic velocity errors of these stars (e.g., through duplicate star measurements), we derive an intrinsic velocity dispersion of just sigma {sub v} = 3.9 +- 1.2 km s{sup -1} for And X, which for its size, implies a minimum mass-to-light ratio of M/L{sub V} = 37{sup +26} {sub -19} assuming that the mass traces the light. Based on the clean sample of member stars, we measure the median metallicity of And X to be [Fe/H] = -1.93 +- 0.11, with a slight radial metallicity gradient. The dispersion in metallicity is large, sigma([Fe/H]{sub phot}) = 0.48, possibly hinting that the galaxy retained much of its chemical enrichment products. And X has a total integrated luminosity (M{sub V} = -8.1 +- 0.5) that straddles the classical Local Group dSphs and the new SDSS ultra-low luminosity galaxies. The galaxy is among the most metal-poor dSphs known, especially relative to those with M{sub V} < -8, and has the second lowest intrinsic velocity dispersion of the entire sample. Our results suggest

  10. Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way.

    PubMed

    Howes, L M; Casey, A R; Asplund, M; Keller, S C; Yong, D; Nataf, D M; Poleski, R; Lind, K; Kobayashi, C; Owen, C I; Ness, M; Bessell, M S; Da Costa, G S; Schmidt, B P; Tisserand, P; Udalski, A; Szymański, M K; Soszyński, I; Pietrzyński, G; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Skowron, J; Kozłowski, S; Mróz, P

    2015-11-26

    The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that most of the metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.

  11. NOEMA Observations of a Molecular Cloud in the Low-metallicity Galaxy Kiso 5639

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.; Herrera, Cinthya; Rubio, Monica; Elmegreen, Debra Meloy; Sánchez Almeida, Jorge; Muñoz-Tuñón, Casiana; Olmo-García, Amanda

    2018-06-01

    A giant star-forming region in a metal-poor dwarf galaxy has been observed in optical lines with the 10 m Gran Telescopio Canarias (GTC) and in the emission line of CO(1–0) with the Northern Extended Millimeter Array (NOEMA) mm-wave interferometer. The metallicity was determined to be 12+{log}({{O}}/{{H}})=7.83+/- 0.09, from which we estimate a conversion factor of α CO ∼ 100 M ⊙ pc‑2(K km s‑1)‑1 and a molecular cloud mass of ∼2.9 × 107 M ⊙. This is an enormous concentration of molecular mass at one end of a small galaxy, suggesting a recent accretion. The molecular cloud properties seem normal: the surface density, 120 M ⊙ pc‑2, is comparable to that of a standard giant molecular cloud; the cloud’s virial ratio of ∼1.8 is in the star formation range; and the gas consumption time, 0.5 Gyr, at the present star formation rate is typical for molecular regions. The low metallicity implies that the cloud has an average visual extinction of only 0.8 mag, which is close to the threshold for molecule formation. With such an extinction threshold, molecular clouds in metal-poor regions should have high surface densities and high internal pressures. If high pressure is associated with the formation of massive clusters, then metal-poor galaxies such as dwarfs in the early universe could have been the hosts of metal-poor globular clusters.

  12. Determination of robust metallicities for metal-rich red giant branch stars. An application to the globular cluster NGC 6528

    NASA Astrophysics Data System (ADS)

    Liu, C.; Ruchti, G.; Feltzing, S.; Primas, F.

    2017-05-01

    Context. The study of the Milky Way relies on our ability to interpret the light from stars correctly. With the advent of the astrometric ESA mission Gaia we will enter a new era where the study of the Milky Way can be undertaken on much larger scales than currently possible. In particular we will be able to obtain full 3D space motions of red giant stars at large distances. This calls for a reinvestigation of how reliably we can determine, for example, iron abundances in such stars and how well they reproduce those of dwarf stars. Aims: Here we explore robust ways of determining the iron content of metal-rich giant stars. We aim to understand what biases and shortcomings the widely applied methods suffer from. Methods: In this study we were mainly concerned with standard methods of analysing stellar spectra. These include the analysis of individual lines to determine stellar parameters, and analysis of the broad wings of certain lines (e.g. Hα and calcium lines) to determine effective temperature and surface gravity for the stars. Results: For NGC 6528 we find that [Fe/H] = + 0.04 dex with a scatter of σ = 0.07 dex, which gives an error in the derived mean abundance of 0.02 dex. Conclusions: Our work has two important conclusions for analysis of metal-rich red giant branch stars. Firstly, for spectra with S/N of below about 35 per reduced pixel, [Fe/H] becomes too high. Secondly, determination of Teff using the wings of the Hα line results in [Fe/H] values about 0.1 dex higher than if excitational equilibrium is used. The last conclusion is perhaps unsurprising, as we expect the NLTE effect to become more prominent in cooler stars and we can not use the wings of the Hα line to determine Teff for the cool stars in our sample. We therefore recommend that in studies of metal-rich red giant stars care should be taken to obtain sufficient calibration data to enable use of the cooler stars. Based on observations made with the ESO/VLT, at Paranal Observatory, under

  13. Strain-induced semi-metal to semiconductor transition and strong enhancement in thermopower of TiS2

    NASA Astrophysics Data System (ADS)

    Samanta, Atanu; Pandey, Tribhuwan; Singh, Abhishek K.

    2015-03-01

    Electronic properties of transition-metal dichalcogenides (TMDs) (MX2, where M = Mo, W and X = S, Se, Te) are very sensitive to the applied pressure/strain, causing a semiconductor to metal transition. Using first principles density functional theory calculations, we demonstrate that bulk TiS2 changes from semi-metal to semi-conducting electronic phase upon application of uniform biaxial strain. This phase transition is responsible for the charge transfer from Ti to S and reduces the overlap between Ti-(d) and S-(p) orbitals. The transport calculations show a three-fold enhancement in thermopower for both p- and n-type TiS2 due to opening of band gap along with changes in dispersion of bands. The electrical conductivity and thermopower shows a large anisotropy due to the difference in the effective masses along the in-plane and out-of-plane directions. We further demonstrate that the enhancement of thermoelectric performance, can also be achieved by doping TiS2 with larger iso-electronic elements such as Zr or Hf at the Ti sites. Aeronautical Development Agency (ADA) under NPMASS and Department of Science and Technology(DST) nanomission

  14. Red-giant evolution, metallicity, and new bounds on hadronic axions

    NASA Technical Reports Server (NTRS)

    Haxton, W. C.; Lee, K. Y.

    1991-01-01

    Stellar cooling by nuclear axion emission is explored, identifying those special isotopes that dominate this process for temperatures from 10 to the 7th to 10 to the 9th K. It is argued that such nuclear energy-loss mechanisms are distinctive because the effects track metallicity. Three observables associated with evolution of stars along the red-giant and horizontal branches are shown to impose new and restrictive constraints on axions in the hadronic window.

  15. New spectroscopic binary companions of giant stars and updated metallicity distribution for binary systems

    NASA Astrophysics Data System (ADS)

    Bluhm, P.; Jones, M. I.; Vanzi, L.; Soto, M. G.; Vos, J.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Olivares, F.; Mennickent, R. E.; Vučković, M.; Rojo, P.; Melo, C. H. F.

    2016-10-01

    We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions. The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between ~97-1600 days and eccentricities of between ~0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a different formation mechanism than planets. This result is confirmed by recent works showing that extrasolar planets orbiting giants are more frequent around metal-rich stars. Finally, we investigate the eccentricity as a function of the orbital period. We analyzed a total of 130 spectroscopic binaries, including those presented here and systems from the literature. We find that most of the binary stars with periods ≲30 days have circular orbits, while at longer orbital periods we observe a wide spread in their eccentricities. Based on observations collected at La Silla - Paranal Observatory under programs IDs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345, 096.A-9020 and through the Chilean Telescope Time under programs IDs CN2012A-73, CN2012B-47, CN2013A-111, CN2013B-51, CN2014A-52 and CN2015A-48.

  16. Detailed Abundances in a Metal-Poor Stellar Stream

    NASA Astrophysics Data System (ADS)

    Roederer, I. U.; Sneden, C.; Thompson, I. B.; Preston, G. W.; Shectman, S. A.

    2010-10-01

    We present the results of a detailed abundance analysis of one of the confirmed building blocks of the Milky Way stellar halo, a kinematically-coherent metal-poor stellar stream. We have obtained high resolution and high S/N spectra of 8 confirmed and 4 rejected stream members using the MIKE spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the 2dCoude spectrograph on the Smith Telescope at McDonald Observatory. We have derived abundances or upper limits for nearly 50 species of more than 40 elements in each of these stars. The stream members show a range of metallicity (-2.5 < [Fe/H] < -1.5) but are otherwise chemically homogeneous, with the same star-to-star chemical dispersion in [X/Fe] as halo stars. They show no evolution in the α or Fe-group elements over the range of metallicity. The stream does not resemble a globular cluster in that its members show a range of metallicities, and the small chemical dispersion and lack of chemical evolution demonstrate that it is also unlike the classical Milky Way dwarf spheroidal galaxies. Our results support the notion that a significant fraction of the Milky Way stellar halo was formed from accreted systems, and these systems likely did not resemble the present-day globular clusters or luminous dwarf galaxies. This stream is mildly enriched (in, e.g., [Eu/Fe]) by material produced by the main and weak components of the rapid neutron-capture process and shows no evidence for enrichment by the slow neutron-capture process. Except for the observed metallicity range of the stream stars, the enrichment pattern of the stream is nearly identical to that of the massive metal-poor globular cluster M15. The kinematics of M15 and the stream are also similar. It is possible that both systems may have originated from a common progenitor but not likely that the stream originated from M15.

  17. Red giants and yellow stragglers in the young open cluster NGC 2447

    NASA Astrophysics Data System (ADS)

    da Silveira, M. D.; Pereira, C. B.; Drake, N. A.

    2018-06-01

    In this work we analysed, using high-resolution spectroscopy, a sample of 12 single and 4 spectroscopic binary stars of the open cluster NGC 2447. For the single stars, we obtained atmospheric parameters and chemical abundances of Li, C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, Nd, Eu. Rotational velocities were obtained for all the stars. The abundances of the light elements and Eu and the rotational velocities were derived using spectral synthesis technique. We obtained a mean metallicity of [Fe/H] = -0.17 ± 0.05. We found that the abundances of all elements are similar to field giants and/or giants of open clusters, even for the s-process elements, which are enhanced as in other young open clusters. We show that the spectroscopic binaries NGC 2447-26, 38, and 42 are yellow-straggler stars, of which the primary is a giant star and the secondary a main-sequence A-type star.

  18. Evolution, Nucleosynthesis, and Yields of Low-mass Asymptotic Giant Branch Stars at Different Metallicities. II. The FRUITY Database

    NASA Astrophysics Data System (ADS)

    Cristallo, S.; Piersanti, L.; Straniero, O.; Gallino, R.; Domínguez, I.; Abia, C.; Di Rico, G.; Quintini, M.; Bisterzo, S.

    2011-12-01

    By using updated stellar low-mass stars models, we systematically investigate the nucleosynthesis processes occurring in asymptotic giant branch (AGB) stars. In this paper, we present a database dedicated to the nucleosynthesis of AGB stars: FRANEC Repository of Updated Isotopic Tables & Yields (FRUITY). An interactive Web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up (TDU) episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 <=M/M ⊙ <= 3.0 and metallicities 1 × 10-3 <= Z <= 2 × 10-2, is discussed. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parameterization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the TDU efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find good agreement with observations.

  19. 12C/13C isotopic ratios in red-giant stars of the open cluster NGC 6791

    NASA Astrophysics Data System (ADS)

    Szigeti, László; Mészáros, Szabolcs; Smith, Verne V.; Cunha, Katia; Lagarde, Nadège; Charbonnel, Corinne; García-Hernández, D. A.; Shetrone, Matthew; Pinsonneault, Marc; Allende Prieto, Carlos; Fernández-Trincado, J. G.; Kovács, József; Villanova, Sandro

    2018-03-01

    Carbon isotope ratios, along with carbon and nitrogen abundances, are derived in a sample of 11 red-giant members of one of the most metal-rich clusters in the Milky Way, NGC 6791. The selected red-giants have a mean metallicity and standard deviation of [Fe/H] = +0.39 ± 0.06 (Cunha et al. 2015). We used high-resolution H-band spectra obtained by the SDSS-IV Apache Point Observatory Galactic Evolution Experiment. The advantage of using high-resolution spectra in the H band is that lines of CO are well represented and their line profiles are sensitive to the variation of 12C/13C. Values of the 12C/13C ratio were obtained from a spectrum synthesis analysis. The derived 12C/13C ratios varied between 6.3 and 10.6 in NGC 6791, in agreement with the final isotopic ratios from thermohaline-induced mixing models. The ratios derived here are combined with those obtained for more metal poor red-giants from the literature to examine the correlation between 12C/13C, mass, metallicity, and evolutionary status.

  20. New developments in understanding the r-process from observations of metal-poor stars

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2015-04-01

    In their atmospheres, old metal-poor Galactic stars retain detailed information about the chemical composition of the interstellar medium at the time of their birth. Extracting such stellar abundances enables us to reconstruct the beginning of the chemical evolution shortly after the Big Bang. About 5% of metal-poor stars with [Fe/H] < - 2 . 5 display in their spectrum a strong enhancement of neutron-capture elements associated with the rapid (r-) nucleosynthesis process that is responsible for the production of the heaviest elements in the Universe. This fortuity provides a unique opportunity of bringing together astrophysics and nuclear physics because these objects act as ``cosmic lab'' for both fields of study. The so-called r-process stars are thought to have formed from material enriched in heavy neutron-capture elements that were created during an r-process event in a previous generation supernova. It appears that the few stars known with this rare chemical signature all follow the scaled solar r-process pattern (for the heaviest elements with 56 <= Z <= 90 that is). This suggests that the r-process is universal - a surprising empirical finding and a solid result that can not be obtained from any laboratory on earth. While much research has been devoted to establishing this pattern, little attention has been given to the overall level of enhancement. New results will be presented on the full extent of r-process element enrichment as observed in metal-poor stars. The challenge lies in determining how the r-process material in the earliest gas clouds was mixed and diluted. Assuming individual r-process events to have contributed the observed r-process elements. We provide empirical estimates on the amount of r-process material produced. This should become a crucial constraint for theoretical nuclear physics models of heavy element nucleosynthesis.

  1. a UV Spectral Library of Metal-Poor Massive Stars

    NASA Astrophysics Data System (ADS)

    Robert, Carmelle

    1994-01-01

    We propose to use the FOS to build a snapshot library of UV spectra of a sample of about 50 metal-poor massive stars located in the Magellanic Clouds. The majority of libraries already existing contains spectra of hot stars with chemical abundances close to solar. The high spectral resolution achieves with the FOS will be a major factor for the uniqueness of this new library. UV spectral libraries represent fundamental tools for the study of the massive star populations of young star-forming regions. Massive stars, which are impossible to identify directly in the optical-IR part of a composite spectrum, display on the other hand key signatures in the UV region. These signatures are mainly broad, metallicity dependent spectral features formed in the hot star winds. They require a high spectral resolution (of the order of 200-300 km/s) for an adequate study. A spectral library of metal-poor massive stars represents also a unique source of data for a stellar atmosphere analysis. Within less then 10 min we will obtain a high signal-to-noise ratio of at least 30. Finally, since short exposure times are possible, this proposal makes extremely good use of the capabilities of HST. We designed an observing strategy which yields a maximum scientific return at a minimum cost of spacecraft time.

  2. High-resolution Spectroscopic Abundances of Red Giant Branch Stars in NGC 6584 and NGC 7099

    NASA Astrophysics Data System (ADS)

    O’Malley, Erin M.; Chaboyer, Brian

    2018-04-01

    We obtain high-resolution spectra of red giant branch stars in NGC 6584 and NGC 7099 to perform a detailed abundance analysis. We confirm cluster membership for these stars based on consistent radial velocities measured in this study and small pixel offsets between the observations of Sarajedini et al. and Piotto et al. We find mean metallicities of [Fe/H] = ‑1.53 ± 0.08 dex and [Fe/H] = ‑2.29 ± 0.07 dex for NGC 6584 and NGC 7099, respectively. We also find these clusters to be enhanced in their [α/Fe] ratios, consistent with what is expected for metal-poor globular clusters. Additionally, we find evidence of a statistically significant Na–O anti-correlation in both clusters. Finally, with the use of HST photometry, we compare the location of the enhanced and pristine populations in chromosome maps of the clusters to confirm previous photometric evidence of multiple stellar populations. Although we cannot confirm the nature of the polluter stars responsible for the abundance differences, our results can be used to constrain pollution models.

  3. On the observational characteristics of lithium-enhanced giant stars in comparison with normal red giants†

    NASA Astrophysics Data System (ADS)

    Takeda, Yoichi; Tajitsu, Akito

    2017-08-01

    While lithium is generally deficient in the atmosphere of evolved giant stars because of the efficient mixing-induced dilution, a small fraction of red giants show unusually strong Li lines indicative of conspicuous abundance excess. With the aim of shedding light on the origin of these peculiar stars, we carried out a spectroscopic study on the observational characteristics of 20 selected bright giants already known to be Li-rich from past studies, in comparison with the reference sample of a large number of normal late G-early K giants. Special attention was paid to clarifying any difference between the two samples from a comprehensive point of view (i.e., with respect to stellar parameters, rotation, activity, kinematic properties, 6Li/7Li ratio, and the abundances of Li, Be, C, O, Na, S, and Zn). Our sample stars are roughly divided into a “bump/clump group” and a “luminous group” according to their positions on the HR diagram. Regarding the former group [1.5 ≲ log (L/L⊙) ≲ 2 and M ∼ 1.5-3 M⊙], Li-enriched giants and normal giants appear practically similar in almost all respects except for Li, suggesting that surface Li enhancement in this group may be a transient episode which normal giants undergo at certain evolutionary stages in their lifetime. Meanwhile, those Li-rich giants belonging to the latter group [log (L/L⊙) ∼ 3 and M ∼ 3-5 M⊙] appear more anomalous in the sense that they tend to show higher rotation as well as higher activity, and that their elemental abundances (especially those derived from high-excitation lines) are apt to show apparent overabundances, though this might be due to a spurious effect reflecting the difficulty of abundance derivation in stars of higher rotation and activity. Our analysis confirmed considerable Be deficiency as well as absence of 6Li as the general characteristics of Li-rich giants under study, which implies that engulfment of planets is rather unlikely for the origin of Li-enrichment.

  4. PRIMORDIAL r-PROCESS DISPERSION IN METAL-POOR GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U., E-mail: iur@obs.carnegiescience.edu

    Heavy elements, those produced by neutron-capture reactions, have traditionally shown no star-to-star dispersion in all but a handful of metal-poor globular clusters (GCs). Recent detections of low [Pb/Eu] ratios or upper limits in several metal-poor GCs indicate that the heavy elements in these GCs were produced exclusively by an r-process. Re-examining GC heavy element abundances from the literature, we find unmistakable correlations between the [La/Fe] and [Eu/Fe] ratios in four metal-poor GCs (M5, M15, M92, and NGC 3201), only two of which were known previously. This indicates that the total r-process abundances vary from star to star (by factors ofmore » 2-6) relative to Fe within each GC. We also identify potential dispersion in two other GCs (M3 and M13). Several GCs (M12, M80, and NGC 6752) show no evidence of r-process dispersion. The r-process dispersion is not correlated with the well-known light element dispersion, indicating that it was present in the gas throughout the duration of star formation. The observations available at present suggest that star-to-star r-process dispersion within metal-poor GCs may be a common but not ubiquitous phenomenon that is neither predicted by nor accounted for in current models of GC formation and evolution.« less

  5. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating

    PubMed Central

    Sun, B. A.; Chen, S. H.; Lu, Y. M.; Zhu, Z. G.; Zhao, Y. L.; Yang, Y.; Chan, K. C.; Liu, C. T.

    2016-01-01

    Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability. PMID:27271435

  6. Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities

    NASA Astrophysics Data System (ADS)

    Ida, Shigeru; Lin, D. N. C.

    2004-11-01

    The apparent dependence of detection frequency of extrasolar planets on the metallicity of their host stars is investigated with Monte Carlo simulations using a deterministic core-accretion planet formation model. According to this model, gas giants formed and acquired their mass Mp through planetesimal coagulation followed by the emergence of cores onto which gas is accreted. These protoplanets migrate and attain their asymptotic semimajor axis a through tidal interaction with their nascent disk. Based on the observed properties of protostellar disks, we generate an Mp-a distribution. Our results reproduce the observed lack of planets with intermediate mass Mp=10-100 M⊕ and a<~3 AU and with large mass Mp>~103 M⊕ and a<~0.2 AU. Based on the simulated Mp-a distributions, we also evaluate the metallicity dependence of the fraction of stars harboring planets that are detectable with current radial velocity surveys. If protostellar disks attain the same fraction of heavy elements as contained in their host stars, the detection probability around metal-rich stars would be greatly enhanced because protoplanetary cores formed in them can grow to several Earth masses prior to their depletion. These large masses are required for the cores to initiate rapid gas accretion and to transform into giant planets. The theoretically extrapolated metallicity dependence is consistent with the observations. This correlation does not arise naturally in the gravitational-instability scenario. We also suggest other metallicity dependences of the planet distributions that can be tested by ongoing observations.

  7. Chemical Composition of Two Bright, Extremely Metal-poor Stars from the SDSS MARVELS Pre-survey

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Avrajit; Sivarani, Thirupathi; Susmitha, Antony; Beers, Timothy C.; Giridhar, Sunetra; Surya, Arun; Masseron, Thomas

    2018-06-01

    SDSS J082625.70+612515.10 (V = 11.4 [Fe/H] = ‑3.1) and SDSS J134144.60+474128.90 (V = 12.4 [Fe/H] = ‑3.2) were observed with the SDSS 2.5m telescope as part of the SDSS MARVELS spectroscopic pre-survey and identified as extremely metal-poor (EMP; [Fe/H] < ‑3.0) stars during the high-resolution follow-up using the Hanle Echelle Spectrograph (HESP) on the 2.0-m Himalayan Chandra Telescope. In this paper, the first science results using HESP, we present a detailed analysis of their chemical abundances. Both stars exhibit under-abundances in their neutron capture elements, while one of them (SDSS J134144.60+474128.90) is clearly enhanced in carbon. Lithium was also detected in this star at a level of about A(Li) = 1.95. The spectra were obtained over a span of 6–24 months, and indicate that both stars could be members of binary systems. We compare the elemental abundances derived for these two stars along with other carbon-enhanced metal-poor (CEMP) and EMP stars, in order to understand the nature of their parent supernovae. We find that CEMP-no stars and EMP-dwarfs show a very similar trend in their lithium abundances at various metallicities. We also find indications of CEMP-no stars having larger abundances of Cr and Co at given metallicities compared to EMP stars.

  8. Adding the s-Process Element Cerium to the APOGEE Survey: Identification and Characterization of Ce II Lines in the H-band Spectral Window

    NASA Astrophysics Data System (ADS)

    Cunha, Katia; Smith, Verne V.; Hasselquist, Sten; Souto, Diogo; Shetrone, Matthew D.; Allende Prieto, Carlos; Bizyaev, Dmitry; Frinchaboy, Peter; García-Hernández, D. Anibal; Holtzman, Jon; Johnson, Jennifer A.; Jőnsson, Henrik; Majewski, Steven R.; Mészáros, Szabolcs; Nidever, David; Pinsonneault, Mark; Schiavon, Ricardo P.; Sobeck, Jennifer; Skrutskie, Michael F.; Zamora, Olga; Zasowski, Gail; Fernández-Trincado, J. G.

    2017-08-01

    Nine Ce II lines have been identified and characterized within the spectral window observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey (between λ1.51 and 1.69 μm). At solar metallicities, cerium is an element that is produced predominantly as a result of the slow capture of neutrons (the s-process) during asymptotic giant branch stellar evolution. The Ce II lines were identified using a combination of a high-resolution (R=λ /δ λ ={{100,000}}) Fourier Transform Spectrometer (FTS) spectrum of α Boo and an APOGEE spectrum (R = 22,400) of a metal-poor, but s-process enriched, red giant (2M16011638-1201525). Laboratory oscillator strengths are not available for these lines. Astrophysical gf-values were derived using α Boo as a standard star, with the absolute cerium abundance in α Boo set by using optical Ce II lines that have precise published laboratory gf-values. The near-infrared Ce II lines identified here are also analyzed, as consistency checks, in a small number of bright red giants using archival FTS spectra, as well as a small sample of APOGEE red giants, including two members of the open cluster NGC 6819, two field stars, and seven metal-poor N- and Al-rich stars. The conclusion is that this set of Ce II lines can be detected and analyzed in a large fraction of the APOGEE red giant sample and will be useful for probing chemical evolution of the s-process products in various populations of the Milky Way.

  9. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier

    NASA Astrophysics Data System (ADS)

    Xi, Zhongnan; Ruan, Jieji; Li, Chen; Zheng, Chunyan; Wen, Zheng; Dai, Jiyan; Li, Aidong; Wu, Di

    2017-05-01

    Recently, ferroelectric tunnel junctions have attracted much attention due to their potential applications in non-destructive readout non-volatile memories. Using a semiconductor electrode has been proven effective to enhance the tunnelling electroresistance in ferroelectric tunnel junctions. Here we report a systematic investigation on electroresistance of Pt/BaTiO3/Nb:SrTiO3 metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier on Nb:SrTiO3 surface via varying BaTiO3 thickness and Nb doping concentration. The optimum ON/OFF ratio as great as 6.0 × 106, comparable to that of commercial Flash memories, is achieved in a device with 0.1 wt% Nb concentration and a 4-unit-cell-thick BaTiO3 barrier. With this thinnest BaTiO3 barrier, which shows a negligible resistance to the tunnelling current but is still ferroelectric, the device is reduced to a polarization-modulated metal/semiconductor Schottky junction that exhibits a more efficient control on the tunnelling resistance to produce the giant electroresistance observed. These results may facilitate the design of high performance non-volatile resistive memories.

  10. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier

    PubMed Central

    Xi, Zhongnan; Ruan, Jieji; Li, Chen; Zheng, Chunyan; Wen, Zheng; Dai, Jiyan; Li, Aidong; Wu, Di

    2017-01-01

    Recently, ferroelectric tunnel junctions have attracted much attention due to their potential applications in non-destructive readout non-volatile memories. Using a semiconductor electrode has been proven effective to enhance the tunnelling electroresistance in ferroelectric tunnel junctions. Here we report a systematic investigation on electroresistance of Pt/BaTiO3/Nb:SrTiO3 metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier on Nb:SrTiO3 surface via varying BaTiO3 thickness and Nb doping concentration. The optimum ON/OFF ratio as great as 6.0 × 106, comparable to that of commercial Flash memories, is achieved in a device with 0.1 wt% Nb concentration and a 4-unit-cell-thick BaTiO3 barrier. With this thinnest BaTiO3 barrier, which shows a negligible resistance to the tunnelling current but is still ferroelectric, the device is reduced to a polarization-modulated metal/semiconductor Schottky junction that exhibits a more efficient control on the tunnelling resistance to produce the giant electroresistance observed. These results may facilitate the design of high performance non-volatile resistive memories. PMID:28513590

  11. Identification Of (Bright) Carbon-Enhanced Metal-Poor Stars With J-Plus Photometry

    NASA Astrophysics Data System (ADS)

    Placco, Vinicius

    2017-10-01

    The chemical composition of our bodies, the Earth, the Sun, and the Universe is complex, and the end result of the formation and evolution of numerous stellar generations that contributed all of the elements heavier than helium. One way to understand the possible pathways that led to such complexity is to determine the chemical abundance patterns of ancient low-metallicity stars in the Halo of our Galaxy. However, it is impossible to observe each of the 100 billion stars in the Milky Way in sufficient detail to assess its chemical composition. Hence, astronomers have developed efficient ways to pre-select the most interesting stars for further high-resolution follow-up, based on the understanding that the colors of stars in specific regions of the optical spectrum are affected in predictable ways by changes in their chemical composition. I will discuss the importance of the J-PLUS photometry in selecting low-metallicity and carbon-enhanced stars, using its 12 magnitudes, which will fully exploit this approach, in a manner superior to all previous such efforts.

  12. Kinematics of Extremely Metal-poor Galaxies: Evidence for Stellar Feedback

    NASA Astrophysics Data System (ADS)

    Olmo-García, A.; Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E.; Elmegreen, B. G.; Elmegreen, D. M.; Pérez-Montero, E.; Méndez-Abreu, J.

    2017-01-01

    The extremely metal-poor (XMP) galaxies analyzed in a previous paper have large star-forming regions with a metallicity lower than the rest of the galaxy. Such a chemical inhomogeneity reveals the external origin of the metal-poor gas fueling star formation, possibly indicating accretion from the cosmic web. This paper studies the kinematic properties of the ionized gas in these galaxies. Most XMPs have a rotation velocity around a few tens of km s-1. The star-forming regions appear to move coherently. The velocity is constant within each region, and the velocity dispersion sometimes increases within the star-forming clump toward the galaxy midpoint, suggesting inspiral motion toward the galaxy center. Other regions present a local maximum in velocity dispersion at their center, suggesting a moderate global expansion. The Hα line wings show a number of faint emission features with amplitudes around a few per cent of the main Hα component, and wavelength shifts between 100 and 400 km s-1. The components are often paired, so that red and blue emission features with similar amplitudes and shifts appear simultaneously. Assuming the faint emission to be produced by expanding shell-like structures, the inferred mass loading factor (mass loss rate divided by star formation rate) exceeds 10. Since the expansion velocity far exceeds the rotational and turbulent velocities, the gas may eventually escape from the galaxy disk. The observed motions involve energies consistent with the kinetic energy released by individual core-collapse supernovae. Alternative explanations for the faint emission have been considered and discarded.

  13. Highway increases concentrations of toxic metals in giant panda habitat.

    PubMed

    Zheng, Ying-Juan; Chen, Yi-Ping; Maltby, Lorraine; Jin, Xue-Lin

    2016-11-01

    The Qinling panda subspecies (Ailuropoda melanoleuca qinlingensis) is highly endangered with fewer than 350 individuals inhabiting the Qinling Mountains. Previous studies have indicated that giant pandas are exposed to heavy metals, and a possible source is vehicle emission. The concentrations of Cu, Zn, Mn, Pb, Cr, Ni, Cd, Hg, and As in soil samples collected from sites along a major highway bisecting the panda's habitat were analyzed to investigate whether the highway was an important source of metal contamination. There were 11 sites along a 30-km stretch of the 108th National Highway, and at each site, soil samples were taken at four distances from the highway (0, 50, 100, and 300 m) and at three soil depths (0, 5, 10 cm). Concentrations of all metals except As exceeded background levels, and concentrations of Cu, Zn, Mn, Pb, and Cd decreased significantly with increasing distance from the highway. Geo-accumulation index indicated that topsoil next to the highway was moderately contaminated with Pb and Zn, whereas topsoil up to 300 m away from the highway was extremely contaminated with Cd. The potential ecological risk index demonstrated that this area was in a high degree of ecological hazards, which were also due to serious Cd contamination. And, the hazard quotient indicated that Cd, Pb, and Mn especially Cd could pose the health risk to giant pandas. Multivariate analyses demonstrated that the highway was the main source of Cd, Pb, and Zn and also put some influence on Mn. The study has confirmed that traffic does contaminate roadside soils and poses a potential threat to the health of pandas. This should not be ignored when the conservation and management of pandas is considered.

  14. Multiple Metal Binding Domains Enhance the Zn(II) Selectivity of the Divalent Metal Ion Transporter AztA†

    PubMed Central

    Liu, Tong; Reyes-Caballero, Hermes; Li, Chenxi; Scott, Robert A.; Giedroc, David P.

    2013-01-01

    Transition metal-transporting P1B-type CPx ATPases play crucial roles in mediating metal homeostasis and resistance in all cells. The degree to which N-terminal metal binding domains (MBDs) confer metal specificity to the transporter is unclear. We show that the two MBDs of the Zn/Cd/Pb effluxing pump Anabaena AztA are functionally nonequivalent, but only with respect to zinc resistance. Inactivation of the a-MBD largely abrogates resistance to high intracellular Zn(II) levels, whereas inactivation of the b-MBD is not as deleterious. In contrast, inactivation of either the a- or b-MBD has little measurable impact on Cd(II) and Pb(II) resistance. The membrane proximal b-MBD binds Zn(II) with a higher affinity than the distal N-terminal a-MBD. Facile Zn(II)-specific intermolecular transfer from the a-MBD to the higher-affinity b-MBD is readily observed by 1H–15N HSQC spectroscopy. Unlike Zn(II), Cd(II) and Pb(II) form saturated 1:1 S4 or S3(O/N) complexes with AztAaHbH, where a single metal ion bridges the two MBDs. We propose that the tandem MBDs enhance Zn(II)-specific transport, while stabilizing a non-native inter-MBD Cd/Pb cross-linked structure that is a poor substrate and/or regulator for the transporter. PMID:17824670

  15. KECK ECHELLETTE SPECTROGRAPH AND IMAGER OBSERVATIONS OF METAL-POOR DAMPED Ly{alpha} SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penprase, Bryan E.; Toro-Martinez, Irene; Beeler, Daniel J.

    2010-09-20

    We present the first results from a survey of SDSS quasars selected for strong H I damped Ly{alpha} (DLA) absorption with corresponding low equivalent width absorption from strong low-ion transitions (e.g., C II {lambda}1334 and Si II {lambda}1260). These metal-poor DLA candidates were selected from the SDSS fifth release quasar spectroscopic database, and comprise a large new sample for probing low-metallicity galaxies. Medium-resolution echellette spectra from the Keck Echellette Spectrograph and Imager spectrograph for an initial sample of 35 systems were obtained to explore the metal-poor tail of the DLA distribution and to investigate the nucleosynthetic patterns at these metallicities.more » We have estimated saturation corrections for the moderately underresolved spectra, and systems with very narrow Doppler parameters (b {<=} 5 km s{sup -1}) will likely have underestimated abundances. For those systems with Doppler parameters b > 5 km s{sup -1}, we have measured low-metallicity DLA gas with [X/H] <-2.4 for at least one of C, O, Si, or Fe. Assuming non-saturated components, we estimate that several DLA systems have [X/H] <-2.8, including five DLA systems with both low equivalent widths and low metallicity in transitions of both C II and O I. All of the measured DLA metallicities, however, exceed or are consistent with a metallicity of at least 1/1000 of solar, regardless of the effects of saturation in our spectra. Our results indicate that the metal-poor tail of galaxies at z {approx} 3 drops exponentially at [X/H] {approx}<-3. If the distribution of metallicity is Gaussian, the probability of identifying interstellar medium gas with lower abundance is extremely small, and our results suggest that DLA systems with [X/H] < -4.0 are extremely rare, and could comprise only 8 x 10{sup -7} of DLA systems. The relative abundances of species within these low-metallicity DLA systems are compared with stellar nucleosynthesis models, and are consistent with stars

  16. High-resolution spectroscopy of extremely metal-poor stars from SDSS/Segue. II. Binary fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.

    2015-02-01

    The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] <−3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-massmore » stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.« less

  17. Giant plasmonic energy and momentum transfer on the nanoscale

    NASA Astrophysics Data System (ADS)

    Durach, Maxim

    We have developed a general theory of the plasmonic enhancement of many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. It is shown that this interaction has a resonant nature. We have also demonstrated that renormalized interaction is a long-ranged interaction whose intensity is considerably increased compared to bare Coulomb interaction over the entire region near the plasmonic nanostructure. We illustrate this theory by re-deriving the mirror charge potential near a metal sphere as well as the quasistatic potential behind the so-called perfect lens at the surface plasmon (SP) frequency. The dressed interaction for an important example of a metal--dielectric nanoshell is also explicitly calculated and analyzed. The renormalization and plasmonic enhancement of the Coulomb interaction is a universal effect, which affects a wide range of many-body phenomena in the vicinity of metal nanostructures: chemical reactions, scattering between charge carriers, exciton formation, Auger recombination, carrier multiplication, etc. We have described the nanoplasmonic-enhanced Forster resonant energy transfer (FRET) between quantum dots near a metal nanoshell. It is shown that this process is very efficient near high-aspect-ratio nanoshells. We have also obtained a general expression for the force exerted by an electromagnetic field on an extended polarizable object. This expression is applicable to a wide range of situations important for nanotechnology. Most importantly, this result is of fundamental importance for processes involving interaction of nanoplasmonic fields with metal electrons. Using the obtained expression for the force, we have described a giant surface-plasmon-induced drag-effect rectification (SPIDER), which exists under conditions of the extreme nanoplasmonic confinement. Under realistic conditions in nanowires, this giant SPIDER generates rectified THz potential differences up to 10V and extremely strong

  18. Do meteoritic silicon carbide grains originate from asymptotic giant branch stars of super-solar metallicity?

    NASA Astrophysics Data System (ADS)

    Lugaro, Maria; Karakas, Amanda I.; Pető, Mária; Plachy, Emese

    2018-01-01

    We compare literature data for the isotopic ratios of Zr, Sr, and Ba from analysis of single meteoritic stardust silicon carbide (SiC) grains to new predictions for the slow neutron-capture process (the s process) in metal-rich asymptotic giant branch (AGB) stars. The models have initial metallicities Z = 0.014 (solar) and Z = 0.03 (twice-solar) and initial masses 2-4.5 M⊙ , selected such as the condition C/O > 1 for the formation of SiC is achieved. Because of the higher Fe abundance, the twice-solar metallicity models result in a lower number of total free neutrons released by the 13C(α ,n)16O neutron source. Furthermore, the highest-mass (4-4.5 M⊙) AGB stars of twice-solar metallicity present a milder activation of the 22Ne(α ,n)25Mg neutron source than their solar metallicity counterparts, due to cooler temperatures resulting from the effect of higher opacities. They also have a lower amount of the 13C neutron source than the lower-mass models, following their smaller He-rich region. The combination of these different effects allows our AGB models of twice-solar metallicity to provide a match to the SiC data without the need to consider large variations in the features of the 13C neutron source nor neutron-capture processes different from the s process. This raises the question if the AGB parent stars of meteoritic SiC grains were in fact on average of twice-solar metallicity. The heavier-than-solar Si and Ti isotopic ratios in the same grains are in qualitative agreement with an origin in stars of super-solar metallicity because of the chemical evolution of the Galaxy. Further, the SiC dust mass ejected from C-rich AGB stars is predicted to significantly increase with increasing the metallicity.

  19. Towards ab initio extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Ritter, Jeremy S.; Safranek-Shrader, Chalence; Milosavljević, Miloš; Bromm, Volker

    2016-12-01

    Extremely metal-poor stars have been the focus of much recent attention owing to the expectation that their chemical abundances can shed light on the metal and dust yields of the earliest supernovae. We present our most realistic simulation to date of the astrophysical pathway to the first metal-enriched stars. We simulate the radiative and supernova hydrodynamic feedback of a 60 M⊙ Population III star starting from cosmological initial conditions realizing Gaussian density fluctuations. We follow the gravitational hydrodynamics of the supernova remnant at high spatial resolution through its freely expanding, adiabatic, and radiative phases, until gas, now metal-enriched, has resumed runaway gravitational collapse. Our findings are surprising: while the Population III progenitor exploded with a low energy of 1051 erg and injected an ample metal mass of 6 M⊙, the first cloud to collapse after the supernova explosion is a dense surviving primordial cloud on which the supernova blast wave deposited metals only superficially, in a thin, unresolved layer. The first metal-enriched stars can form at a very low metallicity, of only 2-5 × 10-4 Z⊙, and can inherit the parent cloud's highly elliptical, radially extended orbit in the dark matter gravitational potential.

  20. Chemical abundances and kinematics of 257 G-, K-type field giants. Setting a base for further analysis of giant-planet properties orbiting evolved stars

    NASA Astrophysics Data System (ADS)

    Adibekyan, V. Zh.; Benamati, L.; Santos, N. C.; Alves, S.; Lovis, C.; Udry, S.; Israelian, G.; Sousa, S. G.; Tsantaki, M.; Mortier, A.; Sozzetti, A.; De Medeiros, J. R.

    2015-06-01

    We performed a uniform and detailed abundance analysis of 12 refractory elements (Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Co, Sc, Mn, and V) for a sample of 257 G- and K-type evolved stars from the CORALIE planet search programme. To date, only one of these stars is known to harbour a planetary companion. We aimed to characterize this large sample of evolved stars in terms of chemical abundances and kinematics, thus setting a solid base for further analysis of planetary properties around giant stars. This sample, being homogeneously analysed, can be used as a comparison sample for other planet-related studies, as well as for different type of studies related to stellar and Galaxy astrophysics. The abundances of the chemical elements were determined using an local thermodynamic equilibrium (LTE) abundance analysis relative to the Sun, with the spectral synthesis code MOOG and a grid of Kurucz ATLAS9 atmospheres. To separate the Galactic stellar populations, both a purely kinematical approach and a chemical method were applied. We confirm the overabundance of Na in giant stars compared to the field FGK dwarfs. This enhancement might have a stellar evolutionary character, but departures from LTE may also produce a similar enhancement. Our chemical separation of stellar populations also suggests a `gap' in metallicity between the thick-disc and high-α metal-rich stars, as previously observed in dwarfs sample from HARPS. The present sample, as most of the giant star samples, also suffers from the B - V colour cut-off, which excludes low-log g stars with high metallicities, and high-log g star with low [Fe/H]. For future studies of planet occurrence dependence on stellar metallicity around these evolved stars, we suggest to use a subsample of stars in a `cut-rectangle' in the log g-[Fe/H] diagram to overcome the aforementioned issue.

  1. KINEMATICS OF EXTREMELY METAL-POOR GALAXIES: EVIDENCE FOR STELLAR FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmo-García, A.; Sánchez Almeida, J.; Muñoz-Tuñón, C.

    2017-01-10

    The extremely metal-poor (XMP) galaxies analyzed in a previous paper have large star-forming regions with a metallicity lower than the rest of the galaxy. Such a chemical inhomogeneity reveals the external origin of the metal-poor gas fueling star formation, possibly indicating accretion from the cosmic web. This paper studies the kinematic properties of the ionized gas in these galaxies. Most XMPs have a rotation velocity around a few tens of km s{sup −1}. The star-forming regions appear to move coherently. The velocity is constant within each region, and the velocity dispersion sometimes increases within the star-forming clump toward the galaxymore » midpoint, suggesting inspiral motion toward the galaxy center. Other regions present a local maximum in velocity dispersion at their center, suggesting a moderate global expansion. The H α line wings show a number of faint emission features with amplitudes around a few per cent of the main H α component, and wavelength shifts between 100 and 400 km s{sup −1}. The components are often paired, so that red and blue emission features with similar amplitudes and shifts appear simultaneously. Assuming the faint emission to be produced by expanding shell-like structures, the inferred mass loading factor (mass loss rate divided by star formation rate) exceeds 10. Since the expansion velocity far exceeds the rotational and turbulent velocities, the gas may eventually escape from the galaxy disk. The observed motions involve energies consistent with the kinetic energy released by individual core-collapse supernovae. Alternative explanations for the faint emission have been considered and discarded.« less

  2. Effective temperatures of red giants in the APOKASC catalogue and the mixing length calibration in stellar models

    NASA Astrophysics Data System (ADS)

    Salaris, M.; Cassisi, S.; Schiavon, R. P.; Pietrinferni, A.

    2018-04-01

    Red giants in the updated APOGEE-Kepler catalogue, with estimates of mass, chemical composition, surface gravity and effective temperature, have recently challenged stellar models computed under the standard assumption of solar calibrated mixing length. In this work, we critically reanalyse this sample of red giants, adopting our own stellar model calculations. Contrary to previous results, we find that the disagreement between the Teff scale of red giants and models with solar calibrated mixing length disappears when considering our models and the APOGEE-Kepler stars with scaled solar metal distribution. However, a discrepancy shows up when α-enhanced stars are included in the sample. We have found that assuming mass, chemical composition and effective temperature scale of the APOGEE-Kepler catalogue, stellar models generally underpredict the change of temperature of red giants caused by α-element enhancements at fixed [Fe/H]. A second important conclusion is that the choice of the outer boundary conditions employed in model calculations is critical. Effective temperature differences (metallicity dependent) between models with solar calibrated mixing length and observations appear for some choices of the boundary conditions, but this is not a general result.

  3. Multiple populations in more metal-rich galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Cordero, Maria J.

    . Aluminum is the heaviest light element displaying large star-to-star variations in Galactic GCs. This element may provide additional insight into the origin of the multiple populations and the nature of the first-generation stars responsible for chemical inhomogeneities. We found that, unlike more metal-poor GCs, 47 Tuc did not exhibit a strong Na-Al correlation, which motivates a careful study of the similar metallicity but less massive GC M71. In chapter 3, we present chemical abundances of O, Na, Al, and Fe for 33 giants in M71 using spectra obtained with the WIYN-Hydra spectrograph. Our spectroscopic analysis finds that, similar to 47 Tuc and in contrast with more metal-poor GCs, M71 stars do not exhibit a strong Na-Al correlation and span a relatively narrow range in [Al/Fe]. Furthermore, these data suggest that only a small fraction of stars (29%) have an [Na/Fe] ratio similar to halo stars at this metallicity, which is a characteristic reproduced by GC formation and evolution models. In the fourth chapter we present chemical abundances for a sample of 61 red giants in the intermediate-metallicity GC M5. The data were obtained using the Hydra multi-fiber positioner and bench spectrograph on the WIYN telescope. We find that our abundance ratios for Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu agree with published values for this cluster. The scatter seen in Fe-peak, alpha, and neutron-capture elements is consistent with typical spectroscopic errors. However, we identified a star modestly enhanced in La by performing a careful comparison of stellar spectra with similar atmospheric parameters. La-enhanced stars are rare in GCs. For instance, we have found only one such star in each of M5 and 47 Tuc. M5 red giants exhibit a strong Na-Al correlation, which is absent in M71 and 47 Tuc. Furthermore, M5 is at the metallicity regime where GCs seem to transition from small to large [Al/Fe] scatter. Interestingly, this metallicity regime also separates metal-poor from metal

  4. Contribution of giant fields; Disappearing search for elephants in the U. S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riva, J.P. Jr.

    Oil producing regions have their elephants. These are the giant fields, which, in the U.S., are those that originally contained at least 100 million bbl of recoverable oil. Like top herbivores or carnivores, these giants are relatively scarce, but they also are indicative of the health of a region, an oil producing region. This paper reports that it is difficult to overemphasize the importance of giant oil fields. According to the 1991 edition of the International Petroleum Encyclopedia, of the more than 38,880 domestic oil fields that have been discovered, only 231 are giants (0.6%). Yet, these few fields havemore » produced 53% of domestic oil and still contain 63% of domestic reserves. Taken as a group, the 231 known domestic giant oil fields underlay about 2,310 sq miles (0.06% of U.S. land) and contain the energy equivalent of over 10 billion trees used for firewood or 60 trillion many-days of work.« less

  5. Aspects of Western Refining, Inc.'s Proposed Acquisition of Giant Industries, Inc.

    EIA Publications

    2006-01-01

    Presentation of company-level, non-proprietary data and relevant aggregate data for U.S. refinery capacity and gasoline marketing of Western Refining and Giant Industries to inform discussions of Western Refining Inc.'s proposed acquisition of Giant Industries Inc. for a total of $1.5 billion, which was announced August 28, 2006.

  6. Apparatus and method for imaging metallic objects using an array of giant magnetoresistive sensors

    DOEpatents

    Chaiken, Alison

    2000-01-01

    A portable, low-power, metallic object detector and method for providing an image of a detected metallic object. In one embodiment, the present portable low-power metallic object detector an array of giant magnetoresistive (GMR) sensors. The array of GMR sensors is adapted for detecting the presence of and compiling image data of a metallic object. In the embodiment, the array of GMR sensors is arranged in a checkerboard configuration such that axes of sensitivity of alternate GMR sensors are orthogonally oriented. An electronics portion is coupled to the array of GMR sensors. The electronics portion is adapted to receive and process the image data of the metallic object compiled by the array of GMR sensors. The embodiment also includes a display unit which is coupled to the electronics portion. The display unit is adapted to display a graphical representation of the metallic object detected by the array of GMR sensors. In so doing, a graphical representation of the detected metallic object is provided.

  7. The Correlation between Mixing Length and Metallicity on the Giant Branch: Implications for Ages in the Gaia Era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tayar, Jamie; Somers, Garrett; Pinsonneault, Marc H.

    2017-05-01

    In the updated APOGEE- Kepler catalog, we have asteroseismic and spectroscopic data for over 3000 first ascent red giants. Given the size and accuracy of this sample, these data offer an unprecedented test of the accuracy of stellar models on the post-main-sequence. When we compare these data to theoretical predictions, we find a metallicity dependent temperature offset with a slope of around 100 K per dex in metallicity. We find that this effect is present in all model grids tested, and that theoretical uncertainties in the models, correlated spectroscopic errors, and shifts in the asteroseismic mass scale are insufficient tomore » explain this effect. Stellar models can be brought into agreement with the data if a metallicity-dependent convective mixing length is used, with Δ α {sub ML,YREC} ∼ 0.2 per dex in metallicity, a trend inconsistent with the predictions of three-dimensional stellar convection simulations. If this effect is not taken into account, isochrone ages for red giants from the Gaia data will be off by as much as a factor of two even at modest deviations from solar metallicity ([Fe/H] = −0.5).« less

  8. Abundance analysis of SDSS J134338.67+484426.6; an extremely metal-poor star from the MARVELS pre-survey

    NASA Astrophysics Data System (ADS)

    Susmitha Rani, A.; Sivarani, T.; Beers, T. C.; Fleming, S.; Mahadevan, S.; Ge, J.

    2016-05-01

    We present an elemental-abundance analysis of an extremely metal-poor (EMP; [Fe/H] <-3.0) star, SDSS J134338.67+484426.6, identified during the course of the Multi-object Apache Point Observatory Radial Velocity Exoplanet Large-area Survey spectroscopic pre-survey of some 20 000 stars to identify suitable candidates for exoplanet searches. This star, with an apparent magnitude V = 12.14, is the lowest metallicity star found in the pre-survey, and is one of only ˜20 known EMP stars that are this bright or brighter. Our high-resolution spectroscopic analysis shows that this star is a subgiant with [Fe/H] = -3.42, having `normal' carbon and no enhancement of neutron-capture abundances. Strontium is underabundant, [Sr/Fe] = -0.47, but the derived lower limit on [Sr/Ba] indicates that Sr is likely enhanced relative to Ba. This star belongs to the sparsely populated class of α-poor EMP stars that exhibit low ratios of [Mg/Fe], [Si/Fe], and [Ca/Fe] compared to typical halo stars at similar metallicity. The observed variations in radial velocity from several epochs of (low- and high-resolution) spectroscopic follow-up indicate that SDSS J134338.67+484426.6 is a possible long-period binary. We also discuss the abundance trends in EMP stars for r-process elements, and compare with other magnesium-poor stars.

  9. Carbon monoxide in an extremely metal-poor galaxy.

    PubMed

    Shi, Yong; Wang, Junzhi; Zhang, Zhi-Yu; Gao, Yu; Hao, Cai-Na; Xia, Xiao-Yang; Gu, Qiusheng

    2016-12-09

    Extremely metal-poor galaxies with metallicity below 10% of the solar value in the local universe are the best analogues to investigating the interstellar medium at a quasi-primitive environment in the early universe. In spite of the ongoing formation of stars in these galaxies, the presence of molecular gas (which is known to provide the material reservoir for star formation in galaxies such as our Milky Way) remains unclear. Here we report the detection of carbon monoxide (CO), the primary tracer of molecular gas, in a galaxy with 7% solar metallicity, with additional detections in two galaxies at higher metallicities. Such detections offer direct evidence for the existence of molecular gas in these galaxies that contain few metals. Using archived infrared data, it is shown that the molecular gas mass per CO luminosity at extremely low metallicity is approximately one-thousand times the Milky Way value.

  10. Carbon monoxide in an extremely metal-poor galaxy

    PubMed Central

    Shi, Yong; Wang, Junzhi; Zhang, Zhi-Yu; Gao, Yu; Hao, Cai-Na; Xia, Xiao-Yang; Gu, Qiusheng

    2016-01-01

    Extremely metal-poor galaxies with metallicity below 10% of the solar value in the local universe are the best analogues to investigating the interstellar medium at a quasi-primitive environment in the early universe. In spite of the ongoing formation of stars in these galaxies, the presence of molecular gas (which is known to provide the material reservoir for star formation in galaxies such as our Milky Way) remains unclear. Here we report the detection of carbon monoxide (CO), the primary tracer of molecular gas, in a galaxy with 7% solar metallicity, with additional detections in two galaxies at higher metallicities. Such detections offer direct evidence for the existence of molecular gas in these galaxies that contain few metals. Using archived infrared data, it is shown that the molecular gas mass per CO luminosity at extremely low metallicity is approximately one-thousand times the Milky Way value. PMID:27934880

  11. Coordinated observations of interacting peculiar red giant binaries, 2

    NASA Technical Reports Server (NTRS)

    Ake, T.

    1995-01-01

    IUE and H alpha observations continued on a two-year program to monitor the UV variability of three interacting peculiar red giant (PRG) binaries, HD 59643 (C6,s), HD 35155 (S3/2), and HR 1105 (S3.5/2.5). All of these systems were suspected to involve accretion of material from the PRG to a white-dwarf secondary, based mainly on previous IUE investigations. They were primary candidates from earlier surveys of PRG's to test the hypothesis that the Tc-poor PRG's are formed as a result of mass transfer from a secondary component rather than from internal thermal pulsing while on the asymptotic red giant branch.

  12. Coordinated observations of interacting peculiar red giant binaries, 1

    NASA Technical Reports Server (NTRS)

    Ake, T.

    1995-01-01

    IUE Observations were begun for a two-year program to monitor the UV variability of three interacting peculiar red giant (PRG) binaries, HD 59643 (C6,s) HD 35155 (S3/2), and HR 1105 (S3.5/2.5). All of these systems were suspected to involve accretion of material from the PRG to a white-dwarf secondary, based mainly on previous IUE investigations. From our earlier surveys of PRG's, they were primary candidates to test the hypothesis that Tc-poor PRG's are formed as a result of mass transfer from a secondary component rather than from internal thermal pulsing while on the asymptotic red giant branch.

  13. Luminance enhancement in quantum dot light-emitting diodes fabricated with Field’s metal as the cathode

    NASA Astrophysics Data System (ADS)

    Basilio, Carlos; Oliva, Jorge; Lopez-Luke, Tzarara; Pu, Ying-Chih; Zhang, Jin Z.; Rodriguez, C. E.; de la Rosa, E.

    2017-03-01

    This work reports the fabrication and characterization of blue-green quantum dot light-emitting diodes (QD-LEDs) by using core/shell/shell Cd1-x Zn x Se/ZnSe/ZnS quantum dots. Poly [(9,9-bis(3‧-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) was introduced in order to enhance the electron injection and also acted as a protecting layer during the deposition of the cathode (a Field’s metal sheet) on the organic/inorganic active layers at low temperature (63 °C). This procedure permitted us to eliminate the process of thermal evaporation for the deposition of metallic cathodes, which is typically used in the fabrication of OLEDs. The performance of devices made with an aluminum cathode was compared with that of devices which employed Field’s metal (FM) as the cathode. We found that the luminance and efficiency of devices with FM was ~70% higher with respect to those that employed aluminum as the cathode and their consumption of current was similar up to 13 V. We also demonstrated that the simultaneous presence of 1,2-ethanedethiol (EDT) and PFN enhanced the luminance in our devices and improved the current injection in QD-LEDs. Hence, the architecture for QD-LEDs presented in this work could be useful for the fabrication of low-cost luminescent devices.

  14. Retired A Stars Revisited: An Updated Giant Planet Occurrence Rate as a Function of Stellar Metallicity and Mass

    NASA Astrophysics Data System (ADS)

    Ghezzi, Luan; Montet, Benjamin T.; Johnson, John Asher

    2018-06-01

    Exoplanet surveys of evolved stars have provided increasing evidence that the formation of giant planets depends not only on stellar metallicity ([Fe/H]) but also on the mass ({M}\\star ). However, measuring accurate masses for subgiants and giants is far more challenging than it is for their main-sequence counterparts, which has led to recent concerns regarding the veracity of the correlation between stellar mass and planet occurrence. In order to address these concerns, we use HIRES spectra to perform a spectroscopic analysis on a sample of 245 subgiants and derive new atmospheric and physical parameters. We also calculate the space velocities of this sample in a homogeneous manner for the first time. When reddening corrections are considered in the calculations of stellar masses and a ‑0.12 {M}ȯ offset is applied to the results, the masses of the subgiants are consistent with their space velocity distributions, contrary to claims in the literature. Similarly, our measurements of their rotational velocities provide additional confirmation that the masses of subgiants with {M}\\star ≥slant 1.6 M ⊙ (the “retired A stars”) have not been overestimated in previous analyses. Using these new results for our sample of evolved stars, together with an updated sample of FGKM dwarfs, we confirm that giant planet occurrence increases with both stellar mass and metallicity up to 2.0 M ⊙. We show that the probability of formation of a giant planet is approximately a one-to-one function of the total amount of metals in the protoplanetary disk {M}\\star {10}[{Fe/{{H}}]}. This correlation provides additional support for the core accretion mechanism of planet formation.

  15. Chemical Abundances of Metal-poor RR Lyrae Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Haschke, Raoul; Grebel, Eva K.; Frebel, Anna; Duffau, Sonia; Hansen, Camilla J.; Koch, Andreas

    2012-09-01

    We present for the first time a detailed spectroscopic study of chemical element abundances of metal-poor RR Lyrae stars in the Large and Small Magellanic Cloud (LMC and SMC). Using the MagE echelle spectrograph at the 6.5 m Magellan telescopes, we obtain medium resolution (R ~ 2000-6000) spectra of six RR Lyrae stars in the LMC and three RR Lyrae stars in the SMC. These stars were chosen because their previously determined photometric metallicities were among the lowest metallicities found for stars belonging to the old populations in the Magellanic Clouds. We find the spectroscopic metallicities of these stars to be as low as [Fe/H]spec = -2.7 dex, the lowest metallicity yet measured for any star in the Magellanic Clouds. We confirm that for metal-poor stars, the photometric metallicities from the Fourier decomposition of the light curves are systematically too high compared to their spectroscopic counterparts. However, for even more metal-poor stars below [Fe/H]phot < -2.8 dex this trend is reversed and the spectroscopic metallicities are systematically higher than the photometric estimates. We are able to determine abundance ratios for 10 chemical elements (Fe, Na, Mg, Al, Ca, Sc, Ti, Cr, Sr, and Ba), which extend the abundance measurements of chemical elements for RR Lyrae stars in the Clouds beyond [Fe/H] for the first time. For the overall [α/Fe] ratio, we obtain an overabundance of 0.36 dex, which is in very good agreement with results from metal-poor stars in the Milky Way halo as well as from the metal-poor tail in dwarf spheroidal galaxies. Comparing the abundances with those of the stars in the Milky Way halo we find that the abundance ratios of stars of both populations are consistent with another. Therefore, we conclude that from a chemical point of view early contributions from Magellanic-type galaxies to the formation of the Galactic halo as claimed in cosmological models are plausible. This paper includes data gathered with the 6.5 meter Magellan

  16. Spectroscopy of Six Red Giants in the Draco Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Smith, Graeme H.; Siegel, Michael H.; Shetrone, Matthew D.; Winnick, Rebeccah

    2006-10-01

    Keck Observatory LRIS-B (Low Resolution Imaging Spectrometer) spectra are reported for six red giant stars in the Draco dwarf spheroidal galaxy and several comparison giants in the globular cluster M13. Indexes that quantify the strengths of the Ca II H and K lines, the λ3883 and λ4215 CN bands, and the λ4300 G band have been measured. These data confirm evidence of metallicity inhomogeneity within Draco obtained by previous authors. The four brightest giants in the sample have absolute magnitudes in the range -2.6metallicities less than that of M13, and exhibit a dispersion in both calcium and CH indices. Our data indicate that a spread in [C/H] likely exists among the Draco tip giants and that some giants have higher [C/Fe] ratios than is typical of giants in the globular clusters M13 and M92. Several suggestions are made as to why some Draco stars may have higher [C/Fe] ratios than globular cluster red giants: deep mixing might be inhibited in these Draco stars, they may formerly have been mass-transfer binaries that acquired carbon from a more massive companion, or the Draco dwarf galaxy may have experienced relatively slow chemical evolution over a period of several billion years, allowing carbon-enhanced ejecta from intermediate-mass asymptotic giant branch stars to enrich the interstellar medium while star formation was still occurring. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  17. CHEMICAL TAGGING OF THREE DISTINCT POPULATIONS OF RED GIANTS IN THE GLOBULAR CLUSTER NGC 6752

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carretta, E.; Bragaglia, A.; Gratton, R. G.

    2012-05-01

    We present aluminum, magnesium, and silicon abundances in the metal-poor globular cluster NGC 6752 for a sample of more than 130 red giants with homogeneous oxygen and sodium abundances. We find that [Al/Fe] shows a spread of about 1.4 dex among giants in NGC 6752 and is anticorrelated with [Mg/Fe] and [O/Fe] and correlated with [Na/Fe] and [Si/Fe]. These relations are not continuous in nature, but the distribution of stars is clearly clustered around three distinct Al values, low, intermediate, and high. These three groups nicely correspond to the three distinct sequences previously detected using Stroemgren photometry along the redmore » giant branch. These two independent findings strongly indicate the existence of three distinct stellar populations in NGC 6752. Comparing the abundances of O and Mg, we find that the population with intermediate chemical abundances cannot originate from material with the same composition of the most O- and Mg-poor population, diluted by material with that of the most O- and Mg-rich one. This calls for different polluters.« less

  18. The Diverse Origins of Neutron-capture Elements in the Metal-poor Star HD 94028: Possible Detection of Products of I-Process Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Karakas, Amanda I.; Pignatari, Marco; Herwig, Falk

    2016-04-01

    We present a detailed analysis of the composition and nucleosynthetic origins of the heavy elements in the metal-poor ([Fe/H] = -1.62 ± 0.09) star HD 94028. Previous studies revealed that this star is mildly enhanced in elements produced by the slow neutron-capture process (s process; e.g., [Pb/Fe] = +0.79 ± 0.32) and rapid neutron-capture process (r process; e.g., [Eu/Fe] = +0.22 ± 0.12), including unusually large molybdenum ([Mo/Fe] = +0.97 ± 0.16) and ruthenium ([Ru/Fe] = +0.69 ± 0.17) enhancements. However, this star is not enhanced in carbon ([C/Fe] = -0.06 ± 0.19). We analyze an archival near-ultraviolet spectrum of HD 94028, collected using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, and other archival optical spectra collected from ground-based telescopes. We report abundances or upper limits derived from 64 species of 56 elements. We compare these observations with s-process yields from low-metallicity AGB evolution and nucleosynthesis models. No combination of s- and r-process patterns can adequately reproduce the observed abundances, including the super-solar [As/Ge] ratio (+0.99 ± 0.23) and the enhanced [Mo/Fe] and [Ru/Fe] ratios. We can fit these features when including an additional contribution from the intermediate neutron-capture process (I process), which perhaps operated through the ingestion of H in He-burning convective regions in massive stars, super-AGB stars, or low-mass AGB stars. Currently, only the I process appears capable of consistently producing the super-solar [As/Ge] ratios and ratios among neighboring heavy elements found in HD 94028. Other metal-poor stars also show enhanced [As/Ge] ratios, hinting that operation of the I process may have been common in the early Galaxy. These data are associated with Program 072.B-0585(A), PI. Silva. Some data presented in this paper were obtained from the Barbara A. Mikulski Archive for Space Telescopes (MAST). The Space Telescope Science Institute is

  19. FUSE Cycle 3 Program CO22: Chromospheric Activity in Population II Giants

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2004-01-01

    One of the mysteries of Population II giants is that they still show chromospheric emission despite their great age. The global dynamo which was active during their main-sequence lifetimes is expected to become extremely weak through magnetic rotational braking. The nature of the observed emission is not understood; although acoustic shock waves might provide the heating, acoustic waves are not predicted to drive the observed mass loss - which in turn requires the dissipation of magneto-hydrodynamic waves. This program was designed to search for the faint stellar H Ly(beta) emission wings and the fluorescent Fe II and H2 emission from one of the brightest, metal poor, Population II stars. These FUSE diagnostics, when combined with existing UV and optical spectra, help determine the major radiative cooling channels for the chromosphere. This observation was to complement that previously planned for the mildly metal deficient giant alpha Boo (K2 III). However, a Boo has yet to be observed with FUSE.

  20. Changes in the metallicity of gas giant planets due to pebble accretion

    NASA Astrophysics Data System (ADS)

    Humphries, R. J.; Nayakshin, S.

    2018-06-01

    We run numerical simulations to study the accretion of gas and dust grains on to gas giant planets embedded into massive protoplanetary discs. The outcome is found to depend on the disc cooling rate, planet mass, grain size, and irradiative feedback from the planet. If radiative cooling is efficient, planets accrete both gas and pebbles rapidly, open a gap, and usually become massive brown dwarfs. In the inefficient cooling case, gas is too hot to accrete on to the planet but pebble accretion continues and the planets migrate inward rapidly. Radiative feedback from the planet tends to suppress gas accretion. Our simulations predict that metal enrichment of planets by dust grain accretion inversely correlates with the final planet mass, in accordance with the observed trend in the inferred bulk composition of Solar system and exosolar giant planets. To account for observations, however, as many as ˜30-50 per cent of the dust mass should be in the form of large grains.

  1. The most metal-poor Galactic globular cluster: the first spectroscopic observations of ESO280-SC06

    NASA Astrophysics Data System (ADS)

    Simpson, Jeffrey D.

    2018-07-01

    We present the first spectroscopic observations of the very metal-poor Milky Way globular cluster ESO280-SC06. Using spectra acquired with the 2dF/AAOmega spectrograph on the Anglo-Australian Telescope, we have identified 13 members of the cluster, and estimate from their infrared calcium triplet lines that the cluster has a metallicity of [Fe/H]=-2.48^{+0.06 }_{ -0.11}. This would make it the most metal-poor globular cluster known in the Milky Way. This result was verified with comparisons to three other metal-poor globular clusters that had been observed and analysed in the same manner. We also present new photometry of the cluster from EFOSC2 and SkyMapper and confirm that the cluster is located 22.9 ± 2.1 kpc from the Sun and 15.2 ± 2.1 kpc from the Galactic Centre, and has a radial velocity of 92.5^{+2.4 }_{ -1.6} km s-1. These new data finds the cluster to have a radius about half that previously estimated, and we find that the cluster has a dynamical mass of the cluster of (12 ± 2) × 103 M⊙. Unfortunately, we lack reliable proper motions to fully characterize its orbit about the Galaxy. Intriguingly, the photometry suggests that the cluster lacks a well-populated horizontal branch, something that has not been observed in a cluster so ancient or metal poor.

  2. The most metal-poor Galactic globular cluster: the first spectroscopic observations of ESO280-SC06

    NASA Astrophysics Data System (ADS)

    Simpson, Jeffrey D.

    2018-04-01

    We present the first spectroscopic observations of the very metal-poor Milky Way globular cluster ESO280-SC06. Using spectra acquired with the 2dF/AAOmega spectrograph on the Anglo-Australian Telescope, we have identified 13 members of the cluster, and estimate from their infrared calcium triplet lines that the cluster has a metallicity of [Fe/H]={-2.48}^{+0.06}_{-0.11}. This would make it the most metal-poor globular cluster known in the Milky Way. This result was verified with comparisons to three other metal-poor globular clusters that had been observed and analyzed in the same manner. We also present new photometry of the cluster from EFOSC2 and SkyMapper and confirm that the cluster is located 22.9 ± 2.1 kpc from the Sun and 15.2 ± 2.1 kpc from the Galactic centre, and has a radial velocity of 92.5 + 2.4-1.6 km s-1. These new data finds the cluster to have a radius about half that previously estimated, and we find that the cluster has a dynamical mass of the cluster of (12 ± 2) × 103 M⊙. Unfortunately, we lack reliable proper motions to fully characterize its orbit about the Galaxy. Intriguingly, the photometry suggests that the cluster lacks a well-populated horizontal branch, something that has not been observed in a cluster so ancient or metal-poor.

  3. ON THE USE OF THE INDEX N2 TO DERIVE THE METALLICITY IN METAL-POOR GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales-Luis, A. B.; Almeida, J. Sánchez; Muñoz-Tuñón, C.

    2014-12-20

    The N2 index ([N II] λ6584/Hα) is used to determine emission line galaxy metallicities at all redshifts, including high redshift, where galaxies tend to be metal-poor. The initial aim of this work was to improve the calibrations used to infer oxygen abundance from N2 by employing updated low-metallicity galaxy databases. We compare N2 and the metallicity determined using the direct method for the set of extremely metal-poor galaxies compiled by Morales-Luis et al. To our surprise, the oxygen abundance presents a tendency to be constant with N2, with a very large scatter. Consequently, we find that the existing N2 calibrators overestimatemore » the oxygen abundance for most low-metallicity galaxies, and can therefore only be used to set upper limits to the true metallicity in low-metallicity galaxies. An explicit expression for this limit is given. In addition, we try to explain the observed scatter using photoionization models. It is mostly due to the different evolutionary state of the H II regions producing the emission lines, but it also arises due to differences in N/O among the galaxies.« less

  4. Impact of Lyman alpha pressure on metal-poor dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Kimm, Taysun; Haehnelt, Martin; Blaizot, Jérémy; Katz, Harley; Michel-Dansac, Léo; Garel, Thibault; Rosdahl, Joakim; Teyssier, Romain

    2018-04-01

    Understanding the origin of strong galactic outflows and the suppression of star formation in dwarf galaxies is a key problem in galaxy formation. Using a set of radiation-hydrodynamic simulations of an isolated dwarf galaxy embedded in a 1010 M⊙ halo, we show that the momentum transferred from resonantly scattered Lyman-α (Lyα) photons is an important source of stellar feedback which can shape the evolution of galaxies. We find that Lyα feedback suppresses star formation by a factor of two in metal-poor galaxies by regulating the dynamics of star-forming clouds before the onset of supernova explosions (SNe). This is possible because each Lyα photon resonantly scatters and imparts ˜10-300 times greater momentum than in the single scattering limit. Consequently, the number of star clusters predicted in the simulations is reduced by a factor of ˜5, compared to the model without the early feedback. More importantly, we find that galactic outflows become weaker in the presence of strong Lyα radiation feedback, as star formation and associated SNe become less bursty. We also examine a model in which radiation field is arbitrarily enhanced by a factor of up to 10, and reach the same conclusion. The typical mass-loading factors in our metal-poor dwarf system are estimated to be ˜5-10 near the mid-plane, while it is reduced to ˜1 at larger radii. Finally, we find that the escape of ionizing radiation and hence the reionization history of the Universe is unlikely to be strongly affected by Lyα feedback.

  5. Landau theory and giant room-temperature barocaloric effect in M F 3 metal trifluorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corrales-Salazar, A.; Brierley, R. T.; Littlewood, P. B.

    The structural phase transitions of MF 3 (M = Al, Cr, V, Fe, Ti, Sc) metal trifluorides are studied within a simple Landau theory consisting of tilts of rigid MF 6 octahedra associated with soft antiferrodistortive optic modes that are coupled to long-wavelength strain generating acoustic phonons. We calculate the temperature and pressure dependence of several quantities such as the spontaneous distortions, volume expansion, and shear strains as well as T - P phase diagrams. By contrasting our model to experiments we quantify the deviations from mean-field behavior and find that the tilt fluctuations of the MF 6 octahedra increasemore » with metal cation size. We apply our model to predict giant barocaloric effects in Sc-substituted TiF 3 of up to about 15 JK -1 kg -1 for modest hydrostatic compressions of 0.2GPa. The effect extends over a wide temperature range of over 140K (including room temperature) due to a large predicted rate, dT c/dP = 723K GPa -1, which exceeds those of typical barocaloric materials. Our results suggest that open lattice frameworks such as the trifluorides are an attractive platform to search for giant barocaloric effects.« less

  6. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions

    NASA Astrophysics Data System (ADS)

    Wen, Zheng; Li, Chen; Wu, Di; Li, Aidong; Ming, Naiben

    2013-07-01

    Ferroelectric tunnel junctions (FTJs), composed of two metal electrodes separated by an ultrathin ferroelectric barrier, have attracted much attention as promising candidates for non-volatile resistive memories. Theoretical and experimental works have revealed that the tunnelling resistance switching in FTJs originates mainly from a ferroelectric modulation on the barrier height. However, in these devices, modulation on the barrier width is very limited, although the tunnelling transmittance depends on it exponentially as well. Here we propose a novel tunnelling heterostructure by replacing one of the metal electrodes in a normal FTJ with a heavily doped semiconductor. In these metal/ferroelectric/semiconductor FTJs, not only the height but also the width of the barrier can be electrically modulated as a result of a ferroelectric field effect, leading to a greatly enhanced tunnelling electroresistance. This idea is implemented in Pt/BaTiO3/Nb:SrTiO3 heterostructures, in which an ON/OFF conductance ratio above 104, about one to two orders greater than those reported in normal FTJs, can be achieved at room temperature. The giant tunnelling electroresistance, reliable switching reproducibility and long data retention observed in these metal/ferroelectric/semiconductor FTJs suggest their great potential in non-destructive readout non-volatile memories.

  7. The SPLASH Survey: A Spectroscopic Analysis of the Metal-Poor, Low-Luminosity M31 dSph Satellite Andromeda X

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason S.; Zucker, Daniel B.; Guhathakurta, Puragra; Geha, Marla; Kniazev, Alexei Y.; Martínez-Delgado, David; Bell, Eric F.; Grebel, Eva K.; Gilbert, Karoline M.

    2009-11-01

    Andromeda X (And X) is a newly discovered low-luminosity M31 dwarf spheroidal galaxy (dSph) found by Zucker et al. in the Sloan Digital Sky Survey (SDSS; York et al.). In this paper, we present the first spectroscopic study of individual red giant branch stars in And X, as a part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) Survey. Using the Keck II telescope and multiobject DEIMOS spectrograph, we target two spectroscopic masks over the face of the galaxy and measure radial velocities for ~100 stars with a median accuracy of σ v ~ 3 km s-1. The velocity histogram for this field confirms three populations of stars along the sight line: foreground Milky Way dwarfs at small negative velocities, M31 halo red giants over a broad range of velocities, and a very cold velocity "spike" consisting of 22 stars belonging to And X with v rad = -163.8 ± 1.2 km s-1. By carefully considering both the random and systematic velocity errors of these stars (e.g., through duplicate star measurements), we derive an intrinsic velocity dispersion of just σ v = 3.9 ± 1.2 km s-1 for And X, which for its size, implies a minimum mass-to-light ratio of M/LV = 37+26 -19 assuming that the mass traces the light. Based on the clean sample of member stars, we measure the median metallicity of And X to be [Fe/H] = -1.93 ± 0.11, with a slight radial metallicity gradient. The dispersion in metallicity is large, σ([Fe/H]phot) = 0.48, possibly hinting that the galaxy retained much of its chemical enrichment products. And X has a total integrated luminosity (MV = -8.1 ± 0.5) that straddles the classical Local Group dSphs and the new SDSS ultra-low luminosity galaxies. The galaxy is among the most metal-poor dSphs known, especially relative to those with MV < -8, and has the second lowest intrinsic velocity dispersion of the entire sample. Our results suggest that And X is less massive by a factor of 4 when compared to Milky Way dSphs of comparable luminosity

  8. THE CHEMICAL ABUNDANCES OF STARS IN THE HALO (CASH) PROJECT. II. A SAMPLE OF 14 EXTREMELY METAL-POOR STARS ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollek, Julie K.; Sneden, Christopher; Shetrone, Matthew

    2011-11-20

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R {approx}15, 000) and corresponding high-resolution (R {approx}35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H] < -3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can bemore » classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]< - 3. We also find four neutron-capture-enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H] {approx}< -3.0) of the brightest stars included in CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire {approx}500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.« less

  9. Medium-resolution Spectroscopy of Red Giant Branch Stars in ω Centauri

    NASA Astrophysics Data System (ADS)

    An, Deokkeun; Lee, Young Sun; In Jung, Jae; Rey, Soo-Chang; Rhee, Jaehyon; Lee, Jae-Woo; Lee, Young-Wook; Joe, Young Hoon

    2017-10-01

    We present [Fe/H] and [Ca/Fe] of ˜600 red giant branch (RGB) members of the globular cluster Omega Centauri (ω {Cen}). We collect medium-resolution (R˜ 2000) spectra using the Blanco 4 m telescope at the Cerro Tololo Inter-American Observatory equipped with Hydra, the fiber-fed multi-object spectrograph. We demonstrate that blending of stellar light in optical fibers severely limits the accuracy of spectroscopic parameters in the crowded central region of the cluster. When photometric temperatures are taken in the spectroscopic analysis, our kinematically selected cluster members, excluding those that are strongly affected by flux from neighboring stars, include relatively fewer stars at intermediate metallicity ([{Fe}/{{H}}]˜ -1.5) than seen in the previous high-resolution survey for brighter giants in Johnson & Pilachowski. As opposed to the trend of increasing [Ca/Fe] with [Fe/H] found by those authors, our [Ca/Fe] estimates, based on Ca II H & K measurements, show essentially the same mean [Ca/Fe] for most of the metal-poor and metal-intermediate populations in this cluster, suggesting that mass- or metallicity-dependent SN II yields may not be necessary in their proposed chemical evolution scenario. Metal-rich cluster members in our sample show a large spread in [Ca/Fe], and do not exhibit a clear bimodal distribution in [Ca/Fe]. We also do not find convincing evidence for a radial metallicity gradient among RGB stars in ω {Cen}.

  10. The extremely metal-poor galaxy DDO 68: the luminous blue variable, Hα shells and the most luminous stars

    NASA Astrophysics Data System (ADS)

    Pustilnik, S. A.; Makarova, L. N.; Perepelitsyna, Y. A.; Moiseev, A. V.; Makarov, D. I.

    2017-03-01

    This paper presents new results from the ongoing study of the unusual Lynx-Cancer void galaxy DDO 68, which has star-forming regions of record low metallicity [12+log (O/H) ˜7.14]. The results include the following. (I) A new spectrum and photometry have been obtained with the 6-m SAO RAS telescope (BTA) for the luminous blue variable (LBV = DDO68-V1). Photometric data sets were complemented with others based on the Sloan Digital Sky Survey (SDSS) and the Hubble Space Telescope (HST) archive images. (II) We performed an analysis of the DDO 68 supergiant shell (SGS) and the prominent smaller Hα arcs/shells visible in the HST image coupled with kinematic maps in Hα obtained with the Fabry-Perot interferometer (FPI) at the BTA. (III) We compiled a list of about 50 of the most luminous stars (-9.1 mag < MV < -6.0 mag) identified from the HST images associated with the star-forming regions with known extremely low O/H. This is intended to pave the path for the current science to be investigated with the next generation of giant telescopes. We have confirmed earlier hints of significant variation of the LBV optical light, deriving its amplitude as ΔV ≳ 3.7 mag for the first time. New data suggest that in 2008-2010 the LBV reached MV = -10.5 mag and probably underwent a giant eruption. We argue that the structure of star-forming complexes along the SGS ('Northern Ring') perimeter provides evidence for sequential induced star-formation episodes caused by the shell gas instabilities and gravitational collapse. The variability of some luminous extremely metal-poor stars in DDO 68 can currently be monitored with medium-size telescopes at sites with superb seeing.

  11. Empirical Determination of Dark Matter Velocities Using Metal-Poor Stars.

    PubMed

    Herzog-Arbeitman, Jonah; Lisanti, Mariangela; Madau, Piero; Necib, Lina

    2018-01-26

    The Milky Way dark matter halo is formed from the accretion of smaller subhalos. These sub-units also harbor stars-typically old and metal-poor-that are deposited in the Galactic inner regions by disruption events. In this Letter, we show that the dark matter and metal-poor stars in the Solar neighborhood share similar kinematics due to their common origin. Using the high-resolution eris simulation, which traces the evolution of both the dark matter and baryons in a realistic Milky Way analog galaxy, we demonstrate that metal-poor stars are indeed effective tracers for the local, virialized dark matter velocity distribution. The local dark matter velocities can therefore be inferred from observations of the stellar halo made by the Sloan Digital Sky Survey within 4 kpc of the Sun. This empirical distribution differs from the standard halo model in important ways and suggests that the bounds on the spin-independent scattering cross section may be weakened for dark matter masses below ∼10  GeV. Data from Gaia will allow us to further refine the expected distribution for the smooth dark matter component, and to test for the presence of local substructure.

  12. Production of C-14 and neutrons in red giants

    NASA Technical Reports Server (NTRS)

    Cowan, J. J.; Rose, W. K.

    1977-01-01

    We have examined the effects of mixing various amounts of hydrogen-rich material into the intershell convective region of red giants undergoing helium shell flashes. We find that significant amounts of C-14 can be produced via the N-14(n, p)C-14 reaction. If substantial portions of this intershell region are mixed out into the envelopes of red giants, then C-14 may be detectable in evolved stars. We find a neutron flux many orders of magnitude above the flux required for the classical s-process, and thus an intermediate neutron process (i-process) may operate in evolved red giants. In all cases studied we find substantial enhancements of O-17. These mixing models offer a plausible explanation of the observations of enhanced O-17 in the carbon star IRC 10216. For certain physical conditions we find significant enhancements of N-15 in the intershell region.

  13. VizieR Online Data Catalog: The SEGUE K giant survey. III. Galactic halo (Janesh+, 2016)

    NASA Astrophysics Data System (ADS)

    Janesh, W.; Morrison, H. L.; Ma, Z.; Rockosi, C.; Starkenburg, E.; Xue, X. X.; Rix, H.-W.; Harding, P.; Beers, T. C.; Johnson, J.; Lee, Y. S.; Schneider, D. P.

    2016-03-01

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey's Sloan Extension for Galactic Understanding and Exploration (SEGUE) project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (~33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity. (2 data files).

  14. Inefficient star formation in extremely metal poor galaxies.

    PubMed

    Shi, Yong; Armus, Lee; Helou, George; Stierwalt, Sabrina; Gao, Yu; Wang, Junzhi; Zhang, Zhi-Yu; Gu, Qiusheng

    2014-10-16

    The first galaxies contain stars born out of gas with few or no 'metals' (that is, elements heavier than helium). The lack of metals is expected to inhibit efficient gas cooling and star formation, but this effect has yet to be observed in galaxies with an oxygen abundance (relative to hydrogen) below a tenth of that of the Sun. Extremely metal poor nearby galaxies may be our best local laboratories for studying in detail the conditions that prevailed in low metallicity galaxies at early epochs. Carbon monoxide emission is unreliable as a tracer of gas at low metallicities, and while dust has been used to trace gas in low-metallicity galaxies, low spatial resolution in the far-infrared has typically led to large uncertainties. Here we report spatially resolved infrared observations of two galaxies with oxygen abundances below ten per cent of the solar value, and show that stars formed very inefficiently in seven star-forming clumps in these galaxies. The efficiencies are less than a tenth of those found in normal, metal rich galaxies today, suggesting that star formation may have been very inefficient in the early Universe.

  15. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS

    NASA Astrophysics Data System (ADS)

    Fei, Ruixiang; Li, Wenbin; Li, Ju; Yang, Li

    2015-10-01

    We predict enormous, anisotropic piezoelectric effects in intrinsic monolayer group IV monochalcogenides (MX, M=Sn or Ge, X=Se or S), including SnSe, SnS, GeSe, and GeS. Using first-principle simulations based on the modern theory of polarization, we find that their piezoelectric coefficients are about one to two orders of magnitude larger than those of other 2D materials, such as MoS2 and GaSe, and bulk quartz and AlN which are widely used in industry. This enhancement is a result of the unique "puckered" C2v symmetry and electronic structure of monolayer group IV monochalcogenides. Given the achieved experimental advances in the fabrication of monolayers, their flexible character, and ability to withstand enormous strain, these 2D structures with giant piezoelectric effects may be promising for a broad range of applications such as nano-sized sensors, piezotronics, and energy harvesting in portable electronic devices.

  16. The Pristine survey - I. Mining the Galaxy for the most metal-poor stars

    NASA Astrophysics Data System (ADS)

    Starkenburg, Else; Martin, Nicolas; Youakim, Kris; Aguado, David S.; Allende Prieto, Carlos; Arentsen, Anke; Bernard, Edouard J.; Bonifacio, Piercarlo; Caffau, Elisabetta; Carlberg, Raymond G.; Côté, Patrick; Fouesneau, Morgan; François, Patrick; Franke, Oliver; González Hernández, Jonay I.; Gwyn, Stephen D. J.; Hill, Vanessa; Ibata, Rodrigo A.; Jablonka, Pascale; Longeard, Nicolas; McConnachie, Alan W.; Navarro, Julio F.; Sánchez-Janssen, Rubén; Tolstoy, Eline; Venn, Kim A.

    2017-11-01

    We present the Pristine survey, a new narrow-band photometric survey focused on the metallicity-sensitive Ca H&K lines and conducted in the Northern hemisphere with the wide-field imager MegaCam on the Canada-France-Hawaii Telescope. This paper reviews our overall survey strategy and discusses the data processing and metallicity calibration. Additionally we review the application of these data to the main aims of the survey, which are to gather a large sample of the most metal-poor stars in the Galaxy, to further characterize the faintest Milky Way satellites, and to map the (metal-poor) substructure in the Galactic halo. The current Pristine footprint comprises over 1000 deg2 in the Galactic halo ranging from b ˜ 30° to ˜78° and covers many known stellar substructures. We demonstrate that, for Sloan Digital Sky Survey (SDSS) stellar objects, we can calibrate the photometry at the 0.02-mag level. The comparison with existing spectroscopic metallicities from SDSS/Sloan Extension for Galactic Understanding and Exploration (SEGUE) and Large Sky Area Multi-Object Fiber Spectroscopic Telescope shows that, when combined with SDSS broad-band g and I photometry, we can use the CaHK photometry to infer photometric metallicities with an accuracy of ˜0.2 dex from [Fe/H] = -0.5 down to the extremely metal-poor regime ([Fe/H] < -3.0). After the removal of various contaminants, we can efficiently select metal-poor stars and build a very complete sample with high purity. The success rate of uncovering [Fe/H]SEGUE < -3.0 stars among [Fe/H]Pristine < -3.0 selected stars is 24 per cent, and 85 per cent of the remaining candidates are still very metal poor ([Fe/H]<-2.0). We further demonstrate that Pristine is well suited to identify the very rare and pristine Galactic stars with [Fe/H] < -4.0, which can teach us valuable lessons about the early Universe.

  17. Are some CEMP-s stars the daughters of spinstars?

    NASA Astrophysics Data System (ADS)

    Choplin, Arthur; Hirschi, Raphael; Meynet, Georges; Ekström, Sylvia

    2017-11-01

    Carbon-enhanced metal-poor (CEMP)-s stars are long-lived low-mass stars with a very low iron content as well as overabundances of carbon and s-elements. Their peculiar chemical pattern is often explained by pollution from an asymptotic giant branch (AGB) star companion. Recent observations have shown that most CEMP-s stars are in binary systems, providing support to the AGB companion scenario. A few CEMP-s stars, however, appear to be single. We inspect four apparently single CEMP-s stars and discuss the possibility that they formed from the ejecta of a previous-generation massive star, referred to as the "source" star. In order to investigate this scenario, we computed low-metallicity massive-star models with and without rotation and including complete s-process nucleosynthesis. We find that non-rotating source stars cannot explain the observed abundance of any of the four CEMP-s stars. Three out of the four CEMP-s stars can be explained by a 25M⊙ source star with vini 500 km s-1 (spinstar). The fourth CEMP-s star has a high Pb abundance that cannot be explained by any of the models we computed. Since spinstars and AGB predict different ranges of [O/Fe] and [ls/hs], these ratios could be an interesting way to further test these two scenarios.

  18. Asymptotic giant branch and super-asymptotic giant branch stars: modelling dust production at solar metallicity

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; García-Hernández, D. A.; Schneider, R.; Ventura, P.; La Franca, F.; Valiante, R.; Marini, E.; Di Criscienzo, M.

    2017-06-01

    We present dust yields for asymptotic giant branch (AGB) and super-asymptotic giant branch (SAGB) stars of solar metallicity. Stars with initial mass 1.5 M⊙ ≤ Mini ≤ 3 M⊙ reach the carbon star stage during the AGB phase and produce mainly solid carbon and SiC. The size and the amount of the carbon particles formed follows a positive trend with the mass of the star; the carbon grains with the largest size (aC ˜ 0.2 μm) are produced by AGB stars with Mini = 2.5-3 M⊙, as these stars are those achieving the greatest enrichment of carbon in the surface regions. The size of SiC grains, being sensitive to the surface silicon abundance, remains at about aSiC ˜ 0.1μm. The mass of carbonaceous dust formed is in the range 10-4-5 × 10-3 M⊙, whereas the mass of SiC produced is 2 × 10-4-10-3 M⊙. Massive AGB/SAGB stars with Mini > 3 M⊙ experience hot bottom burning, which inhibits the formation of carbon stars. The most relevant dust species formed in these stars are silicate and alumina dust, with grain sizes in the range 0.1 < aol < 0.15 μm and a_Al_2O_3 ˜ 0.07 μm, respectively. The mass of silicates produced spans the interval 3.4 × 10-3 M⊙ ≤ Mdust ≤ 1.1 × 10-2 M⊙ and increases with the initial mass of the star.

  19. Allometry indicates giant eyes of giant squid are not exceptional.

    PubMed

    Schmitz, Lars; Motani, Ryosuke; Oufiero, Christopher E; Martin, Christopher H; McGee, Matthew D; Gamarra, Ashlee R; Lee, Johanna J; Wainwright, Peter C

    2013-02-18

    The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.

  20. Gap-mode enhancement on MoS2 probed by functionalized tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Alajlan, Abdulrahman M.; Voronine, Dmitri V.; Sinyukov, Alexander M.; Zhang, Zhenrong; Sokolov, Alexei V.; Scully, Marlan O.

    2016-09-01

    Surface enhancement of molecular spectroscopic signals has been widely used for sensing and nanoscale imaging. Because of the weak electromagnetic enhancement of Raman signals on semiconductors, it is motivating but challenging to study the electromagnetic effect separately from the chemical effects. We report tip-enhanced Raman scattering measurements on Au and bulk MoS2 substrates using a metallic tip functionalized with copper phthalocyanine molecules and demonstrate similar gap-mode enhancement on both substrates. We compare the experimental results with theoretical calculations to confirm the gap-mode enhancement on MoS2 using a well-established electrostatic model. The functionalized tip approach allows for suppressing the background and is ideal for separating electromagnetic and chemical enhancement mechanisms on various substrates. Our results may find a wide range of applications in MoS2-based devices, sensors, and metal-free nanoscale bio-imaging.

  1. Carbon Nanotube Bonding Strength Enhancement Using Metal "Wicking" Process

    NASA Technical Reports Server (NTRS)

    Lamb, James L.; Dickie, Matthew R.; Kowalczyk, Robert S.; Liao, Anna; Bronikowski, Michael J.

    2012-01-01

    Carbon nanotubes grown from a surface typically have poor bonding strength at the interface. A process has been developed for adding a metal coat to the surface of carbon nano tubes (CNTs) through a wicking process, which could lead to an enhanced bonding strength at the interface. This process involves merging CNTs with indium as a bump-bonding enhancement. Classical capillary theory would not normally allow materials that do not wet carbon or graphite to be drawn into the spacings by capillary action because the contact angle is greater than 90 degrees. However, capillary action can be induced through JPL's ability to fabricate oriented CNT bundles to desired spacings, and through the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. A reflow and plasma cleaning process has also been developed and demonstrated to remove indium oxide, and to obtain smooth coatings on the CNT bundles.

  2. Characterizing Uranus with an Ice giant Planetary Origins Probe (Ice-POP)

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.; Fortney, Jonathan; Nettelmann, Nadine; Zahnle, Kevin J.

    2013-01-01

    detected in Neptune but not in Uranus. A measurement of the abundance of either would constrain the source mechanisms for these molecules (exogenic or internal). A major surprise from the Galileo Entry Probe was that the heavier noble gases Ar, Kr, and Xe are enhanced in Jupiter's atmosphere at a level comparable to what was seen for the chemically active volatiles N, C, and S. It had been generally expected that Ar, Kr, and Xe would be present in solar abundances, as all were expected to accrete with hydrogen during the gravitational capture of nebular gases. Enhanced abundances of Ar, Kr, and Xe is equivalent to saying that these noble gases have been separated from hydrogen. There are several mechanisms that could accomplish this but these hypotheses require further testing. Measurement of noble gas abundances in an ice giant would constrain the planetary formation and nebular mechanisms responsible for this enhancement. Standard three-layer models of Uranus find that the outer, predominantly H/He layer of Uranus does not reach pressures high enough (approximately 1 Mbar) for H2 to transition to liquid metallic hydrogen. However, valid models can also be constructed with a smaller intermediate water-rich layer, with hydrogen then reaching the metallic hydrogen phase. If this occurs, He should phase separate from the hydrogen and ``rain out," taking along a substantial abundance of Ne, as suggested for Jupiter (and likely also for Saturn). Hence He and Ne depletions could be probes of the planet's structure in the much deeper interior. A determination of Uranus' atmospheric abundances, particularly of the noble gasses, is thus critical to understanding the formation of Uranus, and giant planets in general. These measurements can only be performed with an entry probe. The second key measurement would be a temperature-pressure sounding to provide ground truth for remote measurements of atmospheric temperature and composition and to constrain the internal heat flow. This

  3. Metal-enhanced chemiluminescence from chromium, copper, nickel, and zinc nanodeposits: Evidence for a second enhancement mechanism in metal-enhanced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenberg, Micah; Zhang Yongxia; Geddes, Chris D.

    Over the past decade metal-fluorophore interactions, metal-enhanced fluorescence, have attracted significant research attention, with the technology now becoming common place in life science applications. In this paper, we address the underlying mechanisms of metal-enhanced fluorescence (MEF) and experimentally show using chemiluminescence solutions that MEF is indeed underpinned by two complimentary mechanisms, consistent with the recent reports by Geddes and co-workers [Zhang et al., J. Phys. Chem. C 113, 12095 (2009)] and their enhanced fluorescence hypothesis.

  4. Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces

    PubMed Central

    Yallapragada, Venkata Jayasurya; Ravishankar, Ajith P.; Mulay, Gajendra L.; Agarwal, Girish S.; Achanta, Venu Gopal

    2016-01-01

    Metasurfaces with sub-wavelength features are useful in modulating the phase, amplitude or polarization of electromagnetic fields. While several applications are reported for light manipulation and control, the sharp phase changes would be useful in enhancing the beam shifts at reflection from a metasurface. In designed periodic patterns on metal film, at surface plasmon resonance, we demonstrate Goos-Hanchen shift of the order of 70 times the incident wavelength and the angular shifts of several hundred microradians. We have designed the patterns using rigorous coupled wave analysis (RCWA) together with S-matrices and have used a complete vector theory to calculate the shifts as well as demonstrate a versatile experimental setup to directly measure the shifts. The giant shifts demonstrated could prove to be useful in enhancing the sensitivity of experiments ranging from atomic force microscopy to gravitational wave detection. PMID:26758471

  5. Two New Super Li-rich Core He-burning Giants: A New Twist to the Long Tale of Li Enhancement in K Giants

    NASA Astrophysics Data System (ADS)

    Bharat Kumar, Yerra; Singh, Raghubar; Eswar Reddy, B.; Zhao, Gang

    2018-05-01

    In this Letter we report two new super Li-rich K giants, KIC2305930 and KIC12645107, with Li abundances exceeding that of the interstellar medium (ISM; A(Li) ≥ 3.2 dex). Importantly, both of the giants have been classified as core He-burning red clump (RC) stars based on asteroseismic data from Kepler mission. Also, both of the stars are found to be low mass (M ≈ 1.0 M ⊙), which, together with an evidence of their evolutionary status of being RC stars, implies that the stars have gone through both the luminosity bump and He-flash during their red giant branch (RGB) evolution. The stars’ large Li abundance and evolutionary phase suggest that Li enrichment occurred very recently, probably at the tip of the RGB either during He-flash, an immediate preceding event on the RGB, or by some kind of external event such as merger of an RGB star with white dwarf. The findings will provide critical constraints to theoretical models for understanding of Li enhancement origin in RGB stars.

  6. Metal-enhanced fluorescence exciplex emission.

    PubMed

    Zhang, Yongxia; Mali, Buddha L; Geddes, Chris D

    2012-01-01

    In this letter, we report the first observation of metal-enhanced exciplex fluorescence, observed from anthracene in the presence of diethylaniline. Anthracene in the presence of diethylaniline in close proximity to Silver Island Films (SIFs) shows enhanced monomer and exciplex emission as compared to a non-silvered control sample containing no silver nanoparticles. Our findings suggest two complementary methods for the enhancement: (i) surface plasmons can radiate coupled monomer and exciplex fluorescence efficiently, and (ii) enhanced absorption (enhanced electric near-field) further facilitates enhanced emission. Our exciplex studies help us to further understand the complex photophysics of the metal-enhanced fluorescence technology. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. GIANT IMPACT: AN EFFICIENT MECHANISM FOR THE DEVOLATILIZATION OF SUPER-EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shang-Fei; Hori, Yasunori; Lin, D. N. C.

    Mini-Neptunes and volatile-poor super-Earths coexist on adjacent orbits in proximity to host stars such as Kepler-36 and Kepler-11. Several post-formation processes have been proposed for explaining the origin of the compositional diversity between neighboring planets: mass loss via stellar XUV irradiation, degassing of accreted material, and in situ accumulation of the disk gas. Close-in planets are also likely to experience giant impacts during the advanced stage of planet formation. This study examines the possibility of transforming volatile-rich super-Earths/mini-Neptunes into volatile-depleted super-Earths through giant impacts. We present the results of three-dimensional hydrodynamic simulations of giant impacts in the accretionary and disruptivemore » regimes. Target planets are modeled with a three-layered structure composed of an iron core, silicate mantle, and hydrogen/helium envelope. In the disruptive case, the giant impact can remove most of the H/He atmosphere immediately and homogenize the refractory material in the planetary interior. In the accretionary case, the planet is able to retain more than half of the original gaseous envelope, while a compositional gradient suppresses efficient heat transfer as the planetary interior undergoes double-diffusive convection. After the giant impact, a hot and inflated planet cools and contracts slowly. The extended atmosphere enhances the mass loss via both a Parker wind induced by thermal pressure and hydrodynamic escape driven by the stellar XUV irradiation. As a result, the entire gaseous envelope is expected to be lost due to the combination of those processes in both cases. Based on our results, we propose that Kepler-36b may have been significantly devolatilized by giant impacts, while a substantial fraction of Kepler-36c’s atmosphere may remain intact. Furthermore, the stochastic nature of giant impacts may account for the observed large dispersion in the mass–radius relationship of close

  8. DISCOVERY OF RELATIVELY HYDROGEN-POOR GIANTS IN THE GALACTIC GLOBULAR CLUSTER ω CENTAURI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hema, B. P.; Pandey, Gajendra, E-mail: hema@iiap.res.in, E-mail: pandey@iiap.res.in

    2014-09-10

    In this Letter, the results of our low-resolution spectroscopic survey for identifying hydrogen-deficient stars in the red giant sample of the globular cluster ω Cen are reported. Spectral analyses were carried out on the basis of the strengths of the (0, 0) MgH band and the Mg b triplet. In our sample, four giants were identified with weak/absent MgH bands in their observed spectra, which was unexpected for their well determined stellar parameters. The Mg abundances for the program stars were determined from the subordinate lines of the MgH band to the blue of the Mg b triplet, using the spectral synthesis technique. Themore » derived Mg abundances for the program stars were as expected for the red giants of ω Cen, except for the four identified candidates. The determined Mg abundances of these four candidates are much lower than that expected for the red giants of ω Cen, and are unacceptable based on the strengths of the Mg b triplet in their observed spectra. Hence, a plausible explanation for the weak/absent MgH bands in the observed spectra of these stars is a relatively lower abundance of hydrogen in their atmospheres. These giants may belong to the group of helium-enriched red giants of ω Cen.« less

  9. Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron

    NASA Astrophysics Data System (ADS)

    Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun

    2018-03-01

    Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.

  10. Metallicity calibrations for dwarf stars and giants in the Geneva photometric system

    NASA Astrophysics Data System (ADS)

    Netopil, Martin

    2017-08-01

    We use the most homogeneous Geneva seven-colour photometric system to derive new metallicity calibrations for early A- to K-type stars that cover both, dwarf stars and giants. The calibrations are based on several spectroscopic data sets that were merged to a common scale, and we applied them to open cluster data to obtain an additional proof of the metallicity scale and accuracy. In total, metallicities of 54 open clusters are presented. The accuracy of the calibrations for single stars is in general below 0.1 dex, but for the open cluster sample with mean values based on several stars we find a much better precision, a scatter as low as about 0.03 dex. Furthermore, we combine the new results with another comprehensive photometric data set to present a catalogue of mean metallicities for more than 3000 F- and G-type dwarf stars with σ ˜ 0.06 dex. The list was extended by more than 1200 hotter stars up to about 8500 K (or spectral type A3) by taking advantage of their almost reddening free characteristic in the new Geneva metallicity calibrations. These two large samples are well suited as primary or secondary calibrators of other data, and we already identified about 20 spectroscopic data sets that show offsets up to about 0.4 dex.

  11. Abundances in very metal-poor stars

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer Anne

    We measured the abundances of 35 elements in 22 field red giants and a red giant in the globular cluster M92. We found the [Zn/Fe] ratio increases with decreasing [Fe/H], reaching ~0.3 at [Fe/H] = -3.0. While this is a larger [Zn/Fe] than found by previous investigators, it is not sufficient to account for the [Zn/Fe] observed in the damped Lyα systems. We test different models for the production of the s-process elements by comparing our [Y/Zr] values, which have been produced by the r- process, to predictions of what the s-process does not produce. We find that the models of Arlandini et al. (1999), which calculate s-process production in a model AGB star, agree the best. We then look at the r-process abundances across a wide range in mass. The [Y/Ba] values for most of our stars cluster around -0.30, but there are three outliers with [Y/Ba] values up to 1 dex higher. Thus the heavy element abundances do not show the same pattern from Z = 39 to Z = 56. However, our abundances ratios from Pd (Z = 46) to Yb (Z = 70) are consistent with a scaled solar system r- process pattern, arguing that at least the heavy r- process elements are made in a universal pattern. If we assume that this same pattern hold through thorium, we can determine the ages of our stars from the present abundance of radioactive thorium and an initial thorium abundance based on the abundance of stable heavy elements. Our results for five stars are consistent with those stars being the same age. Our mean age is 10.8 +/- 2 Gyr. However that result depends critically on the assumed Th/stable ratio, which we adopt from models of the r-process. For an average age of 15 Gyrs, the initial Th/Eu ratio we would need is 0.590. Finally, the [element/Fe] ratios for elements in the iron group and lower do not show any dispersion, unlike for the r- process elements such as Y and Ba. Therefore the individual contributions of supernovae have been erased for the lighter elements.

  12. Discovery of a Metal-Poor Little Cub

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-09-01

    The discovery of an extremely metal-poor star-forming galaxy in our local universe, dubbed Little Cub, is providing astronomers with front-row seats to the quenching of a near-pristine galaxy.SDSS image of NGC 3359 (left) and Little Cub (right), with overlying contours displaying the location of hydrogen gas. Little Cubs (also shown in the inset) stellar mass lies in the blue contour of the right-hand side. The outer white contours show the extended gas of the galaxy, likely dragged out as a tidal tail by Little Cubs interaction with NGC 3359. [Hsyu et al. 2017]The Hunt for Metal-Poor GalaxiesLow-metallicity, star-forming galaxies can show us the conditions under which the first stars formed. The galaxies with the lowest metallicities, however, also tend to be those with the lowest luminosities making them difficult to detect. Though we know that there should be many low-mass, low-luminosity, low-metallicity galaxies in the universe, weve detected very few of them nearby.In an effort to track down more of these metal-poor galaxies, a team of scientists led by Tiffany Hsyu (University of California Santa Cruz) searched through Sloan Digital Sky Survey data, looking for small galaxies with the correct photometric color to qualify a candidate blue compact dwarfs, a type of small, low-luminosity, star-forming galaxy that is often low-metallicity.Hsyu and collaborators identified more than 2,500 candidate blue compact dwarfs, and next set about obtaining follow-up spectroscopy for many of the candidates from the Keck and Lick Observatories. Though this project is still underway, around 100 new blue compact dwarfs have already been identified via the spectroscopy, including one of particular interest: the Little Cub.Little CubThis tiny star-forming galaxy gained its nickname from its location in the constellation Ursa Major. Little Cub is perhaps 50 or 60 million light-years away, and Hsyu and collaborators find it to be one of the lowest-metallicity star

  13. Giant dedifferentiated liposarcoma of small bowel mesentery: a case report.

    PubMed

    Meher, Susanta; Mishra, Tushar Subhadarshan; Rath, Satyajit; Sasmal, Prakash Kumar; Mishra, Pritinanda; Patra, Susama

    2016-09-21

    Dedifferentiated liposarcoma is an uncommon variant of liposarcoma, with poor prognosis and higher preponderance to local recurrence. Only nine cases of dedifferentiated liposarcoma of small bowel mesentery have been reported till now. This is a case of giant dedifferentiated liposarcoma of the small bowel mesentery, weighing nearly 9 kg (19.8 lbs), with synchronous lesions in the extraperitoneal space, which is the first such case to be reported. We report a case of a 62-year-old man, who presented with a huge abdominal mass occupying nearly the entire abdomen. A contrast enhanced computed tomography of abdomen and pelvis revealed a large, poorly enhancing, heterogeneous, lobulated mass of size 27 × 16 cm, displacing the bowel loops peripherally. At laparotomy, a large mass arising from the small bowel mesentery was found. In addition, many other smaller synchronous lesions were studded in the entire small bowel mesentery and a couple more in the extraperitoneal space. A palliative excision of the giant mass along with the adjacent small bowel was done. The other smaller swellings were not causing any mass effect and were left behind as they were numerous, virtually ruling out any possibility of a curative excision. The histopathological examination suggested the diagnosis of dedifferentiated liposarcoma. On immunohistochemistry, S-100 was positive in the well-differentiated sarcomatous areas. The CD 117 and SMA were strongly negative ruling out the possibility of a gastrointestinal stromal tumour. The CD 34 however was positive in the tumour cells. Dedifferentiated liposarcoma of the small bowel mesentery is rare. Involvement of nearly whole of the small bowel mesentery in the disease process virtually rules out the possibility of a curative resection, the mainstay of management. This report would add to the knowledge of this rare disease and the possible therapeutic problem that may be encountered in case of multifocal disease.

  14. Enhanced critical-current in P-doped BaFe2As2 thin films on metal substrates arising from poorly aligned grain boundaries.

    PubMed

    Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2016-11-11

    Thin films of the iron-based superconductor BaFe 2 (As 1-x P x ) 2 (Ba122:P) were fabricated on polycrystalline metal-tape substrates with two kinds of in-plane grain boundary alignments (well aligned (4°) and poorly aligned (8°)) by pulsed laser deposition. The poorly aligned substrate is not applicable to cuprate-coated conductors because the in-plane alignment >4° results in exponential decay of the critical current density (J c ). The Ba122:P film exhibited higher J c at 4 K when grown on the poorly aligned substrate than on the well-aligned substrate even though the crystallinity was poorer. It was revealed that the misorientation angles of the poorly aligned samples were less than 6°, which are less than the critical angle of an iron-based superconductor, cobalt-doped BaFe 2 As 2 (~9°), and the observed strong pinning in the Ba122:P is attributed to the high-density grain boundaries with the misorientation angles smaller than the critical angle. This result reveals a distinct advantage over cuprate-coated conductors because well-aligned metal-tape substrates are not necessary for practical applications of the iron-based superconductors.

  15. Giant larvaceans: biologically equivalent flapping flexible foils exhibit bending modes that enhance fluid transport

    NASA Astrophysics Data System (ADS)

    Katija, Kakani; Sherman, Alana; Robison, Bruce

    2016-11-01

    The midwater region of the ocean (below the euphotic zone and above the benthos) is one of the largest ecosystems on our planet, yet remains one of the least explored. Little-known marine organisms that inhabit midwater have developed life strategies that contribute to their evolutionary success, and may inspire engineering solutions for societally relevant challenges. A group of midwater organisms, known as giant larvaceans (genus Bathochordaeus), beat their tails to drive food and particle-laden water through complex, mucus filtering structures to feed. Giant larvaceans, whose motion and kinematics resemble flapping flexible foils, range in size from 1 to 10 cm in length, and can be found between the surface and 400 m. Using remotely-operated vehicles and DeepPIV, an instrument that enables in situ particle image velocimetry (PIV) measurements, the filtration rates and kinematics of giant larvaceans were investigated. These measurements yielded filtration rates for giant larvaceans as high as 80 L/hr, which exceeds expected filtration rates by a factor of 2 when compared with other larvacean groups. Comparing tail kinematics between Bathochordeaus and smaller larvaceans reveals differences in tail bending modes, where a hinge is present throughout the tail beat in giant larvaceans. Using laboratory PIV measurements with swimming animals and soft-bodied mechanical mimics, we reveal how these differences in tail kinematics can lead to enhanced fluid transport. This work has been supported by the Packard Foundation.

  16. ULTRASONIC ENHANCEMENT OF THE REMOVAL OF HEAVY METALS

    EPA Science Inventory

    EPA GRANT NUMBER: R828598C020
    Title: Ultrasonic Enhancement of the Removal of Heavy Metals
    Investigators: Dennis Truax, Krishnan Balasubramaniam
    Institution: Mississippi State University
    EPA Project Officer: S. Bala Krishnan
    ...

  17. Automated Selection of Metal-Poor Stars in the Galaxy

    NASA Astrophysics Data System (ADS)

    Rhee, Jaehyon

    2000-08-01

    In this thesis I have developed algorithms for the efficient reduction and analysis of a large set of objective-prism data, and for the reliable selection of extremely metal-poor candidate stars in the Galaxy. Automated computer scans of the 308 photographic plates in the HK objective-prism / interference-filter survey of Beers and colleagues have been carried out with the Automatic Plate Measuring (APM) machine in Cambridge, England. Highly automated software tools have been developed in order to identify useful spectra and remove unusable spectra, to locate the positions of the Ca II H (3969 Å) and K (3933 Å) absorption lines, and to construct approximate continua. Equivalent widths of the Ca II H and K lines were then measured directly from these reduced spectra. A subset of 294,039 spectra from 87 of the HK survey plates (located within approximately 30 degrees of the South Galactic Pole) were extracted. Of these, 221,670 (75.4%) proved to be useful for subsequent analysis. I have explored new methodology, making use of an Artificial Neural Network (ANN) analysis approach, in order to select extremely metal-poor star candidates with high efficiency. The ANNs were trained to predict metallicity, [Fe/H], and to classify stars into 6 groups separated by temperature and metal abundance, based on two accurately measured parameters -- the de-reddened broadband (B-V)0 color for known HK survey stars with available photometric information, and the equivalent width of the Ca II K line in an 18 Å band, the K18 index, as measured from follow-up medium-resolution spectroscopy taken during the course of the HK survey. When provided with accurate input data, the trained networks were able to estimate [Fe/H] and to determine the class with high accuracy (with a robust estimated one-sigma scatter of SBI = 0.13 dex, and an overall correction rate of 91%). The ANN approach was then used in order to recover information on the K18 index and (B-V)0 color directly from the APM

  18. Follow up observationes of extremely metal-poor stars identified from SDSS and LAMOST

    NASA Astrophysics Data System (ADS)

    Aguado, David; Allende Prieto, Carlos; González Hernández, Jonay I.; Rebolo, Rafael

    2017-06-01

    The most metal-poor stars in the Milky Way witnessed the early phases of formation of the Galaxy, and have chemical compositions close to the pristine mixture from Big Bang nucleosynthesis, polluted by one or very few supernovae. Here we present a program to search for and characterize new ultra metal-poor stars in the Galactic halo. These stars are extremely rare; despite significant efforts, only a handful of stars have been identified with a metallicity [Fe/H]< -5. We select candidates from SDSS and LAMOST. Dozens of them have already been observed with the ISIS spectrograph on the 4.2 m William Herschel Telescope. The most interesting objects have been confirmed with OSIRIS on the 10.4m-GTC and HRS on the 9.2 m HET. Our analysis is highly automated, and based on the FERRE code. We report the discovery of a new carbon-rich ultra metal-poor (CRUMP) dwarf star at [Fe/H]~ -5.8 with an extreme carbon over-abundance [C/Fe]~ +5.0.

  19. Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor.

    PubMed

    Frebel, Anna; Kirby, Evan N; Simon, Joshua D

    2010-03-04

    Current cosmological models indicate that the Milky Way's stellar halo was assembled from many smaller systems. On the basis of the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic building blocks must have been vastly different from the surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt on this conclusion. Verification of the iron-deficiency, however, and measurements of additional elements, such as the alpha-element Mg, are necessary to demonstrate that the same type of stars produced the metals found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars be conclusively linked to early stellar halo assembly. Here we report high-resolution spectroscopic abundances for 11 elements in S1020549, confirming its iron abundance of less than 1/4,000th that of the Sun, and showing that the overall abundance pattern follows that seen in low-metallicity halo stars, including the alpha-elements. Such chemical similarity indicates that the systems destroyed to form the halo billions of years ago were not fundamentally different from the progenitors of present-day dwarfs, and suggests that the early chemical enrichment of all galaxies may be nearly identical.

  20. Giant ferrimagnetism and polarization in a mixed metal perovskite metal-organic framework

    NASA Astrophysics Data System (ADS)

    Rout, Paresh C.; Srinivasan, Varadharajan

    2018-01-01

    Perovskite metal-organic frameworks (MOFs) have recently emerged as potential candidates for multiferroicity. However, the compounds synthesized so far possess only weak ferromagnetism and low polarization. Additionally, the very low magnetic transition temperatures (Tc) also pose a challenge to the application of the materials. We have computationally designed a mixed metal perovskite MOF—[C(NH2)3] [(Cu0.5Mn0.5) (HCOO) 3] —that is predicted to have magnetization two orders of magnitude larger than its parent ([C (NH2)3] [Cu (HCOO) 3] ), a significantly larger polarization (9.9 μ C /cm2), and an enhanced Tc of up to 56 K, unprecedented in perovskite MOFs. A detailed study of the magnetic interactions revealed a mechanism leading to the large moments as well as the increase in the Tc. Mixing a non-Jahn-Teller ion (Mn2 +) into a Jahn-Teller host (Cu2 +) leads to competing lattice distortions which are directly responsible for the enhanced polarization. The MOF is thermodynamically stable as evidenced by the computed enthalpy of formation and can likely be synthesized. Our work represents a first step towards rational design of multiferroic perovskite MOFs through the largely unexplored mixed metal approach.

  1. Asteroseismic Diagram for Subgiants and Red Giants

    NASA Astrophysics Data System (ADS)

    Gai, Ning; Tang, Yanke; Yu, Peng; Dou, Xianghua

    2017-02-01

    Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ1-Δν asteroseismic diagram from models of subgiants and red giants with various masses and metallicities. The relationship ΔΠ1-Δν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M ⊙, the ΔΠ1-Δν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ, which indicate similar evolution states especially for similar mass stars, on the ΔΠ1-Δν diagram.

  2. Spectroscopy of late type giant stars

    NASA Astrophysics Data System (ADS)

    Spaenhauer, A.; Thevenin, F.

    1984-06-01

    An attempt to calibrate broadband RGU colors of late type giant stars in terms of the physical parameters of the objects is reported. The parameters comprise the effective temperature, surface gravity and global metal abundance with respect to the sun. A selection of 21 giant star candidates in the Basel fields Plaut 1, Centaurus III and near HD 95540 were examined to obtain a two color plot. Attention is focused on the G-R color range 1.5-2.15 mag, i.e., spectral types K0-K5. A relationship between R and the metallicity is quantified and shown to have a correlation coefficient of 0.93. No correlation is found between metallicity and gravity or R and the effective temperature.

  3. Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability.

    PubMed

    Zhang, Wanli; Zhang, Lei; Li, Aimin

    2015-11-01

    This study aimed at investigating the effects of trace metals on methane production from food waste and examining the feasibility of reducing metals dosage by ethylenediamine-N,N'-disuccinic acid (EDDS) via improving metals bioavailability. The results indicated that the effects of metal elements highly depended on the supplemental concentrations. Trace metals supplemented under moderate concentrations greatly enhanced the methane yield. However, the excessive supplementation of Fe (1000 mg/L) and Ni (50 mg/L) exhibited the obvious toxicity to methanogens. The combinations of trace metals exhibited remarkable synergistic effects. The supplementation of Fe (100 mg/L) + Co (1 mg/L) + Mo (5 mg/L) + Ni (5 mg/L) obtained the greatest methane yield of 504 mL/g VSadded and the highest increment of 35.5% compared to the reactor without metals supplementation (372 mL/g VSadded). The changes of metals speciation showed the reduction of metals bioavailability during anaerobic digestion, which might weaken the stimulative effects of trace metals. However, the addition of EDDS improved metals bioavailability for microbial uptake and stimulated the activity of methanogens, and therefore, strengthened the stimulative effects of metals on anaerobic digestion of food waste. The batch and semi-continuous experiments confirmed that the addition of EDDS (20 mg/L) bonded to trace metals prior to their supplementation could obtain a 50% reduction of optimal metals dosage. This study provided a feasible method to reduce trace metals dosage without the degeneration of process performance of anaerobic digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Ultraviolet and optical observations of metal deficient red giants and chromospheric models

    NASA Technical Reports Server (NTRS)

    Duprele, A. K.; Avrett, E. H.; Hartmann, L.; Smith, G.

    1984-01-01

    Three metal deficient field stars were observed in the ultraviolet and optical spectral regions: HD 165195, HD 110281, and HD 232078. High dispersion spectra near H alpha, and low dispersion, long wavelength IUE spectra were obtained. The H alpha profiles have strong asymmetric emission with absorption cores that are frequently asymmetric. The surface flux of Mg II lines is similar to that of luminous Pop I stars in spite of the lower metal abundance. Semi-empirical atmospheric models suggest that the characteristic emission in the wings of the H alpha line can arise within static chromospheres. Radial expansion gives an asymmetric, blue-shifted H alpha core accompanied by greater emission in the red line wing than the blue wing. Wind models with extended atmospheres suggest mass loss rates - 2 billion M/yr. Thus H alpha provides no evidence that steady mass loss is substantial enough to significantly affect the evolution of stars on the red giant branch of globular clusters.

  5. Phase Equilibria of a S- and C-Poor Lunar Core

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Go, B. M.; Danielson, L. R.; Habermann, M.

    2016-01-01

    The composition of the lunar core can have a large impact on its thermal evolution, possible early dynamo creation, and physical state. Geochemical measurements have placed better constraints on the S and C content of the lunar mantle. In this study we have carried out phase equilibrium studies of geochemically plausible S- and C-poor lunar core compositions in the Fe-Ni-S-C system, and apply them to the early history of the Moon. We chose two bulk core compositions, with differing S and C content based on geochemical analyses of S and C trapped melts in Apollo samples, and on the partitioning of S and C between metal and silicate. This approach allowed calculation of core S and C contents - 90% Fe, 9% Ni, 0.5% C, and 0.375% S by weight; a second composition contained 1% each of S and C. Experiments were carried out from 1473K to 1973K and 1 GPa to 5 GPa, in piston cylinder and multi- anvil apparatuses. Combination of the thermal model of with our results, shows that a solid inner core (and therefore initiation of a dynamo) may have been possible in the earliest history of the Moon (approximately 4.2 Ga ago), in agreement with. Thus a volatile poor lunar core may explain the thermal and magnetic history of the Moon.

  6. Giant magnetoresistance in ion beam deposited spin-valve films with specular enhancement

    NASA Astrophysics Data System (ADS)

    Sant, S.; Mao, M.; Kools, J.; Koi, K.; Iwasaki, H.; Sahashi, M.

    2001-06-01

    Three different techniques, natural oxidation, remote plasma oxidation and low energy ion beam oxidation, have been proved to be equally effective in forming nano-oxide layers (NOLs) in spin-valve films for specular enhancement of giant magnetoresistance (GMR) effect. GMR values over 12% have been routinely obtained in spin-valve films with NOL, corresponding to a 30% specular enhancement over those without NOL. The consistency and robustness of the oxidation processes has been demonstrated by a very large GMR value ˜19% in a dual spin-valve film with the NOLs formed in both pinned layers, the oscillatory dependence of the interlayer coupling field on Cu layer thickness in specular enhanced spin-valve films and the uniform and repeatable film performance over 5 in. substrates.

  7. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    PubMed

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    NASA Astrophysics Data System (ADS)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert

  9. The Shape of Extremely Metal-Poor Galaxies

    NASA Astrophysics Data System (ADS)

    Putko, Joseph; Sánchez Almeida, Jorge; Muñoz-Tuñón, Casiana; Elmegreen, Bruce; Elmegreen, Debra

    2018-01-01

    This work is the first study on the 3D shape of starbursting extremely metal-poor galaxies (XMPs; a galaxy is said to be an XMP if its ionized gas-phase metallicity is less than 1/10 the solar value). A few hundred XMPs have been identified in the local universe primarily through mining the spectroscopic catalog of the Sloan Digital Sky Survey (SDSS), and follow-up observations have shown that metallicity drops significantly at the starburst (compared to the quiescent component of the galaxy). As the timescale for gas mixing is short, the metal-poor gas triggering the starburst must have been accreted recently. This is strong observational evidence for the cold flow accretion predicted by cosmological models of galaxy formation, and, in this respect, XMPs seem to be the best local analogs of the very first galaxies.The ellipsoidal shape of a class of galaxies can be inferred from the observed axial ratio (q) distribution (q = minor axis/major axis) of a large sample of randomly-oriented galaxies. Fitting ellipses to 200 XMPs using r-band SDSS images, we observe that the axial ratio distribution falls off at q < ~0.4 and q > ~0.8, and we determine that these falloffs are not due to biases in the data. The falloff at low axial ratio indicates that the XMPs are thick for their size, and the falloff at high axial ratio suggests the vast majority of XMPs are triaxial. We also observe that smaller XMPs are thicker in proportion to their size, and it is expected that for decreasing galaxy size the ratio of random to rotational motions increases, which correlates with increasing relative thickness. The XMPs are low-redshift dwarf galaxies dominated by dark matter, and our results are compatible with simulations that have shown dark matter halos to be triaxial, with triaxial stellar distributions for low-mass galaxies and with triaxiality increasing over time. We will offer precise constraints on the 3D shape of XMPs via Bayesian analysis of our observed axial ratio

  10. The Chemical Abundances of Stars in the Halo (CASH) Project. II. A Sample of 14 Extremely Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Hollek, Julie K.; Frebel, Anna; Roederer, Ian U.; Sneden, Christopher; Shetrone, Matthew; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher

    2011-11-01

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ~15, 000) and corresponding high-resolution (R ~35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H] < -3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]< - 3. We also find four neutron-capture-enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H] <~ -3.0) of the brightest stars included in CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ~500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen. Based on observations gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  11. The Red-giant Branch Bump Revisited: Constraints on Envelope Overshooting in a Wide Range of Masses and Metallicities

    NASA Astrophysics Data System (ADS)

    Khan, Saniya; Hall, Oliver J.; Miglio, Andrea; Davies, Guy R.; Mosser, Benoît; Girardi, Léo; Montalbán, Josefina

    2018-06-01

    The red-giant branch bump provides valuable information for the investigation of the internal structure of low-mass stars. Because current models are unable to accurately predict the occurrence and efficiency of mixing processes beyond convective boundaries, one can use the luminosity of the bump—a diagnostic of the maximum extension of the convective envelope during the first-dredge up—as a calibrator for such processes. By combining asteroseismic and spectroscopic constraints, we expand the analysis of the bump to masses and metallicities beyond those previously accessible using globular clusters. Our data set comprises nearly 3000 red-giant stars observed by Kepler and with APOGEE spectra. Using statistical mixture models, we are able to detect the bump in the average seismic parameters ν max and < {{Δ }}ν > , and show that its observed position reveals general trends with mass and metallicity in line with expectations from models. Moreover, our analysis indicates that standard stellar models underestimate the depth of efficiently mixed envelopes. The inclusion of significant overshooting from the base of the convective envelope, with an efficiency that increases with decreasing metallicity, allows us to reproduce the observed location of the bump. Interestingly, this trend was also reported in previous studies of globular clusters.

  12. Empirical Determination of Dark Matter Velocities Using Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Herzog-Arbeitman, Jonah; Lisanti, Mariangela; Madau, Piero; Necib, Lina

    2018-01-01

    The Milky Way dark matter halo is formed from the accretion of smaller subhalos. These sub-units also harbor stars—typically old and metal-poor—that are deposited in the Galactic inner regions by disruption events. In this Letter, we show that the dark matter and metal-poor stars in the Solar neighborhood share similar kinematics due to their common origin. Using the high-resolution eris simulation, which traces the evolution of both the dark matter and baryons in a realistic Milky Way analog galaxy, we demonstrate that metal-poor stars are indeed effective tracers for the local, virialized dark matter velocity distribution. The local dark matter velocities can therefore be inferred from observations of the stellar halo made by the Sloan Digital Sky Survey within 4 kpc of the Sun. This empirical distribution differs from the standard halo model in important ways and suggests that the bounds on the spin-independent scattering cross section may be weakened for dark matter masses below ˜10 GeV . Data from Gaia will allow us to further refine the expected distribution for the smooth dark matter component, and to test for the presence of local substructure.

  13. A Differential Abundance Analysis of Very Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    O'Malley, Erin M.; McWilliam, Andrew; Chaboyer, Brian; Thompson, Ian

    2017-04-01

    We have performed a differential line-by-line chemical abundance analysis, ultimately relative to the Sun, of nine very metal-poor main-sequence (MS) halo stars, near [Fe/H] = -2 dex. Our abundances range from -2.66≤slant [{Fe}/{{H}}]≤slant -1.40 dex with conservative uncertainties of 0.07 dex. We find an average [α/Fe] = 0.34 ± 0.09 dex, typical of the Milky Way. While our spectroscopic atmosphere parameters provide good agreement with Hubble Space Telescope parallaxes, there is significant disagreement with temperature and gravity parameters indicated by observed colors and theoretical isochrones. Although a systematic underestimate of the stellar temperature by a few hundred degrees could explain this difference, it is not supported by current effective temperature studies and would create large uncertainties in the abundance determinations. Both 1D and < 3{{D}}> hydrodynamical models combined with separate 1D non-LTE effects do not yet account for the atmospheres of real metal-poor MS stars, but a fully 3D non-LTE treatment may be able to explain the ionization imbalance found in this work.

  14. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.

    PubMed

    Park, Jin Hee; Lamb, Dane; Paneerselvam, Periyasamy; Choppala, Girish; Bolan, Nanthi; Chung, Jae-Woo

    2011-01-30

    As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, mainly through plant uptake and animal transfer. With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest in developing technologies to remediate contaminated sites. Bioremediation is a natural process which relies on soil microorganisms and higher plants to alter metal(loid) bioavailability and can be enhanced by addition of organic amendments to soils. Large quantities of organic amendments, such as manure compost, biosolid and municipal solid wastes are used as a source of nutrients and also as a conditioner to improve the physical properties and fertility of soils. These organic amendments that are low in metal(loid)s can be used as a sink for reducing the bioavailability of metal(loid)s in contaminated soils and sediments through their effect on the adsorption, complexation, reduction and volatilization of metal(loid)s. This review examines the mechanisms for the enhanced bioremediation of metal(loid)s by organic amendments and discusses the practical implications in relation to sequestration and bioavailability of metal(loid)s in soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. The Magellan PFS Planet Search Program: Radial Velocity and Stellar Abundance Analyses of the 360 au, Metal-poor Binary “Twins” HD 133131A & B

    NASA Astrophysics Data System (ADS)

    Teske, Johanna K.; Shectman, Stephen A.; Vogt, Steve S.; Díaz, Matías; Butler, R. Paul; Crane, Jeffrey D.; Thompson, Ian B.; Arriagada, Pamela

    2016-12-01

    We present a new precision radial velocity (RV) data set that reveals multiple planets orbiting the stars in the ˜360 au, G2+G2 “twin” binary HD 133131AB. Our six years of high-resolution echelle observations from MIKE and five years from the Planet Finder Spectrograph (PFS) on the Magellan telescopes indicate the presence of two eccentric planets around HD 133131A with minimum masses of 1.43 ± 0.03 and 0.63 ± 0.15 {{ M }}{{J}} at 1.44 ± 0.005 and 4.79 ± 0.92 au, respectively. Additional PFS observations of HD 133131B spanning five years indicate the presence of one eccentric planet of minimum mass 2.50 ± 0.05 {{ M }}{{J}} at 6.40 ± 0.59 au, making it one of the longest-period planets detected with RV to date. These planets are the first to be reported primarily based on data taken with the PFS on Magellan, demonstrating the instrument’s precision and the advantage of long-baseline RV observations. We perform a differential analysis between the Sun and each star, and between the stars themselves, to derive stellar parameters and measure a suite of 21 abundances across a wide range of condensation temperatures. The host stars are old (likely ˜9.5 Gyr) and metal-poor ([Fe/H] ˜ -0.30), and we detect a ˜0.03 dex depletion in refractory elements in HD 133131A versus B (with standard errors ˜0.017). This detection and analysis adds to a small but growing sample of binary “twin” exoplanet host stars with precise abundances measured, and represents the most metal-poor and likely oldest in that sample. Overall, the planets around HD 133131A and B fall in an unexpected regime in planet mass-host star metallicity space and will serve as an important benchmark for the study of long-period giant planets. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  16. Kinematics and abundances of K giants in the nuclear bulge of the Galaxy

    NASA Astrophysics Data System (ADS)

    Rich, R. Michael

    1990-10-01

    Radial velocities have been determined for 53 K giants in Baade's window, which belong to the nuclear bulge population and have abundances derived from low resolution spectra. Additional radial velocities for an overlapping sample of 71 bulge K giants show the same dependence of velocity dispersion on abundance; in both samples, the lower velocity dispersion of the metal-rich giants is found to be significant at a level above 90 percent. Extant data support the hypothesis that both M giants and IRAS bulge sources follow steep density laws similar to that which has been predicted for the metal-rick K giants. The abundance distribution of 88 K giants in Baade's window is noted to be notably well fitted by the simple, 'closed box' model of chemical evolution.

  17. Metal Hydride and Alkali Halide Opacities in Extrasolar Giant Planets and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, Philippe F.; Stancil, Phillip C.; Kirby, Kate; Schweitzer, Andreas; Hauschildt, Peter H.

    2006-01-01

    The lack of accurate and complete molecular line and continuum opacity data has been a serious limitation to developing atmospheric models of cool stars and Extrasolar Giant Planets (EGPs). We report our recent calculations of molecular opacities resulting from the presence of metal hydrides and alkali halides. The resulting data have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state.

  18. Understanding Li enhancement in K giants and role of accurate parallaxes

    NASA Astrophysics Data System (ADS)

    Singh, Raghubar; Reddy, B. E.

    2018-04-01

    Our recent studies based on a large sample of K giants with Hipparcos parallaxes and spectroscopic analysis resulted more than a dozen new Li-rich K giants including few super Li-rich ones. Most of the Li-rich K giants including the new ones appear to occur at the luminosity bump in the HR diagram. However, one can't rule out the possibility of overlap with the clump region where core He-burning K giants reside post He-flash at the tip of RGB. It is important to distinguish field K giants of clump from the bump region in the HR diagram to understand clues for Li production in K giants. In this poster, we explore whether GAIA parallaxes improve to disentangle clump from bump region, more precisely.

  19. Metallicity-Corrected Tip of the Red Giant Branch Distances to M66 and M96

    NASA Astrophysics Data System (ADS)

    Mager, Violet; Madore, Barry F.; Freedman, Wendy L.

    2018-06-01

    We present distances to M66 and M96 obtained through measurements of the tip of the red giant branch (TRGB) in HST ACS/WFC images, and give details of our method. The TRGB can be difficult to determine in color-magnitude diagrams where it is not a hard, well-defined edge. We discuss our approach to this in our edge-detection algorithm. Furthermore, metals affect the magnitude of the TRGB as a function of color, creating a slope to the edge that has been dealt with in the past by applying a red color cut-off. We instead apply a metallicity correction to the data that removes this effect, increasing the number of useable stars and providing a more accurate distance measurement.

  20. Metal-poor Stars Observed with the Magellan Telescope. II. Discovery of Four Stars with [Fe/H] <= -3.5

    NASA Astrophysics Data System (ADS)

    Placco, Vinicius M.; Frebel, Anna; Beers, Timothy C.; Christlieb, Norbert; Lee, Young Sun; Kennedy, Catherine R.; Rossi, Silvia; Santucci, Rafael M.

    2014-01-01

    We report on the discovery of seven low-metallicity stars selected from the Hamburg/ESO Survey, six of which are extremely metal-poor (EMP, [Fe/H] <= -3.0), with four having [Fe/H] <= -3.5. Chemical abundances or upper limits are derived for these stars based on high-resolution (R ~ 35,000) Magellan/MIKE spectroscopy, and are in general agreement with those of other very and extremely metal-poor stars reported in the literature. Accurate metallicities and abundance patterns for stars in this metallicity range are of particular importance for studies of the shape of the metallicity distribution function of the Milky Way's halo system, in particular for probing the nature of its low-metallicity tail. In addition, taking into account suggested evolutionary mixing effects, we find that six of the program stars (with [Fe/H] <= -3.35) possess atmospheres that were likely originally enriched in carbon, relative to iron, during their main-sequence phases. These stars do not exhibit overabundances of their s-process elements, and hence may be, within the error bars, additional examples of the so-called CEMP-no class of objects. Based on observations gathered with: The 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; the Southern Astrophysical Research (SOAR) telescope (SO2011B-002), which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); and the New Technology Telescope (NTT) of the European Southern Observatory (088.D-0344A), La Silla, Chile.

  1. Global properties of M31's stellar halo from the splash survey. II. Metallicity profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Karoline M.; Kalirai, Jason S.; Guhathakurta, Puragra

    2014-12-01

    We present the metallicity distribution of red giant branch (RGB) stars in M31's stellar halo, derived from photometric metallicity estimates for over 1500 spectroscopically confirmed RGB halo stars. The stellar sample comes from 38 halo fields observed with the Keck/DEIMOS spectrograph, ranging from 9 to 175 kpc in projected distance from M31's center, and includes 52 confirmed M31 halo stars beyond 100 kpc. While a wide range of metallicities is seen throughout the halo, the metal-rich peak of the metallicity distribution function becomes significantly less prominent with increasing radius. The metallicity profile of M31's stellar halo shows a continuous gradientmore » from 9 to ∼100 kpc, with a magnitude of ∼ – 0.01 dex kpc{sup –1}. The stellar velocity distributions in each field are used to identify stars that are likely associated with tidal debris features. The removal of tidal debris features does not significantly alter the metallicity gradient in M31's halo: a gradient is maintained in fields spanning 10-90 kpc. We analyze the halo metallicity profile, as well as the relative metallicities of stars associated with tidal debris features and the underlying halo population, in the context of current simulations of stellar halo formation. We argue that the large-scale gradient in M31's halo implies M31 accreted at least one relatively massive progenitor in the past, while the field to field variation seen in the metallicity profile indicates that multiple smaller progenitors are likely to have contributed substantially to M31's outer halo.« less

  2. No Metallicity Correlation Associated with the Kepler Dichotomy

    NASA Astrophysics Data System (ADS)

    Munoz Romero, Carlos Eduardo; Kempton, Eliza

    2018-01-01

    NASA’s Kepler mission has discovered thousands of planetary systems, ∼ 20% of which are found to host multiple transiting planets. This relative paucity (compared to the high fraction of single transiting systems) is postulated to result from a distinction in the architecture between multi-transiting systems and those hosting a single transiting planet: a phenomenon usually referred to as the Kepler dichotomy. We investigate the hypothesis that external giant planets are the main cause behind the over-abundance of single- relative to multi-transiting systems, which would be signaled by higher metallicities in the former sample. To this end, we perform a statistical analysis on the stellar metallicity distribution with respect to planet multiplicity in the Kepler data. We perform our analysis on a variety of samples taken from a population of 1062 Kepler main sequence planetary hosts, using precisely determined metallicities from the California-Kepler survey. Contrary to some predictions, we do not find a significant difference between the stellar metallicities of the single- and multiple-transiting planet systems. However, we do find a 43% upper bound for systems with a single non-giant planet that could also host a hidden giant planet, based on metallicity considerations. While the presence of external giant planets might be one factor behind the Kepler dichotomy, our results also favor alternative explanations. We suggest that additional radial velocity and direct imaging measurements are necessary to constrain the presence of gas giants in systems with a single transiting planet.

  3. Asteroseismic Diagram for Subgiants and Red Giants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gai, Ning; Tang, Yanke; Yu, Peng

    Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ{sub 1}–Δ ν asteroseismic diagram from models ofmore » subgiants and red giants with various masses and metallicities. The relationship ΔΠ{sub 1}–Δ ν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M {sub ⊙}, the ΔΠ{sub 1}–Δ ν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ , which indicate similar evolution states especially for similar mass stars, on the ΔΠ{sub 1}–Δ ν diagram.« less

  4. Hund’s rule in superatoms with transition metal impurities

    PubMed Central

    Medel, Victor M.; Reveles, Jose Ulises; Khanna, Shiv N.; Chauhan, Vikas; Sen, Prasenjit; Castleman, A. Welford

    2011-01-01

    The quantum states in metal clusters bunch into supershells with associated orbitals having shapes resembling those in atoms, giving rise to the concept that selected clusters could mimic the characteristics of atoms and be classified as superatoms. Unlike atoms, the superatom orbitals span over multiple atoms and the filling of orbitals does not usually exhibit Hund’s rule seen in atoms. Here, we demonstrate the possibility of enhancing exchange splitting in superatom shells via a composite cluster of a central transition metal and surrounding nearly free electron metal atoms. The transition metal d states hybridize with superatom D states and result in enhanced splitting between the majority and minority sets where the moment and the splitting can be controlled by the nature of the central atom. We demonstrate these findings through studies on TMMgn clusters where TM is a 3d atom. The clusters exhibit Hund’s filling, opening the pathway to superatoms with magnetic shells. PMID:21646542

  5. Constraining cosmic scatter in the Galactic halo through a differential analysis of metal-poor stars

    NASA Astrophysics Data System (ADS)

    Reggiani, Henrique; Meléndez, Jorge; Kobayashi, Chiaki; Karakas, Amanda; Placco, Vinicius

    2017-12-01

    Context. The chemical abundances of metal-poor halo stars are important to understanding key aspects of Galactic formation and evolution. Aims: We aim to constrain Galactic chemical evolution with precise chemical abundances of metal-poor stars (-2.8 ≤ [Fe/H] ≤ -1.5). Methods: Using high resolution and high S/N UVES spectra of 23 stars and employing the differential analysis technique we estimated stellar parameters and obtained precise LTE chemical abundances. Results: We present the abundances of Li, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Zn, Sr, Y, Zr, and Ba. The differential technique allowed us to obtain an unprecedented low level of scatter in our analysis, with standard deviations as low as 0.05 dex, and mean errors as low as 0.05 dex for [X/Fe]. Conclusions: By expanding our metallicity range with precise abundances from other works, we were able to precisely constrain Galactic chemical evolution models in a wide metallicity range (-3.6 ≤ [Fe/H] ≤ -0.4). The agreements and discrepancies found are key for further improvement of both models and observations. We also show that the LTE analysis of Cr II is a much more reliable source of abundance for chromium, as Cr I has important NLTE effects. These effects can be clearly seen when we compare the observed abundances of Cr I and Cr II with GCE models. While Cr I has a clear disagreement between model and observations, Cr II is very well modeled. We confirm tight increasing trends of Co and Zn toward lower metallicities, and a tight flat evolution of Ni relative to Fe. Our results strongly suggest inhomogeneous enrichment from hypernovae. Our precise stellar parameters results in a low star-to-star scatter (0.04 dex) in the Li abundances of our sample, with a mean value about 0.4 dex lower than the prediction from standard Big Bang nucleosynthesis; we also study the relation between lithium depletion and stellar mass, but it is difficult to assess a correlation due to the limited mass range. We

  6. The age-velocity dispersion relation of the Galactic discs from LAMOST-Gaia data

    NASA Astrophysics Data System (ADS)

    Yu, Jincheng; Liu, Chao

    2018-03-01

    We present the age-velocity dispersion relation (AVR) in three dimensions in the solar neighbourhood using 3564 commonly observed sub-giant/red giant branch stars selected from The Large Sky Area Multi-Object Fiber Spectroscopic Telescope, which gives the age and radial velocity, and Gaia, which measures the distance and proper motion. The stars are separated into metal-poor ([Fe/H] < -0.2 dex and metal-rich ([Fe/H] > -0.2 dex) groups, so that the metal-rich stars are mostly α-poor, while the metal-poor group are mostly contributed by α-enhanced stars. Thus, the old and metal-poor stars likely belong to the chemically defined thick disc population, while the metal-rich sample is dominated by the thin disc. The AVR for the metal-poor sample shows an abrupt increase at ≳7 Gyr, which is contributed by the thick disc component. On the other hand, most of the thin disc stars with [Fe/H] > -0.2 dex display a power-law-like AVR with indices of about 0.3-0.4 and 0.5 for the in-plane and vertical dispersions, respectively. This is consistent with the scenario that the disc is gradually heated by the spiral arms and/or the giant molecular clouds. Moreover, the older thin disc stars (>7 Gyr) have a rounder velocity ellipsoid, i.e. σϕ/σz is close to 1.0, probably due to the more efficient heating in vertical direction. Particularly for the old metal-poor sample located with |z| > 270 pc, the vertical dispersion is even larger than its azimuthal counterpart. Finally, the vertex deviations and the tilt angles are plausibly around zero with large uncertainties.

  7. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

    USGS Publications Warehouse

    Groves, David I.; Goldfarb, Richard J.; Santosh, M.

    2016-01-01

    In contrast to their province scale similarities, the different giant gold deposit styles show contrasting critical controls at the district to deposit scale. For orogenic gold deposits, the giants appear to have formed by conjunction of a greater number of parameters to those that control smaller deposits, with resultant geometrical and lithostratigraphic complexity as a guide to their location. There are few giant IRGS due to their inferior fluid-flux systems relative to orogenic gold deposits, and those few giants are essentially preservational exceptions. Many Carlin-type deposits are giants due to the exceptional conjunction of both structural and lithological parameters that caused reactive and permeable rocks, enriched in syngenetic gold, to be located below an impermeable cap along antiformal “trends”. Hydrocarbons probably played an important role in concentrating metal. The supergiant Post-Betze deposit has additional ore zones in strain heterogeneities surrounding the pre-gold Goldstrike stock. All unequivocal IOCG deposits are giant or near-giant deposits in terms of gold-equivalent resources, partly due to economic factors for this relatively poorly understood, low Cu-Au grade deposit type. The supergiant Olympic Dam deposit, the most shallowly formed deposit among the larger IOCGs, probably owes its origin to eruption of volatile-rich hybrid magma at surface, with formation of a large maar and intense and widespread brecciation, alteration and Cu-Au-U deposition in a huge rock volume.

  8. ``Flash'' synthesis of ``giant'' Mn-doped CdS/ZnSe/ZnS nanocrystals with ZnSe layer as hole quantum-well

    NASA Astrophysics Data System (ADS)

    Xu, Ruilin; Zhang, Jiayu

    Usually, exciton-Mn energy transfer in Mn-doped CdS/ZnS nanocrystals (NCs) can readily outcompete the exciton trapping by an order of magnitude. However, with the accumulation of non-radiative defects in the giant shell during the rapid growth of the thick shell (up to ~20 monolayers in no more than 10 minutes), the photoluminescence (PL) quantum yield of this kind of ``giant'' NCs is significantly reduced by the accumulation of non-radiative defects during the rapid growth of thick shell. That is because the exciton-Mn energy transfer in Mn-doped CdS/ZnS NCs is significantly inhibited by the hole trapping as the major competing process, resulting from the insufficient hole-confinement in CdS/ZnS NCs. Accordingly ``flash'' synthesis of giant Mn-doped CdS/ZnSe/ZnS NCs with ZnSe layer as hole quantum-well is developed to suppress the inhibition. Meanwhile Mn2+ PL peak changes profoundly from ~620 nm to ~540 nm after addition of ZnSe layer. Studies are under the way to explore the relevant mechanisms.

  9. WHT follow-up observations of extremely metal-poor stars identified from SDSS and LAMOST

    NASA Astrophysics Data System (ADS)

    Aguado, D. S.; González Hernández, J. I.; Allende Prieto, C.; Rebolo, R.

    2017-09-01

    Aims: We have identified several tens of extremely metal-poor star candidates from SDSS and LAMOST, which we follow up with the 4.2 m William Herschel Telescope (WHT) telescope to confirm their metallicity. Methods: We followed a robust two-step methodology. We first analyzed the SDSS and LAMOST spectra. A first set of stellar parameters was derived from these spectra with the FERRE code, taking advantage of the continuum shape to determine the atmospheric parameters, in particular, the effective temperature. Second, we selected interesting targets for follow-up observations, some of them with very low-quality SDSS or LAMOST data. We then obtained and analyzed higher-quality medium-resolution spectra obtained with the Intermediate dispersion Spectrograph and Imaging System (ISIS) on the WHT to arrive at a second more reliable set of atmospheric parameters. This allowed us to derive the metallicity with accuracy, and we confirm the extremely metal-poor nature in most cases. In this second step we also employed FERRE, but we took a running mean to normalize both the observed and the synthetic spectra, and therefore the final parameters do not rely on having an accurate flux calibration or continuum placement. We have analyzed with the same tools and following the same procedure six well-known metal-poor stars, five of them at [Fe/H] <-4 to verify our results. This showed that our methodology is able to derive accurate metallicity determinations down to [Fe/H] <-5.0. Results: The results for these six reference stars give us confidence on the metallicity scale for the rest of the sample. In addition, we present 12 new extremely metal-poor candidates: 2 stars at [Fe/H] ≃-4, 6 more in the range -4 < [Fe / H] < -3.5, and 4 more at -3.5 < [Fe / H] < -3.0. Conclusions: We conclude that we can reliably determine metallicities for extremely metal-poor stars with a precision of 0.2 dex from medium-resolution spectroscopy with our improved methodology. This provides a highly

  10. Timescales of quartz crystallization and the longevity of the Bishop giant magma body.

    PubMed

    Gualda, Guilherme A R; Pamukcu, Ayla S; Ghiorso, Mark S; Anderson, Alfred T; Sutton, Stephen R; Rivers, Mark L

    2012-01-01

    Supereruptions violently transfer huge amounts (100 s-1000 s km(3)) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ~760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.

  11. Resonances of nanoparticles with poor plasmonic metal tips

    NASA Astrophysics Data System (ADS)

    Ringe, Emilie; Desantis, Christopher J.; Collins, Sean M.; Duchamp, Martial; Dunin-Borkowski, Rafal E.; Skrabalak, Sara E.; Midgley, Paul A.

    2015-11-01

    The catalytic and optical properties of metal nanoparticles can be combined to create platforms for light-driven chemical energy storage and enhanced in-situ reaction monitoring. However, the heavily damped plasmon resonances of many catalytically active metals (e.g. Pt, Pd) prevent this dual functionality in pure nanostructures. The addition of catalytic metals at the surface of efficient plasmonic particles thus presents a unique opportunity if the resonances can be conserved after coating. Here, nanometer resolution electron-based techniques (electron energy loss, cathodoluminescence, and energy dispersive X-ray spectroscopy) are used to show that Au particles incorporating a catalytically active but heavily damped metal, Pd, sustain multiple size-dependent localized surface plasmon resonances (LSPRs) that are narrow and strongly localized at the Pd-rich tips. The resonances also couple with a dielectric substrate and other nanoparticles, establishing that the full range of plasmonic behavior is observed in these multifunctional nanostructures despite the presence of Pd.

  12. The Chemical Abundances of Stars in the Halo (CASH) Project. II. New Extremely Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Krugler, Julie A.; Frebel, A.; Roederer, I. U.; Sneden, C.; Shetrone, M.; Beers, T.; Christlieb, N.

    2011-01-01

    We present new abundance results from the Chemical Abundances of Stars in the Halo (CASH) project. The 500 CASH spectra were observed using the Hobby-Eberly Telescope in "snapshot" mode and are analyzed using an automated stellar parameter and abundance pipeline called CASHCODE. For the 20 most metal-poor stars of the CASH sample we have obtained high resolution spectra using the Magellan Telescope in order to test the uncertainties and systematic errors associated with the snapshot quality (i.e., R 15,000 and S/N 65) HET spectra and to calibrate the newly developed CASHCODE by making a detailed comparison between the stellar parameters and abundances determined from the high resolution and snapshot spectra. We find that the CASHCODE stellar parameters (effective temperature, surface gravity, metallicity, and microturbulence) agree well with the results of the manual analysis of the high resolution spectra. We present the abundances of three newly discovered stars with [Fe/H] < -3.5. For the entire pilot sample, we find typical halo abundance ratios with alpha-enhancement and Fe-peak depletion and a range of n-capture elements. The full CASH sample will be used to derive statistically robust abundance trends and frequencies (e.g. carbon and n-capture), as well as placing constraints on nucleosynthetic processes that occurred in the early universe.

  13. Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal.

    PubMed

    Su, Yiming; Adeleye, Adeyemi S; Keller, Arturo A; Huang, Yuxiong; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei

    2015-05-01

    Sulfide-modified nanoscale zerovalent iron (S-nZVI) is attracting a lot of attention due to its ease of production and high reactivity with organic pollutants. However, its structure is still poorly understood and its potential application in heavy metal remediation has not been explored. Herein, the structure of S-nZVI and its cadmium (Cd) removal performance under different aqueous conditions were carefully investigated. Transmission electron microscopy (TEM) with an energy-dispersive X-ray spectroscopy (EDS) analysis suggested that sulfur was incorporated into the zerovalent iron core. Scanning electron microscopy (SEM) with EDS analysis demonstrated that sulfur was also homogeneously distributed within the nanoparticles. When the concentration of Na2S2O4 was increased during synthesis, a flake-like structure (FeSx) increased significantly. S-nZVI had an optimal Cd removal capacity of 85 mg/g, which was >100% higher than for pristine nZVI. Even at pH 5, over 95% removal efficiency was observed, indicating sulfide compounds played a crucial role in metal ion removal and particle chemical stability. Oxygen impaired the structure of S-nZVI but enhanced Cd removal capacity to about 120 mg/g. Particle aging had no negative effect on removal capacity of S-nZVI, and Cd-containing mixtures remained stable in a two months experiment. S-nZVI can efficiently sequester dissolved metal ions from different contaminated water matrices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Melt inclusion shapes: Timekeepers of short-lived giant magma bodies

    DOE PAGES

    Pamukcu, Ayla S.; Gualda, Guilherme A. R.; Bégué, Florence; ...

    2015-09-24

    The longevity of giant magma bodies in the Earth’s crust prior to eruption is poorly constrained, but recognition of short time scales by multiple methods suggests that the accumulation and eruption of these giant bodies may occur rapidly. We describe a new method that uses textures of quartz-hosted melt inclusions, determined using quantitative three-dimensional propagation phase-contrast X-ray tomography, to estimate quartz crystallization times and growth rates, and we compare the results to those from Ti diffusion profiles. We investigate three large-volume, high-silica rhyolite eruptions: the 240 ka Ohakuri-Mamaku and 26.5 ka Oruanui (Taupo Volcanic Zone, New Zealand), and the 760more » ka Bishop Tuff (California, USA). Our results show that (1) longevity estimates from melt inclusion textures and Ti diffusion profiles are comparable, (2) quartz growth rates average ∼10−12 m/s, and (3) quartz melt inclusions give decadal to centennial time scales, revealing that giant magma bodies can develop over notably short historical time scales.« less

  15. H‑ Opacity and Water Dissociation in the Dayside Atmosphere of the Very Hot Gas Giant WASP-18b

    NASA Astrophysics Data System (ADS)

    Arcangeli, Jacob; Désert, Jean-Michel; Line, Michael R.; Bean, Jacob L.; Parmentier, Vivien; Stevenson, Kevin B.; Kreidberg, Laura; Fortney, Jonathan J.; Mansfield, Megan; Showman, Adam P.

    2018-03-01

    We present one of the most precise emission spectra of an exoplanet observed so far. We combine five secondary eclipses of the hot Jupiter WASP-18b (T day ∼ 2900 K) that we secured between 1.1 and 1.7 μm with the Wide Field Camera 3 instrument on board the Hubble Space Telescope. Our extracted spectrum (S/N = 50, R ∼ 40) does not exhibit clearly identifiable molecular features but is poorly matched by a blackbody spectrum. We complement this data with previously published Spitzer/Infrared Array Camera observations of this target and interpret the combined spectrum by computing a grid of self-consistent, 1D forward models, varying the composition and energy budget. At these high temperatures, we find there are important contributions to the overall opacity from H‑ ions, as well as the removal of major molecules by thermal dissociation (including water), and thermal ionization of metals. These effects were omitted in previous spectral retrievals for very hot gas giants, and we argue that they must be included to properly interpret the spectra of these objects. We infer a new metallicity and C/O ratio for WASP-18b, and find them well constrained to be solar ([M/H] = ‑0.01 ± 0.35, C/O < 0.85 at 3σ confidence level), unlike previous work but in line with expectations for giant planets. The best-fitting self-consistent temperature–pressure profiles are inverted, resulting in an emission feature at 4.5 μm seen in the Spitzer photometry. These results further strengthen the evidence that the family of very hot gas giant exoplanets commonly exhibit thermal inversions.

  16. Magnesium Isotope Ratios in ω Centauri Red Giants

    NASA Astrophysics Data System (ADS)

    Da Costa, G. S.; Norris, John E.; Yong, David

    2013-05-01

    We have used the high-resolution observations obtained at the Anglo-Australian Telescope with Ultra-High Resolution Facility (R ~ 100,000) and at Gemini-S with b-HROS (R ~ 150,000) to determine magnesium isotope ratios for seven ω Cen red giants that cover a range in iron abundance from [Fe/H] = -1.78 to -0.78 dex, and for two red giants in M4 (NGC 6121). The ω Cen stars sample both the "primordial" (i.e., O-rich, Na- and Al-poor) and the "extreme" (O-depleted, Na- and Al-rich) populations in the cluster. The primordial population stars in both ω Cen and M4 show (25Mg, 26Mg)/24Mg isotopic ratios that are consistent with those found for the primordial population in other globular clusters with similar [Fe/H] values. The isotopic ratios for the ω Cen extreme stars are also consistent with those for extreme population stars in other clusters. The results for the extreme population stars studied indicate that the 26Mg/24Mg ratio is highest at intermediate metallicities ([Fe/H] < -1.4 dex), and for the highest [Al/Fe] values. Further, the relative abundance of 26Mg in the extreme population stars is notably higher than that of 25Mg, in contrast to model predictions. The 25Mg/24Mg isotopic ratio in fact does not show any obvious dependence on either [Fe/H] or [Al/Fe] nor, intriguingly, any obvious difference between the primordial and extreme population stars.

  17. Pristine Survey : High-Resolution Spectral Analyses of New Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Venn, Kim; Starkenburg, Else; Martin, Nicolas; Kielty, Collin; Youakim, Kris; Arnetsen, Anke

    2018-06-01

    The Pristine survey (Starkenburg et al. 2017) is a new and very successful metal-poor star survey. Combining high-quality narrow-band CaHK CFHT/MegaCam photometry with existing broadband photometry from SDSS, then very metal-poor stars have been found as confirmed from low-resolution spectroscopy (Youakim et al. 2017). Furthermore, we have extended this survey towards the Galactic bulge in a pilot program to test the capabilities in the highly crowded and (inhomogeneously) extincted bulge (Arentsen et al. 2018). High resolution spectral follow-up analyses have been initiated at the CFHT with Espadons (V<15) and the Gemini/GRACES long optical fibre that also feeds the Espadons spectrograph (15metal-poor stars and to measure precision radial velocities. These spectra are used to search for chemical signatures that can be associated with the early and/or rapid Galactic chemical evolution or changes in the IMF, e.g., carbon enrichment, high [alpha/Fe] ratios vs alpha-challenged stars, and details in the neutron capture element ratios. While these early studies are being carried out using classical model atmospheres and synthetic spectral fitting (Venn et al. 2017, 2018), we are also exploring the use of a neural network for the fast, efficient, and precise determination of these stellar parameters and chemical abundances (e.g., StarNet, Fabbro et al. 2018).

  18. Giant Meckel’s diverticulum: An exceptional cause of intestinal obstruction

    PubMed Central

    Akbulut, Sami; Yagmur, Yusuf

    2014-01-01

    Meckel’s diverticulum (MD) results from incomplete involution of the proximal portion of the vitelline (also known as the omphalomesenteric) duct during weeks 5-7 of foetal development. Although MD is the most commonly diagnosed congenital gastrointestinal anomaly, it is estimated to affect only 2% of the population worldwide. Most cases are asymptomatic, and diagnosis is often made following investigation of unexplained gastrointestinal bleeding, perforation, inflammation or obstruction that prompt clinic presentation. While MD range in size from 1-10 cm, cases of giant MD (≥ 5 cm) are relatively rare and associated with more severe forms of the complications, especially for obstruction. Herein, we report a case of giant MD with secondary small bowel obstruction in an adult male that was successfully managed by surgical resection and anastomosis created with endoscopic stapler device (80 mm, endo-GIA stapler). Patient was discharged on post-operative day 6 without any complications. Histopathologic examination indicated Meckel’s diverticulitis without gastric or pancreatic metaplasia. PMID:24672650

  19. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: LEO IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Joshua D.; McWilliam, Andrew; Thompson, Ian B.

    2010-06-10

    We present high-resolution Magellan/MIKE spectroscopy of the brightest star in the ultra-faint dwarf galaxy Leo IV. We measure an iron abundance of [Fe/H] = -3.2, adding to the rapidly growing sample of extremely metal-poor (EMP) stars being identified in Milky Way satellite galaxies. The star is enhanced in the {alpha} elements Mg, Ca, and Ti by {approx}0.3 dex, very similar to the typical Milky Way halo abundance pattern. All of the light and iron-peak elements follow the trends established by EMP halo stars, but the neutron-capture elements Ba and Sr are significantly underabundant. These results are quite similar to thosemore » found for stars in the ultra-faint dwarfs Ursa Major II, Coma Berenices, Booetes I, and Hercules, suggesting that the chemical evolution of the lowest-luminosity galaxies may be universal. The abundance pattern we observe is consistent with predictions for nucleosynthesis from a Population III supernova explosion. The extremely low metallicity of this star also supports the idea that a significant fraction ({approx}>10%) of the stars in the faintest dwarfs have metallicities below [Fe/H] = -3.0.« less

  20. Winds of metal-poor OB stars: Updates from HST-COS UV spectroscopy

    NASA Astrophysics Data System (ADS)

    García, M.; Herrero, A.; Najarro, F.; Lennon, D. J.; Urbaneja, M. A.

    2015-01-01

    In the race to break the SMC frontier and reach metallicity conditions closer to the First Stars the information from UV spectroscopy is usually overlooked. New HST-COS observations of OB stars in the metal-poor galaxy IC1613, with oxygen content ~1/10 solar, have proved the important role of UV spectroscopy to characterize blue massive stars and their winds. The terminal velocities (υ∞) and abundances derived from the dataset have shed new light on the problem of metal-poor massive stars with strong winds. Furthermore, our results question the υ∞-υ esc and υ∞-Z scaling relations whose use in optical-only studies may introduce large uncertainties in the derived mass loss rates and wind-momenta. Finally, our results indicate that the detailed abundance pattern of each star may have a non-negligible impact on its wind properties, and scaling these as a function of one single metallicity parameter is probably too coarse an approximation. Considering, for instance, that the [α/Fe] ratio evolves with the star formation history of each galaxy, we may be in need of updating all our wind recipes.

  1. What the Most Metal-poor Stars Tell Us About the Early Universe

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2008-05-01

    The chemical evolution of the Galaxy and the early Universe is a key topic in modern astrophysics. The most metal-poor Galactic halo stars are now frequently used in an attempt to reconstruct the onset of the chemical and dynamical formation processes of the Galaxy. These stars are an easily-accessible local equivalent of the high-redshift Universe, and can thus be used to carry out field-field cosmology. The discovery of two astrophysically very important metal-poor objects has recently lead to a significant advance in the field. One object is the most iron-poor star yet found (with [Fe/H]=-5.4). The other stars displays the strongest known overabundances of heavy neutron-capture elements, such as uranium, and nucleo-chronometry yields a stellar age of 13 Gyr. Both stars already serve as benchmark objects for various theoretical studies with regard to nucleosynthesis processes in the early Galaxy. I will discuss how the abundance patterns of these and other metal-poor stars solidify and advance our understanding of the early Universe, and provide constraints on the nature of the first stars, as well as their explosion mechanisms and corresponding supernova nucleosynthesis yields. Large samples of these old objects are also employed to test theoretical predictions about the formation of the very first low-mass stars. In the near future, the combined power of near-field cosmology results with those of the next-generation facilities (e.g., MWA, JWST, GMT) may yield exceptional details about the formation processes of the first generations of stars and galaxies.

  2. Transformations between the 2MASS, SDSS, and BV I photometric systems for late-type giants

    NASA Astrophysics Data System (ADS)

    Yaz, E.; Bilir, S.; Karaali, S.; Ak, S.; Coşkunoğlu, B.; Cabrera-Lavers, A.

    2010-08-01

    We present colour transformations from Two Micron All Sky Survey (2MASS) photometric system to Johnson-Cousins system and to Sloan Digital Sky Survey (SDSS) system for late-type giants and vice versa. The giant star sample was formed using surface gravity constraints ({2 < log g ≤ 3}) to Cayrel de Strobel et al.' s (2001) spectroscopic catalogue. 2MASS, SDSS and Johnson-Cousins photometric data was taken from \\cite{Cu03}, \\cite{Ofek08}, and \\cite{vanLeeuwen2007}, respectively. The final sample was refined applying the following steps: (1) the data were dereddened, (2) the sample stars selected are of the highest photometric quality. We give two-colour dependent transformations as a function of metallicity as well as independent of metallicity. The transformations provide absolute magnitudes and distance determinations which can be used in space density evaluations at relatively short distances where some or all of the SDSS magnitudes of late-type giants are saturated.

  3. Noble metal-free reduced graphene oxide-ZnxCd₁-xS nanocomposite with enhanced solar photocatalytic H₂-production performance.

    PubMed

    Zhang, Jun; Yu, Jiaguo; Jaroniec, Mietek; Gong, Jian Ru

    2012-09-12

    Design and preparation of efficient artificial photosynthetic systems for harvesting solar energy by production of hydrogen from water splitting is of great importance from both theoretical and practical viewpoints. ZnS-based solid solutions have been fully proved to be an efficient visible-light driven photocatalysts, however, the H(2)-production rate observed for these solid solutions is far from exciting and sometimes an expensive Pt cocatalyst is still needed in order to achieve higher quantum efficiency. Here, for the first time we report the high solar photocatalytic H(2)-production activity over the noble metal-free reduced graphene oxide (RGO)-Zn(x)Cd(1-x)S nanocomposite prepared by a facile coprecipitation-hydrothermal reduction strategy. The optimized RGO-Zn(0.8)Cd(0.2)S photocatalyst has a high H(2)-production rate of 1824 μmol h(-1) g(-1) at the RGO content of 0.25 wt % and the apparent quantum efficiency of 23.4% at 420 nm (the energy conversion efficiency is ca. 0.36% at simulated one-sun (AM 1.5G) illumination). The results exhibit significantly improved photocatalytic hydrogen production by 450% compared with that of the pristine Zn(0.8)Cd(0.2)S, and are better than that of the optimized Pt-Zn(0.8)Cd(0.2)S under the same reaction conditions, showing that the RGO-Zn(0.8)Cd(0.2)S nanocomposite represents one of the most highly active metal sulfide photocatalyts in the absence of noble metal cocatalysts. This work creates a green and simple way for using RGO as a support to enhance the photocatalytic H(2)-production activity of Zn(x)Cd(1-x)S, and also demonstrates that RGO is a promising substitute for noble metals in photocatalytic H(2)-production.

  4. NGC 6273: Towards Defining A New Class of Galactic Globular Clusters?

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Rich, Robert Michael; Pilachowski, Catherine A.; Caldwell, Nelson; Mateo, Mario L.; Ira Bailey, John; Crane, Jeffrey D.

    2016-01-01

    A growing number of observations have found that several Galactic globular clusters exhibit abundance dispersions beyond the well-known light element (anti-)correlations. These clusters tend to be very massive, have >0.1 dex intrinsic metallicity dispersions, have complex sub-giant branch morphologies, and have correlated [Fe/H] and s-process element enhancements. Interestingly, nearly all of these clusters discovered so far have [Fe/H]~-1.7. In this context, we have examined the chemical composition of 18 red giant branch (RGB) stars in the massive, metal-poor Galactic bulge globular cluster NGC 6273 using high signal-to-noise, high resolution (R~27,000) spectra obtained with the Michigan/Magellan Fiber System (M2FS) and MSpec spectrograph mounted on the Magellan-Clay 6.5m telescope at Las Campanas Observatory. We find that the cluster exhibits a metallicity range from [Fe/H]=-1.80 to -1.30 and is composed of two dominant populations separated in [Fe/H] and [La/Fe] abundance. The increase in [La/Eu] as a function of [La/H] suggests that the increase in [La/Fe] with [Fe/H] is due to almost pure s-process enrichment. The most metal-rich star in our sample is not strongly La-enhanced, but is α-poor and may belong to a third "anomalous" stellar population. The two dominant populations exhibit the same [Na/Fe]-[Al/Fe] correlation found in other "normal" globular clusters. Therefore, NGC 6273 joins ω Centauri, M 22, M 2, and NGC 5286 as a possible new class of Galactic globular clusters.

  5. A CN Band Survey of Red Giants in the Globular Cluster M53

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Smith, G. H.

    2004-12-01

    We investigate the star-to-star variations in λ 3883 CN bandstrength among red giant stars in the low-metallicity globular cluster M53 ([Fe/H] = --2.0). Our data were taken with the Kast spectrograph on the 3-meter Shane telescope at Lick Observatory in April 2001. Star-to-star variations in CN bandstrength are common in intermediate- and high-metallicity globular clusters ([Fe/H] ≥ --1.6). Our data were obtained to test whether that variation will also be present in a low-metallicity globular cluster, or whether it will be suppressed by the overall lack of metals in the stars. Our preliminary result is that the λ 3883 CN band is weak in our program stars, which span the brightest magnitude of the red giant branch. On visual inspection, the M53 giants appear to be similar in their CN bandstrength to the four CN-weak giants in NGC 6752 whose average spectrum is plotted in Fig. 4 of Norris et al. (1981, ApJ, 244, 205). This work is planned to form part of a larger study of the metallicity dependence of CN bandstrength and carbon abundance behavior on the upper giant branch of globular clusters. This work is supported by NSF grant AST 00-98453 and by an award from the ARCS foundation, Northern California Chapter.

  6. Evidence of enrichment by individual SN from elemental abundance ratios in the very metal-poor dSph galaxy Boötes I

    NASA Astrophysics Data System (ADS)

    Feltzing, S.; Eriksson, K.; Kleyna, J.; Wilkinson, M. I.

    2009-12-01

    Aims. We establish the mean metallicity from high-resolution spectroscopy for the recently found dwarf spheroidal galaxy Boötes I and test whether it is a common feature for ultra-faint dwarf spheroidal galaxies to show signs of inhomogeneous chemical evolution (e.g. as found in the Hercules dwarf spheroidal galaxy). Methods: We analyse high-resolution, moderate signal-to-noise spectra for seven red giant stars in the Boötes I dSph galaxy using standard abundance analysis techniques. In particular, we assume local thermodynamic equilibrium and employ spherical model atmospheres and codes that take the sphericity of the star into account when calculating the elemental abundances. Results: We confirm previous determinations of the mean metallicity of the Boötes I dwarf spheroidal galaxy to be -2.3 dex. Whilst five stars are clustered around this metallicity, one is significantly more metal-poor, at -2.9 dex, and one is more metal-rich at, -1.9 dex. Additionally, we find that one of the stars, Boo-127, shows an atypically high [Mg/Ca] ratio, indicative of stochastic enrichment processes within the dSph galaxy. Similar results have previously only been found in the Hercules and Draco dSph galaxies and appear, so far, to be unique to this type of galaxy. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  7. Rival giant telescopes join to seek U.S. funding

    NASA Astrophysics Data System (ADS)

    Hand, Eric

    2018-05-01

    Two U.S.-led giant telescope projects, rivals for nearly 2 decades, announced this week that they have agreed to join forces. The Giant Magellan Telescope, a 25-meter telescope under construction in Chile, and the Thirty Meter Telescope, which backers hope to build atop Mauna Kea in Hawaii, are still short of partners and money. They will now work together to win funding from the National Science Foundation, which could help the projects catch up to a third giant telescope, the 39-meter European Extremely Large Telescope, due to begin operations in 2024. It is a historic peace accord to end a conflict that has divided funders and delayed both projects. The partnership commits the two projects to developing a joint plan that would allow astronomers from any institution to use the telescopes; under previous plans observing time was available only to researchers from nations or institutions that had provided funding. The projects are discussing awarding at least 25% of each telescope's time to nonpartners through a competitive process to be administered by the National Center for Optical-Infrared Astronomy—an umbrella organization that will replace the National Optical Astronomy Observatory sometime in fiscal year 2019. Telescope backers hope the public access plan will help persuade the federal government to pay for at least 25% of the total cost of the two facilities, a share that could reach $1 billion.

  8. Enhanced absorption with quantum dots, metal nanoparticles, and 2D materials

    NASA Astrophysics Data System (ADS)

    Simsek, Ergun; Mukherjee, Bablu; Guchhait, Asim; Chan, Yin Thai

    2016-03-01

    We fabricate and characterize mono- and few- layers of MoS2 and WSe2 on glass and SiO2/Si substrates. PbS quantum dots and/or Au nanoparticles are deposited on the fabricated thin metal dichalcogenide films by controlled drop casting and electron beam evaporation techniques. The reflection spectra of the fabricated structures are measured with a spatially resolved reflectometry setup. Both experimental and numerical results show that surface functionalization with metal nanoparticles can enhance atomically thin transition metal dichalcogenides' absorption and scattering capabilities, however semiconducting quantum dots do not create such effect.

  9. Germanium, Arsenic, and Selenium Abundances in Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.

    2012-09-01

    The elements germanium (Ge, Z = 32), arsenic (As, Z = 33), and selenium (Se, Z = 34) span the transition from charged-particle or explosive synthesis of the iron-group elements to neutron-capture synthesis of heavier elements. Among these three elements, only the chemical evolution of germanium has been studied previously. Here we use archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and observations from several ground-based facilities to study the chemical enrichment histories of seven stars with metallicities -2.6 <= [Fe/H] <= -0.4. We perform a standard abundance analysis of germanium, arsenic, selenium, and several other elements produced by neutron-capture reactions. When combined with previous derivations of germanium abundances in metal-poor stars, our sample reveals an increase in the [Ge/Fe] ratios at higher metallicities. This could mark the onset of the weak s-process contribution to germanium. In contrast, the [As/Fe] and [Se/Fe] ratios remain roughly constant. These data do not directly indicate the origin of germanium, arsenic, and selenium at low metallicity, but they suggest that the weak and main components of the s-process are not likely sources. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This research made use of StarCAT, hosted by the Mikulski Archive at the Space Telescope Science Institute (MAST). These data are associated with Programs GO-7348, GO-7433, GO-8197, GO-9048, GO-9455, and GO-9804.Based on data obtained from the European Southern Observatory (ESO) Science Archive Facility. These data are associated with Programs 67.D-0439(A), 074.C-0364(A), 076.B-0055(A), and 080.D-0347(A).This research has made use of the Keck Observatory Archive (KOA), which is operated by

  10. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission

    PubMed Central

    Lakowicz, Joseph R.

    2009-01-01

    Metallic particles and surfaces display diverse and complex optical properties. Examples include the intense colors of noble metal colloids, surface plasmon resonance absorption by thin metal films, and quenching of excited fluorophores near the metal surfaces. Recently, the interactions of fluorophores with metallic particles and surfaces (metals) have been used to obtain increased fluorescence intensities, to develop assays based on fluorescence quenching by gold colloids, and to obtain directional radiation from fluorophores near thin metal films. For metal-enhanced fluorescence it is difficult to predict whether a particular metal structure, such as a colloid, fractal, or continuous surface, will quench or enhance fluorescence. In the present report we suggest how the effects of metals on fluorescence can be explained using a simple concept, based on radiating plasmons (RPs). The underlying physics may be complex but the concept is simple to understand. According to the RP model, the emission or quenching of a fluorophore near the metal can be predicted from the optical properties of the metal structures as calculated from electrodynamics, Mie theory, and/or Maxwell’s equations. For example, according to Mie theory and the size and shape of the particle, the extinction of metal colloids can be due to either absorption or scattering. Incident energy is dissipated by absorption. Far-field radiation is created by scattering. Based on our model small colloids are expected to quench fluorescence because absorption is dominant over scattering. Larger colloids are expected to enhance fluorescence because the scattering component is dominant over absorption. The ability of a metal’s surface to absorb or reflect light is due to wavenumber matching requirements at the metal–sample interface. Wavenumber matching considerations can also be used to predict whether fluorophores at a given distance from a continuous planar surface will be emitted or quenched. These

  11. Observationally Constraining Gas Giant Composition via Their Host Star Abundances

    NASA Astrophysics Data System (ADS)

    Teske, Johanna; Thorngren, Daniel; Fortney, Jonathan

    2018-01-01

    While the photospheric abundances of the Sun match many rock-forming elemental abundances in the Earth to within 10 mol%, as well as in Mars, the Moon, and meteorites, the Solar System giant planets are of distinctly non-stellar composition — Jupiter's bulk metallicity (inferred from its bulk density, measured from spacecraft data) is ∼ x5-10 solar, and Saturn is ∼ x10-20 solar. This knowledge has led to dramatic advances in understanding models of core accretion, which now match the heavy element enrichment of each of the Solar System's giant planets. However, we have thus far lacked similar data for exoplanets to use as a check for formation and composition models over a much larger parameter space. Here we present a study of the host stars of a sample of cool transiting gas giants with measured bulk metal fractions (as in Thorngren et al. 2016) to better constrain the relation Zplanet/Zstar — giant exoplanet metal enrichment relative to the host star. We add a new dimension of chemical variation, measuring C, O, Mg, Si, Ni, and well as Fe (on which previous Zplanet/Zstar calculations were based). Our analysis provides the best constraints to date on giant exoplanet interior composition and how this relates to formation environment, and make testable predictions for JWST observations of exoplanet atmospheres.

  12. The NIR Ca ii triplet at low metallicity. Searching for extremely low-metallicity stars in classical dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Starkenburg, E.; Hill, V.; Tolstoy, E.; González Hernández, J. I.; Irwin, M.; Helmi, A.; Battaglia, G.; Jablonka, P.; Tafelmeyer, M.; Shetrone, M.; Venn, K.; de Boer, T.

    2010-04-01

    The NIR Ca ii triplet absorption lines have proven to be an important tool for quantitative spectroscopy of individual red giant branch stars in the Local Group, providing a better understanding of metallicities of stars in the Milky Way and dwarf galaxies and thereby an opportunity to constrain their chemical evolution processes. An interesting puzzle in this field is the significant lack of extremely metal-poor stars, below [Fe/H] = -3, found in classical dwarf galaxies around the Milky Way using this technique. The question arises whether these stars are really absent, or if the empirical Ca ii triplet method used to study these systems is biased in the low-metallicity regime. Here we present results of synthetic spectral analysis of the Ca ii triplet, that is focused on a better understanding of spectroscopic measurements of low-metallicity giant stars. Our results start to deviate strongly from the widely-used and linear empirical calibrations at [Fe/H] < -2. We provide a new calibration for Ca ii triplet studies which is valid for -0.5 ≥ [Fe/H] ≥ -4. We subsequently apply this new calibration to current data sets and suggest that the classical dwarf galaxies are not so devoid of extremely low-metallicity stars as was previously thought. Using observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile proposal 171.B-0588.

  13. Giant Planet Occurrence Rate as a Function of Stellar Mass

    NASA Astrophysics Data System (ADS)

    Reffert, Sabine; Bergmann, Christoph; Quirrenbach, Andreas; Trifonov, Trifon; Künstler, Andreas

    2013-07-01

    For over 12 years we have carried out a Doppler survey at Lick Observatory, identifying 15 planets and 20 candidate planets in a sample of 373 G and K giant stars. We investigate giant planet occurrence rate as a function of stellar mass and metallicity in this sample, which covers the mass range from about 1 to 3.5-5.0 solar masses. We confirm the presence of a strong planet-metallicity correlation in our giant star sample, which is fully consistent with the well-known planet-metallicity correlation for main-sequence stars. Furthermore, we find a very strong dependence of the giant planet occurrence rate on stellar mass, which we fit with a gaussian distribution. Stars with masses of about 1.9 solar masses have the highest probability of hosting a giant planet, whereas the planet occurrence rate drops rapidly for masses larger than 2.5 to 3.0 solar masses. We do not find any planets around stars more massive than 2.7 solar masses, although we have 113 stars with masses between 2.7 and 5.0 solar masses in our sample (planet occurrence rate in that mass range: 0% +1.6% at 68.3% confidence). This result is not due to a bias related to planet detectability as a function of stellar mass. We conclude that larger mass stars do not form giant planets which are observable at orbital distances of a few AU today. Possible reasons include slower growth rate due to the snow-line being located further out, longer migration timescale and faster disk depletion.

  14. Enhancement of the giant magnetoresistance in spin valves via oxides formed from magnetic layers

    NASA Astrophysics Data System (ADS)

    Gillies, M. F.; Kuiper, A. E. T.

    2000-11-01

    An enhancement of the giant magnetoresistance effect is investigated in spin valves where oxide layers, which are formed from magnetic layers, are incorporated in the structure. Information about Co-Fe based nanooxide layer (NOL) is obtained via x-ray photoelectron spectroscopy and Rutherford backscattering spectrometry. Cross-section transmission electron microscopy is also used to explore the effect of an NOL on the polycrystalline structure of the spin valve.

  15. Red giants observed by CoRoT and APOGEE: The evolution of the Milky Way's radial metallicity gradient

    NASA Astrophysics Data System (ADS)

    Anders, F.; Chiappini, C.; Minchev, I.; Miglio, A.; Montalbán, J.; Mosser, B.; Rodrigues, T. S.; Santiago, B. X.; Baudin, F.; Beers, T. C.; da Costa, L. N.; García, R. A.; García-Hernández, D. A.; Holtzman, J.; Maia, M. A. G.; Majewski, S.; Mathur, S.; Noels-Grotsch, A.; Pan, K.; Schneider, D. P.; Schultheis, M.; Steinmetz, M.; Valentini, M.; Zamora, O.

    2017-04-01

    Using combined asteroseismic and spectroscopic observations of 418 red-giant stars close to the Galactic disc plane (6 kpc < RGal ≲ 13 kpc, | ZGal| < 0.3 kpc), we measure the age dependence of the radial metallicity distribution in the Milky Way's thin disc over cosmic time. The slope of the radial iron gradient of the young red-giant population (-0.058 ± 0.008 [stat.] ±0.003 [syst.] dex/kpc) is consistent with recent Cepheid measurements. For stellar populations with ages of 1-4 Gyr the gradient is slightly steeper, at a value of -0.066 ± 0.007 ± 0.002 dex/kpc, and then flattens again to reach a value of -0.03 dex/kpc for stars with ages between 6 and 10 Gyr. Our results are in good agreement with a state-of-the-art chemo-dynamical Milky-Way model in which the evolution of the abundance gradient and its scatter can be entirely explained by a non-varying negative metallicity gradient in the interstellar medium, together with stellar radial heating and migration. We also offer an explanation for why intermediate-age open clusters in the solar neighbourhood can be more metal-rich, and why their radial metallicity gradient seems to be much steeper than that of the youngest clusters. Already within 2 Gyr, radial mixing can bring metal-rich clusters from the innermost regions of the disc to Galactocentric radii of 5 to 8 kpc. We suggest that these outward-migrating clusters may be less prone to tidal disruption and therefore steepen the local intermediate-age cluster metallicity gradient. Our scenario also explains why the strong steepening of the local iron gradient with age is not seen in field stars. In the near future, asteroseismic data from the K2 mission will allow for improved statistics and a better coverage of the inner-disc regions, thereby providing tighter constraints on theevolution of the central parts of the Milky Way.

  16. Poor short term outcome with a metal-on-metal total hip arthroplasty.

    PubMed

    Levy, Yadin D; Ezzet, Kace A

    2013-08-01

    Metal-on-metal (MoM) bearings for total hip arthroplasty (THA) have come under scrutiny with reports of high failure rates. Clinical outcome studies with several commercially available MoM THA bearings remain unreported. We evaluated 78 consecutive MoM THAs from a single manufacturer in 68 patients. Sixty-six received cobalt-chrome (CoCr) monoblock and 12 received modular titanium acetabular cups with internal CoCr liners. Femoral components were titanium with modular necks. At average 2.1 years postoperatively, 12 THAs (15.4%) demonstrated aseptic failure (10 revisions, 2 revision recommended). All revised hips demonstrated capsular necrosis with positive histology reaction for aseptic lymphocytic vasculitis-associated lesions/adverse local tissue reactions. Prosthetic instability following revision surgery was relatively common. Female gender was a strong risk factor for failure, though smaller cups were not. Both monoblock and modular components fared poorly. Corrosion was frequently observed around the proximal and distal end of the modular femoral necks. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualda, Guilherme A.R.; Pamukcu, Ayla S.; Ghiorso, Mark S.

    Supereruptions violently transfer huge amounts (100 s-1000 s km{sup 3}) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted {approx}760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain themore » timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.« less

  18. VizieR Online Data Catalog: Abundances of bright metal-poor stars (Schlaufman+, 2014)

    NASA Astrophysics Data System (ADS)

    Schlaufman, K. C.; Casey, A. R.

    2016-11-01

    As input to our sample selection, we use the APASS DR6 Catalog, the 2MASS All-Sky Point Source Catalog, and the AllWISE Source Catalog (Henden+ 2012JAVSO..40..430H; Skrutskie+ 2006AJ....131.1163S; Wright+ 2010AJ....140.1868W; Mainzer+ 2011ApJ...731...53M). We followed up our metal-poor star candidates with the Mayall 4m/Echelle, Gemini South/GMOS-S, and Magellan/MIKE telescopes and spectrographs. We observed 98 stars with the Mayall 4m/Echelle on 2013 June 25-27. We observed 90 stars with Gemini South/GMOS-S in service mode from 2014 March to July (R~3700). We observed 416 stars with Magellan/MIKE on 2014 June 21-23 and July 8-10 (R~41000 in the blue and R~35000 in the red). (3 data files).

  19. Enhanced spin-valve giant magneto-resistance in non-exchange biased sandwich films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, M; Cerjan, C; Law, B

    2000-02-17

    A large giant magnetoresistance (GMR) value of 7.5% has been measured in simple NiFeCo(1)/Cu/NiFeCo(2) sandwich films grown on a 30 {angstrom} Cr seed layer. This spin-valve GMR effect is consistent with the differential switching of the two NiFeCo layers due to an enhanced coercivity of the NiFeCo(1) layer grown on the Cr seed layer. A change in growth texture of the NiFeCo(1) layer from fcc (111) to bcc (110) crystallographic orientation leads to an increase in magnetic anisotropy and an enhancement in coercivity. The GMR value increases to 8.7% when a thin CoFe interfacial enhancing layer is incorporated. Further enhancementmore » in GMR values up to 14% is seen in the sandwich films by nano-oxide layer formation. The specular reflection at oxide/magnetic layer interface further extends the mean free path of spin-polarized electrons.« less

  20. Abundance differences among globular-cluster giants: Primordial versus evolutionary scenarios

    NASA Astrophysics Data System (ADS)

    Kraft, Robert P.

    1994-06-01

    primordial scenario. Among mildly metal-poor giants, i.e., those in the range from solar metallicity to (Fe/H) approximately -1, recent observational evidence suggesting the existence of a substructure in the (el/Fe) ratios of the heavier alpha elements, e.g., Si, Mg, Ca, and Ti, is discussed. The possible influence of this effect on the interpretation of the integrated spectra of extragalactic globular clusters and E galaxies is noted.

  1. NGC 6067: a young and massive open cluster with high metallicity

    NASA Astrophysics Data System (ADS)

    Alonso-Santiago, J.; Negueruela, I.; Marco, A.; Tabernero, H. M.; González-Fernández, C.; Castro, N.

    2017-08-01

    NGC 6067 is a young open cluster hosting the largest population of evolved stars among known Milky Way clusters in the 50-150 Ma age range. It thus represents the best laboratory in our Galaxy to constrain the evolutionary tracks of 5-7 M⊙ stars. We have used high-resolution spectra of a large sample of bright cluster members (45), combined with archival photometry, to obtain accurate parameters for the cluster as well as stellar atmospheric parameters. We derive a distance of 1.78 ± 0.12 kpc, an age of 90 ± 20 Ma and a tidal radius of 14.8^{+6.8}_{-3.2} arcmin. We estimate an initial mass above 5700 M⊙, for a present-day evolved population of two Cepheids, two A supergiants and 12 red giants with masses ≈6 M⊙. We also determine chemical abundances of Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y and Ba for the red clump stars. We find a supersolar metallicity, [Fe/H] = +0.19 ± 0.05, and a homogeneous chemical composition, consistent with the Galactic metallicity gradient. The presence of a Li-rich red giant, star 276 with A(Li) = 2.41, is also detected. An overabundance of Ba is found, supporting the enhanced s-process. The ratio of yellow to red giants is much smaller than 1, in agreement with models with moderate overshooting, but the properties of the cluster Cepheids do not seem consistent with current Padova models for supersolar metallicity.

  2. r-process enhanched metal-poor stars

    NASA Astrophysics Data System (ADS)

    Cowan, John; Sneden, Christopher; Lawler, James E.; Den Hartog, Elizabeth A.

    Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy - the progenitors of the halo stars - responsible for neutron-capture synthesis of the heavy elements. The large star-to-star scatter observed in the abundances of neutron-capture element/iron ratios at low metallicities - which diminishes with in- creasing metallicity or [Fe/H] - suggests the formation of these heavy elements (presumably from certain types of supernovae) was rare in the early Galaxy. The stellar abundances also indicate a change from the r-process to the slow neutron capture (i.e., s-) process at higher metallicities in the Galaxy and provide insight into Galactic chemical evolution. Finally, the detection of thorium and uranium in halo and globular cluster stars offers an independent age-dating technique that can put lower limits on the age of the Galaxy, and hence the Universe.

  3. Search for giant magnetic anisotropy in transition-metal dimers on defected hexagonal boron nitride sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Wang, H.; Wu, R. Q., E-mail: wur@uci.edu

    2016-05-28

    Structural and magnetic properties of many transition-metal dimers embedded in a defected hexagonal boron nitride monolayer are investigated through density functional calculations to search for systems with magnetic anisotropy energies (MAEs) larger than 30meV. In particular, Ir–Ir@Dh–BN is found to have both large MAE (∼126 meV) and high structural stability against dissociation and diffusion, and it hence can serve as magnetic unit in spintronics and quantum computing devices. This giant MAE mainly results from the spin orbit coupling and the magnetization of the upper Ir atom, which is in a rather isolated environment.

  4. MAGNESIUM ISOTOPE RATIOS IN {omega} CENTAURI RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Da Costa, G. S.; Norris, John E.; Yong, David

    2013-05-20

    We have used the high-resolution observations obtained at the Anglo-Australian Telescope with Ultra-High Resolution Facility (R {approx} 100,000) and at Gemini-S with b-HROS (R {approx} 150,000) to determine magnesium isotope ratios for seven {omega} Cen red giants that cover a range in iron abundance from [Fe/H] = -1.78 to -0.78 dex, and for two red giants in M4 (NGC 6121). The {omega} Cen stars sample both the ''primordial'' (i.e., O-rich, Na- and Al-poor) and the ''extreme'' (O-depleted, Na- and Al-rich) populations in the cluster. The primordial population stars in both {omega} Cen and M4 show ({sup 25}Mg, {sup 26}Mg)/{sup 24}Mgmore » isotopic ratios that are consistent with those found for the primordial population in other globular clusters with similar [Fe/H] values. The isotopic ratios for the {omega} Cen extreme stars are also consistent with those for extreme population stars in other clusters. The results for the extreme population stars studied indicate that the {sup 26}Mg/{sup 24}Mg ratio is highest at intermediate metallicities ([Fe/H] < -1.4 dex), and for the highest [Al/Fe] values. Further, the relative abundance of {sup 26}Mg in the extreme population stars is notably higher than that of {sup 25}Mg, in contrast to model predictions. The {sup 25}Mg/{sup 24}Mg isotopic ratio in fact does not show any obvious dependence on either [Fe/H] or [Al/Fe] nor, intriguingly, any obvious difference between the primordial and extreme population stars.« less

  5. Chemical abundance analysis of 13 southern symbiotic giants from high-resolution spectra at ˜1.56 μm

    NASA Astrophysics Data System (ADS)

    Gałan, Cezary; Mikołajewska, Joanna; Hinkle, Kenneth H.; Joyce, Richard R.

    2017-04-01

    Symbiotic stars (SySt) are binaries composed of a star in the later stages of evolution and a stellar remnant. The enhanced mass-loss from the giant drives interacting mass exchange and makes these systems laboratories for understanding binary evolution. Studies of the chemical compositions are particularly useful since this parameter has strong impact on the evolutionary path. The previous paper in this series presented photospheric abundances for 24 giants in S-type SySt enabling a first statistical analysis. Here, we present results for an additional sample of 13 giants. The aims are to improve statistics of chemical composition involved in the evolution of SySt, to study evolutionary status, mass transfer and to interpret this in terms of Galactic populations. High-resolution, near-IR spectra are used, employing the spectrum synthesis method in a classical approach, to obtain abundances of CNO and elements around the iron peak (Fe, Ti, Ni). Low-resolution spectra in the region around the Ca II triplet were used for spectral classification. The metallicities obtained cover a wide range with a maximum around ˜- 0.2 dex. The enrichment in the 14N isotope indicates that these giants have experienced the first dredge-up. Relative O and Fe abundances indicate that most SySt belong to the Galactic disc; however, in a few cases, the extended thick-disc/halo is suggested. Difficult to explain, relatively high Ti abundances can indicate that adopted microturbulent velocities were too small by ˜0.2-0.3 km s-1. The revised spectral types for V2905 Sgr, and WRAY 17-89 are M3 and M6.5, respectively.

  6. Low-metallicity Star Formation (IAU S255)

    NASA Astrophysics Data System (ADS)

    Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella

    2009-01-01

    'Shea and Michael L. Norman; 16. Damped Lyα systems as probes of chemical evolution over cosmological timescales Miroslava Dessauges-Zavadsky; 17. Connecting high-redshift galaxy populations through observations of local damped Lyman alpha dwarf galaxies Regina E. Schulte-Ladbeck; 18. Chemical enrichment and feedback in low metallicity environments: constraints on galaxy formation Francesca Matteucci; 19. Effects of reionization on dwarf galaxy formation Massimo Ricotti; 20. The importance of following the evolution of the dust in galaxies on their SEDs A. Schurer, F. Calura, L. Silva, A. Pipino, G. L. Granato, F. Matteucci and R. Maiolino; 21. About the chemical evolution of dSphs (and the peculiar globular cluster ωCen) Andrea Marcolini and Annibale D'Ercole; 22. Young star clusters in the small Magellanic cloud: impact of local and global conditions on star formation Elena Sabbi, Linda J. Smith, Lynn R. Carlson, Antonella Nota, Monca Tosi, Michele Cignoni, Jay S. Gallagher III, Marco Sirianni and Margaret Meixner; 23. Modeling the ISM properties of metal-poor galaxies and gamma-ray burst hosts Emily M. Levesque, Lisa J. Kewley, Kirsten Larson and Leonie Snijders; 24. Dwarf galaxies and the magnetisation of the IGM Uli Klein; Session III. Explosive Events in Low-Metallicity Environments: 25. Supernovae and their evolution in a low metallicity ISM Roger A. Chevalier; 26. First stars - type Ib supernovae connection Ken'ichi Nomoto, Masaomi Tanaka, Yasuomi Kamiya, Nozomu Tominaga and Keiichi Maeda; 27. Supernova nucleosynthesis in the early universe Nozomu Tominaga, Hideyuki Umeda, Keiichi Maeda, Ken'ichi Nomoto and Nobuyuki Iwamoto; 28. Powerful explosions at Z = 0? Sylvia Ekström, Georges Meynet, Raphael Hirschi and André Maeder; 29. Wind anisotropy and stellar evolution Cyril Georgy, Georges Meynet and André Maeder; 30. Low-mass and metal-poor gamma-ray burst

  7. Chromospheres and mass loss in metal-deficient giant stars

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Hartmann, L.; Avrett, E. H.

    1984-01-01

    Semiempirical atmospheric models indicate that the characteristic emission in the wings of the H-alpha line observed in Population II giant stars can arise naturally within static chromospheres. Radial expansion gives an asymmetric, blueshifted H-alpha core accompanied by greater emission in the red line wing than in the blue wing. Wind models with extended atmospheres suggest mass loss rates much smaller than 2 x 10 to the -9th solar mass per yr. Thus H-alpha provides no evidence that steady mass loss can significantly affect the evolution of stars on the red giant branch of globular clusters.

  8. Nature vs. nurture in the low-density environment: structure and evolution of early-type dwarf galaxies in poor groups

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Grützbauch, R.; Rampazzo, R.; Bressan, A.; Zeilinger, W. W.

    2011-04-01

    We present the stellar population properties of 13 dwarf galaxies residing in poor groups (low-density environment, LDE) observed with VIMOS at VLT. Ages, metallicities, and [α/Fe] ratios were derived within an r < re/2 aperture from the Lick indices Hβ, Mgb, Fe5270, and Fe5335 through comparison with our simple stellar population (SSP) models that account for variable [α/Fe] ratios. For a fiducial subsample of 10 early-type dwarfs, we derived median values and scatters around the medians of 5.7 ± 4.4 Gyr, -0.26 ± 0.28, and -0.04 ± 0.33 for age, log Z/Z⊙, and [α/Fe] , respectively. For a selection of bright early-type galaxies (ETGs) from an earlier sample residing in a comparable environment, we derive median values of 9.8 ± 4.1 Gyr, 0.06 ± 0.16, and 0.18 ± 0.13 for the same stellar population parameters. It follows that dwarfs are on average younger, less metal rich, and less enhanced in the α-elements than giants, in agreement with the extrapolation to the low-mass regime of the scaling relations derived for giant ETGs. From the total (dwarf + giant) sample, we find that age ∝ σ0.39 ± 0.22, Z ∝ σ0.80 ± 0.16, and α/Fe ∝ σ0.42 ± 0.22. We also find correlations with morphology, in the sense that the metallicity and the [α/Fe] ratio increase with the Sersic index n or with the bulge-to-total light fraction B/T. The presence of a strong morphology-[α/Fe] relation appears to contradict the possible evolution along the Hubble sequence from low B/T (low n) to high B/T (high n) galaxies. We also investigate the role played by environment by comparing the properties of our LDE dwarfs with those of Coma red passive dwarfs from the literature. We find possible evidence that LDE dwarfs experienced more prolonged star formations than Coma dwarfs, however larger data samples are needed to draw firmer conclusions. Based on observations obtained at the European Southern Observatory, La Silla, Chile.

  9. A Sacrificial Coating Strategy Toward Enhancement of Metal-Support Interaction for Ultrastable Au Nanocatalysts

    DOE PAGES

    Zhan, Wangcheng; He, Qian; Liu, Xiaofei; ...

    2016-11-22

    Supported gold (Au) nanocatalysts hold great promise for heterogeneous catalysis; however, their practical application is greatly hampered by poor thermodynamic stability. Herein, a general synthetic strategy is reported where discrete metal nanoparticles are made resistant to sintering, preserving their catalytic activities in high-temperature oxidation processes. Taking advantage of the unique coating chemistry of dopamine, sacrificial carbon layers are constructed on the material surface, stabilizing the supported catalyst. Upon annealing at high temperature under an inert atmosphere, the interactions between support and metal nanoparticle are dramatically enhanced, while the sacrificial carbon layers can be subsequently removed through oxidative calcination in air.more » Owing to the improved metal-support contact and strengthened electronic interactions, the resulting Au nanocatalysts are resistant to sintering and exhibit excellent durability for catalytic combustion of propylene at elevated temperatures. Moreover, the facile synthetic strategy can be extended to the stabilization of other supported catalysts on a broad range of supports, providing a general approach to enhancing the thermal stability and sintering resistance of supported nanocatalysts.« less

  10. Improved Co I log(gf) & hfs data and Abundance Determinations in the Photospheres of the Sun & Metal-poor Star HD 84937

    NASA Astrophysics Data System (ADS)

    Lawler, James E.; Sneden, Chris; Cowan, John J.

    2016-01-01

    New emission branching fraction measurements for 898 lines of the first spectrum of cobalt (Co I) from hollow cathode lamp spectra recorded with a 1m Fourier transform spectrometer (FTS) and a high resolution echelle spectrometer are reported. Radiative lifetimes from laser induced fluorescence measurements are combined with the branching fractions to determine accurate log(gf)s for the 898 lines. Selected published hyperfine structure (hfs) constants for levels of neutral Co are used to generate complete hfs component patterns for 195 transitions of Co I. These new laboratory data are applied to determine the Co abundance in the Sun and metal-poor star HD 84937, yielding log eps(Co) = 4.955 ± 0.007 (sigma = 0.059) based on 82 Co I lines and log eps(Co) = 2.785 ± 0.008 (sigma = 0.065) based on 66 Co I lines respectively. A Saha balance test on the photosphere of HD 84937 is performed using 16 UV lines of Co II, and good agreement is found with the Co I result in this metal-poor ([Fe I /H] = -2.32, [Fe II /H] = -2.32) dwarf star. The resulting value of [Co/Fe] = +0.14 supports a rise of Co/Fe at low metallicity that has been suggested in other studies. These new Co I data are part of a continuing effort to explore the limits of 1D/LTE photospheric models in metal-poor stars and to determine the relative abundance of Fe-group elements at low metallicity. This work is supported in part by NASA grant NNX10AN93G (J.E.L.), by NSF grant AST-1211055 (J.E.L.), and by NSF grant AST-1211585 (C.S.).

  11. Chlorine Isotope Ratios in M Giants and S Stars

    NASA Astrophysics Data System (ADS)

    Maas, Zachary; Pilachowski, C. A.

    2018-01-01

    Chlorine is an odd-Z, light element that has been poorly studied in stars. Recently, the first stellar abundance measurements of the isotopologue 35Cl were made and the 35Cl/37Cl ratio was derived in RZ Ari (Maas et al. 2016). Additional abundance measurements are necessary to understand the Galactic chemical evolution and complex nucleosynthesis of Cl. The Cl isotope ratio in particular is important in distinguishing contributions from different nucleosynthesis sites to the surface abundances of stars. For example, current nucloesynthesis models predict that both isotopes of Cl are produced primarily during core collapse supernovae (CCSNe) with the energy and progenitor mass impacting the isotopic ratio of the ejected material. In addition to CCSNe, 37Cl is formed by the s-process both in massive stars and in AGB stars, and 35Cl may be produced from neutrino spallation. Understanding the formation of the Cl isotopes is also important to studies of the interstellar medium (ISM). A range of Cl isotope ratios mainly between 2 - 3.5 have been measured in star forming regions, in the circumstellar envelopes of evolved stars, and in proto-stellar cores using Cl bearing molecules. Additional measurements of the Cl isotope ratio in nearby stars will test nucleosynthesis models and allow comparisons with the range of isotope ratios observed in the ISM.We build on the results of Maas et al. (2016) by measuring the Cl isotope ratio in six M giants and four S stars using R~50,000 resolution spectra from Phoenix on Gemini South. We find no significant difference between the average Cl isotope ratios in the M stars and S stars and our measurements are consistent with the range of values seen in the ISM. We also find the average Cl ratio to be larger than the predicted isotope ratio of 1.8 for the solar neighborhood. Finally, two S stars, GG Pup and WY Pyx, show anomalously strong HCl features with equivalent widths ~3-5 times larger than the HCl features of other stars of

  12. Abundance patterns of the light neutron-capture elements in very and extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Spite, F.; Spite, M.; Barbuy, B.; Bonifacio, P.; Caffau, E.; François, P.

    2018-03-01

    Aims: The abundance patterns of the neutron-capture elements in metal-poor stars provide a unique record of the nucleosynthesis products of the earlier massive primitive objects. Methods: We measured new abundances of so-called light neutron-capture of first peak elements using local thermodynamic equilibrium (LTE) 1D analysis; this analysis resulted in a sample of 11 very metal-poor stars, from [Fe/H] = -2.5 to [Fe/H] = -3.4, and one carbon-rich star, CS 22949-037 with [Fe/H] = -4.0. The abundances were compared to those observed in two classical metal-poor stars: the typical r-rich star CS 31082-001 ([Eu/Fe] > +1.0) and the r-poor star HD 122563 ([Eu/Fe] < 0.0), which are known to present a strong enrichment of the first peak neutron-capture elements relative to the second peak. Results: Within the first peak, the abundances are well correlated in analogy to the well-known correlation inside the abundances of the second-peak elements. In contrast, there is no correlation between any first peak element with any second peak element. We show that the scatter of the ratio of the first peak abundance over second peak abundance increases when the mean abundance of the second peak elements decreases from r-rich to r-poor stars. We found two new r-poor stars that are very similar to HD 122563. A third r-poor star, CS 22897-008, is even more extreme; this star shows the most extreme example of first peak elements enrichment to date. On the contrary, another r-poor star (BD-18 5550) has a pattern of first peak elements that is similar to the typical r-rich stars CS 31082-001, however this star has some Mo enrichment. Conclusions: The distribution of the neutron-capture elements in our very metal-poor stars can be understood as the combination of at least two mechanisms: one that enriches the forming stars cloud homogeneously through the main r-process and leads to an element pattern similar to the r-rich stars, such as CS 31082-001; and another that forms mainly lighter

  13. Enhancing Decoding Efficiency in Poor Readers via a Word Identification Game

    ERIC Educational Resources Information Center

    Gorp, Karly; Segers, Eliane; Verhoeven, Ludo

    2017-01-01

    The effects of a word identification game aimed at enhancing decoding efficiency in poor readers were tested. Following a pretest-posttest-retention design with a waiting control group, 62 poor-reading Dutch second graders received a five-hour tablet intervention across a period of five weeks. During the intervention, participants practiced…

  14. Exploring the Early Chemical Evolution of the Milky Way with LAMOST and Subaru

    NASA Astrophysics Data System (ADS)

    Li, Haining; Aoki, Wako; Honda, Satoshi; Zhao, Gang; Suda, Takuma; Christlieb, Norbert

    Extremely Metal-Poor (EMP) stars ([Fe/H] < -3.0) provide fundamental evidence on the nucleosynthesis and enrichment of the first stars and supernovae. LAMOST will observe 6 million Galactic stars through a 5-year spectroscopic survey, and thus provide an unprecedented chance to enlarge the EMP star sample. In 2014, a joint project on EMP stars was initiated with the LAMOST survey and Subaru follow-up observation. So far, more than 70 EMP stars have been found and confirmed, including identifications of a number of chemically interesting objects: three UMP (ultra metal-poor) stars with [Fe/H] ˜ -4.0, including the second UMP turnoff star with Li detection; a super Li-rich (A(Li) = +3) EMP giant, which is the most extreme example of Li enhancement in red giants known to date; a few EMP stars showing extreme enhancements in neutron-capture elements. Statistics of a large sample of EMP stars will constrain formation of the Milky Way halo.

  15. The R-process Alliance: First Release from the Southern Search for R-process-enhanced Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Hansen, Terese T.; Holmbeck, Erika M.; Beers, Timothy C.; Placco, Vinicius M.; Roederer, Ian U.; Frebel, Anna; Sakari, Charli M.; Simon, Joshua D.; Thompson, Ian B.

    2018-05-01

    The recent detection of a binary neutron star merger and the clear evidence of the decay of radioactive material observed in this event have, after 60 years of effort, provided an astrophysical site for the rapid neutron-capture (r-) process which is responsible for the production of the heaviest elements in our universe. However, observations of metal-poor stars with highly enhanced r-process elements have revealed abundance patterns suggesting that multiple sites may be involved. To address this issue, and to advance our understanding of the r-process, we have initiated an extensive search for bright (V < 13.5), very metal-poor ([Fe/H] < ‑2) stars in the Milky Way halo exhibiting strongly enhanced r-process signatures. This paper presents the first sample collected in the southern hemisphere using the echelle spectrograph on du Pont 2.5 m telescope at Las Campanas Observatory. We have observed and analyzed 107 stars with ‑3.13 < [Fe/H] < ‑0.79. Of those, 12 stars are strongly enhanced in heavy r-process elements (r-II), 42 stars show moderate enhancements of heavy r-process material (r-I), and 20 stars exhibit low abundances of the heavy r-process elements and higher abundances of the light r-process elements relative to the heavy ones (limited-r). This search is more successful at finding r-process-enhanced stars compared to previous searches, primarily due to a refined target selection procedure that focuses on red giants. This paper includes data gathered with the 2.5 m du Pont telescope located at Las Campanas Observatory, Chile.

  16. Method of enhancing selective isotope desorption from metals

    DOEpatents

    Knize, R.J.; Cecchi, J.L.

    1983-07-26

    This invention relates generally to the field of gas desorption from metals; and, more particularly, to a method of enhancing the selective desorption of a particular isotope of a gas from metals. Enhanced selective desorption is especially useful in the operation of fusion devices.

  17. Adjustable metal-semiconductor transition of FeS thin films by thermal annealing

    NASA Astrophysics Data System (ADS)

    Fu, Ganhua; Polity, Angelika; Volbers, Niklas; Meyer, Bruno K.; Mogwitz, Boris; Janek, Jürgen

    2006-12-01

    FeS polycrystalline thin films were prepared on float glass at 500°C by radio-frequency reactive sputtering. The influence of vacuum annealing on the metal-semiconductor transition of FeS films was investigated. It has been found that with the increase of the annealing temperature from 360to600°C, the metal-semiconductor transition temperature of FeS films first decreases and then increases, associated with first a reduction and then an enhancement of hysteresis width. The thermal stress is considered to give rise to the abnormal change of the metal-semiconductor transition of the FeS film during annealing.

  18. Metallic Contact between MoS2 and Ni via Au Nanoglue.

    PubMed

    Shi, Xinying; Posysaev, Sergei; Huttula, Marko; Pankratov, Vladimir; Hoszowska, Joanna; Dousse, Jean-Claude; Zeeshan, Faisal; Niu, Yuran; Zakharov, Alexei; Li, Taohai; Miroshnichenko, Olga; Zhang, Meng; Wang, Xiao; Huang, Zhongjia; Saukko, Sami; González, Diego López; van Dijken, Sebastiaan; Alatalo, Matti; Cao, Wei

    2018-05-01

    A critical factor for electronics based on inorganic layered crystals stems from the electrical contact mode between the semiconducting crystals and the metal counterparts in the electric circuit. Here, a materials tailoring strategy via nanocomposite decoration is carried out to reach metallic contact between MoS 2 matrix and transition metal nanoparticles. Nickel nanoparticles (NiNPs) are successfully joined to the sides of a layered MoS 2 crystal through gold nanobuffers, forming semiconducting and magnetic NiNPs@MoS 2 complexes. The intrinsic semiconducting property of MoS 2 remains unchanged, and it can be lowered to only few layers. Chemical bonding of the Ni to the MoS 2 host is verified by synchrotron radiation based photoemission electron microscopy, and further proved by first-principles calculations. Following the system's band alignment, new electron migration channels between metal and the semiconducting side contribute to the metallic contact mechanism, while semiconductor-metal heterojunctions enhance the photocatalytic ability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Discovery of a Metal-poor, Luminous Post-AGB Star that Failed the Third Dredge-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamath, D.; Winckel, H. Van; Wood, P. R.

    Post-asymptotic giant branch (post-AGB) stars are known to be chemically diverse. In this paper we present the first observational evidence of a star that has failed the third dredge-up (TDU). J005252.87-722842.9 is an A-type ( T {sub eff} = 8250 ± 250 K) luminous (8200 ± 700 L {sub ⊙}) metal-poor ([Fe/H] = −1.18 ± 0.10) low-mass ( M {sub initial} ≈ 1.5–2.0 M {sub ⊙}) post-AGB star in the Small Magellanic Cloud. Through a systematic abundance study, using high-resolution optical spectra from UVES, we found that this likely post-AGB object shows an intriguing photospheric composition with no confirmed carbon-enhancementmore » (upper limit of [C/Fe] < 0.50) nor enrichment of s -process elements. We derived an oxygen abundance of [O/Fe] = 0.29 ± 0.1. For Fe and O, we took the effects of nonlocal thermodynamic equilibrium into account. We could not derive an upper limit for the nitrogen abundance as there are no useful nitrogen lines within our spectral coverage. The chemical pattern displayed by this object has not been observed in single or binary post-AGBs. Based on its derived stellar parameters and inferred evolutionary state, single-star nucleosynthesis models predict that this star should have undergone TDU episodes while on the AGB, and it should be carbon enriched. However, our observations are in contrast with these predictions. We identify two possible Galactic analogs that are likely to be post-AGB stars, but the lack of accurate distances (hence luminosities) to these objects does not allow us to confirm their post-AGB status. If they have low luminosities, then they are likely to be dusty post-RGB stars. The discovery of J005252.87-722842.9 reveals a new stellar evolutionary channel whereby a star evolves without any TDU episodes.« less

  20. Timing of the formation and migration of giant planets as constrained by CB chondrites

    PubMed Central

    Johnson, Brandon C.; Walsh, Kevin J.; Minton, David A.; Krot, Alexander N.; Levison, Harold F.

    2016-01-01

    The presence, formation, and migration of giant planets fundamentally shape planetary systems. However, the timing of the formation and migration of giant planets in our solar system remains largely unconstrained. Simulating planetary accretion, we find that giant planet migration produces a relatively short-lived spike in impact velocities lasting ~0.5 My. These high-impact velocities are required to vaporize a significant fraction of Fe,Ni metal and silicates and produce the CB (Bencubbin-like) metal-rich carbonaceous chondrites, a unique class of meteorites that were created in an impact vapor-melt plume ~5 My after the first solar system solids. This indicates that the region where the CB chondrites formed was dynamically excited at this early time by the direct interference of the giant planets. Furthermore, this suggests that the formation of the giant planet cores was protracted and the solar nebula persisted until ~5 My. PMID:27957541

  1. Timing of the formation and migration of giant planets as constrained by CB chondrites.

    PubMed

    Johnson, Brandon C; Walsh, Kevin J; Minton, David A; Krot, Alexander N; Levison, Harold F

    2016-12-01

    The presence, formation, and migration of giant planets fundamentally shape planetary systems. However, the timing of the formation and migration of giant planets in our solar system remains largely unconstrained. Simulating planetary accretion, we find that giant planet migration produces a relatively short-lived spike in impact velocities lasting ~0.5 My. These high-impact velocities are required to vaporize a significant fraction of Fe,Ni metal and silicates and produce the CB (Bencubbin-like) metal-rich carbonaceous chondrites, a unique class of meteorites that were created in an impact vapor-melt plume ~5 My after the first solar system solids. This indicates that the region where the CB chondrites formed was dynamically excited at this early time by the direct interference of the giant planets. Furthermore, this suggests that the formation of the giant planet cores was protracted and the solar nebula persisted until ~5 My.

  2. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsyu, Tiffany; Prochaska, J. Xavier; Bolte, Michael

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O iii] λ 4363 Å emissionmore » line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way–like galaxy.« less

  3. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    NASA Astrophysics Data System (ADS)

    Hsyu, Tiffany; Cooke, Ryan J.; Prochaska, J. Xavier; Bolte, Michael

    2017-08-01

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O III] λ4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way-like galaxy.

  4. Free mate choice enhances conservation breeding in the endangered giant panda.

    PubMed

    Martin-Wintle, Meghan S; Shepherdson, David; Zhang, Guiquan; Zhang, Hemin; Li, Desheng; Zhou, Xiaoping; Li, Rengui; Swaisgood, Ronald R

    2015-12-15

    Conservation breeding programmes have become an increasingly important tool to save endangered species, yet despite the allocation of significant resources, efforts to create self-sustaining populations have met with limited success. The iconic giant panda (Ailuropoda melanoleuca) embodies the struggles associated with ex situ species conservation. Here we show that behavioural mate preferences in giant pandas predict reproductive outcomes. Giant pandas paired with preferred partners have significantly higher copulation and birth rates. Reproductive rates increase further when both partners show mutual preference for one another. If managers were to incorporate mate preferences more fully into breeding management, the production of giant panda offspring for China's reintroduction programme might be greatly expedited. When extended to the increasing numbers of species dependent on ex situ conservation breeding to avoid extinction, our findings highlight that mate preference and other aspects of informed behavioural management could make the difference between success and failure of these programmes.

  5. Free mate choice enhances conservation breeding in the endangered giant panda

    PubMed Central

    Martin-Wintle, Meghan S.; Shepherdson, David; Zhang, Guiquan; Zhang, Hemin; Li, Desheng; Zhou, Xiaoping; Li, Rengui; Swaisgood, Ronald R.

    2015-01-01

    Conservation breeding programmes have become an increasingly important tool to save endangered species, yet despite the allocation of significant resources, efforts to create self-sustaining populations have met with limited success. The iconic giant panda (Ailuropoda melanoleuca) embodies the struggles associated with ex situ species conservation. Here we show that behavioural mate preferences in giant pandas predict reproductive outcomes. Giant pandas paired with preferred partners have significantly higher copulation and birth rates. Reproductive rates increase further when both partners show mutual preference for one another. If managers were to incorporate mate preferences more fully into breeding management, the production of giant panda offspring for China's reintroduction programme might be greatly expedited. When extended to the increasing numbers of species dependent on ex situ conservation breeding to avoid extinction, our findings highlight that mate preference and other aspects of informed behavioural management could make the difference between success and failure of these programmes. PMID:26670381

  6. Giant spin Hall effect in graphene grown by chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Jayakumar; Koon, Gavin Kok Wai; Avsar, Ahmet; Ho, Yuda; Lee, Jong Hak; Jaiswal, Manu; Baeck, Seung-Jae; Ahn, Jong-Hyun; Ferreira, Aires; Cazalilla, Miguel A.; Neto, Antonio H. Castro; Özyilmaz, Barbaros

    2014-09-01

    Advances in large-area graphene synthesis via chemical vapour deposition on metals like copper were instrumental in the demonstration of graphene-based novel, wafer-scale electronic circuits and proof-of-concept applications such as flexible touch panels. Here, we show that graphene grown by chemical vapour deposition on copper is equally promising for spintronics applications. In contrast to natural graphene, our experiments demonstrate that chemically synthesized graphene has a strong spin-orbit coupling as high as 20 meV giving rise to a giant spin Hall effect. The exceptionally large spin Hall angle ~0.2 provides an important step towards graphene-based spintronics devices within existing complementary metal-oxide-semiconductor technology. Our microscopic model shows that unavoidable residual copper adatom clusters act as local spin-orbit scatterers and, in the resonant scattering limit, induce transverse spin currents with enhanced skew-scattering contribution. Our findings are confirmed independently by introducing metallic adatoms-copper, silver and gold on exfoliated graphene samples.

  7. Explaining the Ba, Y, Sr, and Eu abundance scatter in metal-poor halo stars: constraints to the r-process

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Chiappini, C.

    2014-05-01

    Context. Thanks to the heroic observational campaigns carried out in recent years we now have large samples of metal-poor stars for which measurements of detailed abundances exist. In particular, large samples of stars with metallicities -5 < [Fe/H] <-1 and measured abundances of Sr, Ba, Y, and Eu are now available. These data hold important clues on the nature of the contribution of the first stellar generations to the enrichment of our Galaxy. Aims: We aim to explain the scatter in Sr, Ba, Y, and Eu abundance ratio diagrams unveiled by the metal-poor halo stars. Methods: We computed inhomogeneous chemical evolution models for the Galactic halo assuming different scenarios for the r-process site: the electron-capture (EC) supernovae and the magnetorotationally driven (MRD) supernovae scenarios. We also considered models with and without the contribution of fast-rotating massive stars (spinstars) to an early enrichment by the s-process. A detailed comparison with the now large sample of stars with measured abundances of Sr, Ba, Y, Eu, and Fe is provided (both in terms of scatter plots and number distributions for several abundance ratios). Results: The scatter observed in these abundance ratios of the very metal-poor stars (with [Fe/H] <-2.5) can be explained by combining the s-process production in spinstars, and the r-process contribution coming from massive stars. For the r-process we have developed models for both the EC and the MRD scenarios that match the observations. Conclusions: With the present observational and theoretical constraints we cannot distinguish between the EC and the MRD scenarios in the Galactic halo. Independently of the r-process scenarios adopted, the production of elements by an s-process in spinstars is needed to reproduce the spread in abundances of the light neutron capture elements (Sr and Y) over heavy neutron capture elements (Ba and Eu). We provide a way to test our suggestions by means of the distribution of the Ba isotopic

  8. Method of enhancing selective isotope desorption from metals

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1984-01-01

    A method of enhancing the thermal desorption of a first isotope of a diatomic gas from a metal comprises the steps of (a) establishing a partial pressure of a second isotope of the diatomic gas in vicinity of the metal; heating the metal to a temperature such that the first isotope is desorbed from the metal; and reducing the partial pressure of the desorbed first isotope while maintaining the partial pressure of the second isotope substantially constant. The method is especially useful for enhancing the desorption of tritium from the Zr-Al getter in a plasma confinement device.

  9. Linking Dynamical and Stellar Evolution in the Metal-Poor Globular Cluster M92

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason

    2017-08-01

    We propose a 5 orbit HST program to acquire UV imaging at the center of the ancient, metal-poor globular cluster NGC 6341 (M92). Our program is designed to achieve two science goals with a single data set, 1.) to directly measure the diffusion of stars through the massive cluster's core, 2.) to pinpoint the phase of post main-sequence evolution at which [Fe/H] = -2.3 stars lose their mass. Our novel technique will achieve these goals by using the full power of WFC3's exquisite UV sensitivity at <0.3 microns combined with its high spatial resolution. We will uncover 1000 newly-formed white dwarfs in the center of M92 and track how their spatial distribution changes as they get older on the cooling sequence. Having just experienced significant mass loss, the youngest remnants with ages <10s of Myr will still be moving slowly like their 0.8 Msun progenitors, whereas the older remnants with t_cool > 100s Myr will be fully relaxed. Using the methodology we developed and successfully applied to 47 Tuc (Heyl et al. 2015a; 2015b), we will watch this dynamical evolution to measure the diffusion coefficient due to gravitational relaxation in the cluster's core and the past timing of stellar mass loss that was responsible for the current cluster mass segregation profile. M92 is the ideal target for this study as it complements our existing study of the relatively metal-rich cluster 47 Tuc; it has an extremely low metallicity of [Fe/H] = -2.3, very low foreground reddening (E(B-V) = 0.02), moderate concentration index, and a theoretically-expected relaxation timescale in its core of 90 Myr, which nicely splits the young and old white dwarfs that can be observed with Hubble.

  10. Chemical Complexity in the Eu-enhanced Monometallic Globular NGC 5986

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Mateo, Mario; Bailey, John I., III; Olszewski, Edward W.; Walker, Matthew G.

    2017-06-01

    NGC 5986 is a poorly studied but relatively massive Galactic globular cluster that shares several physical and morphological characteristics with “iron-complex” clusters known to exhibit significant metallicity and heavy-element dispersions. In order to determine whether NGC 5986 joins the iron-complex cluster class, we investigated the chemical composition of 25 red giant branch and asymptotic giant branch cluster stars using high-resolution spectra obtained with the Magellan-M2FS instrument. Cluster membership was verified using a combination of radial velocity and [Fe/H] measurements, and we found the cluster to have a mean heliocentric radial velocity of +99.76 km s-1 (σ = 7.44 km s-1). We derived a mean metallicity of [Fe/H] = -1.54 dex (σ = 0.08 dex), but the cluster’s small dispersion in [Fe/H] and low [La/Eu] abundance preclude it from being an iron-complex cluster. NGC 5986 has < [{Eu}/{Fe}]> =+0.76 {dex} (σ = 0.08 dex), which is among the highest ratios detected in a Galactic cluster, but the small [Eu/Fe] dispersion is puzzling because such high values near [Fe/H] ˜ -1.5 are typically only found in dwarf galaxies exhibiting large [Eu/Fe] variations. NGC 5986 exhibits classical globular cluster characteristics, such as uniformly enhanced [α/Fe] ratios, a small dispersion in Fe-peak abundances, and (anti)correlated light-element variations. Similar to NGC 2808, we find evidence that NGC 5986 may host at least four to five populations with distinct light-element compositions, and the presence of a clear Mg-Al anticorrelation along with an Al-Si correlation suggests that the cluster gas experienced processing at temperatures ≳65-70 MK. However, the current data do not support burning temperatures exceeding ˜100 MK. We find some evidence that the first- and second-generation stars in NGC 5986 may be fully spatially mixed, which could indicate that the cluster has lost a significant fraction of its original mass. This paper includes data gathered

  11. Fluid helium at conditions of giant planetary interiors

    PubMed Central

    Stixrude, Lars; Jeanloz, Raymond

    2008-01-01

    As the second most-abundant chemical element in the universe, helium makes up a large fraction of giant gaseous planets, including Jupiter, Saturn, and most extrasolar planets discovered to date. Using first-principles molecular dynamics simulations, we find that fluid helium undergoes temperature-induced metallization at high pressures. The electronic energy gap (band gap) closes at 20,000 K at a density half that of zero-temperature metallization, resulting in electrical conductivities greater than the minimum metallic value. Gap closure is achieved by a broadening of the valence band via increased s–p hydridization with increasing temperature, and this influences the equation of state: The Grüneisen parameter, which determines the adiabatic temperature–depth gradient inside a planet, changes only modestly, decreasing with compression up to the high-temperature metallization and then increasing upon further compression. The change in electronic structure of He at elevated pressures and temperatures has important implications for the miscibility of helium in hydrogen and for understanding the thermal histories of giant planets.

  12. Biomass yield comparisons of giant miscanthus, giant reed, and miscane grown under irrigated and rainfed conditions

    USDA-ARS?s Scientific Manuscript database

    The U.S. Department of Energy has initiated efforts to decrease the nation’s dependence on imported oil by developing domestic renewable sources of cellulosic-derived bioenergy. In this study, giant miscanthus (Miscanthus x giganteus), sugarcane (complex hybrid of Saccharum spp.), and giant reed (Ar...

  13. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?

    PubMed

    Bolan, Nanthi; Kunhikrishnan, Anitha; Thangarajan, Ramya; Kumpiene, Jurate; Park, Jinhee; Makino, Tomoyuki; Kirkham, Mary Beth; Scheckel, Kirk

    2014-02-15

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Enhanced Carrier Collection from CdS Passivated Grains in Solution-Processed Cu2ZnSn(S,Se)4 Solar Cells.

    PubMed

    Werner, Melanie; Keller, Debora; Haass, Stefan G; Gretener, Christina; Bissig, Benjamin; Fuchs, Peter; La Mattina, Fabio; Erni, Rolf; Romanyuk, Yaroslav E; Tiwari, Ayodhya N

    2015-06-10

    Solution processing of Cu2ZnSn(S,Se)4 (CZTSSe)-kesterite solar cells is attractive because of easy manufacturing using readily available metal salts. The solution-processed CZTSSe absorbers, however, often suffer from poor morphology with a bilayer structure, exhibiting a dense top crust and a porous bottom layer, albeit yielding efficiencies of over 10%. To understand whether the cell performance is limited by this porous layer, a systematic compositional study using (scanning) transmission electron microscopy ((S)TEM) and energy-dispersive X-ray spectroscopy of the dimethyl sulfoxide processed CZTSSe absorbers is presented. TEM investigation revealed a thin layer of CdS that is formed around the small CZTSSe grains in the porous bottom layer during the chemical bath deposition step. This CdS passivation is found to be beneficial for the cell performance as it increases the carrier collection and facilitates the electron transport. Electron-beam-induced current measurements reveal an enhanced carrier collection for this buried region as compared to reference cells with evaporated CdS.

  15. Evolution of thermally pulsing asymptotic giant branch stars - II. Dust production at varying metallicity

    NASA Astrophysics Data System (ADS)

    Nanni, Ambra; Bressan, Alessandro; Marigo, Paola; Girardi, Léo

    2013-09-01

    We present the dust ejecta of the new stellar models for the thermally pulsing asymptotic giant branch (TP-AGB) phase computed with the COLIBRI code. We use a formalism of dust growth coupled with a stationary wind for both M- and C-stars. In the original version of this formalism, the most efficient destruction process of silicate dust in M-giants is chemisputtering by H2 molecules. For these stars, we find that dust grains can only form at relatively large radial distances (r ˜ 5R*), where they cannot be efficiently accelerated, in agreement with other investigations. In the light of recent laboratory results, we also consider the alternative case that the condensation temperature of silicates is determined only by the competition between growth and free evaporation processes (i.e. no chemisputtering). With this latter approach we obtain dust condensation temperatures that are significantly higher (up to Tcond ˜ 1400 K) than those found when chemisputtering is included (Tcond ˜ 900 K), and in better agreement with condensation experiments. As a consequence, silicate grains can remain stable in inner regions of the circumstellar envelopes (r ˜ 2 R*), where they can rapidly grow and can be efficiently accelerated. With this modification, our models nicely reproduce the observed trend between terminal velocities and mass-loss rates of Galactic M-giants. For C-stars the formalism is based on the homogeneous growth scheme where the key role is played by the carbon over oxygen excess. The models reproduce fairly well the terminal velocities of Galactic stars and there is no need to invoke changes in the standard assumptions. At decreasing metallicity the carbon excess becomes more pronounced and the efficiency of dust formation increases. This trend could be in tension with recent observational evidence in favour of a decreasing efficiency, at decreasing metallicity. If confirmed by more observational data, it would indicate that either the amount of the carbon

  16. MASS OUTFLOW FROM RED GIANT STARS IN M13, M15, AND M92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meszaros, Sz.; Avrett, E. H.; Dupree, A. K.

    Chromospheric model calculations of the H{alpha} line for selected red giant branch and asymptotic giant branch (AGB) stars in the globular clusters M13, M15, and M92 are constructed to derive mass loss rates (MLRs). The model spectra are compared to the observations obtained with the Hectochelle on the MMT telescope. These stars show strong H{alpha} emissions and blueshifted H{alpha} cores signaling that mass outflow is present in all stars. Outflow velocities of 3-19 km s{sup -1}, larger than indicated by H{alpha} profiles, are needed in the upper chromosphere to achieve good agreement between the model spectra and the observations. Themore » resulting MLRs range from 0.6 x 10{sup -9} to 5 x 10{sup -9} M {sub sun} yr{sup -1}, which are about an order of magnitude lower than predicted from 'Reimers' law' or inferred from the infrared excess of similar stars. The MLR increases slightly with luminosity and with decreasing effective temperature. Stars in the more metal-rich M13 have higher MLRs by a factor of {approx}2 than in the metal-poor clusters M15 and M92. A fit to the MLRs is given by M-dot (M {sub sun} yr{sup -1}) = 0.092 xL {sup 0.16} x T {sup -2.02} {sub eff} x A {sup 0.37}, where A=10{sup [Fe/H]}. Multiple observations of stars revealed one object in M15, K757, in which the mass outflow increased by a factor of 6 between two observations separated by 18 months. Other stars showed changes in MLR by a factor of 1.5 or less.« less

  17. Planets around the evolved stars 24 Boötis and γ Libra: A 30 d-period planet and a double giant-planet system in possible 7:3 MMR

    NASA Astrophysics Data System (ADS)

    Takarada, Takuya; Sato, Bun'ei; Omiya, Masashi; Harakawa, Hiroki; Nagasawa, Makiko; Izumiura, Hideyuki; Kambe, Eiji; Takeda, Yoichi; Yoshida, Michitoshi; Itoh, Yoichi; Ando, Hiroyasu; Kokubo, Eiichiro; Ida, Shigeru

    2018-05-01

    We report the detection of planets around two evolved giant stars from radial velocity measurements at Okayama Astrophysical observatory. 24 Boo (G3 IV) has a mass of 0.99 M_{⊙}, a radius of 10.64 R_{⊙}, and a metallicity of [Fe/H] = -0.77. The star hosts one planet with a minimum mass of 0.91 MJup and an orbital period of 30.35 d. The planet has one of the shortest orbital periods among those ever found around evolved stars using radial-velocity methods. The stellar radial velocities show additional periodicity with 150 d, which can probably be attributed to stellar activity. The star is one of the lowest-metallicity stars orbited by planets currently known. γ Lib (K0 III) is also a metal-poor giant with a mass of 1.47 M_{⊙}, a radius of 11.1 R_{⊙}, and [Fe/H] = -0.30. The star hosts two planets with minimum masses of 1.02 MJup and 4.58 MJup, and periods of 415 d and 964 d, respectively. The star has the second-lowest metallicity among the giant stars hosting more than two planets. Dynamical stability analysis for the γ Lib system sets the minimum orbital inclination angle to be about 70° and suggests that the planets are in 7:3 mean-motion resonance, though the current best-fitting orbits for the radial-velocity data are not totally regular.

  18. Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

    PubMed Central

    Gualda, Guilherme A. R.; Pamukcu, Ayla S.; Ghiorso, Mark S.; Anderson, Alfred T.; Sutton, Stephen R.; Rivers, Mark L.

    2012-01-01

    Supereruptions violently transfer huge amounts (100 s–1000 s km3) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ∼760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500–3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies. PMID:22666359

  19. PopIII-star siblings in IZw18 and metal-poor WR galaxies unveiled from integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Vílchez, J. M.; Pérez-Montero, E.; Iglesias-Páramo, J.; Brinchmann, J.; Crowther, P. A.; Durret, F.; Kunth, D.

    Here, we highlight our recent results from the IFS study of Mrk178, the closest metal-poor WR galaxy, and of IZw18, the most metal-poor star-forming galaxy known in the local Universe. The IFS data of Mrk178 show the importance of aperture effects on the search for WR features, and the extent to which physical variations in the ISM properties can be detected. Our IFS data of IZw18 reveal its entire nebular HeIIλ4686-emitting region, and indicate for the very first time that peculiar, hot (nearly) metal-free ionizing stars (called here PopIII-star siblings) might hold the key to the HeII-ionization in IZw18.

  20. ORIGIN OF LITHIUM ENRICHMENT IN K GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Yerra Bharat; Reddy, Bacham E.; Lambert, David L.

    In this Letter, we report on a low-resolution spectroscopic survey for Li-rich K giants among 2000 low-mass (M {<=} 3 M{sub sun}) giants spanning the luminosity range from below to above the luminosity of the clump. Fifteen new Li-rich giants including four super Li-rich K giants (log {epsilon}(Li) {>=}3.2) were discovered. A significant finding is that there is a concentration of Li-rich K giants at the luminosity of the clump or red horizontal branch. This new finding is partly a consequence of the fact that our low-resolution survey is the first large survey to include giants well below and abovemore » the red giant branch (RGB) bump and clump locations in the H-R diagram. Origin of the lithium enrichment may be plausibly attributed to the conversion of {sup 3}He via {sup 7}Be to {sup 7}Li by the Cameron-Fowler mechanism but the location for the onset of the conversion is uncertain. Two possible opportunities to effect this conversion are discussed: the bump in the first ascent of the RGB and the He-core flash at the tip of the RGB. The finite luminosity spread of the Li-rich giants serves to reject the idea that Li enhancement is, in general, a consequence of a giant swallowing a large planet.« less

  1. Electroluminescence Efficiency Enhancement using Metal Nanoparticles

    DTIC Science & Technology

    2008-06-22

    ABSTRACT We apply the “effective mode volume” theory to evaluate enhancement of the electroluminescence efficiency of semiconductor emitters placed in... Electroluminescence efficiency enhancement using metal nanoparticles J. B. Khurgin,1 G. Sun,2,a and R. A. Soref3 1Department of Electrical and Computer...published online 17 July 2008 We apply the “effective mode volume” theory to evaluate enhancement of the electroluminescence efficiency of semiconductor

  2. Hydrogen release reactions of Al-based complex hydrides enhanced by vibrational dynamics and valences of metal cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, T.; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.

    2016-08-31

    Hydrogen release from Al-based complex hydrides composed of metal cation(s) and [AlH4] – was investigated using inelastic neutron scattering viewed from vibrational dynamics. Here, the hydrogen release followed the softening of translational and [AlH4] – librational modes, which was enhanced by vibrational dynamics and the valence(s) of the metal cation(s).

  3. Comparative study on the sensitivity of turions and active fronds of giant duckweed (Spirodela polyrhiza (L.) Schleiden) to heavy metal treatments.

    PubMed

    Oláh, Viktor; Hepp, Anna; Mészáros, Ilona

    2015-08-01

    Standard ecotoxicological test procedures use only active forms of aquatic plants. The potential effects of toxicants on vegetative propagules, which play an important role in the survival of several aquatic plant species, is not well understood. Because turion-like resting propagules overwinter on the water bottom in temperate regions, they could be exposed to contaminants for longer periods than active plants. Due to its turion producing capability, giant duckweed (Spirodela polyrhiza) is widely used in studying morphogenesis, dormancy, and activation mechanisms in plants. It is also suitable for ecotoxicological purposes. The present work aims to compare the growth inhibition sensitivity of active (normal frond) and overwintering (turion) forms of S. polyrhiza to concentrations of nickel (Ni), cadmium (Cd) and hexavalent chromium (Cr) ranging from 0 to 100mgL(-1). The results indicated that in general, resting turions have higher heavy metal tolerance than active fronds. Cd proved to be the most toxic heavy metal to S. polyrhiza active frond cultures because it induced rapid turion formation. In contrast, the toxicity of Ni and Cr were found to be similar but lower than the effects of Cd. Cr treatments up to 10mgL(-1) did not result in any future negative effects on turion activation. Turions did not survive heavy metal treatments at higher concentrations of Cr. Cd and Ni treatments affected both the floating-up and germination of turions but did not significantly affect the vigor of sprouts. Higher concentrations (of 100mgL(-1)) Cd completely inhibited germination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A Gas-poor Planetesimal Feeding Model for the Formation of Giant Planet Satellite Systems: Disk Size and Formation Timescale

    NASA Astrophysics Data System (ADS)

    Estrada, P. R.; Mosqueira, I.

    2003-05-01

    Mosqueira and Estrada (2003a) argue that following giant planet accretion a largely quiescent circumplanetary disk may form with most of the mass inside a radius located outside, but perhaps close to, the centrifugal radius rc = RH/48, where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, and extending as far as the irregular satellites at RH/5 due to the high specific angular momentum of parcels of gas accreted from distances several times RH during the final stages of planetary growth (Lubow et al. 1999). Provided that allowances are made for the capture of Triton from heliocentric orbit, this picture fits well with the primordial satellite systems of all four giant planets. Because strong gas turbulence would smooth out the gas surface density of the disk, this description can only apply if the turbulence subsides as planetary accretion ceases. Although the viability of a hydrodynamic shear instability in Keplerian disks that can sustain significant post-accretion turbulence and drive evolution of the gas disk is in serious doubt (see Mosqueira et al. this conference), the possibility has not yet been totally ruled out. This leads us to consider gas-poor scenarios that might produce a close-in regular satellite system. To this end, we re-examine the ideas of Safronov et al. (1986) to see whether a gas-free (or nearly gas-free) model can be made consistent with the extent of the regular satellites of the giant planets. In this model, planetesimals containing most of the mass of solids (Mizuno et al. 1978; Weidenschilling 1997) that are de-coupled from the gas and whose dynamics must be followed independently are collisionally captured and form a swarm of circumplanetary objects lasting for perhaps ˜ 106 years. While such a swarm might occupy a significant fraction of the Hill radius of the planet, the small net angular momentum of the swarm might lead to the formation of close-in prograde satellites as

  5. Enhanced Electrochemical and Thermal Transport Properties of Graphene/MoS2 Heterostructures for Energy Storage: Insights from Multiscale Modeling.

    PubMed

    Gong, Feng; Ding, Zhiwei; Fang, Yin; Tong, Chuan-Jia; Xia, Dawei; Lv, Yingying; Wang, Bin; Papavassiliou, Dimitrios V; Liao, Jiaxuan; Wu, Mengqiang

    2018-05-02

    Graphene has been combined with molybdenum disulfide (MoS 2 ) to ameliorate the poor cycling stability and rate performance of MoS 2 in lithium ion batteries, yet the underlying mechanisms remain less explored. Here, we develop multiscale modeling to investigate the enhanced electrochemical and thermal transport properties of graphene/MoS 2 heterostructures (GM-Hs) with a complex morphology. The calculated electronic structures demonstrate the greatly improved electrical conductivity of GM-Hs compared to MoS 2 . Increasing the graphene layers in GM-Hs not only improves the electrical conductivity but also stabilizes the intercalated Li atoms in GM-Hs. It is also found that GM-Hs with three graphene layers could achieve and maintain a high thermal conductivity of 85.5 W/(m·K) at a large temperature range (100-500 K), nearly 6 times that of pure MoS 2 [∼15 W/(m·K)], which may accelerate the heat conduction from electrodes to the ambient. Our quantitative findings may shed light on the enhanced battery performances of various graphene/transition-metal chalcogenide composites in energy storage devices.

  6. Before the Bar: Kinematic Detection of a Spheroidal Metal-poor Bulge Component

    NASA Astrophysics Data System (ADS)

    Kunder, Andrea; Rich, R. M.; Koch, A.; Storm, J.; Nataf, D. M.; De Propris, R.; Walker, A. R.; Bono, G.; Johnson, C. I.; Shen, Juntai; Li, Z.-Y.

    2016-04-01

    We present 947 radial velocities of RR Lyrae variable stars in four fields located toward the Galactic bulge, observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay (BRAVA-RR). We show that these RR Lyrae stars (RRLs) exhibit hot kinematics and null or negligible rotation and are therefore members of a separate population from the bar/pseudobulge that currently dominates the mass and luminosity of the inner Galaxy. Our RRLs predate these structures and have metallicities, kinematics, and spatial distribution that are consistent with a “classical” bulge, although we cannot yet completely rule out the possibility that they are the metal-poor tail of a more metal-rich ([{Fe}/{{H}}]˜ -1 dex) halo-bulge population. The complete catalog of radial velocities for the BRAVA-RR stars is also published electronically.

  7. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    NASA Astrophysics Data System (ADS)

    Amarsi, A. M.; Lind, K.; Asplund, M.; Barklem, P. S.; Collet, R.

    2016-12-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D hydrodynamic STAGGER model atmospheres, and employ a new model atom that includes new quantum-mechanical neutral hydrogen collisional rate coefficients. With the exception of the red giant HD122563, we find that the 3D non-LTE models achieve Fe I/Fe II excitation and ionization balance as well as not having any trends with equivalent width to within modelling uncertainties of 0.05 dex, all without having to invoke any microturbulent broadening; for HD122563 we predict that the current best parallax-based surface gravity is overestimated by 0.5 dex. Using a 3D non-LTE analysis, we infer iron abundances from the 3D model atmospheres that are roughly 0.1 dex higher than corresponding abundances from 1D MARCS model atmospheres; these differences go in the same direction as the non-LTE effects themselves. We make available grids of departure coefficients, equivalent widths and abundance corrections, calculated on 1D MARCS model atmospheres and horizontally and temporally averaged 3D STAGGER model atmospheres.

  8. CNO isotopes in red giant stars

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    Observational data on CNO abundance ratios in red giants and the interstellar medium (ISM) are analyzed for the implications for the production and distribution of CNO nuclides. The data included isotope abundance measurements for the atmospheres and recent ejecta of cool giants, e.g., carbon stars, S-type stars, red supergiants and oxygen-rich giants beginning an ascent of the giant branch. The contribution of intermediate-mass stars to galactic nuclear evolution is discussed after comparing red giant abundances with ISM abundances, particularly the isotopes O-16, -17 and -18. The O-12/O-18 ratios of red giants are distinctly different from those in interstellar molecular clouds. The CNO values also vary widely from the values found in the solar system.

  9. Development and impact of biological control of giant reed, Arundo donax, in the Rio Grande Basin of the U.S. and Mexico

    USDA-ARS?s Scientific Manuscript database

    Giant reed (Arundo donax L.) also known as giant cane or carrizo cane, is an exotic perennial grass that has infested over 60,000 hectares along riparian corridors in the southwestern U.S. The most severe infestations are in the Lower Rio Grande Basin, where giant reed along the Rio Grande and Mexic...

  10. The Metal-poor non-Sagittarius (?) Globular Cluster NGC 5053: Orbit and Mg, Al, and Si Abundances

    NASA Astrophysics Data System (ADS)

    Tang, Baitian; Fernández-Trincado, J. G.; Geisler, Doug; Zamora, Olga; Mészáros, Szabolcs; Masseron, Thomas; Cohen, Roger E.; García-Hernández, D. A.; Dell’Agli, Flavia; Beers, Timothy C.; Schiavon, Ricardo P.; Sohn, Sangmo Tony; Hasselquist, Sten; Robin, Annie C.; Shetrone, Matthew; Majewski, Steven R.; Villanova, Sandro; Schiappacasse Ulloa, Jose; Lane, Richard R.; Minnti, Dante; Roman-Lopes, Alexandre; Almeida, Andres; Moreno, E.

    2018-03-01

    Metal-poor globular clusters (GCs) exhibit intriguing Al–Mg anti-correlations and possible Si–Al correlations, which are important clues to decipher the multiple-population phenomenon. NGC 5053 is one of the most metal-poor GCs in the nearby universe and has been suggested to be associated with the Sagittarius (Sgr) dwarf galaxy, due to its similarity in location and radial velocity with one of the Sgr arms. In this work, we simulate the orbit of NGC 5053, and argue against a physical connection between Sgr and NGC 5053. On the other hand, the Mg, Al, and Si spectral lines, which are difficult to detect in the optical spectra of NGC 5053 stars, have been detected in the near-infrared APOGEE spectra. We use three different sets of stellar parameters and codes to derive the Mg, Al, and Si abundances. Regardless of which method is adopted, we see a large Al variation, and a substantial Si spread. Along with NGC 5053, metal-poor GCs exhibit different Mg, Al, and Si variations. Moreover, NGC 5053 has the lowest cluster mass among the GCs that have been identified to exhibit an observable Si spread until now.

  11. Atomic diffusion in metal-poor stars. II. Predictions for the Spite plateau

    NASA Astrophysics Data System (ADS)

    Salaris, M.; Weiss, A.

    2001-09-01

    We have computed a grid of up-to-date stellar evolutionary models including atomic diffusion, in order to study the evolution with time of the surface Li abundance in low-mass metal-poor stars. We discuss in detail the dependence of the surface Li evolution on the initial metallicity and stellar mass, and compare the abundances obtained from our models with the available Li measurements in Pop II stars. While it is widely accepted that the existence of the Spite Li-plateau for these stars is a strong evidence that diffusion is inhibited, we show that, when taking into account observational errors, uncertainties in the Li abundance determinations, in the T_eff scale, and in particular the size of the observed samples of stars, the Spite plateau and the Li abundances in subgiant branch stars can be reproduced also by models including fully efficient diffusion, provided that the most metal-poor field halo objects are between 13.5 and 14 Gyr old. We provide the value of the minimum number of plateau stars to observe, for discriminating between efficient or inhibited diffusion. {From} our models with diffusion we derive that the average Li abundance along the Spite plateau is about a factor of 2 lower than the primordial one. As a consequence, the derived primordial Li abundance would be consistent with a high helium and low deuterium Big Bang Nucleosynthesis; this implies a high cosmological baryon density as inferred from the analyses of the cosmic microwave background.

  12. Giant cells around bone biomaterials: Osteoclasts or multi-nucleated giant cells?

    PubMed

    Miron, Richard J; Zohdi, Hamoon; Fujioka-Kobayashi, Masako; Bosshardt, Dieter D

    2016-12-01

    Recently accumulating evidence has put into question the role of large multinucleated giant cells (MNGCs) around bone biomaterials. While cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials, it was originally thought that specifically in bone tissues, all giant cells were bone-resorbing osteoclasts whereas foreign body giant cells (FBGCs) were found associated with a connective tissue foreign body reaction resulting in fibrous encapsulation and/or material rejection. Despite the great majority of bone grafting materials routinely found with large osteoclasts, a special subclass of bone biomaterials has more recently been found surrounded by large giant cells virtually incapable of resorbing bone grafts even years after their implantation. While original hypotheses believed that a 'foreign body reaction' may be taking place, histological data retrieved from human samples years after their implantation have put these original hypotheses into question by demonstrating better and more stable long-term bone volume around certain bone grafts. Exactly how or why this 'special' subclass of giant cells is capable of maintaining long-term bone volume, or methods to scientifically distinguish them from osteoclasts remains extremely poorly studied. The aim of this review article was to gather the current available literature on giant cell markers and differences in expression patterns between osteoclasts and MNGCs utilizing 19 specific markers including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (previously referred to as FBGCs) as well as wound-healing M2-MNGCs is introduced and discussed. This review article presents 19 specific cell-surface markers to distinguish between osteoclasts and MNGCs including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (often

  13. Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.

    We present chemical abundance measurements of three stars in the ultrafaint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high-resolution spectroscopic observations, we measure the metallicity of the three stars, as well as abundance ratios of several α-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] ~ –2.6 and are not α-enhanced ([α/Fe] ~ 0.0). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultrafaint dwarfs and suggests the possibility ofmore » a different mechanism for the enrichment of Hor I compared to other satellites. Here, we discuss possible scenarios that could lead to this observed nucleosynthetic signature, including extended star formation, enrichment by a Population III supernova, and or an association with the Large Magellanic Cloud.« less

  14. Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    DOE PAGES

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.; ...

    2018-01-11

    We present chemical abundance measurements of three stars in the ultrafaint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high-resolution spectroscopic observations, we measure the metallicity of the three stars, as well as abundance ratios of several α-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] ~ –2.6 and are not α-enhanced ([α/Fe] ~ 0.0). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultrafaint dwarfs and suggests the possibility ofmore » a different mechanism for the enrichment of Hor I compared to other satellites. Here, we discuss possible scenarios that could lead to this observed nucleosynthetic signature, including extended star formation, enrichment by a Population III supernova, and or an association with the Large Magellanic Cloud.« less

  15. Metal-HfO{sub 2}-Ge capacitor: Its enhanced charge trapping properties with S-treated substrate and atomic-layer-deposited HfO{sub 2} layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, In-Sung; Jung, Yong Chan; Seong, Sejong

    2015-01-15

    The charge trapping properties of metal-HfO{sub 2}-Ge capacitor as a nonvolatile memory have been investigated with (NH{sub 4}){sub 2}S-treated Ge substrate and atomic-layer-deposited HfO{sub 2} layer. The interfacial layer generated by (NH{sub 4}){sub 2}S-treated Ge substrate reveals a trace of -S- bonding, very sharp interface edges, and smooth surface morphology. The Ru-HfO{sub 2}-Ge capacitor with (NH{sub 4}){sub 2}S-treated Ge substrate shows an enhanced interface state with little frequency dispersion, a lower leakage current, and very reliable properties with the enhanced endurance and retention than Ru-HfO{sub 2}-Ge capacitor with cyclic-cleaned Ge substrate.

  16. Enhancing metal-insulator-insulator-metal tunnel diodes via defect enhanced direct tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alimardani, Nasir; Conley, John F., E-mail: jconley@eecs.oregonstate.edu

    Metal-insulator-insulator-metal tunnel diodes with dissimilar work function electrodes and nanolaminate Al{sub 2}O{sub 3}-Ta{sub 2}O{sub 5} bilayer tunnel barriers deposited by atomic layer deposition are investigated. This combination of high and low electron affinity insulators, each with different dominant conduction mechanisms (tunneling and Frenkel-Poole emission), results in improved low voltage asymmetry and non-linearity of current versus voltage behavior. These improvements are due to defect enhanced direct tunneling in which electrons transport across the Ta{sub 2}O{sub 5} via defect based conduction before tunneling directly through the Al{sub 2}O{sub 3}, effectively narrowing the tunnel barrier. Conduction through the device is dominated by tunneling,more » and operation is relatively insensitive to temperature.« less

  17. Hot super-Earths and giant planet cores from different migration histories

    NASA Astrophysics Data System (ADS)

    Cossou, Christophe; Raymond, Sean N.; Hersant, Franck; Pierens, Arnaud

    2014-09-01

    Planetary embryos embedded in gaseous protoplanetary disks undergo Type I orbital migration. Migration can be inward or outward depending on the local disk properties but, in general, only planets more massive than several M⊕ can migrate outward. Here we propose that an embryo's migration history determines whether it becomes a hot super-Earth or the core of a giant planet. Systems of hot super-Earths (or mini-Neptunes) form when embryos migrate inward and pile up at the inner edge of the disk. Giant planet cores form when inward-migrating embryos become massive enough to switch direction and migrate outward. We present simulations of this process using a modified N-body code, starting from a swarm of planetary embryos. Systems of hot super-Earths form in resonant chains with the innermost planet at or interior to the disk inner edge. Resonant chains are disrupted by late dynamical instabilities triggered by the dispersal of the gaseous disk. Giant planet cores migrate outward toward zero-torque zones, which move inward and eventually disappear as the disk disperses. Giant planet cores migrate inward with these zones and are stranded at ~1-5 AU. Our model reproduces several properties of the observed extra-solar planet populations. The frequency of giant planet cores increases strongly when the mass in solids is increased, consistent with the observed giant exoplanet - stellar metallicity correlation. The frequency of hot super-Earths is not a function of stellar metallicity, also in agreement with observations. Our simulations can reproduce the broad characteristics of the observed super-Earth population.

  18. MetalS(3), a database-mining tool for the identification of structurally similar metal sites.

    PubMed

    Valasatava, Yana; Rosato, Antonio; Cavallaro, Gabriele; Andreini, Claudia

    2014-08-01

    We have developed a database search tool to identify metal sites having structural similarity to a query metal site structure within the MetalPDB database of minimal functional sites (MFSs) contained in metal-binding biological macromolecules. MFSs describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such a local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. The database search tool, which we called MetalS(3) (Metal Sites Similarity Search), can be accessed through a Web interface at http://metalweb.cerm.unifi.it/tools/metals3/ . MetalS(3) uses a suitably adapted version of an algorithm that we previously developed to systematically compare the structure of the query metal site with each MFS in MetalPDB. For each MFS, the best superposition is kept. All these superpositions are then ranked according to the MetalS(3) scoring function and are presented to the user in tabular form. The user can interact with the output Web page to visualize the structural alignment or the sequence alignment derived from it. Options to filter the results are available. Test calculations show that the MetalS(3) output correlates well with expectations from protein homology considerations. Furthermore, we describe some usage scenarios that highlight the usefulness of MetalS(3) to obtain mechanistic and functional hints regardless of homology.

  19. Clinical management of poor adherence to CPAP: motivational enhancement.

    PubMed

    Aloia, Mark S; Arnedt, J Todd; Riggs, Raine L; Hecht, Jacki; Borrelli, Belinda

    2004-01-01

    Adherence to continuous positive airway pressure (CPAP) in patients with sleep apnea hypopnea syndrome (SAHS) is poor. Previous studies have attempted to identify specific barriers to treatment, but none has identified the sole cause for the problem. We outline a behavioral approach to the problem of CPAP adherence that is based on the theories of the transtheoretical model and social cognitive theory. We used these theories to guide the development of an intervention based on the methods of motivational interviewing. We present our motivational enhancement therapy for CPAP (ME-CPAP) here, with some brief pilot data to show its efficacy. Finally, we outline some strengths and weaknesses of taking a behavior change approach to the problem of poor CPAP adherence.

  20. Enhanced giant magnetoimpedance in heterogeneous nanobrush

    PubMed Central

    2012-01-01

    A highly sensitive and large working range giant magnetoimpedance (GMI) effect is found in the novel nanostructure: nanobrush. The nanostructure is composed of a soft magnetic nanofilm and a nanowire array, respectively fabricated by RF magnetron sputtering and electrochemical deposition. The optimal GMI ratio of nanobrush is promoted to more than 250%, higher than the pure FeNi film and some sandwich structures at low frequency. The design of this structure is based on the vortex distribution of magnetic moments in thin film, and it can be induced by the exchange coupling effect between the interfaces of nanobrush. PMID:22963551

  1. Surface-enhanced Raman scattering from metal and transition metal nano-caped arrays

    NASA Astrophysics Data System (ADS)

    Sun, Huanhuan; Gao, Renxian; Zhu, Aonan; Hua, Zhong; Chen, Lei; Wang, Yaxin; Zhang, Yongjun

    2018-03-01

    The metal and transition metal cap-shaped arrays on polystyrene colloidal particle (PSCP) templates were fabricated to study the surface-enhanced Raman scattering (SERS) effect. We obtained the Ag and Fe complex film by a co-sputtering deposition method. The size of the deposited Fe particle was changed by the sputtering power. We also study the SERS enhancement mechanism by decorating the PATP probe molecule on the different films. The SERS signals increased firstly, and then decreased as the size of Fe particles grows gradually. The finite-difference time domain (FDTD) simulation and experimental Raman results manifest that SERS enhancement was mainly attributed to surface plasma resonance (SPR) between Ag and Ag nanoparticles. The SERS signals of PATP molecule were enhanced to reach a lowest detectable concentration of 10-8 mol/L. The research demonstrates that the SERS substrates with Ag-Fe cap-shaped arrays have a high sensitivity.

  2. Giant photocurrent enhancement by transition metal doping in quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rimal, Gaurab; Pimachev, Artem K.; Yost, Andrew J.; Poudyal, Uma; Maloney, Scott; Wang, Wenyong; Chien, TeYu; Dahnovsky, Yuri; Tang, Jinke

    2016-09-01

    A huge enhancement in the incident photon-to-current efficiency of PbS quantum dot (QD) sensitized solar cells by manganese doping is observed. In the presence of Mn dopants with relatively small concentration (4 at. %), the photoelectric current increases by an average of 300% (up to 700%). This effect cannot be explained by the light absorption mechanism because both the experimental and theoretical absorption spectra demonstrate several times decreases in the absorption coefficient. To explain such dramatic increase in the photocurrent we propose the electron tunneling mechanism from the LUMO of the QD excited state to the Zn2SnO4 (ZTO) semiconductor photoanode. This change is due to the presence of the Mn instead of Pb atom at the QD/ZTO interface. The ab initio calculations confirm this mechanism. This work proposes an alternative route for a significant improvement of the efficiency for quantum dot sensitized solar cells.

  3. New insight into enhanced superconductivity in metals near the metal-insulator transition.

    PubMed

    Osofsky, M S; Soulen, R J; Claassen, J H; Trotter, G; Kim, H; Horwitz, J S

    2001-11-05

    We have studied the transport properties of disordered WSi films near the metal/insulator transition (MIT) and we have also reviewed the data for several other disordered materials near their MIT. In all cases, we found the presence of enhanced superconductivity. We constructed a superconductivity "phase diagram" (i.e., T(c) versus sigma) for each system, which reveals a striking correlation: In all cases, T(c) values are significantly enhanced only for samples whose conductivities lie within a narrow range on the metallic side of, and moderately near, the MIT. We present a heuristic model to explain this phenomenon.

  4. Using photometrically selected metal-poor stars to study dwarf galaxies and the Galactic stellar halo

    NASA Astrophysics Data System (ADS)

    Youakim, Kris; Starkenburg, Else; Martin, Nicolas; Pristine Team

    2018-06-01

    The Pristine survey is a narrow-band photometric survey designed to efficiently search for extremely metal-poor (EMP) stars. In the first three years of the survey, it has demonstrated great efficiency at finding EMP stars, and also great promise for increasing the current, small sample of the most metal-poor stars. The present sky coverage is ~2500 square degrees in the Northern Galactic Halo, including several individual fields targeting dwarf galaxies. By efficiently identifying member stars in the outskirts of known faint dwarf galaxies, the dynamical histories and chemical abundance patterns of these systems can be understood in greater detail. Additionally, with reliable photometric metallicities over a large sky coverage it is possible to perform a large scale clustering analysis in the Milky Way halo, and investigate the characteristic scale of substructure at different metallicities. This can reveal important details about the process of building up the halo through dwarf galaxy accretion, and offer insight into the connection between dwarf galaxies and the Milky Way halo. In this talk I will outline our results on the search for the most pristine stars, with a focus on how we are using this information to advance our understanding of dwarf galaxies and their contribution to the formation of the Galactic stellar halo.

  5. Understanding the Giant Enhancement of Exchange Interaction in Bi 2 Se 3 - EuS Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeongwoo; Kim, Kyoung-Whan; Wang, Hui

    2017-07-01

    A recent experiment indicated that a ferromagnetic EuS film in contact with a topological insulator Bi 2 Se 3 might show a largely enhanced Curie temperature and perpendicular magnetic anisotropy [F. Katmis et al., Nature (London) 533, 513 (2016).]. Through systematic density functional calculations, we demonstrate that in addition to the factor that Bi 2 Se 3 has a strong spin orbit coupling, the topological surface states are crucial to make these unusual behaviors robust as they hybridize with EuS states and extend rather far into the magnetic layers. The magnetic moments of Eu atoms are nevertheless not much enhanced,more » unlike what was reported in the experiment. Our results and model analyses provide useful insights for how these quantities are linked, and pave a way for the control of properties of magnetic films via contact with topological insulators.« less

  6. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    NASA Technical Reports Server (NTRS)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) extends to low stellar mass and high SFR. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFRs, with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 decimal exponent (dex) above the redshift (z) approximately equal to 1 stellar mass-SFR relation, and 0.23 plus or minus 0.23 decimal exponent (dex) below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 decimal exponent (dex), but significant dispersion remains (0.29 decimal exponent (dex) with 0.16 decimal exponent (dex) due to measurement uncertainties). This dispersion suggests that gas accretion, star formation and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately 100 (sup plus 310) (sub minus 75) million years that suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 97.3 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas, but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  7. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    NASA Technical Reports Server (NTRS)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately equal to 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) holds for low stellar mass and high SFR galaxies. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFR with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 dex above the redshift (z) approximately 1 stellar mass-SFR relation and 0.23 plus or minus 0.23 dex below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 dex, but significant dispersion remains dex with 0.16 dex due to measurement uncertainties). This dispersion suggests that gas accretion, star formation, and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately equal to 100 (sup plus 310) (sub minus 75) million years which suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 94.4 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  8. Diversity of abundance patterns of neutron-capture elements in very metal-poor stars

    NASA Astrophysics Data System (ADS)

    Aoki, Misa; Aoki, Wako; Ishimaru, Yuhri; Wanajo, Shinya

    2014-05-01

    Observations of Very Metal-Poor stars indicate that there are at least two sites to r-process; "weak r-process" and "main r-process". A question is whether these two are well separated or there exists a variation in the r-process. We present the results of abundance analysis of neutron-capture elements in the two Very Metal-Poor stars HD107752 and HD110184 in the Milky Way halo observed with the Subaru Telescope HDS. The abundance patterns show overabundace at light n-capture elements (e.g. Sr, Y), inferring the element yielding of weak r-process, while heavy neutron-capture elements (e.g. Ba, Eu) are deficient; however, the overabundance of light ones is not as significant as that previously found in stars representing the weak r-process (e.g. HD122563; Honda et al. 2006). Our study show diversity in the abundance patterns from light to heavy neutron-capture elements in VMP stars, suggesting a variation in r-process, which may depend on electron fraction of environment.

  9. Refined Estimates of Carbon Abundances for Carbon-Enhanced Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Rossi, S.; Placco, V. M.; Beers, T. C.; Marsteller, B.; Kennedy, C. R.; Sivarani, T.; Masseron, T.; Plez, B.

    2008-03-01

    We present results from a refined set of procedures for estimation of the metallicities ([Fe/H]) and carbon abundance ratios ([C/Fe]) based on a much larger sample of calibration objects (on the order of 500 stars) then were available to Rossi et al. (2005), due to a dramatic increase in the number of stars with measurements obtained from high-resolution analyses in the past few years. We compare results obtained from a new calibration of the KP and GP indices with that obtained from a custom set of spectral synthesis based on MOOG. In cases where the GP index approaches saturation, it is clear that only spectral synthesis achieve reliable results.

  10. Enhancement of photoelectrochemical activity of SnS thin-film photoelectrodes using TiO2, Nb2O5, and Ta2O5 metal oxide layers

    NASA Astrophysics Data System (ADS)

    Vequizo, Junie Jhon M.; Yokoyama, Masanori; Ichimura, Masaya; Yamakata, Akira

    2016-06-01

    Tin sulfide (SnS) fine photoelectrodes fabricated by three-step pulsed electrodeposition were active for H2 evolution. The incident-photon-conversion-efficiency increases from 900 nm and offers a good fit with the absorption spectrum. The activity was enhanced by 3.4, 3.0, and 1.8 times compared to bare SnS by loading Nb2O5, TiO2, and Ta2O5, respectively. Nb2O5 was most efficient because its conduction band is low enough to facilitate effective electron transfer from SnS; it also has sufficiently high potential for H2 evolution. The overall activity is determined by the competitive interfacial electron transfer between SnS/metal-oxide and metal-oxide/water. Therefore, constructing appropriate heterojunctions is necessary for further improving photoelectrochemical systems.

  11. DISCOVERY OF A GAS-RICH COMPANION TO THE EXTREMELY METAL-POOR GALAXY DDO 68

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, John M.; Alfvin, Erik D.; Johnson, Megan

    2014-05-20

    We present H I spectral-line imaging of the extremely metal-poor galaxy DDO 68. This system has a nebular oxygen abundance of only ∼3% Z {sub ☉}, making it one of the most metal-deficient galaxies known in the local volume. Surprisingly, DDO 68 is a relatively massive and luminous galaxy for its metal content, making it a significant outlier in the mass-metallicity and luminosity-metallicity relationships. The origin of such a low oxygen abundance in DDO 68 presents a challenge for models of the chemical evolution of galaxies. One possible solution to this problem is the infall of pristine neutral gas, potentially initiated during amore » gravitational interaction. Using archival H I spectral-line imaging obtained with the Karl G. Jansky Very Large Array, we have discovered a previously unknown companion of DDO 68. This low-mass (M{sub H} {sub I} = 2.8 × 10{sup 7} M {sub ☉}), recently star-forming (SFR{sub FUV} = 1.4 × 10{sup –3} M {sub ☉} yr{sup –1}, SFR{sub Hα} < 7 × 10{sup –5} M {sub ☉} yr{sup –1}) companion has the same systemic velocity as DDO 68 (V {sub sys} = 506 km s{sup –1}; D = 12.74 ± 0.27 Mpc) and is located at a projected distance of ∼42 kpc. New H I maps obtained with the 100 m Robert C. Byrd Green Bank Telescope provide evidence that DDO 68 and this companion are gravitationally interacting at the present time. Low surface brightness H I gas forms a bridge between these objects.« less

  12. An empirical mass-loss law for Population II giants from the Spitzer-IRAC survey of Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Origlia, L.; Ferraro, F. R.; Fabbri, S.; Fusi Pecci, F.; Dalessandro, E.; Rich, R. M.; Valenti, E.

    2014-04-01

    Aims: The main aim of the present work is to derive an empirical mass-loss (ML) law for Population II stars in first and second ascent red giant branches. Methods: We used the Spitzer InfraRed Array Camera (IRAC) photometry obtained in the 3.6-8 μm range of a carefully chosen sample of 15 Galactic globular clusters spanning the entire metallicity range and sampling the vast zoology of horizontal branch (HB) morphologies. We complemented the IRAC photometry with near-infrared data to build suitable color-magnitude and color-color diagrams and identify mass-losing giant stars. Results: We find that while the majority of stars show colors typical of cool giants, some stars show an excess of mid-infrared light that is larger than expected from their photospheric emission and that is plausibly due to dust formation in mass flowing from them. For these stars, we estimate dust and total (gas + dust) ML rates and timescales. We finally calibrate an empirical ML law for Population II red and asymptotic giant branch stars with varying metallicity. We find that at a given red giant branch luminosity only a fraction of the stars are losing mass. From this, we conclude that ML is episodic and is active only a fraction of the time, which we define as the duty cycle. The fraction of mass-losing stars increases by increasing the stellar luminosity and metallicity. The ML rate, as estimated from reasonable assumptions for the gas-to-dust ratio and expansion velocity, depends on metallicity and slowly increases with decreasing metallicity. In contrast, the duty cycle increases with increasing metallicity, with the net result that total ML increases moderately with increasing metallicity, about 0.1 M⊙ every dex in [Fe/H]. For Population II asymptotic giant branch stars, we estimate a total ML of ≤0.1 M⊙, nearly constant with varying metallicity. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory

  13. Enhanced magnetic anisotropies of single transition-metal adatoms on a defective MoS2 monolayer.

    PubMed

    Cong, W T; Tang, Z; Zhao, X G; Chu, J H

    2015-03-23

    Single magnetic atoms absorbed on an atomically thin layer represent the ultimate limit of bit miniaturization for data storage. To approach the limit, a critical step is to find an appropriate material system with high chemical stability and large magnetic anisotropic energy. Here, on the basis of first-principles calculations and the spin-orbit coupling theory, it is elucidated that the transition-metal Mn and Fe atoms absorbed on disulfur vacancies of MoS2 monolayers are very promising candidates. It is analysed that these absorption systems are of not only high chemical stabilities but also much enhanced magnetic anisotropies and particularly the easy magnetization axis is changed from the in-plane one for Mn to the out-of-plane one for Fe by a symmetry-lowering Jahn-Teller distortion. The results point out a promising direction to achieve the ultimate goal of single adatomic magnets with utilizing the defective atomically thin layers.

  14. Angular-momentum couplings in ultra-long-range giant dipole molecules

    NASA Astrophysics Data System (ADS)

    Stielow, Thomas; Scheel, Stefan; Kurz, Markus

    2018-02-01

    In this article we extend the theory of ultra-long-range giant dipole molecules, formed by an atom in a giant dipole state and a ground-state alkali-metal atom, by angular-momentum couplings known from recent works on Rydberg molecules. In addition to s -wave scattering, the next higher order of p -wave scattering in the Fermi pseudopotential describing the binding mechanism is considered. Furthermore, the singlet and triplet channels of the scattering interaction as well as angular-momentum couplings such as hyperfine interaction and Zeeman interactions are included. Within the framework of Born-Oppenheimer theory, potential energy surfaces are calculated in both first-order perturbation theory and exact diagonalization. Besides the known pure triplet states, mixed-spin character states are obtained, opening up a whole new landscape of molecular potentials. We determine exact binding energies and wave functions of the nuclear rotational and vibrational motion numerically from the various potential energy surfaces.

  15. The metal-poor knee in the Fornax dwarf spheroidal galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, Benjamin; Koch, Andreas; Lanfranchi, Gustavo A.

    2014-04-20

    We present α-element abundances of Mg, Si, and Ti for a large sample of field stars in two outer fields of the Fornax dwarf spheroidal (dSph) galaxy, obtained with Very Large Telescope/GIRAFFE (R ∼ 16, 000). Due to the large fraction of metal-poor (MP) stars in our sample, we are able to follow the α-element evolution from [Fe/H] ≈ –2.5 continuously to [Fe/H] ≈ –0.7. For the first time we are able to resolve the turnover from the Type II supernovae (SNe) dominated, α-enhanced plateau down to subsolar [α/Fe] values, due to the onset of SNe Ia, and thus tomore » trace the chemical enrichment efficiency of the galaxy. Our data support the general concept of an α-enhanced plateau at early epochs, followed by a well-defined 'knee' caused by the onset of SNe Ia, and finally a second plateau with sub-solar [α/Fe] values. We find the position of this knee to be at [Fe/H] ≈ –1.9 and therefore significantly more MP than expected from comparison with other dSphs and standard evolutionary models. Surprisingly, this value is rather comparable to the knee in Sculptor, a dSph ∼10 times less luminous than Fornax. Using chemical evolution models, we find that the position of the knee and the subsequent plateau at the sub-solar level can hardly be explained unless the galaxy experienced several discrete star formation (SF) events with a drastic variation in SF efficiency, while a uniform SF can be ruled out. One possible evolutionary scenario is that Fornax experienced one or several major accretion events from gas-rich systems in the past, so that its current stellar mass is not indicative of the chemical evolution environment at ancient times. If Fornax is the product of several smaller buildings blocks, this may also have implications for the understanding of the formation process of dSphs in general.« less

  16. Oxygen isotopic evidence for accretion of Earth’s water before a high-energy Moon-forming giant impact

    PubMed Central

    Barrat, Jean-Alix; Sillard, Patrick; Starkey, Natalie A.

    2018-01-01

    The Earth-Moon system likely formed as a result of a collision between two large planetary objects. Debate about their relative masses, the impact energy involved, and the extent of isotopic homogenization continues. We present the results of a high-precision oxygen isotope study of an extensive suite of lunar and terrestrial samples. We demonstrate that lunar rocks and terrestrial basalts show a 3 to 4 ppm (parts per million), statistically resolvable, difference in Δ17O. Taking aubrite meteorites as a candidate impactor material, we show that the giant impact scenario involved nearly complete mixing between the target and impactor. Alternatively, the degree of similarity between the Δ17O values of the impactor and the proto-Earth must have been significantly closer than that between Earth and aubrites. If the Earth-Moon system evolved from an initially highly vaporized and isotopically homogenized state, as indicated by recent dynamical models, then the terrestrial basalt-lunar oxygen isotope difference detected by our study may be a reflection of post–giant impact additions to Earth. On the basis of this assumption, our data indicate that post–giant impact additions to Earth could have contributed between 5 and 30% of Earth’s water, depending on global water estimates. Consequently, our data indicate that the bulk of Earth’s water was accreted before the giant impact and not later, as often proposed. PMID:29600271

  17. The INT Search for Metal-Poor Stars: Spectroscopic Observations and Classification via Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Allende Prieto, Carlos; Rebolo, Rafael; García López, Ramón J.; Serra-Ricart, Miquel; Beers, Timothy C.; Rossi, Silvia; Bonifacio, Piercarlo; Molaro, Paolo

    2000-09-01

    With the dual aims of enlarging the list of extremely metal-poor stars identified in the Galaxy and boosting the numbers of moderately metal-deficient stars in directions that sample the rotational properties of the thick disk, we have used the 2.5 m Isaac Newton Telescope and the Intermediate Dispersion Spectrograph to carry out a survey of brighter (primarily northern hemisphere) metal-poor candidates selected from the HK objective-prism-interference-filter survey of Beers and collaborators. Over the course of only three observing runs (15 nights) we have obtained medium-resolution (λ/δλ~=2000) spectra for 1203 objects (V~=11-15). Spectral absorption-line indices and radial velocities have been measured for all the candidates. Metallicities, quantified by [Fe/H], and intrinsic (B-V)0 colors have been estimated for 731 stars with effective temperatures cooler than roughly 6500 K by using artificial neural networks (ANNs) trained with spectral indices. We show that this method performs as well as a previously explored Ca II K calibration technique, yet it presents some practical advantages. Among the candidates in our sample we identify 195 stars with [Fe/H]<=-1.0, 67 stars with [Fe/H]<=-2.0, and 12 new stars with [Fe/H]<=-3.0. Although the effective yield of metal-poor stars in our sample is not as large as that in previous HK survey follow-up programs, the rate of discovery per unit of telescope time is quite high. Further development of the ANN technique, with the networks being fed the entire spectrum, rather than just the spectral indices, holds the promise to produce fast, accurate, multidimensional spectral classifications (with the associated physical parameter estimates), as is required to process the large data flow provided by present and future instrumentation. Based on observations made with the Isaac Newton Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto

  18. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance.

    PubMed

    Zhang, Xincheng; Lin, Li; Chen, Mingyue; Zhu, Zhiqiang; Yang, Weidong; Chen, Bao; Yang, Xiaoe; An, Qianli

    2012-08-30

    Low biomass and shallow root systems limit the application of heavy metal phytoextraction by hyperaccumulators. Plant growth-promoting microbes may enhance hyperaccumulators'phytoextraction. A heavy metal-resistant fungus belonged to the Fusarium oxysporum complex was isolated from the Zn/Cd co-hyperaccumulator Sedum alfredii Hance grown in a Pb/Zn mined area. This Fusarium fungus was not pathogenic to plants but promoted host growth. Hydroponic experiments showed that 500 μM Zn(2+) or 50 μM Cd(2+) combined with the fungus increased root length, branches, and surface areas, enhanced nutrient uptake and chlorophyll synthesis, leading to more vigorous hyperaccumulators with greater root systems. Soil experiments showed that the fungus increased root and shoot biomass and S. alfredii-mediated heavy metal availabilities, uptake, translocation or concentrations, and thus increased phytoextraction of Zn (144% and 44%), Cd (139% and 55%), Pb (84% and 85%) and Cu (63% and 77%) from the original Pb/Zn mined soil and a multi-metal contaminated paddy soil. Together, the nonpathogenic Fusarium fungus was able to increase S. alfredii root systems and function, metal availability and accumulation, plant biomass, and thus phytoextraction efficiency. This study showed a great application potential for culturable indigenous fungi other than symbiotic mycorrhizas to enhance the phytoextraction by hyperaccumulators. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. CNO isotopes in red giant stars

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    The production and distribution of the CNO nuclides is discussed in light of observed abundance ratios in red giants and in the interstellar medium. Isotope abundances have been measured in the atmospheres and in the recent ejecta of cool giants, including carbon stars, S-type stars and red supergiants as well as in oxygen-rich giants making their first ascent of the giant branch. Several of the observations suggest revision of currently accepted nuclear cross-sections and of the mixing processes operating in giant envelopes. By comparing red giant abundances with high-quality observations of the interstellar medium, conclusions are reached about the contribution of intermediate-mass stars to galactic nuclear evolution. The three oxygen isotopes, O-16, -17 and -18, are particularly valuable for such comparison because they reflect three different stages of stellar nucleosynthesis. One remarkable result comes from observations of O-17/O-18 in several classes of red giant stars. The observed range of values for red giants excludes the entire range of values seen in interstellar molecular clouds. Furthermore, both the observations of stars and interstellar clouds exclude the isotopic ratio found in the solar system.

  20. Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs.

    PubMed

    Zhang, Xingwang; Xing, Huijie; Zhao, Yue; Ma, Zhiguo

    2018-06-23

    Over the past decades, a large number of drugs as well as drug candidates with poor dissolution characteristics have been witnessed, which invokes great interest in enabling formulation of these active ingredients. Poorly water-soluble drugs, especially biopharmaceutical classification system (BCS) II ones, are preferably designed as oral dosage forms if the dissolution limit can be broken through. Minimizing a drug’s size is an effective means to increase its dissolution and hence the bioavailability, which can be achieved by specialized dispersion techniques. This article reviews the most commonly used dispersion techniques for pharmaceutical processing that can practically enhance the dissolution and bioavailability of poorly water-soluble drugs. Major interests focus on solid dispersion, lipid-based dispersion (nanoencapsulation), and liquisolid dispersion (drug solubilized in a non-volatile solvent and dispersed in suitable solid excipients for tableting or capsulizing), covering the formulation development, preparative technique and potential applications for oral drug delivery. Otherwise, some other techniques that can increase the dispersibility of a drug such as co-precipitation, concomitant crystallization and inclusion complexation are also discussed. Various dispersion techniques provide a productive platform for addressing the formulation challenge of poorly water-soluble drugs. Solid dispersion and liquisolid dispersion are most likely to be successful in developing oral dosage forms. Lipid-based dispersion represents a promising approach to surmounting the bioavailability of low-permeable drugs, though the technique needs to traverse the obstacle from liquid to solid transformation. Novel dispersion techniques are highly encouraged to develop for formulation of poorly water-soluble drugs.

  1. Chemical abundances in the globular clusters M3, M13, and NGC 6752

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, R.A.; Dickens, R.J.

    The abundances of iron, carbon, nitrogen, and oxygen have been investigated in red giant stars in the globular clusters M3, M13, and NGC 6752. The results are based on application of spectrum synthesis and theoretical colors to observed spectra, DDO colors, and infrared CO measurements. Carbon is depleted by a factor of about 3 relative to other metals in most giants studied, with no evidence for the discontinuity along the giant branch at M/sub v/approx. =-0.7 found for more metal-poor clusters. This contrasts with the greater depletion of about a factor of 6 for the more metal-poor cluster stars, amore » difference which is expected if meridional mixing is responsible for the carbon depletion. The spectroscopic results for nitrogen are imprecise, but the colors suggest enhancements of a factor of 3. The iron abundances for M3 and M13 stars have been determined from published equivalent widths, yielding (Fe/H) close to -1.4 for both clusters. The uncertainties in M3 and M13 CO colors and (O I) equivalent widths make it impossible to derive accurate oxygen abundances, but the depletion of carbon is real and is not caused by an overabundance of oxygen.« less

  2. Fabrication of (NH4)2S passivated GaAs metal-insulator-semiconductor devices using low-frequency plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jaouad, A.; Aimez, V.; Aktik, Ç.; Bellatreche, K.; Souifi, A.

    2004-05-01

    Metal-insulator-semiconductor (MIS) capacitors were fabricated on n-GaAs(100) substrate using (NH4)2S surface passivation and low-frequency plasma-enhanced chemical vapor deposited silicon nitride as gate insulators. The electrical properties of the fabricated MIS capacitors were analyzed using high-frequency capacitance-voltage and conductance-voltage measurements. The high concentration of hydrogen present during low-frequency plasma deposition of silicon nitride enhances the passivation of GaAs surface, leading to the unpinning of the Fermi level and to a good modulation of the surface potential by gate voltage. The electrical properties of the insulator-semiconductor interface are improved after annealing at 450 °C for 60 s, as a significant reduction of the interface fixed charges and of the interface states density is put into evidence. The minimum interface states density was found to be about 3×1011 cm-2 eV-1, as estimated by the Terman method. .

  3. Enhanced x-ray imaging for a thin film cochlear implant with metal artefacts using phase retrieval tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arhatari, B. D.; ARC Centre of Excellence for Coherent X-ray Science, Melbourne; Harris, A. R.

    Phase retrieval tomography has been successfully used to enhance imaging in systems that exhibit poor absorption contrast. However, when highly absorbing regions are present in a sample, so-called metal artefacts can appear in the tomographic reconstruction. We demonstrate that straightforward approaches for metal artefact reconstruction, developed in absorption contrast tomography, can be applied when using phase retrieval. Using a prototype thin film cochlear implant that has high and low absorption components made from iridium (or platinum) and plastic, respectively, we show that segmentation of the various components is possible and hence measurement of the electrode geometry and relative location tomore » other regions of interest can be achieved.« less

  4. [Giant intradiploic infratentorial epidermoid cyst].

    PubMed

    Alberione, F; Caire, F; Fischer-Lokou, D; Gueye, M; Moreau, J J

    2007-10-01

    Epidermoid cysts are benign, uncommon lesions (1% of all intracranial tumors). Their localization is intradiploic in 25% of cases, and exceptionally subtentorial. We report here a rare case of giant intradiploic infratentorial epidermoid cyst. A 74-year old patient presented with recent diplopia and sindrome cerebellar. CT scan and MR imaging revealed a giant osteolytic extradural lesion of the posterior fossa (5.2 cm x 3.8 cm) with a small area of peripheral enhancement after contrast injection. Retrosigmoid suboccipital craniectomy allowed a satisfactory removal of the tumor, followed by an acrylic cranioplasty. The outcome was good. Neuropathological examination confirmed an epidermoid cyst. We review the literature and discuss our case.

  5. Osmium isotope constraints on ore metal recycling in subduction zones

    PubMed

    McInnes; McBride; Evans; Lambert; Andrew

    1999-10-15

    Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits.

  6. Environmentally relevant metal and transition metal ions enhance Fc epsilon RI-mediated mast cell activation.

    PubMed Central

    Walczak-Drzewiecka, Aurelia; Wyczólkowska, Janina; Dastych, Jaroslaw

    2003-01-01

    Upon contact with allergen, sensitized mast cells release highly active proinflammatory mediators. Allergen-mediated mast cell activation is an important mechanism in the pathogenesis of atopic asthma. Asthmatic patients are especially susceptible to air pollution. Epidemiologic studies found a positive correlation between severity of symptoms among asthmatic patients and the level of particulate matter (PM) in the air. Among the constituents of PM are metals and transition metals, which could mediate some of its adverse effects on human health. We sought to determine the effect of metal and transition metal ions on allergen-mediated mast cell activation. We observed that several metal and transition metal ions activated mast cells and enhanced allergen-mediated mast cell activation. Thus, Al(3+), Cd(2+), and Sr(2+) induced release of granule-associated N-acetyl-ss-d-hexosaminidase, and Al(3+) and Ni(2+) enhanced antigen-mediated release. Metal and transition metal ions also induced significant secretion of interleukin (IL)-4 and increased antigen-mediated IL-4 secretion in mast cells. These effects of metal and transition metal ions on mast cells were observed at concentrations that do not result in direct cytotoxicity and might be relevant for environmental exposure. Thus, metals and transition metals could increase the level of allergen-mediated mast cell activation, which might be one of the mechanisms mediating exacerbation of allergen-driven asthma symptoms by air pollution. PMID:12727598

  7. Inhomogeneous degradation in metal halide perovskites

    NASA Astrophysics Data System (ADS)

    Yang, Rong; Zhang, Li; Cao, Yu; Miao, Yanfeng; Ke, You; Wei, Yingqiang; Guo, Qiang; Wang, Ying; Rong, Zhaohua; Wang, Nana; Li, Renzhi; Wang, Jianpu; Huang, Wei; Gao, Feng

    2017-08-01

    Although the rapid development of organic-inorganic metal halide perovskite solar cells has led to certified power conversion efficiencies of above 20%, their poor stability remains a major challenge, preventing their practical commercialization. In this paper, we investigate the intrinsic origin of the poor stability in perovskite solar cells by using a confocal fluorescence microscope. We find that the degradation of perovskite films starts from grain boundaries and gradually extend to the center of the grains. Firmly based on our findings, we further demonstrate that the device stability can be significantly enhanced by increasing the grain size of perovskite crystals. Our results have important implications to further enhance the stability of optoelectronic devices based on metal halide perovskites.

  8. Giant Faraday Rotation in Metal-Fluoride Nanogranular Films.

    PubMed

    Kobayashi, N; Ikeda, K; Gu, Bo; Takahashi, S; Masumoto, H; Maekawa, S

    2018-03-21

    Magneto-optical Faraday effect is widely applied in optical devices and is indispensable for optical communications and advanced information technology. However, the bismuth garnet Bi-YIG is only the Faraday material since 1972. Here we introduce (Fe, FeCo)-(Al-,Y-fluoride) nanogranular films exhibiting giant Faraday effect, 40 times larger than Bi-YIG. These films have a nanocomposite structure, in which nanometer-sized Fe, FeCo ferromagnetic granules are dispersed in a Al,Y-fluoride matrix.

  9. Surgical management of giant posterior communicating artery aneurysms.

    PubMed

    Velat, Gregory J; Zabramski, Joseph M; Nakaji, Peter; Spetzler, Robert F

    2012-09-01

    Giant posterior communicating artery (PCoA) aneurysms (> 25 mm) are rare lesions associated with a poor prognosis and high rates of morbidity and mortality. To review the clinical results of giant PCoA aneurysms surgically treated at our institution, focusing on operative nuances. All cases of giant PCoA aneurysms treated surgically at our institution were identified from a prospectively maintained patient database. Patient demographic factors, medical comorbidities, rupture status, neurological presentation, clinical outcomes, and surgical records were critically reviewed. From 1989 to 2010, 11 patients (10 women) underwent surgical clipping of giant PCoA aneurysms. Presenting signs and symptoms included cranial nerve palsies, diminished mental status, headache, visual changes, and seizures. Five aneurysms were ruptured on admission. All aneurysms were clipped primarily except 1, which was treated by parent artery sacrifice and extracranial-to-intracranial bypass after intraoperative aneurysm rupture. Perioperative morbidity and mortality rates were 36% (4 of 11) and 18.3% (2 of 11), respectively. Excellent or good clinical outcomes, defined as modified Rankin Scale scores ≤ 2, were achieved in 86% (5 of 6) of patients available for long-term clinical follow-up (mean, 12.5 ± 13.6 months). Giant PCoA aneurysms are rare vascular lesions that may present with a variety of neurological signs and symptoms. These lesions can be successfully managed surgically with satisfactory morbidity and mortality rates. To the best of our knowledge, this is the largest surgical series of giant PCoA aneurysms published to date.

  10. CHEMICAL ABUNDANCES IN A SAMPLE OF RED GIANTS IN THE OPEN CLUSTER NGC 2420 FROM APOGEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souto, Diogo; Cunha, K.; Smith, V.

    NGC 2420 is a ∼2 Gyr old well-populated open cluster that lies about 2 kpc beyond the solar circle, in the general direction of the Galactic anti-center. Most previous abundance studies have found this cluster to be mildly metal-poor, but with a large scatter in the obtained metallicities. Detailed chemical abundance distributions are derived for 12 red-giant members of NGC 2420 via a manual abundance analysis of high-resolution ( R = 22,500) near-infrared ( λ 1.5–1.7 μ m) spectra obtained from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The sample analyzed contains six stars that are identified asmore » members of the first-ascent red giant branch (RGB), as well as six members of the red clump (RC). We find small scatter in the star-to-star abundances in NGC 2420, with a mean cluster abundance of [Fe/H] = −0.16 ± 0.04 for the 12 red giants. The internal abundance dispersion for all elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Co and Ni) is also very small (∼0.03–0.06 dex), indicating a uniform cluster abundance distribution within the uncertainties. NGC 2420 is one of the clusters used to calibrate the APOGEE Stellar Parameter and Chemical Abundance Pipeline (ASPCAP). The results from this manual analysis compare well with ASPCAP abundances for most of the elements studied, although for Na, Al, and V there are more significant offsets. No evidence of extra-mixing at the RGB luminosity bump is found in the {sup 12}C and {sup 14}N abundances from the pre-luminosity-bump RGB stars in comparison to the post-He core-flash RC stars.« less

  11. Rubidium and Lead Abundances in Giant Stars of the Globular Clusters M13 and NGC 6752

    NASA Astrophysics Data System (ADS)

    Yong, David; Aoki, Wako; Lambert, David L.; Paulson, Diane B.

    2006-03-01

    We present measurements of the neutron-capture elements Rb and Pb in five giant stars of the globular cluster NGC 6752 and Pb measurements in four giants of the globular cluster M13. The abundances were derived by comparing synthetic spectra with high-resolution, high signal-to-noise ratio spectra obtained using HDS on the Subaru telescope and MIKE on the Magellan telescope. The program stars span the range of the O-Al abundance variation. In NGC 6752, the mean abundances are [Rb/Fe]=-0.17+/-0.06 (σ=0.14), [Rb/Zr]=-0.12+/-0.06 (σ=0.13), and [Pb/Fe]=-0.17+/-0.04 (σ=0.08). In M13 the mean abundance is [Pb/Fe]=-0.28+/-0.03 (σ=0.06). Within the measurement uncertainties, we find no evidence for star-to-star variation for either Rb or Pb within these clusters. None of the abundance ratios [Rb/Fe], [Rb/Zr], or [Pb/Fe] are correlated with the Al abundance. NGC 6752 may have slightly lower abundances of [Rb/Fe] and [Rb/Zr] compared to the small sample of field stars at the same metallicity. For M13 and NGC 6752 the Pb abundances are in accord with predictions from a Galactic chemical evolution model. If metal-poor intermediate-mass asymptotic giant branch stars did produce the globular cluster abundance anomalies, then such stars do not synthesize significant quantities of Rb or Pb. Alternatively, if such stars do synthesize large amounts of Rb or Pb, then they are not responsible for the abundance anomalies seen in globular clusters. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations made with the Magellan Clay Telescope at Las Campanas Observatory.

  12. Application of the Calculating Formula for the Mean Neutron Exposure in CEPM-s and CEPM-r/s Stars %Kstars: AGB and post-AGB, nuclear reactions, nucleosynthesis, abundances, methods: analytical

    NASA Astrophysics Data System (ADS)

    Zhang, F. H.; Zhang, L.; Cui, W. Y.; Zhang, B.

    2017-09-01

    Recent studies have shown that, for the current s-process nucleosynthesis model for the low-mass asymptotic giant branch (AGB) stars with (13C) pocket radiative burning during the interpulse period, the neutron exposure distribution in the nucleosynthesis region can be regarded as an exponential function, and the relation between the mean neutron exposure (τ0) and the model parameters is τ0 = - Δ τ/ln [q/(1 - r + q)]), in which (Δ τ) is the exposure value of each neutron irradiation, (r) is the overlap factor, and (q) is the mass ratio of the (13C) shell to the He intershell. Using the published data resulted from fitting the observed abundances of neutron-capture elements in 20 CEMP (Carbon-Enhanced Metal-Poor)-s and CEMP-s/r stars with the parametric AGB stellar s-process model, the reliability of the derived formula is tested, and further more the application of the formula in the s-process nucleosynthesis study is explored preliminarily. Our results show that, under the radiative s-process nucleosynthesis mechanism, the formula is suitable for CEMP stars experiencing recurrent neutron exposures. Combined with the parametric AGB nucleosynthesis model, the formula could be regarded as an effective tool to screen the CEMP stars with a single neutron exposure or a special type. Considering the uncertainty of the (13C) pocket, the role of this formula in understanding the physical conditions necessary to reproduce the observed s-process abundances in CEMP stars needs further study.

  13. Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Trincado, J. G.; Geisler, D.; Tang, B.

    We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] ≳ −1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similarmore » metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution.« less

  14. Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns

    NASA Astrophysics Data System (ADS)

    Fernández-Trincado, J. G.; Zamora, O.; García-Hernández, D. A.; Souto, Diogo; Dell'Agli, F.; Schiavon, R. P.; Geisler, D.; Tang, B.; Villanova, S.; Hasselquist, Sten; Mennickent, R. E.; Cunha, Katia; Shetrone, M.; Allende Prieto, Carlos; Vieira, K.; Zasowski, G.; Sobeck, J.; Hayes, C. R.; Majewski, S. R.; Placco, V. M.; Beers, T. C.; Schleicher, D. R. G.; Robin, A. C.; Mészáros, Sz.; Masseron, T.; García Pérez, Ana E.; Anders, F.; Meza, A.; Alves-Brito, A.; Carrera, R.; Minniti, D.; Lane, R. R.; Fernández-Alvar, E.; Moreno, E.; Pichardo, B.; Pérez-Villegas, A.; Schultheis, M.; Roman-Lopes, A.; Fuentes, C. E.; Nitschelm, C.; Harding, P.; Bizyaev, D.; Pan, K.; Oravetz, D.; Simmons, A.; Ivans, Inese I.; Blanco-Cuaresma, S.; Hernández, J.; Alonso-García, J.; Valenzuela, O.; Chanamé, J.

    2017-09-01

    We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] ≳ -1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution.

  15. Physical conditions of the molecular gas in metal-poor galaxies

    NASA Astrophysics Data System (ADS)

    Hunt, L. K.; Weiß, A.; Henkel, C.; Combes, F.; García-Burillo, S.; Casasola, V.; Caselli, P.; Lundgren, A.; Maiolino, R.; Menten, K. M.; Testi, L.

    2017-10-01

    Studying the molecular component of the interstellar medium (ISM) in metal-poor galaxies has been challenging because of the faintness of carbon monoxide emission, the most common proxy of H2. Here we present new detections of molecular gas at low metallicities, and assess the physical conditions in the gas through various CO transitions for 8 galaxies. For one, NGC 1140 (Z/Z⊙ 0.3), two detections of 13CO isotopologues and atomic carbon, [Ci](1-0) and an upper limit for HCN(1-0) are also reported. After correcting to a common beam size, we compared 12CO(2-1)/12CO(1-0) (R21) and 12CO(3-2)/12CO(1-0) (R31) line ratios of our sample with galaxies from the literature and find that only NGC 1140 shows extreme values (R21 R31 2). Fitting physical models to the 12CO and 13CO emission in NGC 1140 suggests that the molecular gas is cool (kinetic temperature Tkin ≲ 20 K), dense (H2 volume density nH2 ≳ 106 cm-3), with moderate CO column density (NCO 1016 cm-2) and low filling factor. Surprisingly, the [12CO]/[13CO] abundance ratio in NGC 1140 is very low ( 8-20), lower even than the value of 24 found in the Galactic Center. The young age of the starburst in NGC 1140 precludes 13CO enrichment from evolved intermediate-mass stars; instead we attribute the low ratio to charge-exchange reactions and fractionation, because of the enhanced efficiency of these processes in cool gas at moderate column densities. Fitting physical models to 12CO and [Ci](1-0) emission in NGC 1140 gives an unusually low [12CO]/[12C] abundance ratio, suggesting that in this galaxy atomic carbon is at least 10 times more abundant than 12CO. Based on observations carried out with the IRAM 30 m and the Atacama Pathfinder Experiment (APEX). IRAM is supported by the INSU/CNRS (France), MPG (Germany), and IGN (Spain), and APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.

  16. Planet traps and first planets: The critical metallicity for gas giant formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Yasuhiro; Hirashita, Hiroyuki, E-mail: yasu@asiaa.sinica.edu.tw, E-mail: hirashita@asiaa.sinica.edu.tw

    2014-06-10

    The ubiquity of planets poses an interesting question: when are first planets formed in galaxies? We investigate this by adopting a theoretical model where planet traps are combined with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the metallicity ([Fe/H]) in disks. Three characteristic exoplanetary populations are examined: hot Jupiters, exo-Jupiters around 1 AU, and low-mass planets in tight orbits, such as super-Earths. We statistically compute planet formation frequencies (PFFs), as well as the orbital radius (〈R{sub rapid}〉) within which gas accretion becomes efficient enough to form Jovian planets, as a functionmore » of metallicity (–2 ≤ [Fe/H] ≤–0.6). We show that the total PFFs for these three populations increase steadily with metallicity. This is the direct outcome of the core accretion picture. For the metallicity range considered here, the population of low-mass planets dominates Jovian planets. The Jovian planets contribute to the PFFs above [Fe/H] ≅ –1. We find that the hot Jupiters form more efficiently than the exo-Jupiters at [Fe/H] ≲ –0.7. This arises from the slower growth of planetary cores and their more efficient radial inward transport by the host traps in lower metallicity disks. We show that the critical metallicity for forming Jovian planets is [Fe/H] ≅ –1.2 by comparing 〈R{sub rapid}〉 of hot Jupiters and low-mass planets. The comparison intrinsically links to the different gas accretion efficiency between these two types of planets. Therefore, this study implies that important physical processes in planet formation may be tested by exoplanet observations around metal-poor stars.« less

  17. The benefits of metal-on-metal total hip replacements.

    PubMed

    Müller, M E

    1995-02-01

    The Müller's cast prosthesis with a concentric metal-on-metal articulation and 3 sliding bearings was used in Switzerland from 1965 to 1967. During the next 10 to 15 years, a number of hips in which the metal-to-metal systems were implanted were revised. Rather than osteoporosis and cranial migration occurring, the acetabular roofs were often sclerotic and the components showed no or only minor migration. At surgery, the capsule was almost normal and without signs of inflammation. Histologically, the capsule did not show the usual masses of giant cells associated with polyethylene particles. In the mid-1980s, different designs of metal-on-metal articulations were tested. From 1987 to 1990, this author developed, together with the biomaterial division of Sulzer Medical Technology, a pure titanium shell with a polyethylene-backed 28-mm forged cobalt-chromium liner insert. This combination has been successful, with no revisions required to date. In summary, with the present metal-on-metal articulations it is now possible to stop using the polyethylene. The successful long-term results of the cast cobalt-chromium metal-on-metal articulations of 1966 hold much promise for the future of the new-forged, more-precise, metallic socket.

  18. Enhancing CO2 Electroreduction with the Metal-Oxide Interface.

    PubMed

    Gao, Dunfeng; Zhang, Yi; Zhou, Zhiwen; Cai, Fan; Zhao, Xinfei; Huang, Wugen; Li, Yangsheng; Zhu, Junfa; Liu, Ping; Yang, Fan; Wang, Guoxiong; Bao, Xinhe

    2017-04-26

    The electrochemical CO 2 reduction reaction (CO 2 RR) typically uses transition metals as the catalysts. To improve the efficiency, tremendous efforts have been dedicated to tuning the morphology, size, and structure of metal catalysts and employing electrolytes that enhance the adsorption of CO 2 . We report here a strategy to enhance CO 2 RR by constructing the metal-oxide interface. We demonstrate that Au-CeO x shows much higher activity and Faradaic efficiency than Au or CeO x alone for CO 2 RR. In situ scanning tunneling microscopy and synchrotron-radiation photoemission spectroscopy show that the Au-CeO x interface is dominant in enhancing CO 2 adsorption and activation, which can be further promoted by the presence of hydroxyl groups. Density functional theory calculations indicate that the Au-CeO x interface is the active site for CO 2 activation and the reduction to CO, where the synergy between Au and CeO x promotes the stability of key carboxyl intermediate (*COOH) and thus facilitates CO 2 RR. Similar interface-enhanced CO 2 RR is further observed on Ag-CeO x , demonstrating the generality of the strategy for enhancing CO 2 RR.

  19. Mining the Sloan Digital Sky Survey in Search of Extremely α-poor Stars in the Galaxy

    NASA Astrophysics Data System (ADS)

    Xing, Q. F.; Zhao, G.

    2014-07-01

    As we know, the majority of metal-poor Galactic halo stars appear to have chemical abundances that were enhanced by α-elements (e.g., O, Mg, Si, Ca, and Ti) during the early stage of the Galaxy. Observed metal-poor halo stars preserved this pattern by exhibiting abundance ratios [α/Fe] ~+0.4. A few striking exceptions that show severe departures from the general enhanced α-element chemical abundance trends of the halo have been discovered in recent years. They possess relatively low [α/Fe] compared to other comparable-metallicity stars, with abundance ratios over 0.5 dex lower. These stars may have a different chemical enrichment history from the majority of the halo. Similarly, low-α abundances are also displayed by satellite dwarf spheroidal (dSph) galaxies. We present a method to select extremely α-poor (EAP) stars from the SDSS/SEGUE survey. The method consists of a two-step approach. In the first step, we select suspected metal-poor ([Fe/H] <-0.5) and α-poor ([Mg/Fe] <0) stars as our targets. In the second step, we determine [Mg/Fe] from low-resolution (R = 2000) stellar spectra for our targets and select stars with [Mg/Fe] <-0.1 as candidate EAP stars. In a sample of 40,000 stars with atmospheric parameters in the range of T eff = [4500, 7000] K, log g = [1.0, 5.0], and [Fe/H] = [-4.0, +0.5], 14 candidate stars were identified. Three of these stars are found to have already been confirmed by other research.

  20. Plasmonic enhancement of second-harmonic generation of dielectric layer embedded in metal-dielectric-metal structure

    NASA Astrophysics Data System (ADS)

    Kang, Byungjun; Imakita, Kenji; Fujii, Minoru; Hayashi, Shinji

    2018-03-01

    The enhancement of second-harmonic generation from a dielectric layer embedded in a metal-dielectric-metal structure upon excitation of surface plasmon polaritons is demonstrated experimentally. The metal-dielectric-metal structure consisting of a Gex(SiO2)1-x layer sandwiched by two Ag layers was prepared, and the surface plasmon polaritons were excited in an attenuated total reflection geometry. The measured attenuated total reflection spectra exhibited two reflection dips corresponding to the excitation of two different surface plasmon polariton modes. Strong second-harmonic signals were observed under the excitation of these surface plasmon polariton modes. The results demonstrate that the second-harmonic intensity of the Gex(SiO2)1-x layer is highly enhanced relative to that of the single layer deposited on a substrate. Under the excitation of one of the two surface plasmon polariton modes, the estimated enhancement factor falls in a range between 39.9 and 171, while under the excitation of the other surface plasmon polariton mode, it falls in a range between 3.96 and 84.6.

  1. Epidemiology, genetic, natural history and clinical presentation of giant cerebral aneurysms.

    PubMed

    Lonjon, M; Pennes, F; Sedat, J; Bataille, B

    2015-12-01

    Giant cerebral aneurysms represent 5% of intracranial aneurysms, and become symptomatic between 40 and 70 years with a female predominance. In the paediatric population, the giant aneurysm rate is higher than in the adult population. Classified as saccular, fusiform and serpentine, the natural history of giant cerebral aneurysms is characterized by thrombosis, growth and rupture. The pathogenesis of these giant aneurysms is influenced by a number of risk factors, including genetic variables. Genome-wide association studies have identified some chromosomes highlighting candidate genes. Although these giant aneurysms can occur at the same locations as their smaller counterparts, a predilection for the cavernous location has been observed. Giant aneurysms present with symptoms caused by a mass effect depending on their location or by rupture; ischemic manifestations rarely reveal the aneurysm. If the initial clinical descriptions have been back up by imagery, the clinical context with a pertinent analysis of the risk factors remain the cornerstone for the management decisions of these lesions. Five year cumulative rupture rates for patients with giant aneurysm were 40% for those located on the anterior part of circle of Willis and 50% for those on the posterior part. The poor outcome of untreated patients justifies the therapeutic risks. Copyright © 2015. Published by Elsevier Masson SAS.

  2. Ion implantation enhanced metal-Si-metal photodetectors

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Scott, K. A. M.; Brueck, S. R. J.; Zolper, J. C.; Myers, D. R.

    1994-05-01

    The quantum efficiency and frequency response of simple Ni-Si-Ni metal-semiconductor-metal (MSM) photodetectors at long wavelengths are significantly enhanced with a simple, ion-implantation step to create a highly absorbing region approx. 1 micron below the Si surface. The internal quantum efficiency is improved by a factor of approx. 3 at 860 nm (to 64%) and a full factor of ten at 1.06 microns (to 23%) as compared with otherwise identical unimplanted devices. Dark currents are only slightly affected by the implantation process and are as low as 630 pA for a 4.5-micron gap device at 10-V bias. Dramatic improvement in the impulse response is observed, 100 ps vs. 600 ps, also at 10-V bias and 4.5-micron gap, due to the elimination of carrier diffusion tails in the implanted devices. Due to its planar structure, this device is fully VLSI compatible. Potential applications include optical interconnections for local area networks and multi-chip modules.

  3. Sulphur abundances in halo giants from the [S I] line at 1082 nm and the [S I] triplet around 1045 nm

    NASA Astrophysics Data System (ADS)

    Jönsson, H.; Ryde, N.; Nissen, P. E.; Collet, R.; Eriksson, K.; Asplund, M.; Gustafsson, B.

    2011-06-01

    Context. It is still debated whether or not the Galactic chemical evolution of sulphur in the halo follows the flat trend with [Fe/H] that is ascribed to the result of explosive nucleosynthesis in type II SNe. It has been suggested that the disagreement between different investigations of sulphur abundances in halo stars might be owing to problems with the diagnostics used, that a new production source of sulphur might be needed in the early Universe, like hypernovae, or that the deposition of supernova ejecta into the interstellar medium is time-delayed. Aims: The aim of this study is to try to clarify this situation by measuring the sulphur abundance in a sample of halo giants using two diagnostics: the S i triplet around 1045 nm and the [S i] line at 1082 nm. The latter of the two is not believed to be sensitive to non-LTE effects. We can thereby minimize the uncertainties in the diagnostic used and estimate the usefulness of the triplet for the sulphur determination in halo K giants. We will also be able to compare our sulphur abundance differences from the two diagnostics with the expected non-LTE effects in the 1045 nm triplet previously calculated by others. Methods: High-resolution near-infrared spectra of ten K giants were recorded using the spectrometer CRIRES mounted at VLT. Two standard settings were used, one covering the S i triplet and one covering the [S i] line. The sulphur abundances were individually determined with equivalent widths and synthetic spectra for the two diagnostics using tailored 1D model atmospheres and relying on non-LTE corrections from the litterature. Effects of convective inhomogeneities in the stellar atmospheres are investigated. Results: The sulphur abundances derived from both the [S i] line and the non-LTE corrected 1045 nm triplet favor a flat trend for the evolution of sulphur. In contrast to some previous studies, we saw no "high" values of [S/Fe] in our sample. Conclusions: We corroborate the flat trend in the [S

  4. Entry Probe Missions to the Giant Planets

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Atkinson, D. H.; Atreya, S. K.; Colaprete, A.; Cuzzi, J. N.; Spilker, L. J.; Coustenis, A.; Venkatapathy, E.; Reh, K.; Frampton, R.

    2009-12-01

    The primary motivation for in situ probe missions to the outer planets derives from the need to constrain models of solar system formation and the origin and evolution of atmospheres, to provide a basis for comparative studies of the gas and ice giants, and to provide a valuable link to extrasolar planetary systems. As time capsules of the solar system, the gas and ice giants offer a laboratory to better understand the atmospheric chemistries, dynamics, and interiors of all the planets, including Earth; and it is within the atmospheres and interiors of the giant planets that material diagnostic of the epoch of formation can be found, providing clues to the local chemical and physical conditions existing at the time and location at which each planet formed. Measurements of current conditions and processes in those atmospheres inform us about their evolution since formation and into the future, providing information about our solar system’s evolution, and potentially establishing a framework for recognizing extrasolar giant planets in different stages of their evolution. Detailed explorations and comparative studies of the gas and ice giant planets will provide a foundation for understanding the integrated dynamic, physical, and chemical origins, formation, and evolution of the solar system. To allow reliable conclusions from comparative studies of gas giants Jupiter and Saturn, an entry probe mission to Saturn is needed to complement the Galileo Probe measurements at Jupiter. These measurements provide the basis for a significantly better understanding of gas giant formation in the context of solar system formation. A probe mission to either Uranus or Neptune will be needed for comparative studies of the gas giants and the ice giants, adding knowledge of ice giant origins and thus making further inroads in our understanding of solar system formation. Recognizing Jupiter’s spatial variability and the need to understand its implications for global composition

  5. GIANT GROUND LEVEL ENHANCEMENT OF RELATIVISTIC SOLAR PROTONS ON 2005 JANUARY 20. I. SPACESHIP EARTH OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieber, J. W.; Clem, J.; Evenson, P.

    A ground level enhancement (GLE) is a solar event that accelerates ions (mostly protons) to GeV range energies in such great numbers that ground-based detectors, such as neutron monitors, observe their showers in Earth's atmosphere above the Galactic cosmic ray background. GLEs are of practical interest because an enhanced relativistic ion flux poses a hazard to astronauts, air crews, and aircraft electronics, and provides the earliest direct indication of an impending space radiation storm. The giant GLE of 2005 January 20 was the second largest on record (and largest since 1956), with up to 4200% count rate enhancement at seamore » level. We analyzed data from the Spaceship Earth network, supplemented to comprise 13 polar neutron monitor stations with distinct asymptotic viewing directions and Polar Bare neutron counters at South Pole, to determine the time evolution of the relativistic proton density, energy spectrum, and three-dimensional directional distribution. We identify two energy-dispersive peaks, indicating two solar injections. The relativistic solar protons were initially strongly beamed, with a peak maximum-to-minimum anisotropy ratio over 1000:1. The directional distribution is characterized by an axis of symmetry, determined independently for each minute of data, whose angle from the magnetic field slowly varied from about 60 Degree-Sign to low values and then rose to about 90 Degree-Sign . The extremely high relativistic proton flux from certain directions allowed 10 s tracking of count rates, revealing fluctuations of period {approx}> 2 minutes with up to 50% fractional changes, which we attribute to fluctuations in the axis of symmetry.« less

  6. The TGAS HR diagram of S-type stars

    NASA Astrophysics Data System (ADS)

    Shetye, Shreeya; van Eck, Sophie; Jorissen, Alain; van Winckel, Hans; Siess, Lionel

    2018-04-01

    S-type stars are late-type giants enhanced with s-process elements originating either from nucleosynthesis during the Asymptotic Giant Branch (AGB) or from a pollution by a binary companion. The former are called intrinsic S stars, and the latter extrinsic S stars. The atmospheric parameters of S stars are more numerous than those of M-type giants (C/O ratio and s-process abundances affect the thermal structure and spectral synthesis), and hence they are more difficult to derive. Nevertheless, high-resolution spectroscopic data of S stars combined with the TGAS (Tycho-Gaia Astrometric solution) parallaxes were used to derive effective temperatures, surface gravities, and luminosities. These parameters allow to locate the intrinsic and extrinsic S stars in the Hertzsprung-Russell diagram.

  7. A High-precision Trigonometric Parallax to an Ancient Metal-poor Globular Cluster

    NASA Astrophysics Data System (ADS)

    Brown, T. M.; Casertano, S.; Strader, J.; Riess, A.; VandenBerg, D. A.; Soderblom, D. R.; Kalirai, J.; Salinas, R.

    2018-03-01

    Using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST), we have obtained a direct trigonometric parallax for the nearest metal-poor globular cluster, NGC 6397. Although trigonometric parallaxes have been previously measured for many nearby open clusters, this is the first parallax for an ancient metal-poor population—one that is used as a fundamental template in many stellar population studies. This high-precision measurement was enabled by the HST/WFC3 spatial-scanning mode, providing hundreds of astrometric measurements for dozens of stars in the cluster and also for Galactic field stars along the same sightline. We find a parallax of 0.418 ± 0.013 ± 0.018 mas (statistical, systematic), corresponding to a true distance modulus of 11.89 ± 0.07 ± 0.09 mag (2.39 ± 0.07 ± 0.10 kpc). The V luminosity at the stellar main-sequence turnoff implies an absolute cluster age of 13.4 ± 0.7 ± 1.2 Gyr. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-13817, GO-14336, and GO-14773.

  8. THE AGES, METALLICITIES, AND ALPHA ELEMENT ENHANCEMENTS OF GLOBULAR CLUSTERS IN THE ELLIPTICAL NGC 5128: A HOMOGENEOUS SPECTROSCOPIC STUDY WITH GEMINI/GEMINI MULTI-OBJECT SPECTROGRAPH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodley, Kristin A.; Harris, William E.; Puzia, Thomas H.

    2010-01-10

    We present new integrated light spectroscopy of globular clusters (GCs) in NGC 5128, a nearby giant elliptical galaxy less than 4 Mpc away, in order to measure radial velocities and derive ages, metallicities, and alpha-element abundance ratios. Using the Gemini South 8 meter telescope with the instrument Gemini Multi-Object Spectrograph, we obtained spectroscopy in the range of approx3400-5700 A for 72 GCs with a signal-to-noise ratio greater than 30 A{sup -1}; and we have also discovered 35 new GCs within NGC 5128 from our radial velocity measurements. We measured and compared the Lick indices from Hdelta{sub A} through Fe5406 withmore » the single stellar population models of Thomas et al. in order to derive age, metallicity, and [alpha/Fe] values. We also measure Lick indices for 41 Milky Way GCs from Puzia et al. and Schiavon et al. with the same methodology for direct comparison. Our results show that 68% of the NGC 5128 GCs have old ages (>8 Gyr), 14% have intermediate ages (5-8 Gyr), and 18% have young ages (<5 Gyr). However, when we look at the metallicity of the GCs as a function of age, we find 92% of metal-poor GCs and 56% of metal-rich GCs in NGC 5128 have ages >8 Gyr, indicating that the majority of both metallicity subpopulations of GCs formed earlier, with a significant population of young and metal-rich GCs forming later. Our metallicity distribution function generated directly from spectroscopic Lick indices is clearly bimodal, as is the color distribution of the same set of GCs. Thus, the metallicity bimodality is real and not an artifact of the color to metallicity conversion. However, the metallicity distribution function obtained from comparison with the single stellar population models is consistent with a unimodal, bimodal, or multimodal shape. The [alpha/Fe] values are supersolar with a mean value of 0.14 +- 0.04, indicating a fast formation timescale. However, the GCs in NGC 5128 are not as [alpha/Fe] enhanced as the Milky Way GCs also

  9. Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores.

    PubMed

    Cecchini, Michael P; Wiener, Aeneas; Turek, Vladimir A; Chon, Hyangh; Lee, Sangyeop; Ivanov, Aleksandar P; McComb, David W; Choo, Jaebum; Albrecht, Tim; Maier, Stefan A; Edel, Joshua B

    2013-10-09

    Nanopore sensors embedded within thin dielectric membranes have been gaining significant interest due to their single molecule sensitivity and compatibility of detecting a large range of analytes, from DNA and proteins, to small molecules and particles. Building on this concept we utilize a metallic Au solid-state membrane to translocate and rapidly detect single Au nanoparticles (NPs) functionalized with 589 dye molecules using surface-enhanced resonance Raman spectroscopy (SERRS). We show that, due to the plasmonic coupling between the Au metallic nanopore surface and the NP, signal intensities are enhanced when probing analyte molecules bound to the NP surface. Although not single molecule, this nanopore sensing scheme benefits from the ability of SERRS to provide rich vibrational information on the analyte, improving on current nanopore-based electrical and optical detection techniques. We show that the full vibrational spectrum of the analyte can be detected with ultrahigh spectral sensitivity and a rapid temporal resolution of 880 μs.

  10. Fluorescence enhancement of photoswitchable metal ion sensors

    NASA Astrophysics Data System (ADS)

    Sylvia, Georgina; Heng, Sabrina; Abell, Andrew D.

    2016-12-01

    Spiropyran-based fluorescence sensors are an ideal target for intracellular metal ion sensing, due to their biocompatibility, red emission frequency and photo-controlled reversible analyte binding for continuous signal monitoring. However, increasing the brightness of spiropyran-based sensors would extend their sensing capability for live-cell imaging. In this work we look to enhance the fluorescence of spiropyran-based sensors, by incorporating an additional fluorophore into the sensor design. We report a 5-membered monoazacrown bearing spiropyran with metal ion specificity, modified to incorporate the pyrene fluorophore. The effect of N-indole pyrene modification on the behavior of the spiropyran molecule is explored, with absorbance and fluorescence emission characterization. This first generation sensor provides an insight into fluorescence-enhancement of spiropyran molecules.

  11. THE SPLASH SURVEY: A SPECTROSCOPIC PORTRAIT OF ANDROMEDA'S GIANT SOUTHERN STREAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Karoline M.; Guhathakurta, Puragra; Kollipara, Priya

    2009-11-10

    The giant southern stream (GSS) is the most prominent tidal debris feature in M31's stellar halo and covers a significant fraction of its southern quadrant. The GSS is a complex structure composed of a relatively metal-rich, high-surface-brightness 'core' and a lower metallicity, lower-surface-brightness 'envelope'. We present spectroscopy of red giant stars in six fields in the vicinity of M31's GSS (including four new fields and improved spectroscopic reductions for two previously published fields) and one field on stream C, an arc-like feature seen in star-count maps on M31's southeast minor axis at R approx 60 kpc. These data are partmore » of our ongoing Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo survey of M31 using the DEIMOS instrument on the Keck II 10 m telescope. Several GSS-related findings and measurements are presented here. We present the innermost kinematical detection of the GSS core to date (R = 17 kpc). This field also contains the inner continuation of a second kinematically cold component that was originally seen in a GSS core field at R approx 21 kpc. The velocity gradients of the GSS and the second component in the combined data set are parallel over a range of DELTAR = 7 kpc, suggesting that this may represent a bifurcation in the line-of-sight velocities of GSS stars. We present the first kinematical detection of substructure in the GSS envelope (S quadrant, R approx 58 kpc). Using kinematically identified samples, we show that the envelope debris has a approx0.7 dex lower mean photometric metallicity and possibly higher intrinsic velocity dispersion than the GSS core. The GSS is also identified in the field of the M31 dwarf spheroidal satellite And I; the GSS in this field has a metallicity distribution identical to that of the GSS core. We confirm the previous finding of two kinematically cold components in stream C, and measure intrinsic velocity dispersions of approx10 and approx4 km s{sup -1}. This compilation

  12. Giant Planets: Good Neighbors for Habitable Worlds?

    NASA Astrophysics Data System (ADS)

    Georgakarakos, Nikolaos; Eggl, Siegfried; Dobbs-Dixon, Ian

    2018-04-01

    The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets toward Earth analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well-characterized exoplanetary systems known to date that host a main-sequence star and a giant planet, we show that the presence of “giant neighbors” can reduce a terrestrial planet’s chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided that the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.

  13. LOCAL TADPOLE GALAXIES: DYNAMICS AND METALLICITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez Almeida, J.; Munoz-Tunon, C.; Mendez-Abreu, J.

    2013-04-10

    Tadpole galaxies, with a bright peripheral clump on a faint tail, are morphological types unusual in the nearby universe but very common early on. Low mass local tadpoles were identified and studied photometrically in a previous work, which we complete here analyzing their chemical and dynamical properties. We measure H{alpha} velocity curves of seven local tadpoles, representing 50% of the initial sample. Five of them show evidence for rotation ({approx}70%), and a sixth target hints at it. Often the center of rotation is spatially offset with respect to the tadpole head (three out of five cases). The size and velocitymore » dispersion of the heads are typical of giant H II regions, and three of them yield dynamical masses in fair agreement with their stellar masses as inferred from photometry. In four cases the velocity dispersion at the head is reduced with respect to its immediate surroundings. The oxygen metallicity estimated from [N II] {lambda}6583/H{alpha} often shows significant spatial variations across the galaxies ({approx}0.5 dex), being smallest at the head and larger elsewhere. The resulting chemical abundance gradients are opposite to the ones observed in local spirals, but agrees with disk galaxies at high redshift. We interpret the metallicity variation as a sign of external gas accretion (cold-flows) onto the head of the tadpole. The galaxies are low-metallicity outliers of the mass-metallicity relationship. In particular, two of the tadpole heads are extremely metal poor, with a metallicity smaller than a tenth of the solar value. These two targets are also very young (ages smaller than 5 Myr). All these results combined are consistent with the local tadpole galaxies being disks in early stages of assembling, with their star formation sustained by accretion of external metal-poor gas.« less

  14. Multi-trophic level response to extreme metal contamination from gold mining in a subarctic lake.

    PubMed

    Thienpont, Joshua R; Korosi, Jennifer B; Hargan, Kathryn E; Williams, Trisha; Eickmeyer, David C; Kimpe, Linda E; Palmer, Michael J; Smol, John P; Blais, Jules M

    2016-08-17

    Giant Mine, located in the city of Yellowknife (Northwest Territories, Canada), is a dramatic example of subarctic legacy contamination from mining activities, with remediation costs projected to exceed $1 billion. Operational between 1948 and 2004, gold extraction at Giant Mine released large quantities of arsenic and metals from the roasting of arsenopyrite ore. We examined the long-term ecological effects of roaster emissions on Pocket Lake, a small lake at the edge of the Giant Mine lease boundary, using a spectrum of palaeoenvironmental approaches. A dated sedimentary profile tracked striking increases (approx. 1700%) in arsenic concentrations coeval with the initiation of Giant Mine operations. Large increases in mercury, antimony and lead also occurred. Synchronous changes in biological indicator assemblages from multiple aquatic trophic levels, in both benthic and pelagic habitats, indicate dramatic ecological responses to extreme metal(loid) contamination. At the peak of contamination, all Cladocera, a keystone group of primary consumers, as well as all planktonic diatoms, were functionally lost from the sediment record. No biological recovery has been inferred, despite the fact that the bulk of metal(loid) emissions occurred more than 50 years ago, and the cessation of all ore-roasting activities in Yellowknife in 1999. © 2016 The Author(s).

  15. On Lithium-rich Red Giants. I. Engulfment of Substellar Companions

    NASA Astrophysics Data System (ADS)

    Aguilera-Gómez, Claudia; Chanamé, Julio; Pinsonneault, Marc H.; Carlberg, Joleen K.

    2016-10-01

    A small fraction of red giants are known to be lithium (Li) rich, in contradiction with expectations from stellar evolutionary theory. A possible explanation for these atypical giants is the engulfment of an Li-rich planet or brown dwarf by the star. In this work, we model the evolution of Li abundance in canonical red giants including the accretion of a substellar mass companion. We consider a wide range of stellar and companion masses, Li abundances, stellar metallicities, and planetary orbital periods. Based on our calculations, companions with masses lower than 15 {M}J dissolve in the convective envelope and can induce Li enrichment in regimes where extra mixing does not operate. Our models indicate that the accretion of a substellar companion can explain abundances up to A(Li) ≈ 2.2, setting an upper limit for Li-rich giants formed by this mechanism. Giants with higher abundances need another mechanism to be explained. For reasonable planetary distributions, we predict the Li abundance distribution of low-mass giants undergoing planet engulfment, finding that between 1% and 3% of them should have {{A}}({Li})≥slant 1.5. We show that depending on the stellar mass range, this traditional definition of Li-rich giants is misleading, as isolated massive stars would be considered anomalous while giants engulfing a companion would be set aside, flagged as normal. We explore the detectability of companion engulfment, finding that planets with masses higher than ∼ 7 {M}J produce a distinct signature, and that descendants of stars originating in the Li dip and low-luminosity red giants are ideal tests of this channel.

  16. Spontaneous self-assembly of a giant spherical metal-oxide Keplerate: addition of one building block induces "immediate" formation of the complementary one from a constitutional dynamic library.

    PubMed

    Schäffer, Christian; Todea, Ana Maria; Gouzerh, Pierre; Müller, Achim

    2012-01-11

    The addition of dinuclear {Mo(2)} units to a dynamic library containing molybdates results in the spontaneous self-assembly of a giant spherical metal-oxide species of the type {(Mo)Mo(5)}(12){Mo(2)}(30) while the required pentagonal {(Mo)Mo(5)} building blocks are "immediately" formed. This journal is © The Royal Society of Chemistry 2012

  17. Giant Cell Tumor of Bone - An Overview

    PubMed Central

    Sobti, Anshul; Agrawal, Pranshu; Agarwala, Sanjay; Agarwal, Manish

    2016-01-01

    Giant Cell tumors (GCT) are benign tumors with potential for aggressive behavior and capacity to metastasize. Although rarely lethal, benign bone tumors may be associated with a substantial disturbance of the local bony architecture that can be particularly troublesome in peri-articular locations. Its histogenesis remains unclear. It is characterized by a proliferation of mononuclear stromal cells and the presence of many multi- nucleated giant cells with homogenous distribution. There is no widely held consensus regarding the ideal treatment method selection. There are advocates of varying surgical techniques ranging from intra-lesional curettage to wide resection. As most giant cell tumors are benign and are located near a joint in young adults, several authors favor an intralesional approach that preserves anatomy of bone in lieu of resection. Although GCT is classified as a benign lesion, few patients develop progressive lung metastases with poor outcomes. Treatment is mainly surgical. Options of chemotherapy and radiotherapy are reserved for selected cases. Recent advances in the understanding of pathogenesis are essential to develop new treatments for this locally destructive primary bone tumor. PMID:26894211

  18. Influence of Poorly Crystalline Metal Oxides on Soil Organic Matter Stability in Four Eastern Deciduous Forest Soils

    NASA Astrophysics Data System (ADS)

    Porras, R. C.; Torn, M. S.; McFarlane, K. J.

    2011-12-01

    Association with mineral surfaces is suggested as one mechanism underlying the long-term stabilization of organic matter in soils. Several recent studies have demonstrated a positive correlation between short range ordered soil Fe and Al concentrations and soil OM or radiocarbon based residence time. The positive correlation between poorly crystalline Fe and Al and 14C-based residence times suggests that mineral associated OM persists over much longer time scales. Suggested mechanisms include encapsulation within iron oxide microaggregate structures or adsorption to highly reactive metal oxide mineral surfaces both of which have been shown to reduce the bioavailabilty of toxicant species in soil and aquatic environments. We utilized radiocarbon measurements coupled with selective chemical dissolution techniques to investigate the relationship between the concentration of short range order Fe and Al oxides and the stability of soil organic matter across four deciduous forest sites in the eastern U.S.comprising three different soil orders. Preliminary results indicate that SRO Fe and Al slow the turnover of SOM, with a significant linear relationship between computed radiocarbon turnover time and SRO Al and Fe overall (R2= 0.60,P=0.0001,CL=95%). Piecewise regression analysis on turnover time vs. metal oxide concentration for all four sites shows an apparent metal oxide threshold value at 5g kg-1. Sites with SRO Al and Fe content below this value showed no statistically significant influence on SOM stability presumably because they are present in insufficient quantity to exert a measureable influence on the decomposability of organic inputs. Among individual sites, Harvard Forest had the highest extractable metal oxide concentrations and exhibited the strongest influence of SRO Fe and Al oxides on 14C based turnover times (R2=0.91, P=0.0001,CL=95%); in this soil, poorly crystalline metal oxides are quantitatively important in stabilizing organic inputs against

  19. Comparison of the optical responses of O-poor and O-rich thermochromic VOX films during semiconductor-to-metal transition

    NASA Astrophysics Data System (ADS)

    Luo, Zhenfei; Wu, Zhiming; Wang, Tao; Xu, Xiangdong; Li, Weizhi; Li, Wei; Jiang, Yadong

    2012-09-01

    O-poor and O-rich thermochromic vanadium oxide (VOX) nanostructured thin films were prepared by applying reactive direct current magnetron sputtering and post-annealing in oxygen ambient. UV-visible spectrophotometer and spectroscopic ellipsometry were used to investigate the optical properties of films. It was found that, when the O-poor VOX thin film underwent semiconductor-to-metal transition, the values of optical conductivity and extinction coefficient in the visible region increased due to the existence of occupied band-gap states. This noticeable feature, however, was not observed for the O-rich film, which showed a similar optical behavior with the stoichiometric crystalline VO2 films reported in the literatures. Moreover, the O-poor VOX film exhibits consistent variations of transmission values in the visible/near-infrared region when it undergoes semiconductor-to-metal transition.

  20. Exploring the Overabundance of ULXs in Metal- and Dust-Poor Local Lyman Break Analogs

    NASA Technical Reports Server (NTRS)

    Basu-Zych, Antara R.; Lehmer, Bret; Fragos, Tassos; Hornschemeier, Ann; Yukita, Mihoko; Zezas, Andreas; Ptak, Andy

    2016-01-01

    We have studied high-mass X-ray binary (HMXB) populations within two low-metallicity, starburst galaxies, Haro 11 and VV 114. These galaxies serve as analogs to high-redshift (z greater than 2) Lyman break galaxies and, within the larger sample of Lyman break analogs (LBAs), they are sufficiently nearby (less than 87 Mpc) to be spatially resolved by Chandra. Previous studies of the X-ray emission in LBAs have found that the 2-10 keV luminosity per star formation rate (SFR) in these galaxies is elevated, potentially because of their low metallicities (12 + log[O/H] = 8.3-8.4). Theoretically, the progenitors of XRBs forming in lower metallicity environments lose less mass from stellar winds over their lifetimes, producing more massive compact objects (i.e., neutron stars and black holes), and thus resulting in more numerous and luminous HMXBs per SFR. In this paper, we have performed an in-depth study of the only two LBAs that have spatially resolved 2-10 keV emission with Chandra to present the bright end of the X-ray luminosity distribution of HMXBs (L(sub X) approximately greater than 10(exp 39) erg s(exp -1); ultraluminous X-ray sources, ULXs) in these low-metallicity galaxies, based on eight detected ULXs. Compared with the star-forming galaxy X-ray luminosity function (XLF) presented by Mineo et al., Haro 11 and VV 114 host approximately equal to 4 times more L(sub X) greater than 10(exp 40) erg s(exp -1) sources than expected given their SFRs. We simulate the effects of source blending from crowded lower-luminosity HMXBs using the star-forming galaxy XLF and then vary the XLF normalizations and bright-end slopes until we reproduce the observed point source luminosity distributions. We find that these LBAs have a shallower bright-end slope (gamma(sub 2) = 1.90) than the standard XLF (gamma(sub 2) 2.73). If we conservatively assume that the brightest X-ray source from each galaxy is powered by an accreting supermassive black hole rather than an HMXB and

  1. Supramolecular Complexation of Carbohydrates for the Bioavailability Enhancement of Poorly Soluble Drugs.

    PubMed

    Cho, Eunae; Jung, Seunho

    2015-10-27

    In this review, a comprehensive overview of advances in the supramolecular complexes of carbohydrates and poorly soluble drugs is presented. Through the complexation process, poorly soluble drugs could be efficiently delivered to their desired destinations. Carbohydrates, the most abundant biomolecules, have diverse physicochemical properties owing to their inherent three-dimensional structures, hydrogen bonding, and molecular recognition abilities. In this regard, oligosaccharides and their derivatives have been utilized for the bioavailability enhancement of hydrophobic drugs via increasing the solubility or stability. By extension, polysaccharides and their derivatives can form self-assembled architectures with poorly soluble drugs and have shown increased bioavailability in terms of the sustained or controlled drug release. These supramolecular systems using carbohydrate will be developed consistently in the field of pharmaceutical and medical application.

  2. A remarkable oxygen-rich asymptotic giant branch variable in the Sagittarius Dwarf Irregular Galaxy

    NASA Astrophysics Data System (ADS)

    Whitelock, Patricia A.; Menzies, John W.; Feast, Michael W.; Marigo, Paola

    2018-01-01

    We report and discuss JHKS photometry for Sgr dIG, a very metal-deficient galaxy in the Local Group, obtained over 3.5 years with the Infrared Survey Facility in South Africa. Three large amplitude asymptotic giant branch variables are identified. One is an oxygen-rich star that has a pulsation period of 950 d, which was until recently undergoing hot bottom burning, with Mbol ∼ -6.7. It is surprising to find a variable of this sort in Sgr dIG, given their rarity in other dwarf irregulars. Despite its long period the star is relatively blue and is fainter, at all wavelengths shorter than 4.5 μm, than anticipated from period-luminosity relations that describe hot bottom burning stars. A comparison with models suggests it had a main-sequence mass Mi ∼ 5 M⊙ and that it is now near the end of its asymptotic giant branch evolution. The other two periodic variables are carbon stars with periods of 670 and 503 d (Mbol ∼ -5.7 and -5.3). They are very similar to other such stars found on the asymptotic giant branch of metal-deficient Local Group galaxies and a comparison with models suggests Mi ∼ 3 M⊙. We compare the number of asymptotic giant branch variables in Sgr dIG to those in NGC 6822 and IC 1613, and suggest that the differences may be due to the high specific star formation rate and low metallicity of Sgr dIG.

  3. Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    NASA Astrophysics Data System (ADS)

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.; Hansen, T. T.; Simon, J. D.; Bernstein, R. A.; Balbinot, E.; Drlica-Wagner, A.; Pace, A. B.; Strigari, L. E.; Pellegrino, C. M.; DePoy, D. L.; Suntzeff, N. B.; Bechtol, K.; Walker, A. R.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; March, M.; Miquel, R.; Nord, B.; Roodman, A.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Wechsler, R. H.; Wolf, R. C.; Yanny, B.

    2018-01-01

    We present chemical abundance measurements of three stars in the ultrafaint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high-resolution spectroscopic observations, we measure the metallicity of the three stars, as well as abundance ratios of several α-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] ∼ ‑2.6 and are not α-enhanced ([α/Fe] ∼ 0.0). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultrafaint dwarfs and suggests the possibility of a different mechanism for the enrichment of Hor I compared to other satellites. We discuss possible scenarios that could lead to this observed nucleosynthetic signature, including extended star formation, enrichment by a Population III supernova, and or an association with the Large Magellanic Cloud. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This paper also includes data based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 096.D-0967(B); PI: E. Balbinot).

  4. Identification of tomato introgression lines with enhanced susceptibility or resistance to infection by parasitic giant dodder (Cuscuta reflexa).

    PubMed

    Krause, Kirsten; Johnsen, Hanne R; Pielach, Anna; Lund, Leidulf; Fischer, Karsten; Rose, Jocelyn K C

    2018-02-01

    The parasitic flowering plant genus Cuscuta (dodder) is a parasitic weed that infects many important crops. Once it winds around the shoots of potential host plants and initiates the development of penetration organs, called haustoria, only a few plant species have been shown to deploy effective defense mechanisms to ward off Cuscuta parasitization. However, a notable exception is Solanum lycopersicum (tomato), which exhibits a local hypersensitive reaction when attacked by giant dodder (Cuscuta reflexa). Interestingly, the closely related wild desert tomato, Solanum pennellii, is unable to stop the penetration of its tissue by the C. reflexa haustoria. In this study, we observed that grafting a S. pennellii scion onto the rootstock of the resistant S. lycopersicum did not change the susceptibility phenotype of S. pennellii. This suggests that hormones, or other mobile substances, produced by S. lycopersicum do not induce a defense reaction in the susceptible tissue. Screening of a population of introgression lines harboring chromosome fragments from S. pennellii in the genome of the recurrent parent S. lycopersicum, revealed that most lines exhibit the same defense reaction as shown by the S. lycopersicum parental line. However, several lines showed different responses and exhibited either susceptibility, or cell death that extended considerably beyond the infection site. These lines will be valuable for the future identification of key loci involved in the perception of, and resistance to, C. reflexa and for developing strategies to enhance resistance to infection in crop species. © 2017 Scandinavian Plant Physiology Society.

  5. J0023+0307: A Mega Metal-poor Dwarf Star from SDSS/BOSS

    NASA Astrophysics Data System (ADS)

    Aguado, David S.; Allende Prieto, Carlos; González Hernández, Jonay I.; Rebolo, Rafael

    2018-02-01

    Only a handful of stars have been identified with an iron abundance [Fe/H] < ‑5, and only one at [Fe/H] < ‑7. These stars have very large carbon-to-iron ratios, with {\\boldsymbol{A}}({\\boldsymbol{C}}) ∼ 7.0, most likely due to fallback in core-collapse supernovae, which makes their total metallicity Z much higher than their iron abundances. The failure to find population III stars, those with no metals, has been interpreted, with support from theoretical modeling, as the result of a top-heavy initial mass function. With zero or very low metal abundance limiting radiative cooling, the formation of low-mass stars could be inhibited. Currently, the star SDSS J1029+1729 sets the potential metallicity threshold for the formation of low-mass stars at {log}Z/{Z}ȯ ∼ -5. In our quest to push down the metallicity threshold we have identified SDSS J0023+0307, a primitive star with T eff = 6188 ± 84 K, and {log}g=4.9+/- 0.5, an upper limit [Fe/H] < ‑6.6, and a carbon abundance A(C) < 6.3. We find J0023+0307 to be one of the two most iron-poor stars known, and it exhibits less carbon that most of the stars at [Fe/H] < ‑5. Based on observations made with William Herschel Telescope (WHT) and the Gran Telescopio de Canarias (GTC), at the Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in La Palma.

  6. AGB stars in Leo P and their use as metallicity probes

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu

    2016-09-01

    Leo P is the most metal-poor yet star-forming galaxy in the local volume, and has the potential to serve as a local counterpart to interpret the properties of distant galaxies in the early universe. We present a comprehensive search of asymptotic giant branch (AGB) stars in Leo P using deep infrared imaging. AGB stars are the major dust contributors; the metal poor nature of Leo P can help to shed light on the dust formation process in very low-metallicity environments, similar to the early Universe. We select and classify oxygen-rich and carbon-rich candidate AGB stars using J - K versus K colour-magnitude diagram. To filter out contaminations from background galaxies, we exploit the high-resolution Hubble Space Telescope imaging and identify 9 oxygen-rich AGBs and 13 carbon-rich AGB stars in Leo P. We then use the ratio of carbon-rich and oxygen-rich AGB stars (C/M ratio) as an indicator of on-site metallicity and derive the global metallicity [Fe/H] = -1.8 dex for Leo P, in good agreement with previous studies using isochrone fitting. Follow-up observations of these Leo P AGB stars in the mid-infrared [e.g. Spitzer, James Webb Space Telescope (JWST)] will be invaluable to measure the dust formation rates using Spectral energy distribution (SED) fitting.

  7. Central giant cell granuloma in pediatric maxilla: surgical management.

    PubMed

    Faverani, Leonardo Perez; Ferreira, Sabrina; Ferreira, Gabriel Ramalho; Coléte, Juliana Zorzi; Aranega, Alessandra Marcondes; Garcia Júnior, Idelmo Rangel

    2014-07-01

    Central giant cell granuloma (CGCG) is an intraosseous lesion consisting of fibrous cellular tissue that contains multiple foci of hemorrhage, multinucleated giant cells, and occasional trabeculae of woven bone. An 8-year-old boy presented himself complaining of a painless swelling in the left maxilla that had started 1 year. Computed tomography (CT) scan confirmed a poorly defined multilocular radiolucent lesion in the left maxilla crossing the midline. The patient underwent enucleation through an intraoral approach of the lesion. The biopsy revealed multinucleated giant cells in a fibrous stroma. A CT was taken approximately 1 year postoperatively. There was no clinical or radiographic evidence of recurrence. Therefore, surgical treatment of CGCG can be performed, trying to preserve the surrounding anatomic structures, which can be maintained in case the lesion does not show an aggressive clinical behavior, avoiding large surgical defects which are undesirable in children.

  8. Metal-poor star formation triggered by the feedback effects from Pop III stars

    NASA Astrophysics Data System (ADS)

    Chiaki, Gen; Susa, Hajime; Hirano, Shingo

    2018-04-01

    Metal enrichment by first-generation (Pop III) stars is the very first step of the matter cycle in structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by Pop III stars, we carry out a series of numerical simulations including the feedback effects of photoionization and supernovae (SNe) of Pop III stars with a range of masses of minihaloes (MHs), Mhalo, and Pop III stars, MPopIII. We find that the metal-rich ejecta reach neighbouring haloes and external enrichment (EE) occurs when the H II region expands before the SN explosion. The neighbouring haloes are only superficially enriched, and the metallicity of the clouds is [Fe/H] < -5. Otherwise, the SN ejecta fall back and recollapse to form an enriched cloud, i.e. an internal-enrichment (IE) process takes place. In the case where a Pop III star explodes as a core-collapse SN (CCSN), the MH undergoes IE, and the metallicity in the recollapsing region is -5 ≲ [Fe/H] ≲ -3 in most cases. We conclude that IE from a single CCSN can explain the formation of EMP stars. For pair-instability SNe (PISNe), EE takes place for all relevant mass ranges of MHs, consistent with the lack of observational signs of PISNe among EMP stars.

  9. Very Low-Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Beers, Timothy C.; Suda, Takuma; Honda, Satoshi; Lee, Young Sun

    2016-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <-2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <-3) are yet to be explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <-2.5 among 137 objects (Aoki et al. 2013). The effective temperatures of these stars are 4500-5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres has obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical-abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010), and the other exhibits low abundances of the α-elements and odd-Z elements, suggested to be signatures of the yields of very massive stars (> 100 solar masses; Aoki et al. 2014). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  10. Structural origin underlying poor glass forming ability of Al metallic glass

    NASA Astrophysics Data System (ADS)

    Li, F.; Liu, X. J.; Hou, H. Y.; Chen, G.; Chen, G. L.

    2011-07-01

    We performed molecular dynamics simulations to study the glass formation and local atomic structure of rapidly quenched Al. Both potential energy and structural parameters indicate that the glass transition temperature of amorphous Al is as low as 300 K, which may lead to the poor thermal stability of the amorphous Al as it is prone to crystallize even at room temperature. Voronoi polyhedra analysis reveals that the most popular polyhedron is the deformed body-centered cubic (bcc) cluster characterized by the index < 0, 3, 6, 4 > in the amorphous Al, while the icosahedron with the index < 0, 0, 12, 0 > is always predominant in bulk metallic glass formers with excellent glass forming ability (GFA). Moreover, these deformed-bcc short-range orders can make up medium-range orders via the linkage of vertex-, edge-, face-, intercrossed-shared atoms, which are believed to more easily transform into face-centered cubic (fcc) Al nanocrystal compared with the icosahedral clusters in terms of the symmetrical similarity between bcc and fcc structures. This finding could unveil the structural origin of poor GFA of Al-based alloys.

  11. A Planetary Companion around a Metal-Poor Star with Extragalactic Origin

    NASA Astrophysics Data System (ADS)

    Setiawan, Johny; Klement, Rainer; Henning, Thomas; Rix, Hans-Walter; Rochau, Boyke; Schulze-Hartung, Tim; Rodmann, Jens

    2011-03-01

    We report the detection of a planetary companion around HIP 13044, a metal-poor star on the red Horizontal Branch. The detection is based on radial velocity observations with FEROS, a high-resolution spectrograph at the 2.2-m MPG/ESO telescope, located at ESO La Silla observatory in Chile. The periodic radial velocity variation of P = 16.2 days can be distinguished from the periods of the stellar activity indicators. We computed a minimum planetary mass of 1.25 MJup and an orbital semi-major axis of 0.116 AU for the planet. This discovery is unique in three aspects: First, it is the first planet detection around a star with a metallicity much lower than few percent of the solar value; second, the planet host star resides in a stellar evolutionary stage that is still unexplored in the exoplanet surveys; third, the star HIP 13044 belongs to one of the most significant stellar halo streams in the solar neighborhood, implying an extragalactic origin of the planetary system HIP 13044 in a disrupted former satellite of the Milky Way.

  12. Evidences of extragalactic origin and planet engulfment in the metal-poor twin pair HD 134439/HD 134440

    NASA Astrophysics Data System (ADS)

    Reggiani, Henrique; Meléndez, Jorge

    2018-04-01

    Recent studies of chemical abundances in metal-poor halo stars show the existence of different populations, which is important for studies of Galaxy formation and evolution. Here, we revisit the twin pair of chemically anomalous stars HD 134439 and HD 134440, using high resolution (R ˜ 72 000) and high S/N ratio (S/N ˜ 250) HDS/Subaru spectra. We compare them to the well-studied halo star HD 103095, using the line-by-line differential technique to estimate precise stellar parameters and LTE chemical abundances. We present the abundances of C, O, Na, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, Y, Ba, La, Ce, Nd, and Sm. We compare our results to the precise abundance patterns of Nissen & Schuster (2010) and data from dwarf Spheroidal galaxies (dSphs). We show that the abundance pattern of these stars appears to be closely linked to that of dSphs with [α/Fe] knee below [Fe/H] < -1.5. We also find a systematic difference of 0.06 ± 0.01 dex between the abundances of these twin binary stars, which could be explained by the engulfment of a planet, thus suggesting that planet formation is possible at low metallicities ([Fe/H] = -1.4).

  13. Giant transversal particle diffusion in a longitudinal magnetic ratchet.

    PubMed

    Tierno, Pietro; Reimann, Peter; Johansen, Tom H; Sagués, Francesc

    2010-12-03

    We study the transversal motion of paramagnetic particles on a uniaxial garnet film, exhibiting a longitudinal ratchet effect in the presence of an oscillating magnetic field. Without the field, the thermal diffusion coefficient obtained by video microscopy is D(0) ≈ 3 × 10(-4)  μm2/s. With the field, the transversal diffusion exhibits a giant enhancement by almost four decades and a pronounced maximum as a function of the driving frequency. We explain the experimental findings with a theoretical interpretation in terms of random disorder effects within the magnetic film.

  14. Metals as radio-enhancers in oncology: The industry perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pottier, Agnés, E-mail: agnes.pottier@nanobiotix.com; Borghi, Elsa; Levy, Laurent

    Radio-enhancers, metal-based nanosized agents, could play a key role in oncology. They may unlock the potential of radiotherapy by enhancing the radiation dose deposit within tumors when the ionizing radiation source is ‘on’, while exhibiting chemically inert behavior in cellular and subcellular systems when the radiation beam is ‘off’. Important decision points support the development of these new type of therapeutic agents originated from nanotechnology. Here, we discuss from an industry perspective, the interest of developing radio-enhancer agents to improve tumor control, the relevance of nanotechnology to achieve adequate therapeutic attributes, and present some considerations for their development in oncology.more » - Highlights: • Oncology is a field of high unmet medical need. • Despites of its widespread usage, radiation therapy presents a narrow therapeutic window. • High density material at the nanoscale may enhance radiation dose deposit from cancer cells. • Metal-based nanosized radio-enhancers could unlock the potential of radiotherapy.« less

  15. Far-ultraviolet energy distributions of the metal-poor A stars HD 109995 and HD 161817

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1981-01-01

    Low-resolution IUE spectra at wavelengths between 1300 and 3400 A of the metal-poor stars HD 109995 (A1p) and HD 161817 (A4p) have been compared with model-atmosphere energy distributions computed by Kurucz (1979). Good overall agreement is found. Effective temperatures, metal abundances, and angular diameters could be determined. Assuming an absolute visual magnitude of 0.7, the previously determined gravity log = 3 yields masses of 0.5 solar masses for both stars. It is found that the theoretical UBV colors calculated earlier agree reaonably well with the ones observed for these stars.

  16. LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron–Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistentmore » with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.« less

  17. Enhancement of light absorption in polyazomethines due to plasmon excitation on randomly distributed metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Wróbel, P.; Antosiewicz, T. J.; Stefaniuk, T.; Ciesielski, A.; Iwan, A.; Wronkowska, A. A.; Wronkowski, A.; Szoplik, T.

    2015-05-01

    In photovoltaic devices, metal nanoparticles embedded in a semiconductor layer allow the enhancement of solar-toelectric energy conversion efficiency due to enhanced light absorption via a prolonged optical path, enhanced electric fields near the metallic inclusions, direct injection of hot electrons, or local heating. Here we pursue the first two avenues. In the first, light scattered at an angle beyond the critical angle for reflection is coupled into the semiconductor layer and confined within such planar waveguide up to possible exciton generation. In the second, light is trapped by the excitation of localized surface plasmons on metal nanoparticles leading to enhanced near-field plasmon-exciton coupling at the peak of the plasmon resonance. We report on results of a numerical experiment on light absorption in polymer- (fullerene derivative) blends, using the 3D FDTD method, where exact optical parameters of the materials involved are taken from our recent measurements. In simulations we investigate light absorption in randomly distributed metal nanoparticles dispersed in polyazomethine-(fullerene derivative) blends, which serve as active layers in bulkheterojunction polymer solar cells. In the study Ag and Al nanoparticles of different diameters and fill factors are diffused in two air-stable aromatic polyazomethines with different chemical structures (abbreviated S9POF and S15POF) mixed with phenyl-C61-butyric acid methyl ester (PCBM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). The mixtures are spin coated on a 100 nm thick Al layer deposited on a fused silica substrate. Optical constants of the active layers are taken from spectroscopic ellipsometry and reflectance measurements using a rotating analyzer type ellipsometer with auto-retarder performed in the wavelength range from 225 nm to 2200 nm. The permittivities of Ag and Al particles of diameters from 20 to 60 nm are assumed to be equal to those measured on 100 to 200 nm thick metal films.

  18. Quantifying the evidence for co-benefits between species conservation and climate change mitigation in giant panda habitats.

    PubMed

    Li, Renqiang; Xu, Ming; Powers, Ryan; Zhao, Fen; Jetz, Walter; Wen, Hui; Sheng, Qingkai

    2017-10-05

    Conservationists strive for practical, cost-effective management solutions to forest-based species conservation and climate change mitigation. However, this is compromised by insufficient information about the effectiveness of protected areas in increasing carbon storage, and the co-benefits of species and carbon conservation remain poorly understood. Here, we present the first rigorous quantitative assessment of the roles of giant panda nature reserves (NRs) in carbon sequestration, and explore the co-benefits of habitat conservation and climate change mitigation. Results show that more than 90% of the studied panda NRs are effective in increasing carbon storage, with the mean biomass carbon density of the whole NRs exhibiting a 4.2% higher growth rate compared with lands not declared as NRs over the period 1988-2012, while this effectiveness in carbon storage masks important patterns of spatial heterogeneity across the giant panda habitats. Moreover, the significant associations have been identified between biomass carbon density and panda's habitat suitability in ~85% NRs and at the NR level. These findings suggest that the planning for carbon and species conservation co-benefits would enhance the greatest return on limited conservation investments, which is a critical need for the giant panda after its conservation status has been downgraded from "endangered" to "vulnerable".

  19. Microscopic insight into the origin of enhanced glass-forming ability of metallic melts on micro-alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C. J.; Chathoth, S. M., E-mail: smavilac@cityu.edu.hk; Podlesnyak, A.

    2015-09-28

    Extensive efforts have been made to develop metallic-glasses with large casting diameter. Such efforts were hindered by the poor understanding of glass formation mechanisms and the origin of the glass-forming ability (GFA) in metallic glass-forming systems. In this work, we have investigated relaxation dynamics of a model bulk glass-forming alloy system that shows the enhanced at first and then diminished GFA on increasing the percentage of micro-alloying. The micro-alloying did not have any significant impact on the thermodynamic properties. The GFA increasing on micro-alloying in this system cannot be explained by the present theoretical knowledge. Our results indicate that atomicmore » caging is the primary factor that influences the GFA. The composition dependence of the atomic caging time or residence time is found to be well correlated with GFA of the system.« less

  20. Microscopic insight into the origin of enhanced glass-forming ability of metallic melts on micro-alloying

    DOE PAGES

    Chen, C. J.; Podlesnyak, A.; Mamontov, E.; ...

    2015-09-28

    We've made extensive efforts to develop metallic-glasses with large casting diameter. Such efforts were hindered by the poor understanding of glass formation mechanisms and the origin of the glass-forming ability (GFA) in metallic glass-forming systems. We have investigated relaxation dynamics of a model bulk glass-forming alloy system that shows the enhanced at first and then diminished GFA on increasing the percentage of micro-alloying. The micro-alloying did not have any significant impact on the thermodynamic properties. The GFA increasing on micro-alloying in this system cannot be explained by the present theoretical knowledge. Finally, our results indicate that atomic caging is themore » primary factor that influences the GFA. The composition dependence of the atomic caging time or residence time is found to be well correlated with GFA of the system.« less

  1. The tip of the red giant branch as a distance indicator for resolved galaxies. 2: Computer simulations

    NASA Technical Reports Server (NTRS)

    Madore, Barry F.; Freedman, Wendy L.

    1995-01-01

    Based on both empirical data for the nearby galaxies, and on computer simulations, we show that measuring the position of the tip of the first-ascent red-giant branch provides a means of obtaining the distances to nearby galaxies with a precision and accuracy comparable to using Cepheids and/or RR Lyrae variables. We present an analysis of synthetic I vs (V-I) color magnitude diagrams of Population 2 systems to investigate the use of the observed discontinuity in the I-band luminosity function as a primary distance indicator. In the simulations we quantify the effects (1) signal to noise, (2) crowding, (3) population size, and (4) non-giant-branch-star contamination, on the method adopted for detecting the discontinuity,, measuring its luminosity, and estimating its uncertainity. We discuss sources of systematic error in the context of observable parameters, such as the signal-to-noise ratio and/or surface brightness. The simulations are then scaled to observed color-magnitude diagrams. It is concluded, that from the ground the tip of the red-giant-branch method can be sucessfully used to determine distances accurate to +/- 10% for galaxies out to 3 Mpc (mu approximately 27.5 mag); and from space a factor of four further in distance (mu approximately 30.6 mag) can be reached using HST. This method can be applied whereever a metal-poor population (-2.0 less than Z less than -0.7) of red-giant stars is detected (whose age is in the range 7-17 Gyr), whether that population resides in the halo of a spiral galaxy, the extended outer disk of a dwarf irregular, or in the outer periphery of an elliptical galaxy.

  2. A Vision for Ice Giant Exploration

    NASA Technical Reports Server (NTRS)

    Hofstadter, M.; Simon, A.; Atreya, S.; Banfield, D.; Fortney, J.; Hayes, A.; Hedman, M.; Hospodarsky, G.; Mandt, K.; Masters, A.; hide

    2017-01-01

    From Voyager to a Vision for 2050: NASA and ESA have just completed a study of candidate missionsto Uranus and Neptune, the so-called ice giant planets. It is a Pre-Decadal Survey Study, meant to inform the next Planetary Science Decadal Survey about opportunities for missions launching in the 2020's and early 2030's. There have been no space flight missions to the ice giants since the Voyager 2 flybys of Uranus in 1986 and Neptune in 1989. This paper presents some conclusions of that study (hereafter referred to as The Study), and how the results feed into a vision for where planetary science can be in 2050. Reaching that vision will require investments in technology andground-based science in the 2020's, flight during the 2030's along with continued technological development of both ground- and space-based capabilities, and data analysis and additional flights in the 2040's. We first discuss why exploring the ice giants is important. We then summarize the science objectives identified by The Study, and our vision of the science goals for 2050. We then review some of the technologies needed to make this vision a reality.

  3. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization.

    PubMed

    Lin, Qisheng; Miller, Gordon J

    2018-01-16

    Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e - /atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Therefore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate. During our efforts to find quasicrystals and crystalline approximants by valence electron tuning near 2.0 e - /atom, we observed that compositions close to those of quasicrystals are exceptional sources for unprecedented valence electron-poor polar intermetallics, e.g., Ca 4 Au 10 In 3 containing (Au 10 In 3 ) wavy layers, Li 14.7 Mg 36.8 Cu 21.5 Ga 66 adopting a type IV clathrate framework, and Sc 4 Mg x Cu 15-x Ga 7.5 that is incommensurately modulated. In particular, exploratory syntheses of AAu 3 T (A = Ca, Sr, Ba and T = Ge, Sn) phases led to interesting bonding features for Au, such as columns, layers, and lonsdaleite-type tetrahedral frameworks. Overall, the breadth of Au-rich polar intermetallics originates, in part, from significant relativistics effect on the valence electrons of Au, effects which result in greater 6s/5d orbital mixing, a small effective metallic radius, and an enhanced Mulliken electronegativity, all leading to ultimate enhanced binding with nearly all metals including itself. Two other successful strategies to mine electron-poor polar intermetallics include lithiation and "cation-rich" phases. Along these lines, we have studied lithiated Zn-rich compounds in which structural

  4. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    PubMed Central

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-01-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g−1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184

  5. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    NASA Astrophysics Data System (ADS)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g-1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  6. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Yang, Lei; Zhong, Wenhui; Cui, Jing; Wei, Zhenggui

    2015-03-01

    In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (Xc = 0.23) and had better adsorption capacity for FA than those (Xc = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long term. Findings of the present work highlight the potential for using poorly crystalline HAP nanoparticles as an effective and recyclable adsorbent for FA removal from aqueous solution.

  7. Latitudinal exposure to DDTs, HCB, PCBs, PBDEs and DP in giant petrels (Macronectes spp.) across the Southern Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roscales, Jose L., E-mail: jlroscales@iqog.csic.es; González-Solís, Jacob; Zango, Laura

    Studies on Persistent Organic Pollutants (POPs) in Antarctic wildlife are scarce, and usually limited to a single locality. As a result, wildlife exposure to POPs across the Southern Ocean is poorly understood. In this study, we report the differential exposure of the major southern ocean scavengers, the giant petrels, to POPs across a wide latitudinal gradient. Selected POPs (PCBs, HCB, DDTs, PBDEs) and related compounds, such as Dechlorane Plus (DP), were analyzed in plasma of southern giant petrels (Macronectes giganteus) breeding on Livingston (62°S 61°W, Antarctica), Marion (46°S 37°E, sub-Antarctic), and Gough (40°S 10°W, cool temperate) islands. Northern giant petrelsmore » (Macronectes halli) from Marion Island were also studied. Stable isotope ratios of C and N (δ{sup 13}C and δ{sup 15}N) were used as dietary tracers of the marine habitat and trophic level, respectively. Breeding locality was a major factor explaining petrel exposure to POPs compared with species and sex. Significant relationships between δ{sup 13}C values and POP burdens, at both inter- and intra-population levels, support latitudinal variations in feeding grounds as a key factor in explaining petrel pollutant burdens. Overall, pollutant levels in giant petrels decreased significantly with latitude, but the relative abundance (%) of the more volatile POPs increased towards Antarctica. DP was found at negligible levels compared with legacy POPs in Antarctic seabirds. Spatial POP patterns found in giant petrels match those predicted by global distribution models, and reinforce the hypothesis of atmospheric long-range transport as the main source of POPs in Antarctica. Our results confirm that wildlife movements out of the polar region markedly increase their exposure to POPs. Therefore, strategies for Antarctic wildlife conservation should consider spatial heterogeneity in exposure to marine pollution. Of particular relevance is the need to clarify the exposure of Antarctic

  8. The Gaia-ESO Survey: Separating disk chemical substructures with cluster models. Evidence of a separate evolution in the metal-poor thin disk

    NASA Astrophysics Data System (ADS)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Schultheis, M.; Guiglion, G.; Mikolaitis, Š.; Kordopatis, G.; Hill, V.; Gilmore, G.; Randich, S.; Alfaro, E. J.; Bensby, T.; Koposov, S. E.; Costado, M. T.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.; Chiappini, C.

    2016-02-01

    Context. Recent spectroscopic surveys have begun to explore the Galactic disk system on the basis of large data samples, with spatial distributions sampling regions well outside the solar neighborhood. In this way, they provide valuable information for testing spatial and temporal variations of disk structure kinematics and chemical evolution. Aims: The main purposes of this study are to demonstrate the usefulness of a rigorous mathematical approach to separate substructures of a stellar sample in the abundance-metallicity plane, and provide new evidence with which to characterize the nature of the metal-poor end of the thin disk sequence. Methods: We used a Gaussian mixture model algorithm to separate in the [Mg/Fe] vs. [Fe/H] plane a clean disk star subsample (essentially at RGC< 10 kpc) from the Gaia-ESO survey (GES) internal data release 2 (iDR2). We aim at decomposing it into data groups highlighting number density and/or slope variations in the abundance-metallicity plane. An independent sample of disk red clump stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) was used to cross-check the identified features. Results: We find that the sample is separated into five groups associated with major Galactic components; the metal-rich end of the halo, the thick disk, and three subgroups for the thin disk sequence. This is confirmed with the sample of red clump stars from APOGEE. The three thin disk groups served to explore this sequence in more detail. The two metal-intermediate and metal-rich groups of the thin disk decomposition ([Fe/H] > -0.25 dex) highlight a change in the slope at solar metallicity. This holds true at different radial regions of the Milky Way. The distribution of Galactocentric radial distances of the metal-poor part of the thin disk ([Fe/H] < -0.25 dex) is shifted to larger distances than those of the more metal-rich parts. Moreover, the metal-poor part of the thin disk presents indications of a scale height

  9. Giant cell arteritis: diagnostic accuracy of MR imaging of superficial cranial arteries in initial diagnosis-results from a multicenter trial.

    PubMed

    Klink, Thorsten; Geiger, Julia; Both, Marcus; Ness, Thomas; Heinzelmann, Sonja; Reinhard, Matthias; Holl-Ulrich, Konstanze; Duwendag, Dirk; Vaith, Peter; Bley, Thorsten Alexander

    2014-12-01

    To assess the diagnostic accuracy of contrast material-enhanced magnetic resonance (MR) imaging of superficial cranial arteries in the initial diagnosis of giant cell arteritis ( GCA giant cell arteritis ). Following institutional review board approval and informed consent, 185 patients suspected of having GCA giant cell arteritis were included in a prospective three-university medical center trial. GCA giant cell arteritis was diagnosed or excluded clinically in all patients (reference standard [final clinical diagnosis]). In 53.0% of patients (98 of 185), temporal artery biopsy ( TAB temporal artery biopsy ) was performed (diagnostic standard [ TAB temporal artery biopsy ]). Two observers independently evaluated contrast-enhanced T1-weighted MR images of superficial cranial arteries by using a four-point scale. Diagnostic accuracy, involvement pattern, and systemic corticosteroid ( sCS systemic corticosteroid ) therapy effects were assessed in comparison with the reference standard (total study cohort) and separately in comparison with the diagnostic standard TAB temporal artery biopsy ( TAB temporal artery biopsy subcohort). Statistical analysis included diagnostic accuracy parameters, interobserver agreement, and receiver operating characteristic analysis. Sensitivity of MR imaging was 78.4% and specificity was 90.4% for the total study cohort, and sensitivity was 88.7% and specificity was 75.0% for the TAB temporal artery biopsy subcohort (first observer). Diagnostic accuracy was comparable for both observers, with good interobserver agreement ( TAB temporal artery biopsy subcohort, κ = 0.718; total study cohort, κ = 0.676). MR imaging scores were significantly higher in patients with GCA giant cell arteritis -positive results than in patients with GCA giant cell arteritis -negative results ( TAB temporal artery biopsy subcohort and total study cohort, P < .001). Diagnostic accuracy of MR imaging was high in patients without and with sCS systemic

  10. IMPLICATIONS OF RAPID CORE ROTATION IN RED GIANTS FOR INTERNAL ANGULAR MOMENTUM TRANSPORT IN STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tayar, Jamie; Pinsonneault, Marc H., E-mail: tayar.1@osu.edu

    2013-09-20

    Core rotation rates have been measured for red giant stars using asteroseismology. These data, along with helioseismic measurements and open cluster spin-down studies, provide powerful clues about the nature and timescale for internal angular momentum transport in stars. We focus on two cases: the metal-poor red giant KIC 7341231 ({sup O}tto{sup )} and intermediate-mass core helium burning stars. For both, we examine limiting case studies for angular momentum coupling between cores and envelopes under the assumption of rigid rotation on the main sequence. We discuss the expected pattern of core rotation as a function of mass and radius. In themore » case of Otto, strong post-main-sequence coupling is ruled out and the measured core rotation rate is in the range of 23-33 times the surface value expected from standard spin-down models. The minimum coupling timescale (0.17-0.45 Gyr) is significantly longer than that inferred for young open cluster stars. This implies ineffective internal angular momentum transport in early first ascent giants. By contrast, the core rotation rates of evolved secondary clump stars are found to be consistent with strong coupling given their rapid main-sequence rotation. An extrapolation to the white dwarf regime predicts rotation periods between 330 and 0.0052 days, depending on mass and decoupling time. We identify two key ingredients that explain these features: the presence of a convective core and inefficient angular momentum transport in the presence of larger mean molecular weight gradients. Observational tests that can disentangle these effects are discussed.« less

  11. Formation of Hydrocarbons in the Outflows from Red Giants

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne; Kress, Monika; Tielens, Alexander G.

    1995-01-01

    The formation of hydrocarbons in the oxygen-rich outflows from red giants was studied. The existence of organic molecules in such outflows has been known for several years; however, their surprisingly high abundances has been a mystery since all of the carbon had been thought to be irretrievably locked up in CO, the most strongly bound molecule. CO is the first molecule to form from the atoms present in the star's extended atmosphere, and as strong stellar winds drive a cooling outflow, dust grains condense out. In oxygen-rich outflows, the dust is thought to be composed mainly of silicates and other metal oxides. Perhaps the noble metals can condense out in metallic form, in particular the relatively abundant transition metals iron and nickel. We proposed that perhaps the carbon reservoir held as CO can be accessed through a catalytic process involving the chemisorption of CO and H2 onto grains rich in metallic iron. CO and H2 are the two most abundant molecules in circumstellar outflows, and they both are known to dissociate on transition metal surfaces at elevated temperatures, freeing carbon to form organic molecules such as methane. We believe methane is a precursor molecule to the organics observed in oxygen-rich red giants. We have developed a nonequilibrium numerical model of a surface chemical (catalytic) process. Based on this model, we believe that methane can be formed under the conditions present in circumstellar outflows. Although the methane formation rates are exceptionally low under these conditions, over dynamical timescales, a significant amount of CO can be converted to methane and driven further out in the envelope, explaining the presence of organics there.

  12. Chemical Compositions of RV Tauri Stars and Related Objects

    NASA Astrophysics Data System (ADS)

    Rao, S. S.; Giridhar, S.

    2014-04-01

    We have undertaken a comprehensive abundance analysis for a sample of relatively unexplored RV Tauri and RV Tauri like stars to further our understanding of post-Asymptotic Giant Branch (post-AGB) evolution. From our study based on high resolution spectra and a grid of model atmospheres, we find indications of mild s-processing for V820 Cen and IRAS 06165+3158. On the other hand, SU Gem and BT Lac exhibit the effects of mild dust-gas winnowing. We have also compiled the existing abundance data on RV Tauri objects and find that a large fraction of them are afflicted by dust-gas winnowing and aided by the present work, we find a small group of two RV Tauris showing mild s-process enhancement in our Galaxy. With two out of three reported s-process enhanced objects belonging to RV Tauri spectroscopic class C, these intrinsically metal-poor objects appear to be promising candidates to analyse the possible s-processing in RV Tauri stars.

  13. DEMONSTRATION BULLETIN: METAL-ENHANCED ABIOTIC DEGRADATION TECHNOLOGY - ENVIROMETAL TECHNOLOGIES, INC.

    EPA Science Inventory

    EnviroMetal Technologies, Inc. (ETI), of Guelph, ON, Canada, has developed the metal-enhanced abiotic degradation technology to treat halogenated volatile organic compounds (VOC) in water. A reactive, zero-valent, granular iron medium causes reductive dehalogenation of VOCs yield...

  14. Silver nanorod structures for metal enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Badshah, Mohsin Ali; Lu, Xun; Ju, Jonghyun; Kim, Seok-min

    2016-09-01

    Fluorescence based detection is a commonly used methodology in biotechnology and medical diagnostics. Metalenhanced fluorescence (MEF) becomes a promising strategy to improve the sensitivity of fluorescence detection, where fluorophores coupling with surface plasmon on metallic structures results fluorescence enhancement. To apply the MEF methodology in real medical diagnostics, especially for protein or DNA microarray detection, a large area (e.g., slide glass, 75 × 25 mm2) with uniform metallic nanostructures is required. In this study, we fabricated a large area MEF substrates using oblique angle deposition (OAD), which is a single step, inexpensive large area fabrication method of nanostructures. To optimize the morphological effect, Ag-nanorods with various lengths were fabricated on the conventional slide glass substrates. Streptavidin-Cy5 dissolved in buffer solution with different concentration (100ng/ml 100μg/ml) were applied to MEF substrates using a pipette, and the fluorescence signals were measured. The enhancement factor increased with the increase in length of Ag-nanorods and maximum enhancement factor 91x was obtained from Ag-nanorods 750nm length compare to bare glass due to higher surface Plasmon effect.

  15. Lithium-rich Giants in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Guhathakurta, Puragra; Zhang, Andrew J.; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G.; Cunha, Katia

    2016-03-01

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  16. Resting site use of giant pandas in Wanglang Nature Reserve.

    PubMed

    Kang, Dongwei; Wang, Xiaorong; Li, Junqing

    2017-10-23

    Little is known about the resting sites used by the giant panda (Ailuropoda melanoleuca), which restricts our understanding of their resting habits and limits conservation efforts. To enhance our understanding of resting site requirements and factors affecting the resting time of giant pandas, we investigated the characteristics of resting sites in the Wanglang Nature Reserve, Sichuan Province, China. The results indicated that the resting sites of giant pandas were characterised by a mean slope of 21°, mean nearest tree size of 53.75 cm, mean nearest shrub size of 2.82 cm, and mean nearest bamboo number of 56. We found that the resting sites were closer to bamboo than to trees and shrubs, suggesting that the resting site use of giant pandas is closely related to the presence of bamboo. Considering that giant pandas typically rest near a large-sized tree, protection of large trees in the forests is of considerable importance for the conservation of this species. Furthermore, slope was found to be an important factor affecting the resting time of giant pandas, as they tended to rest for a relatively longer time in sites with a smaller degree of slope.

  17. Metallicity of Young and Old Stars in Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Tikhonov, N. A.

    2018-01-01

    Based on archived images obtained with the Hubble Space Telescope, stellar photometry for 105 irregular galaxies has been conducted. We have shown the red supergiant and giant branches in the obtained Hertzsprung-Russel diagrams. Using the TRGB method, distances to galaxies and metallicity of red giants have been determined. The color index ( V - I) of the supergiant branch at the luminosity level M I = -7 was chosen as the metallicity index of red supergiants. For the galaxies under study, the diagrams have been built, in which the correlation can be seen between the luminosity of galaxies ( M B ) and metallicity of red giants and supergiants. The main source of variance of the results in the obtained diagrams is, in our opinion, uncertainty inmeasurements of galaxy luminosities and star-forming outburst. The relation between metallicity of young and old stars shows that main enrichment of galaxies with metals has taken place in the remote past. Deviations of some galaxies in the obtained relation can possibly be explained with the fall of the intergalactic gas on them, although, this inconsiderably affects metallicities of the stellar content.

  18. Light exposure enhances urea absorption in the fluted giant clam, Tridacna squamosa, and up-regulates the protein abundance of a light-dependent urea active transporter, DUR3-like, in its ctenidium.

    PubMed

    Chan, Christabel Y L; Hiong, Kum C; Boo, Mel V; Choo, Celine Y L; Wong, Wai P; Chew, Shit F; Ip, Yuen K

    2018-04-19

    Giant clams live in nutrient-poor reef waters of the Indo-Pacific and rely on symbiotic dinoflagellates ( Symbiodinium spp., also known as zooxanthellae) for nutrients. As the symbionts are nitrogen deficient, the host clam has to absorb exogenous nitrogen and supply it to them. This study aimed to demonstrate light-enhanced urea absorption in the fluted giant clam, Tridacna squamosa , and to clone and characterize the urea active transporter DUR3-like from its ctenidium (gill). The results indicate that T. squamosa absorbs exogenous urea, and the rate of urea uptake in the light was significantly higher than that in darkness. The DUR3-like coding sequence obtained from its ctenidium comprised 2346 bp, encoding a protein of 782 amino acids and 87.0 kDa. DUR3-like was expressed strongly in the ctenidium, outer mantle and kidney. Twelve hours of exposure to light had no significant effect on the transcript level of ctenidial DUR3-like However, between 3 and 12 h of light exposure, DUR3-like protein abundance increased progressively in the ctenidium, and became significantly greater than that in the control at 12 h. DUR3-like had an apical localization in the epithelia of the ctenidial filaments and tertiary water channels. Taken together, these results indicate that DUR3-like might participate in light-enhanced urea absorption in the ctenidium of T. squamosa When made available to the symbiotic zooxanthellae that are known to possess urease, the absorbed urea can be metabolized to NH 3 and CO 2 to support amino acid synthesis and photosynthesis, respectively, during insolation. © 2018. Published by The Company of Biologists Ltd.

  19. Giant piezoelectricity of monolayer group IV monochalcogenides

    NASA Astrophysics Data System (ADS)

    Fei, Ruixiang; Li, Wenbin; Li, Ju; Yang, Li

    We predict enormous, anisotropic piezoelectric effects in intrinsic monolayer group IV monochalcogenides (MX, M =Sn or Ge, X =Se or S), including SnSe, SnS, GeSe, and GeS. Using first-principle simulations based on the modern theory of polarization, we find that their piezoelectric coefficients are about one to two orders of magnitude larger than those of other 2D materials, such as MoS2 and GaSe, and bulk quartz and AlN which are widely used in industry. This enhancement is a result of the unique ``puckered'' C2v symmetry and electronic structure of monolayer group IV monochalcogenides. Given the achieved experimental advances in the fabrication of monolayers, their flexible character, and ability to withstand enormous strain, these 2D structures with giant piezoelectric effects may be promising for a broad range of applications such as nano-sized sensors, piezotronics, and energy harvesting in portable electronic devices.

  20. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. V. TOWARD AN EMPIRICAL METAL-POOR MASS–LUMINOSITY RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horch, Elliott P.; Van Altena, William F.; Demarque, Pierre

    2015-05-15

    In an effort to better understand the details of the stellar structure and evolution of metal-poor stars, the Gemini North telescope was used on two occasions to take speckle imaging data of a sample of known spectroscopic binary stars and other nearby stars in order to search for and resolve close companions. The observations were obtained using the Differential Speckle Survey Instrument, which takes data in two filters simultaneously. The results presented here are of 90 observations of 23 systems in which one or more companions was detected, and six stars where no companion was detected to the limit ofmore » the camera capabilities at Gemini. In the case of the binary and multiple stars, these results are then further analyzed to make first orbit determinations in five cases, and orbit refinements in four other cases. The mass information is derived, and since the systems span a range in metallicity, a study is presented that compares our results with the expected trend in total mass as derived from the most recent Yale isochrones as a function of metal abundance. These data suggest that metal-poor main-sequence stars are less massive at a given color than their solar-metallicity analogues in a manner consistent with that predicted from the theory.« less

  1. Conversion of just-continuous metallic films to large particulate substrates for metal-enhanced fluorescence

    PubMed Central

    Aslan, Kadir; Malyn, Stuart N.; Zhang, Yongxia; Geddes, Chris D.

    2008-01-01

    We report the effects of thermally annealing, non-, just-, and thick continuous silver films for their potential applications in metal-enhanced fluorescence, a near-field concept which can alter the free-space absorption and emissive properties of close-proximity fluorophores (excited states). We have chosen to anneal a noncontinuous particulate film 5 nm thick and two thicker continuous films, 15 and 25 nm thick, respectively. Our results show that the annealing of the 25 nm film has little effect on close-proximity fluorescence when coated with a monolayer of fluorophore-labeled protein. However, the 15 nm continuous film cracks upon annealing, producing large nanoparticles which are ideal for enhancing the fluorescence of close-proximity fluorophores that are indeed difficult to prepare by other wet-chemical deposition processes. The annealing of 5 nm noncontinuous particulate films (a control sample) has little influence on metal-enhanced fluorescence, as expected. PMID:19479004

  2. Conversion of just-continuous metallic films to large particulate substrates for metal-enhanced fluorescence.

    PubMed

    Aslan, Kadir; Malyn, Stuart N; Zhang, Yongxia; Geddes, Chris D

    2008-04-15

    We report the effects of thermally annealing, non-, just-, and thick continuous silver films for their potential applications in metal-enhanced fluorescence, a near-field concept which can alter the free-space absorption and emissive properties of close-proximity fluorophores (excited states). We have chosen to anneal a noncontinuous particulate film 5 nm thick and two thicker continuous films, 15 and 25 nm thick, respectively. Our results show that the annealing of the 25 nm film has little effect on close-proximity fluorescence when coated with a monolayer of fluorophore-labeled protein. However, the 15 nm continuous film cracks upon annealing, producing large nanoparticles which are ideal for enhancing the fluorescence of close-proximity fluorophores that are indeed difficult to prepare by other wet-chemical deposition processes. The annealing of 5 nm noncontinuous particulate films (a control sample) has little influence on metal-enhanced fluorescence, as expected.

  3. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  4. Enhancement of Giant Magneto-Impedance in Series Co-Rich Microwires for Low-Field Sensing Applications

    NASA Astrophysics Data System (ADS)

    Jiang, S. D.; Eggers, T.; Thiabgoh, O.; Xing, D. W.; Fang, W. B.; Sun, J. F.; Srikanth, H.; Phan, M. H.

    2018-02-01

    Two soft ferromagnetic Co68.25Fe4.25Si12.25B15.25 microwires with the same diameter of 50 ± 1 μm but different fabrication processes were placed in series and in parallel circuit configurations to investigate their giant magneto-impedance (GMI) responses in a frequency range of 1-100 MHz for low-field sensing applications. We show that, while the low-field GMI response is significantly reduced in the parallel configuration, it is greatly enhanced in the series connection. These results suggest that a highly sensitive GMI sensor can be designed by arranging multi-wires in a saw-shaped fashion to optimize the sensing area, and soldered together in series connection to maintain the excellent magnetic field sensitivity.

  5. Giant Planets around FGK Stars Probably Form through Core Accretion

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Liang; Li, Xiang; Chen, Yuqin; Zhao, Gang

    2018-06-01

    We present a statistical study of the planet–metallicity (P–M) correlation by comparing the 744 stars with candidate planets (SWPs) in the Kepler field that have been observed with LAMOST, and a sample of distance-independent, fake “twin” stars in the Kepler field with no planet reported (CKSNPs) yet. With well-defined and carefully selected large samples, we find for the first time a turnoff P–M correlation of Δ[Fe/H]SWPs–SNPs, which on average increases from ∼0.00 ± 0.03 dex to 0.06 ± 0.03 dex, and to 0.12 ± 0.03 for stars with Earth-, Neptune-, and Jupiter-sized planets successively, and then declines to ∼‑0.01 ± 0.03 dex for more massive planets or brown dwarfs. Moreover, the percentage of those systems with positive Δ[Fe/H] has the same turnoff pattern. We also find that FG-type stars follow this general trend, but K-type stars are different. Moderate metal enhancement (∼0.1–0.2 dex) for K-type stars with planets of radii between 2 and 4 R ⊕, compared to CKSNPs is observed, which indicates much higher metallicities are required for Super-Earths and Neptune-sized planets to form around K-type stars. We point out that the P–M correlation is actually metallicity-dependent, i.e., the correlation is positive at solar and supersolar metallicities, and negative at subsolar metallicities. No steady increase of Δ[Fe/H] against planet sizes is observed for rocky planets, excluding the pollution scenario as a major mechanism for the P–M correlation. All these clues suggest that giant planets probably form differently from rocky planets or more massive planets/brown dwarfs, and the core accretion scenario is highly favored, and high metallicity is a prerequisite for massive planets to form.

  6. Solar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides

    NASA Astrophysics Data System (ADS)

    Shen, Shaohua; Chen, Xiaobo; Ren, Feng; Kronawitter, Coleman X.; Mao, Samuel S.; Guo, Liejin

    2011-12-01

    A series of Pt-loaded MS/ZnIn2S4 (MS = transition-metal sulfide: Ag2S, SnS, CoS, CuS, NiS, and MnS) photocatalysts was investigated to show various photocatalytic activities depending on different transition-metal sulfides. Thereinto, CoS, NiS, or MnS-loading lowered down the photocatalytic activity of ZnIn2S4, while Ag2S, SnS, or CuS loading enhanced the photocatalytic activity. After loading 1.0 wt.% CuS together with 1.0 wt.% Pt on ZnIn2S4, the activity for H2 evolution was increased by up to 1.6 times, compared to the ZnIn2S4 only loaded with 1.0 wt.% Pt. Here, transition-metal sulfides such as CuS, together with Pt, acted as the dual co-catalysts for the improved photocatalytic performance. This study indicated that the application of transition-metal sulfides as effective co-catalysts opened up a new way to design and prepare high-efficiency and low-cost photocatalysts for solar-hydrogen conversion.

  7. The Giant Branch of omega Centauri. IV. Abundance Patterns Based on Echelle Spectra of 40 Red Giants

    NASA Astrophysics Data System (ADS)

    Norris, John E.; Da Costa, G. S.

    1995-07-01

    Abundances of some 20 elements have been determined for a (biased) sample of 40 red giants having Mv < -1.5 in the chemically inhomogeneous globular cluster ω Centauri. The results are based on high-resolution, high signal-to-noise echelle spectra and permit one to examine the roles of primordial enrichment and stellar evolutionary mixing effects in the cluster. Our basic conclusions are as follows (1) There is an abundance range -1.8 < [Fe/H] < -0.8, and even more metal rich stars may exist in the cluster. (2) For the α (Mg, Si, Ca, Ti) and iron peak (Cr, Ni) elements and Sc and V, [metal/Fe] is flat as a function of [Fe/H] and is consistent with primordial enrichment from stars having mass greater than 10 Msun, as has been found for field halo stars. (3) There is a large scatter in the abundances of C, N, and 0. The bulk of the stars have -0.9 < [C/Fe] < -0.3 and [O/Fe] ˜ 0.3, as is found at the red giant branch tip in other "normal" (showing no spread in [Fe/H]) clusters of similar abundance, while there also exists a group of CN-strong stars having [C/Fe] ˜ -0.7 and [O/Fe] ˜ -0.5. Nitrogen appears to be enhanced in all of these carbon-depleted stars. These results are most readily explained in terms of evolutionary mixing effects not predicted by standard stellar evolution calculations and are consistent with the earlier suggestions of Cohen & Bell (1986) and Paltoglou & Norris (1989) concerning processing in both the CN and ON cycles in the stars being observed. In contrast, the group of CO-strong stars first identified by Persson et al. (1980) has [C/Fe] ˜ 0.0, [O/Fe] ˜ 0.4, and [N/Fe] ˜ 0.4 (or 0.9 if the nitrogen scale of Brown and Wallerstein is correct) and is suggestive of primordial enrichment of carbon and/or nitrogen from intermediate- and possibly low-mass stars, tempered by later stellar evolutionary effects. (4) [Na/Fe] and [Al/Fe] are anticorrelated with [O/Fe], and there is a positive correlation between [Na/Fe] and [Al/Fe], all of which

  8. Hubble Space Telescope/NICMOS Observations of I Zw 18: A Population of Old Asymptotic Giant Branch Stars Revealed.

    PubMed

    Östlin

    2000-06-01

    I present the first results from a Hubble Space Telescope/NICMOS imaging study of the most metal-poor blue compact dwarf galaxy, I Zw 18. The near-infrared color-magnitude diagram (CMD) is dominated by two populations, one 10-20 Myr population of red supergiants and one 0.1-5 Gyr population of asymptotic giant branch stars. Stars older than 1 Gyr are required to explain the observed CMD at the adopted distance of 12.6 Mpc, showing that I Zw 18 is not a young galaxy. The results hold also if the distance to I Zw 18 is significantly larger. This rules out the possibility that I Zw 18 is a truly young galaxy formed recently in the local universe.

  9. Experimental investigation of solidification in metal foam enhanced phase change material

    NASA Astrophysics Data System (ADS)

    Beyne, W.; Bağci, O.; Huisseune, H.; Canière, H.; Danneels, J.; Daenens, D.; De Paepe, M.

    2017-10-01

    A major challenge for the use of phase change materials (PCMs) in thermal energy storage (TES) is overcoming the low thermal conductivity of PCM’s. The low conductivity gives rise to limited power during charging and discharging TES. Impregnating metal foam with PCM, however, has been found to enhance the heat transfer. On the other hand, the effect of foam parameters such as porosity, pore size and material type has remained unclear. In this paper, the effect of these foam parameters on the solidification time is investigated. Different samples of PCM-impregnated metal foam were experimentally tested and compared to one without metal foam. The samples varied with respect to choice of material, porosity and pore size. They were placed in a rectangular cavity and cooled from one side using a coolant flowing through a cold plate. The other sides of the rectangular cavity were Polymethyl Methacrylate (PM) walls exposed to ambient. The temperature on the exterior walls of the cavity was monitored as well as the coolant flow rate and its temperature. The metal foam inserts reduced the solidification times by at least 25 %. However, the difference between the best performing and worst performing metal foam is about 28 %. This shows a large potential for future research.

  10. Giant enhancement of fluctuation in small biological systems under external fields

    NASA Astrophysics Data System (ADS)

    Hayashi, Kumiko; Hasegawa, Shin; Tsunoda, Satoshi P.

    2016-05-01

    The giant enhancement (GE) of fluctuation under an external field is a universal phenomenon predicted by the theoretical analysis given in (Reimann et al 2001 Phys. Rev. Lett.). Here, we propose the application of the theory of the GE of fluctuation to estimate the energy barrier of a biomolecule that exhibits its function subject to thermal noise. The rotary motor protein F1 was used as a model, which is a component of FoF1 adenosine triphosphate (ATP)-synthase. In the single-molecule experiment on F1, the diffusion coefficients of a rotary probe attached to F1, which characterised the fluctuation of the system, were measured under the influence of an electro-rotary field. These diffusion coefficients were then used to estimate a high-energy barrier of the rotary potential of F1 based on the theory of the GE of fluctuation. Furthermore, the ion channel protein channelrhodopsin (ChR) was used as another research model. The current fluctuations of ions moving through ChR were numerically investigated using a simulation model of the protein in the presence of an external voltage. The energy barrier for ion conduction is discussed based on the current fluctuations.

  11. Nanowire-Intensified Metal-Enhanced Fluorescence in Hybrid Polymer-Plasmonic Electrospun Filaments.

    PubMed

    Camposeo, Andrea; Jurga, Radoslaw; Moffa, Maria; Portone, Alberto; Cardarelli, Francesco; Della Sala, Fabio; Ciracì, Cristian; Pisignano, Dario

    2018-05-01

    Hybrid polymer-plasmonic nanostructures might combine high enhancement of localized fields from metal nanoparticles with light confinement and long-range transport in subwavelength dielectric structures. Here, the complex behavior of fluorophores coupling to Au nanoparticles within polymer nanowires, which features localized metal-enhanced fluorescence (MEF) with unique characteristics compared to conventional structures, is reported. The intensification effect when the particle is placed in the organic filaments is remarkably higher with respect to thin films of comparable thickness, thus highlighting a specific, nanowire-related enhancement of MEF effects. A dependence on the confinement volume in the dielectric nanowire is also indicated, with MEF significantly increasing upon reduction of the wire diameter. These findings are rationalized by finite element simulations, predicting a position-dependent enhancement of the quantum yield of fluorophores embedded in the fibers. Calculation of the ensemble-averaged fluorescence enhancement unveils the possibility of strongly enhancing the overall emission intensity for structures with size twice the diameter of the embedded metal particles. These new, hybrid fluorescent systems with localized enhanced emission, and the general nanowire-enhanced MEF effects associated to them, are highly relevant for developing nanoscale light-emitting devices with high efficiency and intercoupled through nanofiber networks, highly sensitive optical sensors, and novel laser architectures. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA Weinheim.

  12. New detections of arsenic, selenium, and other heavy elements in two metal-poor stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Schatz, Hendrik; Beers, Timothy C.

    2014-08-10

    We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to obtain new high-quality spectra covering the 1900 ≤λ ≤ 2360 Å wavelength range for two metal-poor stars, HD 108317 and HD 128279. We derive abundances of Cu II, Zn II, As I, Se I, Mo II, and Cd II, which have not been detected previously in either star. Abundances derived for Ge I, Te I, Os II, and Pt I confirm those derived from lines at longer wavelengths. We also derive upper limits from the non-detection of W II, Hg II, Pb II, and Bi I.more » The mean [As/Fe] ratio derived from these two stars and five others in the literature is unchanged over the metallicity range –2.8 < [Fe/H] <–0.6, ([As/Fe]) = +0.28 ± 0.14 (σ = 0.36 dex). The mean [Se/Fe] ratio derived from these two stars and six others in the literature is also constant, ([Se/Fe]) = +0.16 ± 0.09 (σ = 0.26 dex). The As and Se abundances are enhanced relative to a simple extrapolation of the iron-peak abundances to higher masses, suggesting that this mass region (75 ≤A ≤ 82) may be the point at which a different nucleosynthetic mechanism begins to dominate the quasi-equilibrium α-rich freezeout of the iron peak. ([Cu II/Cu I]) = +0.56 ± 0.23 in HD 108317 and HD 128279, and we infer that lines of Cu I may not be formed in local thermodynamic equilibrium in these stars. The [Zn/Fe], [Mo/Fe], [Cd/Fe], and [Os/Fe] ratios are also derived from neutral and ionized species, and each ratio pair agrees within the mutual uncertainties, which range from 0.15 to 0.52 dex.« less

  13. A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design.

    PubMed

    Zhou, Zhenpeng; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Cheng Zhi; Li, Na

    2014-02-15

    A new metal-enhanced fluorescence (MEF) based platform was developed on the basis of distance-dependent fluorescence quenching-enhancement effect, which combined the easiness of Ag-thiol chemistry with the MEF property of noble-metal structures as well as the molecular beacon design. For the given sized AgNPs, the fluorescence enhancement factor was found to increase with a d(6) dependency in agreement with fluorescence resonance energy transfer mechanism at shorter distance and decrease with a d(-3) dependency in agreement with plasmonic enhancement mechanism at longer distance between the fluorophore and the AgNP surface. As a proof of concept, the platform was demonstrated by a sensitive detection of mercuric ions, using thymine-containing molecular beacon to tune silver nanoparticle (AgNP)-enhanced fluorescence. Mercuric ions were detected via formation of a thymine-mercuric-thymine structure to open the hairpin, facilitating fluorescence recovery and AgNP enhancement to yield a limit of detection of 1 nM, which is well below the U.S. Environmental Protection Agency regulation of the Maximum Contaminant Level Goal (10nM) in drinking water. Since the AgNP functioned as not only a quencher to reduce the reagent blank signal but also an enhancement substrate to increase fluorescence of the open hairpin when target mercuric ions were present, the quenching-enhancement strategy can greatly improve the detection sensitivity and can in principle be a universal approach for various targets when combined with molecular beacon design. © 2013 Elsevier B.V. All rights reserved.

  14. Very Low Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Beers, Timothy C.; Takuma, Suda; Honda, Satoshi; Lee, Young Sun

    2015-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <-2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <-3) have yet to be well explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <-2.5 among 137 objects (Aoki et al. 2013, AJ, 145, 13). The effective temperatures of these stars are 4500--5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres have obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010, ApJL 723, L201), and the other exhibits low abundances of the alpha-elements and odd-Z elements, suggested to be the signatures of the yields of very massive stars ( >100 solar masses; Aoki et al. 2014, Science 345, 912). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  15. Stellar Multiplicity Meets Stellar Evolution and Metallicity: The APOGEE View

    NASA Astrophysics Data System (ADS)

    Badenes, Carles; Mazzola, Christine; Thompson, Todd A.; Covey, Kevin; Freeman, Peter E.; Walker, Matthew G.; Moe, Maxwell; Troup, Nicholas; Nidever, David; Allende Prieto, Carlos; Andrews, Brett; Barbá, Rodolfo H.; Beers, Timothy C.; Bovy, Jo; Carlberg, Joleen K.; De Lee, Nathan; Johnson, Jennifer; Lewis, Hannah; Majewski, Steven R.; Pinsonneault, Marc; Sobeck, Jennifer; Stassun, Keivan G.; Stringfellow, Guy S.; Zasowski, Gail

    2018-02-01

    We use the multi-epoch radial velocities acquired by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to perform a large-scale statistical study of stellar multiplicity for field stars in the Milky Way, spanning the evolutionary phases between the main sequence (MS) and the red clump. We show that the distribution of maximum radial velocity shifts (ΔRVmax) for APOGEE targets is a strong function of log g, with MS stars showing ΔRVmax as high as ∼300 {km} {{{s}}}-1, and steadily dropping down to ∼30 {km} {{{s}}}-1 for log g ∼ 0, as stars climb up the red giant branch (RGB). Red clump stars show a distribution of ΔRVmax values comparable to that of stars at the tip of the RGB, implying they have similar multiplicity characteristics. The observed attrition of high ΔRVmax systems in the RGB is consistent with a lognormal period distribution in the MS and a multiplicity fraction of 0.35, which is truncated at an increasing period as stars become physically larger and undergo mass transfer after Roche Lobe overflow during H-shell burning. The ΔRVmax distributions also show that the multiplicity characteristics of field stars are metallicity-dependent, with metal-poor ([Fe/H] ≲ ‑0.5) stars having a multiplicity fraction a factor of 2–3 higher than metal-rich ([Fe/H] ≳ 0.0) stars. This has profound implications for the formation rates of interacting binaries observed by astronomical transient surveys and gravitational wave detectors, as well as the habitability of circumbinary planets.

  16. Giant Cell Arteritis Presenting as Scalp Necrosis

    PubMed Central

    Maidana, Daniel E.; Muñoz, Silvia; Acebes, Xènia; Llatjós, Roger; Jucglà, Anna; Álvarez, Alba

    2011-01-01

    The differential of scalp ulceration in older patients should include several causes, such as herpes zoster, irritant contact dermatitis, ulcerated skin tumors, postirradiation ulcers, microbial infections, pyoderma gangrenosum, and giant cell arteritis. Scalp necrosis associated with giant cell arteritis was first described in the 1940s. The presence of this dermatological sign within giant cell arteritis represents a severity marker of this disease, with a higher mean age at diagnosis, an elevated risk of vision loss and tongue gangrene, as well as overall higher mortality rates, in comparison to patients not presenting this manifestation. Even though scalp necrosis due to giant cell arteritis is exceptional, a high level of suspicion must be held for this clinical finding, in order to initiate prompt and proper treatment and avoid blindness. PMID:21789466

  17. 6Li detection in metal-poor stars: can 3D model atmospheres solve the second lithium problem?

    NASA Astrophysics Data System (ADS)

    Steffen, M.; Cayrel, R.; Caffau, E.; Bonifacio, P.; Ludwig, H.-G.; Spite, M.

    The presence of 6Li in the atmospheres of metal-poor halo stars is usually inferred from the detection of a subtle extra depression in the red wing of the 7Li doublet line at 670.8 nm. However, as pointed out recently by \\cite{Cayrel2007}, the intrinsic line asymmetry caused by convective flows in the photospheres of cool stars is almost indistinguishable from the asymmetry produced by a weak 6Li blend on a (presumed) symmetric 7Li profile. Previous determinations of the 6Li/ 7Li isotopic ratio based on 1D model atmospheres, ignoring the convection-induced line asymmetry, must therefore be considered as upper limits. By comparing synthetic 1D LTE and 3D non-LTE line profiles of the iLi 670.8 nm feature, we quantify the differential effect of the convective line asymmetry on the derived 6Li abundance as a function of effective temperature, gravity, and metallicity. As expected, we find that the asymmetry effect systematically reduces the resulting 6Li/7Li ratios. Depending on the stellar parameters, the 3D-1D offset in 6Li/7Li ranges between -0.005 and -0.020. When this purely theoretical correction is taken into account for the \\cite{A2006} sample of stars, the number of significant 6Li detections decreases from 9 to 5 (2sigma criterion), or from 5 to 2 (3sigma criterion). We also present preliminary results of a re-analysis of high-resolution, high S/N spectra of individual metal-poor turn-off stars, to see whether the second Lithium problem actually disappears when accounting properly for convection and non-LTE line formation in 3D stellar atmospheres. Out of 8 stars, HD 84937 seems to be the only significant (2sigma ) detection of 6Li. In view of our results, the existence of a 6Li plateau appears questionable.

  18. Giant Enhancement of Magnetic Anisotropy in Ultrathin Manganite Films via Nanoscale 1D Periodic Depth Modulation.

    PubMed

    Rajapitamahuni, A; Zhang, L; Koten, M A; Singh, V R; Burton, J D; Tsymbal, E Y; Shield, J E; Hong, X

    2016-05-06

    The relatively low magnetocrystalline anisotropy (MCA) in strongly correlated manganites (La,Sr)MnO_{3} has been a major hurdle for implementing them in spintronic applications. Here we report an unusual, giant enhancement of in-plane MCA in 6 nm La_{0.67}Sr_{0.33}MnO_{3} (LSMO) films grown on (001) SrTiO_{3} substrates when the top 2 nm is patterned into periodic stripes of 100 or 200 nm width. Planar Hall effect measurements reveal an emergent uniaxial anisotropy superimposed on one of the original biaxial easy axes for unpatterned LSMO along ⟨110⟩ directions, with a 50-fold enhanced anisotropy energy density of 5.6×10^{6}  erg/cm^{3} within the nanostripes, comparable to the value for cobalt. The magnitude and direction of the uniaxial anisotropy exclude shape anisotropy and the step edge effect as its origin. High resolution transmission electron microscopy studies reveal a nonequilibrium strain distribution and drastic suppression in the c-axis lattice constant within the nanostructures, which is the driving mechanism for the enhanced uniaxial MCA, as suggested by first-principles density functional calculations.

  19. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar.

    PubMed

    Wang, Shuhua; Zheng, Yue; Yan, Weifu; Chen, Lixiang; Dummi Mahadevan, Gurumurthy; Zhao, Feng

    2016-12-15

    Electronic wastes (E-wastes) contain a huge amount of valuable metals that are worth recovering. Bioleaching has attracted widespread attention as an environment-friendly and low-cost technology for the recycling of E-wastes. To avoid the disadvantages of being time-consuming or having a relatively low efficiency, biochar with redox activity was used to enhance bioleaching efficiency of metals from a basic E-waste (i.e., printed circuit boards in this study). The role of biochar was examined through three basic processes: Carbon-mediated, Sulfur-mediated and Iron-mediated bioleaching pathways. Although no obvious enhancement of bioleaching performance was observed in the C-mediated and S-mediated systems, Fe-mediated bioleaching was significantly promoted by the participation of biochar, and its leaching time was decreased by one-third compared with that of a biochar-free system. By mapping the dynamic concentration of Fe(II) and Cu(II), biochar was proved to facilitate the redox action between Fe(II) to Fe(III), which resulted in effective leaching of Cu. Two dominant functional species consisting of Alicyclobacillus spp. and Sulfobacillus spp. may cooperate in the Fe-mediated bioleaching system, and the ratio of these two species was regulated by biochar for enhancing the efficiency of bioleaching. Hence, this work provides a method to improve bioleaching efficiency with low-cost solid redox media. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Spectroscopic and Interferometric Measurements of Nine K Giant Stars

    NASA Astrophysics Data System (ADS)

    Baines, Ellyn K.; Döllinger, Michaela P.; Guenther, Eike W.; Hatzes, Artie P.; Hrudkovu, Marie; van Belle, Gerard T.

    2016-09-01

    We present spectroscopic and interferometric measurements for a sample of nine K giant stars. These targets are of particular interest because they are slated for stellar oscillation observations. Our improved parameters will directly translate into reduced errors in the final masses for these stars when interferometric radii and asteroseismic densities are combined. Here, we determine each star’s limb-darkened angular diameter, physical radius, luminosity, bolometric flux, effective temperature, surface gravity, metallicity, and mass. When we compare our interferometric and spectroscopic results, we find no systematic offsets in the diameters and the values generally agree within the errors. Our interferometric temperatures for seven of the nine stars are hotter than those determined from spectroscopy with an average difference of about 380 K.

  1. Strain control of giant magnetic anisotropy in metallic perovskite SrCoO3-δ thin films.

    PubMed

    Hu, Songbai; Cazorla, Claudio; Xiang, Feixiang; Ma, Hongfei; Wang, Jianyuan; Wang, Jianbo; Wang, Xiaolin; Ulrich, Clemens; Chen, Lang; Seidel, Jan

    2018-06-08

    Magnetic materials with large magnetic anisotropy are essential for workaday applications such as permanent magnets and magnetic data storage. There is widespread interest in finding efficient ways of controlling magnetic anisotropy, among which strain control has proven to be a very powerful technique. Here we demonstrate strain-mediated magnetic anisotropy in SrCoO3-δ thin film, a perovskite oxide that is metallic and adopts a cubic structure at δ ≤ 0.25. We find that the easy-magnetization axis in SrCoO3-δ can be rotated by 90º upon application of moderate epitaxial strains ranging from -1.2% to +1.8%. The magnetic anisotropy in compressive SrCoO3-δ thin films is giant as shown by magnetic hysteresis loops rendering an anisotropy energy density of ~106 erg/cm3. The local variance of magnetic force microscopy (MFM) upon temperature and magnetic field reveals that the evolution of magnetic domains in SCO thin film is strongly dependent on the magnetic anisotropy.

  2. Noninvasive noble metal nanoparticle arrays for surface-enhanced Raman spectroscopy of proteins

    NASA Astrophysics Data System (ADS)

    Inya-Agha, Obianuju; Forster, Robert J.; Keyes, Tia E.

    2007-02-01

    Noble metal nanoparticles arrays are well established substrates for surface enhanced Raman spectroscopy (SERS). Their ability to enhance optical fields is based on the interaction of their surface valence electrons with incident electromagnetic radiation. In the array configuration, noble metal nanoparticles have been used to produce SER spectral enhancements of up to 10 8 orders of magnitude, making them useful for the trace analysis of physiologically relevant analytes such as proteins and peptides. Electrostatic interactions between proteins and metal surfaces result in the preferential adsorption of positively charged protein domains onto metal surfaces. This preferential interaction has the effect of disrupting the native conformation of the protein fold, with a concomitant loss of protein function. A major historic advantage of Raman microspectroscopy has been is its non-invasive nature; protein denaturation on the metal surfaces required for SER spectroscopy renders it a much more invasive technique. Further, part of the analytical power of Raman spectroscopy lies in its use as a secondary conformation probe. The protein structural loss which occurs on the metal surface results in secondary conformation readings which are not true to the actual native state of the analyte. This work presents a method for chemical fabrication of noble metal SERS arrays with surface immobilized layers which can protect protein native conformation without excessively mitigating the electromagnetic enhancements of spectra. Peptide analytes are used as model systems for proteins. Raman spectra of alpha lactalbumin on surfaces and when immobilized on these novel arrays are compared. We discuss the ability of the surface layer to protect protein structure whilst improving signal intensity.

  3. Giant Steps: A Game to Enhance Semantic Development of Verbs.

    ERIC Educational Resources Information Center

    Entwisle, Doris R.; And Others

    The game "Giant Steps" was described. It was designed to aid children in the semantic development of verbs. The purpose of the experimental evaluation was to determine whether playing the game actually did influence the associative structure of those verbs and adverbs that are "guessed" words in the game. Third graders from two classrooms in an…

  4. Unraveling the Raman Enhancement Mechanism on 1T'-Phase ReS2 Nanosheets.

    PubMed

    Miao, Peng; Qin, Jing-Kai; Shen, Yunfeng; Su, Huimin; Dai, Junfeng; Song, Bo; Du, Yunchen; Sun, Mengtao; Zhang, Wei; Wang, Hsing-Lin; Xu, Cheng-Yan; Xu, Ping

    2018-04-01

    2D transition metal dichalcogenides materials are explored as potential surface-enhanced Raman spectroscopy substrates. Herein, a systematic study of the Raman enhancement mechanism on distorted 1T (1T') rhenium disulfide (ReS 2 ) nanosheets is demonstrated. Combined Raman and photoluminescence studies with the introduction of an Al 2 O 3 dielectric layer unambiguously reveal that Raman enhancement on ReS 2 materials is from a charge transfer process rather than from an energy transfer process, and Raman enhancement is inversely proportional while the photoluminescence quenching effect is proportional to the layer number (thickness) of ReS 2 nanosheets. On monolayer ReS 2 film, a strong resonance-enhanced Raman scattering effect dependent on the laser excitation energy is detected, and a detection limit as low as 10 -9 m can be reached from the studied dye molecules such as rhodamine 6G and methylene blue. Such a high enhancement factor achieved through enhanced charge interaction between target molecule and substrate suggests that with careful consideration of the layer-number-dependent feature and excitation-energy-related resonance effect, ReS 2 is a promising Raman enhancement platform for sensing applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A giant stream of metal-rich stars in the halo of the galaxy M31.

    PubMed

    Ibata, R; Irwin, M; Lewis, G; Ferguson, A M; Tanvir, N

    2001-07-05

    Recent observations have revealed streams of gas and stars in the halo of the Milky Way that are the debris from interactions between our Galaxy and some of its dwarf companion galaxies; the Sagittarius dwarf galaxy and the Magellanic clouds. Analysis of the material has shown that much of the halo is made up of cannibalized satellite galaxies, and that dark matter is distributed nearly spherically in the Milky Way. It remains unclear, however, whether cannibalized substructures are as common in the haloes of galaxies as predicted by galaxy-formation theory. Here we report the discovery of a giant stream of metal-rich stars within the halo of the nearest large galaxy, M31 (the Andromeda galaxy). The source of this stream could be the dwarf galaxies M32 and NGC205, which are close companions of M31 and which may have lost a substantial number of stars owing to tidal interactions. The results demonstrate that the epoch of galaxy building still continues, albeit at a modest rate, and that tidal streams may be a generic feature of galaxy haloes.

  6. MetalS2: a tool for the structural alignment of minimal functional sites in metal-binding proteins and nucleic acids.

    PubMed

    Andreini, Claudia; Cavallaro, Gabriele; Rosato, Antonio; Valasatava, Yana

    2013-11-25

    We developed a new software tool, MetalS(2), for the structural alignment of Minimal Functional Sites (MFSs) in metal-binding biological macromolecules. MFSs are 3D templates that describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. On our example data sets, MetalS(2) unveiled structural similarities that other programs for protein structure comparison do not consistently point out and overall identified a larger number of structurally similar MFSs. MetalS(2) supports the comparison of MFSs harboring different metals and/or with different nuclearity and is available both as a stand-alone program and a Web tool ( http://metalweb.cerm.unifi.it/tools/metals2/).

  7. Giant-cell interstitial pneumonia in a gas station worker.

    PubMed

    Lee, S M; Moon, C H; Oh, Y B; Kim, H Y; Ahn, Y; Ko, E J; Joo, J E

    1998-10-01

    Giant-cell interstitial Pneumonia (GIP) is a very uncommon respiratory disease. The majority of cases of GIP are caused by exposure to cobalt, tungsten and other hard metals. In this report, we describe GIP in a patient who worked in gas station and dealt in propane gas vessels. He presented with clinical features of chronic interstitial lung disease and underwent an open lung biopsy that showed DIP-like reaction with large numbers of intra-alveolar macrophages and numerous large, multinucleated histiocytes which were admixed with the macrophages. Analysis of lung tissue for hard metals was done. Cobalt was the main component of detected hard metals. Corticosteroid therapy was started and he recovered fully.

  8. THE PROPERTIES OF HEAVY ELEMENTS IN GIANT PLANET ENVELOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soubiran, François; Militzer, Burkhard

    The core-accretion model for giant planet formation suggests a two-layer picture for the initial structure of Jovian planets, with heavy elements in a dense core and a thick H–He envelope. Late planetesimal accretion and core erosion could potentially enrich the H–He envelope in heavy elements, which is supported by the threefold solar metallicity that was measured in Jupiter’s atmosphere by the Galileo entry probe. In order to reproduce the observed gravitational moments of Jupiter and Saturn, models for their interiors include heavy elements, Z , in various proportions. However, their effect on the equation of state of the hydrogen–helium mixturesmore » has not been investigated beyond the ideal mixing approximation. In this article, we report results from ab initio simulations of fully interacting H–He– Z mixtures in order to characterize their equation of state and to analyze possible consequences for the interior structure and evolution of giant planets. Considering C, N, O, Si, Fe, MgO, and SiO{sub 2}, we show that the behavior of heavy elements in H–He mixtures may still be represented by an ideal mixture if the effective volumes and internal energies are chosen appropriately. In the case of oxygen, we also compute the effect on the entropy. We find the resulting changes in the temperature–pressure profile to be small. A homogeneous distribution of 2% oxygen by mass changes the temperature in Jupiter’s interior by only 80 K.« less

  9. Mass loss in M67 giants - Evidence from isochrone fitting

    NASA Technical Reports Server (NTRS)

    Tripicco, Michael J.; Dorman, Ben; Bell, R. A.

    1993-01-01

    A comparison between the color-magnitude diagram of M67 and a new set of theoretical evolutionary models which include all phases from the unevolved main-sequence through core-helium burning and onto the AGB is presented. The present 5-Gyr solar abundance isochrone is found to yield an excellent fit to the whole of the M67 color-magnitude diagram. A differential technique that compares the gap in color between clump giants and normal red giants, on one hand, with the temperature gap between core He-burning tracks and first-ascent RGB tracks, on the other, strongly indicates that the clump giants in M67 have masses of 0.70 solar mass or less. The extremely large amount of mass loss that is deduced is well in excess of that found for globular cluster stars. Possible resolutions of this problem are that degree of mass loss increases with total stellar mass, or with metallicity.

  10. On the metallicity dependence of crystalline silicates in oxygen-rich asymptotic giant branch stars and red supergiants

    NASA Astrophysics Data System (ADS)

    Jones, O. C.; Kemper, F.; Sargent, B. A.; McDonald, I.; Gielen, C.; Woods, Paul M.; Sloan, G. C.; Boyer, M. L.; Zijlstra, A. A.; Clayton, G. C.; Kraemer, K. E.; Srinivasan, S.; Ruffle, P. M. E.

    2012-12-01

    We investigate the occurrence of crystalline silicates in oxygen-rich evolved stars across a range of metallicities and mass-loss rates. It has been suggested that the crystalline silicate feature strength increases with increasing mass-loss rate, implying a correlation between lattice structure and wind density. To test this, we analyse Spitzer Infrared Spectrograph and Infrared Space Observatory Short Wavelength Spectrometer spectra of 217 oxygen-rich asymptotic giant branch and 98 red supergiants in the Milky Way, the Large and Small Magellanic Clouds, and Galactic globular clusters. These encompass a range of spectral morphologies from the spectrally rich which exhibit a wealth of crystalline and amorphous silicate features to 'naked' (dust-free) stars. We combine spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates and temperature. We then measure the strength of the crystalline silicate bands at 23, 28 and 33 μm. We detect crystalline silicates in stars with dust mass-loss rates which span over 3 dex, down to rates of ˜10-9 M⊙ yr-1. Detections of crystalline silicates are more prevalent in higher mass-loss rate objects, though the highest mass-loss rate objects do not show the 23-μm feature, possibly due to the low temperature of the forsterite grains or it may indicate that the 23-μm band is going into absorption due to high column density. Furthermore, we detect a change in the crystalline silicate mineralogy with metallicity, with enstatite seen increasingly at low metallicity.

  11. The MagAO Giant Accreting Protoplanet Survey (GAPlanetS): Recent Results

    NASA Astrophysics Data System (ADS)

    Follette, Katherine; Close, Laird; Males, Jared; Morzinski, Katie; Leonard, Clare; MagAO

    2018-01-01

    I will summarize recent results of the MagAO Giant Accreting Protoplant Survey (GAPlanetS), a search for accreting protoplanets at H-alpha inside of transitional disk gaps. These young, centrally-cleared circumstellar disks are often hosted by stars that are still actively accreting, making it likely that any planets that lie in their central cavities will also be actively accreting. Through differential imaging at Hydrogen-alpha using Magellan's visible light adaptive optics system, we have completed the first systematic search for H-alpha emission from accreting protoplanets in fifteen bright Southern hemisphere transitional disks. I will present results from this survey, including a second epoch on the LkCa 15 system that shows several accreting protoplanet candidates.

  12. Nonsmall Cell Lung Carcinoma with Giant Cell Features Expressing Programmed Death-Ligand 1: A Report of a Patient Successfully Treated with Pembrolizumab

    PubMed Central

    Nakayama, Shingo; Sasaki, Mamoru; Morinaga, Shojiroh

    2018-01-01

    Giant cell carcinoma, a rare variant of nonsmall cell lung carcinoma (NSCLC), is characterized by aggressive progression and poor response to conventional chemotherapy. This report is the first to describe a patient with NSCLC and giant cell features who was successfully treated with pembrolizumab, an antibody targeting programmed death-1 (PD-1). A 69-year-old woman was diagnosed with NSCLC with multiple brain metastases. Histological evaluation of lung biopsy specimens revealed proliferation of pleomorphic giant tumor cells with poor cohesiveness, findings consistent with giant cell carcinoma. Immunostaining showed that a high proportion of the tumor cells were positive for expression of programmed death-ligand 1 (PD-L1). The patient received stereotactic radiotherapy for the brain metastases, followed by administration of pembrolizumab. Treatment with pembrolizumab resulted in the rapid regression of the primary lung nodule, with the progression-free period maintained for at least four treatment cycles. Immunotherapy targeting PD-1/PD-L1 may be an option for patients with PD-L1-positive NSCLC with giant cell features. PMID:29736285

  13. Nonsmall Cell Lung Carcinoma with Giant Cell Features Expressing Programmed Death-Ligand 1: A Report of a Patient Successfully Treated with Pembrolizumab.

    PubMed

    Nakayama, Shingo; Sasaki, Mamoru; Morinaga, Shojiroh; Minematsu, Naoto

    2018-01-01

    Giant cell carcinoma, a rare variant of nonsmall cell lung carcinoma (NSCLC), is characterized by aggressive progression and poor response to conventional chemotherapy. This report is the first to describe a patient with NSCLC and giant cell features who was successfully treated with pembrolizumab, an antibody targeting programmed death-1 (PD-1). A 69-year-old woman was diagnosed with NSCLC with multiple brain metastases. Histological evaluation of lung biopsy specimens revealed proliferation of pleomorphic giant tumor cells with poor cohesiveness, findings consistent with giant cell carcinoma. Immunostaining showed that a high proportion of the tumor cells were positive for expression of programmed death-ligand 1 (PD-L1). The patient received stereotactic radiotherapy for the brain metastases, followed by administration of pembrolizumab. Treatment with pembrolizumab resulted in the rapid regression of the primary lung nodule, with the progression-free period maintained for at least four treatment cycles. Immunotherapy targeting PD-1/PD-L1 may be an option for patients with PD-L1-positive NSCLC with giant cell features.

  14. Optical field enhancement of nanometer-sized gaps at near-infrared frequencies.

    PubMed

    Ahn, Jae Sung; Kang, Taehee; Singh, Dilip K; Bahk, Young-Mi; Lee, Hyunhwa; Choi, Soo Bong; Kim, Dai-Sik

    2015-02-23

    We report near-field and far-field measurements of transmission through nanometer-sized gaps at near-infrared frequencies with varying the gap size from 1 nm to 10 nm. In the far-field measurements, we excluded direct transmission on the metal film surface via interferometric method. Kirchhoff integral formalism was used to relate the far-field intensity to the electric field at the nanogaps. In near-field measurements, field enhancement factors of the nanogaps were quantified by measuring transmission of the nanogaps using near-field scanning optical microscopy. All the measurements produce similar field enhancements of about ten, which we put in the context of comparing with the giant field enhancements in the terahertz regime.

  15. A giant planet in the triple system HD 132563

    NASA Astrophysics Data System (ADS)

    Desidera, S.; Carolo, E.; Gratton, R.; Martinez Fiorenzano, A. F.; Endl, M.; Mesa, D.; Barbieri, M.; Bonavita, M.; Cecconi, M.; Claudi, R. U.; Cosentino, R.; Marzari, F.; Scuderi, S.

    2011-09-01

    As part of our radial velocity planet-search survey performed with SARG at TNG, we monitored the components of HD 132563 for ten years. It is a binary system formed by two rather similar solar type stars with a projected separation of 4.1 arcsec, which corresponds to 400 AU at the distance of 96 pc. The two components are moderately metal-poor ([Fe/H] = -0.19), and the age of the system is about 5 Gyr. We detected RV variations of HD 132563B with period of 1544 days and semi-amplitude of 26 m/s. From the star characteristics and line profile measurements, we infer their Keplerian origin. Therefore HD 132563B turns out to host a planet with a projected mass msini = 1.49 MJ at 2.6 AU with a moderately eccentric orbit (e = 0.22). The planet around HD 132563B is one of the few that are known in triple stellar systems, as we found that the primary HD 132563A is itself a spectroscopic binary with a period longer than 15 years and an eccentricity higher than 0.65. The spectroscopic component was not detected in adaptive-optics images taken with the instrument AdOpt mounted at the TNG, since it expected at a projected separation that was smaller than 0.2 arcsec at the time of our observations. A small excess in K band difference between the components with respect to the difference in V band is compatible with a companion of about 0.55 M⊙. A preliminary statistical analysis of when planets occur in triple systems indicate a similar frequency of planets around the isolated component in a triple system, components of wide binaries and single stars. There is no significant iron abundance difference between the components. The lack of stars in binary systems and open clusters showing strong enhancements of iron abundance, which are comparable to the typical metallicity difference between stars with and without giant planets, agrees with the idea that accretion of planetary material producing iron abundance anomalies over 0.1 dex is rare. Based on observations made with the

  16. A global climate niche for giant trees.

    PubMed

    Scheffer, Marten; Xu, Chi; Hantson, Stijn; Holmgren, Milena; Los, Sietse O; van Nes, Egbert H

    2018-04-15

    Rainforests are among the most charismatic as well as the most endangered ecosystems of the world. However, although the effects of climate change on tropical forests resilience is a focus of intense research, the conditions for their equally impressive temperate counterparts remain poorly understood, and it remains unclear whether tropical and temperate rainforests have fundamental similarities or not. Here we use new global data from high precision laser altimetry equipment on satellites to reveal for the first time that across climate zones 'giant forests' are a distinct and universal phenomenon, reflected in a separate mode of canopy height (~40 m) worldwide. Occurrence of these giant forests (cutoff height > 25 m) is negatively correlated with variability in rainfall and temperature. We also demonstrate that their distribution is sharply limited to situations with a mean annual precipitation above a threshold of 1,500 mm that is surprisingly universal across tropical and temperate climates. The total area with such precipitation levels is projected to increase by ~4 million km 2 globally. Our results thus imply that strategic management could in principle facilitate the expansion of giant forests, securing critically endangered biodiversity as well as carbon storage in selected regions. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  17. Investigating the Consistency of Stellar Evolution Models with Globular Cluster Observations via the Red Giant Branch Bump

    NASA Astrophysics Data System (ADS)

    Joyce, Meridith; Chaboyer, Brian

    2016-01-01

    Synthetic Red Giant Branch Bump (RGBB) magnitudes are generated with the most recent theoretical stellar evolution models computed with the Dartmouth Stellar Evolution Program (DSEP) code. They are compared to the observational work of Nataf et al. (2013), who present RGBB magnitudes for 72 globular clusters. A DSEP model using a chemical composition with enhanced α capture [α/Fe] =+0.4 and an age of 13 Gyr shows agreement with observations over metallicities ranging from [Fe/H] = 0 to [Fe/H] ≈-1.5, with discrepancy emerging at lower metallicities. A model-independent, density-based outlier detection routine known as the Local Outlying Factor (LOF) algorithm is applied to the observations in order to identify clusters that deviate most in magnitude-metallicity space from the bulk of the observations. Our model's fit is scrutinized with a series of χ^2 routines performed on subsets of the data from which highly anomalous clusters have been selectively removed based on LOF identification. In particular, NGCs 6254, 6681, 6218, and 1904 are tagged recurrently as outliers. The effects of systematic and non-systematic error in metallicity are assessed, and the robustness of observational error bars is investigated.

  18. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles

    NASA Astrophysics Data System (ADS)

    Mungall, J. E.; Brenan, J. M.; Godel, B.; Barnes, S. J.; Gaillard, F.

    2015-03-01

    Emissions of sulphur and metals from magmas in Earth’s shallow crust can have global impacts on human society. Sulphur-bearing gases emitted into the atmosphere during volcanic eruptions affect climate, and metals and sulphur can accumulate in the crust above a magma reservoir to form giant copper and gold ore deposits, as well as massive sulphur anomalies. The volumes of sulphur and metals that accumulate in the crust over time exceed the amounts that could have been derived from an isolated magma reservoir. They are instead thought to come from injections of multiple new batches of vapour- and sulphide-saturated magmas into the existing reservoirs. However, the mechanism for the selective upward transfer of sulphur and metals is poorly understood because their main carrier phase, sulphide melt, is dense and is assumed to settle to the bottoms of magma reservoirs. Here we use laboratory experiments as well as gas-speciation and mass-balance models to show that droplets of sulphide melt can attach to vapour bubbles to form compound drops that float. We demonstrate the feasibility of this mechanism for the upward mobility of sulphide liquids to the shallow crust. Our work provides a mechanism for the atmospheric release of large amounts of sulphur, and contradicts the widely held assumption that dense sulphide liquids rich in sulphur, copper and gold will remain sequestered in the deep crust.

  19. Superconductivity in Potassium-Doped Metallic Polymorphs of MoS2.

    PubMed

    Zhang, Renyan; Tsai, I-Ling; Chapman, James; Khestanova, Ekaterina; Waters, John; Grigorieva, Irina V

    2016-01-13

    Superconducting layered transition metal dichalcogenides (TMDs) stand out among other superconductors due to the tunable nature of the superconducting transition, coexistence with other collective electronic excitations (charge density waves), and strong intrinsic spin-orbit coupling. Molybdenum disulfide (MoS2) is the most studied representative of this family of materials, especially since the recent demonstration of the possibility to tune its critical temperature, Tc, by electric-field doping. However, just one of its polymorphs, band-insulator 2H-MoS2, has so far been explored for its potential to host superconductivity. We have investigated the possibility to induce superconductivity in metallic polytypes, 1T- and 1T'-MoS2, by potassium (K) intercalation. We demonstrate that at doping levels significantly higher than that required to induce superconductivity in 2H-MoS2, both 1T and 1T' phases become superconducting with Tc = 2.8 and 4.6 K, respectively. Unusually, K intercalation in this case is responsible both for the structural and superconducting phase transitions. By adding new members to the family of superconducting TMDs, our findings open the way to further manipulate and enhance the electronic properties of these technologically important materials.

  20. Design, fabrication, and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy and plasmonic applications

    NASA Astrophysics Data System (ADS)

    Hao, Qingzhen

    Metal/dielectric nanostructures have the ability to sustain coherent electron oscillations known as surface plasmons. Due to their capability of localizing and guiding light in sub-wavelength metal nanostructures beyond diffraction limits, surface plasmon-based photonics, or “plasmonics” has opened new physical phenomena and lead to novel applications in metamaterials, optoelectronics, surface enhanced spectroscopy and biological sensing. This dissertation centers on design, fabrication, characterization of metallic nanostructures and their applications in surface-enhanced Raman spectroscopy (SERS) and actively tunable plasmonics. Metal-dielectric nanostructures are the building blocks for photonic metamaterials. One valuable design guideline for metamaterials is the Babinet’s principle, which governs the optical properties of complementary nanostructures. However, most complementary metamaterials are designed for the far infrared region or beyond, where the optical absorption of metal is small. We have developed a novel dual fabrication method, capable of simultaneously producing optically thin complementary structures. From experimental measurements and theoretical simulations, we showed that Babinet’s principle qualitatively holds in the visible region for the optically thin complements. The complementary structure is also a good platform to study subtle differences between nanoparticles and nanoholes in SERS (a surface sensitive technique, which can enhance the conventional Raman cross-section by 106˜108 fold, thus very useful for highly sensitive biochemical sensing). Through experimental measurement and theoretical analysis, we showed that the SERS enhancement spectrum (plot of SERS enhancement versus excitation wavelengths), dominated by local near-field, for nanoholes closely follows their far-field optical transmission spectrum. However, the enhancement spectrum for nanoparticles red-shifts significantly from their far-field optical extinction

  1. The compression-mode giant resonances and nuclear incompressibility

    NASA Astrophysics Data System (ADS)

    Garg, Umesh; Colò, Gianluca

    2018-07-01

    The compression-mode giant resonances, namely the isoscalar giant monopole and isoscalar giant dipole modes, are examples of collective nuclear motion. Their main interest stems from the fact that one hopes to extrapolate from their properties the incompressibility of uniform nuclear matter, which is a key parameter of the nuclear Equation of State (EoS). Our understanding of these issues has undergone two major jumps, one in the late 1970s when the Isoscalar Giant Monopole Resonance (ISGMR) was experimentally identified, and another around the turn of the millennium since when theory has been able to start giving reliable error bars to the incompressibility. However, mainly magic nuclei have been involved in the deduction of the incompressibility from the vibrations of finite nuclei. The present review deals with the developments beyond all this. Experimental techniques have been improved, and new open-shell, and deformed, nuclei have been investigated. The associated changes in our understanding of the problem of the nuclear incompressibility are discussed. New theoretical models, decay measurements, and the search for the evolution of compressional modes in exotic nuclei are also discussed.

  2. Giant magneto-spin-Seebeck effect and magnon transfer torques in insulating spin valves

    NASA Astrophysics Data System (ADS)

    Cheng, Yihong; Chen, Kai; Zhang, Shufeng

    2018-01-01

    We theoretically study magnon transport in an insulating spin valve (ISV) made of an antiferromagnetic insulator sandwiched between two ferromagnetic insulator (FI) layers. In the conventional metal-based spin valve, the electron spins propagate between two metallic ferromagnetic layers, giving rise to giant magnetoresistance and spin transfer torque. Here, the incoherent magnons in the ISV serve as angular momentum carriers and are responsible for the angular momentum transport between two FI layers across the antiferromagnetic spacer. We predict two transport phenomena in the presence of the temperature gradient: a giant magneto-spin-Seebeck effect in which the output voltage signal is controlled by the relative orientation of the two FI layers and magnon transfer torque that can be used for switching the magnetization of the FI layers with a temperature gradient of the order of 0.1 Kelvin per nanometer.

  3. Amorphous Transition Metal Sulfides Anchored on Amorphous Carbon-Coated Multiwalled Carbon Nanotubes for Enhanced Lithium-Ion Storage.

    PubMed

    Jin, Rencheng; Zhai, Qinghe; Wang, Qingyao

    2017-10-09

    Cobalt sulfide and molybdenum sulfide, with high theoretical capacities, have been considered as one of most promising anode materials for lithium-ion batteries (LIBs). However, the poor cyclability and low rate performances originating from the large volume expansion and poor electrical conductivity extremely inhibit their practical application. Here, the electrochemical performances are effectively improved by growing amorphous cobalt sulfide and molybdenum sulfide onto amorphous carbon-coated multiwalled carbon nanotubes (CNTs@C@CoS 2 and CNTs@C@MoS 2 ). The CNTs@C@CoS 2 presents a high reversible specific capacity of 1252 mAh g -1 at 0.2 Ag -1 , excellent rate performance of 672 mAh g -1 (5 Ag -1 ), and enhanced cycle life of 598 mAh g -1 after 500 cycles at 2 Ag -1 . For CNTs@C@MoS 2 , it exhibits a specific capacity of 1395 mAh g -1 , superior rate performance of 727 mAh g -1 at 5 Ag -1 , and long cycle stability (796 mAh g -1 after 500 cycles at 2 Ag -1 ). The enhanced electrochemical properties of the electrodes are probably ascribed to their amorphous nature, the combination of CNTs@C that adhered and hindered the agglomeration of CoS 2 and MoS 2 as well as the enhanced electronic conductivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bare and protected sputtered-noble-metal films for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Talaga, David; Bonhommeau, Sébastien

    2014-11-01

    Sputtered silver and gold films with different surface morphologies have been prepared and coated with a benzenethiol self-assembled monolayer. Rough noble metal films showed strong Raman features assigned to adsorbed benzenethiol molecules upon irradiation over a wide energy range in the visible spectrum, which disclosed the occurrence of a significant surface-enhanced Raman scattering with maximal enhancement factors as high as 6 × 106. In addition, the adsorption of ethanethiol onto silver surfaces hinders their corrosion over days while preserving mostly intact enhancement properties of naked silver. This study may be applied to develop stable and efficient metalized probes for tip-enhanced Raman spectroscopy.

  5. Fatal canine distemper virus infection of giant pandas in China.

    PubMed

    Feng, Na; Yu, Yicong; Wang, Tiecheng; Wilker, Peter; Wang, Jianzhong; Li, Yuanguo; Sun, Zhe; Gao, Yuwei; Xia, Xianzhu

    2016-06-16

    We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV. Genomic sequencing of CDV isolated from one of the infected pandas (giant panda/SX/2014) suggests it belongs to the Asia-1 cluster. The hemagglutinin protein of the isolated virus and virus sequenced from lung samples originating from deceased giant pandas all possessed the substitutions V26M, T213A, K281R, S300N, P340Q, and Y549H. The presence of the Y549H substitution is notable as it is found at the signaling lymphocytic activation molecule (SLAM) receptor-binding site and has been implicated in the emergence of highly pathogenic CDV and host switching. These findings demonstrate that giant pandas are susceptible to CDV and suggest that surveillance and vaccination among all captive giant pandas are warranted to support conservation efforts for this endangered species.

  6. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil.

    PubMed

    Kim, Sung-Hyun; Lee, In-Sook

    2010-02-01

    Chelates have been shown to enhance the phytoextraction of metal from contaminated soil. In this study, we evaluated the ability of chelates to enhance the phytoextraction of metals by barnyard grass (Echinochloa crus-galli) from soils contaminated with multiple metals. The results revealed that EDTA increased the ability of barnyard grass to take up Cd, Cu and Pb, but that it resulted in increased soil leaching. Conversely, citric acid induced the removal of Cd, Cu and Pb from soil without increasing the risk of leaching. Furthermore, E.crus-galli showed no signs of phytotoxicity in response to treatment with citric acid, whereas its shoot growth decreased in response to treatment with EDTA (p < 0.05). Taken together, these results demonstrate that citric acid is a good agent for the enhancement of the phytoextraction of metals.

  7. Searching for intermediate-mass black holes in extremely-metal poor galaxies

    NASA Astrophysics Data System (ADS)

    Mezcua, Mar

    2016-09-01

    Extremely metal-poor dwarf galaxies (XMPs) are star-forming, low-mass galaxies with metallicites highly sub-solar. Their regions of star formation could be triggered by the accretion of pristine gas from the cosmic web and harbour Population III stars. XMPs are thus ideal laboratories for searching for the seed black holes or intermediate-mass black holes (IMBHs) that populated the early Universe. The combination of X-ray, radio and optical observations offer the best tool for detecting such IMBHs in the local Universe. We propose Chandra observations of a sample of XMPs whose optical spectra indicate the possible presence of an active black hole of 1e4 - 1e6 Msun. The Chandra data could confirm this and yield the first detection of an IMBH in these type of galaxies.

  8. A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils.

    PubMed

    Yoo, Jong-Chan; Beiyuan, Jingzi; Wang, Lei; Tsang, Daniel C W; Baek, Kitae; Bolan, Nanthi S; Ok, Yong Sik; Li, Xiang-Dong

    2018-03-01

    In this study, soil washing and stabilization as a two-step soil remediation strategy was performed to remediate Pb- and Cu-contaminated soils from shooting range and railway sites. Ferric nitrate (Fe(NO 3 ) 3 ) and [S,S]-ethylenediamine disuccinate (EDDS) were used as washing agents, whereas three types of sludge-derived biochars and phosphogypsum were employed as soil stabilizers. While Fe(NO 3 ) 3 extracted larger amounts of metals compared to EDDS (84% Pb and 64% Cu from shooting range soil; 30% Pb and 40% Cu from railway site soil), it caused severe soil acidification. Both Fe(NO 3 ) 3 and EDDS washing enhanced the mobility of residual metals in the two soils, which in most cases could be mitigated by subsequent 2-month stabilization by sludge-derived biochars or phosphogypsum. By contrast, the metal bioaccessibility could only be reduced by soil washing. Nutrient-rich sludge-derived biochar replenished available P and K in both soils, whereas Fe(NO 3 ) 3 washing provided available nitrogen (N). Soil amendment enhanced acid phosphatase activity but marginally improved soil dehydrogenase and urease activity in the treated soils, possibly due to the influence of residual metals. This study supported the integration of soil washing (by Fe(NO 3 ) 3 or EDDS) with soil stabilization (by sludge-derived biochars or phosphogypsum) for accomplishing the reduction of metal mobility and bioaccessibility, while restoring the environmental quality of the treated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Chemical abundances and kinematics of TYC 5619-109-1

    NASA Astrophysics Data System (ADS)

    Pereira, C. B.; Smith, V. V.; Drake, N. A.; Roig, F.; Hasselquist, S.; Cunha, K.; Jilinski, E.

    2017-07-01

    Previous determinations of chemical abundances of the metal-poor red giant TYC 5619-109-1, derived via high-resolution near-infrared spectra from the Apache Point Observatory Galactic Evolution Experiment survey, indicate that this star is strongly enriched in the elements N and Al. Here, we obtain and analyse high-resolution optical spectra of TYC 5619-109-1 to verify these large N and Al overabundances and to measure abundances of a wider range of chemical elements. Our analysis confirms the N- and Al-rich nature of this star, and shows that the abundances of the s-process elements are also strongly enhanced, particularly in the heavy second s-process peak elements (Ba, La, Ce, Nd). Lighter s-process elements (Y, Zr) show smaller overabundances, and the ratio of the light-to-heavy s-process elements is consistent with the 13C(α, n)16O neutron source operating in a low-metallicity environment. The lack of Tc I lines and the abundance of Nb compared to Zr indicate that this red giant is probably not a thermally pulsing asymptotic giant branch (TP-AGB) star. Mass transfer from a former s-process-rich TP-AGB companion may produce the observed overabundances, but our radial velocity analysis provides no evidence that TYC 5619-109-1 is a binary with a white dwarf companion. We suggest that TYC 5619-109-1 formed from gas already strongly enriched in s-process elements, as found in many dwarf galaxies and globular clusters. A dynamical analysis reveals that there is only a small probability that TYC 5619-109-1 is an escaped member of a globular cluster, and in this case the most likely candidate would be ω Cen.

  10. Leo P: A very low-mass, extremely metal-poor, star-forming galaxy

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B.; Leo P Team

    2017-01-01

    Leo P is a low-luminosity dwarf galaxy just outside the Local Group with properties that make it an ideal probe of galaxy evolution at the faint-end of the luminosity function. Using combined data from 2 Hubble Space Telescope (HST) observing campaigns, the Very Large Array, the Spitzer Space telescope, as well as ground based data, we have constructed a robust evolutionary picture of Leo P. Leo P is one the most metal-poor, gas-rich galaxies ever discovered, has a stellar mass of a 5x105 Msun, comparable gas mass, and a single HII region. The star formation history reconstructed from the resolved stellar populations in Leo P shows it is unquenched, despite its very low mass. Based on the star formation history and metallicity measurements, the galaxy has lost 95% of its oxygen produced via nucleosynthesis, presumably to outflows. The neutral gas in the galaxy shows signs of rotation, although the velocity dispersion is comparable to the rotation velocity. Thus, Leo P bridges the gap between more massive dwarf irregular and less massive dwarf spheroidals on the baryonic Tully-Fisher relation. Furthermore, the galaxy hosts several, extremely dusty AGB candidates which will be probed with new HST and Spitzer observations. If confirmed as AGB stars, these may be our best local proxies for studying chemically unevolved star formation and subsequent dust production in metallicity environments comparable to the early universe.

  11. Three cases giant panda attack on human at Beijing Zoo

    PubMed Central

    Zhang, Peixun; Wang, Tianbing; Xiong, Jian; Xue, Feng; Xu, Hailin; Chen, Jianhai; Zhang, Dianying; Fu, Zhongguo; Jiang, Baoguo

    2014-01-01

    Panda is regarded as Chinese national treasure. Most people always thought they were cute and just ate bamboo and had never imagined a panda could be vicious. Giant panda attacks on human are rare. There, we present three cases of giant panda attacks on humans at the Panda House at Beijing Zoo from September 2006 to June 2009 to warn people of the giant panda’s potentially dangerous behavior. PMID:25550978

  12. KEPLER EXOPLANET CANDIDATE HOST STARS ARE PREFERENTIALLY METAL RICH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaufman, Kevin C.; Laughlin, Gregory, E-mail: kcs@ucolick.org, E-mail: laughlin@ucolick.org

    We find that Kepler exoplanet candidate (EC) host stars are preferentially metal rich, including the low-mass stellar hosts of small-radius ECs. The last observation confirms a tentative hint that there is a correlation between the metallicity of low-mass stars and the presence of low-mass and small-radius exoplanets. In particular, we compare the J-H-g-r color-color distribution of Kepler EC host stars with a control sample of dwarf stars selected from the {approx}150, 000 stars observed during Q1 and Q2 of the Kepler mission but with no detected planets. We find that at J - H = 0.30 characteristic of solar-type stars,more » the average g-r color of stars that host giant ECs is 4{sigma} redder than the average color of the stars in the control sample. At the same J - H color, the average g-r color of solar-type stars that host small-radius ECs is indistinguishable from the average color of the stars in the control sample. In addition, we find that at J - H = 0.62 indicative of late K dwarfs, the average g-r color of stars that host small-radius ECs is 4{sigma} redder than the average color of the stars in the control sample. These offsets are unlikely to be caused by differential reddening, age differences between the two populations, or the presence of giant stars in the control sample. Stellar models suggest that the first color offset is due to a 0.2 dex enhancement in [Fe/H] of the giant EC host population at M{sub *} {approx} 1 M{sub sun}, while Sloan photometry of M 67 and NGC 6791 suggests that the second color offset is due to a similar [Fe/H] enhancement of the small-radius EC host population at M{sub *} {approx} 0.7 M{sub sun}. These correlations are a natural consequence of the core-accretion model of planet formation.« less

  13. Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles

    PubMed Central

    Zhang, Duan; Wu, Ye-Cun; Yang, Mei; Liu, Xiao; Coileáin, Cormac Ó; Abid, Mourad; Abid, Mohamed; Wang, Jing-Jing; Shvets, Igor; Xu, Hongjun; Chun, Byong Sun; Liu, Huajun; Wu, Han-Chun

    2016-01-01

    Monolayer transition metal dichalcogenides MX2 (M = Mo, W; X = S) exhibit remarkable electronic and optical properties, making them candidates for application within flexible nano-optoelectronics. The ability to achieve a high optical signal, while quantitatively monitoring strain in real-time is the key requirement for applications in flexible sensing and photonics devices. Surface-enhanced Raman scattering (SERS) allows us to achieve both simultaneously. However, the SERS depends crucially on the size and shape of the metallic nanoparticles (NPs), which have a large impact on its detection sensitivity. Here, we investigated the SERS of monolayer MX2, with particular attention paid to the effect of the distribution of the metallic NPs. We show that the SERS depends crucially on the distribution of the metallic NPs and also the phonon mode of the MX2. Moreover, strong coupling between MX2 and metallic NPs, through surface plasmon excitation, results in splitting of the and modes and an additional peak becomes apparent. For a WS2-Ag system the intensity of the additional peak increases exponentially with local strain, which opens another interesting window to quantitatively measure the local strain using SERS. Our experimental study may be useful for the application of monolayer MX2 in flexible nano-optoelectronics. PMID:27457808

  14. Thermally generated metals for plasmonic coloring and surface-enhanced Raman sensing

    NASA Astrophysics Data System (ADS)

    Huang, Zhenping; Chen, Jian; Liu, Guiqiang; Wang, Yan; Liu, Yi; Tang, Li; Liu, Zhengqi

    2018-03-01

    Spectral coloring glass and its application on the surface-enhanced Raman scattering are demonstrated experimentally via a simple and moderate heat-treating of the top ultrathin gold film to create discrete nanoparticles, which can produce localized surface plasmon resonances and strong plasmonic near-field coupling effects. Ultrathin metal films with a wide range of thicknesses are investigated by different heat-treatment processes. The annealed metal films have been demonstrated with a series of spectral coloring responses. Moreover, the microscopy images of the metal film structures confirm the formation of distinct geometry features in these operation procedures. Densely packed nanoparticles are observed for the ultrathin metal film with the single-digit level of thickness. With increasing the film thickness over 10 nm, metallic clusters and porous morphologies can be obtained. Importantly, the metallic resonators can provide enhanced Raman scattering with the detection limit down to 10 - 7 molL - 1 of Rhodamine 6G molecules due to the excitation of plasmon resonances and strong near-field coupling effects. These features hold great potential for large-scale and low-cost production of colored glass and Raman substrate.

  15. Giant increase in the metal-enhanced fluorescence of organic molecules in nanoporous alumina templates and large molecule-specific red/blue-shift of the fluorescence peak.

    PubMed

    Sarkar, S; Kanchibotla, B; Nelson, J D; Edwards, J D; Anderson, J; Tepper, G C; Bandyopadhyay, S

    2014-10-08

    The fluorescence of organic fluorophore molecules is enhanced when they are placed in contact with certain metals (Al, Ag, Cu, Au, etc.) whose surface plasmon waves couple into the radiative modes of the molecules and increase the radiative efficiency. Here, we report a hitherto unknown size dependence of this metal-enhanced fluorescence (MEF) effect in the nanoscale. When the molecules are deposited in nanoporous anodic alumina films with exposed aluminum at the bottom of the pores, they form organic nanowires standing on aluminum nanoparticles whose plasmon waves have much larger amplitudes. This increases the MEF strongly, resulting in several orders of magnitude increase in the fluorescence intensity of the organic fluorophores. The increase in intensity shows an inverse superlinear dependence on nanowire diameter because the nanowires also act as plasmonic "waveguides" that concentrate the plasmons and increase the coupling of the plasmons with the radiative modes of the molecules. Furthermore, if the nanoporous template housing the nanowires has built-in electric fields due to space charges, a strong molecule-specific red- or blue-shift is induced in the fluorescence peak owing to a renormalization of the dipole moment of the molecule. This can be exploited to detect minute amounts of target molecules in a mixture using their optical signature (fluorescence) despite the presence of confounding background signals. It can result in a unique new technology for biosensing and chemical sensing.

  16. Efficient Surface Enhanced Raman Scattering substrates from femtosecond laser based fabrication

    NASA Astrophysics Data System (ADS)

    Parmar, Vinod; Kanaujia, Pawan K.; Bommali, Ravi Kumar; Vijaya Prakash, G.

    2017-10-01

    A fast and simple femtosecond laser based methodology for efficient Surface Enhanced Raman Scattering (SERS) substrate fabrication has been proposed. Both nano scaffold silicon (black silicon) and gold nanoparticles (Au-NP) are fabricated by femtosecond laser based technique for mass production. Nano rough silicon scaffold enables large electromagnetic fields for the localized surface plasmons from decorated metallic nanoparticles. Thus giant enhancement (approximately in the order of 104) of Raman signal arises from the mixed effects of electron-photon-phonon coupling, even at nanomolar concentrations of test organic species (Rhodamine 6G). Proposed process demonstrates the low-cost and label-less application ability from these large-area SERS substrates.

  17. J0811+4730: the most metal-poor star-forming dwarf galaxy known

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.; Liss, S. E.

    2018-01-01

    We report the discovery of the most metal-poor dwarf star-forming galaxy (SFG) known to date, J0811+4730. This galaxy, at a redshift z = 0.04444, has a Sloan Digital Sky Survey (SDSS) g-band absolute magnitude Mg = -15.41 mag. It was selected by inspecting the spectroscopic data base in the Data Release 13 (DR13) of the SDSS. Large Binocular Telescope/Multi-Object Double spectrograph (LBT/MODS) spectroscopic observations reveal its oxygen abundance to be 12 + log O/H = 6.98 ± 0.02, the lowest ever observed for an SFG. J0811+4730 strongly deviates from the main sequence defined by SFGs in the emission line diagnostic diagrams and the metallicity-luminosity diagram. These differences are caused mainly by the extremely low oxygen abundance in J0811+4730, which is ∼10 times lower than that in main-sequence SFGs with similar luminosities. By fitting the spectral energy distributions of the SDSS and LBT spectra, we derive a stellar mass of M⋆ = 106.24-106.29 M⊙, and we find that a considerable fraction of the galaxy stellar mass was formed during the most recent burst of star formation.

  18. Effective cluster model of dielectric enhancement in metal-insulator composites

    NASA Astrophysics Data System (ADS)

    Doyle, W. T.; Jacobs, I. S.

    1990-11-01

    The electrical permittivity of a suspension of conducting spheres at high volume loading exhibits a large enhancement above the value predicted by the Clausius-Mossotti approximation. The permittivity enhancement is a dielectric anomaly accompanying a metallization transition that occurs when conducting particles are close packed. In disordered suspensions, close encounters can cause a permittivity enhancement at any volume loading. We attribute the permittivity enhancements typically observed in monodisperse disordered suspensions of conducting spheres to local metallized regions of high density produced by density fluctuations. We model a disordered suspension as a mixture, or mesosuspension, of isolated spheres and random close-packed spherical clusters of arbitrary size. Multipole interactions within the clusters are treated exactly. External interactions between clusters and isolated spheres are treated in the dipole approximation. Model permittivities are compared with Guillien's experimental permittivity measurements [Ann. Phys. (Paris) Ser. 11, 16, 205 (1941)] on liquid suspensions of Hg droplets in oil and with Turner's conductivity measurements [Chem. Eng. Sci. 31, 487 (1976)] on fluidized bed suspensions of ion-exchange resin beads in aqueous solution. New permittivity measurements at 10 GHz on solid suspensions of monodisperse metal spheres in polyurethane are presented and compared with the model permittivities. The effective spherical cluster model is in excellent agreement with the experiments over the entire accessible range of volume loading.

  19. Enhanced photocatalytic H2 production of Mn0.5Cd0.5S solid solution through loading transition metal sulfides XS (X = Mo, Cu, Pd) cocatalysts

    NASA Astrophysics Data System (ADS)

    Zhai, Huishan; Liu, Xiaolei; Wang, Peng; Huang, Baibiao; Zhang, Qianqian

    2018-02-01

    Development of highly efficient cocatalyst is important towards photocatalytic H2 production. Herein, a series of transition metal sulfides XS (X = Mo, Cu, Pd) as cocatalysts have been successfully grown on Mn0.5Cd0.5S photocatalyst through photo-reduction or in-situ deposition method, respectively. Among them, the maximum production of H2 obtained from MoS2/Mn0.5Cd0.5S, CuxS/Mn0.5Cd0.5S (1 ≤ x ≤ 2) and PdS/Mn0.5Cd0.5S samples were 197, 347 and 614 μmol/h, which were around 6.5, 11.5 and 20.3 times than pristine Mn0.5Cd0.5S. MoS2/Mn0.5Cd0.5S heterostructure can facilitate electron transfer from Mn0.5Cd0.5S to MoS2 and MoS2 as active site for H2 production, p-n junction constructed between Mn0.5Cd0.5S and CuxS can efficiently separate the photo-generated carriers and PdS as a hole acceptor can accelerate the consume of photo-generated holes to enhance the photocatalytic H2 production. The effective charge transfer was further proved by the weaker PL intensity and stronger photocurrent density relative to that of Mn0.5Cd0.5S alone. This work demonstrated that transition metal sulfides XS (X = Mo, Cu, Pd) are efficient cocatalysts to improve the H2 production performance of Mn0.5Cd0.5S photocatalyst.

  20. VizieR Online Data Catalog: Carbon-enhanced metal-poor stars sample (Caffau+, 2018)

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Gallagher, A. J.; Bonifacio, P.; Spite, M.; Duffau, S.; Spite, F.; Monaco, L.; Sbordone, L.

    2018-06-01

    We selected a sample of turn-off stars from the Sloan Digital Sky Survey (SDSS York et al. 2000AJ....120.1579Y; Yanny et al. 2009, Cat. J/AJ/137/4377) that were bright enough (g<17) to allow us to secure a reasonable spectrum quality in a single observing block of 1h. The FORS spectra have been observed in service mode during the ESO Programme 099.D-0791, between 01/04/2017 and 16/08/2017. The GMOS spectra were acquired in service mode on the nights of 21/07/2017 and 25/07/2017. Table 1 lists the stars we examined here, along with their coordinates, g-mag, and metallicities derived from Fe abundances computed using SDSS and FORS/GMOS spectra. (2 data files).

  1. Mapping out the origins of compact stellar systems

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Brodie, Jean P.; SAGES Collaboration

    2017-03-01

    We present a suite of extragalactic explorations of the origins and nature of globular clusters (GCs) and ultra-compact dwarfs (UCDs), and the connections between them. An example of GC metallicity bimodality is shown to reflect underlying, distinct metal-poor and metal-rich stellar halo populations. Metallicity-matching methods are used to trace the birth sites and epochs of GCs in giant E/S0s, pointing to clumpy disk galaxies at z ~ 3 for the metal-rich GCs, and to a combination of accreted and in-situ formation modes at z ~ 5-6 for the metal-poor GCs. An increasingly diverse zoo of compact stellar systems is being discovered, including objects that bridge the gaps between UCDs and faint fuzzies, and between UCDs and compact ellipticals. Many of these have properties pointing to origins as the stripped nuclei of larger galaxies, and a smoking-gun example is presented of an ω Cen-like star cluster embedded in a tidal stream.

  2. Giant cell angiofibroma or localized periorbital lymphedema?

    PubMed

    Lynch, Michael C; Chung, Catherine G; Specht, Charles S; Wilkinson, Michael; Clarke, Loren E

    2013-12-01

    Giant cell angiofibroma represents a rare soft tissue neoplasm with a predilection for the orbit. We recently encountered a mass removed from the lower eyelid of a 56-year-old female that histopathologically resembled giant cell angiofibroma. The process consisted of haphazardly arranged CD34-positive spindled and multinucleated cells within an edematous, densely vascular stroma. However, the patient had recently undergone laryngectomy and radiotherapy for a laryngeal squamous cell carcinoma. A similar mass had arisen on the contralateral eyelid, and both had developed several months post-therapy. Lymphedema of the orbit can present as tumor-like nodules and in some cases may share histopathologic features purported to be characteristic of giant cell angiofibroma. A relationship between giant cell angiofibroma and lymphedema has not been established, but our case suggests there may be one. The potential overlap of these two conditions should be recognized, as should other entities that may enter the differential diagnosis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. [Giant paraovarian cyst in childhood - Case report].

    PubMed

    Torres, Janina P; Íñiguez, Rodrigo D

    2015-01-01

    Paraovarian cysts are very uncommon in children To present a case of giant paraovarian cyst case in a child and its management using a modified laparoscopic-assisted technique A 13-year-old patient with a 15 day-history of intermittent abdominal pain, located in the left hemiabdomen and associated with progressive increase in abdominal volume. Diagnostic imaging was inconclusive, describing a giant cystic formation that filled up the abdomen, but without specifying its origin. Laboratory tests and tumor markers were within normal range. Video-assisted transumbilical cystectomy, a modified laparoscopic procedure with diagnostic and therapeutic intent, was performed with a successful outcome. The histological study reported giant paraovarian cyst. Cytology results were negative for tumor cells. The patient remained asymptomatic during the postoperative follow-up. The video-assisted transumbilical cystectomy is a safe procedure and an excellent diagnostic and therapeutic alternative for the treatment of giant paraovarian cysts. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  4. Detailed abundances for a large sample of giant stars in the globular cluster 47 Tucanae (NGC 104)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordero, M. J.; Pilachowski, C. A.; Johnson, C. I.

    2014-01-01

    47 Tuc is an ideal target to study chemical evolution and globular cluster (GC) formation in massive more metal-rich GCs, as it is the closest massive GC. We present chemical abundances for O, Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu in 164 red giant branch stars in the massive GC 47 Tuc using spectra obtained with both the Hydra multifiber spectrograph at the Blanco 4 m telescope and the FLAMES multiobject spectrograph at the Very Large Telescope. We find an average [Fe/H] = –0.79 ± 0.09 dex, consistent with literature values, as well as overabundances of alpha-elementsmore » ([α/Fe] ∼ 0.3 dex). The n-capture process elements indicate that 47 Tuc is r process-dominated ([Eu/La] = +0.24), and the light elements O, Na, and Al exhibit star-to-star variations. The Na-O anticorrelation, a signature typically seen in Galactic GCs, is present in 47 Tuc, and extends to include a small number of stars with [O/Fe] ∼ –0.5. Additionally, the [O/Na] ratios of our sample reveal that the cluster stars can be separated into three distinct populations. A Kolmogorov-Smirnov test demonstrates that the O-poor/Na-rich stars are more centrally concentrated than the O-rich/Na-poor stars. The observed number and radial distribution of 47 Tuc's stellar populations, as distinguished by their light element composition, agrees closely with the results obtained from photometric data. We do not find evidence supporting a strong Na-Al correlation in 47 Tuc, which is consistent with current models of asymptotic giant branch nucleosynthesis yields.« less

  5. Enhanced and tunable electric dipole-dipole interactions near a planar metal film

    NASA Astrophysics Data System (ADS)

    Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen

    2017-08-01

    We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.

  6. Metal-chelating active packaging film enhances lysozyme inhibition of Listeria monocytogenes.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2014-07-01

    Several studies have demonstrated that metal chelators enhance the antimicrobial activity of lysozyme. This study examined the effect of metal-chelating active packaging film on the antimicrobial activity of lysozyme against Listeria monocytogenes. Polypropylene films were surface modified by photoinitiated graft polymerization of acrylic acid (PP-g-PAA) from the food contact surface of the films to impart chelating activity based on electrostatic interactions. PP-g-PAA exhibited a carboxylic acid density of 113 ± 5.4 nmol cm(-2) and an iron chelating activity of 53.7 ± 9.8 nmol cm(-2). The antimicrobial interaction of lysozyme and PP-g-PAA depended on growth media composition. PP-g-PAA hindered lysozyme activity at low ionic strength (2.48-log increase at 64.4 mM total ionic strength) and enhanced lysozyme activity at moderate ionic strength (5.22-log reduction at 120 mM total ionic strength). These data support the hypothesis that at neutral pH, synergy between carboxylate metal-chelating films (pKa(bulk) 6.45) and lysozyme (pI 11.35) is optimal in solutions of moderate to high ionic strength to minimize undesirable charge interactions, such as lysozyme absorption onto film. These findings suggest that active packaging, which chelates metal ions based on ligand-specific interactions, in contrast to electrostatic interactions, may improve antimicrobial synergy. This work demonstrates the potential application of metal-chelating active packaging films to enhance the antimicrobial activity of membrane-disrupting antimicrobials, such as lysozyme.

  7. DETERMINING AGES OF APOGEE GIANTS WITH KNOWN DISTANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feuillet, Diane K.; Holtzman, Jon; Bovy, Jo

    2016-01-20

    We present a sample of 705 local giant stars observed using the New Mexico State University 1 m telescope with the Sloan Digital Sky Survey-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph, for which we estimate stellar ages and the local star formation history (SFH). The high-resolution (R ∼ 22,500), near infrared (1.51–1.7 μm) APOGEE spectra provide measurements of stellar atmospheric parameters (temperature, surface gravity, [M/H], and [α/M]). Due to the smaller uncertainties in surface gravity possible with high-resolution spectra and accurate Hipparcos distance measurements, we are able to calculate the stellar masses to within 30%. For giants, the relativelymore » rapid evolution up the red giant branch allows the age to be constrained by the mass. We examine methods of estimating age using both the mass–age relation directly and a Bayesian isochrone matching of measured parameters, assuming a constant SFH. To improve the SFH prior, we use a hierarchical modeling approach to constrain the parameters of the model SFH using the age probability distribution functions of the data. The results of an α-dependent Gaussian SFH model show a clear age–[α/M] relation at all ages. Using this SFH model as the prior for an empirical Bayesian analysis, we determine ages for individual stars. The resulting age–metallicity relation is flat, with a slight decrease in [M/H] at the oldest ages and a ∼0.5 dex spread in metallicity across most ages. For stars with ages ≲1 Gyr we find a smaller spread, consistent with radial migration having a smaller effect on these young stars than on the older stars.« less

  8. Uncertainties in s-process nucleosynthesis in massive stars determined by Monte Carlo variations

    NASA Astrophysics Data System (ADS)

    Nishimura, N.; Hirschi, R.; Rauscher, T.; St. J. Murphy, A.; Cescutti, G.

    2017-08-01

    The s-process in massive stars produces the weak component of the s-process (nuclei up to A ˜ 90), in amounts that match solar abundances. For heavier isotopes, such as barium, production through neutron capture is significantly enhanced in very metal-poor stars with fast rotation. However, detailed theoretical predictions for the resulting final s-process abundances have important uncertainties caused both by the underlying uncertainties in the nuclear physics (principally neutron-capture reaction and β-decay rates) as well as by the stellar evolution modelling. In this work, we investigated the impact of nuclear-physics uncertainties relevant to the s-process in massive stars. Using a Monte Carlo based approach, we performed extensive nuclear reaction network calculations that include newly evaluated upper and lower limits for the individual temperature-dependent reaction rates. We found that most of the uncertainty in the final abundances is caused by uncertainties in the neutron-capture rates, while β-decay rate uncertainties affect only a few nuclei near s-process branchings. The s-process in rotating metal-poor stars shows quantitatively different uncertainties and key reactions, although the qualitative characteristics are similar. We confirmed that our results do not significantly change at different metallicities for fast rotating massive stars in the very low metallicity regime. We highlight which of the identified key reactions are realistic candidates for improved measurement by future experiments.

  9. Fatal canine distemper virus infection of giant pandas in China

    PubMed Central

    Feng, Na; Yu, Yicong; Wang, Tiecheng; Wilker, Peter; Wang, Jianzhong; Li, Yuanguo; Sun, Zhe; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV. Genomic sequencing of CDV isolated from one of the infected pandas (giant panda/SX/2014) suggests it belongs to the Asia-1 cluster. The hemagglutinin protein of the isolated virus and virus sequenced from lung samples originating from deceased giant pandas all possessed the substitutions V26M, T213A, K281R, S300N, P340Q, and Y549H. The presence of the Y549H substitution is notable as it is found at the signaling lymphocytic activation molecule (SLAM) receptor-binding site and has been implicated in the emergence of highly pathogenic CDV and host switching. These findings demonstrate that giant pandas are susceptible to CDV and suggest that surveillance and vaccination among all captive giant pandas are warranted to support conservation efforts for this endangered species. PMID:27310722

  10. Atom-Dependent Edge-Enhanced Second-Harmonic Generation on MoS2 Monolayers.

    PubMed

    Lin, Kuang-I; Ho, Yen-Hung; Liu, Shu-Bai; Ciou, Jian-Jhih; Huang, Bo-Ting; Chen, Christopher; Chang, Han-Ching; Tu, Chien-Liang; Chen, Chang-Hsiao

    2018-02-14

    Edge morphology and lattice orientation of single-crystal molybdenum disulfide (MoS 2 ) monolayers, a transition metal dichalcogenide (TMD), possessing a triangular shape with different edges grown by chemical vapor deposition are characterized by atomic force microscopy and transmission electron microscopy. Multiphoton laser scanning microscopy is utilized to study one-dimensional atomic edges of MoS 2 monolayers with localized midgap electronic states, which result in greatly enhanced optical second-harmonic generation (SHG). Microscopic S-zigzag edge and S-Mo Klein edge (bare Mo atoms protruding from a S-zigzag edge) terminations and the edge-atom dependent resonance energies can therefore be deduced based on SHG images. Theoretical calculations based on density functional theory clearly explain the lower energy of the S-zigzag edge states compared to the corresponding S-Mo Klein edge states. Characterization of the atomic-scale variation of edge-enhanced SHG is a step forward in this full-optical and high-yield technique of atomic-layer TMDs.

  11. Giant pandas are not an evolutionary cul-de-sac: evidence from multidisciplinary research.

    PubMed

    Wei, Fuwen; Hu, Yibo; Yan, Li; Nie, Yonggang; Wu, Qi; Zhang, Zejun

    2015-01-01

    The giant panda (Ailuropoda melanoleuca) is one of the world's most endangered mammals and remains threatened by environmental and anthropogenic pressure. It is commonly argued that giant pandas are an evolutionary cul-de-sac because of their specialized bamboo diet, phylogenetic changes in body size, small population, low genetic diversity, and low reproductive rate. This notion is incorrect, arose from a poor understanding or appreciation of giant panda biology, and is in need of correction. In this review, we summarize research across morphology, ecology, and genetics to dispel the idea, once and for all, that giant pandas are evolutionary dead-end. The latest and most advanced research shows that giant pandas are successful animals highly adapted to a specialized bamboo diet via morphological, ecological, and genetic adaptations and coadaptation of gut microbiota. We also debunk misconceptions around population size, population growth rate, and genetic variation. During their evolutionary history spanning 8 My, giant pandas have survived diet specialization, massive bamboo flowering and die off, and rapid climate oscillations. Now, they are suffering from enormous human interference. Fortunately, continued conservation effort is greatly reducing impacts from anthropogenic interference and allowing giant panda populations and habitat to recover. Previous ideas of a giant panda evolutionary cul-de-sac resulted from an unsystematic and unsophisticated understanding of their biology and it is time to shed this baggage and focus on the survival and maintenance of this high-profile species. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Isolated (localized) idiopathic granulomatous (giant cell) vasculitis in an intramuscular lipoma.

    PubMed

    Fernando Val-Bernal, J; Val, Daniel; Calvo, Ignacio; Francisca Garijo, M

    2006-01-01

    Isolated (localized) idiopathic granulomatous vasculitis (IGV) is an uncommon, heterogeneous, and poorly defined group of disorders characterized by infiltration of the arterial wall caused by compactly grouped mononuclear phagocytes, with or without giant cells, in segmental distribution. We report on a 55-year-old woman with IGV limited to an intramuscular lipoma of the left thigh. The vasculitis was identified incidentally upon microscopic examination of the removed tumor. The IGV was centered on two medium-sized arteries, accompanied by narrowing of the lumens, and not associated with secondary changes such as infart or postinfart fibrosis. The inflammatory infiltrate was rich in T-lymphocytes and macrophages, with the presence of giant cells. The patient was asymptomatic and well in a follow-up period of 2 months, during which she was not treated. To our knowledge, this is the first report of lipoma involvement in localized IGV. It is important to distinguish cases of isolated intratumorous IGV from systemic disease, because the latter implies a poor prognosis and requires an aggressive treatment.

  13. Foreign body giant cells selectively covering haptics of intraocular lens implants: indicators of poor toleration?

    PubMed

    Wolter, J R

    1983-10-01

    A Sputnik lens implant removed after five years because of bullous keratopathy exhibits a dense covering of its Supramid anterior staves with large foreign body giant cells, while its Prolene loops and Polymethylmethacrylate optics have attracted only few of these cell units. The glass-membrane-like component of the reactive membrane also shows significant differences on the different parts of this implant. The use of observation of the components of reactive membranes on lens implants as indicators of toleration in the eye is suggested.

  14. Memristive Model of the Barnacle Giant Muscle Fibers

    NASA Astrophysics Data System (ADS)

    Sah, Maheshwar Pd.; Kim, Hyongsuk; Eroglu, Abdullah; Chua, Leon

    The generation of action potentials (oscillations) in biological systems is a complex, yet poorly understood nonlinear dynamical phenomenon involving ions. This paper reveals that the time-varying calcium ion and the time-varying potassium ion, which are essential for generating action potentials in Barnacle giant muscle fibers are in fact generic memristors in the perspective of electrical circuit theory. We will show that these two ions exhibit all the fingerprints of memristors from the equations of the Morris-Lecar model of the Barnacle giant muscle fibers. This paper also gives a textbook reference to understand the difference between memristor and nonlinear resistor via analysis of the potassium ion-channel memristor and calcium ion-channel nonlinear resistor. We will also present a comprehensive in-depth analysis of the generation of action potentials (oscillations) in memristive Morris-Lecar model using small-signal circuit model and the Hopf bifurcation theorem.

  15. Giant aerosol observations with cloud radar: methodology and effects

    NASA Astrophysics Data System (ADS)

    Guma Claramunt, Pilar; Madonna, Fabio; Amodeo, Aldo; Bauer-Pfundstein, Matthias; Papagiannopoulos, Nikolaos; Pappalardo, Gelsomina

    2017-04-01

    together with the increases of AOD. Finally, the effects of giant aerosols on precipitation at a regional scale have been studied. The observation of giant aerosols can be correlated to an enhancement of the accumulated precipitation, which is quite relevant in the first 12 hours after their observation, as well as of the maximum rain rate in presence of the unstable atmospheric conditions. The increase in the maximum rain rate is instead more remarkable in correlation with stable atmospheric conditions and mainly during the first 6 hours after their observations.

  16. Mapping photometric metallicities in the Galactic halo using broadband photometry

    NASA Astrophysics Data System (ADS)

    Hebenstreit, Samuel David; Nidever, David L.; Munn, Jeffrey A.; Majewski, Steven R.

    2018-06-01

    An important objective of modern Astrophysics is to trace the history of galaxies and the dynamics of their formations. The outer regions of the Milky Way, including the Galactic halo, could potentially elucidate the evolutionary history of our galaxy. In this study, we make use of extensive DDO51 photometry combined with SDSS broadband photometry to select giant stars reaching to 90 kpc. Photometric metallicities, calibrated by overlapping spectroscopic data (SDSS, APOGEE and LAMOST), and distances are calculated for all giant stars. Using these metallicities and distances, we construct metallicity distribution functions (MDFs) from these stars. We study the MDFs for information pertaining to the accretion history of the Milky Way.

  17. Surgical approach to giant aneurysms of the anterior circulation.

    PubMed

    Giombini, S; Solero, C L; Ferraresi, S; Melcarne, A; Broggi, G; Pluchino, F

    1988-01-01

    The surgical approach to cerebral giant aneurysms is still a source of great concern. We describe our experience with giant aneurysms of the anterior circulation and discuss the different surgical techniques adopted. During the period January 1972-December 1985, a total of 33 patients were operated upon at the Istituto Neurologico "C. Besta" of Milan for a giant aneurysm of the anterior circulation. Nineteen cases had suffered subarachnoid haemorrhage before admission; in 14 cases the hospitalization was due to evidence of mass effect on the surrounding neurovascular structures. All aneurysms were directly approached: in 24 cases the neck was occluded by a suitable clip, in 4 cases intramural thrombosis was attempted, in 3 cases the aneurysms were definitively trapped and in one case aneurysmorrhaphy was performed after resection of the sac. Operative mortality was 12%. Long-term follow-up shows good results whenever exclusion of the aneurysm from cerebral circulation had been achieved, either after removal of the sac or not; on the contrary, only fair or poor results were evident when other surgical techniques were adopted, either electively or out of necessity. The importance of intraoperative protection and monitoring of brain function is stressed.

  18. Giant switchable Rashba effect in oxide heterostructures

    DOE PAGES

    Zhong, Zhicheng; Si, Liang; Zhang, Qinfang; ...

    2015-03-01

    One of the most fundamental phenomena and a reminder of the electron’s relativistic nature is the Rashba spin splitting for broken inversion symmetry. Usually this splitting is a tiny relativistic correction. Interfacing ferroelectric BaTiO₃ and a 5d (or 4d) transition metal oxide with a large spin-orbit coupling, Ba(Os,Ir,Ru)O₃, we show that giant Rashba spin splittings are indeed possible and even controllable by an external electric field. Based on density functional theory and a microscopic tight binding understanding, we conclude that the electric field is amplified and stored as a ferroelectric Ti-O distortion which, through the network of oxygen octahedra, inducesmore » a large (Os,Ir,Ru)-O distortion. The BaTiO₃/Ba(Os,Ru,Ir)O₃ heterostructure is hence the ideal test station for switching and studying the Rashba effect and allows applications at room temperature.« less

  19. Ransom, Religion, and Red Giants: C.S. Lewis and Fred Hoyle

    NASA Astrophysics Data System (ADS)

    Larsen, Kristine

    2010-01-01

    Famed fantasy writer C.S. Lewis (1898-1963) was known to friends as a well-read astronomy aficionado. However, this medieval scholar and Christian apologist embraced a pre-Copernican universe (with its astrological overtones) in his Chronicles of Narnia series and defended the beauty and relevance of the geocentric model in his final academic work, "The Discarded Image". In the "Ransom Trilogy” ("Out of the Silent Planet", "Perelandra", and "That Hideous Strength") philologist Ransom (loosely based on Lewis's close friend J.R.R. Tolkien) travels to Lewis's visions of Mars and Venus, where he interacts with intelligent extraterrestrials, battles with evil scientists, and aids in the continuation of extraterrestrial Christian values. In the final book, Ransom is joined by a handful of colleagues in open warfare against the satanic N.I.C.E. (National Institute for Coordinated Experiments). Geneticist and evolutionary biologist J.B.S. Haldane criticized Lewis for his scientifically inaccurate descriptions of the planets, and his disdain for the scientific establishment. Lewis responded to the criticism in essays of his own. Another of Lewis's favorite scientific targets was atheist Fred Hoyle, whom he openly criticized for anti-Christian statements in Hoyle's BBC radio series. Writer and Lewis friend Dorothy L. Sayers voiced her own criticism of Hoyle. In a letter, Lewis dismissed Hoyle as "not a great philosopher (and none of my scientific colleagues think much of him as a scientist.” Given Lewis's lack of respect for Hoyle, and use of creative license in describing the planets, and the flat-earth, "geocentric” Narnia, it is surprising that Lewis very carefully includes an astronomically correct description of red giants in two novels in the Narnia series ("The Magician's Nephew" and "The Last Battle"). This inclusion is even more curious given that Fred Hoyle is well-known as one of the pioneers in the field of stellar death and the properties of red giants.

  20. Exploring H2O Prominence in Reflection Spectra of Cool Giant Planets

    NASA Astrophysics Data System (ADS)

    MacDonald, Ryan J.; Marley, Mark S.; Fortney, Jonathan J.; Lewis, Nikole K.

    2018-05-01

    The H2O abundance of a planetary atmosphere is a powerful indicator of formation conditions. Inferring H2O in the solar system giant planets is challenging, due to condensation depleting the upper atmosphere of water vapor. Substantially warmer hot Jupiter exoplanets readily allow detections of H2O via transmission spectroscopy, but such signatures are often diminished by the presence of clouds composed of other species. In contrast, highly scattering water clouds can brighten planets in reflected light, enhancing molecular signatures. Here, we present an extensive parameter space survey of the prominence of H2O absorption features in reflection spectra of cool (Teff < 400 K) giant exoplanetary atmospheres. The impact of effective temperature, gravity, metallicity, and sedimentation efficiency is explored. We find prominent H2O features around 0.94 μm, 0.83 μm, and across a wide spectral region from 0.4 to 0.73 μm. The 0.94 μm feature is only detectable where high-altitude water clouds brighten the planet: Teff ∼ 150 K, g ≳ 20 ms‑2, fsed ≳ 3, m ≲ 10× solar. In contrast, planets with g ≲ 20 ms‑2 and Teff ≳ 180 K display substantially prominent H2O features embedded in the Rayleigh scattering slope from 0.4 to 0.73 μm over a wide parameter space. High fsed enhances H2O features around 0.94 μm, and enables these features to be detected at lower temperatures. High m results in dampened H2O absorption features, due to water vapor condensing to form bright, optically thick clouds that dominate the continuum. We verify these trends via self-consistent modeling of the low-gravity exoplanet HD 192310c, revealing that its reflection spectrum is expected to be dominated by H2O absorption from 0.4 to 0.73 μm for m ≲ 10× solar. Our results demonstrate that H2O is manifestly detectable in reflected light spectra of cool giant planets only marginally warmer than Jupiter, providing an avenue to directly constrain the C/O and O/H ratios of a hitherto