Sample records for s-ic test stand-delay

  1. Construction Progress of the S-IC Test Stand-Pumps

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken April 4, 1961, shows the S-IC test stand dry once again when workers resumed construction after a 6 month delay due to booster size reconfiguration back in September of 1961. The disturbance of a natural spring during the excavation of the site required water to be pumped from the site continuously. The site was completely flooded after the pumps were shut down during the construction delay.

  2. Construction Progress of the S-IC Test Stand Complex Bunker House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC stand, additional related facilities were built during this time frame. Built to the east of the S-IC stand, the block house served as the control room. To the south of the blockhouse was a newly constructed pump house used for delivering water to the S-IC stand during testing. North of the massive test stand, the F-1 Engine test stand was built for testing a single F-1 engine. Just southeast of the S-IC stand a concrete bunker house was constructed. The bunker housed

  3. Construction Progress of the S-IC Test Stand-Steel Reinforcements

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 15, 1961, shows the installation of the reinforcing steel prior to the pouring of the concrete foundation walls.

  4. B-1 and B-3 Test Stands at NASA’s Plum Brook Station

    NASA Image and Video Library

    1966-09-21

    Operation of the High Energy Rocket Engine Research Facility (B-1), left, and Nuclear Rocket Dynamics and Control Facility (B-3) at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The test stands were constructed in the early 1960s to test full-scale liquid hydrogen fuel systems in simulated altitude conditions. Over the next decade each stand was used for two major series of liquid hydrogen rocket tests: the Nuclear Engine for Rocket Vehicle Application (NERVA) and the Centaur second-stage rocket program. The different components of these rocket engines could be studied under flight conditions and adjusted without having to fire the engine. Once the preliminary studies were complete, the entire engine could be fired in larger facilities. The test stands were vertical towers with cryogenic fuel and steam ejector systems. B-1 was 135 feet tall, and B-3 was 210 feet tall. Each test stand had several levels, a test section, and ground floor shop areas. The test stands relied on an array of support buildings to conduct their tests, including a control building, steam exhaust system, and fuel storage and pumping facilities. A large steam-powered altitude exhaust system reduced the pressure at the exhaust nozzle exit of each test stand. This allowed B-1 and B-3 to test turbopump performance in conditions that matched the altitudes of space.

  5. A-3 Test Stand construction

    NASA Image and Video Library

    2010-10-01

    An 80,000-gallon liquid hydrogen tank is placed at the A-3 Test Stand construction site on Sept. 24, 2010. The tank will provide propellant for tests of next-generation rocket engines at the stand. It will be placed upright on top of the stand, helping to increase the overall height to 300 feet. Once completed, the A-3 Test Stand will enable operators to test rocket engines at simulated altitudes of up to 100,000 feet. The A-3 stand is the first large rocket engine test structure to be built at Stennis Space Center since the 1960s.

  6. A-3 Test Stand construction

    NASA Image and Video Library

    2010-09-24

    A 35,000-gallon liquid oxygen tank is placed at the A-3 Test Stand construction site on Sept. 24, 2010. The tank will provide propellant for tests of next-generation rocket engines at the stand. It will be placed upright on top of the stand, helping to increase the overall height to 300 feet. Once completed, the A-3 Test Stand will enable operators to test rocket engines at simulated altitudes of up to 100,000 feet. The A-3 stand is the first large rocket engine test structure to be built at Stennis Space Center since the 1960s.

  7. Looking northeast from Test Stand 'A' superstructure towards Test Stand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking northeast from Test Stand 'A' superstructure towards Test Stand 'D' tower (4223/E-24, left background), Test Stand 'C' tower (4217/E-18, center), and Test Stand 'B' (4215/E-16, right foreground). - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  8. Men Working on Mock-Up of S-IC Thrust Structure

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This photograph depicts Marshall Space Flight Center employees, James Reagin, machinist (top); Floyd McGinnis, machinist; and Ernest Davis, experimental test mechanic (foreground), working on a mock up of the S-IC thrust structure. The S-IC stage is the first stage, or booster, of the 364-foot long Saturn V rocket that ultimately took astronauts to the Moon. The S-IC stage, burned over 15 tons of propellant per second during its 2.5 minutes of operation to take the vehicle to a height of about 36 miles and to a speed of about 6,000 miles per hour. The stage was 138 feet long and 33 feet in diameter. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust.

  9. Delayed onset of transversus abdominus in long-standing groin pain.

    PubMed

    Cowan, Sallie M; Schache, Anthony G; Brukner, Peter; Bennell, Kim L; Hodges, Paul W; Coburn, Paul; Crossley, Kay M

    2004-12-01

    Long-standing groin pain is a persistent problem that is commonly difficult to rehabilitate. Theoretical rationale indicates a relationship between the motor control of the pelvis and long-standing groin pain; however, this link has not been investigated. The current experiment aimed to evaluate motor control of the abdominal muscles in a group of Australian football players with and without long-standing groin pain. Ten participants with long-standing groin pain and 12 asymptomatic controls were recruited for the study. Participants were elite or subelite Australian football players. Fine-wire and surface electromyography electrodes were used to record the activity of the selected abdominal and leg muscles during a visual choice reaction-time task (active straight leg raising). When the asymptomatic controls completed the active straight leg raise (ASLR) task, the transversus abdominus contracted in a feed-forward manner. However, when individuals with long-standing groin pain completed the ASLR task, the onset of transversus abdominus was delayed (P < 0.05) compared with the control group. There were no differences between groups for the onset of activity of internal oblique, external oblique, and rectus abdominus (all P > 0.05). The finding that the onset of transversus abdominus is delayed in individuals with long-standing groin pain is important, as it demonstrates an association between long-standing groin pain and transversus abdominus activation.

  10. A-1 Test Stand work

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A structural steel beam to support the new thrust measurement system on the A-1 Test Stand at NASA's John C. Stennis Space Center is lifted to waiting employees for installation. The beam is part of the thrust takeout structure needed to support the new measurement system. Four such beams have been installed at the stand in preparation for installation of the system in upcoming weeks. Operators are preparing the stand for testing the next generation of rocket engines for the U.S. space program.

  11. 9. WEST SIDE, TEST STAND AND SUPERSTRUCTURE. TEST STAND 1B ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. WEST SIDE, TEST STAND AND SUPERSTRUCTURE. TEST STAND 1-B IN DISTANCE. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  12. KEITH HIGGINBOTHAM AT TEST STAND 4699

    NASA Image and Video Library

    2016-10-17

    KEITH HIGGINBOTHAM, STRUCTURAL TEST LEAD FOR THE SLS SPACECRAFT PAYLOAD INTEGRATION AND EVOLUTION OFFICE, IS SHOWN BESIDE TEST STAND 4699 AT THE MARSHALL SPACE FLIGHT CENTER’S WEST TEST AREA. HIGGINBOTHAM WILL BE LEADING STRUCTURAL LOADS TESTING AT TEST STAND 4699 FOR THE CORE STAGE SIMULATER AND THE LAUNCH VEHICLE STAGE ADAPTER. THE TEST SERIES WILL ENSURE EACH STRUCTURE CAN WITHSTAND THE INCREDIBLE STRESSES OF LAUNCH.

  13. Test Stand at the Rocket Engine Test Facility

    NASA Image and Video Library

    1973-02-21

    The thrust stand in the Rocket Engine Test Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Rocket Engine Test Facility was constructed in the mid-1950s to expand upon the smaller test cells built a decade before at the Rocket Laboratory. The $2.5-million Rocket Engine Test Facility could test larger hydrogen-fluorine and hydrogen-oxygen rocket thrust chambers with thrust levels up to 20,000 pounds. Test Stand A, seen in this photograph, was designed to fire vertically mounted rocket engines downward. The exhaust passed through an exhaust gas scrubber and muffler before being vented into the atmosphere. Lewis researchers in the early 1970s used the Rocket Engine Test Facility to perform basic research that could be utilized by designers of the Space Shuttle Main Engines. A new electronic ignition system and timer were installed at the facility for these tests. Lewis researchers demonstrated the benefits of ceramic thermal coatings for the engine’s thrust chamber and determined the optimal composite material for the coatings. They compared the thermal-coated thrust chamber to traditional unlined high-temperature thrust chambers. There were more than 17,000 different configurations tested on this stand between 1973 and 1976. The Rocket Engine Test Facility was later designated a National Historic Landmark for its role in the development of liquid hydrogen as a propellant.

  14. R&D100: IC ID

    ScienceCinema

    Hamlet, Jason; Pierson, Lyndon; Bauer, Todd

    2018-06-25

    Supply chain security to detect, deter, and prevent the counterfeiting of networked and stand-alone integrated circuits (ICs) is critical to cyber security. Sandia National Laboratory researchers have developed IC ID to leverage Physically Unclonable Functions (PUFs) and strong cryptographic authentication to create a unique fingerprint for each integrated circuit. IC ID assures the authenticity of ICs to prevent tampering or malicious substitution.

  15. Saturn V S-IC (First) Stage

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This cutaway illustration shows the Saturn V S-IC (first) stage with detailed callouts of the components. The S-IC Stage is 138 feet long and 33 feet in diameter, producing 7,500,000 pounds of thrust through five F-1 engines that are powered by liquid oxygen and kerosene. Four of the engines are mounted on an outer ring and gimbal for control purposes. The fifth engine is rigidly mounted in the center. When ignited, the roar produced by the five engines equals the sound of 8,000,000 hi-fi sets.

  16. Around Marshall

    NASA Image and Video Library

    1962-04-04

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken April 4, 1961, shows the S-IC test stand dry once again when workers resumed construction after a 6 month delay due to booster size reconfiguration back in September of 1961. The disturbance of a natural spring during the excavation of the site required water to be pumped from the site continuously. The site was completely flooded after the pumps were shut down during the construction delay.

  17. A-3 Test Stand

    NASA Image and Video Library

    2012-06-08

    A tethered Stennis Space Center employee climbs an A-3 Test Stand ladder June 8, 2012, against the backdrop of the A-2 and B-1/B-2 stands. The new A-3 Test Stand will enable simulated high-altitude testing of next-generation rocket engines.

  18. A-3 Test Stand

    NASA Image and Video Library

    2012-06-08

    A tethered Stennis Space Center employee climbs an A-3 Test Stand ladded June 8, 2012, against the backdrop of the A-2 and B-1/B-2 stands. The new A-3 Test Stand will enable simulated high-altitude testing of next-generation rocket engines.

  19. Aerial shows Stennis test stands

    NASA Image and Video Library

    2004-04-16

    An aerial photo shows the B-1/B-2 Test Stand (foreground), A-2 Test Stand (middle) and A-1 Test Stand (back). The historic stands have been used to test engines used on every manned Apollo and space shuttle mission.

  20. TMS delivered for A-3 Test Stand

    NASA Image and Video Library

    2010-03-17

    A state-of-the-art thrust measurement system for the A-3 Test Stand under construction at NASA's John C. Stennis Space Center was delivered March 17. Once completed, the A-3 stand (seen in background) will allow simulated high-altitude testing on the next generation of rocket engines for America's space program. Work on the stand began in 2007, with activation scheduled for 2012. The stand is the first major test structure to be built at Stennis since the 1960s. The recently delivered TMS was fabricated by Thrust Measurement Systems in Illinois. It is an advanced calibration system capable of measuring vertical and horizontal thrust loads with an accuracy within 0.15 percent at 225,000 pounds.

  1. NASA Tests Upgraded Water System for Stennis Space Center's B-2 Test Stand

    NASA Image and Video Library

    2017-12-04

    On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.

  2. A-3 Test Stand work

    NASA Image and Video Library

    2011-07-29

    Work continues on the A-3 Test Stand at Stennis Space Center. The new stand will allow operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet. The test stand is scheduled for completion and activation in 2013.

  3. TEST STAND 4697 CONSTRUCTION

    NASA Image and Video Library

    2016-01-06

    A CRANE MOVES THE FIRST STEEL TIER TO BE BOLTED INTO PLACE ON JAN. 6, FOR WELDING OF A SECOND NEW STRUCTURAL TEST STAND AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA -- CRITICAL TO DEVELOPMENT OF NASA'S SPACE LAUNCH SYSTEM. WHEN COMPLETED THIS SUMMER, THE 85-FOOT-TALL TEST STAND 4697 WILL USE HYDRAULIC CYLINDERS TO SUBJECT THE LIQUID OXYGEN TANK AND HARDWARE OF THE MASSIVE SLS CORE STAGE TO THE SAME LOADS AND STRESSES IT WILL ENDURE DURING A LAUNCH. THE STAND IS RISING IN MARSHALL'S WEST TEST AREA, WHERE WORK IS ALSO UNDERWAY ON THE 215-FOOT-TALL TOWERS OF TEST STAND 4693, WHICH WILL CONDUCT SIMILAR STRUCTURAL TESTS ON THE SLS CORE STAGE'S LIQUID HYDROGEN TANK. SLS, THE MOST POWERFUL ROCKET EVER BUILT, WILL CARRY ASTRONAUTS IN NASA'S ORION SPACECRAFT ON DEEP SPACE MISSIONS, INCLUDING THE JOURNEY TO MARS.

  4. A-1 Test Stand modifications

    NASA Image and Video Library

    2011-09-14

    Team members check the progress of a liquid nitrogen cold shock test on the A-1 Test Stand at Stennis Space Center on Sept. 15. The cold shock test is used to confirm the test stand's support system can withstand test conditions, when super-cold rocket engine propellant is piped. The A-1 Test Stand is preparing to conduct tests on the powerpack component of the J-2X rocket engine, beginning in early 2012.

  5. A-1 Test Stand work

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Employees at NASA's John C. Stennis Space Center work to maneuver a structural steam beam into place on the A-1 Test Stand on Jan. 13. The beam was one of several needed to form the thrust takeout structure that will support a new thrust measurement system being installed on the stand for future rocket engine testing. Once lifted onto the stand, the beams had to be hoisted into place through the center of the test stand, with only two inches of clearance on each side. The new thrust measurement system represents a state-of-the-art upgrade from the equipment installed more than 40 years ago when the test stand was first constructed.

  6. 8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND DURING AN ENGINE FIRING. DATE UNKNOWN, FRED ORDWAY COLLECTION, U.S. SPACE AND ROCKET CENTER, HUNTSVILLE, AL. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  7. A-3 Test Stand work

    NASA Image and Video Library

    2011-07-29

    Stennis Space Center employees have installed liquid oxygen and liquid hydrogen tanks atop the A-3 Test Stand, raising the structure to its full 300-foot height. The stand is being built to test next-generation rocket engines that could carry humans beyond low-Earth orbit into deep space. The A-3 Test Stand is scheduled for completion and activation in 2013.

  8. SSC_NASA Tests Upgraded Water System for the B-2 Test Stand - Highlights with Music

    NASA Image and Video Library

    2017-12-04

    On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.

  9. 20. Building 202, detail of stand A, rocket test stand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Building 202, detail of stand A, rocket test stand in test cell. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  10. Industry-Oriented Laboratory Development for Mixed-Signal IC Test Education

    ERIC Educational Resources Information Center

    Hu, J.; Haffner, M.; Yoder, S.; Scott, M.; Reehal, G.; Ismail, M.

    2010-01-01

    The semiconductor industry is lacking qualified integrated circuit (IC) test engineers to serve in the field of mixed-signal electronics. The absence of mixed-signal IC test education at the collegiate level is cited as one of the main sources for this problem. In response to this situation, the Department of Electrical and Computer Engineering at…

  11. A collection of articles on S/X-band experiment zero delay ranging tests, volume 1

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y. (Editor)

    1975-01-01

    Articles are presented which are concerned with the development of special test equipment and a dual-frequency zero delay device (ZDD) that were required for range tests and the measurement of ground station delays for the Mariner-Venus-Mercury 1973 S/X-band experiment. Test data obtained at DSS 14 after installation of the ZDD on the 64-m antenna are given. It is shown that large variations of range were observed as a function of antenna elevation angle and were sensitive to antenna location. A ranging calibration configuration that was subsequently developed and a technique for determining the appropriate Z-correction are described. Zero delay test data at DSS 14 during the Mariner 10 Venus-Mercury-Encounter periods (1974 days 12-150) are presented. The theoretical analysis and experimental verifications are included of the effects of multipath and effects of discontinuities on range delay measurements. A movable subreflector technique and the multipath theory were used to isolate principal multipath errors on the 64-m antenna and to enable a more accurate determination of the actual ground station range delay.

  12. NEO Test Stand Analysis

    NASA Technical Reports Server (NTRS)

    Pike, Cody J.

    2015-01-01

    A project within SwampWorks is building a test stand to hold regolith to study how dust is ejected when exposed to the hot exhaust plume of a rocket engine. The test stand needs to be analyzed, finalized, and fabrication drawings generated to move forward. Modifications of the test stand assembly were made with Creo 2 modeling software. Structural analysis calculations were developed by hand to confirm if the structure will hold the expected loads while optimizing support positions. These calculations when iterated through MatLab demonstrated the optimized position of the vertical support to be 98'' from the far end of the stand. All remaining deflections were shown to be under the 0.6'' requirement and internal stresses to meet NASA Ground Support Equipment (GSE) Safety Standards. Though at the time of writing, fabrication drawings have yet to be generated, but are expected shortly after.

  13. Dr. von Braun Standing by Five F-1 Engines

    NASA Technical Reports Server (NTRS)

    2004-01-01

    A pioneer of America's space program, Dr. von Braun stands by the five F-1 engines of the Saturn V launch vehicle. This Saturn V vehicle is an actual test vehicle which has been displayed at the U.S. Space Rocket Center in Huntsville, Alabama. Designed and developed by Rocketdyne under the direction of the Marshall Space Flight Center, a cluster of five F-1 engines was mounted on the Saturn V S-IC (first) stage. The engines measured 19-feet tall by 12.5-feet at the nozzle exit and burned 15 tons of liquid oxygen and kerosene each second to produce 7,500,000 pounds of thrust. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon.

  14. A-3 Test Stand continues with test cell installation

    NASA Image and Video Library

    2010-07-20

    Employees at Stennis Space Center continue work on the A-3 Test Stand. As shown, a section of the test cell is lifted for installation on the stand's structural steel frame. Work on the A-3 Test Stand began in 2007. It is scheduled for activation in 2012.

  15. Edwards nXDS15iC Vacuum Scroll Pump Pressure Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sessions, H.; Morgan, G. A.

    2013-07-17

    The SRNL High Pressure Laboratory performed testing on an Edwards Model nXDS15iC Vacuum Scroll Pump on July 10th and 11th of 2013 at 723-A. This testing was done in an attempt to obtain initial compression ratio information for the nXDS15iC pump, with compression ratio defined as discharge pressure of the pump divided by suction pressure. Pressure burst testing was also done on the pump to determine its design pressure for pressure safety reasons. The Edwards nXDS15iC pump is being evaluated by SRNL for use part of the SHINE project being executed by SRNL.

  16. 2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST STAND REMNANTS OF BUILDING-BLANK WHITE WALL ONLY ORIGINAL REMAINS. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  17. A-2 Test Stand modification work

    NASA Image and Video Library

    2010-10-27

    John C. Stennis Space Center employees install a new master interface tool on the A-2 Test Stand on Oct. 27, 2010. Until July 2009, the stand had been used for testing space shuttle main engines. With that test series complete, employees are preparing the stand for testing the next-generation J-2X rocket engine being developed. Testing of the new engine is scheduled to begin in 2011.

  18. Around Marshall

    NASA Image and Video Library

    1961-12-22

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 22, 1961, shows danger signs posted around the abandoned site with floods nearing the top. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  19. Around Marshall

    NASA Image and Video Library

    1962-03-15

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken March 15, 1962, shows danger signs posted around the abandoned, flooded site. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  20. Around Marshall

    NASA Image and Video Library

    1961-12-04

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 4, 1961, shows the abandoned site with floods at the 11 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  1. Around Marshall

    NASA Image and Video Library

    1961-12-18

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 18, 1961, shows the abandoned site entirely flooded. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  2. Around Marshall

    NASA Image and Video Library

    1961-12-11

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 11, 1961, shows the abandoned site with floods above the 18 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  3. Around Marshall

    NASA Image and Video Library

    1961-12-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 1, 1961, shows the abandoned site with floods at the 6 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  4. n/a

    NASA Image and Video Library

    1961-12-11

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 11, 1961, shows the abandoned site with floods above the 18 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  5. Around Marshall

    NASA Image and Video Library

    1961-12-08

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 8, 1961, shows the abandoned site with floods at the 16 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  6. Around Marshall

    NASA Image and Video Library

    1961-12-04

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand would have to be modified. With construction delayed, and pumps turned off, this photo, taken December 4, 1961, shows the abandoned site with floods at the 11 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  7. Around Marshall

    NASA Image and Video Library

    1961-12-14

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 14, 1961, shows the abandoned site entirely flooded. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  8. Around Marshall

    NASA Image and Video Library

    1962-02-02

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken February 2, 1962, shows the abandoned flooded site. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  9. A-3 Test Stand work

    NASA Image and Video Library

    2011-07-29

    Rocket engine propellant tanks and cell dome top the A-3 Test Stand under construction at Stennis Space Center. The stand will test next-generation rocket engines that could carry humans beyond low-Earth orbit into deep space once more.

  10. 4. Credit WCT. Photographic copy of photograph, test Stand 'B' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Credit WCT. Photographic copy of photograph, test Stand 'B' set up for shock tube and research on ship-to-ship fueling problems for the U.S. Coast Guard. (JPL negative no. 344-3743-A, October or November 1980) - Jet Propulsion Laboratory Edwards Facility, Test Stand B, Edwards Air Force Base, Boron, Kern County, CA

  11. A Large, Free-Standing Wire Grid for Microwave Variable-delay Polarization Modulation

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    2008-01-01

    One technique for mapping the polarization signature of the cosmic microwave background uses large, polarizing grids in reflection. We present the system requirements, the fabrication, assembly, and alignment procedures, and the test results for the polarizing grid component of a 50 cm clear aperture, Variable-delay Polarization Modulator (VPM). This grid is being built and tested at the Goddard Space Flight Center as part of the Polarimeter for Observing Inflationary Cosmology at the Reionization Epoch (POINCARE). VPMs modulate the polarized component of a radiation source by splitting the incoming beam into two orthogonal polarization components using a free-standing wire grid. The path length difference between these components is varied with a translating mirror, and then they are recombined. This precision instrumentation technique can be used to encode and demodulate the cosmic microwave background's polarization signature. For the demonstration instrument, 64 micrometer diameter tungsten wires are being assembled into a 200 pm pitch, free-standing wire grid with a 50 cm clear aperture, and an expected overall flatness better than 30 micrometers. A rectangular, aluminum stretching frame holds the wires with sufficient tension to achieve a minimum resonant frequency of 185 Hz, allowing VPM mirror translation frequencies of several Hz. A lightly loaded, flattening ring with a 50 cm inside diameter rests against the wires and brings them into accurate planarity.

  12. A-3 Test Stand work continues

    NASA Image and Video Library

    2011-04-22

    Stennis Space Center employees continue work on the A-3 Test Stand test cell. The stand is being built to test next-generation rocket engines that could carry humans beyond low-Earth orbit into deep space.

  13. 1. TEST STAND 1A ENVIRONS, SHOWING WEST SIDE OF TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. TEST STAND 1-A ENVIRONS, SHOWING WEST SIDE OF TEST STAND 1-A, RP1 COMBINED FUEL STORAGE TANK FARM BELOW WATER TANKS ON HILLSIDE TO LEFT, AND TEST STAND 1-B IN DISTANCE AT RIGHT. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  14. NEARING THE END OF CONSTRUCTION ON THE LOX TEST STAND AT MSFC.

    NASA Image and Video Library

    2015-01-08

    AS THE END OF CONSTRUCTION ON TEST STAND 4697, THE LIQUID OXYGEN TANK TEST STAND AT MARSHALL SPACE FLIGHT CENTER, PROJECT ENGINEERS PHIL HENDRIX, FROM MSFC, AND CURTNEY WALTERS FROM THE U.S. CORP OF ENGINEERS, STUDY PLANS AND PROGRESS.

  15. 4. "TEST CONDUCTORS PANEL AT TEST STAND 1A, DIRECTORATE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. "TEST CONDUCTORS PANEL AT TEST STAND 1-A, DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB, 15 JAN 58, 3098.58." A photograph of the control room, with seven men watching monitors and instrument panels. Photo no. "3098 58; G-AFFTC 15 JAN 58; Test Conductors Panel T.S. 1-A". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  16. Pilot Field Test: Performance of a Sit-to-Stand Test After Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; Phillips, T. R.; Rukavishnikov, I. V.; Kitov, V. V.; Lysova, N. Yu; Lee, S. M. C.; Stenger, M. B.; hide

    2016-01-01

    BACKGROUND: Astronauts returning from the International Space Station are met by a team of recovery personnel typically providing physical assistance and medical support immediately upon landing. That is because long-duration spaceflight impacts astronauts' functional abilities. Future expeditions to planets or asteroids beyond the low Earth orbit, however, may require crewmembers to egress the vehicle and perform other types of physical tasks unassisted. It is therefore important to characterize the extent and longevity of functional deficits experienced by astronauts in order to design safe exploration class missions. Pilot Field Test (PFT) experiment conducted with participation of ISS crewmembers traveling on Soyuz expeditions 34S - 41S comprised several tasks designed to study the recovery of sensorimotor abilities of astronauts during the first 24 hours after landing and beyond. METHODS: The first test in the PFT battery sequence, and also the least demanding one from the sensorimotor perspective, was a Sit-to-Stand test. Test subjects were seated in the chair and had to stand up on command and remain standing for ten seconds. The subjects were instructed to stand up unassisted as quickly as they were able to, while maintaining postural control. Synchronized wireless inertial sensors mounted on the head, chest, lower back, wrists, and ankles were used to continuously log body kinematics. Crewmembers' blood pressure and heart rate were monitored and recorded with the Portapres and Polar systems. Each session was recorded with a digital video camera. During data collections occurring within the 24-hour postflight period, crewmembers were also asked to (1) evaluate their perceived motion sickness symptoms on a 20-point scale before and after completion of the test and (2) estimate how heavy they felt compared to their normal (preflight) body weight. Consent to participate in PFT was obtained from 18 crewmembers (11 US Orbital Segment [USOS] astronauts and 7

  17. 24. SATURN V Fl ENGINE TEST FIRING ON TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SATURN V F-l ENGINE TEST FIRING ON TEST STAND 1A. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  18. 25. "TEST STAND 1A UTILIZED TO TEST THE ATLAS ICBM", ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. "TEST STAND 1-A UTILIZED TO TEST THE ATLAS ICBM", CROPPED OUT: "DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB." Photo no. 11,371 57; G-AFFTC 15 OCT 57. Looking southwest from below the stand. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  19. 8. TEST STAND 15, INVERTED ENGINE FIRING TEST, CIRCA 1963. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. TEST STAND 1-5, INVERTED ENGINE FIRING TEST, CIRCA 1963. Original is a color print. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  20. 10-Minute Delayed Recall from the Modified Mini-Mental State Test Predicts Alzheimer’s Disease Pathology

    PubMed Central

    Lyness, Scott A.; Lee, Ae Young; Zarow, Chris; Teng, Evelyn L.; Chui, Helena C.

    2014-01-01

    We compared the sensitivity and specificity of two delayed recall scores from the Modified Mini-Mental State (3MS) test with consensus clinical diagnosis to differentiate cognitive impairment due to Alzheimer’s disease (AD) versus non-AD pathologies. At a memory disorders clinic, 117 cognitively impaired patients were administered a baseline 3MS test and received a contemporaneous consensus clinical diagnosis. Their brains were examined after death about 5 years later. Using logistic regression with forward selection to predict pathologically defined AD versus non-AD, 10-min delayed recall entered first (p = 0.001), followed by clinical diagnosis (p = 0.02); 1-min delayed recall did not enter. 10-min delayed recall scores ≤4 (score range = 0–9) were 87% sensitive and 47% specific in predicting AD pathology; consensus clinical diagnosis was 82% sensitive and 45% specific. For the 57 patients whose initial Mini-Mental State Examination scores were ≥19 (the median), 3MS 10-min delayed recall scores ≤4 showed some loss of sensitivity (80%) but a substantial gain in specificity (77%). In conclusion, 10-min delayed recall score on the brief 3MS test distinguished between AD versus non-AD pathology about 5 years before death at least as well as consensus clinical diagnosis that requires much more comprehensive information and complex deliberation. PMID:24240637

  1. Around Marshall

    NASA Image and Video Library

    1962-04-16

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. After a 6 month delay in construction due to size reconfiguration of the Saturn booster, the site was revisited for modifications. The original foundation walls built in the prior year had to be torn down and re-poured to accommodate the larger booster. The demolition can be seen in this photograph taken on April 16, 1962.

  2. Around Marshall

    NASA Image and Video Library

    1962-06-13

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. After a six month delay in construction due to size reconfiguration of the Saturn booster, the site was revisited for modifications in March 1962. The original foundation walls built in the prior year were torn down and re-poured to accommodate the larger boosters. This photo depicts that modification progress as of June 13,1962.

  3. Around Marshall

    NASA Image and Video Library

    1962-05-21

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. After a 6 month delay in construction due to size reconfiguration of the Saturn booster, the site was revisited for modifications. The original foundation walls built in the prior year had to be torn down and re-poured to accommodate the larger booster. The demolition can be seen in this photograph taken on May 21, 1962.

  4. New generation QuIC assays for prion seeding activity.

    PubMed

    Orrù, Christina D; Wilham, Jason M; Vascellari, Sarah; Hughson, Andrew G; Caughey, Byron

    2012-01-01

    The ability of abnormal TSE-associated forms of PrP to seed the formation of amyloid fibrils from recombinant PrP(Sen) has served as the basis for several relatively rapid and highly sensitive tests for prion diseases. These tests include rPrP-PMCA (rPMCA), standard quaking-induced conversion (S-QuIC), amyloid seeding assay (ASA), real-time QuIC (RT-QuIC) and enhanced QuIC (eQuIC). Here, we summarize recent improvements in the RT-QuIC-based assays that enhance the practicality, sensitivity and quantitative attributes of assays QuIC and promote the detection of prion seeding activity in dilute, inhibitor-laden fluids such as blood plasma.

  5. Tests of shock chemistry in IC 443G

    NASA Technical Reports Server (NTRS)

    Turner, B. E.; Chan, Kin-Wing; Green, S.; Lubowich, D. A.

    1992-01-01

    Eight molecular species, in the hot dense clump IC 443G, believed to be impacted by the shock wave from the SNR IC 443, are investigated. The clump consists of two distinct regions, one relatively cool, and one hotter and denser. Region 1 contains CO, HCO(+), HCN, and CN, whose abundances may be explained either by ion-molecule chemistry, or by a D shock of 60-90 km/s, passing through a clump of about 100,000/cu cm. Region 2 gives rise to SiO, CS, SO, and H2CO, and requires an ND shock of 5-15 km/s passing through a region of about 1,000,000/cu cm. Observed fractional abundances fit ND shock models if L is about 6.6 x 10 exp 15 cm. In general, observed line widths vary inversely with derived excitation density, while centroid velocities of all species are essentially identical.

  6. A-3 Test Stand

    NASA Image and Video Library

    2011-08-19

    The A-3 Test Stand under construction at Stennis Space Center is set for completion and activation in 2013. It will allow operators to conduct simulated high-altitude testing on the next-generation J-2X rocket engine.

  7. A-3 Test Stand construction moves forward

    NASA Image and Video Library

    2010-07-13

    Work on the A-3 Test Stand at Stennis Space Center took a step forward in July with delivery of the first-stage steam ejector July 13. Stennis employees are shown preparing the ejector to be lifted into place on the test stand. When activated in 2012, the A-3 Test Stand will allow operators to test rocket engines at simulated altitudes of 100,000 feet, a critical feature for next-generation engines that will take humans beyond low-Earth orbit once more.

  8. Solid Propellant Test Article (SPTA) Test Stand

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Solid Propellant Test Article (SPTA) test stand with the Modified Nasa Motor (M-NASA) test article at the Marshall Space Flight Center (MSFC). The SPTA test stand, 12-feet wide by 12-feet long by 24-feet high, was built in 1989 to provide comparative performance data on nozzle and case insulation material and to verify thermostructural analysis models. A modified NASA 48-inch solid motor (M-NASA motor) with a 12-foot blast tube and 10-inch throat makes up the SPTA. The M-NASA motor is being used to evaluate solid rocket motor internal non-asbestos insulation materials, nozzle designs, materials, and new inspection techniques. New internal motor case instrumentation techniques are also being evaluated.

  9. Stand for testing the electrical race car engine

    NASA Astrophysics Data System (ADS)

    Baier, M.; Franiasz, J.; Mierzwa, P.; Wylenzek, D.

    2015-11-01

    An engine test stand created especially for research of electrical race car is described in the paper. The car is an aim of Silesian Greenpower project whose participants build and test electrical vehicles to take part in international races in Great Britain. The engine test stand is used to test and measure the characteristics of vehicles and their engines. It has been designed particularly to test the electric cars engineered by students of Silesian Greenpower project. The article contains a description how the test stand works and shows its versatility in many areas. The paper presents both construction of the test stand, control system and sample results of conducted research. The engine test stand was designed and modified using PLM Siemens NX 8.5. The construction of the test stand is highly modular, which means it can be used both for testing the vehicle itself or for tests without the vehicle. The test stand has its own wheel, motor, powertrain and braking system with second engine. Such solution enables verifying various concepts without changing the construction of the vehicle. The control system and measurement system are realized by enabling National Instruments product myRIO (RIO - Reconfigurable Input/Output). This controller in combination with powerful LabVIEW environment performs as an advanced tool to control torque and speed simultaneously. It is crucial as far as the test stand is equipped in two motors - the one being tested and the braking one. The feedback loop is realized by an optical encoder cooperating with the rotor mounted on the wheel. The results of tests are shown live on the screen both as a chart and as single values. After performing several tests there is a report generated. The engine test stand is widely used during process of the Silesian Greenpower vehicle design. Its versatility enables powertrain testing, wheels and tires tests, thermal analysis and more.

  10. 10. "TEST STAND 15, AIR FORCE FLIGHT TEST CENTER." ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. "TEST STAND 1-5, AIR FORCE FLIGHT TEST CENTER." ca. 1958. Test Area 1-115. Original is a color print, showing Test Stand 1-5 from below, also showing the superstructure of TS1-4 at left. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  11. F-1 Engine for Saturn V Undergoing a Static Test

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The flame and exhaust from the test firing of an F-1 engine blast out from the Saturn S-IB Static Test Stand in the east test area of the Marshall Space Flight Center. A Cluster of five F-1 engines, located in the S-IC (first) stage of the Saturn V vehicle, provided over 7,500,000 pounds of thrust to launch the giant rocket. The towering 363-foot Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  12. Delay test generation for synchronous sequential circuits

    NASA Astrophysics Data System (ADS)

    Devadas, Srinivas

    1989-05-01

    We address the problem of generating tests for delay faults in non-scan synchronous sequential circuits. Delay test generation for sequential circuits is a considerably more difficult problem than delay testing of combinational circuits and has received much less attention. In this paper, we present a method for generating test sequences to detect delay faults in sequential circuits using the stuck-at fault sequential test generator STALLION. The method is complete in that it will generate a delay test sequence for a targeted fault given sufficient CPU time, if such a sequence exists. We term faults for which no delay test sequence exists, under out test methodology, sequentially delay redundant. We describe means of eliminating sequential delay redundancies in logic circuits. We present a partial-scan methodology for enhancing the testability of difficult-to-test of untestable sequential circuits, wherein a small number of flip-flops are selected and made controllable/observable. The selection process guarantees the elimination of all sequential delay redundancies. We show that an intimate relationship exists between state assignment and delay testability of a sequential machine. We describe a state assignment algorithm for the synthesis of sequential machines with maximal delay fault testability. Preliminary experimental results using the test generation, partial-scan and synthesis algorithm are presented.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    This photograph is a view of the Saturn V S-IC (first) test stage being hoisted into the S-IC-B1 test stand at the Mississippi Test Facility (MTF), Bay St. Louis, Mississippi. This stage was used to prove the operational readiness of the stand. Begirning operations in 1966, the MTF has two test stands; a dual-position structure for running the S-IC stage at full throttle, and two separate stands for the S-II (Saturn V third) stage. It became the focus of the static test firing program. The completed S-IC stage was shipped from the Michoud Assembly Facility (MAF) to the MTF. The stage was then installed into the 124-meter-high test stand for static firing tests before shipment to the Kennedy Space Center for final assembly of the Saturn V vehicle. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Stennis Space Center (SSC) in May 1988.

  14. Water tank installed at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  15. Water tank installed at A-3 Test Stand

    NASA Image and Video Library

    2009-08-13

    A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  16. Erection of a Centaur Standard Shroud at Plum Brook Station’s B-3 Test Stand

    NASA Image and Video Library

    1972-08-21

    A section of the Centaur Standard Shroud transported to Nuclear Rocket Dynamics and Control Facility, or B-3 Test Stand, at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station. B-3 was built in the early 1960s to test full-scale liquid hydrogen fuel systems in simulated altitude conditions. The facility was used in 1972, however, for testing of the Centaur Standard Shroud’s ejection system. In the late 1960s NASA engineers were planning the ambitious new Viking mission to send two rover vehicles to the surface of Mars. The Viking rovers were the heaviest payloads ever attempted and were over three times the weight of Atlas-Centaur’s previous heaviest payload. Consequently, NASA engineers selected the more powerful the Titan III rocket booster to mate with the Centaur. Concurrently, General Dynamics was in the process of introducing a new Centaur model for Titan—the D-1T. The biggest change for the D-1T was a completely new shroud designed by Lockheed, called the Centaur Standard Shroud. The shroud, its insulation, the Centaur ground-hold purge system, and the hydrogen tank venting system were all studied in B-3. After more than two years of preparations, the tests were run between April and July 1973. The tests determined the ultimate flight loads on two axes, established the Centaur’s load sharing, the level of propellant boiloff during launch holds, and the vent system capacity. The Centaur Standard Shroud performed flawlessly during the August 20 and September 9, 1975 launches of Viking 1 and 2.

  17. Reineke’s stand density index: a quantitative and non-unitless measure of stand density

    Treesearch

    Curtis L. VanderSchaaf

    2013-01-01

    When used as a measure of relative density, Reineke’s stand density index (SDI) can be made unitless by relating the current SDI to a standard density but when used as a quantitative measure of stand density SDI is not unitless. Reineke’s SDI relates the current stand density to an equivalent number of trees per unit area in a stand with a quadratic mean diameter (Dq)...

  18. Around Marshall

    NASA Image and Video Library

    1963-01-14

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were constructed during this time frame. Built just north of the massive S-IC test stand was the F-1 Engine test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand

  19. Standing Vs Supine; Does it Matter in Cough Stress Testing?

    PubMed

    Patnam, Radhika; Edenfield, Autumn L; Swift, Steven E

    The aim of this study was to compare the sensitivity of cough stress test in the standing versus supine position in the evaluation of incontinent females. We performed a prospective observational study of women with the chief complaint of urinary incontinence (UI) undergoing a provocative cough stress test (CST). Subjects underwent both a standing and a supine CST. Testing order was randomized via block randomization. Cough stress test was performed in a standard method via backfill of 200 mL or until the subject described strong urge. The subjects were asked to cough, and the physician documented urine leakage by direct observation. The gold standard for stress UI diagnosis was a positive CST in either position. Sixty subjects were enrolled, 38 (63%) tested positive on any CST, with 38 (63%) positive on standing compared with 29 (28%) positive on supine testing. Nine women (15%) had positive standing and negative supine testing. No subjects had negative standing with positive supine testing. There were no significant differences in positive tests between the 2 randomized groups (standing first and supine second vs. supine first and standing second). When compared with the gold standard of any positive provocative stress test, the supine CST has a sensitivity of 76%, whereas the standing CST has a sensitivity of 100%. The standing CST is more sensitive than the supine CST and should be performed in any patient with a complaint of UI and negative supine CST. The order of testing either supine or standing first does not affect the results.

  20. n/a

    NASA Image and Video Library

    1962-10-26

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation

  1. n/a

    NASA Image and Video Library

    1962-11-15

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation

  2. 11. "NIGHT SCENE OF TEST AREA WITH TEST STAND 1A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. "NIGHT SCENE OF TEST AREA WITH TEST STAND 1-A IN FOREGROUND. LIGHTS OF MAIN BASE, EDWARDS AFB, IN THE BACKGROUND. EDWARDS AFB." Test Area 1-120. Looking west past Test Stand 1-A to Test Area 1-115 and Test Area 1-110. Photo no. "12,401 57; G-AFFTC 12 DEC 57; TS 1-A Aux #1". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  3. 3. "TEST STAND NO. 13, EXCAVATION PLAN & SECTIONS." Specifications ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. "TEST STAND NO. 1-3, EXCAVATION PLAN & SECTIONS." Specifications No. ENG 04-353-50-10; Drawing No. 60-0906; no sheet number within title block; D.O. SERIES 1109/10. Stamped: AS BUILT. No revisions or revision dates. Last work date on this drawing "Checked by EAG, 1/31/49." Though this drawing is specific to Test Stand 1-3, it also illustrates the general methods used for excavation design and retaining wall construction at Test Stand 1-5. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  4. 31. HISTORIC VIEW OF TEST STAND NO. 1 AT PEENEMUENDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. HISTORIC VIEW OF TEST STAND NO. 1 AT PEENEMUENDE A-4 ENGINE AND ROCKET PROPULSION TEST STAND. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  5. Environmental Systems Test Stand

    NASA Astrophysics Data System (ADS)

    Barta, D.; Young, J.; Ewert, M.; Lee, S.; Wells, P.; Fortson, R.; Castillo, J.

    A test stand has been developed for the evaluation of prototype lighting, environmental control and crop cultivation technologies for plant production within an advanced life support system. Design of the test stand was based on preliminary designs of the center growth bay of the Biomass Production Chamber, one of several modules of the Bioregenerative Planetary Life Support Systems Test Complex (BIO- Plex). It consists of two controlled-environment shelves, each with 4.7 m2 of area for crop growth (150 cm width, 315 cm length). There are two chilled water loops, one for operation at conventional temperatures (5-10C) for air temperature and humidity control and one for operation at higher temperatures (15-50C) for waste heat acquisition and heating. Modular light boxes, utilizing either air-cooled or water- jacketed HPS lamps, have been developed. This modular design will allow for easy replacement of new lighting technologies within the light banks. An advanced data acquisition and control system has been developed utilizing localized, networked- based data acquisition modules and programmed with object-based control software.

  6. Photographic copy of site plan for proposed Test Stand "D" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of site plan for proposed Test Stand "D" in 1958. The contemporary site plans of test stands "A," "B," and "C" are also visible, along with the interconnecting tunnel system. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering "Site Plan for Proposed Test Stand "D" - Edwards Test Station," drawing no. ESP/22-0, 14 November 1958 - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  7. Around Marshall

    NASA Image and Video Library

    1976-01-06

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was originally designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage. Modifications to the S-IC Test Stand began in 1975 to accommodate space shuttle external tank testing. This photo is of the horizontal liquid oxygen tanks.

  8. n/a

    NASA Image and Video Library

    1963-01-15

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and

  9. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    This photograph is a view of the Saturn V S-IC-5 (first) flight stage being hoisted into the S-IC-B1 test stand at the Mississippi Test Facility (MTF), Bay St. Louis, Mississippi. Begirning operations in 1966, the MTF has two test stands, a dual-position structure for running the S-IC stage at full throttle, and two separate stands for the S-II (Saturn V third) stage. It became the focus of the static test firing program. The completed S-IC stage was shipped from Michoud Assembly Facility (MAF) to the MTF. The stage was then installed into the 124-meter-high test stand for static firing tests before shipment to the Kennedy Space Center for final assembly of the Saturn V vehicle. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Stennis Space Center (SSC) in May 1988.

  10. n/a

    NASA Image and Video Library

    1963-01-15

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and

  11. A-3 Test Stand construction update

    NASA Image and Video Library

    2007-12-18

    The concrete foundation placed Dec. 18 (foreground) for Stennis Space Center's future A-3 Test Stand has almost completely cured by early January, according to Bo Clarke, NASA's contracting officer technical representative for the foundation contract. By late December, construction on foundations for many of the test stand's support structures - diffuser, liquid oxygen, isopropyl alcohol and water tanks and gaseous nitrogen bottle battery - had begun with the installation of (background) `mud slabs.' The slabs provide a working surface for the reinforcing steel and foundation forms.

  12. A-3 Test Stand construction update

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The concrete foundation placed Dec. 18 (foreground) for Stennis Space Center's future A-3 Test Stand has almost completely cured by early January, according to Bo Clarke, NASA's contracting officer technical representative for the foundation contract. By late December, construction on foundations for many of the test stand's support structures - diffuser, liquid oxygen, isopropyl alcohol and water tanks and gaseous nitrogen bottle battery - had begun with the installation of (background) `mud slabs.' The slabs provide a working surface for the reinforcing steel and foundation forms.

  13. 13. Photographic copy of site plan displaying Test Stand 'C' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photographic copy of site plan displaying Test Stand 'C' (4217/E-18), Test Stand 'D' (4223/E-24), and Control and Recording Center (4221/E-22) with ancillary structures, and connecting roads and services. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office 'Repairs to Test Stand 'C,' Edwards Test Station, Legend & Site Plan M-1,' drawing no. ESP/115, August 14, 1987. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA

  14. View looking west at Test Stand 'A' complex in morning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking west at Test Stand 'A' complex in morning sun. View shows Monitor Building 4203/E-4 at left, barrier (Building 4216/E-17) to right of 4203/E-4, and Test Stand 'A' tower. Attached structure to lower left of tower is Test Stand 'A' machine room which contained refrigeration equipment. Building in right background with Test Stand 'A' tower shadow on it is Assembly Building 4288/E-89, built in 1984. Row of ground-mounted brackets in foreground was used to carry electrical cable and/or fuel lines. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  15. Flip-flop resolving time test circuit

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.; Chaney, T. J.

    1982-01-01

    Integrated circuit (IC) flip-flop resolving time parameters are measured by wafer probing, without need of dicing or bonding, throught the incorporation of test structures on an IC together with the flip-flop to be measured. Several delays that are fabricated as part of the test circuit, including a voltage-controlled delay with a resolution of a few picosecs, are calibrated as part of the test procedure by integrating them into, and out of, the delay path of a ring oscillator. Each of the delay values is calculated by subtracting the period of the ring oscillator with the delay omitted from the period with the delay included. The delay measurement technique is sufficiently general for other applications. The technique is illustrated for the case of the flip-flop parameters of a 5-micron feature size NMOS circuit.

  16. Credit WCT. Photographic copy of photograph, view of Test Stand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Photographic copy of photograph, view of Test Stand "D" from Test Stand "A" while a rocket engine test is in progress. Cloud of steam is from partly from water created by propellant reaction and from water sprayed by flame bucket into engine exhaust for cooling purposes. A portion of Test Stand "C" is visible at the far right. (JPL negative no. 384-2082-B, 23 October 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  17. Saturn Apollo Program

    NASA Image and Video Library

    1967-08-01

    This photograph is a view of the Saturn V S-IC-5 (first) flight stage static test firing at the S-IC-B1 test stand at the Mississippi Test Facility (MTF), Bay St. Louis, Mississippi. Begirning operations in 1966, the MTF has two test stands, a dual-position structure for running the S-IC stage at full throttle, and two separate stands for the S-II (Saturn V third) stage. It became the focus of the static test firing program. The completed S-IC stage was shipped from Michoud Assembly Facility (MAF) to the MTF. The stage was then installed into the 407-foot-high test stand for the static firing tests before shipment to the Kennedy Space Center for final assembly of the Saturn V vehicle. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Stennis Space Center (SSC) in May 1988.

  18. 5. EAST SIDE, TEST STAND AND ITS SUPERSTRUCTURE. Edwards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EAST SIDE, TEST STAND AND ITS SUPERSTRUCTURE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  19. 1. Photographic copy of original engineering drawing for Test Stand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photographic copy of original engineering drawing for Test Stand 'C.' California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'New Test Stand Plan -- Edwards Test Station' drawing no. E18/2-3, 18 January 1957. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA

  20. Rapid HIV testing experience at Veterans Affairs North Texas Health Care System's Homeless Stand Downs.

    PubMed

    Hooshyar, Dina; Surís, Alina M; Czarnogorski, Maggie; Lepage, James P; Bedimo, Roger; North, Carol S

    2014-01-01

    In the USA, 21% of the estimated 1.1 million people living with human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) are unaware they are HIV-infected. In 2011, Veterans Health Administration (VHA)'s Office of Public Health in conjunction with VHA's Health Care for Homeless Veterans Program funded grants to support rapid HIV testing at homeless outreach events because homeless populations are more likely to obtain emergent rather than preventive care and have a higher HIV seroprevalence as compared to the general population. Because of a Veterans Affairs North Texas Health Care System (VANTHCS)'s laboratory testing requirement, VANTHCS partnered with community agencies to offer rapid HIV testing for the first time at VANTHCS' 2011 Homeless Stand Downs in Dallas, Fort Worth, and Texoma, Texas. Homeless Stand Downs are outreach events that connect Veterans with services. Veterans who declined testing were asked their reasons for declining. Comparisons by Homeless Stand Down site used Pearson χ², substituting Fisher's Exact tests for expected cell sizes <5. Of the 910 Veterans attending the Homeless Stand Downs, 261 Veterans reported reasons for declining HIV testing, and 133 Veterans were tested, where 92% of the tested Veterans obtained their test results at the events - all tested negative. Veterans' reported reasons for declining HIV testing included previous negative result (n=168), no time to test (n=49), no risk factors (n=36), testing is not a priority (n=11), uninterested in knowing serostatus (n=6), and HIV-infected (n=3). Only "no time to test" differed significantly by Homeless Stand Down site. Nonresponse rate was 54%. Offering rapid HIV testing at Homeless Stand Downs is a promising testing venue since 15% of Veterans attending VANTHCS' Homeless Stand Downs were tested for HIV, and majority obtained their HIV test results at point-of-care while further research is needed to determine how to improve these rates.

  1. ROBERT BOBO AND MIKE NICHOLS AT TEST STAND 4693

    NASA Image and Video Library

    2016-12-14

    ROBERT BOBO, LEFT, AND MIKE NICHOLS TALK BENEATH THE 221-FOOT-TALL TEST STAND 4693, THE LARGEST OF TWO NEW SPACE LAUNCH SYSTEM TEST STANDS AT MSFC. BOBO MANAGES SLS STRUCTURAL STRENGTH TESTING, AND NICHOLS IS LEAD TEST ENGINEER FOR THE SLS LIQUID HYDROGEN TANK.

  2. 28. HISTORIC VIEW OF A3 ROCKET IN TEST STAND NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. HISTORIC VIEW OF A-3 ROCKET IN TEST STAND NO. 3 AT KUMMERSDORF (THE LARGEST TEST STAND AT KUMMERSDORF). THE STAND WAS MOBILE, SINCE IT MOVED ALONG RAILS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  3. 38. HISTORIC CLOSER VIEW LOOKING WEST OF THE TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. HISTORIC CLOSER VIEW LOOKING WEST OF THE TEST STAND AND ROCKET DURING TEST FIRING NUMBER 10. NOTE THE NUMBER ALONG THE TOP RAIL OF THE STAND JUST TO THE RIGHT OF THE ROCKET, THIS NUMBER INDICATES WHAT NUMBER TEST IS BEING CONDUCTED. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  4. Around Marshall

    NASA Image and Video Library

    1963-01-15

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and

  5. Engineers conduct key water test for A-3 stand

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Water cascades from the A-2 Test Stand at Stennis Space Center as engineers challenge the limits of the high-pressure water system as part of the preparation process for the A-3 Test Stand under construction. Jeff Henderson, test director for Stennis' A Complex, led a series of tests Nov. 16-20, flowing water simultaneously on the A-1 and A-2 stands, followed by the A-1 and B-1 stands, to determine if the high-pressure industrial water facility pumps and the existing pipe system can support the needs of the A-3 stand. The stand is being built to test rocket engines that will carry astronauts beyond low-Earth orbit and will need about 300,000 gallons of water per minute when operating, but the Stennis system never had been tested to that level. The recent tests were successful in showing the water facility pumps can operate at that capacity - reaching 318,000 gallons per minute in one instance. However, officials continue to analyze data to determine if the system can provide the necessary pressure at that capacity and if the delivery system piping is adequate. 'We just think if there's a problem, it's better to identify and address it now rather than when A-3 is finished and it has to be dealt with,' Henderson said.

  6. Isopropyl alcohol tank installed at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2009-01-01

    An isopropyl alcohol (IPA) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen IPA, water and liquid oxygen (LOX) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  7. Liquid oxygen tank installed at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A liquid oxygen (LOX) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen LOX, isopropyl alcohol (IPA) and water tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  8. Liquid oxygen tank installed at A-3 Test Stand

    NASA Image and Video Library

    2009-09-18

    A liquid oxygen (LOX) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen LOX, isopropyl alcohol (IPA) and water tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  9. Isopropyl alcohol tank installed at A-3 Test Stand

    NASA Image and Video Library

    2009-09-18

    An isopropyl alcohol (IPA) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen IPA, water and liquid oxygen (LOX) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  10. View east northeast at Test Stand 'A' complex from road, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east northeast at Test Stand 'A' complex from road, showing Test Stand 'C' test tower in left background (Building 4217/E-18). Curved I-beam labeled '3-ton' is for small traveling hoist. Fuel tanks, propellant lines, and control panels have been removed from tower. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  11. TEST STAND 4697 CONSTRUCTION TOP OUT

    NASA Image and Video Library

    2016-03-04

    ON MARCH 4, CREW MEMBERS READIED A 900-POUND STEEL BEAM TO "TOP OUT" TEST STAND 4697, WHICH IS UNDER CONSTRUCTION TO TEST THE SPACE LAUNCH SYSTEM LIQUID OXYGEN TANK AT NASA'S MARSHALL SPACE FLIGHT CENTER.

  12. Around Marshall

    NASA Image and Video Library

    1962-07-03

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the

  13. Around Marshall

    NASA Image and Video Library

    1963-09-05

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the

  14. Around Marshall

    NASA Image and Video Library

    1963-09-30

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the

  15. Around Marshall

    NASA Image and Video Library

    1963-06-24

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the

  16. Around Marshall

    NASA Image and Video Library

    1963-10-22

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Northeast of the massive S-IC test stand, the F-1 Engine test stand was built. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the

  17. Credit BG. Test Stand "D" tower as seen looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Test Stand "D" tower as seen looking northeast (See caption for CA-163-F-18). To the right of the view is the stainless steel dome top for Dv Cell (see CA-163-F-22 for view into cell), behind which rests a spherical accumulator--an electrically heated steam generator for powering the vacuum system at "C" and Test Stand "D." Part of the ejector system can be seen on the right corner of the tower, other connections include electrical ducts (thin, flat metal members) and fire protection systems. Note the stand in the foreground with lights used to indicate safety status of the stand during tests - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  18. Stennis Space Center Conducts Water Flow Test On The B-2 Test Stand

    NASA Image and Video Library

    2018-05-04

    Stennis Space Center completed a water flow test of the refurbished B-2 Test Stand on May 4, 2018. This included both the deflector and the aspirator, individually and together. This test stand is being prepared for the testing of the Space Launch System's booster core, which will utilize four RS-25 rocket engines.

  19. Measurement properties and feasibility of clinical tests to assess sit-to-stand/stand-to-sit tasks in subjects with neurological disease: a systematic review

    PubMed Central

    Silva, Paula F. S.; Quintino, Ludmylla F.; Franco, Juliane; Faria, Christina D. C. M.

    2014-01-01

    Background Subjects with neurological disease (ND) usually show impaired performance during sit-to-stand and stand-to-sit tasks, with a consequent reduction in their mobility levels. Objective To determine the measurement properties and feasibility previously investigated for clinical tests that evaluate sit-to-stand and stand-to-sit in subjects with ND. Method A systematic literature review following the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) protocol was performed. Systematic literature searches of databases (MEDLINE/SCIELO/LILACS/PEDro) were performed to identify relevant studies. In all studies, the following inclusion criteria were assessed: investigation of any measurement property or the feasibility of clinical tests that evaluate sit-to-stand and stand-to-sit tasks in subjects with ND published in any language through December 2012. The COSMIN checklist was used to evaluate the methodological quality of the included studies. Results Eleven studies were included. The measurement properties/feasibility were most commonly investigated for the five-repetition sit-to-stand test, which showed good test-retest reliability (Intraclass Correlation Coefficient:ICC=0.94-0.99) for subjects with stroke, cerebral palsy and dementia. The ICC values were higher for this test than for the number of repetitions in the 30-s test. The five-repetition sit-to-stand test also showed good inter/intra-rater reliabilities (ICC=0.97-0.99) for stroke and inter-rater reliability (ICC=0.99) for subjects with Parkinson disease and incomplete spinal cord injury. For this test, the criterion-related validity for subjects with stroke, cerebral palsy and incomplete spinal cord injury was, in general, moderate (correlation=0.40-0.77), and the feasibility and safety were good for subjects with Alzheimer's disease. Conclusions The five-repetition sit-to-stand test was used more often in subjects with ND, and most of the measurement properties were

  20. 1. VIEW NORTHEAST, LEFT TO RIGHT COLD CALIBRATION TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTHEAST, LEFT TO RIGHT COLD CALIBRATION TEST STAND COLD CALIBRATION BLOCKHOUSE IN FOREGROUND. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL

  1. Around Marshall

    NASA Image and Video Library

    1963-11-20

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo shows

  2. Around Marshall

    NASA Image and Video Library

    1963-04-04

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo

  3. Around Marshall

    NASA Image and Video Library

    1963-04-17

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo

  4. 5. "UNDERGROUND CONTROL ROOM AT TEST STAND 1A, DIRECTORATE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. "UNDERGROUND CONTROL ROOM AT TEST STAND 1-A, DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB, 15 JAN 58, 3097.58." Two men working in the control room. Photo no. "3097 58; G-AFFTC 15 JAN 58, T.S. 1-A Control". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  5. PERSPECTIVE VIEW LOOKING NORTHEAST AT THE TEST STAND, NOTE THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PERSPECTIVE VIEW LOOKING NORTHEAST AT THE TEST STAND, NOTE THE SERVICE AND SUPPORT BUILDINGS TO THE LEFT AND RIGHT OF THE TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  6. CLOSEUP VIEW LOOKING SOUTH AT THE SATURN I TEST STAND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOSE-UP VIEW LOOKING SOUTH AT THE SATURN I TEST STAND, NOTE THE INTERPRETIVE SIGN EXPLAINING THE HISTORIC NATURE OF THE SATURN I TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  7. Credit BG. View looking southwest at Test Stand "D" complex. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looking southwest at Test Stand "D" complex. In the background at left is the Steam Generator Plant 4280/E-81 built in 1972 to house four gas-fired Clayton flash boilers. The boilers were later supplemented by the electrically heated steam accumulator (sphere) to supply steam to the various ejectors at Test Stand "D" vacuum test cells - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  8. 43. HISTORIC VIEW LOOKING SOUTHWEST AT THE TEST STAND WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. HISTORIC VIEW LOOKING SOUTHWEST AT THE TEST STAND WITH A REDSTONE ROCKET BEING FUELED AND PREPARED FOR TESTING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  9. A3 TEST STAND CONSTRUCTION

    NASA Technical Reports Server (NTRS)

    2008-01-01

    THIS IMAGE SHOWS THE DEVELOPMENT AND CONSTRUCTION OF THE A3 TEST STAND IN SUPPORT OF THE ARES/CLV UPPER STAGE ENGINE AT STENNIS SPACE CENTER, MISSISSIPPI. THIS IMAGE IS EXTRACTED FROM A HIGH DEFINITION VIDEO FILE AND IS THE HIGHEST RESOLUTION AVAILABLE.

  10. SLS Rocket Hardware Moved to NASA Marshall Stand for Upcoming Test Series (30-second timelapse)

    NASA Image and Video Library

    2016-10-13

    A test version of the launch vehicle stage adapter (LVSA) for NASA’s new rocket, the Space Launch System, is moved to a 65-foot-tall test stand at the agency’s Marshall Space Flight Center in Huntsville, Alabama. The test version LVSA will be stacked with other test pieces of the upper part of the SLS rocket and pushed, pulled and twisted as part of an upcoming test series to ensure each structure can withstand the incredible stresses of launch. The LVSA joins the core stage simulator, which was loaded into the test stand Sept. 21. The other three qualification articles and the Orion simulator will complete the stack later this fall. SLS will be the world’s most powerful rocket, and with the Orion spacecraft, take astronauts to deep-space destinations, including the Journey to Mars. More information on the upcoming test series can be found here: http://go.nasa.gov/2dS8yXB

  11. 51. HISTORIC GENERAL VIEW LOOKING WEST AT THE TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. HISTORIC GENERAL VIEW LOOKING WEST AT THE TEST STAND WITH THE MERCURY REDSTONE ROCKET FULLY ASSEMBLED AND BEING PREPARED FOR TESTING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  12. High-voltage terminal test of a test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Yu-Seok

    2015-10-01

    The Korea Multipurpose Accelerator Complex has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz radio-frequency power supply, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.

  13. Around Marshall

    NASA Image and Video Library

    1963-09-18

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. This photograph taken September 18, 1963 shows a spherical hydrogen tank being constructed next to the S-IC test stand.

  14. 22. DETAIL, TWO LIGHTING TYPES AT REAR OF TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DETAIL, TWO LIGHTING TYPES AT REAR OF TEST STAND 1-A. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  15. 9. BUILDING 8769, EAST REAR AND NORTH SIDE, TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. BUILDING 8769, EAST REAR AND NORTH SIDE, TEST STAND AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  16. 3. EAST SIDE, ALSO SHOWING COVERED TANKS AND TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAST SIDE, ALSO SHOWING COVERED TANKS AND TEST STAND 1-5 AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  17. 5. BUILDING 8768, SOUTH SIDE AND EAST REAR. TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. BUILDING 8768, SOUTH SIDE AND EAST REAR. TEST STAND 1A AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  18. 21. Building 202, underside of test stand A, detail of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Building 202, underside of test stand A, detail of junction of scrubber structure and test stand with water pipes and valves visible. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  19. 37. HISTORIC GENERAL VIEW LOOKING WEST OF TEST STAND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. HISTORIC GENERAL VIEW LOOKING WEST OF TEST STAND AND ROCKET DURING TEST FIRING NUMBER 2. NOTE THE FLAME BEING EMITTED FROM THE BOTTOM OF THE ROCKET. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  20. Around Marshall

    NASA Image and Video Library

    1963-08-13

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the

  1. 45. HISTORIC AERIAL VIEW LOOKING SOUTHWEST AT THE TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. HISTORIC AERIAL VIEW LOOKING SOUTHWEST AT THE TEST STAND AND THE SURROUNDING ELECTRONICS AND EQUIPMENT TRAILERS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  2. 1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ OF THE X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  3. New Marshall Center Test Stand 4697 Construction Time-Lapse

    NASA Image and Video Library

    2016-09-27

    In less than two minutes watch structural Test Stand 4697 rise at NASA's Marshall Space Flight Center from the start of construction in May 2014 to the end of the stand's construction phase in September 2016. The stand will subject the 196,000-gallon liquid oxygen tank of the Space Launch System's massive core stage to the same stresses and pressures it must endure at launch and in flight. Now, Marshall teams are installing sophisticated fluid transfer and pressurization systems, hydraulic controls, electrical control and data systems, fiber optics cables and special test equipment to prepare for the arrival of the test tank in 2017. (NASA/MSFC/David Olive)

  4. 3. BUILDING 8767, NORTH REAR AND WEST SIDE, TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. BUILDING 8767, NORTH REAR AND WEST SIDE, TEST STAND 1-A AT FAR RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  5. IC 5181: An S0 Galaxy with Ionized Gas on Polar Orbits

    NASA Astrophysics Data System (ADS)

    Pizzella, A.; Morelli, L.; Corsini, E. M.; Dalla Bontá, E.; Cesetti, M.

    2014-05-01

    The nearby S0 galaxy IC 5181 is studied to address the origin of the ionized gas component that orbits the galaxy on polar orbit. We perform detailed photometric and spectroscopic observations measuring the surface brightness distribution of the stars (I band), ionized gas of IC 5181 (Hα narrow band), the ionized-gas and stellar kinematics along both the major and minor axis, and the corresponding line strengths of the Lick indices. We conclude that the galaxy hosts a geometrically and kinematically decoupled component of ionized gas. It is elongated along the galaxy minor axis and in orthogonal rotation with respect to the galaxy disk. The result is suggesting that the gas component is not related to the stars having an external origin. The gas was accreted by IC 5181 on polar orbits from the surrounding environment.

  6. Credit BG. View west of Test Stand "D" complex, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View west of Test Stand "D" complex, with ends of Dd (left) and Dy (right) station ejectors in view. Steam piping from accumulator (sphere) to ejectors is apparent; long horizontal loops in the pipes permit expansion and contraction without special joints. The small platform straddling the Dd ejector (near the accumulator) was originally constructed for a "Hyprox" steam generator which supplied steam to the Dd ejector before the accumulator and Dy stand were built. Note ejectors on top of interstage condenser in Test Stand "D" tower. Metal shed in far right background is for storage - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  7. Airvolt Aircraft Electric Propulsion Test Stand

    NASA Technical Reports Server (NTRS)

    Samuel, Aamod; Lin, Yohan

    2015-01-01

    Development of an electric propulsion test stand that collects high-fidelity data of motor, inverter, and battery system efficiencies; thermal dynamics; and acoustics independent of manufacturer reported values will improve understanding of electric propulsion systems to be used in future aircraft. A buildup approach to this development reveals new areas of research and best practices in testing, and attempts to establish a standard for testing these systems.

  8. Around Marshall

    NASA Image and Video Library

    1963-04-17

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph taken April 17, 1963, gives a look at the four tower legs of the S-IC test stand at their completed height.

  9. Around Marshall

    NASA Image and Video Library

    1963-11-20

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of November 20, 1963.

  10. Around Marshall

    NASA Image and Video Library

    1963-02-25

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph taken February 25, 1963, gives a close up look at two of the ever-growing four towers of the S-IC Test Stand.

  11. Around Marshall

    NASA Image and Video Library

    1963-05-07

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken from ground level on May 7, 1963, gives a close look at one of the four towers legs of the S-IC test stand nearing its completed height.

  12. Around Marshall

    NASA Image and Video Library

    1963-05-07

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken May 7, 1963, gives a close look at the four concrete tower legs of the S-IC test stand at their completed height.

  13. Around Marshall

    NASA Image and Video Library

    1963-10-10

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of October 10, 1963. Kerosene storage tanks can be seen to the left.

  14. Around Marshall

    NASA Image and Video Library

    1961-09-07

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the S-IC test stand as of September 7, 1961.

  15. Around Marshall

    NASA Image and Video Library

    1961-07-10

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 10, 1961, actual ground breaking has occurred for the S-IC test stand site.

  16. Credit WCT. Photographic copy of photograph, view of Test Stand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Photographic copy of photograph, view of Test Stand "D" from the south with tower ejector system in operation during a 1972 engine test. Note steam evolving from Z-stage ejectors atop the interstage condenser in the tower. Note also the "Hyprox" steam generator straddling the Dd ejector train to the right. The new Dy horizontal train has not been erected as of this date. In the distance is Test Stand "E." (JPL negative no. 384-9766-AC, 28 November 1972) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  17. Detail of north side of Test Stand 'A' base, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of north side of Test Stand 'A' base, showing tanks for distilled water (left), fuel (center), and gaseous nitrogen (right). Other tanks present for tests were removed before this image was taken. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  18. 7. ROCKET SLED ON DECK OF TEST STAND 15. Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. ROCKET SLED ON DECK OF TEST STAND 1-5. Photo no. "6085, G-EAFB-16 SEP 52." Looking south to machine shop. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  19. 9. COLD CALIBRATION TEST STAND (H1) FROM LEFT TO RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. COLD CALIBRATION TEST STAND (H-1) FROM LEFT TO RIGHT - WORK BENCH, CONTROL PANEL, CHEMICAL TANK. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL

  20. 2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND GARAGE (BUILDING 1930) AT LEFT REAR. Looking to west. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  1. 1. BUILDING 8698, TEST STAND 13, WEST ELEVATION. NOTE TUNNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BUILDING 8698, TEST STAND 1-3, WEST ELEVATION. NOTE TUNNEL BETWEEN BLDG. 8668 AND TEST STAND 1-3. TEST AREA 1-120 IN THE MIDDLE DISTANCE, AND TEST AREA 1-125 ON THE HORIZON. Looking northeast from the roof of Building 8668, Instrumentation and Control Center. Note: Photograph CA-236-F-2 is an 8" x 10" enlargement from a 4" x 5" negative. This view is a photocopy of a recent resin coated print made from a print held at the Main Base History Office, Edwards Air Force Base, California. Photographer unknown. Date and file number unknown. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  2. Apparatus and method for defect testing of integrated circuits

    DOEpatents

    Cole, Jr., Edward I.; Soden, Jerry M.

    2000-01-01

    An apparatus and method for defect and failure-mechanism testing of integrated circuits (ICs) is disclosed. The apparatus provides an operating voltage, V.sub.DD, to an IC under test and measures a transient voltage component, V.sub.DDT, signal that is produced in response to switching transients that occur as test vectors are provided as inputs to the IC. The amplitude or time delay of the V.sub.DDT signal can be used to distinguish between defective and defect-free (i.e. known good) ICs. The V.sub.DDT signal is measured with a transient digitizer, a digital oscilloscope, or with an IC tester that is also used to input the test vectors to the IC. The present invention has applications for IC process development, for the testing of ICs during manufacture, and for qualifying ICs for reliability.

  3. 2. CLOSE UP OF CAPTIVE TEST STAND D4, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CLOSE UP OF CAPTIVE TEST STAND D-4, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  4. 1. CAPTIVE TEST STAND D1 FROM THE FERROCEMENT APRON, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CAPTIVE TEST STAND D-1 FROM THE FERROCEMENT APRON, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  5. 1. CAPTIVE TEST STAND D4, CONNECTING TUNNELS AT RIGHT, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CAPTIVE TEST STAND D-4, CONNECTING TUNNELS AT RIGHT, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  6. 49. HISTORIC GENERAL VIEW LOOKING NORTHWEST AT THE TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. HISTORIC GENERAL VIEW LOOKING NORTHWEST AT THE TEST STAND IN ITS CONFIGURATION FOR THE MERCURY-REDSTONE TESTING PROGRAM. NOTE THE MERCURY CAPSULE BEING ASSEMBLED IN THE FOREGROUND, ALSO NOTE THE LOAD CELL APPARATUS ON THE GROUND IN THE RIGHT OF THE PHOTOGRAPH. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  7. 44. HISTORIC VIEW LOOKING WEST AT THE TEST STAND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. HISTORIC VIEW LOOKING WEST AT THE TEST STAND AND ROCKET BEING PREPARED FOR TESTING. NOTE THE LOAD CELL APPARATUS ABOVE THE ROCKET AND THE EQUIPMENT PLATFORM TO THE LEFT OF THE LOAD CELL HAVE BEEN ENCLOSED FOR PROTECTION FROM THE CLIMATE. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  8. On the Convergence of Ionospheric Constrained Precise Point Positioning (IC-PPP) Based on Undifferential Uncombined Raw GNSS Observations

    PubMed Central

    Zhang, Hongping; Gao, Zhouzheng; Ge, Maorong; Niu, Xiaoji; Huang, Ling; Tu, Rui; Li, Xingxing

    2013-01-01

    Precise Point Positioning (PPP) has become a very hot topic in GNSS research and applications. However, it usually takes about several tens of minutes in order to obtain positions with better than 10 cm accuracy. This prevents PPP from being widely used in real-time kinematic positioning services, therefore, a large effort has been made to tackle the convergence problem. One of the recent approaches is the ionospheric delay constrained precise point positioning (IC-PPP) that uses the spatial and temporal characteristics of ionospheric delays and also delays from an a priori model. In this paper, the impact of the quality of ionospheric models on the convergence of IC-PPP is evaluated using the IGS global ionospheric map (GIM) updated every two hours and a regional satellite-specific correction model. Furthermore, the effect of the receiver differential code bias (DCB) is investigated by comparing the convergence time for IC-PPP with and without estimation of the DCB parameter. From the result of processing a large amount of data, on the one hand, the quality of the a priori ionosphere delays plays a very important role in IC-PPP convergence. Generally, regional dense GNSS networks can provide more precise ionosphere delays than GIM and can consequently reduce the convergence time. On the other hand, ignoring the receiver DCB may considerably extend its convergence, and the larger the DCB, the longer the convergence time. Estimating receiver DCB in IC-PPP is a proper way to overcome this problem. Therefore, current IC-PPP should be enhanced by estimating receiver DCB and employing regional satellite-specific ionospheric correction models in order to speed up its convergence for more practical applications. PMID:24253190

  9. On the convergence of ionospheric constrained precise point positioning (IC-PPP) based on undifferential uncombined raw GNSS observations.

    PubMed

    Zhang, Hongping; Gao, Zhouzheng; Ge, Maorong; Niu, Xiaoji; Huang, Ling; Tu, Rui; Li, Xingxing

    2013-11-18

    Precise Point Positioning (PPP) has become a very hot topic in GNSS research and applications. However, it usually takes about several tens of minutes in order to obtain positions with better than 10 cm accuracy. This prevents PPP from being widely used in real-time kinematic positioning services, therefore, a large effort has been made to tackle the convergence problem. One of the recent approaches is the ionospheric delay constrained precise point positioning (IC-PPP) that uses the spatial and temporal characteristics of ionospheric delays and also delays from an a priori model. In this paper, the impact of the quality of ionospheric models on the convergence of IC-PPP is evaluated using the IGS global ionospheric map (GIM) updated every two hours and a regional satellite-specific correction model. Furthermore, the effect of the receiver differential code bias (DCB) is investigated by comparing the convergence time for IC-PPP with and without estimation of the DCB parameter. From the result of processing a large amount of data, on the one hand, the quality of the a priori ionosphere delays plays a very important role in IC-PPP convergence. Generally, regional dense GNSS networks can provide more precise ionosphere delays than GIM and can consequently reduce the convergence time. On the other hand, ignoring the receiver DCB may considerably extend its convergence, and the larger the DCB, the longer the convergence time. Estimating receiver DCB in IC-PPP is a proper way to overcome this problem. Therefore, current IC-PPP should be enhanced by estimating receiver DCB and employing regional satellite-specific ionospheric correction models in order to speed up its convergence for more practical applications.

  10. Around Marshall

    NASA Image and Video Library

    1963-02-04

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photograph taken February 4, 1963, gives an impressive look at the Block House looking directly through the ever-growing four towers of the S-IC Test Stand.

  11. 6. "TEST STAND NO. 13, RETAINING WALLS & APRON, SECTIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. "TEST STAND NO. 1-3, RETAINING WALLS & APRON, SECTIONS & ELEVATIONS." Specifications No. OC11-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/20, Rev. B. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. B; Date: 26 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  12. 11. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/15, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  13. 9. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. ENG 04-35350-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/13. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, no change; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  14. 10. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/14, Rev. B. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. B; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  15. 12. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/16, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 26 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  16. 14. "TEST STANDS NOS. 11, 13, & 15; MISCELLANEOUS DETAILS." ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. "TEST STANDS NOS. 1-1, 1-3, & 1-5; MISCELLANEOUS DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/22, Rev. D. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. D, no change; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  17. Design of hybrid optical delay line for automotive radar test system

    NASA Astrophysics Data System (ADS)

    Son, Byung-Hee; Kim, Kwang-Jin; Li, Ye; Park, Chang-In; Choi, Young-Wan

    2015-03-01

    In this paper, hybrid optical delay line (HODL) which is demanded on automotive radar test system (RTS) is proposed and demonstrated. HODL is composed with coaxial cable in short delay time (< 32 nsec) and optical fiber in long delay time (>= 32 nsec) which are considering the volume, loss and frequency characteristics. Also, the optical transceiver that has the bandwidth of 1 GHz is designed for frequency modulated continuous wave (FMCW). Experimental results show that the S21 is +/- 0.5 dB in the optical transceiver and +/- 1.7 dB in the whole system at 3.7 GHz ~ 4.7 GHz. The resolution of delay time is 1 ns and the delay flatness is +/- 0.23 ns.

  18. Variable Delay Testing Using ONE

    NASA Technical Reports Server (NTRS)

    Ishac, Joseph

    2002-01-01

    This paper investigates the effect of long and changing propagation delays on the performance of TCP file transfers. Tests are performed with machines that emulate communication from a low/medium-earth satellite to Earth by way of a geosynchronous satellite. As a result of these tests, we find that TCP is fairly robust to varying delays given a high enough TCP timer granularity. However, performance degrades noticeably for larger file transfers when a finer timer granularity is used. Such results have also been observed in previous simulations by other researchers, and thus, this work serves as an extension of those results.

  19. Around Marshall

    NASA Image and Video Library

    1963-09-05

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. In the center portion of this photograph, taken September 5, 1963, the spherical hydrogen storage tanks are being constructed. One of the massive tower legs of the S-IC test stand is visible to the far right.

  20. Credit BG. View looking west down into Test Stand "D" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looking west down into Test Stand "D" vertical vacuum cell with top removed. Access to cell is normally through large round port seen in view. Piping and cradling toward bottom of cell was last used in tests of Viking space probe engines - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  1. 5. FLAME DEFLECTOR, COMPLETE X15 VEHICLE TEST STAND. Looking east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. FLAME DEFLECTOR, COMPLETE X-15 VEHICLE TEST STAND. Looking east. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  2. 3. COMPLETE X15 VEHICLE TEST STAND, LOCATED IN SOUTHEAST ¼ ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. COMPLETE X-15 VEHICLE TEST STAND, LOCATED IN SOUTHEAST ¼ OF X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  3. 10. OBSERVATION POST NO. 3, WEST OF TEST STAND 1A. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. OBSERVATION POST NO. 3, WEST OF TEST STAND 1-A. SOUTH SIDE AND EAST FRONT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  4. 13. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/18, Rev. D. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. D, no change; Date: 18 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  5. 15. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; PLAN & DETAILS." Specifications No. ENG 04-353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/34, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. A, no change; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  6. 16. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; ELEVATIONS AND SECTIONS." Specifications No. ENG 04353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/35, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. A; Date: 29 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  7. Ares Launch Vehicles Development Awakens Historic Test Stands at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Burt, Richard K.

    2008-01-01

    This paper chronicles the rebirth of two national rocket testing assets located at NASA's Marshall Space Flight Center: the Dynamic Test Stand (also known as the Ground Vibration Test Stand) and the Static Test Stand (also known as the Main Propulsion Test Stand). It will touch on the historical significance of these special facilities, while introducing the requirements driving modifications for testing a new generation space transportation system, which is set to come on line after the Space Shuttle is retired in 2010. In many ways, America's journey to explore the Moon begins at the Marshall Center, which is developing the Ares I crew launch vehicle and the Ares V cargo launch vehicle, along with managing the Lunar Precursor Robotic Program and leading the Lunar Lander descent stage work, among other Constellation Program assignments. An important component of this work is housed in Marshall's Engineering Directorate, which manages more than 40 facilities capable of a full spectrum of rocket and space transportation technology testing - from small components to full-up engine systems. The engineers and technicians who operate these test facilities have more than a thousand years of combined experience in this highly specialized field. Marshall has one of the few government test groups in the United States with responsibility for the overall performance of a test program from conception to completion. The Test Laboratory has facilities dating back to the early 1960s, when the test stands needed for the Apollo Program and other scientific endeavors were commissioned and built along the Marshall Center's southern boundary, with logistics access by air, railroad, and barge or boat on the Tennessee River. NASA and its industry partners are designing and developing a new human-rated system based on the requirements for safe, reliable, and cost-effective transportation solutions. Given below are summaries of the Dynamic Test Stand and the Static Test Stand capabilities

  8. 39. HISTORIC VIEW LOOKING WEST AT THE TEST STAND WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. HISTORIC VIEW LOOKING WEST AT THE TEST STAND WITH THE COLD CALIBRATION TOWER CONSTRUCTED TO THE LEFT OF THE ROCKET AND AN ACCESS PLATFORM BUILT TO REACH THE TOP OF THE ROCKET MORE EASILY. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  9. 8. "TEST STAND, ARCHITECTURAL, FLOOR PLANS AND SCHEDULES." Specifications No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. "TEST STAND, ARCHITECTURAL, FLOOR PLANS AND SCHEDULES." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 22 of 148; file no. 1320/73. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  10. Advanced Transport Delay Compensation Algorithms: Results of Delay Measurement and Piloted Performance Tests

    NASA Technical Reports Server (NTRS)

    Guo, Liwen; Cardullo, Frank M.; Kelly, Lon C.

    2007-01-01

    This report summarizes the results of delay measurement and piloted performance tests that were conducted to assess the effectiveness of the adaptive compensator and the state space compensator for alleviating the phase distortion of transport delay in the visual system in the VMS at the NASA Langley Research Center. Piloted simulation tests were conducted to assess the effectiveness of two novel compensators in comparison to the McFarland predictor and the baseline system with no compensation. Thirteen pilots with heterogeneous flight experience executed straight-in and offset approaches, at various delay configurations, on a flight simulator where different predictors were applied to compensate for transport delay. The glideslope and touchdown errors, power spectral density of the pilot control inputs, NASA Task Load Index, and Cooper-Harper rating of the handling qualities were employed for the analyses. The overall analyses show that the adaptive predictor results in slightly poorer compensation for short added delay (up to 48 ms) and better compensation for long added delay (up to 192 ms) than the McFarland compensator. The analyses also show that the state space predictor is fairly superior for short delay and significantly superior for long delay than the McFarland compensator.

  11. Diagnosing Postural Tachycardia Syndrome: Comparison of Tilt Test versus Standing Hemodynamics

    PubMed Central

    Plash, Walker B; Diedrich, André; Biaggioni, Italo; Garland, Emily M; Paranjape, Sachin Y; Black, Bonnie K; Dupont, William D; Raj, Satish R

    2012-01-01

    Postural tachycardia syndrome (POTS) is characterized by increased heart rate (ΔHR) of ≥30 bpm with symptoms related to upright posture. Active stand (STAND) and passive head-up tilt (TILT) produce different physiological responses. We hypothesized these different responses would affect the ability of individuals to achieve the POTS HR increase criterion. Patients with POTS (n=15) and healthy controls (n=15) underwent 30 min of TILT and STAND testing. ΔHR values were analyzed at 5 min intervals. Receiver Operating Characteristics analysis was performed to determine optimal cut point values of ΔHR for both TILT and STAND. TILT produced larger ΔHR than STAND for all 5 min intervals from 5 min (38±3 bpm vs. 33±3 bpm; P=0.03) to 30 min (51±3 bpm vs. 38±3 bpm; P<0.001). Sensitivity (Sn) of the 30 bpm criterion was similar for all tests (TILT-10=93%, STAND-10=87%, TILT30=100%, and STAND30=93%). Specificity (Sp) of the 30 bpm criterion was less at both 10 and 30 min for TILT (TILT10=40%, TILT30=20%) than STAND (STAND10=67%, STAND30=53%). The optimal ΔHR to discriminate POTS at 10 min were 38 bpm (TILT) and 29 bpm (STAND), and at 30 min were 47 bpm (TILT) and 34 bpm (STAND). Orthostatic tachycardia was greater for TILT (with lower specificity for POTS diagnosis) than STAND at 10 and 30 min. The 30 bpm ΔHR criterion is not suitable for 30 min TILT. Diagnosis of POTS should consider orthostatic intolerance criteria and not be based solely on orthostatic tachycardia regardless of test used. PMID:22931296

  12. 6. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. Looking south from north wall of terminal room. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  13. Shake test results of the MDHC test stand in the 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Lau, Benton H.; Peterson, Randall

    1994-01-01

    A shake test was conducted to determine the modal properties of the MDHC (McDonnell Douglas Helicopter Company) test stand installed in the 40- by 80- Foot Wind Tunnel at Ames Research Center. The shake test was conducted for three wind-tunnel balance configurations with and without balance dampers, and with the snubber engagement to lock the balance frame. A hydraulic shaker was used to apply random excitation at the rotor hub in the longitudinal and lateral directions. A GenRad 2515 computer-aided test system computed the frequency response functions at the rotor hub and support struts. From these response functions, the modal properties, including the natural frequency, damping ratio, and mode shape were calculated. The critical modes with low damping ratios are identified as the test-stand second longitudinal mode for the dampers-off configuration, the test-stand yaw mode for the dampers-on configuration, and the test stand first longitudinal mode for the balance-frame locked configuration.

  14. 49 CFR 655.5 - Stand-down waivers for drug testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...

  15. 49 CFR 655.5 - Stand-down waivers for drug testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...

  16. 49 CFR 655.5 - Stand-down waivers for drug testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...

  17. 49 CFR 655.5 - Stand-down waivers for drug testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...

  18. 49 CFR 655.5 - Stand-down waivers for drug testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...

  19. 4. COMPLETE X15 VEHICLE TEST STAND, DETAIL OF THRUST MOUNTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. COMPLETE X-15 VEHICLE TEST STAND, DETAIL OF THRUST MOUNTING STRUCTURE AT ENGINE END OF PLANE. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  20. 7. BUILDING 604F, INTERIOR OF BULL PEN SHOWING TESTING STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. BUILDING 604-F, INTERIOR OF BULL PEN SHOWING TESTING STAND AND HEAVY WOOD LINING ON CONCRETE WALLS. STEEL PLATE ABOVE TEST STAND DEFLECTS SHRAPNEL, SCREEN FURTHER HELPS TO CONTAIN PARTICLES. ONLY SMALL EXPLOSIVES WERE TESTED HERE (GRENADES, MINES, BOMB FUZES, ETC.). - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ

  1. Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan

    2010-01-01

    The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.

  2. Tuberculosis diagnostic delay and therapy outcomes of non-national migrants in Tel Aviv, 1998-2008.

    PubMed

    Mor, Z; Kolb, H; Lidji, M; Migliori, Gb; Leventhal, A

    2013-03-21

    Non-national migrants have limited access to medical therapy. This study compares diagnostic delay and treatment outcomes of non-insured non-national migrants (NINNM) with insured Israeli citizens (IC) in the Tel Aviv tuberculosis (TB) clinic between 1998 and 2008. Patient delay was the time from symptoms onset to doctor's visit, while system delay was measured from doctor visit to anti-TB therapy administration. We randomly sampled 222 NINNM and 265 IC. NINNM were younger than IC, had lower male to female ratio and fewer smoked. They had less drug/alcohol abuse, more cavitations on chest radiography, longer patient and shorter system delay. Mean patient and system delays of all patients were 25 ± 14 and 79 ± 42 days, respectively. In multivariate analysis, being NINNM, asymptomatic or smoking predicted longer patient delay, while being asymptomatic or having additional co-morbidity predicted longer system delay. Treatment success in sputum smear-positive pulmonary TB NINNM was 81% and 95.7% in IC (p=0.01). Treatment success was not associated with patient or system delay. In multivariate analysis, work security and treatment adherence predicted treatment success. NINNM had longer patient delay and worse therapy outcome, while IC had longer system delay. Both delays should be reduced. NINNM should be informed that TB therapy is free and unlinked with deportation.

  3. Long-term prediction test procedure for most ICs, based on linear response theory

    NASA Technical Reports Server (NTRS)

    Litovchenko, V.; Ivakhnenko, I.

    1991-01-01

    Experimentally, thermal annealing is known to be a factor which enables a number of different integrated circuits (IC's) to recover their operating characteristics after suffering radiation damage in the space radiation environment; thus, decreasing and limiting long term cumulative total-dose effects. This annealing is also known to be accelerated at elevated temperatures both during and after irradiation. Linear response theory (LRT) was applied, and a linear response function (LRF) to predict the radiation/annealing response of sensitive parameters of IC's for long term (several months or years) exposure to the space radiation environment were constructed. Compressing the annealing process from several years in orbit to just a few hours or days in the laboratory is achieved by subjecting the IC to elevated temperatures or by increasing the typical spaceflight dose rate by several orders of magnitude for simultaneous radiation/annealing only. The accomplishments are as follows: (1) the test procedure to make predictions of the radiation response was developed; (2) the calculation of the shift in the threshold potential due to the charge distribution in the oxide was written; (3) electron tunneling processes from the bulk Si to the oxide region in an MOS IC were estimated; (4) in order to connect the experimental annealing data to the theoretical model, constants of the model of the basic annealing process were established; (5) experimental data obtained at elevated temperatures were analyzed; (6) time compression and reliability of predictions for the long term region were shown; (7) a method to compress test time and to make predictions of response for the nonlinear region was proposed; and (8) nonlinearity of the LRF with respect to log(t) was calculated theoretically from a model.

  4. Around Marshall

    NASA Image and Video Library

    1963-10-22

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of October 22, 1963. Spherical liquid hydrogen tanks can be seen to the left. Just to the lower front of those are the cylindrical liquid oxygen (LOX) tanks.

  5. Around Marshall

    NASA Image and Video Library

    1961-06-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 13, 1961, progress is being made with the excavation of the S-IC test stand site. During the digging, a natural spring was disturbed which caused a constant flooding problem. Pumps were used to remove the water all through the construction process and the site is still pumped today.

  6. Around Marshall

    NASA Image and Video Library

    1963-03-29

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In the early stages of excavation, a natural spring was disturbed that caused a water problem which required constant pumping from the site and is even pumped to this day. Behind this reservoir of pumped water is the S-IC test stand boasting its ever-growing four towers as of March 29, 1963.

  7. RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND 1-B. THIS TANK FARM SERVES BOTH TEST STANDS 1-A AND 1-B - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Combined Fuel Storage Tank Farm, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  8. 7. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. Looking north from north end of the cable tunnel leading toward Control Center. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  9. 5. "TEST STAND 13, CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. "TEST STAND 1-3, CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/17, Rev. A. Stamped: AS BUILT; NO CHANGES. Date of Revision A: 11/1/50. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  10. 12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." Specifications No. ENG-04-353-55-72; Drawing No. 60-09-12; sheet 41 of 148; file no. 1320/92, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  11. 11. "INSTRUMENTATION AND CONTROL SYSTEMS, EQUIPMENT LOCATION, TEST STAND TERMINAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. "INSTRUMENTATION AND CONTROL SYSTEMS, EQUIPMENT LOCATION, TEST STAND TERMINAL ROOM, PLANS AND SECTION." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 106 of 148; file no. 1321/57. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  12. 27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL FRAMING ELEVATIONS." Specifications No. ENG-04353-55-72; Drawing No. 60-09-12; sheet 27 of 148; file no. 1320/78. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, Rev. B; date: 15 April 1957. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  13. 9. "TEST STAND; STRUCTURAL; CABLE TUNNEL, PLAN, SECTIONS, DETAILS." Specifications ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. "TEST STAND; STRUCTURAL; CABLE TUNNEL, PLAN, SECTIONS, DETAILS." Specifications No. OC1-55-72-(Rev.); Drawing No. 60-09-12; sheet 43 of 148; file no. AF 1320/94, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  14. Integrated System Health Management: Pilot Operational Implementation in a Rocket Engine Test Stand

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Schmalzel, John L.; Morris, Jonathan A.; Turowski, Mark P.; Franzl, Richard

    2010-01-01

    This paper describes a credible implementation of integrated system health management (ISHM) capability, as a pilot operational system. Important core elements that make possible fielding and evolution of ISHM capability have been validated in a rocket engine test stand, encompassing all phases of operation: stand-by, pre-test, test, and post-test. The core elements include an architecture (hardware/software) for ISHM, gateways for streaming real-time data from the data acquisition system into the ISHM system, automated configuration management employing transducer electronic data sheets (TEDS?s) adhering to the IEEE 1451.4 Standard for Smart Sensors and Actuators, broadcasting and capture of sensor measurements and health information adhering to the IEEE 1451.1 Standard for Smart Sensors and Actuators, user interfaces for management of redlines/bluelines, and establishment of a health assessment database system (HADS) and browser for extensive post-test analysis. The ISHM system was installed in the Test Control Room, where test operators were exposed to the capability. All functionalities of the pilot implementation were validated during testing and in post-test data streaming through the ISHM system. The implementation enabled significant improvements in awareness about the status of the test stand, and events and their causes/consequences. The architecture and software elements embody a systems engineering, knowledge-based approach; in conjunction with object-oriented environments. These qualities are permitting systematic augmentation of the capability and scaling to encompass other subsystems.

  15. Around Marshall

    NASA Image and Video Library

    1963-08-12

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the east was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand’s 1900 ton flame deflector at the rate of 320,000 gallons per minute. In this photo, taken August 12, 1963, the S-IC stand has received some of its internal components. Directly in the center is the

  16. PPT Thrust Stand

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.

    1995-01-01

    A torsional-type thrust stand has been designed and built to test Pulsed Plasma Thrusters (PPT's) in both single shot and repetitive operating modes. Using this stand, momentum per pulse was determined strictly as a function of thrust stand deflection, spring constant, and natural frequency. No empirical corrections were required. The accuracy of the method was verified using a swinging impact pendulum. Momentum transfer data between the thrust stand and the pendulum were consistent to within 1%. Following initial calibrations, the stand was used to test a Lincoln Experimental Satellite (LES-8/9) thruster. The LES-8/9 system had a mass of approximately 7.5 kg, with a nominal thrust to weight ratio of 1.3 x 10(exp -5). A total of 34 single shot thruster pulses were individually measured. The average impulse bit per pulse was 266 microN-s, which was slightly less than the value of 300 microN-s published in previous reports on this device. Repetitive pulse measurements were performed similar to ordinary steady-state thrust measurements. The thruster was operated for 30 minutes at a repetition rate of 132 pulses per minute and yielded an average thrust of 573 microN. Using average thrust, the average impulse bit per pulse was estimated to be 260 microN-s, which was in agreement with the single shot data. Zero drift during the repetitive pulse test was found to be approximately 1% of the measured thrust.

  17. Watch 60-Seconds of Major SLS Hardware Being Moved and Put in the Test Stand at NASA Marshall

    NASA Image and Video Library

    2016-10-13

    A test version of the launch vehicle stage adapter (LVSA) for NASA’s new rocket, the Space Launch System, is moved to a 65-foot-tall test stand at the agency’s Marshall Space Flight Center in Huntsville, Alabama. The test version LVSA will be stacked with other test pieces of the upper part of the SLS rocket and pushed, pulled and twisted as part of an upcoming test series to ensure each structure can withstand the incredible stresses of launch. The LVSA joins the core stage simulator, which was loaded into the test stand Sept. 21. The other three qualification articles and the Orion simulator will complete the stack later this fall. SLS will be the world’s most powerful rocket, and with the Orion spacecraft, take astronauts to deep-space destinations, including the Journey to Mars. More information on the upcoming test series can be found here: http://go.nasa.gov/2dS8yXB

  18. Expectancy of an open-book test decreases performance on a delayed closed-book test.

    PubMed

    Agarwal, Pooja K; Roediger, Henry L

    2011-11-01

    Two experiments examined the influence of practice with, and the expectancy of, open-book tests (students viewed studied material while taking the test) versus closed-book tests (students completed the test without viewing the studied material) on delayed retention and transfer. Using GRE materials specifically designed for open-book testing, participants studied passages and then took initial open- or closed-book tests. Open-book testing led to better initial performance than closed-book testing, but on a delayed criterial (closed-book) test both types of testing produced similar retention after a two-day delay in Experiment 1. In Experiment 2 participants were informed in advance about the type of delayed criterial test to expect (open- or closed-book). Expecting an open-book test (relative to a closed-book test) decreased participants' time spent studying and their delayed test performance on closed-book comprehension and transfer tests, demonstrating that test expectancy can influence long-term learning. Expectancy of open-book tests may impair long-term retention and transfer compared to closed-book tests, despite superior initial performance on open-book tests and students' preference for open-book tests.

  19. SEM probe of IC radiation sensitivity

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Stanley, A. G.

    1979-01-01

    Scanning Electron Microscope (SEM) used to irradiate single integrated circuit (IC) subcomponent to test for radiation sensitivity can localize area of IC less than .03 by .03 mm for determination of exact location of radiation sensitive section.

  20. Dynamical Competition of IC-Industry Clustering from Taiwan to China

    NASA Astrophysics Data System (ADS)

    Tsai, Bi-Huei; Tsai, Kuo-Hui

    2009-08-01

    Most studies employ qualitative approach to explore the industrial clusters; however, few research has objectively quantified the evolutions of industry clustering. The purpose of this paper is to quantitatively analyze clustering among IC design, IC manufacturing as well as IC packaging and testing industries by using the foreign direct investment (FDI) data. The Lotka-Volterra system equations are first adopted here to capture the competition or cooperation among such three industries, thus explaining their clustering inclinations. The results indicate that the evolution of FDI into China for IC design industry significantly inspire the subsequent FDI of IC manufacturing as well as IC packaging and testing industries. Since IC design industry lie in the upstream stage of IC production, the middle-stream IC manufacturing and downstream IC packing and testing enterprises tend to cluster together with IC design firms, in order to sustain a steady business. Finally, Taiwan IC industry's FDI amount into China is predicted to cumulatively increase, which supports the industrial clustering tendency for Taiwan IC industry. Particularly, the FDI prediction of Lotka-Volterra model performs superior to that of the conventional Bass model after the forecast accuracy of these two models are compared. The prediction ability is dramatically improved as the industrial mutualism among each IC production stage is taken into account.

  1. 40. HISTORIC VIEW LOOKING WEST AT THE TEST STAND. NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. HISTORIC VIEW LOOKING WEST AT THE TEST STAND. NOTE THE LOAD CELL APPARATUS LOCATED ABOVE THE ROCKET. THE SPACE BETWEEN THE BOTTOM OF THE LOAD CELL APPARATUS AND THE TOP OF THE ROCKET IS THE DIFFERENCE IN SIZE BETWEEN THE REDSTONE ROCKET AND ITS DECEDENT THE JUPITER C ROCKET. THE GAP IS FILLED WITH A SPACER WHEN THEY TEST A REDSTONE ROCKET. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  2. Steel erected at A-3 Test Stand

    NASA Image and Video Library

    2008-10-24

    Fabricated steel began arriving by truck Oct. 24 for construction of the A-3 Test Stand that will be used to test the engine for the nation's next generation of moon rockets. Within days workers from Lafayette Steel Erector Inc. began assembling the 16 steel stages needed on the foundation and footings poured in the previous year.

  3. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Fabricated steel began arriving by truck Oct. 24 for construction of the A-3 Test Stand that will be used to test the engine for the nation's next generation of moon rockets. Within days workers from Lafayette Steel Erector Inc. began assembling the 16 steel stages needed on the foundation and footings poured in the previous year.

  4. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  5. Steel erected at A-3 Test Stand

    NASA Image and Video Library

    2008-10-29

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1965-04-16

    This photograph depicts a dramatic view of the first test firing of all five F-1 engines for the Saturn V S-IC stage at the Marshall Space Flight Center. The testing lasted a full duration of 6.5 seconds. It also marked the first test performed in the new S-IC static test stand and the first test using the new control blockhouse. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust. Required to hold down the brute force of a 7,500,000-pound thrust, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and cement, planted down to bedrock 40 feet below ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the up position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. When the Saturn V S-IC first stage was placed upright in the stand , the five F-1 engine nozzles pointed downward on a 1,900 ton, water-cooled deflector. To prevent melting damage, water was sprayed through small holes in the deflector at the rate 320,000 gallons per minute.

  7. TMS installation at A-1 Test Stand

    NASA Image and Video Library

    2010-03-03

    A new thrust measurement system is lifted onto the A-1 Test Stand deck at NASA's John C. Stennis Space Center in preparation for its installation. The new system is a state-of-the-art upgrade for the testing structure, which is being prepared for testing of next-generation rocket engines. The system was fabricated by Thrust Measurement Systems in Illinois at a cost of about $3.5 million.

  8. A Longitudinal Investigation of Conflict and Delay Inhibitory Control in Toddlers and Preschoolers

    ERIC Educational Resources Information Center

    Joyce, Amanda W.; Kraybill, Jessica H.; Chen, Nan; Cuevas, Kimberly; Deater-Deckard, Kirby; Bell, Martha Ann

    2016-01-01

    Research Findings: A total of 81 children participated in a longitudinal investigation of inhibitory control (IC) from 2 to 4 years of age. Child IC was measured via maternal report and laboratory measures under conditions of conflict and delay. Performance on delay IC tasks at 3 years was related to performance on these same tasks at 2 and…

  9. The Short-Term Effects of Lying, Sitting and Standing on Energy Expenditure in Women

    PubMed Central

    POPP, COLLIN J.; BRIDGES, WILLIAM C.; JESCH, ELLIOT D.

    2018-01-01

    The deleterious health effects of too much sitting have been associated with an increased risk for overweight and obesity. Replacing sitting with standing is the proposed intervention to increase daily energy expenditure (EE). The purpose of this study was to determine the short-term effects of lying, sitting, and standing postures on EE, and determine the magnitude of the effect each posture has on EE using indirect calorimetry (IC). Twenty-eight healthy females performed three separate positions (lying, sitting, standing) in random order. Inspired and expired gases were collected for 45-minutes (15 minutes for each position) using breath-by-breath indirect calorimetry. Oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured to estimate EE. Statistical analyses used repeat measures ANOVA to analyze all variables and post hoc t-tests. Based on the ANOVA the individual, time period and order term did not result in a statistically significant difference. Lying EE and sitting EE were not different from each other (P = 0.56). However, standing EE (kcal/min) was 9.0 % greater than lying EE (kcal/min) (P = 0.003), and 7.1% greater than sitting EE (kcal/min) (P = 0.02). The energetic cost of standing was higher compared to lying and sitting. While this is statistically significant, the magnitude of the effect of standing when compared to sitting was small (Cohen’s d = 0.31). Short-term standing does not offer an energetic advantage when compared to sitting.

  10. Redstone Test Stand Accepted Into National Register of Historical Places

    NASA Technical Reports Server (NTRS)

    1976-01-01

    On October 02, 1976, Marshall Space Flight Center's (MSFC) Redstone test stand was received into the National Registry of Historical Places. Photographed in front of the Redstone test stand are Dr. William R. Lucas, MSFC Center Director from June 15, 1974 until July 3, 1986, as he is accepting a certificate of registration from Madison County Commission Chairman James Record, and Huntsville architect Harvie Jones.

  11. 26. "TEST STAND, STRUCTURAL, FOUNDATION PLAN." Specifications No. ENG043535572; Drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. "TEST STAND, STRUCTURAL, FOUNDATION PLAN." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 25 of 148; file no. 1320/76. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  12. 4. "TEST STAND NO. 13, CONCRETE STRUCTURAL PLAN AND ELEVATION." ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. "TEST STAND NO. 1-3, CONCRETE STRUCTURAL PLAN AND ELEVATION." Specifications No. OC11-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/12 REV. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. E; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  13. iPhone Sensors in Tracking Outcome Variables of the 30-Second Chair Stand Test and Stair Climb Test to Evaluate Disability: Cross-Sectional Pilot Study

    PubMed Central

    Samaan, Michael A; Schultz, Brooke; Popovic, Tijana; Souza, Richard B; Majumdar, Sharmila

    2017-01-01

    Background Performance tests are important to characterize patient disabilities and functional changes. The Osteoarthritis Research Society International and others recommend the 30-second Chair Stand Test and Stair Climb Test, among others, as core tests that capture two distinct types of disability during activities of daily living. However, these two tests are limited by current protocols of testing in clinics. There is a need for an alternative that allows remote testing of functional capabilities during these tests in the osteoarthritis patient population. Objective Objectives are to (1) develop an app for testing the functionality of an iPhone’s accelerometer and gravity sensor and (2) conduct a pilot study objectively evaluating the criterion validity and test-retest reliability of outcome variables obtained from these sensors during the 30-second Chair Stand Test and Stair Climb Test. Methods An iOS app was developed with data collection capabilities from the built-in iPhone accelerometer and gravity sensor tools and linked to Google Firebase. A total of 24 subjects performed the 30-second Chair Stand Test with an iPhone accelerometer collecting data and an external rater manually counting sit-to-stand repetitions. A total of 21 subjects performed the Stair Climb Test with an iPhone gravity sensor turned on and an external rater timing the duration of the test on a stopwatch. App data from Firebase were converted into graphical data and exported into MATLAB for data filtering. Multiple iterations of a data processing algorithm were used to increase robustness and accuracy. MATLAB-generated outcome variables were compared to the manually determined outcome variables of each test. Pearson’s correlation coefficients (PCCs), Bland-Altman plots, intraclass correlation coefficients (ICCs), standard errors of measurement, and repeatability coefficients were generated to evaluate criterion validity, agreement, and test-retest reliability of iPhone sensor data

  14. Around Marshall

    NASA Image and Video Library

    1961-08-14

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 14, 1961.

  15. Around Marshall

    NASA Image and Video Library

    1961-08-18

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 18, 1961.

  16. Around Marshall

    NASA Image and Video Library

    1961-07-21

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 21, 1961, a worker can be seen inside the test stand work area with a jack hammer.

  17. Around Marshall

    NASA Image and Video Library

    1963-06-24

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken June 24, 1963, the four tower legs of the test stand can be seen at their maximum height.

  18. Around Marshall

    NASA Image and Video Library

    1961-07-31

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 31, 1961, work is continued in the clearing of the test stand site.

  19. Around Marshall

    NASA Image and Video Library

    1961-08-11

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 11, 1961.

  20. Around Marshall

    NASA Image and Video Library

    1961-07-21

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 21, 1961, workers can be seen inside the test stand work area clearing the site.

  1. Around Marshall

    NASA Image and Video Library

    1961-06-30

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this early construction photo, taken June 30, 1961, workers are involved in the survey and site preparation for the test stand.

  2. TARA MARSHALL AND MIKE NICHOLS AT TEST STAND 4693

    NASA Image and Video Library

    2016-12-14

    TARA MARSHALL, LEFT, A MARSHALL ENGINEER, TALKS ABOUT THE INSTALLATION OF A PRESSURIZATION CONTROL PANEL AT TEST STAND 4693 WITH MIKE NICHOLS, LEAD TEST ENGINEER FOR THE SPACE LAUNCH SYSTEM LIQUID HYDROGEN TANK STRUCTURAL TEST ARTICLE.

  3. Vital Signs: Human Immunodeficiency Virus Testing and Diagnosis Delays — United States

    PubMed Central

    Dailey, Andre F.; Hoots, Brooke E.; Song, Ruiguang; Hayes, Demorah; Fulton, Paul; Prejean, Joseph; Hernandez, Angela L.; Koenig, Linda J.; Valleroy, Linda A.

    2017-01-01

    Background Persons unaware of their human immunodeficiency virus (HIV) infection account for approximately 40% of ongoing transmissions in the United States. Persons are unaware of their infection because of delayed HIV diagnoses that represent substantial missed opportunities to improve health outcomes and prevent HIV transmission. Methods Data from CDC’s National HIV Surveillance System were used to estimate, among persons with HIV infection diagnosed in 2015, the median interval (and range) from infection to diagnosis (diagnosis delay), based on the first CD4 test after HIV diagnosis and a CD4 depletion model indicating disease progression and, among persons living with HIV in 2015, the percentage with undiagnosed infection. Data from CDC’s National HIV Behavioral Surveillance were analyzed to determine the percentage of persons at increased risk for HIV infection who had tested in the past 12 months and who had missed opportunities for testing. Results An estimated 15% of persons living with HIV in 2015 were unaware of their infection. Among the 39,720 persons with HIV infection diagnosed in 2015, the estimated median diagnosis delay was 3.0 years (interquartile range = 0.7–7.8 years); diagnosis delay varied by race/ethnicity (from 2.2 years among whites to 4.2 years among Asians) and transmission category (from 2.0 years among females who inject drugs to 4.9 years among heterosexual males). Among persons interviewed through National HIV Behavioral Surveillance, 71% of men who have sex with men, 58% of persons who inject drugs, and 41% of heterosexual persons at increased risk for HIV infection reported testing in the past 12 months. In each risk group, at least two thirds of persons who did not have an HIV test had seen a health care provider in the past year. Conclusions Delayed HIV diagnoses continue to be substantial for some population groups and prevent early entry to care to improve health outcomes and reduce HIV transmission to others

  4. Around Marshall

    NASA Image and Video Library

    1962-03-31

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September 1961 as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction about to resume, portable, floating pump stations were placed in the site to drain the flood waters caused by a disturbed natural spring months prior during excavation. In this March 31, 1962 photo, the foundation walls can once again be seen.

  5. Around Marshall

    NASA Image and Video Library

    1962-03-20

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction about to resume, portable floating pump stations were placed in the site, as seen in this March 20, 1962 photo, to drain the flood waters caused by a disturbed natural spring months prior during excavation.

  6. Around Marshall

    NASA Image and Video Library

    1962-10-26

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken October 26, 1962, depicts a view of the Block House tunnel opening.

  7. Around Marshall

    NASA Image and Video Library

    1962-08-17

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo taken August 17, 1962 depicts a back side view of the Block House.

  8. Around Marshall

    NASA Image and Video Library

    1962-11-15

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken November 15, 1962, depicts a view of the Block House.

  9. Around Marshall

    NASA Image and Video Library

    1962-01-23

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photo, taken January 23, 1962, shows the excavation of the Block House site.

  10. Around Marshall

    NASA Image and Video Library

    1962-06-13

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Construction of the tunnel is depicted in this photo taken June 13, 1962.

  11. Around Marshall

    NASA Image and Video Library

    1962-02-02

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photo, taken February 2, 1962, shows the excavation of the Block House site.

  12. Diagnosing postural tachycardia syndrome: comparison of tilt testing compared with standing haemodynamics.

    PubMed

    Plash, Walker B; Diedrich, André; Biaggioni, Italo; Garland, Emily M; Paranjape, Sachin Y; Black, Bonnie K; Dupont, William D; Raj, Satish R

    2013-01-01

    POTS (postural tachycardia syndrome) is characterized by an increased heart rate (ΔHR) of ≥30 bpm (beats/min) with symptoms related to upright posture. Active stand (STAND) and passive head-up tilt (TILT) produce different physiological responses. We hypothesized these different responses would affect the ability of individuals to achieve the POTS HR increase criterion. Patients with POTS (n=15) and healthy controls (n=15) underwent 30 min of tilt and stand testing. ΔHR values were analysed at 5 min intervals. ROC (receiver operating characteristic) analysis was performed to determine optimal cut point values of ΔHR for both tilt and stand. Tilt produced larger ΔHR than stand for all 5 min intervals from 5 min (38±3 bpm compared with 33±3 bpm; P=0.03) to 30 min (51±3 bpm compared with 38±3 bpm; P<0.001). Sn (sensitivity) of the 30 bpm criterion was similar for all tests (TILT10=93%, STAND10=87%, TILT30=100%, and STAND30=93%). Sp (specificity) of the 30 bpm criterion was less at both 10 and 30 min for tilt (TILT10=40%, TILT30=20%) than stand (STAND10=67%, STAND30=53%). The optimal ΔHR to discriminate POTS at 10 min were 38 bpm (TILT) and 29 bpm (STAND), and at 30 min were 47 bpm (TILT) and 34 bpm (STAND). Orthostatic tachycardia was greater for tilt (with lower Sp for POTS diagnosis) than stand at 10 and 30 min. The 30 bpm ΔHR criterion is not suitable for 30 min tilt. Diagnosis of POTS should consider orthostatic intolerance criteria and not be based solely on orthostatic tachycardia regardless of test used.

  13. Credit BG. West elevation of Test Stand "D" tower, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. West elevation of Test Stand "D" tower, with workshop on left, and tunnel entrance at right. Tower is accessed by exterior steel stairway; the vertical vacuum cell (Dv Cell) is obscured behind large square sunscreen. Below the sunscreen can be seen the end of the horizontal vacuum duct leading from the vacuum cell - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  14. 7. COMPLETE X15 VEHICLE TEST STAND AFTER AN ENGINE FIRE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. COMPLETE X-15 VEHICLE TEST STAND AFTER AN ENGINE FIRE OR EXPLOSION. Wreckage of engine is still fixed in its clamp; X-15 vehicle lies on the ground detached from engine. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  15. Around Marshall

    NASA Image and Video Library

    1963-01-14

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, depicts the progress of the stand as of January 14, 1963, with its four towers prominently rising.

  16. Why Do Rereading Lag Effects Depend on Test Delay?

    ERIC Educational Resources Information Center

    Rawson, Katherine A.

    2012-01-01

    In previous research, rereading after a long lag versus a short lag led to greater performance on delayed tests but not on immediate tests. The current study tested two accounts of why the effects of rereading lag depend on test delay. The "levels of representation" ("LOR") "hypothesis" states that the effects reflect…

  17. Around Marshall

    NASA Image and Video Library

    1961-09-29

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 29, 1961, shows the progress of the concrete walls for the stand’s foundation. Some of the walls have been poured and some of the concrete forms have been removed.

  18. Around Marshall

    NASA Image and Video Library

    1961-09-22

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 22, 1961, shows the progress of the concrete walls for the stand’s foundation. Some of the walls have been poured and some of the concrete forms have been removed.

  19. Large-scale generic test stand for testing of multiple configurations of air filters utilizing a range of particle size distributions

    NASA Astrophysics Data System (ADS)

    Giffin, Paxton K.; Parsons, Michael S.; Unz, Ronald J.; Waggoner, Charles A.

    2012-05-01

    The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m3/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.

  20. Redstone Test Stand Accepted Into National Register of Historical Places

    NASA Technical Reports Server (NTRS)

    1976-01-01

    On October 02, 1976, Marshall Space Flight Center's (MSFC) Redstone test stand was received into the National Registry of Historical Places. Photographed in front of the Redstone test stand along with their wives are (left to right), Madison County Commission Chairman James Record, Dr. William R. Lucas, MSFC Center Director from June 15, 1974 until July 3, 1986, (holding certificate), Ed, Buckbee, Space and Rocket Center Director; Harvie Jones, Huntsville Architect; Dick Smith; and Joe Jones.

  1. Around Marshall

    NASA Image and Video Library

    1962-10-08

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken October 8, 1962, depicts a front view of the Block House nearing completion.

  2. Test Anxiety and Academic Delay of Gratification

    ERIC Educational Resources Information Center

    Bembenutty, Hefer

    2009-01-01

    The present study examined the relationship between college students' willingness to delay gratification, motivation, self-regulation of learning, and their level of test anxiety (N = 364). Academic delay of gratification refers to students' postponement of immediately available opportunities to satisfy impulses in favor of pursuing academic…

  3. Application of the Life Safety Code to a Historic Test Stand

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Lemke, Paul R.; Lewis, William L.; Covell, Carol C.

    2011-01-01

    NASA has conducted a study to assess alternatives to refurbishing existing launch vehicle modal test facilities as opposed to developing new test facilities to meet the demands of a very fiscally constrained test and evaluation environment. The results of this study showed that Marshall Space Flight Center (MSFC) Test Stand (TS) 4550 could be made compliant, within reasonable cost and schedule impacts, if safety processes and operational limitations were put in place to meet the safety codes and concerns of the Fire Marshall. Trades were performed with key selection criteria to ensure that appropriate levels of occupant safety are incorporated into test facility design modifications. In preparation for the ground vibration tests that were to be performed on the Ares I launch vehicle, the Ares Flight and Integrated Test Office (FITO) organization evaluated the available test facility options, which included the existing mothballed structural dynamic TS4550 used by Apollo and Shuttle, alternative ground vibration test facilities at other locations, and construction of a new dynamic test stand. After an exhaustive assessment of the alternatives, the results favored modifying the TS4550 because it was the lowest cost option and presented the least schedule risk to the NASA Constellation Program for Ares Integrated Vehicle Ground Vibration Test (IVGVT). As the renovation design plans and drawings were being developed for TS4550, a safety concern was discovered the original design for the construction of the test stand, originally built for the Apollo Program and renovated for the Shuttle Program, was completed before NASA s adoption of the currently imposed safety and building codes per National Fire Protection Association Life Safety Code [NFPA 101] and International Building Codes. The initial FITO assessment of the design changes, required to make TS4550 compliant with current safety and building standards, identified a significant cost increase and schedule impact

  4. J-2 Engine ready to go into test stand

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Two technicians watch carefully as cables prepare to lift a J-2 engine into a test stand. The J-2 powered the second stage and the third stage of the Saturn V moon rocket. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  5. "Chair Stand Test" as Simple Tool for Sarcopenia Screening in Elderly Women.

    PubMed

    Pinheiro, P A; Carneiro, J A O; Coqueiro, R S; Pereira, R; Fernandes, M H

    2016-01-01

    To investigate the association between sarcopenia and "chair stand test" performance, and evaluate this test as a screening tool for sarcopenia in community-dwelling elderly women. Cross-sectional Survey. 173 female individuals, aged ≥ 60 years and living in the urban area of the municipality of Lafaiete Coutinho, Bahia's inland, Brazil. The association between sarcopenia (defined by muscle mass, strength and/or performance loss) and performance in the "chair stand test" was tested by binary logistic regression technique. The ROC curve parameters were used to evaluate the diagnostic power of the test in sarcopenia screening. The significance level was set at 5 %. The model showed that the time spent for the "chair stand test" was positively associated (OR = 1.08; 95% CI = 1.01 - 1.16, p = 0.024) to sarcopenia, indicating that, for each 1 second increment in the test performance, the sarcopenia's probability increased by 8% in elderly women. The cut-off point that showed the best balance between sensitivity and specificity was 13 seconds. The performance of "chair stand test" showed predictive ability for sarcopenia, being an effective and simple screening tool for sarcopenia in elderly women. This test could be used for screening sarcopenic elderly women, allowing early interventions.

  6. Around Marshall

    NASA Image and Video Library

    1961-09-15

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 15, 1961, shows the installation of the reinforcing steel prior to the pouring of the concrete foundation walls.

  7. Around Marshall

    NASA Image and Video Library

    1961-09-07

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the forms for the concrete foundation walls as of September 7, 1961.

  8. Around Marshall

    NASA Image and Video Library

    1963-09-25

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand’s 1900 ton flame deflector at the rate of 320,000 gallons per minute. This photograph, taken September 25, 1963, depicts the construction progress of the Pump House and massive round water

  9. A3 TEST STAND DEVELOPMENT AND CONSTRUCTION

    NASA Technical Reports Server (NTRS)

    2008-01-01

    THIS IMAGE DOCUMENTS THE DEVELOPMENT AND CONSTRUCTION OF THE A3 TEST STAND IN SUPPORT OF THE ARES/CLV UPPER STAGE ENGINE DEVELOPMENT AT STENNIS SPACE CENTER, MISSIPPI IN SUPPORT OF THE DEVELOPMENT OF THE CONSTELLATION/ARES PROJECT. THIS IMAGE IS EXTRACTED FROM A HIGH DEFINITION VIDEO FILE AND IS THE HIGHEST RESOLUTION AVAILABLE

  10. Around Marshall

    NASA Image and Video Library

    1962-07-03

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo taken July 3, 1962 depicts the Block House with a portion of its concrete walls poured and exposed while many are still in the forms stage.

  11. Around Marshall

    NASA Image and Video Library

    1961-08-05

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photograph taken on August 5th, 1961, a back hoe is nearly submerged in water in the test stand site. During the initial digging, the disturbance of a natural spring contributed to constant water problems during the construction process. It was necessary to pump the water from the site on a daily basis and is still pumped from the site today.

  12. Around Marshall

    NASA Image and Video Library

    1961-08-14

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 14, 1961. Water gushing in from the disturbance of a natural spring contributed to constant water problems during the construction process. It was necessary to pump water from the site on a daily basis and is still pumped from the site today. The equipment is partially submerged in the water emerging from the spring.

  13. 10. ENGINE TEST CELL BUILDING INTERIOR. CELL 4, MOUNTING STAND. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. ENGINE TEST CELL BUILDING INTERIOR. CELL 4, MOUNTING STAND. LOOKING NORTHWEST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  14. Using the Climbing Drum Peel (CDP) Test to Obtain a G(sub IC) value for Core/Facesheet Bonds

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Gregory, Elizabeth D.; Jackson, Justin R.

    2006-01-01

    A method of measuring the Mode I fracture toughness of core/facesheet bonds in sandwich Structures is desired, particularly with the widespread use of models that need this data as input. This study examined if a critical strain energy release rate, G(sub IC), can be obtained from the climbing drum peel (CDP) test. The CDP test is relatively simple to perform and does not rely on measuring small crack lengths such as required by the double cantilever beam (DCB) test. Simple energy methods were used to calculate G(sub IC) from CDP test data on composite facesheets bonded to a honeycomb core. Facesheet thicknesses from 2 to 5 plies were tested to examine the upper and lower bounds on facesheet thickness requirements. Results from the study suggest that the CDP test, with certain provisions, can be used to find the GIG value of a core/facesheet bond.

  15. Test stand for Titan 34D SRM static firing

    NASA Technical Reports Server (NTRS)

    Glozman, Vladimir; Shipway, George

    1988-01-01

    An existing liquid engine test stand at the AF Astronautics Laboratory was refurbished and extensively modified to accommodate the static firing of the Titan 34D solid rocket motor (SRM) in the vertical nozzle down orientation. The main load restraint structure was designed and built to secure the SRM from lifting off during the firing. In addition, the structure provided weather protection, temperature conditioning of the SRM, and positioning of the measurement and recording equipment. The structure was also used for stacking/de-stacking of SRM segments and other technological processes. The existing stand, its foundation and anchorage were thoroughly examined and reanalyzed. Necessary stand modifications were carried out to comply with the requirements of the Titan 34D SRM static firing.

  16. Pilot Field Test: Use of a Compression Garment During a Stand Test After Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Laurie, S. S.; Stenger, M. B.; Phillips, T. R.; Lee, S. M. C.; Cerisano, J.; Kofman, I.; Reschke, M.

    2016-01-01

    Orthostatic intolerance (OI) is a concern for astronauts returning from long-duration space flight. One countermeasure that has been used to protect against OI after short-duration bed rest and space flight is the use of lower body and abdominal compression garments. However, since the end of the Space Shuttle era we have not been able to test crewmembers during the first 24 hours after landing on Earth. NASA's Pilot Field Test provided us the opportunity to test cardiovascular responses of crewmembers wearing the Russian Kentavr compression garment during a stand test at multiple time points throughout the first 24 hours after landing. HYPOTHESIS We hypothesized that the Kentavr compression garment would prevent an increase in heart rate (HR) >15 bpm during a 3.5-min stand test. METHODS: The Pilot Field Test was conducted up to 3 times during the first 24 hours after crewmembers returned to Earth: (1) either in a tent adjacent to the Soyuz landing site in Kazakhstan (approx.1 hr) or after transportation to the Karaganda airport (approx. 4 hr); (2) during a refueling stop in Scotland (approx.12 hr); and (3) upon return to NASA Johnson Space Center (JSC) (approx.24 hr). We measured HR and arterial pressure (finger photoplethysmography) for 2 min while the crewmember was prone and throughout 3.5 min of quiet standing. Eleven crewmembers consented to participate; however, 2 felt too ill to start the test and 1 stopped 30 sec into the stand portion of the test. Of the remaining 8 crewmembers, 2 did not wear the Russian Kentavr compression garment. Because of inclement weather at the landing site, 5 crewmembers were flown by helicopter to the Karaganda airport before initial testing and received intravenous saline before completing the stand test. One of these crewmembers wore only the portion of the Russian Kentavr compression garment that covered the lower leg and thus lacked thigh and abdominal compression. All crewmembers continued wearing the Russian Kentavr

  17. Around Marshall

    NASA Image and Video Library

    1962-03-31

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through

  18. 6. INTERIOR VIEW, DETAIL OF PROPELLER TEST STAND. WrightPatterson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. INTERIOR VIEW, DETAIL OF PROPELLER TEST STAND. - Wright-Patterson Air Force Base, Area B, Building No. 20A, Propeller Test Complex, Seventh Street, from E to G Streets, Dayton, Montgomery County, OH

  19. Around Marshall

    NASA Image and Video Library

    1961-09-05

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 5, 1961, shows the construction of forms which became the concrete foundation for the massive stand. The lower right hand corner reveals a pump used for extracting water emerging from a disturbed natural spring that occurred during excavation of the site. The pumping became a daily ritual and the site is still pumped today.

  20. Factors Associated with Delayed Tuberculosis Test-seeking Behavior in the Peruvian Amazon

    PubMed Central

    Ford, Carolyn M.; Bayer, Angela M.; Gilman, Robert H.; Onifade, Dami; Acosta, Colleen; Cabrera, Lilia; Vidal, Carlos; Evans, Carlton A.

    2010-01-01

    This study aimed to determine the psychosocial factors associated with delayed test-seeking among tuberculosis patients. The duration of symptoms before seeking medical care was assessed by interview for 108 newly diagnosed pulmonary tuberculosis patients in the city of Iquitos in the Peruvian Amazon, which has high tuberculosis incidence. Beliefs associated with test-seeking behavior and delay was assessed in these patients. The median delay from symptom onset to seeking diagnostic testing was 61 days (inter-quartile range 30–91 days). The belief that tuberculosis is curable was associated with a 100% longer test-seeking delay; the perception that tuberculosis was common was associated with a 57% longer delay; male gender was associated with a 48% longer delay; and education less than complete secondary schooling was associated with a 44% longer delay. In conclusion, current health promotion activities that emphasize tuberculosis curability and high prevalence may paradoxically increase test-seeking delay and therefore require prospective evaluation. PMID:19996443

  1. Saturn Apollo Program

    NASA Image and Video Library

    1966-01-01

    Engineers and technicians at the Marshall Space Flight Center placed a Saturn V ground test booster (S-IC-D) into the dynamic test stand. The stand was constructed to test the integrity of the vehicle. Forces were applied to the tail of the vehicle to simulate the engines thrusting, and various other flight factors were fed to the vehicle to test reactions. The Saturn V launch vehicle, with the Apollo spacecraft, was subjected to more than 450 hours of shaking. The photograph shows the 300,000 pound S-IC stage being lifted from its transporter into place inside the 360-foot tall test stand. This dynamic test booster has one dummy F-1 engine and weight simulators are used at the other four engine positions.

  2. Effect of yoga training on one leg standing and functional reach tests in obese individuals with poor postural control

    PubMed Central

    Jorrakate, Chaiyong; Kongsuk, Jutaluk; Pongduang, Chiraprapa; Sadsee, Boontiwa; Chanthorn, Phatchari

    2015-01-01

    [Purpose] The aim of the present study was to investigate the effect of yoga training on static and dynamic standing balance in obese individuals with poor standing balance. [Subjects and Methods] Sixteen obese volunteers were randomly assigned into yoga and control groups. The yoga training program was performed for 45 minutes per day, 3 times per week, for 4 weeks. Static and dynamic balance were assessed in volunteers with one leg standing and functional reach tests. Outcome measures were tested before training and after a single week of training. Two-way repeated measure analysis of variance with Tukey’s honestly significant difference post hoc statistics was used to analyze the data. [Results] Obese individuals showed significantly increased static standing balance in the yoga training group, but there was no significant improvement of static or dynamic standing balance in the control group after 4 weeks. In the yoga group, significant increases in static standing balance was found after the 2nd, 3rd, and 4th weeks. Compared with the control group, static standing balance in the yoga group was significantly different after the 2nd week, and dynamic standing balance was significantly different after the 4th week. [Conclusion] Yoga training would be beneficial for improving standing balance in obese individuals with poor standing balance. PMID:25642038

  3. Long microwave delay fiber-optic link for radar testing

    NASA Astrophysics Data System (ADS)

    Newberg, I. L.; Gee, C. M.; Thurmond, G. D.; Yen, H. W.

    1990-05-01

    A long fiberoptic delay line is used as a radar repeater to improve radar testing capabilities. The first known generation of 152 microsec delayed ideal target at X-band (10 GHz) frequencies having the phase stability and signal-to-noise ratio (SNR) needed for testing modern high-resolution Doppler radars is demonstrated with a 31.6-km experimental externally modulated fiberoptic link with a distributed-feedback (DFB) laser. The test application, link configuration, and link testing are discussed.

  4. 7. INTERIOR VIEW, SHOWING PROPELLER TEST STAND AND BOMB BAYS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. INTERIOR VIEW, SHOWING PROPELLER TEST STAND AND BOMB BAYS. - Wright-Patterson Air Force Base, Area B, Building No. 20A, Propeller Test Complex, Seventh Street, from E to G Streets, Dayton, Montgomery County, OH

  5. 5. INTERIOR VIEW, SHOWING PROPELLER TEST STAND AND BOMB BAYS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR VIEW, SHOWING PROPELLER TEST STAND AND BOMB BAYS. - Wright-Patterson Air Force Base, Area B, Building No. 20A, Propeller Test Complex, Seventh Street, from E to G Streets, Dayton, Montgomery County, OH

  6. 30. SKETCH OF THE PROPOSED TEST STAND FOR THE ORDNANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. SKETCH OF THE PROPOSED TEST STAND FOR THE ORDNANCE GUIDED MISSILE CENTER AT REDSTONE ARSENAL (PRE-DATING NASA). JUNE, 1951, HANS LUEHRSEN COLLECTION, MSFC MASTER PLANNING OFFICE. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  7. Development of brain injury criteria (BrIC).

    PubMed

    Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas

    2013-11-01

    Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models. This study differs from the previous research in the following ways: first, it uses two different detailed mathematical models of human head (SIMon and GHBMC), each validated against various human brain response datasets; then establishes physical (strain and stress based) injury criteria for various types of brain injury based on scaled animal injury data; and finally, uses Anthropomorphic Test Devices (ATDs) (Hybrid III 50th Male, Hybrid III 5th Female, THOR 50th Male, ES-2re, SID-IIs, WorldSID 50th Male, and WorldSID 5th Female) test data (NCAP, pendulum, and frontal offset tests) to establish a kinematically based brain injury criterion (BrIC) for all ATDs. Similar procedures were applied to college football data where thousands of head impacts were recorded using a six degrees of freedom (6 DOF) instrumented helmet system. Since animal injury data used in derivation of BrIC were predominantly for diffuse axonal injury (DAI) type, which is currently an AIS 4+ injury, cumulative strain damage measure (CSDM) and maximum principal strain (MPS) were used to derive risk curves for AIS 4+ anatomic brain injuries. The AIS 1+, 2+, 3+, and 5+ risk curves for CSDM and MPS were then computed using the ratios between corresponding risk curves for head injury criterion (HIC) at a 50% risk. The risk curves for BrIC were then obtained from CSDM and MPS risk curves using the linear relationship

  8. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...

  9. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...

  10. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...

  11. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...

  12. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...

  13. Saturn Apollo Program

    NASA Image and Video Library

    1964-12-01

    At the Marshall Space Flight Center (MSFC), the fuel tank assembly for the Saturn V S-IC-T (static test stage) fuel tank assembly is mated to the liquid oxygen (LOX) tank in building 4705. This stage underwent numerous static firings at the newly-built S-IC Static Test Stand at the MSFC west test area. The S-IC (first) stage used five F-1 engines that produced a total thrust of 7,500,000 pounds as each engine produced 1,500,000 pounds of thrust. The S-IC stage lifted the Saturn V vehicle and Apollo spacecraft from the launch pad.

  14. Inflight exercise affects stand test responses after space flight

    NASA Technical Reports Server (NTRS)

    Lee, S. M.; Moore, A. D. Jr; Fritsch-Yelle, J. M.; Greenisen, M. C.; Schneider, S. M.

    1999-01-01

    PURPOSE: The purpose of this study was to determine whether exercise performed by Space Shuttle crew members during short-duration space flights (9-16 d) affects the heart rate (HR) and blood pressure (BP) responses to standing within 2-4 h of landing. METHODS: Thirty crew members performed self-selected inflight exercise and maintained exercise logs to monitor their exercise intensity and duration. Two subjects participated in this investigation during two different flights. A 10-min stand test, preceded by at least 6 min of quiet supine rest, was completed 10-15 d before launch (PRE) and within 4 h of landing (POST). Based upon their inflight exercise records, subjects were grouped as either high (HIex: > or = 3 times/week, HR > or = 70% HRmax, > or = 20 min/session, N = 11), medium (MEDex: > or = 3 times/week, HR < 70% HRmax, > or = 20 min/session, N = 10), or low (LOex: < or = 3 times/week, HR and duration variable, N = 11) exercisers. HR and BP responses to standing were compared between groups (ANOVA, P < or = 0.05). RESULTS: There were no PRE differences between the groups in supine or standing HR and BP. Although POST supine HR was similar to PRE, all groups had an increased standing HR compared with PRE. The increase in HR upon standing was significantly greater after flight in the LOex group (36 +/- 5 bpm) compared with HIex or MEDex groups (25 +/- 1 bpm; 22 +/- 2 bpm). Similarly, the decrease in pulse pressure (PP) from supine to standing was unchanged after space flight in the MEDex and HIex groups but was significantly greater in the LOex group (PRE: -9 +/- 3; POST: -19 +/- 4 mm Hg). CONCLUSIONS: Thus, moderate to high levels of inflight exercise attenuated HR and PP responses to standing after space flight.

  15. Recent Progresses in Laboratory Astrophysics with Ames’ COSmIC Facility

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Contreras, Cesar; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2016-06-01

    We present and discuss the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nano particles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in free supersonic jet expansion coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent laboratory results that were obtained using COSmIC will be presented, in particular the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflows [4] and planetary atmospheres [5]. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of the current studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press, Vol. 4, S251, p. 357 (2008) and references therein.[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J

  16. 6. NORTH REAR, WEST PART. VIEW TO SOUTHWEST. TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. NORTH REAR, WEST PART. VIEW TO SOUTHWEST. TEST STAND 1-5 AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  17. Credit BG. Looking southeast at Test Stand "D" (Building 4223/E24). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Looking southeast at Test Stand "D" (Building 4223/E-24). Left foreground contains six high-pressure nitrogen tanks which supplied nitrogen for operation of propellant valves. Several tanks for other substances have been removed from the base of the tower as part of decontamination and dismantling program. The vertical vacuum test cell can be seen in the tower behind the western sunscreen. At the top of the tower in the northeast corner is the interstage condenser used in the series of vacuum ejectors; at the top of the condenser is one of two Z-stage ejectors used to evacuate the condenser. The hoist beam for lifting/lowering rocket engines can be clearly seen projecting to the west over the pavement. In the distance on the right are Clayton water-tube steam generators from Building 4280/E-81, and the towers for Test Stand "C" and its scrubber-condenser - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  18. Around Marshall

    NASA Image and Video Library

    1961-09-05

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 5, 1961, shows pumps used for extracting water emerging form a disturbed natural spring that occurred during the excavation of the site. The pumping became a daily ritual and the site is still pumped today.

  19. 29. Historic view of twentythousandpound rocket test stand with engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Historic view of twenty-thousand-pound rocket test stand with engine installation in test cell of Building 202, September 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45870. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  20. Mod 1 ICS TI Report: ICS Conversion of a 140% HPGe Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bounds, John Alan

    This report evaluates the Mod 1 ICS, an electrically cooled 140% HPGe detector. It is a custom version of the ORTEC Integrated Cooling System (ICS) modified to make it more practical for us to use in the field. Performance and operating characteristics of the Mod 1 ICS are documented, noting both pros and cons. The Mod 1 ICS is deemed a success. Recommendations for a Mod 2 ICS, a true field prototype, are provided.

  1. 5. NORTH REAR, EAST PART, SHOWING ESCAPE HATCH. TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. NORTH REAR, EAST PART, SHOWING ESCAPE HATCH. TEST STAND 1-3 AND ITS MACHINE SHOP ARE IN MIDDLE DISTANCE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  2. 5. EDGE OF CAPTIVE TEST STAND THREE FERROCEMENT APRON AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EDGE OF CAPTIVE TEST STAND THREE FERROCEMENT APRON AT FAR LEFT, CONNECTING TUNNEL AT CENTER, CONTROL BUILDING B AT RIGHT, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Control Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  3. 35. Historic photo of Building 202 test stand with damage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Historic photo of Building 202 test stand with damage to twenty-thousand-pound-thrust rocket engine related to failure during testing, September 16, 1958. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-48704. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  4. The application of S-transformation and M-2DPCA in I.C. Engine fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Shixiong; Cai, Yanping; Mu, Weijie

    2017-04-01

    According to the problem of parameter selection and feature extraction for vibration diagnosis of traditional internal combustion engine is discussed. The method based on S-transformation and Module Two Dimensional Principal Components Analysis (M-2DPCA) is proposed to carry out fault diagnosis of I.C. Engine valve mechanism. First of all, the method transfers cylinder surface vibration signals of I.C. into images through S-transform. The second, extracting the optimized projection vectors from the general distribution matrix G which is obtained by all sample sub-images, so that vibration spectrum images can be modularized using M-2DPCA. The last, these features matrix obtained from images project will served as the enters of nearest neighbor classifier, it is used to achieve fault types' division. The method is applied to the diagnosis example of the vibration signal of the valve mechanism eight operating modes, recognition rate up to 94.17 percent; the effectiveness of the proposed method is proved.

  5. Stabilizing skateboard speed-wobble with reflex delay.

    PubMed

    Varszegi, Balazs; Takacs, Denes; Stepan, Gabor; Hogan, S John

    2016-08-01

    A simple mechanical model of the skateboard-skater system is analysed, in which the effect of human control is considered by means of a linear proportional-derivative (PD) controller with delay. The equations of motion of this non-holonomic system are neutral delay-differential equations. A linear stability analysis of the rectilinear motion is carried out analytically. It is shown how to vary the control gains with respect to the speed of the skateboard to stabilize the uniform motion. The critical reflex delay of the skater is determined as the function of the speed. Based on this analysis, we present an explanation for the linear instability of the skateboard-skater system at high speed. Moreover, the advantages of standing ahead of the centre of the board are demonstrated from the viewpoint of reflex delay and control gain sensitivity. © 2016 The Author(s).

  6. 31. Historic view of Building 202 test stand A with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Historic view of Building 202 test stand A with rocket engine, November 19, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-46491. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  7. 30. Historic view of twentythousandpound rocket test stand with engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Historic view of twenty-thousand-pound rocket test stand with engine installation in test cell of Building 202, looking down from elevated location, September 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45872. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  8. Planned Experiments on the Princeton Advanced Test Stand

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.

    2010-11-01

    The Princeton Advanced Test Stand (PATS) device is an experimental facility based on the STS-100 high voltage test stand transferred from LBNL. It consists of a multicusp RF ion source, a pulsed extraction system capable of forming high-perveance 100keV ion beams, and a large six-foot-long vacuum with convenient access for beam diagnostics. This results in a flexible system for studying high perveance ion beams relevant to NDCX-I/II, including experiments on beam neutralization by ferroelectric plasma sources (FEPS) being developed at PPPL. Research on PATS will concern the basic physics of beam-plasma interactions, such as the effects of volume neutralization on beam emittance, as well as optimizing technology of the FEPS. PATS combines the advantage of an ion beam source and a large-volume plasma source in a chamber with ample access for diagnostics, resulting in a robust setup for investigating and improving relevant aspects of neutralized drift. There are also plans for running the ion source with strongly electro-negative gases such as chlorine, making it possible to extract positive or negative ion beams.

  9. (abstract) A VLBI Test of Tropospheric Delay Calibration with WVRs

    NASA Technical Reports Server (NTRS)

    Linfield, R. P.; Teitelbaum, L. P.; Keihm, S. J.; Resch, G. M.; Mahoney, M. J.; Treuhaft, R. N.

    1994-01-01

    Dual frequency (S/X band) very long baseline interferometry (VLBI) observations were used to test troposphere calibration by water vapor radiometers (WVRs). Comparison of the VLBI and WVR measurements show a statistical agreement (specifically, their structure functions agree) on time scales less than 700 seconds. On longer time scales, VLBI instrumental errors become important. The improvement in VLBI residual delays from WVR calibration was consistent with the measured level of tropospheric fluctuations.

  10. Value of the "Standing Test" in the Diagnosis and Evaluation of Beta-blocker Therapy Response in Long QT Syndrome.

    PubMed

    Muñoz-Esparza, Carmen; Zorio, Esther; Domingo Valero, Diana; Peñafiel-Verdú, Pablo; Sánchez-Muñoz, Juan J; García-Molina, Esperanza; Sabater, María; Navarro, Marina; San-Román, Irene; Pérez, Inmaculada; Santos, Juan J; Cabañas-Perianes, Valentín; Valdés, Mariano; Pascual, Domingo; García-Alberola, Arcadio; Gimeno Blanes, Juan R

    2017-11-01

    Patients with congenital long QT syndrome (LQTS) have an abnormal QT adaptation to sudden changes in heart rate provoked by standing. The present study sought to evaluate the standing test in a cohort of LQTS patients and to assess if this QT maladaptation phenomenon is ameliorated by beta-blocker therapy. Electrographic assessments were performed at baseline and immediately after standing in 36 LQTS patients (6 LQT1 [17%], 20 LQT2 [56%], 3 LQT7 [8%], 7 unidentified-genotype patients [19%]) and 41 controls. The corrected QT interval (QTc) was measured at baseline (QTc supine ) and immediately after standing (QTc standing ); the QTc change from baseline (ΔQTc) was calculated as QTc standing - QTc supine . The test was repeated in 26 patients receiving beta-blocker therapy. Both QTc standing and ΔQTc were significantly higher in the LQTS group than in controls (QTc standing , 528 ± 46ms vs 420 ± 15ms, P < .0001; ΔQTc, 78 ± 40ms vs 8 ± 13ms, P < .0001). No significant differences were noted between LQT1 and LQT2 patients. Typical ST-T wave patterns appeared after standing in LQTS patients. Receiver operating characteristic curves of QTc standing and ΔQTc showed a significant increase in diagnostic value compared with the QTc supine (area under the curve for both, 0.99 vs 0.85; P < .001). Beta-blockers attenuated the response to standing in LQTS patients (QTc standing , 440 ± 32ms, P < .0001; ΔQTc, 14 ± 16ms, P < .0001). Evaluation of the QTc after the simple maneuver of standing shows a high diagnostic performance and could be important for monitoring the effects of beta-blocker therapy in LQTS patients. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  11. Performing a Large-Scale Modal Test on the B2 Stand Crane at NASA's Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Stasiunas, Eric C.; Parks, Russel A.

    2018-01-01

    A modal test of NASA’s Space Launch System (SLS) Core Stage is scheduled to occur prior to propulsion system verification testing at the Stennis Space Center B2 test stand. A derrick crane with a 180-ft long boom, located at the top of the stand, will be used to suspend the Core Stage in order to achieve defined boundary conditions. During this suspended modal test, it is expected that dynamic coupling will occur between the crane and the Core Stage. Therefore, a separate modal test was performed on the B2 crane itself, in order to evaluate the varying dynamic characteristics and correlate math models of the crane. Performing a modal test on such a massive structure was challenging and required creative test setup and procedures, including implementing both AC and DC accelerometers, and performing both classical hammer and operational modal analysis. This paper describes the logistics required to perform this large-scale test, as well as details of the test setup, the modal test methods used, and an overview of the results.

  12. Control Room at the NACA’s Rocket Engine Test Facility

    NASA Image and Video Library

    1957-05-21

    Test engineers monitor an engine firing from the control room of the Rocket Engine Test Facility at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Rocket Engine Test Facility, built in the early 1950s, had a rocket stand designed to evaluate high-energy propellants and rocket engine designs. The facility was used to study numerous different types of rocket engines including the Pratt and Whitney RL-10 engine for the Centaur rocket and Rocketdyne’s F-1 and J-2 engines for the Saturn rockets. The Rocket Engine Test Facility was built in a ravine at the far end of the laboratory because of its use of the dangerous propellants such as liquid hydrogen and liquid fluorine. The control room was located in a building 1,600 feet north of the test stand to protect the engineers running the tests. The main control and instrument consoles were centrally located in the control room and surrounded by boards controlling and monitoring the major valves, pumps, motors, and actuators. A camera system at the test stand allowed the operators to view the tests, but the researchers were reliant on data recording equipment, sensors, and other devices to provide test data. The facility’s control room was upgraded several times over the years. Programmable logic controllers replaced the electro-mechanical control devices. The new controllers were programed to operate the valves and actuators controlling the fuel, oxidant, and ignition sequence according to a predetermined time schedule.

  13. Magnetically Delayed Low-Pressure Gas Discharge Switching

    DTIC Science & Technology

    1993-06-01

    the gap, minimizes this effect. It is this version of the low- pressure switch that we are presently studying. Our magnetically delayed low... pressure switch (MDLPS) test-stand was built primarily to support the long-pulse, relativistic klystron (RK) and free electron laser (FEL) work at... pressure switch and compared the performance with and without the saturable inductor. A comparison of typi- cal closure properties is shown in Fig

  14. Not All Types of Delay Are Equal: Postsecondary Delay in the U.S. and Taking a Gap Year

    ERIC Educational Resources Information Center

    Hoe, Nina DePena

    2014-01-01

    Postsecondary delay in the U.S. is a topic that has generated interest in the field of higher education in recent decades. Seventeen percent of U.S. students under the age of 24 who began their postsecondary education in 2004 delayed their entrance for some period of time. At the national level, studies have indicated that students who delay are…

  15. Saturn Apollo Program

    NASA Image and Video Library

    1967-07-28

    This photograph depicts a view of the test firing of all five F-1 engines for the Saturn V S-IC test stage at the Marshall Space Flight Center. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust. The S-IC Static Test Stand was designed and constructed with the strength of hundreds of tons of steel and cement, planted down to bedrock 40 feet below ground level, and was required to hold down the brute force of the 7,500,000-pound thrust. The structure was topped by a crane with a 135-foot boom. With the boom in the up position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. When the Saturn V S-IC first stage was placed upright in the stand , the five F-1 engine nozzles pointed downward on a 1,900-ton, water-cooled deflector. To prevent melting damage, water was sprayed through small holes in the deflector at the rate 320,000 gallons per minutes

  16. Saturn Apollo Program

    NASA Image and Video Library

    1965-05-01

    This photograph depicts a view of the test firing of all five F-1 engines for the Saturn V S-IC test stage at the Marshall Space Flight Center. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust. The S-IC Static Test Stand was designed and constructed with the strength of hundreds of tons of steel and cement, planted down to bedrock 40 feet below ground level, and was required to hold down the brute force of the 7,500,000-pound thrust. The structure was topped by a crane with a 135-foot boom. With the boom in the up position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. When the Saturn V S-IC first stage was placed upright in the stand , the five F-1 engine nozzles pointed downward on a 1,900-ton, water-cooled deflector. To prevent melting damage, water was sprayed through small holes in the deflector at the rate 320,000 gallons per minutes.

  17. The Effects of Test Trial and Processing Level on Immediate and Delayed Retention.

    PubMed

    Chang, Sau Hou

    2017-03-01

    The purpose of the present study was to investigate the effects of test trial and processing level on immediate and delayed retention. A 2 × 2 × 2 mixed ANOVAs was used with two between-subject factors of test trial (single test, repeated test) and processing level (shallow, deep), and one within-subject factor of final recall (immediate, delayed). Seventy-six college students were randomly assigned first to the single test (studied the stimulus words three times and took one free-recall test) and the repeated test trials (studied the stimulus words once and took three consecutive free-recall tests), and then to the shallow processing level (asked whether each stimulus word was presented in capital letter or in small letter) and the deep processing level (whether each stimulus word belonged to a particular category) to study forty stimulus words. The immediate test was administered five minutes after the trials, whereas the delayed test was administered one week later. Results showed that single test trial recalled more words than repeated test trial in immediate final free-recall test, participants in deep processing performed better than those in shallow processing in both immediate and delayed retention. However, the dominance of single test trial and deep processing did not happen in delayed retention. Additional study trials did not further enhance the delayed retention of words encoded in deep processing, but did enhance the delayed retention of words encoded in shallow processing.

  18. The Effects of Test Trial and Processing Level on Immediate and Delayed Retention

    PubMed Central

    Chang, Sau Hou

    2017-01-01

    The purpose of the present study was to investigate the effects of test trial and processing level on immediate and delayed retention. A 2 × 2 × 2 mixed ANOVAs was used with two between-subject factors of test trial (single test, repeated test) and processing level (shallow, deep), and one within-subject factor of final recall (immediate, delayed). Seventy-six college students were randomly assigned first to the single test (studied the stimulus words three times and took one free-recall test) and the repeated test trials (studied the stimulus words once and took three consecutive free-recall tests), and then to the shallow processing level (asked whether each stimulus word was presented in capital letter or in small letter) and the deep processing level (whether each stimulus word belonged to a particular category) to study forty stimulus words. The immediate test was administered five minutes after the trials, whereas the delayed test was administered one week later. Results showed that single test trial recalled more words than repeated test trial in immediate final free-recall test, participants in deep processing performed better than those in shallow processing in both immediate and delayed retention. However, the dominance of single test trial and deep processing did not happen in delayed retention. Additional study trials did not further enhance the delayed retention of words encoded in deep processing, but did enhance the delayed retention of words encoded in shallow processing. PMID:28344679

  19. 3. INTERIOR VIEW, SHOWING JET ENGINE TEST STAND. WrightPatterson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR VIEW, SHOWING JET ENGINE TEST STAND. - Wright-Patterson Air Force Base, Area B, Building 71A, Propulsion Research Laboratory, Seventh Street between D & G Streets, Dayton, Montgomery County, OH

  20. 32. Historic view of Building 202 test stand A with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Historic view of Building 202 test stand A with rocket engine, close-up detail of engine, November 19, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-46492. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  1. Saturn Apollo Program

    NASA Image and Video Library

    1963-12-05

    The test laboratory of the Marshall Space Flight Center (MSFC) tested the F-1 engine, the most powerful rocket engine ever fired at MSFC. The engine was tested on the newly modified Saturn IB Static Test Stand which had been used for three years to test the Saturn I eight-engine booster, S-I (first) stage. In 1961 the test stand was modified to permit static firing of the S-I/S-IB stage and the name of the stand was then changed to the S-IB Static Test Stand. Producing a combined thrust of 7,500,000 pounds, five F-1 engines powered the S-IC (first) stage of the Saturn V vehicle for the marned lunar mission.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1963-12-01

    The test laboratory of the Marshall Space Flight Center (MSFC) tested the F-1 engine, the most powerful rocket engine ever fired at MSFC. The engine was tested on the newly modified Saturn IB static test stand that had been used for three years to test the Saturn I eight-engine booster, S-I (first) stage. In 1961, the test stand was modified to permit static firing of the S-I/S-IB stage and the name of the stand was then changed to the S-IB Static Test Stand. Producing a combined thrust of 7,500,000 pounds, five F-1 engines powered the S-IC (first) stage of the Saturn V vehicle for the marned lunar mission.

  3. DELUGE AND WATER RECLAMATION BASIN BELOW TEST STAND 1A. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DELUGE AND WATER RECLAMATION BASIN BELOW TEST STAND 1-A. Looking north northwest - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  4. 3. CABLE TUNNEL TO TEST STAND 1A, LOOKING SOUTH TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CABLE TUNNEL TO TEST STAND 1-A, LOOKING SOUTH TO STAIRS LEADING UP TO CONTROL CENTER. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  5. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell test...

  6. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell test...

  7. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell test...

  8. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell test...

  9. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell test...

  10. Face distinctiveness and delayed testing: differential effects on performance and confidence.

    PubMed

    Metzger, Mitchell M

    2006-04-01

    The author investigated the effect of delayed testing on participants' memory for distinctive and typical faces. Participants viewed distinctive and typical faces and were then tested for recognition immediately or after a delay of 3, 6, or 12 weeks. Consistent with prior research, analysis of measure of sensitivity (d') showed that participants performed better on distinctive rather than typical faces, and memory performance declined with longer retention intervals between study and testing. Furthermore, the superior performance on distinctive faces had vanished by the 12-week test. Contrary to d' data, however, an analysis of confidence scores indicated that participants were still significantly more confident on trials depicting distinctive faces, even with a 12-week delay between study and recognition testing.

  11. RP-1 delivered to E-1 Test Stand

    NASA Image and Video Library

    2010-03-30

    NASA John C. Stennis Space Center employee Dustan Ladner (left) assists tanker driver David Velasco in transferring RP-1 fuel to a 20,000-gallon underground tank at the E-1 Test Stand during a March 30 delivery. The rocket propellant will be used for testing Aerojet AJ26 rocket engines beginning this summer. Stennis is testing the engines for Orbital Sciences Corporation, which has partnered with NASA to provide eight supply missions to the International Space Station through 2015. The partnership is part of NASA's Commercial Orbital Transportation Services initiative to work closer with companies to provide commercial space transport once the space shuttle is retired later this year.

  12. Guidelines for Design and Test of a Built-In Self Test (BIST) Circuit For Space Radiation Studies of High-Speed IC Technologies

    NASA Technical Reports Server (NTRS)

    Carts, M. A.; Marshall, P. W.; Reed, R.; Curie, S.; Randall, B.; LaBel, K.; Gilbert, B.; Daniel, E.

    2006-01-01

    Serial Bit Error Rate Testing under radiation to characterize single particle induced errors in high-speed IC technologies generally involves specialized test equipment common to the telecommunications industry. As bit rates increase, testing is complicated by the rapidly increasing cost of equipment able to test at-speed. Furthermore as rates extend into the tens of billions of bits per second test equipment ceases to be broadband, a distinct disadvantage for exploring SEE mechanisms in the target technologies. In this presentation the authors detail the testing accomplished in the CREST project and apply the knowledge gained to establish a set of guidelines suitable for designing arbitrarily high speed radiation effects tests.

  13. Delayed recovery of right ventricular systolic function after repair of long-standing tricuspid regurgitation associated with severe right ventricular failure.

    PubMed

    Kim, Jong Hun; Kim, Kyung Hwa; Choi, Jong Bum; Kuh, Ja Hong

    2016-03-01

    After tricuspid valve surgery for long-standing tricuspid regurgitation associated with right ventricular failure, reverse remodelling of the enlarged right ventricle, including recovery of right ventricular systolic function, is unpredictable. We present the case of a 31-year old man with early reduction of dilated right ventricular dimensions and delayed recovery of impaired right ventricular systolic function after valve repair for traumatic tricuspid regurgitation lasting 16 years. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  14. Developments in Test Facility and Data Networking for the Altitude Test Stand at the John C. Stennis Space Center: A General Overview

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W.

    2008-01-01

    NASA/SSC's Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware: Accurate, Reliable, Comprehensive, and Timely. Data Acquisition in a Rocket Propulsion Test Environment Is Challenging: a) Severe Temporal Transient Dynamic Environments; b) Large Thermal Gradients; c) Vacuum to high pressure regimes. A-3 Test Stand Development is equally challenging with respect to accommodating vacuum environment, operation of a CSG system, and a large quantity of data system and control channels to determine proper engine performance as well as Test Stand operation. SSC is currently in the process of providing modernized DAS, Control Systems, Video, and network systems for the A-3 Test Stand to overcome these challenges.

  15. Solving delay differential equations in S-ADAPT by method of steps.

    PubMed

    Bauer, Robert J; Mo, Gary; Krzyzanski, Wojciech

    2013-09-01

    S-ADAPT is a version of the ADAPT program that contains additional simulation and optimization abilities such as parametric population analysis. S-ADAPT utilizes LSODA to solve ordinary differential equations (ODEs), an algorithm designed for large dimension non-stiff and stiff problems. However, S-ADAPT does not have a solver for delay differential equations (DDEs). Our objective was to implement in S-ADAPT a DDE solver using the methods of steps. The method of steps allows one to solve virtually any DDE system by transforming it to an ODE system. The solver was validated for scalar linear DDEs with one delay and bolus and infusion inputs for which explicit analytic solutions were derived. Solutions of nonlinear DDE problems coded in S-ADAPT were validated by comparing them with ones obtained by the MATLAB DDE solver dde23. The estimation of parameters was tested on the MATLB simulated population pharmacodynamics data. The comparison of S-ADAPT generated solutions for DDE problems with the explicit solutions as well as MATLAB produced solutions which agreed to at least 7 significant digits. The population parameter estimates from using importance sampling expectation-maximization in S-ADAPT agreed with ones used to generate the data. Published by Elsevier Ireland Ltd.

  16. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...

  17. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...

  18. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...

  19. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...

  20. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...

  1. Commissioning and First Results from the Fermilab Cryomodule Test Stand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, Elvin; et al.

    2017-05-01

    A new test stand dedicated to SRF cryomodule testing, CMTS1, has been commissioned and is now in operation at Fermilab. The first device to be cooled down and powered in this facility is the prototype 1.3 GHz cryomodule assembled at Fermilab for LCLS-II. We describe the demonstrated capabilities of CMTS1, report on steps taken during commissioning, provide an overview of first test results, and survey future plans.

  2. Verification of the test stand for microbolometer camera in accredited laboratory

    NASA Astrophysics Data System (ADS)

    Krupiński, Michal; Bareła, Jaroslaw; Chmielewski, Krzysztof; Kastek, Mariusz

    2017-10-01

    Microbolometer belongs to the group of thermal detectors and consist of temperature sensitive resistor which is exposed to measured radiation flux. Bolometer array employs a pixel structure prepared in silicon technology. The detecting area is defined by a size of thin membrane, usually made of amorphous silicon (a-Si) or vanadium oxide (VOx). FPAs are made of a multitude of detector elements (for example 384 × 288 ), where each individual detector has different sensitivity and offset due to detector-to-detector spread in the FPA fabrication process, and additionally can change with sensor operating temperature, biasing voltage variation or temperature of the observed scene. The difference in sensitivity and offset among detectors (which is called non-uniformity) additionally with its high sensitivity, produces fixed pattern noise (FPN) on produced image. Fixed pattern noise degrades parameters of infrared cameras like sensitivity or NETD. Additionally it degrades image quality, radiometric accuracy and temperature resolution. In order to objectively compare the two infrared cameras ones must measure and compare their parameters on a laboratory test stand. One of the basic parameters for the evaluation of a designed camera is NETD. In order to examine the NETD, parameters such as sensitivity and pixels noise must be measured. To do so, ones should register the output signal from the camera in response to the radiation of black bodies at two different temperatures. The article presets an application and measuring stand for determining the parameters of microbolometers camera. Prepared measurements were compared with the result of the measurements in the Institute of Optoelectronics, MUT on a METS test stand by CI SYSTEM. This test stand consists of IR collimator, IR standard source, rotating wheel with test patterns, a computer with a video grabber card and specialized software. The parameters of thermals cameras were measure according to norms and method described

  3. VCSEL-based optical transceiver module operating at 25 Gb/s and using a single CMOS IC

    NASA Astrophysics Data System (ADS)

    Afriat, Gil; Horwitz, Lior; Lazar, Dror; Issachar, Assaf; Pogrebinsky, Alexander; Ran, Adee; Shoor, Ehud; Bar, Roi; Saba, Rushdy

    2012-01-01

    We present here a low cost, small form factor, optical transceiver module composed of a CMOS IC transceiver, 850 nm emission wavelength VCSEL modulated at 25 Gb/s, and an InGaAs/InP PIN Photo Diode (PD). The transceiver IC is fabricated in a standard 28 nm CMOS process and integrates the analog circuits interfacing the VCSEL and PD, namely the VCSEL driver and Transimpedance Amplifier (TIA), as well as all other required transmitter and receiver circuits like Phase Locked Loop (PLL), Post Amplifier and Clock & Data Recovery (CDR). The transceiver module couples into a 62.5/125 um multi-mode (OM1) TX/RX fiber pair via a low cost plastic cover realizing the transmitter and receiver lens systems and demonstrates BER < 10-12 at the 25 Gb/s data rate over a distance of 3 meters. Using a 50/125 um laser optimized multi-mode fiber (OM3), the same performance was achieved over a distance of 30 meters.

  4. Intraluminal Administration of Poly I:C Causes an Enteropathy That Is Exacerbated by Administration of Oral Dietary Antigen

    PubMed Central

    Araya, Romina E.; Jury, Jennifer; Bondar, Constanza

    2014-01-01

    Systemic administration of polyinosinic:polycytidylic acid (poly I:C), mimics virally-induced activation of TLR3 signalling causing acute small intestine damage, but whether and how mucosal administration of poly I:C causes enteropathy is less clear. Our aim was to investigate the inflammatory pathways elicited after intraluminal administration of poly I:C and determine acute and delayed consequences of this locally induced immune activation. Intraluminal poly I:C induced rapid mucosal immune activation in C57BL/6 mice involving IFNβ and the CXCL10/CXCR3 axis, that may drive inflammation towards a Th1 profile. Intraluminal poly I:C also caused enteropathy and gut dysfunction in gliadin-sensitive NOD-DQ8 mice, and this was prolonged by concomitant oral administration of gliadin. Our results indicate that small intestine pathology can be induced in mice by intraluminal administration of poly I:C and that this is exacerbated by subsequent oral delivery of a relevant dietary antigen. PMID:24915573

  5. Intraluminal administration of poly I:C causes an enteropathy that is exacerbated by administration of oral dietary antigen.

    PubMed

    Araya, Romina E; Jury, Jennifer; Bondar, Constanza; Verdu, Elena F; Chirdo, Fernando G

    2014-01-01

    Systemic administration of polyinosinic:polycytidylic acid (poly I:C), mimics virally-induced activation of TLR3 signalling causing acute small intestine damage, but whether and how mucosal administration of poly I:C causes enteropathy is less clear. Our aim was to investigate the inflammatory pathways elicited after intraluminal administration of poly I:C and determine acute and delayed consequences of this locally induced immune activation. Intraluminal poly I:C induced rapid mucosal immune activation in C57BL/6 mice involving IFNβ and the CXCL10/CXCR3 axis, that may drive inflammation towards a Th1 profile. Intraluminal poly I:C also caused enteropathy and gut dysfunction in gliadin-sensitive NOD-DQ8 mice, and this was prolonged by concomitant oral administration of gliadin. Our results indicate that small intestine pathology can be induced in mice by intraluminal administration of poly I:C and that this is exacerbated by subsequent oral delivery of a relevant dietary antigen.

  6. Finite-dimensional modeling of network-induced delays for real-time control systems

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Halevi, Yoram

    1988-01-01

    In integrated control systems (ICS), a feedback loop is closed by the common communication channel, which multiplexes digital data from the sensor to the controller and from the controller to the actuator along with the data traffic from other control loops and management functions. Due to asynchronous time-division multiplexing in the network access protocols, time-varying delays are introduced in the control loop, which degrade the system dynamic performance and are a potential source of instability. The delayed control system is represented by a finite-dimensional, time-varying, discrete-time model which is less complex than the existing continuous-time models for time-varying delays; this approach allows for simpler schemes for analysis and simulation of the ICS.

  7. Droplet-Wall/Film Impact in IC Engine Applications

    DTIC Science & Technology

    2017-08-14

    Report: Droplet-Wall/Film Impact in IC Engine Applications (ARO Topic 1.4.1 under ARO’s Dr. Ralph A. Anthenien) The views, opinions and/or findings...in IC Engine Applications (ARO Topic 1.4.1 under ARO’s Dr. Ralph A. Anthenien) Report Term: 0-Other Email: cklaw@princeton.edu Distribution Statement...associated with spraying in internal combustion engines (ICEs). Fuels sprayed inside engines can impact with the internal surfaces and thus not only

  8. Delayed small intestinal transit in patients with long-standing type 1 diabetes mellitus: investigation of the relationships with clinical features, gastric emptying, psychological distress, and nutritional parameters.

    PubMed

    Faria, Mariza; Pavin, Elizabeth João; Parisi, Maria Cândida Ribeiro; Lorena, Sônia Letícia Silva; Brunetto, Sérgio Quirino; Ramos, Celso Dario; Pavan, Célia Regina; Mesquita, Maria Aparecida

    2013-01-01

    Studies on small intestinal transit in type 1 diabetes mellitus have reported contradictory results. This study assessed the orocecal transit time (OCTT) in a group of patients with type 1 diabetes mellitus and its relationships with gastrointestinal symptoms, glycemic control, chronic complications of diabetes, anthropometric indices, gastric emptying, small intestinal bacterial overgrowth (SIBO), and psychological distress. Twenty-eight patients with long-standing (>10 years) type 1 diabetes mellitus (22 women, six men; mean age, 39 ± 9 years) participated in the study. The lactulose hydrogen breath test was used to determine OCTT and the occurrence of SIBO. The presence of anxiety and depression was assessed by the Hospital Anxiety and Depression scale. Gastric emptying was measured by scintigraphy. Anthropometric indices included body mass index, percentage body fat, midarm circumference, and arm muscle area. There was a statistically significant increase in OCTT values in diabetes patients (79 ± 41 min) in comparison with controls (54 ± 17 min) (P=0.01). Individual analysis showed that OCTT was above the upper limit (mean+2 SD) in 30.8% of patients. All anthropometric parameters were significantly decreased (P<0.05) in patients with prolonged OCTT in comparison with those with normal OCTT. In contrast, there was no statistically significant association between prolonged OCTT and gastrointestinal symptoms, peripheral neuropathy, diabetic retinopathy, glycated hemoglobin, delayed gastric emptying, SIBO, anxiety, or depression. Small bowel transit may be delayed in about one-third of patients with long-standing type 1 diabetes mellitus. This abnormality seems to have a negative effect on nutritional status in these patients.

  9. Ethernet-based test stand for a CAN network

    NASA Astrophysics Data System (ADS)

    Ziebinski, Adam; Cupek, Rafal; Drewniak, Marek

    2017-11-01

    This paper presents a test stand for the CAN-based systems that are used in automotive systems. The authors propose applying an Ethernet-based test system that supports the virtualisation of a CAN network. The proposed solution has many advantages compared to classical test beds that are based on dedicated CAN-PC interfaces: it allows the physical constraints associated with the number of interfaces that can be simultaneously connected to a tested system to be avoided, which enables the test time for parallel tests to be shortened; the high speed of Ethernet transmission allows for more frequent sampling of the messages that are transmitted by a CAN network (as the authors show in the experiment results section) and the cost of the proposed solution is much lower than the traditional lab-based dedicated CAN interfaces for PCs.

  10. The H I chronicles of little things BCDs II: The origin of IC 10's H I structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Trisha; Simpson, Caroline E.; Pokhrel, Nau Raj

    In this paper we analyze Very Large Array (VLA) telescope and Green Bank Telescope (GBT) atomic hydrogen (H I) data for the LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey; https://science.nrao.edu/science/surveys/littlethings) blue compact dwarf galaxy IC 10. The VLA data allow us to study the detailed H I kinematics and morphology of IC 10 at high resolution while the GBT data allow us to search the surrounding area at high sensitivity for tenuous H I. IC 10's H I appears highly disturbed in both the VLA and GBT H I maps with a kinematicallymore » distinct northern H I extension, a kinematically distinct southern plume, and several spurs in the VLA data that do not follow the general kinematics of the main disk. We discuss three possible origins of its H I structure and kinematics in detail: a current interaction with a nearby companion, an advanced merger, and accretion of intergalactic medium. We find that IC 10 is most likely an advanced merger or a galaxy undergoing accretion.« less

  11. NASA Ames’ COSmIC Laboratory Astrophysics Facility: Recent Results and Progress

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2018-06-01

    The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1, 2]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of molecules, ions and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow generating; processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostic tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection, and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [3, 4].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular in the domain of the diffuse interstellar bands (DIBs) [5, 6] and the monitoring, in the laboratory, of the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [7] and planetary atmospheres [8, 9, 10]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs) will also be addressed as well as the implications for astronomy.References: [1] Salama F., Proceed. IAU S251, Kwok & Sandford eds. CUP, 4, 357 (2008).[2] Salama F., et al., Proceed. IAU S332, Y. Aikawa, M. Cunningham, T. Millar, eds., CUP (2018)[3] Biennier L., et al., J. Chem. Phys., 118, 7863 (2003)[4] Ricketts C. et al. IJMS, 300, 26 (2011)[5] Salama F., et al., ApJ., 728, 154 (2011)[6] EDIBLES

  12. Electronic Detection of Delayed Test Result Follow-Up in Patients with Hypothyroidism.

    PubMed

    Meyer, Ashley N D; Murphy, Daniel R; Al-Mutairi, Aymer; Sittig, Dean F; Wei, Li; Russo, Elise; Singh, Hardeep

    2017-07-01

    Delays in following up abnormal test results are a common problem in outpatient settings. Surveillance systems that use trigger tools to identify delayed follow-up can help reduce missed opportunities in care. To develop and test an electronic health record (EHR)-based trigger algorithm to identify instances of delayed follow-up of abnormal thyroid-stimulating hormone (TSH) results in patients being treated for hypothyroidism. We developed an algorithm using structured EHR data to identify patients with hypothyroidism who had delayed follow-up (>60 days) after an abnormal TSH. We then retrospectively applied the algorithm to a large EHR data warehouse within the Department of Veterans Affairs (VA), on patient records from two large VA networks for the period from January 1, 2011, to December 31, 2011. Identified records were reviewed to confirm the presence of delays in follow-up. During the study period, 645,555 patients were seen in the outpatient setting within the two networks. Of 293,554 patients with at least one TSH test result, the trigger identified 1250 patients on treatment for hypothyroidism with elevated TSH. Of these patients, 271 were flagged as potentially having delayed follow-up of their test result. Chart reviews confirmed delays in 163 of the 271 flagged patients (PPV = 60.1%). An automated trigger algorithm applied to records in a large EHR data warehouse identified patients with hypothyroidism with potential delays in thyroid function test results follow-up. Future prospective application of the TSH trigger algorithm can be used by clinical teams as a surveillance and quality improvement technique to monitor and improve follow-up.

  13. Delay and reward choice in ADHD: an experimental test of the role of delay aversion.

    PubMed

    Marco, Rafaela; Miranda, Ana; Schlotz, Wolff; Melia, Amanda; Mulligan, Aisling; Müller, Ueli; Andreou, Penny; Butler, Louise; Christiansen, Hanna; Gabriels, Isabel; Medad, Sheera; Albrecht, Bjorn; Uebel, Henrik; Asherson, Phillip; Banaschewski, Tobias; Gill, Michael; Kuntsi, Jonna; Mulas, Fernando; Oades, Robert; Roeyers, Herbert; Steinhausen, Hans-Christoph; Rothenberger, Aribert; Faraone, Stephen V; Sonuga-Barke, Edmund J S

    2009-05-01

    Children with attention deficit/hyperactivity disorder (ADHD) choose smaller sooner (SS) over larger later (LL) rewards more than controls. Here we assess the contributions of impulsive drive for immediate rewards (IDIR) and delay aversion (DAv) to this pattern. We also explore the characteristics of, and the degree of familiality in, ADHD SS responders. We had 360 ADHD probands; 349 siblings and 112 controls (aged between 6 to 17 years) chose between SS (1 point after 2 s) and LL reward (2 points after 30 s) outcomes on the Maudsley Index of Delay Aversion (Kuntsi, Oosterlaan, & Stevenson, 2001): Under one condition SS choice led to less overall trial delay under another it did not. ADHD participants chose SS more than controls under both conditions. This effect was larger when SS choice reduced trial delay. ADHD SS responders were younger, had lower IQ, more conduct disorder and had siblings who were more likely to be SS responders themselves. The results support a dual component model in which both IDIR and DAv contribute to SS choice in ADHD. SS choice may be a marker of an ADHD motivational subtype.

  14. Constant-load delayed fracture test of atmospherically corroded high strength steels

    NASA Astrophysics Data System (ADS)

    Akiyama, Eiji; Matsukado, Katsuhiro; Li, Songjie; Tsuzaki, Kaneaki

    2011-07-01

    Constant load tests of circumferentially notched round bar specimens of high strength steels after cyclic corrosion test and outdoor exposure have been performed to demonstrate that delayed fracture occurs when the hydrogen content from the environment, H E, exceeds the critical hydrogen content for delayed fracture, H C. During the constant load tests the humidity around the specimen was increased in stepwise manner to increase hydrogen entry. After fracture the specimen was kept at the humidity long enough to homogenize hydrogen in the specimen and to obtain more quantitative hydrogen content by thermal desorption analysis. H E of the fractured specimens was higher than H C, and H E of the specimens not fractured was lower than H C. This result confirms that the balance between H C and H E determines the occurrence of delayed fracture and that hydrogen-content-based evaluation of susceptibility to delayed fracture is reasonable. To certify the increase of H E with increase in humidity, electrochemical hydrogen permeation test was carried out. The hydrogen permeation current density was increased especially at 98%RH. Enhancement of hydrogen entry with increase in CCT number was also shown by the test.

  15. Installation of TVC Actuators in a Two Axis Inertial Load Simulator Test Stand

    NASA Technical Reports Server (NTRS)

    Dziubanek, Adam

    2013-01-01

    This paper is about the installation of Space Shuttle Main Engines (SSME) actuators in the new Two Axis Inertial Load Simulator (ILS) at MSFC. The new test stand will support the core stage of the Space Launch System (SLS). Because of the unique geometry of the new test stand standard actuator installation procedures will not work. I have been asked to develop a design on how to install the actuators into the new test stand. After speaking with the engineers and technicians I have created a possible design solution. Using Pro Engineer design software and running my own stress calculations I have proven my design is feasible. I have learned how to calculate the stresses my design will see from this task. From the calculations I have learned I have over built the apparatus. I have also expanded my knowledge of Pro Engineer and was able to create a model of my idea.

  16. DEVELOPMENT OF AN ARMY STATIONARY AXLE TEST STAND FOR LUBRICANT EFFICIENCY EVALUATION-PART II

    DTIC Science & Technology

    2017-01-13

    value was estimated based on the engines maximum peak torque output, multiplied by the transmissions 1st gear ratio, high range transfer case ratio...efficiency test stand to allow for laboratory based investigation of Fuel Efficient Gear Oils (FEGO) and their impact on vehicle efficiency. Development...their impact on vehicle efficiency. The test stand was designed and developed with the following goals: • Provide a lower cost alternative for

  17. Amplified Detection of Prions and Other Amyloids by RT-QuIC in Diagnostics and the Evaluation of Therapeutics and Disinfectants.

    PubMed

    Caughey, Byron; Orru, Christina D; Groveman, Bradley R; Hughson, Andrew G; Manca, Matteo; Raymond, Lynne D; Raymond, Gregory J; Race, Brent; Saijo, Eri; Kraus, Allison

    2017-01-01

    Among the most sensitive, specific and practical of methods for detecting prions are the real-time quaking-induced conversion (RT-QuIC) assays. These assays exploit the fundamental self-propagating activity of prions to amplify the presence of prion seeds by as much as a trillion-fold. The reactions can detect most of the known mammalian prion diseases, often with sensitivities greater than those of animal bioassays. RT-QuIC assays are performed in multiwell plates with fluorescence detection and have now reached the sensitivity and practicality required for routine prion disease diagnostics. Some key strains of prions within particular host species, e.g., humans, cattle, and sheep, can be discriminated by comparison of RT-QuIC responses with different recombinant prion protein substrates. The most thoroughly validated diagnostic application of RT-QuIC is in the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) using cerebrospinal fluid. Diagnostic sensitivities as high as 96% can be achieved in less than 24h with specificities of 98%-100%. The ability, if needed, to also test nasal swab samples can increase the RT-QuIC sensitivity for sCJD to virtually 100%. In addition to diagnostic applications, RT-QuIC has also been used in the testing of prion disinfectants and potential therapeutics. Mechanistically related assays are also now being developed for other protein misfolding diseases. © 2017 Elsevier Inc. All rights reserved.

  18. The beautiful side of IC 335

    NASA Image and Video Library

    2017-12-08

    Hubble sees a galaxy 60 million light-years away This new NASA/ESA Hubble Space Telescope image shows the galaxy IC 335 in front of a backdrop of distant galaxies. IC 335 is part of a galaxy group containing three other galaxies, and located in the Fornax Galaxy Cluster 60 million light-years away. As seen in this image, the disk of IC 335 appears edge-on from the vantage point of Earth. This makes it harder for astronomers to classify it, as most of the characteristics of a galaxy’s morphology — the arms of a spiral or the bar across the center — are only visible on its face. Still, the 45 000 light-year-long galaxy could be classified as an S0 type. These lenticular galaxies are an intermediate state in galaxy morphological classification schemes between true spiral and elliptical galaxies. They have a thin stellar disk and a bulge, like spiral galaxies, but in contrast to typical spiral galaxies they have used up most of the interstellar medium. Only a few new stars can be created out of the material that is left and the star formation rate is very low. Hence, the population of stars in S0 galaxies consists mainly of aging stars, very similar to the star population in elliptical galaxies. As S0 galaxies have only ill-defined spiral arms they are easily mistaken for elliptical galaxies if they are seen inclined face-on or edge-on as IC 335 here. And indeed, despite the morphological differences between S0 and elliptical class galaxies, they share some common characteristics, like typical sizes and spectral features. Both classes are also deemed "early-type" galaxies, because they are evolving passively. However, while elliptical galaxies may be passively evolving when we observe them, they have usually had violent interactions with other galaxies in their past. In contrast, S0 galaxies are either aging and fading spiral galaxies, which never had any interactions with other galaxies, or they are the aging result of a single merger between two spiral galaxies

  19. Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.

  20. Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC

    NASA Image and Video Library

    1991-10-09

    The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.

  1. 30 CFR 57.22227 - Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). 57.22227 Section 57.22227 Mineral Resources MINE SAFETY AND... Ventilation § 57.22227 Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). (a...

  2. Testing the stand-alone microbeam at Columbia University.

    PubMed

    Garty, G; Ross, G J; Bigelow, A W; Randers-Pehrson, G; Brenner, D J

    2006-01-01

    The stand-alone microbeam at Columbia University presents a novel approach to biological microbeam irradiation studies. Foregoing a conventional accelerator as a source of energetic ions, a small, high-specific-activity, alpha emitter is used. Alpha particles emitted from this source are focused using a compound magnetic lens consisting of 24 permanent magnets arranged in two quadrupole triplets. Using a 'home made' 6.5 mCi polonium source, a 1 alpha particle s(-1), 10 microm diameter microbeam can, in principle, be realised. As the alpha source energy is constant, once the microbeam has been set up, no further adjustments are necessary apart from a periodic replacement of the source. The use of permanent magnets eliminates the need for bulky power supplies and cooling systems required by other types of ion lenses and greatly simplifies operation. It also makes the microbeam simple and cheap enough to be realised in any large lab. The Microbeam design as well as first tests of its performance, using an accelerator-based beam are presented here.

  3. Perceived Discrimination and Reported Delay of Pharmacy Prescriptions and Medical Tests

    PubMed Central

    Van Houtven, Courtney Harold; Voils, Corrine I; Oddone, Eugene Z; Weinfurt, Kevin P; Friedman, Joëlle Y; Schulman, Kevin A; Bosworth, Hayden B

    2005-01-01

    BACKGROUND Access to health care varies according to a person's race and ethnicity. Delaying treatment is one measure of access with important health consequences. OBJECTIVE Determine whether perceptions of unfair treatment because of race or ethnicity are associated with reported treatment delays, controlling for economic constraints, self-reported health, depression, and demographics. DESIGN Cross-sectional, observational study. PARTICIPANTS A randomly selected community sample of 181 blacks, 148 Latinos, and 193 whites in Durham County, NC. MEASUREMENTS A phone survey conducted in 2002 to assess discrimination, trust in medical care, quality of care, and access to care. Treatment delays were measured by whether or not a person reported delaying or forgoing filling a prescription and delaying or forgoing having a medical test/treatment in the past 12 months. Perceived discrimination was measured as unfair treatment in health care and as racism in local health care institutions. RESULTS The odds of delaying filling prescriptions were significantly higher (odds ratio (OR)=2.02) for persons who perceived unfair treatment, whereas the odds of delaying tests or treatments were significantly higher (OR=2.42) for persons who thought racism was a problem in health care locally. People with self-reported depression and people who reported not working had greater odds of delaying both types of care. CONCLUSIONS A prospective cohort study with both personal and macro measures of discrimination, as well as more refined measures of treatment delays, would help us better understand the relationship between perceived discrimination and treatment delays. PMID:16050850

  4. PRECISION TIME-DELAY GENERATOR

    DOEpatents

    Carr, B.J.; Peckham, V.D.

    1959-06-16

    A precision time-delay generator circuit with low jitter is described. The first thyratron has a series resonant circuit and a diode which is connected to the second thyratron. The first thyratron is triggered at the begin-ning of a time delay and a capacitor is discharged through the first thyratron and the diode, thereby, triggering the second thyratron. (T.R.H.) l6l9O The instrument described can measure pressures between sea level and 300,000 ft. The pressure- sensing transducer of the instrument is a small cylindrical tube with a thin foil of titanium-tritium fastened around the inside of the tube. Output is a digital signal which can be used for storage or telemetering more conveniently than an analog signal. (W.D.M.) l6l9l An experimental study was made on rolling contacts in the temperature range of 550 to 1000 deg F. Variables such as material composition, hardness, and operating conditions were investigated in a rolling test stand. Ball bearing tests were run to determine the effect of design parameters, bearing materials, lubricants, and operating conditions. (auth)

  5. Extending Wheeler’s delayed-choice experiment to space

    PubMed Central

    Vedovato, Francesco; Agnesi, Costantino; Schiavon, Matteo; Dequal, Daniele; Calderaro, Luca; Tomasin, Marco; Marangon, Davide G.; Stanco, Andrea; Luceri, Vincenza; Bianco, Giuseppe; Vallone, Giuseppe; Villoresi, Paolo

    2017-01-01

    Gedankenexperiments have consistently played a major role in the development of quantum theory. A paradigmatic example is Wheeler’s delayed-choice experiment, a wave-particle duality test that cannot be fully understood using only classical concepts. We implement Wheeler’s idea along a satellite-ground interferometer that extends for thousands of kilometers in space. We exploit temporal and polarization degrees of freedom of photons reflected by a fast-moving satellite equipped with retroreflecting mirrors. We observe the complementary wave- or particle-like behaviors at the ground station by choosing the measurement apparatus while the photons are propagating from the satellite to the ground. Our results confirm quantum mechanical predictions, demonstrating the need of the dual wave-particle interpretation at this unprecedented scale. Our work paves the way for novel applications of quantum mechanics in space links involving multiple photon degrees of freedom. PMID:29075668

  6. Z-2 Suit Support Stand and MKIII Suit Center of Gravity Test

    NASA Technical Reports Server (NTRS)

    Nguyen, Tuan Q.

    2014-01-01

    NASA's next generation spacesuits are the Z-Series suits, made for a range of possible exploration missions in the near future. The prototype Z-1 suit has been developed and assembled to incorporate new technologies that has never been utilized before in the Apollo suits and the Extravehicular Mobility Unit (EMU). NASA engineers tested the Z-1 suit extensively in order to developed design requirements for the new Z-2 suit. At the end of 2014, NASA will be receiving the new Z-2 suit to perform more testing and to further develop the new technologies of the suit. In order to do so, a suit support stand will be designed and fabricated to support the Z-2 suit during maintenance, sizing, and structural leakage testing. The Z-2 Suit Support Stand (Z2SSS) will be utilized for these purposes in the early testing stages of the Z-2 suit.

  7. Modified 30-second Sit to Stand test predicts falls in a cohort of institutionalized older veterans

    PubMed Central

    Chassé, Kathleen

    2017-01-01

    Physical function performance tests, including sit to stand tests and Timed Up and Go, assess the functional capacity of older adults. Their ability to predict falls warrants further investigation. The objective was to determine if a modified 30-second Sit to Stand test that allowed upper extremity use and Timed Up and Go test predicted falls in institutionalized Veterans. Fifty-three older adult Veterans (mean age = 91 years, 49 men) residing in a long-term care hospital completed modified 30-second Sit to Stand and Timed Up and Go tests. The number of falls over one year was collected. The ability of modified 30-second Sit to Stand or Timed Up and Go to predict if participants had fallen was examined using logistic regression. The ability of these tests to predict the number of falls was examined using negative binomial regression. Both analyses controlled for age, history of falls, cognition, and comorbidities. The modified 30-second Sit to Stand was significantly (p < 0.05) related to if participants fell (odds ratio = 0.75, 95% confidence interval = 0.58, 0.97) and the number of falls (incidence rate ratio = 0.82, 95% confidence interval = 0.68, 0.98); decreased repetitions were associated with increased number of falls. Timed Up and Go was not significantly (p > 0.05) related to if participants fell (odds ratio = 1.03, 95% confidence interval = 0.96, 1.10) or the number of falls (incidence rate ratio = 1.01, 95% confidence interval = 0.98, 1.05). The modified 30-second Sit to Stand that allowed upper extremity use offers an alternative method to screen for fall risk in older adults in long-term care. PMID:28464024

  8. Modified 30-second Sit to Stand test predicts falls in a cohort of institutionalized older veterans.

    PubMed

    Applebaum, Eva V; Breton, Dominic; Feng, Zhuo Wei; Ta, An-Tchi; Walsh, Kayley; Chassé, Kathleen; Robbins, Shawn M

    2017-01-01

    Physical function performance tests, including sit to stand tests and Timed Up and Go, assess the functional capacity of older adults. Their ability to predict falls warrants further investigation. The objective was to determine if a modified 30-second Sit to Stand test that allowed upper extremity use and Timed Up and Go test predicted falls in institutionalized Veterans. Fifty-three older adult Veterans (mean age = 91 years, 49 men) residing in a long-term care hospital completed modified 30-second Sit to Stand and Timed Up and Go tests. The number of falls over one year was collected. The ability of modified 30-second Sit to Stand or Timed Up and Go to predict if participants had fallen was examined using logistic regression. The ability of these tests to predict the number of falls was examined using negative binomial regression. Both analyses controlled for age, history of falls, cognition, and comorbidities. The modified 30-second Sit to Stand was significantly (p < 0.05) related to if participants fell (odds ratio = 0.75, 95% confidence interval = 0.58, 0.97) and the number of falls (incidence rate ratio = 0.82, 95% confidence interval = 0.68, 0.98); decreased repetitions were associated with increased number of falls. Timed Up and Go was not significantly (p > 0.05) related to if participants fell (odds ratio = 1.03, 95% confidence interval = 0.96, 1.10) or the number of falls (incidence rate ratio = 1.01, 95% confidence interval = 0.98, 1.05). The modified 30-second Sit to Stand that allowed upper extremity use offers an alternative method to screen for fall risk in older adults in long-term care.

  9. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies

    NASA Astrophysics Data System (ADS)

    Arunkumar, R.; Hogancamp, Kristina U.; Parsons, Michael S.; Rogers, Donna M.; Norton, Olin P.; Nagel, Brian A.; Alderman, Steven L.; Waggoner, Charles A.

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30×30×29cm3 nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5to12standardm3/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150°C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7standardm3/min, high mass concentrations (˜25mg/m3) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  10. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  11. Recent Progress in Laboratory Astrophysics and Astrochemistry Achieved with the COSmIC Facility

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2017-01-01

    We describe the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for "Cosmic Simulation Chamber" and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate various space environments such as diffuse interstellar clouds, circumstellar outflows and planetary atmospheres. COSmIC integrates a variety of state-of-the-art instruments that allow recreating simulated space conditions to generate, process and monitor cosmic analogs in the laboratory. The COSmIC experimental setup is composed of a Pulsed Discharge Nozzle (PDN) expansion, that generates a plasma in the stream of a free supersonic jet expansion, coupled to high-sensitivity, complementary in situ diagnostics: cavity ring down spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection, and Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent results obtained using COSmIC will be highlighted. In particular, the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) and in monitoring, in the laboratory, the formation of circumstellar dust grains and planetary atmosphere aerosols from their gas-phase molecular precursors. Plans for future laboratory experiments on interstellar and planetary molecules and grains will also be addressed, as well as the implications of the studies underway for astronomical observations and past and future space mission data analysis.

  12. Postural control during quiet bipedal standing in rats

    PubMed Central

    Sato, Yota; Fujiki, Soichiro; Sato, Yamato; Aoi, Shinya; Tsuchiya, Kazuo; Yanagihara, Dai

    2017-01-01

    The control of bipedal posture in humans is subject to non-ideal conditions such as delayed sensation and heartbeat noise. However, the controller achieves a high level of functionality by utilizing body dynamics dexterously. In order to elucidate the neural mechanism responsible for postural control, the present study made use of an experimental setup involving rats because they have more accessible neural structures. The experimental design requires rats to stand bipedally in order to obtain a water reward placed in a water supplier above them. Their motions can be measured in detail using a motion capture system and a force plate. Rats have the ability to stand bipedally for long durations (over 200 s), allowing for the construction of an experimental environment in which the steady standing motion of rats could be measured. The characteristics of the measured motion were evaluated based on aspects of the rats’ intersegmental coordination and power spectrum density (PSD). These characteristics were compared with those of the human bipedal posture. The intersegmental coordination of the standing rats included two components that were similar to that of standing humans: center of mass and trunk motion. The rats’ PSD showed a peak at approximately 1.8 Hz and the pattern of the PSD under the peak frequency was similar to that of the human PSD. However, the frequencies were five times higher in rats than in humans. Based on the analysis of the rats’ bipedal standing motion, there were some common characteristics between rat and human standing motions. Thus, using standing rats is expected to be a powerful tool to reveal the neural basis of postural control. PMID:29244818

  13. Molecular Hydrogen Fluorescence in IC 63

    NASA Technical Reports Server (NTRS)

    Andersson, B-G

    2005-01-01

    This grant has supported the acquisition, reduction and analysis of data targeting the structure and excitation of molecular hydrogen in the reflection nebula IC 63 and in particular the fluorescent emission seen in the UV. In addition to manpower for analyzing the FUSE data, the grant supported the (attempted) acquisition of supporting ground-based data. We proposed for and received observing time for two sets of ground based, data; narrow band imaging ([S II], [O III) at KPNO (July 2002; Observer: Burgh) and imaging spectro-photometry of several of the near-infrared rotation-vibration lines of H2 at the IRTF (October 2003; Observer: Andersson). Unfortunately, both of these runs were failures, primarily because of bad weather, and did not result in any useful data. We combined the FUSE observations with rocket borne observations of the star responsible for exciting the H2 fluorescence in IC 63: gamma Cas, and with archival HUT observations of IC 63, covering the long-wavelength part of the molecular hydrogen fluorescence.

  14. Saturn V First Stage Leaves the Dynamic Test Stand

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This photo shows the Saturn V first stage being lowered to the ground following a successful test to determine the effects of continual vibrations simulating the effects of an actual launch. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  15. HESTIA Commodities Exchange Pallet and Sounding Rocket Test Stand

    NASA Technical Reports Server (NTRS)

    Chaparro, Javier

    2013-01-01

    During my Spring 2016 internship, my two major contributions were the design of the Commodities Exchange Pallet and the design of a test stand for a 100 pounds-thrust sounding rocket. The Commodities Exchange Pallet is a prototype developed for the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) program. Under the HESTIA initiative the Commodities Exchange Pallet was developed as a method for demonstrating multi-system integration thru the transportation of In-Situ Resource Utilization produced oxygen and water to a human habitat. Ultimately, this prototype's performance will allow for future evaluation of integration, which may lead to the development of a flight capable pallet for future deep-space exploration missions. For HESTIA, my main task was to design the Commodities Exchange Pallet system to be used for completing an integration demonstration. Under the guidance of my mentor, I designed, both, the structural frame and fluid delivery system for the commodities pallet. The fluid delivery system includes a liquid-oxygen to gaseous-oxygen system, a water delivery system, and a carbon-dioxide compressors system. The structural frame is designed to meet safety and transportation requirements, as well as the ability to interface with the ER division's Portable Utility Pallet. The commodities pallet structure also includes independent instrumentation oxygen/water panels for operation and system monitoring. My major accomplishments for the commodities exchange pallet were the completion of the fluid delivery systems and the structural frame designs. In addition, parts selection was completed in order to expedite construction of the prototype, scheduled to begin in May of 2016. Once the commodities pallet is assembled and tested it is expected to complete a fully integrated transfer demonstration with the ISRU unit and the Environmental Control and Life Support System test chamber in September of 2016. In addition to the development of

  16. Vital Signs: Human Immunodeficiency Virus Testing and Diagnosis Delays - United States.

    PubMed

    Dailey, Andre F; Hoots, Brooke E; Hall, H Irene; Song, Ruiguang; Hayes, Demorah; Fulton, Paul; Prejean, Joseph; Hernandez, Angela L; Koenig, Linda J; Valleroy, Linda A

    2017-12-01

    Persons unaware of their human immunodeficiency virus (HIV) infection account for approximately 40% of ongoing transmissions in the United States. Persons are unaware of their infection because of delayed HIV diagnoses that represent substantial missed opportunities to improve health outcomes and prevent HIV transmission. Data from CDC's National HIV Surveillance System were used to estimate, among persons with HIV infection diagnosed in 2015, the median interval (and range) from infection to diagnosis (diagnosis delay), based on the first CD4 test after HIV diagnosis and a CD4 depletion model indicating disease progression and, among persons living with HIV in 2015, the percentage with undiagnosed infection. Data from CDC's National HIV Behavioral Surveillance were analyzed to determine the percentage of persons at increased risk for HIV infection who had tested in the past 12 months and who had missed opportunities for testing. An estimated 15% of persons living with HIV in 2015 were unaware of their infection. Among the 39,720 persons with HIV infection diagnosed in 2015, the estimated median diagnosis delay was 3.0 years (interquartile range = 0.7-7.8 years); diagnosis delay varied by race/ethnicity (from 2.2 years among whites to 4.2 years among Asians) and transmission category (from 2.0 years among females who inject drugs to 4.9 years among heterosexual males). Among persons interviewed through National HIV Behavioral Surveillance, 71% of men who have sex with men, 58% of persons who inject drugs, and 41% of heterosexual persons at increased risk for HIV infection reported testing in the past 12 months. In each risk group, at least two thirds of persons who did not have an HIV test had seen a health care provider in the past year. Delayed HIV diagnoses continue to be substantial for some population groups and prevent early entry to care to improve health outcomes and reduce HIV transmission to others. Health care providers and others providing HIV testing

  17. Effect of In-Flight Exercise and Extravehicular Activity on Postflight Stand Tests

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Moore, Alan D., Jr.; Fritsch-Yelle, Janice; Greenisen, Michael; Schneider, Suzanne M.; Foster, Philip P.

    2000-01-01

    The purpose of this study was to determine whether exercise performed by Space Shuttle crewmembers during short-duration spaceflights (9-16 days) affects the heart rate (HR) and blood pressure (BP) responses to standing within 2-4 hr of landing. Thirty crewmembers performed self-selected in-flight exercise and maintained exercise logs to monitor their exercise intensity and duration. A 10min stand test, preceded by at least 6 min of quiet supine rest, was completed 10- 15 d before launch (PRE) and within four hours of landing (POST). Based upon their in-flight exercise records, subjects were grouped as either high (HIex: = 3x/week, HR = 70% ,HRMax, = 20 min/session, n = 11), medium (MEDex: = 3x/week, HR = 70% HRmax, = 20 min/session, n = 10), or low (LOex: = 3x/week, HR and duration variable, n = 11) exercisers. HR and BP responses to standing were compared between groups (ANOVA, or analysis of variance, P < 0.05). There were no PRE differences between the groups in supine or standing HR and BP. Although POST supine HR was similar to PRE, all groups had an increased standing HR compared to PRE. The increase in HR upon standing was significantly greater after flight in the LOex group (36+/-5 bpm) compared to HIex or MEDex groups (25+/-1bpm; 22+/-2 bpm). Similarly, the decrease in pulse pressure (PP) from supine to standing was unchanged after spaceflight in the MEDex and HIex groups, but was significantly less in the LOex group (PRE: -9+/- 3, POST: -19+/- 4 mmHg). Thus, moderate to high levels of in-flight exercise attenuated HR and PP responses to standing after spaceflight compared.

  18. Accurate time delay technology in simulated test for high precision laser range finder

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Xiao, Wenjian; Wang, Weiming; Xue, Mingxi

    2015-10-01

    With the continuous development of technology, the ranging accuracy of pulsed laser range finder (LRF) is higher and higher, so the maintenance demand of LRF is also rising. According to the dominant ideology of "time analog spatial distance" in simulated test for pulsed range finder, the key of distance simulation precision lies in the adjustable time delay. By analyzing and comparing the advantages and disadvantages of fiber and circuit delay, a method was proposed to improve the accuracy of the circuit delay without increasing the count frequency of the circuit. A high precision controllable delay circuit was designed by combining the internal delay circuit and external delay circuit which could compensate the delay error in real time. And then the circuit delay accuracy could be increased. The accuracy of the novel circuit delay methods proposed in this paper was actually measured by a high sampling rate oscilloscope actual measurement. The measurement result shows that the accuracy of the distance simulated by the circuit delay is increased from +/- 0.75m up to +/- 0.15m. The accuracy of the simulated distance is greatly improved in simulated test for high precision pulsed range finder.

  19. Saturn Apollo Program

    NASA Image and Video Library

    1967-09-09

    This photograph depicts the F-1 engine firing in the Marshall Space Flight Center’s F-1 Engine Static Test Stand. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. It is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. The foundation of the stand is keyed into the bedrock approximately 40 feet below grade.

  20. Up, Up Up in 60 Seconds- Watch Rocket Test Stand Soar to 221-Feet Tall

    NASA Image and Video Library

    2017-01-09

    In this 60-second time-lapse video, watch structural Test Stand 4693 at NASA's Marshall Space Flight Center rise 221 feet, from the start of construction in May 2014 to its end in December 2016. Test Stand 4693 will subject the 537,000-gallon liquid hydrogen tank of the Space Launch System's massive core stage to the same stresses and pressures it must endure at launch and in flight.

  1. Cryogenic System for the Cryomodule Test Stand at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Michael J.; Hansen, Benjamin; Klebaner, Arkadiy

    This paper describes the cryogenic system for the Cryomodule Test Stand (CMTS) at the new Cryomodule Test Facility (CMTF) located at Fermilab. CMTS is designed for production testing of the 1.3 GHz and 3.9GHz cryomodules to be used in the Linac Coherent Light Source II (LCLSII), which is an upgrade to an existing accelerator at Stanford Linear Accelerator Laboratory (SLAC). This paper will focus on the cryogenic system that extends from the helium refrigeration plant to the CMTS cave. Topics covered will include component design, installation and commissioning progress, and operational plans. The paper will conclude with a description ofmore » the heat load measurement plan.« less

  2. Is the timed loaded standing test a valid measure of back muscle endurance in people with vertebral osteoporosis?

    PubMed

    Newman, M; Newman, R; Hughes, T; Vadher, K; Barker, K L

    2018-04-01

    Timed loaded standing (TLS) is a suggested measure of back muscle endurance for people with vertebral osteoporosis. Surface electromyography revealed back muscles work harder and fatigue during TLS. The test end-point and total time were associated with back fatigue. The findings help demonstrate the concurrent validity of the TLS test. The TLS test is suggested as a measure of back muscle endurance for patients with vertebral osteoporosis. However, to date, no study has demonstrated that TLS does measure back extensor or erector spinae (ES) muscle endurance. We used surface electromyography (sEMG) to investigate the performance of the thoracic ES muscles during TLS. Thirty-six people with vertebral osteoporosis with a mean age of 71.6 (range 45-86) years participated. sEMG recordings were made of the ES at T3 and T12 bilaterally during quiet standing (QS) and TLS. The relative (%) change in sEMG amplitude between conditions was compared. Fatigue was evaluated by analysing the change in median frequency (MF) of the sEMG signal during TLS, and the correlation between maximal TLS time and rate of MF decline was examined. Activity in the ES increased significantly during TLS at all electrode locations. During TLS, the MF declined at a mean rate of -24.2% per minute (95% C.I. -26.5 to -21.9%). The MF slope and test time were strongly correlated (r 2  = 0.71), and at test end, the final MF dropped to an average 89% (95% C.I. 85 to 93%) of initial MF. Twenty-eight participants (78%) reported fatigue was the main reason for stopping, and for eight (22%), it was pain. This study demonstrates that TLS challenges the ES muscles in the thoracic region and results in ES fatigue. Endurance time and the point at which the TLS test ends are strongly related to ES fatigue.

  3. NASA’s Space Launch System Engine Testing Heats Up

    NASA Image and Video Library

    2017-05-23

    NASA engineers successfully conducted the second in a series of RS-25 flight controller tests on May 23, 2017, for the world’s most-powerful rocket. The 500-second test on the A-1 Test Stand at NASA’s Stennis Space Center in Mississippi marked another milestone toward launch of NASA’s new Space Launch System (SLS) rocket on its inaugural flight, the Exploration Mission-1 (EM-1). The SLS rocket, powered by four RS-25 engines, will provide 2 million pounds of thrust and work in conjunction with two solid rocket boosters. These are former space shuttle main engines, modified to perform at a higher level and with a new controller.

  4. Urban sprawl and delayed ambulance arrival in the U.S.

    PubMed

    Trowbridge, Matthew J; Gurka, Matthew J; O'Connor, Robert E

    2009-11-01

    Minimizing emergency medical service (EMS) response time is a central objective of prehospital care, yet the potential influence of built environment features such as urban sprawl on EMS system performance is often not considered. This study measures the association between urban sprawl and EMS response time to test the hypothesis that features of sprawling development increase the probability of delayed ambulance arrival. In 2008, EMS response times for 43,424 motor-vehicle crashes were obtained from the Fatal Analysis Reporting System, a national census of crashes involving > or =1 fatality. Sprawl at each crash location was measured using a continuous county-level index previously developed by Ewing et al. The association between sprawl and the probability of a delayed ambulance arrival (> or =8 minutes) was then measured using generalized linear mixed modeling to account for correlation among crashes from the same county. Urban sprawl is significantly associated with increased EMS response time and a higher probability of delayed ambulance arrival (p=0.03). This probability increases quadratically as the severity of sprawl increases while controlling for nighttime crash occurrence, road conditions, and presence of construction. For example, in sprawling counties (e.g., Fayette County GA), the probability of a delayed ambulance arrival for daytime crashes in dry conditions without construction was 69% (95% CI=66%, 72%) compared with 31% (95% CI=28%, 35%) in counties with prominent smart-growth characteristics (e.g., Delaware County PA). Urban sprawl is significantly associated with increased EMS response time and a higher probability of delayed ambulance arrival following motor-vehicle crashes in the U.S. The results of this study suggest that promotion of community design and development that follows smart-growth principles and regulates urban sprawl may improve EMS performance and reliability.

  5. Learning to Stand: The Acceptability and Feasibility of Introducing Standing Desks into College Classrooms

    PubMed Central

    Benzo, Roberto M.; Gremaud, Allene L.; Jerome, Matthew; Carr, Lucas J.

    2016-01-01

    Prolonged sedentary behavior is an independent risk factor for multiple negative health outcomes. Evidence supports introducing standing desks into K-12 classrooms and work settings to reduce sitting time, but no studies have been conducted in the college classroom environment. The present study explored the acceptability and feasibility of introducing standing desks in college classrooms. A total of 993 students and 149 instructors completed a single online needs assessment survey. This cross-sectional study was conducted during the fall semester of 2015 at a large Midwestern University. The large majority of students (95%) reported they would prefer the option to stand in class. Most students (82.7%) reported they currently sit during their entire class time. Most students (76.6%) and instructors (86.6%) reported being in favor of introducing standing desks into college classrooms. More than half of students and instructors predicted having access to standing desks in class would improve student’s “physical health”, “attention”, and “restlessness”. Collectively, these findings support the acceptability of introducing standing desks in college classrooms. Future research is needed to test the feasibility, cost-effectiveness and efficacy of introducing standing desks in college classrooms. Such studies would be useful for informing institutional policies regarding classroom designs. PMID:27537901

  6. The jet-ISM interactions in IC 5063

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Wagner, Alexander Y.; Bicknell, Geoffrey V.; Morganti, Raffaella; Oosterloo, Tom; Nesvadba, Nicole; Sutherland, Ralph S.

    2018-05-01

    The interstellar medium of the radio galaxy IC 5063 is highly perturbed by an AGN jet expanding in the gaseous disc of the galaxy. We model this interaction with relativistic hydrodynamic simulations and multiphase initial conditions for the interstellar medium and compare the results with recent observations. As the jets flood through the intercloud channels of the disc, they ablate, accelerate, and disperse clouds to velocities exceeding 400 km s-1. Clouds are also destroyed or displaced in bulk from the central regions of the galaxy. Our models with jet powers of 1044 and 1045 erg s-1 are capable of reproducing many of the observed features in the position velocity diagram of IC 5063, and confirm the notion that the jet is responsible for the strongly perturbed gas dynamics seen in the ionized, neutral, and molecular gas phases. In our simulations, we also see strong venting of the jet plasma perpendicular to the disc, which entrains clumps and diffuse filaments into the halo of the galaxy. Our simulations are the first 3D hydrodynamic simulations of the jet and interstellar matter of IC 5063.

  7. Advances in Interstellar and Planetary Laboratory Astrophysics with Ames’ COSmIC Facility

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2017-06-01

    The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow forming, processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostics tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular the advances that have been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [4] and planetary atmospheres [5, 6]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs will also be addressed as well as the implications of the on-going studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU S251, Kwok & Sandford eds.CUP, 4, 357 (2008).[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J., Biennier L., Beletsky Y., In-Ok Song, The

  8. Delay in reviewing test results prolongs hospital length of stay: a retrospective cohort study.

    PubMed

    Ong, Mei-Sing; Magrabi, Farah; Coiera, Enrico

    2018-05-16

    Failure in the timely follow-up of test results has been widely documented, contributing to delayed medical care. Yet, the impact of delay in reviewing test results on hospital length of stay (LOS) has not been studied. We examine the relationship between laboratory tests review time and hospital LOS. A retrospective cohort study of inpatients admitted to a metropolitan teaching hospital in Sydney, Australia, between 2011 and 2012 (n = 5804). Generalized linear models were developed to examine the relationship between hospital LOS and cumulative clinician read time (CRT), defined as the time taken by clinicians to review laboratory test results performed during an inpatient stay after they were reported in the computerized test reporting system. The models were adjusted for patients' age, sex, and disease severity (measured by the Charlson Comorbidity index), the number of test panels performed, the number of unreviewed tests pre-discharge, and the cumulative laboratory turnaround time (LTAT) of tests performed during an inpatient stay. Cumulative CRT is significantly associated with prolonged LOS, with each day of delay in reviewing test results increasing the likelihood of prolonged LOS by 13.2% (p < 0.0001). Restricting the analysis to tests with abnormal results strengthened the relationship between cumulative CRT and prolonged LOS, with each day of delay in reviewing test results increasing the likelihood of delayed discharge by 33.6% (p < 0.0001). Increasing age, disease severity and total number of tests were also significantly associated with prolonged LOS. Increasing number of unreviewed tests was negatively associated with prolonged LOS. Reducing unnecessary hospital LOS has become a critical health policy goal as healthcare costs escalate. Preventing delay in reviewing test results represents an important opportunity to address potentially avoidable hospital stays and unnecessary resource utilization.

  9. Assessing fitness to stand trial: the utility of the Fitness Interview Test (revised edition).

    PubMed

    Zapf, P A; Roesch, R; Viljoen, J L

    2001-06-01

    In Canada most evaluations of fitness to stand trial are conducted on an inpatient basis. This costs time and money, and deprives those defendants remanded for evaluation of liberty. This research assessed the predictive efficiency of the Fitness Interview Test, revised edition (FIT) as a screening instrument for fitness to stand trial. We compared decisions about fitness to stand trial, based on the FIT, with the results of institution-based evaluations for 2 samples of men remanded for inpatient fitness assessments. The FIT demonstrates excellent utility as a screening instrument. The FIT shows good sensitivity and negative predictive power, which suggests that it can reliably screen those individuals who are clearly fit to stand trial, before they are remanded to an inpatient facility for a fitness assessment. We discuss the implications for evaluating fitness to stand trial, particularly in terms of the need for community-based alternatives to traditional forensic assessments.

  10. Comparison of the diagnostic accuracy of a rapid immunochromatographic test and the rapid plasma reagin test for antenatal syphilis screening in Mozambique.

    PubMed Central

    Montoya, Pablo J.; Lukehart, Sheila A.; Brentlinger, Paula E.; Blanco, Ana J.; Floriano, Florencia; Sairosse, Josefa; Gloyd, Stephen

    2006-01-01

    OBJECTIVE: Programmes to control syphilis in developing countries are hampered by a lack of laboratory services, delayed diagnosis, and doubts about current screening methods. We aimed to compare the diagnostic accuracy of an immunochromatographic strip (ICS) test and the rapid plasma reagin (RPR) test with the combined gold standard (RPR, Treponema pallidum haemagglutination assay and direct immunofluorescence stain done at a reference laboratory) for the detection of syphilis in pregnancy. METHODS: We included test results from 4789 women attending their first antenatal visit at one of six health facilities in Sofala Province, central Mozambique. We compared diagnostic accuracy (sensitivity, specificity, and positive and negative predictive values) of ICS and RPR done at the health facilities and ICS performed at the reference laboratory. We also made subgroup comparisons by human immunodeficiency virus (HIV) and malaria status. FINDINGS: For active syphilis, the sensitivity of the ICS was 95.3% at the reference laboratory, and 84.1% at the health facility. The sensitivity of the RPR at the health facility was 70.7%. Specificity and positive and negative predictive values showed a similar pattern. The ICS outperformed RPR in all comparisons (P<0.001). CONCLUSION: The diagnostic accuracy of the ICS compared favourably with that of the gold standard. The use of the ICS in Mozambique and similar settings may improve the diagnosis of syphilis in health facilities, both with and without laboratories. PMID:16501726

  11. The Second Stage of a Saturn V Ready For Test

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This Saturn V S-II (second) stage is being lifted into position for a test at the Vehicle Assembly Building at the Kennedy Space Center. When the Saturn V booster stage (S-IC) burned out and dropped away, power for the Saturn was provided by the 82-foot-long and 33-foot-diameter S-II stage. Developed by the Space Division of North American Aviation under the direction of the Marshall Space Flight Center, the stage utilized five J-2 engines, each producing 200,000 pounds of thrust. The engines used liquid oxygen and liquid hydrogen as propellants. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  12. Incorporating time-delays in S-System model for reverse engineering genetic networks.

    PubMed

    Chowdhury, Ahsan Raja; Chetty, Madhu; Vinh, Nguyen Xuan

    2013-06-18

    In any gene regulatory network (GRN), the complex interactions occurring amongst transcription factors and target genes can be either instantaneous or time-delayed. However, many existing modeling approaches currently applied for inferring GRNs are unable to represent both these interactions simultaneously. As a result, all these approaches cannot detect important interactions of the other type. S-System model, a differential equation based approach which has been increasingly applied for modeling GRNs, also suffers from this limitation. In fact, all S-System based existing modeling approaches have been designed to capture only instantaneous interactions, and are unable to infer time-delayed interactions. In this paper, we propose a novel Time-Delayed S-System (TDSS) model which uses a set of delay differential equations to represent the system dynamics. The ability to incorporate time-delay parameters in the proposed S-System model enables simultaneous modeling of both instantaneous and time-delayed interactions. Furthermore, the delay parameters are not limited to just positive integer values (corresponding to time stamps in the data), but can also take fractional values. Moreover, we also propose a new criterion for model evaluation exploiting the sparse and scale-free nature of GRNs to effectively narrow down the search space, which not only reduces the computation time significantly but also improves model accuracy. The evaluation criterion systematically adapts the max-min in-degrees and also systematically balances the effect of network accuracy and complexity during optimization. The four well-known performance measures applied to the experimental studies on synthetic networks with various time-delayed regulations clearly demonstrate that the proposed method can capture both instantaneous and delayed interactions correctly with high precision. The experiments carried out on two well-known real-life networks, namely IRMA and SOS DNA repair network in

  13. Phase and group delay of S-band megawatt Cassegrain diplexer and S-band megawatt transmit filter

    NASA Technical Reports Server (NTRS)

    Lay, R.

    1977-01-01

    The phase characteristics and group delay of the S-band Megawatt Cassegrain Diplexer (MCD) and S-band Megawatt Transmit Filter (MTF) are reported. These phase measurements on the MCD and MTF were done in response to the need to obtain the total DSS hardware ground delay required for very long baseline interferometry and ranging radio metric measurements.

  14. [Diagnostic evaluation of the developmental level in children identified at risk of delay through the Child Development Evaluation Test].

    PubMed

    Rizzoli-Córdoba, Antonio; Campos-Maldonado, Martha Carmen; Vélez-Andrade, Víctor Hugo; Delgado-Ginebra, Ismael; Baqueiro-Hernández, César Iván; Villasís-Keever, Miguel Ángel; Reyes-Morales, Hortensia; Ojeda-Lara, Lucía; Davis-Martínez, Erika Berenice; O'Shea-Cuevas, Gabriel; Aceves-Villagrán, Daniel; Carrasco-Mendoza, Joaquín; Villagrán-Muñoz, Víctor Manuel; Halley-Castillo, Elizabeth; Sidonio-Aguayo, Beatriz; Palma-Tavera, Josuha Alexander; Muñoz-Hernández, Onofre

    The Child Development Evaluation (or CDE Test) was developed in Mexico as a screening tool for child developmental problems. It yields three possible results: normal, slow development or risk of delay. The modified version was elaborated using the information obtained during the validation study but its properties according to the base population are not known. The objective of this work was to establish diagnostic confirmation of developmental delay in children 16- to 59-months of age previously identified as having risk of delay through the CDE Test in primary care facilities. A population-based cross-sectional study was conducted in one Mexican state. CDE test was administered to 11,455 children 16- to 59-months of age from December/2013 to March/2014. The eligible population represented the 6.2% of the children (n=714) who were identified at risk of delay through the CDE Test. For inclusion in the study, a block randomization stratified by sex and age group was performed. Each participant included in the study had a diagnostic evaluation using the Battelle Development Inventory, 2 nd edition. From the 355 participants included with risk of delay, 65.9% were male and 80.2% were from rural areas; 6.5% were false positives (Total Development Quotient ˃90) and 6.8% did not have any domain with delay (Domain Developmental Quotient <80). The proportion of delay for each domain was as follows: communication 82.5%; cognitive 80.8%; social-personal 33.8%; motor 55.5%; and adaptive 41.7%. There were significant differences in the percentages of delay both by age and by domain/subdomain evaluated. In 93.2% of the participants, developmental delay was corroborated in at least one domain evaluated. Copyright © 2015 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  15. Leveraging delay discounting for health: Can time delays influence food choice?

    PubMed

    Appelhans, Bradley M; French, Simone A; Olinger, Tamara; Bogucki, Michael; Janssen, Imke; Avery-Mamer, Elizabeth F; Powell, Lisa M

    2018-07-01

    Delay discounting, the tendency to choose smaller immediate rewards over larger delayed rewards, is theorized to promote consumption of immediately rewarding but unhealthy foods at the expense of long-term weight maintenance and nutritional health. An untested implication of delay discounting models of decision-making is that selectively delaying access to less healthy foods may promote selection of healthier (immediately available) alternatives, even if they may be less desirable. The current study tested this hypothesis by measuring healthy versus regular vending machine snack purchasing before and during the implementation of a 25-s time delay on the delivery of regular snacks. Purchasing was also examined under a $0.25 discount on healthy snacks, a $0.25 tax on regular snacks, and the combination of both pricing interventions with the 25-s time delay. Across 32,019 vending sales from three separate vending locations, the 25-s time delay increased healthy snack purchasing from 40.1% to 42.5%, which was comparable to the impact of a $0.25 discount (43.0%). Combining the delay and the discount had a roughly additive effect (46.0%). However, the strongest effects were seen under the $0.25 tax on regular snacks (53.7%) and the combination of the delay and the tax (50.2%). Intervention effects varied substantially between vending locations. Importantly, time delays did not harm overall vending sales or revenue, which is relevant to the real-world feasibility of this intervention. More investigation is needed to better understand how the impact of time delays on food choice varies across populations, evaluate the effects of time delays on beverage vending choices, and extend this approach to food choices in contexts other than vending machines. ClinicalTrials.gov, NCT02359916. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Orthostatic function during a stand test before and after head-up or head-down bedrest

    NASA Technical Reports Server (NTRS)

    Lathers, Claire M.; Diamandis, Peter H.; Riddle, Jeanne M.; Mukai, Chiaki; Elton, Kay F.; Bungo, Michael W.; Charles, John B.

    1991-01-01

    The effects of head-down or head-up bedrest at -5, +10, +20, or +42 deg (simulating 0, 1/6, 1/3, and 2/3 g, respectively) for 6 hrs on four different days on the orthostatic tolerance were investigated by measuring relevant physiological reactions to orthostatic test taken before and after bedrest sessions. The multivariate analysis of variance statistical analyses indicates that there was no angle effect on any of the cardiovascular parameters monitored during the last 3 min of the stand test, suggesting that partial gravity loads would have no effect on the cardiovascular deconditioning exhibited postflight. There was, however, a significant elevation in the heart rate post-bedrest, and the heart rate increased on standing. Results from the stand test pre- and post-bedrest at -5 deg (but not at +10, +20, and +42 deg) were similar to those observed after space flight.

  17. ASASSN-16fp (SN 2016coi): a transitional supernova between Type Ic and broad-lined Ic

    NASA Astrophysics Data System (ADS)

    Kumar, Brajesh; Singh, A.; Srivastav, S.; Sahu, D. K.; Anupama, G. C.

    2018-01-01

    We present results based on a well-sampled optical (UBVRI) and ultraviolet (Swift/UVOT) imaging, and low-resolution optical spectroscopic follow-up observations of the nearby Type Ic supernova (SN) ASASSN-16fp (SN 2016coi). The SN was monitored during the photospheric phase (-10 to +33 d with respect to the B-band maximum light). The rise to maximum light and early post-maximum decline of the light curves are slow. The peak absolute magnitude (MV = -17.7 ± 0.2 mag) of ASASSN-16fp is comparable with broad-lined Ic SN 2002ap, SN 2012ap and transitional Ic SN 2004aw but considerably fainter than the gamma-ray burst/X-ray flash associated SNe (e.g. SN 1998bw, 2006aj). Similar to the light curve, the spectral evolution is also slow. ASASSN-16fp shows distinct photospheric phase spectral lines along with the C II features. The expansion velocity of the ejecta near maximum light reached ∼16 000 km s-1 and settled to ∼8000 km s-1, ∼1 month post-maximum. Analytical modelling of the quasi-bolometric light curve of ASASSN-16fp suggests that ∼0.1 M⊙ 56Ni mass was synthesized in the explosion, with a kinetic energy of 6.9^{+1.5}_{-1.3} × 1051 erg and total ejected mass of ∼4.5 ± 0.3 M⊙.

  18. iPhone Sensors in Tracking Outcome Variables of the 30-Second Chair Stand Test and Stair Climb Test to Evaluate Disability: Cross-Sectional Pilot Study.

    PubMed

    Adusumilli, Gautam; Joseph, Solomon Eben; Samaan, Michael A; Schultz, Brooke; Popovic, Tijana; Souza, Richard B; Majumdar, Sharmila

    2017-10-27

    Performance tests are important to characterize patient disabilities and functional changes. The Osteoarthritis Research Society International and others recommend the 30-second Chair Stand Test and Stair Climb Test, among others, as core tests that capture two distinct types of disability during activities of daily living. However, these two tests are limited by current protocols of testing in clinics. There is a need for an alternative that allows remote testing of functional capabilities during these tests in the osteoarthritis patient population. Objectives are to (1) develop an app for testing the functionality of an iPhone's accelerometer and gravity sensor and (2) conduct a pilot study objectively evaluating the criterion validity and test-retest reliability of outcome variables obtained from these sensors during the 30-second Chair Stand Test and Stair Climb Test. An iOS app was developed with data collection capabilities from the built-in iPhone accelerometer and gravity sensor tools and linked to Google Firebase. A total of 24 subjects performed the 30-second Chair Stand Test with an iPhone accelerometer collecting data and an external rater manually counting sit-to-stand repetitions. A total of 21 subjects performed the Stair Climb Test with an iPhone gravity sensor turned on and an external rater timing the duration of the test on a stopwatch. App data from Firebase were converted into graphical data and exported into MATLAB for data filtering. Multiple iterations of a data processing algorithm were used to increase robustness and accuracy. MATLAB-generated outcome variables were compared to the manually determined outcome variables of each test. Pearson's correlation coefficients (PCCs), Bland-Altman plots, intraclass correlation coefficients (ICCs), standard errors of measurement, and repeatability coefficients were generated to evaluate criterion validity, agreement, and test-retest reliability of iPhone sensor data against gold-standard manual

  19. Global developmental delay in guanidionacetate methyltransferase deficiency: differences in formal testing and clinical observation.

    PubMed

    Verbruggen, Krijn T; Knijff, Wilma A; Soorani-Lunsing, Roelineke J; Sijens, Paul E; Verhoeven, Nanda M; Salomons, Gajja S; Goorhuis-Brouwer, Siena M; van Spronsen, Francjan J

    2007-09-01

    Guanidinoacetate N-methyltransferase (GAMT) deficiency is a defect in the biosynthesis of creatine (Cr). So far, reports have not focused on the description of developmental abilities in this disorder. Here, we present the result of formal testing of developmental abilities in a GAMT-deficient patient. Our patient, a 3-year-old boy with GAMT deficiency, presented clinically with a severe language production delay and nearly normal nonverbal development. Treatment with oral Cr supplementation led to partial restoration of the cerebral Cr concentration and a clinically remarkable acceleration of language production development. In contrast to clinical observation, formal testing showed a rather harmonic developmental delay before therapy and a general improvement, but no specific acceleration of language development after therapy. From our case, we conclude that in GAMT deficiency language delay is not always more prominent than delays in other developmental areas. The discrepancy between the clinical impression and formal testing underscores the importance of applying standardized tests in children with developmental delays. Screening for Cr deficiency by metabolite analysis of body fluids or proton magnetic resonance spectroscopy of the brain deficiency should be considered in any child with global developmental delay/mental retardation lacking clues for an alternative etiology.

  20. FERMILAB CRYOMODULE TEST STAND RF INTERLOCK SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Troy; Diamond, J. S.; McDowell, D.

    2016-10-12

    An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of amore » fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.« less

  1. A radial velocity survey of the open cluster IC 4665

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.; Giampapa, Mark S.

    1994-01-01

    A radial velocity survey of the open cluster IC 4665 is reported for a group of candidate members previously identified on the basis of proper motion and photometry. Of those candidates observed, 20 out of 42 have radial velocities consistent with membership; these cluster members populate the F5-K0 dwarf region and represent the first relatively conclusive membership determinations for such solar-type stars in IC 4665. Three new spectroscopic binary members of the cluster have been identified. Rotational velocities have also been derived; the v sin i distribution among IC 4665 members reveals that most apparent G dwarf members of IC 4665 are seen to exhibit substantial rotation (v sin i greater than 10 km/s). When compared to evolutionary isochrones, the current list of intermediate-mass members appears to support earlier suggestions that IC 4665 has an age comparable to the Pleiades.

  2. Guidance on the Stand Down, Mothball, and Reactivation of Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Volkman, Gregrey T.; Dunn, Steven C.

    2013-01-01

    The development of aerospace and aeronautics products typically requires three distinct types of testing resources across research, development, test, and evaluation: experimental ground testing, computational "testing" and development, and flight testing. Over the last twenty plus years, computational methods have replaced some physical experiments and this trend is continuing. The result is decreased utilization of ground test capabilities and, along with market forces, industry consolidation, and other factors, has resulted in the stand down and oftentimes closure of many ground test facilities. Ground test capabilities are (and very likely will continue to be for many years) required to verify computational results and to provide information for regimes where computational methods remain immature. Ground test capabilities are very costly to build and to maintain, so once constructed and operational it may be desirable to retain access to those capabilities even if not currently needed. One means of doing this while reducing ongoing sustainment costs is to stand down the facility into a "mothball" status - keeping it alive to bring it back when needed. Both NASA and the US Department of Defense have policies to accomplish the mothball of a facility, but with little detail. This paper offers a generic process to follow that can be tailored based on the needs of the owner and the applicable facility.

  3. Application of intelligent sensors in the integrated systems health monitoring of a rocket test stand

    NASA Astrophysics Data System (ADS)

    Mahajan, Ajay; Chitikeshi, Sanjeevi; Utterbach, Lucas; Bandhil, Pavan; Figueroa, Fernando

    2006-05-01

    This paper describes the application of intelligent sensors in the Integrated Systems Health Monitoring (ISHM) as applied to a rocket test stand. The development of intelligent sensors is attempted as an integrated system approach, i.e. one treats the sensors as a complete system with its own physical transducer, A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements associated with the rocket tests stands. These smart elements can be sensors, actuators or other devices. Though the immediate application is the monitoring of the rocket test stands, the technology should be generally applicable to the ISHM vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent sensors (PIS) and Virtual Intelligent Sensors (VIS).

  4. Mechanical Design, Simulation, and Testing of Self-Aligning Gaussian Telescope and Stand for ITER LFS Reflectometer Diagnostic

    NASA Astrophysics Data System (ADS)

    Broughton, Rachel; Gomez, Michael; Zolfaghari, Ali; Morris, Lewis

    2016-10-01

    A self-aligning Gaussian telescope has been designed to compensate for the effect of movement in the ITER vacuum vessel on the transmission line. The purpose of the setup is to couple microwaves into and out of the vessel across the vacuum windows while allowing for both slow movements of the vessel, due to thermal growth, and rapid movements, due to vibrations and disruptions. Additionally, a test stand has been designed specifically to hold this telescope in order to imitate these movements. Consequently, this will allow for the assessment of the efficacy in applying the self-aligning Gaussian telescope approach. The motions of the test stand, as well as the stress on the telescope mechanism, have been virtually simulated using ANSYS workbench. A prototype of this test stand and self-aligning telescope will be built using a combination of custom machined parts and ordered parts. The completed mechanism will be tested at the lab in four different ways: slow single- and multi-direction movements, rapid multi-direction movement, functional laser alignment and self-aligning tests, and natural frequency tests. Once the prototype successfully passes all requirements, it will be tested with microwaves in the LFSR transmission line test stand at General Atomics. This work is supported by US DOE Contract No. DE-AC02-09CH11466.

  5. Hip Strength Testing of Soccer Players With Long-Standing Hip and Groin Pain: What are the Clinical Implications of Pain During Testing?

    PubMed

    Rafn, Bolette S; Tang, Lars; Nielsen, Martin P; Branci, Sonia; Hölmich, Per; Thorborg, Kristian

    2016-05-01

    To investigate whether self-reported pain during hip strength testing correlates to a large degree with hip muscle strength in soccer players with long-standing unilateral hip and groin pain. Cross-sectional study. Clinical assessments at Sports Orthopaedic Research Center-Copenhagen (SORC-C), Arthroscopic Centre Amager, Copenhagen University Hospital, Denmark. Twenty-four male soccer players with unilateral long-standing hip and groin pain. The soccer players performed 5 reliable hip muscle strength tests (isometric hip flexion, adduction, abduction, isometric hip flexion-modified Thomas test, and eccentric hip adduction). Muscle strength was measured with a hand-held dynamometer, and the players rated the pain during testing on a numerical rating scale (0-10). In 4 tests (isometric hip adduction, abduction, flexion, and eccentric adduction), no significant correlations were found between pain during testing and hip muscle strength (Spearman rho = -0.28 to 0.06, P = 0.09-0.39). Isometric hip flexion (modified Thomas test position) showed a moderate negative correlation between pain and hip muscle strength (Spearman rho = -0.44, P = 0.016). Self-reported pain during testing does not seem to correlate with the majority of hip muscle strength tests used in soccer players with long-standing hip and groin pain.

  6. Use of optical technique for inspection of warpage of IC packages

    NASA Astrophysics Data System (ADS)

    Toh, Siew-Lok; Chau, Fook S.; Ong, Sim Heng

    2001-06-01

    The packaging of IC packages has changed over the years, form dual-in-line, wire-bond, and pin-through-hole in printed wiring board technologies in the 1970s to ball grid array, chip scale and surface mount technologies in the 1990s. Reliability has been a big problem for manufacturers for some moisture-sensitive packages. One of the potential problems in plastic IC packages is moisture-induced popcorn effect which can arise during the reflow process. Shearography is a non-destructive inspection technique that may be used to detect the delamination and warpage of IC packages. It is non-contacting and permits a full-field observation of surface displacement derivatives. Another advantage of this technique is that it is able to give the real-time formation of the fringes which indicate flaws in the IC package under real-time simulation condition of Surface Mount Technology (SMT) IR reflow profile. It is extremely fast and convenient to study the true behavior of the packaging deformation during the SMT process. It can be concluded that shearography has the potential for the real- time detection, in situ and non-destructive inspection of IC packages during the surface mount process.

  7. Concerns about covert HIV testing are associated with delayed presentation of suspected malaria in Ethiopian children: a cross-sectional study

    PubMed Central

    2014-01-01

    Background Early diagnosis is important in preventing mortality from malaria. The hypothesis that guardians’ fear of covert human immunodeficiency virus (HIV) testing delays presentation of children with suspected malaria was tested. Methods The study design is a cross-sectional survey. The study population consisted of guardians of children with suspected malaria who presented to health centres in Oromia Region, Ethiopia. Data were collected on attitudes to HIV testing and the duration of children’s symptoms using interview administered questionnaires. Results Some 830 individuals provided data representing a response rate of 99% of eligible participants. Of these, 423 (51%) guardians perceived that HIV testing was routinely done on blood donated for malaria diagnosis, and 353 (43%) were aware of community members who delayed seeking medical advice because of these concerns. Children whose guardians suspected that blood was covertly tested for HIV had longer median delay to presentation for evaluation at health centres compared to those children whose guardians did not hold this belief (three days compared to two days, p < 0.001). Children whose guardians were concerned about covert HIV testing were at a higher odds of a prolonged delay before being seen at a health centre (odds ratio 1.73, 95% confidence intervals: 1.10 to 270 for a delay of ≥3 days compared to those seen in ≤2 days). Conclusion Children whose guardians believed that covert testing for HIV was routine clinical practice presented later for investigation of suspected malaria. This may account for up to 14% of the delay in presentation and represents a reversible risk factor for suboptimal management of malaria. PMID:25098338

  8. Automated Synthesis of Long Communication Delays for Testing

    NASA Technical Reports Server (NTRS)

    Seibert, Marc; McKim, James

    2005-01-01

    Planetary-Ohio Network Emulator (p- ONE) is a computer program for local laboratory testing of high bandwidth data-communication systems subject to long delays in propagation over interplanetary distances. p-ONE is installed on a personal computer connected to two bidirectional Ethernet interfaces, denoted A and B, that represent local-area networks at opposite ends of a long propagation path. Traffic that is to be passed between A and B is encapsulated in IP (Internet Protocol) packets (e.g., User Data Protocol, UDP). Intercepting this traffic between A and B in both directions, p-ONE time-tags each packet and stores it in memory or on the hard disk of the computer for a user-specified interval that equals the propagation delay to be synthesized. At the expiration of its storage time, each such packet is sent to its destination (that is, if it was received from A, it is sent to B, or vice versa). The accuracy of the p-ONE software is very high, with zero packet loss through the system and negligible latency. Optionally, p-ONE can be configured to delay all network traffic to and from all network addresses on each Ethernet interface or to selectively delay traffic between specific addresses or traffic of specific types. p-ONE works well with Linux and is also designed to be compatible with other operating systems.

  9. Separate physical tests of lower extremities and postural control are associated with cognitive impairment. Results from the general population study Good Aging in Skåne (GÅS-SNAC)

    PubMed Central

    Bramell-Risberg, Eva; Jarnlo, Gun-Britt; Elmståhl, Sölve

    2012-01-01

    Purpose To investigate whether separate physical tests of the lower extremities, that assess movement speed and postural control, were associated with cognitive impairment in older community-dwelling subjects. Subjects and methods In this population-based, cross-sectional, cohort study, the following items were assessed: walking speed, walking 2 × 15 m, Timed Up and Go (TUG) at self-selected and fast speeds, one-leg standing, and performance in step- and five chair-stand tests. The study comprised 2115 subjects, aged 60–93 years, with values adjusted for demographics, health-related factors, and comorbidity. Global cognitive function was assessed using the Mini-Mental State Examination (MMSE), and cognitive impairment was defined by the three-word delayed recall task of the MMSE. Subjects who scored 0/3 on the three-word delayed recall task were defined as cases (n = 328), those who scored 1/3 were defined as intermediates (n = 457), and the others as controls (n = 1330). Results Physical tests performed rapidly were significantly associated with cognitive impairment; this was the case in increased time of five chair stands (P = 0.009, odds ratio [OR] = 1.03), TUG (P < 0.001, OR = 1.11) and walking 2 × 15 m (P < 0.001, OR = 1.05). Inability to stand on one leg for 10 seconds was associated with increased risk of being a case (P < 0.001, OR = 1.78), compared to those able to stand for 30 seconds or longer. More steps during the step test (P < 0.001, OR = 0.95) and higher fast walking speed (P < 0.001, OR = 0.51) were associated with lower risk of being a case. Conclusion Slower movements and reduced postural control were related to an increased risk of being cognitively impaired. All tests that were performed rapidly were able to separate cases from controls. These findings suggest that physical tests that are related to lower extremity and postural control, emphasizing velocity, might be useful in investigating relationships between physical and cognitive

  10. Interaural delay sensitivity and the classification of low best-frequency binaural responses in the inferior colliculus of the guinea pig.

    PubMed

    McAlpine, D; Jiang, D; Palmer, A R

    1996-08-01

    Monaural and binaural response properties of single units in the inferior colliculus (IC) of the guinea pig were investigated. Neurones were classified according to the effect of monaural stimulation of either ear alone and the effect of binaural stimulation. The majority (309/334) of IC units were excited (E) by stimulation of the contralateral ear, of which 41% (127/309) were also excited by monaural ipsilateral stimulation (EE), and the remainder (182/309) were unresponsive to monaural ipsilateral stimulation (EO). For units with best frequencies (BF) up to 3 kHz, similar proportions of EE and EO units were observed. Above 3 kHz, however, significantly more EO than EE units were observed. Units were also classified as either facilitated (F), suppressed (S), or unaffected (O) by binaural stimulation. More EO than EE units were suppressed or unaffected by binaural stimulation, and more EE than EO units were facilitated. There were more EO/S units above 1.5 kHz than below. Binaural beats were used to examine the interaural delay sensitivity of low-BF (BF < 1.5 kHz) units. The distributions of preferred interaural phases and, by extension, interaural delays, resembled those seen in other species, and those obtained using static interaural delays in the IC of the guinea pig. Units with best phase (BP) angles closer to zero generally showed binaural facilitation, whilst those with larger BPs generally showed binaural suppression. The classification of units based upon binaural stimulation with BF tones was consistent with their interaural-delay sensitivity. Characteristic delays (CD) were examined for 96 low-BF units. A clear relationship between BF and CD was observed. CDs of units with very low BFs (< 200 Hz) were long and positive, becoming progressively shorter as BF increased until, for units with BFs between 400 and 800 Hz, the majority of CDs were negative. Above 800 Hz, both positive and negative CDs were observed. A relationship between CD and characteristic

  11. Lightning Protection and Structural Bonding for the B2 Test Stand

    NASA Technical Reports Server (NTRS)

    Kinard, Brandon

    2015-01-01

    With the privatization of the space industry, NASA has entered a new era. To explore deeper parts of the solar system, NASA is developing a new spacecraft, the Space Launch System (SLS), capable of reaching these destinations, such as an asteroid or Mars. However, the test stand that is capable of testing the stage has been unused for many years. In addition to the updating/repair of the stand, more steel is being added to fully support the SLS. With all these modifications, the lightning protection system must be brought up to code to assure the protection of all personnel and assets. Structural bonding is a part of the lightning protection system. The focus of this project was to assure proper structural bonding. To begin, all relevant technical standards and the construction specifications were reviewed. This included both the specifications for the lightning protection and for general construction. The drawings were reviewed as well. From the drawings, bolted structural joints were reviewed to determine whether bonding was necessary. Several bolted joints were determined to need bonding according to the notes in the drawings. This exceeds the industry standards. The bolted joints are an electrically continuous joint. During tests, the stand experiences heavy vibration that may weaken the continuity of the bolted joint. Therefore, the secondary bonding is implemented to ensure that the structural joint has low resistance. If the structural joint has a high resistance because of corrosion, a potential gradient can occur that can cause a side flash. Damage, injury, or death can occur from a side flash so they are to be prevented. A list of the identified structural joints was compiled and sent to the contractor to be bonded. That covers the scope of this project.

  12. Second Stage (S-II) Arrives at Marshall Space Flight Center For Testing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The business end of a Second Stage (S-II) slowly emerges from the shipping container as workers prepare to transport the Saturn V component to the testing facility at MSFC. The Second Stage (S-II) underwent vibration and engine firing tests. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  13. Economics of replacing young-growth ponderosa pine stands . . . a case study

    Treesearch

    Dennis E. Teeguarden

    1968-01-01

    Compares the expected capital value growth of five ponderosa pine stands (70 to 80 years old) on the Challenge Experimental Forest, Yuba County, Calif., with the cost of delaying harvest (defined as sum of stock-holding and land-holding costs). Suggests that replacement of all five stands would be financially desirable under constant stumpage prices. Recommends...

  14. Cryomdoule Test Stand Reduced-Magnetic Support Design at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, Mike; Chandrasekaran, Saravan Kumar; Crawford, Anthony

    2016-06-01

    In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These devices will be tested at Fermilab's Cryomodule Test Facility (CMTF) within the Cryomodule Test Stand (CMTS-1) cave. The problem of magnetic pollution became one of major issues during design stage of the LCLS-II cryomodule as the average quality factor of the accelerating cavities is specified to be 2.7 x 10¹⁰. One of the possible ways to mitigate the effect of stray magnetic fields and tomore » keep it below the goal of 5 mGauss involves the application of low permeable materials. Initial permeability and magnetic measurement studies regarding the use of 316L stainless steel material indicated that cold work (machining) and heat affected zones from welding would be acceptable.« less

  15. Test stand for gas-discharge chamber of TEA CO2 lasers with pulse-periodical energy supply

    NASA Astrophysics Data System (ADS)

    Shorin, Vladimyr P.; Bystrov, N. D.; Zhuravlyov, O. A.; Nekrasov, V. V.

    1997-05-01

    Test stand for function optimization (incomposition of gas- dynamic circuit (GDC) of operating characteristics of full- size discharge chamber of flowing TEA carbon-dioxide lasers (power up to 100 kW) was created in Samara State Aerospace University (former Kuibyshev Aviation Institute). Test stand includes an inside-type GDC, low inductive generators of voltage pulses of preionization and main discharges, two-flow rate system of gas supply and noise immunity diagnostic system. Module construction of units of GDC, power supplies of preionization and main discharges allows to change configuration of stand's systems for providing given properties of gas flow and its energy supply. This test stand can also be used in servicing of laser system. The diagnostic system of this stand allows us to analyze energy properties of discharge by means of oscillographic measurements of voltage and current with following processing of discharges' volt- ampere characteristics by means of a computer; rate of non- stationary gas-dynamic disturbances in discharge gap of discharge chamber was measured by means of pulse holographic system (UlG-1M) with data processing of schliren- and interferogram (density fluctuation sensitivity approximately 10-2) and sensor measurement system of gas-dynamic shock and acoustics process with resonance frequency exceeding 100 kHz. Research results of process of plasma plate wave and channel structures interaction with mediums, including actuation non-stationary gas-dynamic flows, cavitation erosion of preionization electrodes' dielectric substructure, ancillary heating of channels by main volumetric discharge are presented as well.

  16. Preparing to Test

    NASA Image and Video Library

    2015-03-26

    Stennis Space Center employees install a 96-inch valve during a recent upgrade of the high-pressure industrial water system that serves the site’s large rocket engine test stands. The upgraded system has a capacity to flow 335,000 gallons of water a minute, which is a critical element for testing. At Stennis, engines are anchored in place on large test stands and fired just as they are during an actual space flight. The fire and exhaust from the test is redirected out of the stand by a large flame trench. A water deluge system directs thousands of gallons of water needed to cool the exhaust. Water also must be available for fire suppression in the event of a mishap. The new system supports RS-25 engine testing on the A-1 Test Stand, as well as testing of the core stage of NASA’s new Space Launch System on the B-2 Test Stand at Stennis.

  17. Earth Science

    NASA Image and Video Library

    1990-08-29

    Multiple lightning bolts struck the Technology Test Bed, formerly the S-IC Static Test Stand, at the Marshall Space Flight Center (MSFC) during a thunderstorm. This spectacular image of lightning was photographed by MSFC photographer Dernis Olive on August 29, 1990.

  18. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. I. Effects of long interaural delays, intensity, and repetition rate on interaural delay function.

    PubMed

    Kuwada, S; Yin, T C

    1983-10-01

    Detailed, quantitative studies were made of the interaural phase sensitivity of 197 neurons with low best frequency in the inferior colliculus (IC) of the barbiturate-anesthetized cat. We analyzed the responses of single cells to interaural delays in which tone bursts were delivered to the two ears via sealed earphones and the onset of the tone to one ear with respect to the other was varied. For most (80%) cells the discharge rate is a cyclic function of interaural delay at a period corresponding to that of the stimulating frequency. The cyclic nature of the interaural delay curve indicates that these cells are sensitive to the interaural phase difference. These cells are distributed throughout the low-frequency zone of the IC, but they are less numerous in the medial and caudal zones. Cells with a wide variety of response patterns will exhibit interaural phase sensitivities at stimulating frequencies up to 3,100 Hz, although above 2,500 Hz the number of such cells decrease markedly. Using dichotic stimuli we could study the cell's sensitivity to the onset delay and interaural phase independently. The large majority of IC cells respond only to changes in interaural phase, with no sensitivity to the onset delay. However, a small number (7%) of cells exhibit a sensitivity to the onset delay as well as to the interaural phase disparity, and most of these cells show an onset response. The effects of changing the stimulus intensity equally to both ears or of changing the interaural intensity difference on the mean interaural phase were studied. While some neurons are not affected by level changes, others exhibit systematic phase shifts for both average and interaural intensity variations, and there is a continuous distribution of sensitivities between these extremes. A few cells also showed systematic changes in the shape of the interaural delay curves as a function of interaural intensity difference, especially at very long delays. These shifts can be interpreted as a

  19. Test Report Emission Test Program EPA Information Collection Request for Delayed Coking Units 736 Coker Unit

    EPA Pesticide Factsheets

    ARI Environmental, Inc. (ARI) was retained by Houston Refining LP (HRO) to conduct an emission test program at their refinery located in Houston, Texas. The testing was conducted on on the 736 Delayed Coking Unit (DCU) in response to EPA's ICR.

  20. Standing Up for Learning: A Pilot Investigation on the Neurocognitive Benefits of Stand-Biased School Desks

    PubMed Central

    Mehta, Ranjana K.; Shortz, Ashley E.; Benden, Mark E.

    2015-01-01

    Standing desks have proven to be effective and viable solutions to combat sedentary behavior among children during the school day in studies around the world. However, little is known regarding the potential of such interventions on cognitive outcomes in children over time. The purpose of this pilot study was to determine the neurocognitive benefits, i.e., improvements in executive functioning and working memory, of stand-biased desks and explore any associated changes in frontal brain function. 34 freshman high school students were recruited for neurocognitive testing at two time points during the school year: (1) in the fall semester and (2) in the spring semester (after 27.57 (1.63) weeks of continued exposure). Executive function and working memory was evaluated using a computerized neurocognitive test battery, and brain activation patterns of the prefrontal cortex were obtained using functional near infrared spectroscopy. Continued utilization of the stand-biased desks was associated with significant improvements in executive function and working memory capabilities. Changes in corresponding brain activation patterns were also observed. These findings provide the first preliminary evidence on the neurocognitive benefits of standing desks, which to date have focused largely on energy expenditure. Findings obtained here can drive future research with larger samples and multiple schools, with comparison groups that may in turn implicate the importance of stand-biased desks, as simple environmental changes in classrooms, on enhancing children’s cognitive functioning that drive their cognitive development and impact educational outcomes. PMID:26703700

  1. Beam-Plasma Interaction Experiments on the Princeton Advanced Test Stand

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I. D.; Davidson, R. C.

    2011-10-01

    The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the fundamental physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a 100 keV ion beam source mounted on a six-foot-long vacuum chamber with numerous ports for diagnostic access. A 100 keV Ar+ beam is launched into a volumetric plasma, which is produced by a ferroelectric plasma source (FEPS). Beam diagnostics upstream and downstream of the FEPS allow for detailed studies of the effects that the plasma has on the beam. This setup is designed for studying the dependence of charge and current neutralization and beam emittance growth on the beam and plasma parameters. This work reports initial measurements of beam quality produced by the extraction electrodes that were recently installed on the PATS device. The transverse beam phase space is measured with double-slit emittance scanners, and the experimental results are compared to WARP simulations of the extraction system. This research is supported by the U.S. Department of Energy.

  2. Compounding diagnostic delays: a qualitative study of point-of-care testing in South Africa.

    PubMed

    Engel, Nora; Davids, Malika; Blankvoort, Nadine; Pai, Nitika Pant; Dheda, Keertan; Pai, Madhukar

    2015-04-01

    Successful point-of-care (POC) testing (completion of test-and-treat cycle in one patient encounter) has immense potential to reduce diagnostic and treatment delays, and improve patient and public health outcomes. We explored what tests are done and how in public/private, rural/urban hospitals and clinics in South Africa and whether they can ensure successful POC testing. This qualitative research study examined POC testing across major diseases in Cape Town, Durban and Eastern Cape. We conducted 101 semi-structured interviews and seven focus group discussions with doctors, nurses, community health workers, patients, laboratory technicians, policymakers, hospital managers and diagnostic manufacturers. In South Africa, diagnostics are characterised by a centralised system. Most tests conducted on the spot can be made to work successfully as POC tests. The majority of public/private clinics and smaller hospitals send samples via couriers to centralised laboratories and retrieve results the same way, via internet, fax or phone. The main challenge to POC testing lies in transporting samples and results, while delays risk patient loss from diagnostic/treatment pathways. Strategies to deal with associated delays create new problems, such as artificially prolonged turnaround times, strains on human resources and quality of testing, compounding additional diagnostic and treatment delays. For POC testing to succeed, particular characteristics of diagnostic ecosystems and adaptations of professional practices to overcome associated challenges must be taken into account. © 2014 John Wiley & Sons Ltd.

  3. Rehabilitation of the Rocket Vehicle Integration Test Stand at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ray, Ronald J.; Phillips, Paul

    2005-01-01

    Since initial use in 1958 for the X-15 rocket-powered research airplane, the Rocket Engine Test Facility has proven essential for testing and servicing rocket-powered vehicles at Edwards Air Force Base. For almost two decades, several successful flight-test programs utilized the capability of this facility. The Department of Defense has recently demonstrated a renewed interest in propulsion technology development with the establishment of the National Aerospace Initiative. More recently, the National Aeronautics and Space Administration is undergoing a transformation to realign the organization, focusing on the Vision for Space Exploration. These initiatives provide a clear indication that a very capable ground-test stand at Edwards Air Force Base will be beneficial to support the testing of future access-to-space vehicles. To meet the demand of full integration testing of rocket-powered vehicles, the NASA Dryden Flight Research Center, the Air Force Flight Test Center, and the Air Force Research Laboratory have combined their resources in an effort to restore and upgrade the original X-15 Rocket Engine Test Facility to become the new Rocket Vehicle Integration Test Stand. This report describes the history of the X-15 Rocket Engine Test Facility, discusses the current status of the facility, and summarizes recent efforts to rehabilitate the facility to support potential access-to-space flight-test programs. A summary of the capabilities of the facility is presented and other important issues are discussed.

  4. 3. SOUTH TEST STAND WITH X15 IN PLACE. A color ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SOUTH TEST STAND WITH X-15 IN PLACE. A color photograph taken from a lift boom or from atop a truck, looking northwest to NASA hangars in the far distance. Also shows the shop building at left, and two observation bunkers with hatches open; one at right (Bldg. 1933) and the other in front of Liquid Oxygen tank truck at left (Bldg. 1934). - Edwards Air Force Base, X-15 Engine Test Complex, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  5. Characterization of Space Shuttle Reusable Rocket Motor Static Test Stand Thrust Measurements

    NASA Technical Reports Server (NTRS)

    Cook, Mart L.; Gruet, Laurent; Cash, Stephen F. (Technical Monitor)

    2003-01-01

    Space Shuttle Reusable Solid Rocket Motors (RSRM) are static tested at two ATK Thiokol Propulsion facilities in Utah, T-24 and T-97. The newer T-97 static test facility was recently upgraded to allow thrust measurement capability. All previous static test motor thrust measurements have been taken at T-24; data from these tests were used to characterize thrust parameters and requirement limits for flight motors. Validation of the new T-97 thrust measurement system is required prior to use for official RSRM performance assessments. Since thrust cannot be measured on RSRM flight motors, flight motor measured chamber pressure and a nominal thrust-to-pressure relationship (based on static test motor thrust and pressure measurements) are used to reconstruct flight motor performance. Historical static test and flight motor performance data are used in conjunction with production subscale test data to predict RSRM performance. The predicted motor performance is provided to support Space Shuttle trajectory and system loads analyses. Therefore, an accurate nominal thrust-to-pressure (F/P) relationship is critical for accurate RSRM flight motor performance and Space Shuttle analyses. Flight Support Motors (FSM) 7, 8, and 9 provided thrust data for the validation of the T-97 thrust measurement system. The T-97 thrust data were analyzed and compared to thrust previously measured at T-24 to verify measured thrust data and identify any test-stand bias. The T-97 FIP data were consistent and within the T-24 static test statistical family expectation. The FSMs 7-9 thrust data met all NASA contract requirements, and the test stand is now verified for future thrust measurements.

  6. Delay-dependent stability and added damping of SDOF real-time dynamic hybrid testing

    NASA Astrophysics Data System (ADS)

    Chi, Fudong; Wang, Jinting; Jin, Feng

    2010-09-01

    It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT. The exponential delay term is transferred into a rational fraction by the Padé approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique. First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure. The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness. For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay. For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable. Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions.

  7. Consistent definition and application of Reineke's Stand Density Index in silviculture and stand projection

    Treesearch

    John D. Shaw; James N. Long

    2010-01-01

    Reineke’s Stand Density Index (SDI) has been available to silviculturists for over 75 years, but application of this stand metric has been inconsistent. Originally described as a measurement of relative density in single-species, even-aged stands, it has since been generalized for use in uneven-aged stands and mixed-species stands. However, methods used to establish...

  8. Walking delays anticipatory postural adjustments but not reaction times in a choice reaction task.

    PubMed

    Haridas, C; Gordon, I T; Misiaszek, J E

    2005-06-01

    During standing, anticipatory postural adjustments (APAs) and focal movements are delayed while performing a choice reaction task, compared with a simple reaction task. We hypothesized that APAs and focal movements of a choice reaction task would be similarly delayed during walking. Furthermore, reaction times are delayed during walking compared with standing. We further hypothesized that APAs and focal movements would be delayed during walking, compared with standing, for both simple and choice reaction tasks. Subjects either walked or stood on a treadmill while holding on to stable handles. They were asked to push or pull on the handles in response to a visual cue. Muscle activity was recorded from muscles of the leg (APA) and arm (RT). Our results were in agreement with previous work showing APA onset was delayed in the choice reaction task compared with the simple reaction task. In addition, the interval between the onset of APA and focal movement activity increased with choice reaction tasks. The task of walking did not delay the onset of focal movement for either the simple or choice reaction tasks. Walking did delay the onset of the APA, but only during choice reaction tasks. The results suggest the added demand of walking does not significantly modify the control of focal arm movements. However, additional attentional demands while walking may compromise anticipatory postural control.

  9. Interesting times on Krakatau: stand dynamics in the 1990s.

    PubMed Central

    Whittaker, R J; Partomihardjo, T; Jones, S H

    1999-01-01

    The Krakatau Islands, Indonesia, have provided an opportunity for ecologists to track primary succession from the 'clean slate' of 1883, through forest closure in the 1920s, to the contemporary period, in which successional changes take the form of alterations in composition and stature of forest stands rather than gross changes in ecosystem type. This paper reports on permanent forest plots established on the islands in 1989, and fully surveyed again in both 1992 and 1997. Since 1989, the plots have been subject to natural disturbance phenomena in the form of varying combinations of, for example, deposition of volcanic ejecta, landslides, lightning strikes, storm damage and drought. These effects have been concentrated between 1992 and 1997, during which the volcano Anak Krakatau has deposited ash on the islands of Sertung and Panjang, but not on Rakata. Data on stand responses are presented for growth rates (dbh (diameter at breast height, 1.3 m) increment), stem recruitment and mortality, biomass changes partitioned into mortality, ingrowth and growth of established trees), and compositional shifts. The discussion focuses on evaluation of questions and successional models framed earlier in the programme. One general finding is that the stand dominants as of 1989 have tended to decline in number within the plots, generally through low levels of recruitment failing to balance rates of mortality. The effects of disturbance to the plots appear to be evident in terms of mortality and recruitment, dbh increment, and changes in biomass. The patterns of change in the eight plots are quite varied, such that relatively few generalizations are possible. The difficulties of establishing meaningful baseline rates for tree growth and stand biomass are discussed. PMID:11605628

  10. Numerical modeling of a 2K J-T heat exchanger used in Fermilab Vertical Test Stand VTS-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Prabhat Kumar; Rabehl, Roger

    2014-07-01

    Fermilab Vertical Test Stand-1 (VTS-1) is in operation since 2007 for testing the superconducting RF cavities at 2 K. This test stand has single layer coiled finned tubes heat exchanger before J-T valve. A finite difference based thermal model has been developed in Engineering Equation Solver (EES) to study its thermal performance during filling and refilling to maintain the constant liquid level of test stand. The model is also useful to predict its performance under other various operating conditions and will be useful to design the similar kind of heat exchanger for future needs. Present paper discusses the different operationalmore » modes of this heat exchanger and its thermal characteristics under these operational modes. Results of this model have also been compared with the experimental data gathered from the VTS-1 heat exchanger and they are in good agreement with the present model.« less

  11. Falls classification using tri-axial accelerometers during the five-times-sit-to-stand test.

    PubMed

    Doheny, Emer P; Walsh, Cathal; Foran, Timothy; Greene, Barry R; Fan, Chie Wei; Cunningham, Clodagh; Kenny, Rose Anne

    2013-09-01

    The five-times-sit-to-stand test (FTSS) is an established assessment of lower limb strength, balance dysfunction and falls risk. Clinically, the time taken to complete the task is recorded with longer times indicating increased falls risk. Quantifying the movement using tri-axial accelerometers may provide a more objective and potentially more accurate falls risk estimate. 39 older adults, 19 with a history of falls, performed four repetitions of the FTSS in their homes. A tri-axial accelerometer was attached to the lateral thigh and used to identify each sit-stand-sit phase and sit-stand and stand-sit transitions. A second tri-axial accelerometer, attached to the sternum, captured torso acceleration. The mean and variation of the root-mean-squared amplitude, jerk and spectral edge frequency of the acceleration during each section of the assessment were examined. The test-retest reliability of each feature was examined using intra-class correlation analysis, ICC(2,k). A model was developed to classify participants according to falls status. Only features with ICC>0.7 were considered during feature selection. Sequential forward feature selection within leave-one-out cross-validation resulted in a model including four reliable accelerometer-derived features, providing 74.4% classification accuracy, 80.0% specificity and 68.7% sensitivity. An alternative model using FTSS time alone resulted in significantly reduced classification performance. Results suggest that the described methodology could provide a robust and accurate falls risk assessment. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. SN2005da: A Spectroscopic and Photometric Analysis of a Peculiar Type Ic Supernova

    NASA Astrophysics Data System (ADS)

    Williamson, Jacob

    2017-12-01

    Core collapse supernovae are an important class of objects in stellar evolution research as they are the final life stage of high mass stars. Supernovae in general are classified into several spectral types; this paper explores SN 2005da, classified as a Type Ic, meaning it lacks hydrogen and helium lines. The supernova was originally classified as a broad-lined Type Ic (Type Ic-BL), with expansion velocities near maximum light greater than or approximately equal to 15000 km/s. However, some of the elements present in the spectrum, namely carbon and oxygen, have narrower lines (FWHM approximately equal to 2300 km/s) than other elements, indicating an interaction with a previously ejected envelope. The supernova is also found to have a decay time, with a change in magnitude over 15 days following maximum light of about 1.4 magnitudes, that is significantly faster than typical Type Ic or Ic-BL. This is more akin to a rarer object type known as a Type Ibn, although it lacks the characteristic narrow helium lines of this type. Therefore, SN 2005da appears to be unlike known examples of Type Ic supernovae.

  13. Array CGH Analysis and Developmental Delay: A Diagnostic Tool for Neurologists.

    PubMed

    Cameron, F; Xu, J; Jung, J; Prasad, C

    2013-11-01

    Developmental delay occurs in 1-3% of the population, with unknown etiology in approximately 50% of cases. Initial genetic work up for developmental delay previously included chromosome analysis and subtelomeric FISH (fluorescent in situ hybridization). Array Comparative Genomic Hybridization (aCGH) has emerged as a tool to detect genetic copy number changes and uniparental disomy and is the most sensitive test in providing etiological diagnosis in developmental delay. aCGH allows for the provision of prognosis and recurrence risks, improves access to resources, helps limit further investigations and may alter medical management in many cases. aCGH has led to the delineation of novel genetic syndromes associated with developmental delay. An illustrative case of a 31-year-old man with long standing global developmental delay and recently diagnosed 4q21 deletion syndrome with a deletion of 20.8 Mb genomic interval is provided. aCGH is now recommended as a first line test in children and adults with undiagnosed developmental delay and congenital anomalies. Puce d'hybridation génomique comparative et retard de développement : un outil diagnostic pour les neurologues. Le retard de développement survient chez 1 à 3% de la population et son étiologie est inconnue chez à peu près 50% des cas. L'évaluation génétique initiale pour un retard de développement incluait antérieurement une analyse chromosomique et une analyse par FISH (hybridation in situ en fluorescence) de régions subtélomériques. La puce d'hybridation génomique comparative (CGHa) est devenue un outil de détection des changements du nombre de copies géniques ainsi que de la disomie uniparentale et elle est le test le plus sensible pour fournir un diagnostic étiologique dans le retard de développement. Le CGHa permet d'offrir un pronostic et un risque de récurrence, améliore l'accès aux ressources, aide à limiter les évaluations et peut modifier le traitement médical dans bien des cas

  14. Elevated voltage level I{sub DDQ} failure testing of integrated circuits

    DOEpatents

    Righter, A.W.

    1996-05-21

    Burn in testing of static CMOS IC`s is eliminated by I{sub DDQ} testing at elevated voltage levels. These voltage levels are at least 25% higher than the normal operating voltage for the IC but are below voltage levels that would cause damage to the chip. 4 figs.

  15. Best Protocol for the Sit-to-Stand Test in Subjects With COPD.

    PubMed

    Morita, Andrea A; Bisca, Gianna W; Machado, Felipe V C; Hernandes, Nidia A; Pitta, Fabio; Probst, Vanessa S

    2018-05-22

    Different protocols for the sit-to-stand test (STS) are available for assessing functional capacity in COPD. We sought to correlate each protocol of the STS (ie, the 5-repetition [5-rep STS], the 30-s STS, and the 1-min STS) with clinical outcomes in subjects with COPD. We also aimed to compare the 3 protocols of the STS, to verify their association and agreement, and to verify whether the 3 protocols are able to predict functional exercise capacity and physical activity in daily life (PADL). 23 subjects with COPD (11 men; FEV 1 53 ± 15% predicted) performed 3 protocols of the STS. Subjects also underwent the following assessments: incremental shuttle walking test, 6-min walk test (6MWT), 4-m gait speed test (4MGS), 1-repetition maximum of quadriceps muscle, assessment of PADL, and questionnaires on health-related quality of life and functional status. The 1-min STS showed significant correlations with the 6MWT (r = 0.40), 4MGS (r = 0.64), and PADL (0.40 ≤ r ≤ 0.52), and the 5-rep STS and 30-s STS were associated with the 4MGS (r = 0.54 and r = 0.52, respectively). The speed differed for each protocol (5-rep STS 0.53 ± 0.16 rep/s, 30-s STS 0.48 ± 0.13 rep/s, 1-min STS 0.45 ± 0.11 rep/s, P = .01). However, they presented good agreement (intraclass correlation coefficient ≥ 0.73 for all) and correlated well with each other (r ≥ 0.68 for all). More marked changes in peripheral oxygen saturation ( P = .004), heart rate ( P < .001), blood pressure ( P < .001), dyspnea ( P < .001), and leg fatigue ( P < .001) were found after the 1-min STS protocol. Furthermore, the 3 protocols were equally able to identify subjects with low exercise capacity or preserved exercise capacity. The 1-min STS generated higher hemodynamic demands and correlated better with clinical outcomes in subjects with COPD. Despite the difference in speed performance and physiological demands between the 5-rep STS and 1-min STS, there was a good level of agreement among the 3 protocols. In

  16. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Mirarchi, D.; Hall, G.; Redaelli, S.; Scandale, W.

    2017-06-01

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going.

  17. Add-on LABA in a separate inhaler as asthma step-up therapy versus increased dose of ICS or ICS/LABA combination inhaler.

    PubMed

    Price, David B; Colice, Gene; Israel, Elliot; Roche, Nicolas; Postma, Dirkje S; Guilbert, Theresa W; van Aalderen, Willem M C; Grigg, Jonathan; Hillyer, Elizabeth V; Thomas, Victoria; Martin, Richard J

    2016-04-01

    Asthma management guidelines recommend adding a long-acting β 2 -agonist (LABA) or increasing the dose of inhaled corticosteroid (ICS) as step-up therapy for patients with uncontrolled asthma on ICS monotherapy. However, it is uncertain which option works best, which ICS particle size is most effective, and whether LABA should be administered by separate or combination inhalers. This historical, matched cohort study compared asthma-related outcomes for patients (aged 12-80 years) prescribed step-up therapy as a ≥50% extrafine ICS dose increase or add-on LABA, via either a separate inhaler or a fine-particle ICS/LABA fixed-dose combination (FDC) inhaler. Risk-domain asthma control was the primary end-point in comparisons of cohorts matched for asthma severity and control during the baseline year. After 1:2 cohort matching, the increased extrafine ICS versus separate ICS+LABA cohorts included 3232 and 6464 patients, respectively, and the fine-particle ICS/LABA FDC versus separate ICS+LABA cohorts included 7529 and 15 058 patients, respectively (overall mean age 42 years; 61-62% females). Over one outcome year, adjusted OR (95% CI) for achieving asthma control were 1.25 (1.13-1.38) for increased ICS versus separate ICS+LABA and 1.06 (1.05-1.09) for ICS/LABA FDC versus separate ICS+LABA. For patients with asthma, increased dose of extrafine-particle ICS, or add-on LABA via ICS/LABA combination inhaler, is associated with significantly better outcomes than ICS+LABA via separate inhalers.

  18. Environmental Assessment for the Construction and Operation of the Constellation Program A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    Kennedy, Carolyn D.

    2007-01-01

    This document is an environmental assessment that examines the environmental impacts of a proposed plan to clear land and to construct a test stand for use in testing the J-2X rocket engine at simulated altitude conditions in support of NASA's Constellation Program.

  19. Metabolism of the tropine indole-3-carboxylate ICS 205-930 by differentiated rat and human hepatoma cells.

    PubMed

    Fischer, V; Baldeck, J P; Wiebel, F J

    The metabolism of the tropine indole-3-carboxylate ICS 205-930 (ICS), a highly potent and selective antagonist of 5-HT3 receptors, was investigated in continuous cell lines derived from rat or human liver and compared to the in vivo metabolism in rat and human. The well-differentiated rat hepatoma line 2sFou extensively metabolized ICS by hydroxylation of the indole moiety and subsequent conjugation to form the corresponding glucuronides and sulfates. The 2sFou cells also oxidized ICS at the tropinyl moiety to form both N-demethyl and N-oxide derivatives. The relative amount of the various metabolites was dependent on the substrate concentration. Pretreatment of the cells with dexamethasone increased the rate of metabolism for all pathways, while benz[a]anthracene caused an increase in hydroxylation at the indole moiety at the expense of N-oxidation. Phenobarbital pretreatment had no effect on ICS metabolism. The pattern of metabolites formed in 2sFou cells was qualitatively similar to that formed in rat urine. The human hepatoma line HepG2 metabolized ICS only to a small extent. The HepG2 cells failed to form detectable amounts of ICS conjugates found in human urine. The N-oxide-ICS was not found in HepG2 cells or in human urine. Virtually no ICS metabolites were found in human lung adenocarcinoma lines NCI-H358 or NCI-H322. The results suggest that continuous cell lines such as the differentiated rat hepatoma cells 2sFou might be used to mimic the metabolism of xenobiotics in rat and to clarify their complex metabolic pathways.

  20. Estimation of Ksub Ic from slow bend precracked Charpy specimen strength ratios

    NASA Technical Reports Server (NTRS)

    Succop, G.; Brown, W. F., Jr.

    1976-01-01

    Strength ratios are reported which were derived from slow bend tests on 0.25 inch thick precracked Charpy specimens of steels, aluminum alloys, and a titanium alloy for which valid K sub Ic values were established. The strength ratios were used to develop calibration curves typical of those that could be useful in estimating K sub Ic for the purposes of alloy development of quality control.

  1. ICS-II USA research design and methodology.

    PubMed

    Rana, H; Andersen, R M; Nakazono, T T; Davidson, P L

    1997-05-01

    The purpose of the WHO-sponsored International Collaborative Study of Oral Health Outcomes (ICS-II) was to provide policy-markers and researchers with detailed, reliable, and valid data on the oral health situation in their countries or regions, together with comparative data from other dental care delivery systems. ICS-II used a cross-sectional design with no explicit control groups or experimental interventions. A standardized methodology was developed and tested for collecting and analyzing epidemiological, sociocultural, economic, and delivery system data. Respondent information was obtained by household interviews, and clinical examinations were conducted by calibrated oral epidemiologists. Discussed are the sampling design characteristics for the USA research locations, response rates, samples size for interview and oral examination data, weighting procedures, and statistical methods. SUDAAN was used to adjust variance calculations, since complex sampling designs were used.

  2. Simultaneous detection of three lily viruses using Triplex IC-RT-PCR.

    PubMed

    Zhang, Yubao; Wang, Yajun; Xie, Zhongkui; Yang, Guo; Guo, Zhihong; Wang, Le

    2017-11-01

    Viruses commonly infecting lily (Lilium spp.) include: Lily symptomless virus (LSV), Cucumber mosaic virus (CMV) and Lily mottle virus (LMoV). These viruses usually co-infect lilies causing severe economic losses in terms of quantity and quality of flower and bulb production around the world. Reliable and precise detection systems need to be developed for virus identification. We describe the development of a triplex immunocapture (IC) reverse transcription (RT) polymerase chain reaction (PCR) assay for the simultaneous detection of LSV, CMV and LMoV. The triplex IC-RT-PCR was compared with a quadruplex RT-PCR assay. Relative to the quadruplex RT-PCR, the specificity of the triplex IC-RT-PCR system for LSV, CMV and LMoV was 100% for field samples. The sensitivity of the triplex IC-RT-PCR system was 99.4%, 81.4% and 98.7% for LSV, CMV and LMoV, respectively. Agreement (κ) between the results obtained from the two tests was 0.968, 0.844 and 0.984 for LSV, CMV and LMoV, respectively. This is the first report of the simultaneous detection of LSV, CMV and LMoV in a triplex IC-RT-PCR assay. In particular we believe this convenient and reliable triplex IC-RT-PCR method could be used routinely for large-scale field surveys or crop health monitoring of lily. Copyright © 2017. Published by Elsevier B.V.

  3. Clinical Tests of Standing Balance in the Knee Osteoarthritis Population: Systematic Review and Meta-analysis

    PubMed Central

    Hatfield, Gillian L.; Morrison, Adam; Wenman, Matthew; Hammond, Connor A.

    2016-01-01

    Background People with knee osteoarthritis (OA) have a high prevalence of falls. Poor standing balance is one risk factor, but the extent of standing balance deficits in people with knee OA is unknown. Purpose The primary purpose of this study was to summarize available data on standing balance in people with knee OA compared with people without knee OA. A secondary purpose was to establish the extent of balance impairment across disease severity. Data Sources A literature search of the MEDLINE, EMBASE, CINAHL, and Web of Science databases through November 19, 2014, was conducted. Study Selection Studies on individuals with knee OA containing clinical, quantifiable measures of standing balance were included. Methodological quality was assessed by 2 reviewers using a 16-item quality index developed for nonrandomized studies. Studies scoring >50% on the index were included. Data Extraction Participant characteristics (age, sex, body mass index, OA severity, compartment involvement, unilateral versus bilateral disease) and balance outcomes were extracted by 2 reviewers. Standardized mean differences were pooled using a random-effects model. Data Synthesis The search yielded 2,716 articles; 8 met selection and quality assessment criteria. The median score on the quality index was 13/17. People with knee OA consistently performed worse than healthy controls on the Step Test, Single-Leg Stance Test, Functional Reach Test, Tandem Stance Test, and Community Balance and Mobility Scale. The pooled standardized mean difference was −1.64 (95% confidence interval=−2.58, −0.69). No differences were observed between varying degrees of malalignment, or between unilateral versus bilateral disease. Limitations No studies compared between-knee OA severities. Thus, expected changes in balance as the disease progresses remain unknown. Conclusions Few studies compared people with knee OA and healthy controls, but those that did showed that people with knee OA performed

  4. Small-Scale Hybrid Rocket Test Stand & Characterization of Swirl Injectors

    NASA Astrophysics Data System (ADS)

    Summers, Matt H.

    Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that both the forward-end enclosure and end cap can be easily removed for rapid integration of components during testing. Each of the components of the motor is removable allowing for a broad range of testing capabilities. While examining injectors and their potential it is thought ideal to obtain the highest regression rates and overall motor performance possible. The oxidizer and fuel are N2O and hydroxyl-terminated polybutadiene (HTPB), respectively, due to previous experience and simplicity. The injector designs, selected for the same reasons, are designed such that they vary only in the swirl angle. This system provides the platform for characterizing the effects of varying said swirl angle on HRM performance.

  5. A drive system to add standing mobility to a manual standing wheelchair.

    PubMed

    Nickel, Eric; Hansen, Andrew; Pearlman, Jonathan; Goldish, Gary

    2016-05-16

    Current manual standing wheelchairs are not mobile in the standing position. The addition of standing mobility may lead to improved health and function for the user and may increase utilization of standing wheelchairs. In this project, a chain drive system was fitted to a manual standing wheelchair, adding mobility in the standing position. The hand rims are accessible from both seated and standing positions. The prototype uses 16-inch drive wheels in front with casters in the rear. Additional anterior casters are elevated when seated for navigating obstacles and then descend when standing to create a six-wheeled base with extended anterior support. Stability testing shows the center of pressure remains within the base of support when leaning to the sides or front in both seated and standing positions. Four veterans with spinal cord injury provided feedback on the design and reported that mobility during standing was very important or extremely important to them. The veterans liked the perceived stability and mobility of the prototype and provided feedback for future refinements. For example, reducing the overall width (width from hand rim to hand rim) and weight could make this system more functional for users.

  6. Immunogenicity and safety of different injection routes and schedules of IC41, a Hepatitis C virus (HCV) peptide vaccine.

    PubMed

    Firbas, Christa; Boehm, Thomas; Buerger, Vera; Schuller, Elisabeth; Sabarth, Nicolas; Jilma, Bernd; Klade, Christoph S

    2010-03-11

    An effective vaccine would be a significant progress in the management of chronic HCV infections. This study was designed to examine whether different application schedules and injection routes may enhance the immunogenicity of the HCV peptide vaccine IC41. In this randomized trial 54 healthy subjects received either subcutaneous (s.c.) or intradermal (i.d.) vaccinations weekly (16 injections) or every other week (8 injections). One group additionally received imiquimod, an activator of the toll-like receptor (TLR) 7. The T cell epitope-specific immune response to IC41 was assessed using [(3)H]-thymidine CD4+ T cell proliferation, interferon-gamma (IFN-gamma) CD8+ and CD4+ ELIspot and HLA-A*0201 fluorescence-activated cell sorting (FACS) tetramer-binding assays. More than 60% of vaccinees responded in the CD4+ T cell proliferation assay in all groups. An HLA-A*0201 FACS tetramer-binding assay and IFN-gamma CD8+ ELIspot class I response of more than 70% was induced in four and three groups, respectively. IC41 induced significant immunological responses in all groups with responder rates of up to 100%. Interestingly, topical imiquimod was not able to enhance immunogenicity but was associated with a lower immune response. Local injection site reactions were mostly transient. Intradermal injections caused more pronounced reactions compared to s.c., especially erythema and edema. Compared to a previous study intensified dosing and/or i.d. injections enhanced the response rates to the vaccine IC41 in three assays measuring T cell function. Immunization with IC41 was generally safe in this study. These results justify testing IC41 in further clinical trials with HCV-infected individuals.

  7. U.S. announces one-year delay for visa waiver program change

    NASA Astrophysics Data System (ADS)

    The U.S. State Department has announced that it is delaying by one year a new rule affecting citizens from visa waiver program countries. The new rule, which was scheduled to go into effect on 1 October 2003, requires visitors from these countries to obtain non-immigrant visas to enter the United States if they do not have machine-readable passports. The announced delay means that this rule will now go into effect 26 October 2004 instead.The delay does not apply to five visa waiver countries—Andorra, Brunei, Liechtenstein, Luxembourg, and Slovenia—because most of the citizens of these nations already carry passports that are machine-readable.

  8. Attosecond relative delay among xenon 5p, 5s, and 4d photoionization

    NASA Astrophysics Data System (ADS)

    Magrakvelidze, Maia; Madjet, Mohamed; Chakraborty, Himadri

    2017-04-01

    Attosecond Wigner-Smith (WS) time delays of the photoemissions of Xe valence 5p, 5s, and core 4d electrons are investigated in details using the time-dependent local density approximation (TDLDA). Electron correlations determine the energy-dependent structures in ionization phases of the dipole channels and in the resulting WS delays at various shape resonances, induced by the collective motion of 4d electrons, and at various Cooper minima. We find that our calculation closely agrees with the streaking measurement for the delay of 4d relative to 5s, and predicts accelerated emission of 5p with respect to 4d as was experimentally observed at similar photon energies for Xe atoms adsorbed on the tungsten surface. This work was supported by the U.S. National Science Foundation.

  9. The Cold Dark Matter Search test stand warm electronics card

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hines, Bruce; /Colorado U., Denver; Hansen, Sten

    A card which does the signal processing for four SQUID amplifiers and two charge sensitive channels is described. The card performs the same functions as is presently done with two custom 9U x 280mm Eurocard modules, a commercial multi-channel VME digitizer, a PCI to GPIB interface, a PCI to VME interface and a custom built linear power supply. By integrating these functions onto a single card and using the power over Ethernet standard, the infrastructure requirements for instrumenting a Cold Dark Matter Search (CDMS) detector test stand are significantly reduced.

  10. Mechanisms of motor recovery after subtotal spinal cord injury: insights from the study of mice carrying a mutation (WldS) that delays cellular responses to injury.

    PubMed

    Zhang, Z; Guth, L; Steward, O

    1998-01-01

    Partial lesions of the mammalian spinal cord result in an immediate motor impairment that recovers gradually over time; however, the cellular mechanisms responsible for the transient nature of this paralysis have not been defined. A unique opportunity to identify those injury-induced cellular responses that mediate the recovery of function has arisen from the discovery of a unique mutant strain of mice in which the onset of Wallerian degeneration is dramatically delayed. In this strain of mice (designated WldS for Wallerian degeneration, slow), many of the cellular responses to spinal cord injury are also delayed. We have used this experimental animal model to evaluate possible causal relationships between these delayed cellular responses and the onset of functional recovery. For this purpose, we have compared the time course of locomotor recovery in C57BL/6 (control) mice and in WldS (mutant) mice by hemisecting the spinal cord at T8 and evaluating locomotor function at daily postoperative intervals. The time course of locomotor recovery (as determined by the Tarlov open-field walking procedure) was substantially delayed in mice carrying the WldS mutation: C57BL/6 control mice began to stand and walk within 6 days (mean Tarlov score of 4), whereas mutant mice did not exhibit comparable locomotor function until 16 days postoperatively. (a) The rapid return of locomotor function in the C57BL/6 mice suggests that the recovery resulted from processes of functional plasticity rather than from regeneration or collateral sprouting of nerve fibers. (b) The marked delay in the return of locomotor function in WldS mice indicates that the processes of neuroplasticity are induced by degenerative changes in the damaged neurons. (c) These strains of mice can be effectively used in future studies to elucidate the specific biochemical and physiological alterations responsible for inducing functional plasticity and restoring locomotor function after spinal cord injury.

  11. Comments on cathode contaminants and the LBNL test stand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieniosek, F.; Baca, D.; Greenway, W.

    This report collects information on cathode contaminants we have gathered in the process of operating the LBNL DARHT cathode test stand. Information on contaminants is compiled from several sources. The attachment, ''Practical Aspects of Modern Dispenser Cathodes'', is from Heat Wave Corp. (TB-134) and was originally published in Microwave Journal, September 1979. Cathode contamination depends on both material choices and residual gases. Table 1 of TB-134 lists materials that can poison dispenser cathodes. These include reactive residual gases or vapors such as oxygen, water vapor, benzene, chlorine, fluorine, sulfur, silicon, and most metals other than molybdenum, rhenium, tungsten, and copper.more » The metals interact with the cathode surface through their vapor pressure. A paper by Nexsen and Turner, J. Appl. Phys. 68, 298-303 (1990) shows the threshold effects of some common residual gases or vapors on cathode performance. The book by Walter H. Kohl, Handbook of Materials and Techniques for Vacuum Devices, also contains useful information on cathodes and poisoning agents. A plot of the vapor pressures and poisoning effect of certain metals (from Kohl) is shown below. Note that the vapor pressure of zinc is 1.1 x 10{sup -8} Torr at 400 K = 127 C, and 2.7 x 10{sup -5} at 500 K = 227 C. By contrast iron reaches a vapor pressure 1 x 10{sup -8} between 800 and 900 C. Therefore it is important to eliminate any brass parts that could exceed a temperature of 100 C. Many structural components of the cathode assembly contain steel. At 500-600 C in an oxygen atmosphere chromium oxide may outgas from the steel. [Cho, et.al., J. Vac. Sci. Technol. A 19, p. 998 (2001)]. Steel may also contain silicon, and sulfur at low concentrations. Therefore use of steel should be limited or avoided at high temperature near the cathode. Materials that should be avoided in the vicinity of the cathode include brass, silver, zinc, non-OFHC copper, silicates, and sulfur

  12. Use of a unipedal standing test to assess the ambulation reacquisition time during the early postoperative stage after hip fracture in elderly Japanese: prospective study.

    PubMed

    Murata, Koichi; Sugitani, Shigeki; Yoshioka, Hiroki; Noguchi, Takashi; Aoto, Toshiyuki; Nakamura, Takashi

    2010-01-01

    The aim of this study was to predict the ambulation reacquisition time after hip fracture in elderly people using the unipedal standing test during the early postoperative stage. Patients with an intertrochanteric fracture treated with internal fixation (n = 35) and patients with a femoral neck fracture treated with hemiarthroplasty (n = 22) were included. A unipedal standing test using the nonoperated leg was performed on days 3 and 7 after the operation. Among the patients with an intertrochanteric fracture, those with a positive result on the unipedal standing test on postoperative day (POD) 3 attained gait with parallel guide bars (BG) and walker-assisted gait (WG) significantly earlier than did patients with a negative result on the unipedal standing test. Patients with a positive result on the unipedal standing test on POD 7 attained BG, WG, and cane-assisted gait (CG) significantly earlier than did patients with a negative test. Among patients with a femoral neck fracture, those with a positive unipedal standing test result on POD 3 attained BG, WG, and CG significantly earlier than did patients with a negative test. Those with a positive test result on POD 7 attained BG, WG, and CG significantly earlier than did patients with a negative test. The unipedal standing test given during the early postoperative stage is a good test for predicting the ambulation reacquisition time. Moreover, it gives information that can help determine the need for subacute rehabilitation and about discharge planning and health service provision.

  13. ICH S7B draft guideline on the non-clinical strategy for testing delayed cardiac repolarisation risk of drugs: a critical analysis.

    PubMed

    Cavero, Icilio; Crumb, William

    2005-05-01

    The International Conference on Harmonization (ICH) stems from the initiative of three major world partners (Japan, USA, European Community) who composed a mutually accepted body of regulations concerning the safety, quality and efficacy requirements that new medicines have to meet in order to receive market approval. Documents on non-clinical safety pharmacology already composed by this organisation include two guidelines: the S7A adopted in 2000 and, its companion, the S7B guideline, in a draft form since 2001. The S7A guideline deals with general principles and recommendations on safety pharmacology studies designed to protect healthy volunteers and patients from potential drug-induced adverse reactions. The S7B recommends a general non-clinical testing strategy for determining the propensity of non-cardiovascular pharmaceuticals to delay ventricular repolarisation, an effect that at times progresses into life-threatening ventricular arrhythmia. In the most recent version of this document (June 2004), the strategy proposes experimental assays and a critical examination of other pertinent information for applying an 'evidence of risk' label to a compound. Regrettably, the guideline fails to deal satisfactorily with a number of crucial issues such as scoring the evidence of risk and the clinical consequences of such scoring. However, in the latter case, the S7B relies on the new ICH guideline E14 which is currently in preparation. E14 is the clinical counterpart of the S7B guideline which states that non-clinical data are a poor predictor of drug-induced repolarisation delay in humans. The present contribution summarises and assesses salient aspects of the S7A guideline as its founding principles are also applicable to the S7B guideline. The differences in strategies proposed by the various existing drafts of the latter document are critically examined together with some unresolved, crucial problems. The need for extending the objective of the S7B document to

  14. Ultrafast VHE Gamma-Ray Flares of IC 310

    NASA Astrophysics Data System (ADS)

    Barkov, Maxim V.; Aharonian, Felix; Khangulyan, Dmitriy V.

    In 2012 November MAGIC detected a bright flare from IC 310. The flare consisted of two sharp peaks with a typical duration of ~ 5 min. The energy released during that event has been estimated to be at the level of 2 × 1044 erg s-1. In this work we derive an upper limit on the possible luminosity of flares generated in black hole (BH) magnetosphere, which depends very weakly on the mass of BH and is determined by disk magnetisation, viewing angle, and pair multiplicity. Since all these parameters are smaller than a unit, the luminosity 2 × 1043 erg s-1 can be taken as a strict upper limit for flare luminosity for several minutes variability time. This upper limit appears to be approximately an order of magnitude below the value measured with MAGIC. Thus, we conclude that it seems very unfeasible that the magnetospheric processes can be indeed behind the bright flaring activity recorded from IC 310.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1965-03-01

    The S-IC-T stage was hoisted into the S-IC static test stand at the Marshall Space Flight Center. The S-IC-T stage was a static test vehicle not intended for flight. It was ground tested repeatedly over a period of many months to prove the vehicle's propulsion system. The 280,000-pound stage, 138 feet long and 33 feet in diameter, housed the fuel and liquid oxygen tanks that held a total of 4,400,000 pounds of liquid oxygen and kerosene. The two tanks are cornected by a 26-foot-long intertank section. Other parts of the booster included the forward skirt and the thrust structure, on which the engines were to be mounted. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.

  16. Saturn Apollo Program

    NASA Image and Video Library

    1965-03-01

    The S-IC-T stage is hoisted into the S-IC static test stand at the Marshall Space Flight Center. The S-IC-T stage is a static test vehicle not intended for flight. It was ground tested repeatedly over a period of many months proving the vehicle's propulsion system. The 280,000-pound stage, 138 feet long and 33 feet in diameter, houses the fuel and liquid oxygen tanks that hold a total of 4,400,000 pounds of liquid oxygen and kerosene. The two tanks are cornected by a 26-foot-long intertank section. Other parts of the booster included the forward skirt and the thrust structure, on which the engines were to be mounted. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.

  17. Saturn Apollo Program

    NASA Image and Video Library

    1965-03-01

    The S-IC-T stage was hoisted into the S-IC Static Test Stand at the Marshall Space Flight Center. The S-IC-T stage was a static test vehicle, not intended for flight. It was ground tested repeatedly over a period of many months to prove the vehicle's propulsion system. The 280,000-pound stage, 138 feet long and 33 feet in diameter, housed the fuel and liquid oxygen tanks that held a total of 4,400,000 pounds of liquid oxygen and kerosene. The two tanks were cornected by a 26-foot intertank section. Other parts of the booster included the forward skirt and the thrust structure, on which the engines were to be mounted. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.

  18. 10-minute delayed recall from the modified mini-mental state test predicts Alzheimer's disease pathology.

    PubMed

    Lyness, Scott A; Lee, Ae Young; Zarow, Chris; Teng, Evelyn L; Chui, Helena C

    2014-01-01

    We compared the sensitivity and specificity of two delayed recall scores from the Modified Mini-Mental State (3MS) test with consensus clinical diagnosis to differentiate cognitive impairment due to Alzheimer's disease (AD) versus non-AD pathologies. At a memory disorders clinic, 117 cognitively impaired patients were administered a baseline 3MS test and received a contemporaneous consensus clinical diagnosis. Their brains were examined after death about 5 years later. Using logistic regression with forward selection to predict pathologically defined AD versus non-AD, 10-min delayed recall entered first (p = 0.001), followed by clinical diagnosis (p = 0.02); 1-min delayed recall did not enter. 10-min delayed recall scores ≤4 (score range = 0-9) were 87% sensitive and 47% specific in predicting AD pathology; consensus clinical diagnosis was 82% sensitive and 45% specific. For the 57 patients whose initial Mini-Mental State Examination scores were ≥19 (the median), 3MS 10-min delayed recall scores ≤4 showed some loss of sensitivity (80%) but a substantial gain in specificity (77%). In conclusion, 10-min delayed recall score on the brief 3MS test distinguished between AD versus non-AD pathology about 5 years before death at least as well as consensus clinical diagnosis that requires much more comprehensive information and complex deliberation.

  19. A novel shock and heat tolerant gyrosensor utilizing a one-port surface acoustic wave reflective delay line

    NASA Astrophysics Data System (ADS)

    Oh, Haekwan; Fu, Chen; Yang, Sang Sik; Wang, Wen; Lee, Keekeun

    2012-04-01

    A surface acoustic wave (SAW)-based gyroscope with an 80 MHz central frequency was fabricated on a 128° YX LiNbO3 piezoelectric substrate. The fabricated gyroscope is composed of a SAW resonator, metallic dots and a SAW reflective delay line. The SAW resonator, which is activated by a voltage-controlled oscillator, generates a stable standing wave with a large amplitude at an 80 MHz resonant frequency, and the metallic dots induce a Coriolis force and generate a secondary SAW in the direction orthogonal to the propagating standing wave. The SAW reflective delay line is employed to measure the Coriolis effect by analyzing the deviations in the resonant frequency of the SAW reflective delay line. A combined finite element method/boundary element method was utilized to extract the optimal device parameters prior to fabrication. The device was fabricated according to the modeling results and then measured on a rate table. When the device was subjected to an angular rotation, a secondary SAW from the vibrating metallic dots was generated owing to the Coriolis force, resulting in a perturbation of the propagating SAW in the SAW reflective delay line. Depending on the angular velocity, the reflection peak of SAW reflective delay line was changed linearly, and this change was measured by the network analyzer. The measured results matched the modeling results well. The obtained sensitivity was approximately 1.23 deg/(deg/s) in an angular rate range of 0-2000 deg s-1. Good thermal and shock stabilities were observed during the evaluation process proving the shock and heat robustness of the fabricated SAW gyroscope.

  20. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50).

    PubMed

    Qureshi, Abid; Tandon, Himani; Kumar, Manoj

    2015-11-01

    Peptide-based antiviral therapeutics has gradually paved their way into mainstream drug discovery research. Experimental determination of peptides' antiviral activity as expressed by their IC50 values involves a lot of effort. Therefore, we have developed "AVP-IC50 Pred," a regression-based algorithm to predict the antiviral activity in terms of IC50 values (μM). A total of 759 non-redundant peptides from AVPdb and HIPdb were divided into a training/test set having 683 peptides (T(683)) and a validation set with 76 independent peptides (V(76)) for evaluation. We utilized important peptide sequence features like amino-acid compositions, binary profile of N8-C8 residues, physicochemical properties and their hybrids. Four different machine learning techniques (MLTs) namely Support vector machine, Random Forest, Instance-based classifier, and K-Star were employed. During 10-fold cross validation, we achieved maximum Pearson correlation coefficients (PCCs) of 0.66, 0.64, 0.56, 0.55, respectively, for the above MLTs using the best combination of feature sets. All the predictive models also performed well on the independent validation dataset and achieved maximum PCCs of 0.74, 0.68, 0.59, 0.57, respectively, on the best combination of feature sets. The AVP-IC50 Pred web server is anticipated to assist the researchers working on antiviral therapeutics by enabling them to computationally screen many compounds and focus experimental validation on the most promising set of peptides, thus reducing cost and time efforts. The server is available at http://crdd.osdd.net/servers/ic50avp. © 2015 Wiley Periodicals, Inc.

  1. Oscillatory dynamics of an intravenous glucose tolerance test model with delay interval

    NASA Astrophysics Data System (ADS)

    Shi, Xiangyun; Kuang, Yang; Makroglou, Athena; Mokshagundam, Sriprakash; Li, Jiaxu

    2017-11-01

    Type 2 diabetes mellitus (T2DM) has become prevalent pandemic disease in view of the modern life style. Both diabetic population and health expenses grow rapidly according to American Diabetes Association. Detecting the potential onset of T2DM is an essential focal point in the research of diabetes mellitus. The intravenous glucose tolerance test (IVGTT) is an effective protocol to determine the insulin sensitivity, glucose effectiveness, and pancreatic β-cell functionality, through the analysis and parameter estimation of a proper differential equation model. Delay differential equations have been used to study the complex physiological phenomena including the glucose and insulin regulations. In this paper, we propose a novel approach to model the time delay in IVGTT modeling. This novel approach uses two parameters to simulate not only both discrete time delay and distributed time delay in the past interval, but also the time delay distributed in a past sub-interval. Normally, larger time delay, either a discrete or a distributed delay, will destabilize the system. However, we find that time delay over a sub-interval might not. We present analytically some basic model properties, which are desirable biologically and mathematically. We show that this relatively simple model provides good fit to fluctuating patient data sets and reveals some intriguing dynamics. Moreover, our numerical simulation results indicate that our model may remove the defect in well known Minimal Model, which often overestimates the glucose effectiveness index.

  2. Intermittent catheterization with a hydrophilic-coated catheter delays urinary tract infections in acute spinal cord injury: a prospective, randomized, multicenter trial.

    PubMed

    Cardenas, Diana D; Moore, Katherine N; Dannels-McClure, Amy; Scelza, William M; Graves, Daniel E; Brooks, Monifa; Busch, Anna Karina

    2011-05-01

    To investigate whether intermittent catheterization (IC) with a hydrophilic-coated catheter delays the onset of the first symptomatic urinary tract infection (UTI) and reduces the number of symptomatic UTIs in patients with acute spinal cord injury (SCI) compared with IC with standard, uncoated catheters. A prospective, randomized, parallel-group trial. Fifteen North American SCI centers. Participants were followed up while in the hospital or rehabilitation unit (institutional period) and up to 3 months after institutional discharge (community period). The maximal study period was 6 months. A total of 224 subjects with traumatic SCI of less than 3 months' duration who use IC. The participants were randomized within 10 days of starting IC to either single-use hydrophilic-coated (SpeediCath) or polyvinyl chloride uncoated (Conveen) catheters. The time from the first catheterization to the first antibiotic-treated symptomatic UTI was measured as well as the total number of symptomatic UTIs during the study period. The time to the first antibiotic-treated symptomatic UTI was significantly delayed in the hydrophilic-coated catheter group compared with the uncoated catheter group. The delay corresponded to a 33% decrease in the daily risk of developing the first symptomatic UTI among participants who used the hydrophilic-coated catheter. In the institutional period, the incidence of antibiotic-treated symptomatic UTIs was reduced by 21% (P < .05) in the hydrophilic-coated catheter group. The use of a hydrophilic-coated catheter for IC is associated with a delay in the onset of the first antibiotic-treated symptomatic UTI and with a reduction in the incidence of symptomatic UTI in patients with acute SCI during the acute inpatient rehabilitation. Using a hydrophilic-coated catheter could minimize UTI-related complications, treatment costs, and rehabilitation delays in this group of patients, and reduce the emergence of antibiotic-resistant organisms. Copyright © 2011

  3. Analysis of Flame Deflector Spray Nozzles in Rocket Engine Test Stands

    NASA Technical Reports Server (NTRS)

    Sachdev, Jai S.; Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel C.

    2010-01-01

    The development of a unified tightly coupled multi-phase computational framework is described for the analysis and design of cooling spray nozzle configurations on the flame deflector in rocket engine test stands. An Eulerian formulation is used to model the disperse phase and is coupled to the gas-phase equations through momentum and heat transfer as well as phase change. The phase change formulation is modeled according to a modified form of the Hertz-Knudsen equation. Various simple test cases are presented to verify the validity of the numerical framework. The ability of the methodology to accurately predict the temperature load on the flame deflector is demonstrated though application to an actual sub-scale test facility. The CFD simulation was able to reproduce the result of the test-firing, showing that the spray nozzle configuration provided insufficient amount of cooling.

  4. Assessing the organizational context for EBP implementation: the development and validity testing of the Implementation Climate Scale (ICS).

    PubMed

    Ehrhart, Mark G; Aarons, Gregory A; Farahnak, Lauren R

    2014-10-23

    Although the importance of the organizational environment for implementing evidence-based practices (EBP) has been widely recognized, there are limited options for measuring implementation climate in public sector health settings. The goal of this research was to develop and test a measure of EBP implementation climate that would both capture a broad range of issues important for effective EBP implementation and be of practical use to researchers and managers seeking to understand and improve the implementation of EBPs. Participants were 630 clinicians working in 128 work groups in 32 US-based mental health agencies. Items to measure climate for EBP implementation were developed based on past literature on implementation climate and other strategic climates and in consultation with experts on the implementation of EBPs in mental health settings. The sample was randomly split at the work group level of analysis; half of the sample was used for exploratory factor analysis (EFA), and the other half was used for confirmatory factor analysis (CFA). The entire sample was utilized for additional analyses assessing the reliability, support for level of aggregation, and construct-based evidence of validity. The EFA resulted in a final factor structure of six dimensions for the Implementation Climate Scale (ICS): 1) focus on EBP, 2) educational support for EBP, 3) recognition for EBP, 4) rewards for EBP, 5) selection for EBP, and 6) selection for openness. This structure was supported in the other half of the sample using CFA. Additional analyses supported the reliability and construct-based evidence of validity for the ICS, as well as the aggregation of the measure to the work group level. The ICS is a very brief (18 item) and pragmatic measure of a strategic climate for EBP implementation. It captures six dimensions of the organizational context that indicate to employees the extent to which their organization prioritizes and values the successful implementation of EBPs

  5. Saturn Apollo Program

    NASA Image and Video Library

    1964-03-01

    The flame and exhaust from the test firing of an F-1 engine blast out from the Saturn S-IB Static Test Stand in the east test area of the Marshall Space Flight Center. A Cluster of five F-1 engines, located in the S-IC (first) stage of the Saturn V vehicle, provided over 7,500,000 pounds of thrust to launch the giant rocket. The towering 363-foot Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  6. Airborne Electro-Mechanical Actuator Test Stand for Development of Prognostic Health Management Systems

    DTIC Science & Technology

    2010-10-01

    based on a pre-defined UH-60 data format, then also computes the load and position profile information. File Profile Interface In order to test the...of the data set. Figure 13 shows a typical motion profile executed over a period of about twenty minutes. Figure 14 shows the desired ( computed ...flight. The stand is connected to the aircraft data bus and the motion profiles for the test actuators, as well as the load applied to them, are

  7. GENERAL VIEW OF SITE LOOKING SOUTHWEST. JUPITER 'HOP' STAND, FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SITE LOOKING SOUTHWEST. JUPITER 'HOP' STAND, FOREGROUND CENTER, REDSTONE TEST STAND FOREGROUND RIGHT, SATURN I C TEST STAND BACKGROUND LEFT. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  8. SPROC: A multiple-processor DSP IC

    NASA Technical Reports Server (NTRS)

    Davis, R.

    1991-01-01

    A large, single-chip, multiple-processor, digital signal processing (DSP) integrated circuit (IC) fabricated in HP-Cmos34 is presented. The innovative architecture is best suited for analog and real-time systems characterized by both parallel signal data flows and concurrent logic processing. The IC is supported by a powerful development system that transforms graphical signal flow graphs into production-ready systems in minutes. Automatic compiler partitioning of tasks among four on-chip processors gives the IC the signal processing power of several conventional DSP chips.

  9. First environmental data from the EUV engineering test stand

    NASA Astrophysics Data System (ADS)

    Klebanoff, Leonard E.; Malinowski, Michael E.; Grunow, Philip A.; Clift, W. Miles; Steinhaus, Chip; Leung, Alvin H.; Haney, Steven J.

    2001-08-01

    The first environmental data from the Engineering Test Stand (ETS) has been collected. Excellent control of high-mass hydrocarbons has been observed. This control is a result of extensive outgas testing of components and materials, vacuum compatible design of the ETS, careful cleaning of parts and pre-baking of cables and sub assemblies where possible, and clean assembly procedures. As a result of the hydrocarbon control, the residual ETS vacuum environment is rich in water vapor. Analysis of witness plate data indicates that the ETS environment does not pose a contamination risk to the optics in the absence of EUV irradiation. However, with EUV exposure, the water rich environment can lead to EUV- induced water oxidation of the Si-terminated Mo/Si optics. Added ethanol can prevent optic oxidation, allowing carbon growth via EUV cracking of low-level residual hydrocarbons to occur. The EUV environmental issues are understood, mitigation approaches have been validated, and EUV optic contamination appears to be manageable.

  10. Stability and delay sensitivity of neutral fractional-delay systems.

    PubMed

    Xu, Qi; Shi, Min; Wang, Zaihua

    2016-08-01

    This paper generalizes the stability test method via integral estimation for integer-order neutral time-delay systems to neutral fractional-delay systems. The key step in stability test is the calculation of the number of unstable characteristic roots that is described by a definite integral over an interval from zero to a sufficient large upper limit. Algorithms for correctly estimating the upper limits of the integral are given in two concise ways, parameter dependent or independent. A special feature of the proposed method is that it judges the stability of fractional-delay systems simply by using rough integral estimation. Meanwhile, the paper shows that for some neutral fractional-delay systems, the stability is extremely sensitive to the change of time delays. Examples are given for demonstrating the proposed method as well as the delay sensitivity.

  11. Do Different ADHD-Related Etiological Risks Involve Specific Neuropsychological Pathways? An Analysis of Mediation Processes by Inhibitory Control and Delay Aversion

    ERIC Educational Resources Information Center

    Pauli-Pott, Ursula; Dalir, Silke; Mingebach, Tanja; Roller, Alisa; Becker, Katja

    2013-01-01

    Background: Inhibitory control (IC) has been regarded as a neuropsychological basic deficit and as an endophenotype of attention deficit/hyperactivity disorder (ADHD). Implicated here are mediation processes between etiological factors and ADHD symptoms. We thus analyze whether and to what extent executive IC and delay aversion (DA; i.e.,…

  12. Your wish is my command! The influence of symbolic modelling on preschool children’s delay of gratification

    PubMed Central

    Kumst, S

    2015-01-01

    The ability of children to delay gratification is correlated with a range of positive outcomes in adulthood, showing the potential impact of helping young children increase their competence in this area. This study investigated the influence of symbolic models on the self-control of 3-year old children. Eighty-three children were randomly assigned to one of three modelling conditions: personal storytelling, impersonal storytelling, and control. Children were tested on the delay-of-gratification maintenance paradigm both before and after being exposed to a symbolic model or control condition. Repeated measures ANOVA revealed no significant differences between the two storytelling groups and the control group, indicating that the symbolic models did not influence children’s ability to delay gratification. A serendipitous finding showed a positive relationship between the ability of children to wait and their production and accurate use of temporal terms, which was more pronounced in girls than boys. This finding may be an indication that a higher temporal vocabulary is linked to a continuous representation of the self in time, facilitating a child’s representation of the future-self receiving a larger reward than what the present-self could receive. PMID:25737814

  13. The Formation of Solid Particles from their Gas-Phase Molecular Precursors in Cosmic Environments with NASA Ames' COSmIC Facility

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2014-01-01

    We present and discuss the unique characteristics and capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for Cosmic Simulation Chamber and is dedicated to the study of molecules and ions under the low temperature and high vacuum conditions that are required to simulate interstellar, circumstellar and planetary physical environments in space. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a free jet supersonic expansion coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) system for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent, unique, laboratory astrophysics results that were obtained using the capabilities of COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid gains from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflow and planetary atmospheres. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of these studies for current and upcoming space missions.

  14. Presyncopal/Non-Presyncopal Outcomes of Post Spaceflight Stand Tests are Consistent from Flight to Flight

    NASA Technical Reports Server (NTRS)

    Martin, D. S.; Meck, J. V.

    2004-01-01

    The overall prevalence of orthostatic hypotension after short duration (6-18 d) spaceflight is 20% with existing countermeasures. However, it is not known if the outcomes of stand tests for orthostatic tolerance are consistent within individuals on subsequent flights, or if first time fliers are more (or less) likely to experience orthostatic hypotension and presyncope than are veteran astronauts. Fifty astronauts were studied retrospectively. Stand test data, which had been collected before and after spaceflight, were compared from at least two flights for each astronaut. For twenty-five of these astronauts, their first flight in this database was also their first time to fly into space. For the remaining 25, their first flight in this database was their second, third or fourth flight, as data were available. No subject became presyncopal during preflight testing. Of the 50 subjects, 45 (90%) had the same outcome on their first and second fligh ts of this study. Of 14 subjects on whom we had data from a third mission, 12 had the same stand test outcome on all three flights (86% same outcome across three flights). There was no correlation between flight duration and orthostatic tolerance (r = 0.39). These data support the idea that astronauts are predisposed to orthostatic tolerance/intolerance after spaceflight and that this predisposition is not altered by subsequent flights. Flight durations within this data set did not alter the likelihood of orthostatic intolerance and rookie fliers were no more likely to experience orthostatic intolerance than were veteran astronauts.

  15. Accuracy of different diagnostic tests for early, delayed and late prosthetic joint infection.

    PubMed

    Fernández-Sampedro, M; Fariñas-Alvarez, C; Garces-Zarzalejo, C; Alonso-Aguirre, M A; Salas-Venero, C; Martínez-Martínez, L; Fariñas, M C

    2017-08-25

    A combination of laboratory, histopathological and microbiological tests for diagnosis of prosthetic joint infection (PJI) have been strongly recommended. This study aims to characterize the accuracy of individual or group tests, such as culture of sonicate fluid, synovial fluid and peri-implant tissue, C-reactive protein (CRP) and histopathology for detection of early, delayed and late PJI. A prospective study of patients undergoing hip or knee arthroplasty from February 2009 to February 2014 was performed in a Spanish tertiary health care hospital. The diagnostic accuracy of the different methods was evaluated constructing receiver-operating-characteristic (ROC) curve areas. One hundred thirty consecutive patients were included: 18 (13.8%) early PJI, 35 (27%) delayed PJI and 77 (59.2%) late PJI. For individual parameters, the area under the ROC curve for peri-implant tissue culture was larger for early (0.917) than for delayed (0.829) and late PJI (0.778), p = 0.033. There was a significantly larger difference for ROC area in the synovial fluid culture for delayed (0.803) than for early (0.781) and late infections (0.679), p = 0.039. The comparison of the areas under the ROC curves for the two microbiological tests showed that sonicate fluid was significantly different from peri-implant tissue in delayed (0.951 vs 0.829, p = 0.005) and late PJI (0.901 vs 0.778, p = 0.000). The conjunction of preoperative parameters, synovial fluid culture and CRP, improved the accuracy for late PJI (p = 0.01). The conjunction of histopathology and sonicate fluid culture increased the area under ROC curve of sonication in early (0.917 vs 1.000); p = 0.06 and late cases (0.901 vs 0.999); p < 0.001. For early PJI, sonicate fluid and peri-implant tissue cultures achieve the same best sensitivity. For delayed and late PJI, sonicate fluid culture is the most sensitive individual diagnostic method. By combining histopathology and peri-implant tissue, all early, 97% of

  16. Quantification of the sit-to-stand movement for monitoring age-related motor deterioration using the Nintendo Wii Balance Board.

    PubMed

    Yamako, Go; Chosa, Etsuo; Totoribe, Koji; Fukao, Yuu; Deng, Gang

    2017-01-01

    Simple methods for quantitative evaluations of individual motor performance are crucial for the early detection of motor deterioration. Sit-to-stand movement from a chair is a mechanically demanding component of activities of daily living. Here, we developed a novel method using the ground reaction force and center of pressure measured from the Nintendo Wii Balance Board to quantify sit-to-stand movement (sit-to-stand score) and investigated the age-related change in the sit-to-stand score as a method to evaluate reduction in motor performance. The study enrolled 503 participants (mean age ± standard deviation, 51.0 ± 19.7 years; range, 20-88 years; male/female ratio, 226/277) without any known musculoskeletal conditions that limit sit-to-stand movement, which were divided into seven 10-year age groups. The participants were instructed to stand up as quickly as possible, and the sit-to-stand score was calculated as the combination of the speed and balance indices, which have a tradeoff relationship. We also performed the timed up and go test, a well-known clinical test used to evaluate an individual's mobility. There were significant differences in the sit-to-stand score and timed up and go time among age groups. The mean sit-to-stand score for 60s, 70s, and 80s were 77%, 68%, and 53% of that for the 20s, respectively. The timed up and go test confirmed the age-related decrease in mobility of the participants. In addition, the sit-to-stand score measured using the Wii Balance Board was compared with that from a laboratory-graded force plate using the Bland-Altman plot (bias = -3.1 [ms]-1, 95% limit of agreement: -11.0 to 3.9 [ms]-1). The sit-to-stand score has good inter-device reliability (intraclass correlation coefficient = 0.87). Furthermore, the test-retest reliability is substantial (intraclass correlation coefficient = 0.64). Thus, the proposed STS score will be useful to detect the early deterioration of motor performance.

  17. Present, future of automotive hybrid IC applications discussed

    NASA Astrophysics Data System (ADS)

    Matsuda, Nobuyoshi; Fukuoka, Atuhisa

    1987-09-01

    Hybrid ICs are presently utilized in various fields such as commercial televisions, VTRs, and audio devices, industrial usage of communication equipment, computers, terminals, and automobiles. Its applications and environments are various and diverse. The functions required for hybrid ICs vary from simple high density mounting for a system to the realization of high mechanisms with the application of function timing. The functions are properly used depending upon the system with its hybrid ICs and its circuit composition. Considering structure and reliability requirements for automotive hybrid ICs, an application example for hybrid ICs which use the package (COMPACT), will be discussed.

  18. Thackeray's Globules in IC 2944

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Strangely glowing dark clouds float serenely in this remarkable and beautiful image taken with NASA's Hubble Space Telescope. These dense, opaque dust clouds - known as 'globules' - are silhouetted against nearby bright stars in the busy star-forming region, IC 2944. These globules were first found in IC 2944 by astronomer A.D. Thackeray in 1950. Although globules like these have been known since Dutch-American astronomer Bart Bok first drew attention to such objects in 1947, little is still known about their origin and nature, except that they are generally associated with areas of star formation, called 'HII regions' due to the presence of hydrogen gas. The largest of the globules in this image is actually two separate clouds that gently overlap along our line of sight. Each cloud is nearly 1.4 light-years (50 arcseconds) along its longest dimension, and collectively, they contain enough material to equal over 15 solar masses. IC 2944, the surrounding HII region, is filled with gas and dust that is illuminated and heated by a loose cluster of O-type stars. These stars are much hotter and much more massive than our Sun. IC 2944 is relatively close by, located only 5900 light-years (1800 parsecs) away in the constellation Centaurus. Thanks to the remarkable resolution offered by the Hubble Space Telescope, astronomers can for the first time study the intricate structure of these globules. The globules appear to be heavily fractured, as if major forces were tearing them apart. When radio astronomers observed the faint hiss of molecules within the globules, they realized that the globules are actually in constant, churning motion, moving supersonically among each other. This may be caused by the powerful ultraviolet radiation from the luminous, massive stars, which also heat up the gas in the HII region, causing it to expand and stream against the globules, leading to their destruction. Despite their serene appearance, the globules may actually be likened to clumps

  19. The Magnetics Information Consortium (MagIC)

    NASA Astrophysics Data System (ADS)

    Johnson, C.; Constable, C.; Tauxe, L.; Koppers, A.; Banerjee, S.; Jackson, M.; Solheid, P.

    2003-12-01

    The Magnetics Information Consortium (MagIC) is a multi-user facility to establish and maintain a state-of-the-art relational database and digital archive for rock and paleomagnetic data. The goal of MagIC is to make such data generally available and to provide an information technology infrastructure for these and other research-oriented databases run by the international community. As its name implies, MagIC will not be restricted to paleomagnetic or rock magnetic data only, although MagIC will focus on these kinds of information during its setup phase. MagIC will be hosted under EarthRef.org at http://earthref.org/MAGIC/ where two "integrated" web portals will be developed, one for paleomagnetism (currently functional as a prototype that can be explored via the http://earthref.org/databases/PMAG/ link) and one for rock magnetism. The MagIC database will store all measurements and their derived properties for studies of paleomagnetic directions (inclination, declination) and their intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). Ultimately, this database will allow researchers to study "on the internet" and to download important data sets that display paleo-secular variations in the intensity of the Earth's magnetic field over geological time, or that display magnetic data in typical Zijderveld, hysteresis/FORC and various magnetization/remanence diagrams. The MagIC database is completely integrated in the EarthRef.org relational database structure and thus benefits significantly from already-existing common database components, such as the EarthRef Reference Database (ERR) and Address Book (ERAB). The ERR allows researchers to find complete sets of literature resources as used in GERM (Geochemical Earth Reference Model), REM (Reference Earth Model) and MagIC. The ERAB contains addresses for all contributors to the EarthRef.org databases, and also for those who participated in data collection, archiving and

  20. Test of four stand growth simulators for the northeastern United States

    Treesearch

    Thomas M. Schuler; David A. Marquis; Richard L. Ernst; Brian T. Simpson; Brian T. Simpson

    1993-01-01

    Evaluates SILVAH, FIBER, NE-TWIGS, and OAKSIM, simulators commonly used in the northeastern United States, by comparing predicted stand development with actual stand development records for periods ranging from 15 to 50 years. Results varied with stand parameter, forest type, projection length, and geographic area. Except in the spruce-fir forest type where FIBER...

  1. Design and experiments of RF transverse focusing in S-Band, 1 MeV standing wave linac

    NASA Astrophysics Data System (ADS)

    Mondal, J.; Chandan, Shiv; Parashar, S.; Bhattacharjee, D.; Tillu, A. R.; Tiwari, R.; Jayapraksh, D.; Yadav, V.; Banerjee, S.; Choudhury, N.; Ghodke, S. R.; Dixit, K. P.; Nimje, V. T.

    2015-09-01

    S-Band standing wave (SW) linacs in the range of 1-10 MeV have many potential industrial applications world wide. In order to mitigate the industrial requirement it is required to reduce the overall size and weight of the system. On this context a 2856 M Hz, 1 Me V, bi-periodic on axis coupled self transverse focused SW linac has been designed and tested. The RF phase focusing is achieved by introducing an asymmetric field distribution in the first cell of the 1 MeV linac. The pulsed electron beam of 40 keV, 650 mA and 5 μs duration is injected from a LaB6 thermionic gun. This paper presents the structure design, beam dynamics simulation, fabrication and experimental results of the 1 MeV auto-focusing SW linac.

  2. An experimental test of the causes of forest growth decline with stand age.

    Treesearch

    Michael G. Ryan; Dan Binkley; James H. Fownes; Christian Giardina; Randy S. Senock

    2004-01-01

    The decline in aboveground wood production after canopy closure in even-aged forest stands is a common pattern in forests, but clear evidence for the mechanism causing the decline is lacking. The problem is fundamental to forest biology, commercial forestry (the decline sets the rotation age), and to carbon storage in forests. We tested three hypotheses...

  3. Performing a Large-Scale Modal Test on the B2 Stand Crane at NASA's Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Stasiunas, Eric C.; Parks, Russel A.; Sontag, Brendan D.

    2018-01-01

    A modal test of NASA's Space Launch System (SLS) Core Stage is scheduled to occur at the Stennis Space Center B2 test stand. A derrick crane with a 150-ft long boom, located at the top of the stand, will be used to suspend the Core Stage in order to achieve defined boundary conditions. During this suspended modal test, it is expected that dynamic coupling will occur between the crane and the Core Stage. Therefore, a separate modal test was performed on the B2 crane itself, in order to evaluate the varying dynamic characteristics and correlate math models of the crane. Performing a modal test on such a massive structure was challenging and required creative test setup and procedures, including implementing both AC and DC accelerometers, and performing both classical hammer and operational modal analysis. This paper describes the logistics required to perform this large-scale test, as well as details of the test setup, the modal test methods used, and an overview and application of the results.

  4. SLS Engine Section Test Article Moves From NASA Barge Pegasus To Test Stand at NASA’s Marshall Space Flight Center

    NASA Image and Video Library

    2017-05-18

    The NASA barge Pegasus made its first trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama on May 15. It arrived carrying the first piece of Space Launch System hardware built at NASA's Michoud Assembly Facility in New Orleans. The barge left Michoud on April 28 with the core stage engine section test article, traveling 1,240 miles by river to Marshall. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved from the barge to Marshall’s Building 4619 where it will be tested. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The test article will endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.

  5. Delayed Intermodal Contingency Affects Young Children's Recognition of Their Current Self

    ERIC Educational Resources Information Center

    Miyazaki, Michiko; Hiraki, Kazuo

    2006-01-01

    This study investigated whether 2-, 3-, and 4-year-olds use their video feedback as a reflection of their current state, even when their feedback was presented with a short temporal delay. In Experiment 1, the effects of 1- and 2-s delayed feedback were examined on an analog of the mark test. In the case of live and 1-s delayed feedback,…

  6. Saw gin stands

    USDA-ARS?s Scientific Manuscript database

    The saw gin stand is the heart of the saw ginning system. Almost from the initial filing of patents for the spiked tooth gin and the saw gin in 1794 and 1796 by Whitney and then Holmes respectively (Hughs and Holt, 2015), the saw gin stand has predominated over early roller-type gins in the U.S. co...

  7. Rotational Periods and Starspot Activity of Young Solar-Type Dwarfs in the Open Cluster IC 4665

    NASA Technical Reports Server (NTRS)

    Allain, S.; Bouvier, J.; Prosser, C.; Marschall, L. A.; Laaksonen, B. D.

    1995-01-01

    We present the results of a V-band photometric monitoring survey of 15 late-type dwarfs in the young open cluster IC 4665. Low-amplitude periodic light variations are found for 8 stars and ascribed to the modulation by starspots that cover typically a few percent of the stellar disk. Periods range from 0.6 to 3.7 d, translating to equatorial velocities between 13 and 93 km/s. That no period longer than 4 d was detected suggests a relative paucity of extremely slow rotators (V(sub eq) much less than 10 km/s) among late-type dwarfs in IC 4665. The fractional number of slow rotators in IC 4665 is similar to that of Alpha Per cluster, suggesting that IC 4665 is close in age to Alpha Per (approx. 50 Myr).

  8. The Effects of Test Trial and Processing Level on Immediate and Delayed Retention

    ERIC Educational Resources Information Center

    Chang, Sau Hou

    2017-01-01

    The purpose of the present study was to investigate the effects of test trial and processing level on immediate and delayed retention. A 2 × 2 × 2 mixed ANOVAs was used with two between-subject factors of test trial (single test, repeated test) and processing level (shallow, deep), and one within-subject factor of final recall (immediate,…

  9. A mixed-signal implementation of a polychronous spiking neural network with delay adaptation

    PubMed Central

    Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André

    2014-01-01

    We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits. PMID:24672422

  10. A mixed-signal implementation of a polychronous spiking neural network with delay adaptation.

    PubMed

    Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan C; van Schaik, André

    2014-01-01

    We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits.

  11. Effect of posterior tibial tendon dysfunction on unipedal standing balance test.

    PubMed

    Kulig, Kornelia; Lee, Szu-Ping; Reischl, Stephen F; Noceti-DeWit, Lisa

    2015-01-01

    Foot pain and diminished functional capacity are characteristics of tibialis posterior tendon dysfunction (TPTD). This study tested the hypotheses that women with TPTD would have impaired performance of a unipedal standing balance test (USBT) and that balance performance would be related to the number of single limb heel raises (SLHR). Thirty-nine middle-aged women, 19 with early stage TPTD (stage I and II), were instructed to perform 2 tasks; a USBT and repeated SLHR. Balance success was defined as a 10-second stance. For those who were successful, center of pressure (COP) data in anterior-posterior (AP) and medial-lateral (ML) directions were recorded as a measure of postural sway. SLHR performance was divided into 3 bins (≤2; 3-9 and > 10 repetitions). The between-balance success on performing the SLHR test was analyzed using the Fisher's exact test (2 × 3). Independent t tests were used to compare between-group differences in postural sway. Relationship of postural sway to the number of heel raises was assessed using Spearman's rho. The success rate of the USBT was significantly lower in women with TPTD than the controls (47% vs 85%, P = .041). In addition, women with TPTD who completed the USBT exhibited increased AP COP displacement (14.0 ± 7.4 vs 8.4 ± 1.3 mm, P = .008), and a strong trend of increased ML COP displacement (8.3 ± 4.5 vs 6.1 ± 1.2 mm, P = .050). The success rate of USBT was correlated with the number of SLHR (P = .01). The AP and ML COP displacement were correlated with SLHR (r = -.538 and .495), respectively. Women with TPTD have difficulty in performing the USBT. Performance of the USBT and SLHR are highly correlated and predictive of each other. A unipedal balance test may be used as a proxy TPTD assessment tool to the heel raising test when pain prevents performance. Level III, case control study. © The Author(s) 2014.

  12. Clinical efficacy of dim light melatonin onset testing in diagnosing delayed sleep phase syndrome.

    PubMed

    Rahman, Shadab A; Kayumov, Leonid; Tchmoutina, Ekaterina A; Shapiro, Colin M

    2009-05-01

    Delayed Sleep Phase Syndrome (DSPS) arises from biological clock desynchrony and accounts for 10% of chronic insomnia patients. Currently DSPS is diagnosed based on sleep/wake cycle disruptions rather than examining the underlying biological clock alterations. The objective of the study was to determine the sensitivity and specificity of the Dim Light Melatonin Onset (DLMO) Test in diagnosing DSPS in a clinical setting. Fifty-six patients (mean age 28 years) symptomatic of DSPS participated in the study. Following an initial assessment of DSPS using sleep diaries, participants underwent two consecutive nights of polysomnography (PSG), with an imposed sleep period on the second night to demonstrate the delay in the timing of habitual sleep period and to thereby confirm DSPS. Circadian phase delays were also measured using melatonin secretion profiles, and the efficacy of diagnosing DSPS using DLMO was compared to using sleep diaries and PSG. Melatonin secretion was assayed for each individual by ELISA using saliva samples. Main outcome measures included the time of melatonin secretion onset, clinical sensitivity and specificity of the DLMO test. The time of melatonin secretion onset was significantly delayed in DSPS patients. Clinical sensitivity and specificity of the DLMO test in diagnosing DSPS were 90.3% and 84.0%, respectively. The DLMO test is an accurate tool for differentiating between sleep disorder patients with or without underlying circadian rhythm disruption. It is effective for phase typing DSPS patients in a clinical setting.

  13. Quantification of the sit-to-stand movement for monitoring age-related motor deterioration using the Nintendo Wii Balance Board

    PubMed Central

    Chosa, Etsuo; Totoribe, Koji; Fukao, Yuu; Deng, Gang

    2017-01-01

    Simple methods for quantitative evaluations of individual motor performance are crucial for the early detection of motor deterioration. Sit-to-stand movement from a chair is a mechanically demanding component of activities of daily living. Here, we developed a novel method using the ground reaction force and center of pressure measured from the Nintendo Wii Balance Board to quantify sit-to-stand movement (sit-to-stand score) and investigated the age-related change in the sit-to-stand score as a method to evaluate reduction in motor performance. The study enrolled 503 participants (mean age ± standard deviation, 51.0 ± 19.7 years; range, 20–88 years; male/female ratio, 226/277) without any known musculoskeletal conditions that limit sit-to-stand movement, which were divided into seven 10-year age groups. The participants were instructed to stand up as quickly as possible, and the sit-to-stand score was calculated as the combination of the speed and balance indices, which have a tradeoff relationship. We also performed the timed up and go test, a well-known clinical test used to evaluate an individual’s mobility. There were significant differences in the sit-to-stand score and timed up and go time among age groups. The mean sit-to-stand score for 60s, 70s, and 80s were 77%, 68%, and 53% of that for the 20s, respectively. The timed up and go test confirmed the age-related decrease in mobility of the participants. In addition, the sit-to-stand score measured using the Wii Balance Board was compared with that from a laboratory-graded force plate using the Bland–Altman plot (bias = −3.1 [ms]-1, 95% limit of agreement: −11.0 to 3.9 [ms]-1). The sit-to-stand score has good inter-device reliability (intraclass correlation coefficient = 0.87). Furthermore, the test–retest reliability is substantial (intraclass correlation coefficient = 0.64). Thus, the proposed STS score will be useful to detect the early deterioration of motor performance. PMID:29136031

  14. The study of fix composite panel and steel plates on testing stand

    NASA Astrophysics Data System (ADS)

    Wróbel, A.; Płaczek, M.; Wachna, M.

    2016-08-01

    In this paper the practical possibilities of strength verification analysis of composite materials used in the manufacture of selected components of railway wagons are presented. Real laboratory stand for measurements in a scale controlled by PLC controller were made. The study of different types of connections of composite materials with sheet metal is presented. In one of the chapter of this paper principles construction of testing stand with pneumatic cylinder were presented. Mainly checking of displacements and stresses generated on the sheet as a result of pneumatic actuators load for composite boards was carried out. The use of the controller with operating panel allows to easy programming testing cycle. The user can define the force generated by the actuator by change of air pressure in cylinder. Additionally the location of acting cylinders and their jump can be changed by operator. The examination of the volume displacements was done by displacement sensor, and the tensile strain gauge. All parameters are written in CatmanEasy - data acquisition software. This article presents the study of stresses and displacements in the composite plates joined with sheet metal, in summary of this article, the authors compare the obtained results with the computer simulation results in the article: "Simulation of stresses in an innovative combination of composite with sheet".

  15. 30 CFR 57.22209 - Auxiliary fans (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22209 Auxiliary fans (I-C mines.... Tests for methane shall be made at electric auxiliary fans before they are started. Such fans shall not be operated when air passing over or through them contains 0.5 percent or more methane. ...

  16. 30 CFR 57.22209 - Auxiliary fans (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22209 Auxiliary fans (I-C mines.... Tests for methane shall be made at electric auxiliary fans before they are started. Such fans shall not be operated when air passing over or through them contains 0.5 percent or more methane. ...

  17. Choice between delayed food and immediate oxycodone in rats.

    PubMed

    Secci, Maria E; Factor, Julie A; Schindler, Charles W; Panlilio, Leigh V

    2016-12-01

    The choice to seek immediate drug effects instead of more meaningful but delayed rewards is a defining feature of addiction. To develop a rodent model of this behavior, we allowed rats to choose between immediate intravenous delivery of the prescription opioid oxycodone (50 μg/kg) and delayed delivery of palatable food pellets. Rats preferred food at delays up to 30 s, but they chose oxycodone and food equally at 60-s delay and preferred oxycodone over food at 120-s delay. Comparison of food-drug choice, food-only, and drug-only conditions indicated that food availability decreased drug intake, but drug availability increased food intake. In the food-only condition, food was effective as a reinforcer even when delayed by 120 s. Pre-session feeding with chow slowed acquisition of food and drug self-administration, but did not affect choice. To establish procedures for testing potential anti-addiction medications, noncontingent pre-treatment with oxycodone or naltrexone (analogous to substitution and antagonist therapies, respectively) were tested on a baseline in which oxycodone was preferred over delayed food. Naltrexone pre-treatment decreased drug intake and increased food intake. Oxycodone pre-treatment decreased drug intake, but also produced extended periods with no food or drug responding. These findings show that the contingencies that induce preference for drugs over more meaningful but less immediate rewards in humans can be modeled in rodents, and they suggest that the model could be useful for assessing the therapeutic potential of treatments and exploring the underlying behavioral and neural mechanisms involved in addiction.

  18. Choice between delayed food and immediate oxycodone in rats

    PubMed Central

    Secci, Maria E.; Factor, Julie A.; Schindler, Charles W.; Panlilio, Leigh V.

    2016-01-01

    Rationale The choice to seek immediate drug effects instead of more meaningful but delayed rewards is a defining feature of addiction. Objectives To develop a rodent model of this behavior, we allowed rats to choose between immediate intravenous delivery of the prescription opioid oxycodone (50 μg/kg) and delayed delivery of palatable food pellets. Results Rats preferred food at delays up to 30 s, but they chose oxycodone and food equally at 60-s delay and preferred oxycodone over food at 120-s delay. Comparison of food-drug choice, food-only, and drug-only conditions indicated that food availability decreased drug intake, but drug availability increased food intake. In the food-only condition, food was effective as a reinforcer even when delayed by 120 s. Pre-session feeding with chow slowed acquisition of food and drug self-administration, but did not affect choice. To establish procedures for testing potential anti-addiction medications, noncontingent pretreatment with oxycodone or naltrexone (analogous to substitution and antagonist therapies, respectively) were tested on a baseline in which oxycodone was preferred over delayed food. Naltrexone pretreatment decreased drug intake and increased food intake. Oxycodone pretreatment decreased drug intake, but also produced extended periods with no food or drug responding. Conclusions These findings show that the contingencies that induce preference for drugs over more meaningful but less immediate rewards in humans can be modeled in rodents, and they suggest that the model could be useful for assessing the therapeutic potential of treatments and exploring the underlying behavioral and neural mechanisms involved in addiction. PMID:27678551

  19. Assessment of Muscle Fatigue Associated with Prolonged Standing in the Workplace

    PubMed Central

    Omar, Abdul Rahman; Saman, Alias Mohd; Othman, Ibrahim

    2012-01-01

    Objectives The objectives of this study were to determine the psychological fatigue and analyze muscle activity of production workers who are performing processes jobs while standing for prolonged time periods. Methods The psychological fatigue experienced by the workers was obtained through questionnaire surveys. Meanwhile, muscle activity has been analyzed using surface electromyography (sEMG) measurement. Lower extremities muscles include: erector spinae, tibialis anterior, and gastrocnemius were concurrently measured for more than five hours of standing. Twenty male production workers in a metal stamping company participated as subjects in this study. The subjects were required to undergo questionnaire surveys and sEMG measurement. Results Results of the questionnaire surveys found that all subjects experienced psychological fatigue due to prolonged standing jobs. Similarly, muscle fatigue has been identified through sEMG measurement. Based on the non-parametric statistical test using the Spearman's rank order correlation, the left erector spinae obtained a moderate positive correlation and statistically significant (rs = 0.552, p < 0.05) between the results of questionnaire surveys and sEMG measurement. Conclusion Based on this study, the authors concluded that prolonged standing was contributed to psychological fatigue and to muscle fatigue among the production workers. PMID:22953228

  20. Broad-line Type Ic supernova SN 2014ad

    NASA Astrophysics Data System (ADS)

    Sahu, D. K.; Anupama, G. C.; Chakradhari, N. K.; Srivastav, S.; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi

    2018-04-01

    We present optical and ultraviolet photometry and low-resolution optical spectroscopy of the broad-line Type Ic supernova SN 2014ad in the galaxy PGC 37625 (Mrk 1309), covering the evolution of the supernova during -5 to +87 d with respect to the date of maximum in the B band. A late-phase spectrum obtained at +340 d is also presented. With an absolute V-band magnitude at peak of MV = -18.86 ± 0.23 mag, SN 2014ad is fainter than supernovae associated with gamma ray bursts (GRBs), and brighter than most of the normal and broad-line Type Ic supernovae without an associated GRB. The spectral evolution indicates that the expansion velocity of the ejecta, as measured using the Si II line, is as high as ˜33 500 km s-1 around maximum, while during the post-maximum phase it settles at ˜15 000 km s-1. The expansion velocity of SN 2014ad is higher than that of all other well-observed broad-line Type Ic supernovae except for the GRB-associated SN 2010bh. The explosion parameters, determined by applying Arnett's analytical light-curve model to the observed bolometric light-curve, indicate that it was an energetic explosion with a kinetic energy of ˜(1 ± 0.3) × 1052 erg and a total ejected mass of ˜(3.3 ± 0.8) M⊙, and that ˜0.24 M⊙ of 56Ni was synthesized in the explosion. The metallicity of the host galaxy near the supernova region is estimated to be ˜0.5 Z⊙.