Sample records for s-shaped flux functions

  1. Robust functional statistics applied to Probability Density Function shape screening of sEMG data.

    PubMed

    Boudaoud, S; Rix, H; Al Harrach, M; Marin, F

    2014-01-01

    Recent studies pointed out possible shape modifications of the Probability Density Function (PDF) of surface electromyographical (sEMG) data according to several contexts like fatigue and muscle force increase. Following this idea, criteria have been proposed to monitor these shape modifications mainly using High Order Statistics (HOS) parameters like skewness and kurtosis. In experimental conditions, these parameters are confronted with small sample size in the estimation process. This small sample size induces errors in the estimated HOS parameters restraining real-time and precise sEMG PDF shape monitoring. Recently, a functional formalism, the Core Shape Model (CSM), has been used to analyse shape modifications of PDF curves. In this work, taking inspiration from CSM method, robust functional statistics are proposed to emulate both skewness and kurtosis behaviors. These functional statistics combine both kernel density estimation and PDF shape distances to evaluate shape modifications even in presence of small sample size. Then, the proposed statistics are tested, using Monte Carlo simulations, on both normal and Log-normal PDFs that mimic observed sEMG PDF shape behavior during muscle contraction. According to the obtained results, the functional statistics seem to be more robust than HOS parameters to small sample size effect and more accurate in sEMG PDF shape screening applications.

  2. Shape functions for velocity interpolation in general hexahedral cells

    USGS Publications Warehouse

    Naff, R.L.; Russell, T.F.; Wilson, J.D.

    2002-01-01

    Numerical methods for grids with irregular cells require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element (CVMFE) methods, vector shape functions approximate velocities and vector test functions enforce a discrete form of Darcy's law. In this paper, a new vector shape function is developed for use with irregular, hexahedral cells (trilinear images of cubes). It interpolates velocities and fluxes quadratically, because as shown here, the usual Piola-transformed shape functions, which interpolate linearly, cannot match uniform flow on general hexahedral cells. Truncation-error estimates for the shape function are demonstrated. CVMFE simulations of uniform and non-uniform flow with irregular meshes show first- and second-order convergence of fluxes in the L2 norm in the presence and absence of singularities, respectively.

  3. SLIPPING MAGNETIC RECONNECTION TRIGGERING A SOLAR ERUPTION OF A TRIANGLE-SHAPED FLAG FLUX ROPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ting; Zhang, Jun, E-mail: liting@nao.cas.cn, E-mail: zjun@nao.cas.cn

    2014-08-10

    We report the first simultaneous activities of the slipping motion of flare loops and a slipping eruption of a flux rope in 131 Å and 94 Å channels on 2014 February 2. The east hook-like flare ribbon propagated with a slipping motion at a speed of about 50 km s{sup –1}, which lasted about 40 minutes and extended by more than 100 Mm, but the west flare ribbon moved in the opposite direction with a speed of 30 km s{sup –1}. At the later phase of flare activity, there was a well developed ''bi-fan'' system of flare loops. The east footpoints ofmore » the flux rope showed an apparent slipping motion along the hook of the ribbon. Simultaneously, the fine structures of the flux rope rose up rapidly at a speed of 130 km s{sup –1}, much faster than that of the whole flux rope. We infer that the east footpoints of the flux rope are successively heated by a slipping magnetic reconnection during the flare, which results in the apparent slippage of the flux rope. The slipping motion delineates a ''triangle-shaped flag surface'' of the flux rope, implying that the topology of a flux rope is more complex than anticipated.« less

  4. Sensitivity of Surface Temperature to Oceanic Forcing via q-Flux Green’s Function Experiments. Part I: Linear Response Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fukai; Lu, Jian; Garuba, Oluwayemi

    This paper explores the use of linear response function (LRF) to relate the mean sea surface temperature (SST) response to prescribed ocean heat convergence (q-flux) forcings. Two methods for constructing the LRF based on the fluctuation-dissipation theorem (FDT) and Green’s function (GRF) are examined. A 900-year preindustrial simulation from the Community Earth System Model with a slab ocean (CESM-SOM) is used to estimate the LRF using FDT. For GRF, 106 pairs of CESM-SOM simulations with warm and cold q-flux patches are performed. FDT is found to have skill in estimating the SST response to a q-flux forcing when the localmore » SST response is strong, but it fails in inverse estimation of the q-flux forcing for a given SST pattern. In contrast, GRF is shown to be reasonably accurate in estimating both SST response and q-flux forcing. Possible degradation in FDT may be attributed to insufficient data sampling, significant departures of the SST data from Gaussian, and the non-normality of the constructed operator. The accurately estimated GRF-based LRF is used to (i) generate a global surface temperature sensitivity map that shows the q-flux forcing in higher latitudes to be three to four times more effective than in low latitudes in producing global surface warming; (ii) identify the most excitable SST mode (neutral vector) resembling Interdecadal Pacific Oscillation; and (iii) estimate a time-invariant q-flux forcing needed for maintaining the GHG-induced SST warming pattern. The GRF experiments will be used to construct LRF for other variables to further explore climate sensitivities and feedbacks.« less

  5. On the present shape of the Oort cloud and the flux of ;new; comets

    NASA Astrophysics Data System (ADS)

    Fouchard, M.; Rickman, H.; Froeschlé, Ch.; Valsecchi, G. B.

    2017-08-01

    Long term evolution of an initial set of 107 Oort cloud comets is performed for the age of the solar system taking into account the action of passing stars using 10 different sequences of stellar encounters, Galactic tides and the gravity of the giant planets. The initial conditions refer to a disk-shaped Oort cloud precursor, concentrated toward the ecliptic with perihelia in the region of Uranus and Neptune. Our results show that the shape of the Oort cloud quickly reach a kind of steady state beyond a semi-major axis greater than about 2000 AU (this threshold depending on the evolution time-span), with a Boltzmann distribution of the orbital energy. The stars act in an opposite way to what was found in previous papers, that is they emptied an initial Tidal Active Zone that is overfilled with respect to the isotropic case. Consequently, the inclusion of stellar perturbations strongly affect the shape of the Oort spike. On the contrary, the Oort spike shape appears to be poorly dependent on the stellar sequences used, whereas the total flux of observable comets and the proportion of retrograde comets for the inner part of the spike are significantly dependent of it. Then it has been highlighted that the total flux, the shape of the Oort spike and the shape of the final Oort cloud are almost independent of the initial distribution of orbital energy considered.

  6. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  7. Reconstruing U-Shaped Functions

    ERIC Educational Resources Information Center

    Werker, Janet F.; Hall, D. Geoffrey; Fais, Laurel

    2004-01-01

    U-shaped developmental functions, and their N-shaped cousins, have intrigued developmental psychologists for decades because they provide a compelling demonstration that development does not always entail a monotonic increase across age in a single underlying ability. Instead, the causes of development are much more complex. Indeed,…

  8. Extracting a shape function for a signal with intra-wave frequency modulation.

    PubMed

    Hou, Thomas Y; Shi, Zuoqiang

    2016-04-13

    In this paper, we develop an effective and robust adaptive time-frequency analysis method for signals with intra-wave frequency modulation. To handle this kind of signals effectively, we generalize our data-driven time-frequency analysis by using a shape function to describe the intra-wave frequency modulation. The idea of using a shape function in time-frequency analysis was first proposed by Wu (Wu 2013 Appl. Comput. Harmon. Anal. 35, 181-199. (doi:10.1016/j.acha.2012.08.008)). A shape function could be any smooth 2π-periodic function. Based on this model, we propose to solve an optimization problem to extract the shape function. By exploring the fact that the shape function is a periodic function with respect to its phase function, we can identify certain low-rank structure of the signal. This low-rank structure enables us to extract the shape function from the signal. Once the shape function is obtained, the instantaneous frequency with intra-wave modulation can be recovered from the shape function. We demonstrate the robustness and efficiency of our method by applying it to several synthetic and real signals. One important observation is that this approach is very stable to noise perturbation. By using the shape function approach, we can capture the intra-wave frequency modulation very well even for noise-polluted signals. In comparison, existing methods such as empirical mode decomposition/ensemble empirical mode decomposition seem to have difficulty in capturing the intra-wave modulation when the signal is polluted by noise. © 2016 The Author(s).

  9. A novel flux-switching permanent magnet machine with v-shaped magnets

    NASA Astrophysics Data System (ADS)

    Zhao, Guishu; Hua, Wei

    2017-05-01

    In this paper, firstly a novel 6-stator-coil/17-rotor-pole (6/17) flux-switching permanent magnet (FSPM) machine with V-shaped magnets, deduced from conventional 12/17 FSPM machines is proposed to achieve more symmetrical phase back-electromotive force (back-EMF), and smaller torque ripple by comparing with an existing 6/10 V-shaped FSPM machine. Then, to obtain larger electromagnetic torque, less torque ripple, and easier mechanical processing, two improved variants based on the original 6/17 V-shaped topology are proposed. For the first variant, the separate stator-core segments located on the stator yoke are connected into a united stator yoke, while for the second variant the stator core is a whole entity by adding magnetic bridges at the ends of permanent magnets (PMs). Consequently, the performances of the three 6/17 V-shaped FSPM machines, namely, the original one and the two variants, are conducted by finite element analysis (FEA). The results reveal that the first variant exhibits significantly larger torque and considerably improved torque per magnet volume, i.e., the magnet utilization ratio than the original one, and the second variant exhibits the smallest torque ripple, least total harmonic distribution (THD) of phase back-EMF, and easiest mechanical processing for manufacturing.

  10. Hydration status and diurnal trophic interactions shape microbial community function in desert biocrusts

    NASA Astrophysics Data System (ADS)

    Kim, Minsu; Or, Dani

    2017-12-01

    Biological soil crusts (biocrusts) are self-organised thin assemblies of microbes, lichens, and mosses that are ubiquitous in arid regions and serve as important ecological and biogeochemical hotspots. Biocrust ecological function is intricately shaped by strong gradients of water, light, oxygen, and dynamics in the abundance and spatial organisation of the microbial community within a few millimetres of the soil surface. We report a mechanistic model that links the biophysical and chemical processes that shape the functioning of biocrust representative microbial communities that interact trophically and respond dynamically to cycles of hydration, light, and temperature. The model captures key features of carbon and nitrogen cycling within biocrusts, such as microbial activity and distribution (during early stages of biocrust establishment) under diurnal cycles and the associated dynamics of biogeochemical fluxes at different hydration conditions. The study offers new insights into the highly dynamic and localised processes performed by microbial communities within thin desert biocrusts.

  11. Simulation study of geometric shape factor approach to estimating earth emitted flux densities from wide field-of-view radiation measurements

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; Green, R. N.

    1980-01-01

    A study was performed on the use of geometric shape factors to estimate earth-emitted flux densities from radiation measurements with wide field-of-view flat-plate radiometers on satellites. Sets of simulated irradiance measurements were computed for unrestricted and restricted field-of-view detectors. In these simulations, the earth radiation field was modeled using data from Nimbus 2 and 3. Geometric shape factors were derived and applied to these data to estimate flux densities on global and zonal scales. For measurements at a satellite altitude of 600 km, estimates of zonal flux density were in error 1.0 to 1.2%, and global flux density errors were less than 0.2%. Estimates with unrestricted field-of-view detectors were about the same for Lambertian and non-Lambertian radiation models, but were affected by satellite altitude. The opposite was found for the restricted field-of-view detectors.

  12. Shape-Controllable Gold Nanoparticle-MoS2 Hybrids Prepared by Tuning Edge-Active Sites and Surface Structures of MoS2 via Temporally Shaped Femtosecond Pulses.

    PubMed

    Zuo, Pei; Jiang, Lan; Li, Xin; Li, Bo; Xu, Yongda; Shi, Xuesong; Ran, Peng; Ma, Tianbao; Li, Dawei; Qu, Liangti; Lu, Yongfeng; Grigoropoulos, Costas P

    2017-03-01

    Edge-active site control of MoS 2 is crucial for applications such as chemical catalysis, synthesis of functional composites, and biochemical sensing. This work presents a novel nonthermal method to simultaneously tune surface chemical (edge-active sites) and physical (surface periodic micro/nano structures) properties of MoS 2 using temporally shaped femtosecond pulses, through which shape-controlled gold nanoparticles are in situ and self-assembly grown on MoS 2 surfaces to form Au-MoS 2 hybrids. The edge-active sites with unbound sulfurs of laser-treated MoS 2 drive the reduction of gold nanoparticles, while the surface periodic structures of laser-treated MoS 2 assist the shape-controllable growth of gold nanoparticles. The proposed novel method highlights the broad application potential of MoS 2 ; for example, these Au-MoS 2 hybrids exhibit tunable and highly sensitive SERS activity with an enhancement factor up to 1.2 × 10 7 , indicating the marked potential of MoS 2 in future chemical and biological sensing applications.

  13. Metabolic flux estimation using particle swarm optimization with penalty function.

    PubMed

    Long, Hai-Xia; Xu, Wen-Bo; Sun, Jun

    2009-01-01

    Metabolic flux estimation through 13C trace experiment is crucial for quantifying the intracellular metabolic fluxes. In fact, it corresponds to a constrained optimization problem that minimizes a weighted distance between measured and simulated results. In this paper, we propose particle swarm optimization (PSO) with penalty function to solve 13C-based metabolic flux estimation problem. The stoichiometric constraints are transformed to an unconstrained one, by penalizing the constraints and building a single objective function, which in turn is minimized using PSO algorithm for flux quantification. The proposed algorithm is applied to estimate the central metabolic fluxes of Corynebacterium glutamicum. From simulation results, it is shown that the proposed algorithm has superior performance and fast convergence ability when compared to other existing algorithms.

  14. Neutrino mass hierarchy and precision physics with medium-baseline reactors: Impact of energy-scale and flux-shape uncertainties

    NASA Astrophysics Data System (ADS)

    Capozzi, F.; Lisi, E.; Marrone, A.

    2015-11-01

    Nuclear reactors provide intense sources of electron antineutrinos, characterized by few-MeV energy E and unoscillated spectral shape Φ (E ). High-statistics observations of reactor neutrino oscillations over medium-baseline distances L ˜O (50 ) km would provide unprecedented opportunities to probe both the long-wavelength mass-mixing parameters (δ m2 and θ12) and the short-wavelength ones (Δ mee 2 and θ13), together with the subtle interference effects associated with the neutrino mass hierarchy (either normal or inverted). In a given experimental setting—here taken as in the JUNO project for definiteness—the achievable hierarchy sensitivity and parameter accuracy depend not only on the accumulated statistics but also on systematic uncertainties, which include (but are not limited to) the mass-mixing priors and the normalizations of signals and backgrounds. We examine, in addition, the effect of introducing smooth deformations of the detector energy scale, E →E'(E ), and of the reactor flux shape, Φ (E )→Φ'(E ), within reasonable error bands inspired by state-of-the-art estimates. It turns out that energy-scale and flux-shape systematics can noticeably affect the performance of a JUNO-like experiment, both on the hierarchy discrimination and on precision oscillation physics. It is shown that a significant reduction of the assumed energy-scale and flux-shape uncertainties (by, say, a factor of 2) would be highly beneficial to the physics program of medium-baseline reactor projects. Our results also shed some light on the role of the inverse-beta decay threshold, of geoneutrino backgrounds, and of matter effects in the analysis of future reactor oscillation data.

  15. The Role of Shaping the Client's Interpretations in Functional Analytic Psychotherapy

    ERIC Educational Resources Information Center

    Abreu, Paulo Roberto; Hubner, Maria Martha Costa; Lucchese, Fernanda

    2012-01-01

    Clinical behavior analysis often targets the shaping of clients' functional interpretations of/or rules about his own behavior. These are referred to as clinically relevant behavior 3 (CRB3) in functional analytic psychotherapy (FAP). We suggest that CRB3s should be seen as contingency-specifying stimuli (CSS), due to the their ability to change…

  16. Characterizing the Shape of Anatomical Structures With Poisson’s Equation

    PubMed Central

    Haidar, Haissam; Levitt, James J.; McCarley, Robert W.; Shenton, Martha E.; Soul, Janet S.

    2009-01-01

    Poisson’s equation, a fundamental partial differential equation in classical physics, has a number of properties that are interesting for shape analysis. In particular, the equipotential sets of the solution graph become smoother as the potential increases. We use the displacement map, the length of the streamlines formed by the gradient field of the solution, to measure the “complexity” (or smoothness) of the equipotential sets, and study its behavior as the potential increases. We believe that this function complexity = f (potential), which we call the shape characteristic, is a very natural way to express shape. Robust algorithms are presented to compute the solution to Poisson’s equation, the displacement map, and the shape characteristic. We first illustrate our technique on two-dimensional synthetic examples and natural silhouettes. We then perform two shape analysis studies on three-dimensional neuroanatomical data extracted from magnetic resonance (MR) images of the brain. In the first study, we investigate changes in the caudate nucleus in Schizotypal Personality Disorder (SPD) and confirm previously published results on this structure [1]. In the second study, we present a data set of caudate nuclei of premature infants with asymmetric white matter injury. Our method shows structural shape differences that volumetric measurements were unable to detect. PMID:17024829

  17. Effects of High-Flux versus Low-Flux Membranes on Pulmonary Function Tests in Hemodialysis Patients.

    PubMed

    Momeni, Ali; Rouhi, Hamid; Kiani, Glareh; Amiri, Masoud

    2013-01-01

    Several studies have been carried out to evaluate the effects of dialysis on pulmonary function tests (PFT). Dialysis procedure may reduce lung volumes and capacities or cause hypoxia; however, to the best of our knowledge, there is no previous study evaluating the effects of membrane type (high flux vs. low flux) on PFT in these patients. The aim of this study was the evaluation of this relationship. In this cross-sectional study, 43 hemodialysis patients without pulmonary disease were enrolled. In these patients dialysis was conducted by low-and high-flux membranes and before and after the procedure, spirometry was done and the results were evaluated by t-test and chi square test. The mean age of patients was 56.34 years. Twenty-three of them were female (53.5%). Type of membrane (high flux vs. low flux) had no effect on spirometry results of patients despite the significant decrease in the body weight during the dialysis session. High flux membrane had no advantage over low flux membrane in terms of improvement in spirometry findings; thus, we could not offer these expensive membranes for this purpose.

  18. Continuously differentiable PIC shape functions for triangular meshes

    DOE PAGES

    Barnes, D. C.

    2018-03-21

    In this study, a new class of continuously-differentiable shape functions is developed and applied to two-dimensional electrostatic PIC simulation on an unstructured simplex (triangle) mesh. It is shown that troublesome aliasing instabilities are avoided for cold plasma simulation in which the Debye length is as small as 0.01 cell sizes. These new shape functions satisfy all requirements for PIC particle shape. They are non-negative, have compact support, and partition unity. They are given explicitly by cubic expressions in the usual triangle logical (areal) coordinates. The shape functions are not finite elements because their structure depends on the topology of themore » mesh, in particular, the number of triangles neighboring each mesh vertex. Nevertheless, they may be useful as approximations to solution of other problems in which continuity of derivatives is required or desired.« less

  19. Continuously differentiable PIC shape functions for triangular meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, D. C.

    In this study, a new class of continuously-differentiable shape functions is developed and applied to two-dimensional electrostatic PIC simulation on an unstructured simplex (triangle) mesh. It is shown that troublesome aliasing instabilities are avoided for cold plasma simulation in which the Debye length is as small as 0.01 cell sizes. These new shape functions satisfy all requirements for PIC particle shape. They are non-negative, have compact support, and partition unity. They are given explicitly by cubic expressions in the usual triangle logical (areal) coordinates. The shape functions are not finite elements because their structure depends on the topology of themore » mesh, in particular, the number of triangles neighboring each mesh vertex. Nevertheless, they may be useful as approximations to solution of other problems in which continuity of derivatives is required or desired.« less

  20. [Shaping ability of two nickel-titanium rotary systems in simulated S-shaped canals].

    PubMed

    Luo, Hong-xia; Huang, Ding-ming; Zhang, Fu-hua; Tan, Hong; Zhou, Xue-dong

    2008-01-01

    To evaluate the shaping ability of two nickel-titanium rotary systems (ProTaper and Hero642) in simulated S-shaped canals. Thirty simulated S-shaped canals were randomly divided into three groups and prepared by ProTaper, Hero642, ProTaper combined with Hero642 respectively. All the canals were scanned before and after instrumentation, and the amount of material removed in the inner and outer wall and the canal width after instrumentation were measured with a computer image analysis program. There was significant difference in the amount of material removed at the inner side of apical curvature and outer side of apex between ProTaper combined with Hero642 and ProTaper files (P < 0.05) at the same tip size. The inner and outer wall of the canals were evenly prepared by ProTaper combined with Hero642, and the taper of canals were better than those prepared by Hero642. ProTaper combined with Hero 642 had better shaping ability to maintain the original shape and could create good taper canals in the simulated S-shaped canal model.

  1. Spatial-temporal variability in GHG fluxes and their functional interpretation in RusFluxNet

    NASA Astrophysics Data System (ADS)

    Vasenev, Ivan; Meshalkina, Julia; Sarzhanov, Dmitriy; Mazirov, Ilia; Yaroslavtsev, Alex; Komarova, Tatiana; Tikhonova, Maria

    2016-04-01

    High spatial and temporal variability is mutual feature for most modern boreal landscapes in the European Territory of Russia. This variability is result of their relatively young natural and land-use age with very complicated development stories. RusFluxNet includes a functionally-zonal set of representative natural, agricultural and urban ecosystems from the Central Forest Reserve in the north till the Central Chernozemic Reserve in the south (more than 1000 km distance). Especial attention has been traditionally given to their soil cover and land-use detailed variability, morphogenetic and functional dynamics. Central Forest Biosphere Reserve (360 km to North-West from Moscow) is the principal southern-taiga one in the European territory of Russia with long history of mature spruce ecosystem structure and dynamics investigation. Our studies (in frame of RF Governmental projects #11.G34.31.0079 and #14.120.14.4266) have been concentrated on the soil carbon stocks and GHG fluxes spatial variability and dynamics due to dominated there windthrow and fallow-forest successions. In Moscow RTSAU campus gives a good possibility to develop the ecosystem and soil monitoring of GHG fluxes in the comparable sites of urban forest, field crops and lawn ecosystems taking especial attention on their meso- and micro-relief, soil cover patterns and subsoil, vegetation and land-use technologies, temperature and moisture spatial and temporal variability. In the Central Chernozemic Biosphere Reserve and adjacent areas we do the comparative analysis of GHG fluxes and balances in the virgin and mowed meadow-steppe, forest, pasture, cropland and three types of urban ecosystems with similar subsoil and relief conditions. The carried out researches have shown not only sharp (in 2-5 times) changes in GHG ecosystem and soil fluxes and balances due to seasonal and daily microclimate variation, vegetation and crop development but their essential (in 2-4 times) spatial variability due to

  2. Structure of S-shaped growth in innovation diffusion

    NASA Astrophysics Data System (ADS)

    Shimogawa, Shinsuke; Shinno, Miyuki; Saito, Hiroshi

    2012-05-01

    A basic question on innovation diffusion is why the growth curve of the adopter population in a large society is often S shaped. From macroscopic, microscopic, and mesoscopic viewpoints, the growth of the adopter population is observed as the growth curve, individual adoptions, and differences among individual adoptions, respectively. The S shape can be explained if an empirical model of the growth curve can be deduced from models of microscopic and mesoscopic structures. However, even the structure of growth curve has not been revealed yet because long-term extrapolations by proposed models of S-shaped curves are unstable and it has been very difficult to predict the long-term growth and final adopter population. This paper studies the S-shaped growth from the viewpoint of social regularities. Simple methods to analyze power laws enable us to extract the structure of the growth curve directly from the growth data of recent basic telecommunication services. This empirical model of growth curve is singular at the inflection point and a logarithmic function of time after this point, which explains the unstable extrapolations obtained using previously proposed models and the difficulty in predicting the final adopter population. Because the empirical S curve can be expressed in terms of two power laws of the regularity found in social performances of individuals, we propose the hypothesis that the S shape represents the heterogeneity of the adopter population, and the heterogeneity parameter is distributed under the regularity in social performances of individuals. This hypothesis is so powerful as to yield models of microscopic and mesoscopic structures. In the microscopic model, each potential adopter adopts the innovation when the information accumulated by the learning about the innovation exceeds a threshold. The accumulation rate of information is heterogeneous among the adopter population, whereas the threshold is a constant, which is the opposite of previously

  3. Asymptotic, multigroup flux reconstruction and consistent discontinuity factors

    DOE PAGES

    Trahan, Travis J.; Larsen, Edward W.

    2015-05-12

    Recent theoretical work has led to an asymptotically derived expression for reconstructing the neutron flux from lattice functions and multigroup diffusion solutions. The leading-order asymptotic term is the standard expression for flux reconstruction, i.e., it is the product of a shape function, obtained through a lattice calculation, and the multigroup diffusion solution. The first-order asymptotic correction term is significant only where the gradient of the diffusion solution is not small. Inclusion of this first-order correction term can significantly improve the accuracy of the reconstructed flux. One may define discontinuity factors (DFs) to make certain angular moments of the reconstructed fluxmore » continuous across interfaces between assemblies in 1-D. Indeed, the standard assembly discontinuity factors make the zeroth moment (scalar flux) of the reconstructed flux continuous. The inclusion of the correction term in the flux reconstruction provides an additional degree of freedom that can be used to make two angular moments of the reconstructed flux continuous across interfaces by using current DFs in addition to flux DFs. Thus, numerical results demonstrate that using flux and current DFs together can be more accurate than using only flux DFs, and that making the second angular moment continuous can be more accurate than making the zeroth moment continuous.« less

  4. Flexible shape-memory scaffold for minimally invasive delivery of functional tissues

    NASA Astrophysics Data System (ADS)

    Montgomery, Miles; Ahadian, Samad; Davenport Huyer, Locke; Lo Rito, Mauro; Civitarese, Robert A.; Vanderlaan, Rachel D.; Wu, Jun; Reis, Lewis A.; Momen, Abdul; Akbari, Saeed; Pahnke, Aric; Li, Ren-Ke; Caldarone, Christopher A.; Radisic, Milica

    2017-10-01

    Despite great progress in engineering functional tissues for organ repair, including the heart, an invasive surgical approach is still required for their implantation. Here, we designed an elastic and microfabricated scaffold using a biodegradable polymer (poly(octamethylene maleate (anhydride) citrate)) for functional tissue delivery via injection. The scaffold’s shape memory was due to the microfabricated lattice design. Scaffolds and cardiac patches (1 cm × 1 cm) were delivered through an orifice as small as 1 mm, recovering their initial shape following injection without affecting cardiomyocyte viability and function. In a subcutaneous syngeneic rat model, injection of cardiac patches was equivalent to open surgery when comparing vascularization, macrophage recruitment and cell survival. The patches significantly improved cardiac function following myocardial infarction in a rat, compared with the untreated controls. Successful minimally invasive delivery of human cell-derived patches to the epicardium, aorta and liver in a large-animal (porcine) model was achieved.

  5. A white-box model of S-shaped and double S-shaped single-species population growth

    PubMed Central

    Kalmykov, Lev V.

    2015-01-01

    Complex systems may be mechanistically modelled by white-box modeling with using logical deterministic individual-based cellular automata. Mathematical models of complex systems are of three types: black-box (phenomenological), white-box (mechanistic, based on the first principles) and grey-box (mixtures of phenomenological and mechanistic models). Most basic ecological models are of black-box type, including Malthusian, Verhulst, Lotka–Volterra models. In black-box models, the individual-based (mechanistic) mechanisms of population dynamics remain hidden. Here we mechanistically model the S-shaped and double S-shaped population growth of vegetatively propagated rhizomatous lawn grasses. Using purely logical deterministic individual-based cellular automata we create a white-box model. From a general physical standpoint, the vegetative propagation of plants is an analogue of excitation propagation in excitable media. Using the Monte Carlo method, we investigate a role of different initial positioning of an individual in the habitat. We have investigated mechanisms of the single-species population growth limited by habitat size, intraspecific competition, regeneration time and fecundity of individuals in two types of boundary conditions and at two types of fecundity. Besides that, we have compared the S-shaped and J-shaped population growth. We consider this white-box modeling approach as a method of artificial intelligence which works as automatic hyper-logical inference from the first principles of the studied subject. This approach is perspective for direct mechanistic insights into nature of any complex systems. PMID:26038717

  6. Changing Schooling, Changing Shadow: Shapes and Functions of "Juku" in Japan

    ERIC Educational Resources Information Center

    Yamato, Yoko; Zhang, Wei

    2017-01-01

    Private supplementary tutoring became a widespread phenomenon in Japan during the 1960s. Since then, institutions providing tutoring known as "juku" have provided a wide range of services to supplement mainstream education. During decades of development, the shapes and functions of "juku" have changed in response to changes in…

  7. THE FORMATION OF AN INVERSE S-SHAPED ACTIVE-REGION FILAMENT DRIVEN BY SUNSPOT MOTION AND MAGNETIC RECONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.

    2016-11-20

    We present a detailed study of the formation of an inverse S-shaped filament prior to its eruption in active region NOAA 11884 from 2013 October 31 to November 2. In the initial stage, clockwise rotation of a small positive sunspot around the main negative trailing sunspot formed a curved filament. Then the small sunspot cancelled with the negative magnetic flux to create a longer active-region filament with an inverse S-shape. At the cancellation site a brightening was observed in UV and EUV images and bright material was transferred to the filament. Later the filament erupted after cancellation of two oppositemore » polarities below the upper part of the filament. Nonlinear force-free field extrapolation of vector photospheric fields suggests that the filament may have a twisted structure, but this cannot be confirmed from the current observations.« less

  8. Microbial Abundances Predict Methane and Nitrous Oxide Fluxes from a Windrow Composting System

    PubMed Central

    Li, Shuqing; Song, Lina; Gao, Xiang; Jin, Yaguo; Liu, Shuwei; Shen, Qirong; Zou, Jianwen

    2017-01-01

    Manure composting is a significant source of atmospheric methane (CH4) and nitrous oxide (N2O) that are two potent greenhouse gases. The CH4 and N2O fluxes are mediated by methanogens and methanotrophs, nitrifying and denitrifying bacteria in composting manure, respectively, while these specific bacterial functional groups may interplay in CH4 and N2O emissions during manure composting. To test the hypothesis that bacterial functional gene abundances regulate greenhouse gas fluxes in windrow composting systems, CH4 and N2O fluxes were simultaneously measured using the chamber method, and molecular techniques were used to quantify the abundances of CH4-related functional genes (mcrA and pmoA genes) and N2O-related functional genes (amoA, narG, nirK, nirS, norB, and nosZ genes). The results indicate that changes in interacting physicochemical parameters in the pile shaped the dynamics of bacterial functional gene abundances. The CH4 and N2O fluxes were correlated with abundances of specific compositional genes in bacterial community. The stepwise regression statistics selected pile temperature, mcrA and NH4+ together as the best predictors for CH4 fluxes, and the model integrating nirK, nosZ with pmoA gene abundances can almost fully explain the dynamics of N2O fluxes over windrow composting. The simulated models were tested against measurements in paddy rice cropping systems, indicating that the models can also be applicable to predicting the response of CH4 and N2O fluxes to elevated atmospheric CO2 concentration and rising temperature. Microbial abundances could be included as indicators in the current carbon and nitrogen biogeochemical models. PMID:28373862

  9. Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles - upscaling an aggregate biophysical model.

    PubMed

    Ebrahimi, Ali; Or, Dani

    2016-09-01

    Microbial communities inhabiting soil aggregates dynamically adjust their activity and composition in response to variations in hydration and other external conditions. These rapid dynamics shape signatures of biogeochemical activity and gas fluxes emitted from soil profiles. Recent mechanistic models of microbial processes in unsaturated aggregate-like pore networks revealed a highly dynamic interplay between oxic and anoxic microsites jointly shaped by hydration conditions and by aerobic and anaerobic microbial community abundance and self-organization. The spatial extent of anoxic niches (hotspots) flicker in time (hot moments) and support substantial anaerobic microbial activity even in aerated soil profiles. We employed an individual-based model for microbial community life in soil aggregate assemblies represented by 3D angular pore networks. Model aggregates of different sizes were subjected to variable water, carbon and oxygen contents that varied with soil depth as boundary conditions. The study integrates microbial activity within aggregates of different sizes and soil depth to obtain estimates of biogeochemical fluxes from the soil profile. The results quantify impacts of dynamic shifts in microbial community composition on CO2 and N2 O production rates in soil profiles in good agreement with experimental data. Aggregate size distribution and the shape of resource profiles in a soil determine how hydration dynamics shape denitrification and carbon utilization rates. Results from the mechanistic model for microbial activity in aggregates of different sizes were used to derive parameters for analytical representation of soil biogeochemical processes across large scales of practical interest for hydrological and climate models. © 2016 John Wiley & Sons Ltd.

  10. Structure and magnetic properties of flux grown single crystals of Co3-xFexSn2S2 shandites

    NASA Astrophysics Data System (ADS)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2016-01-01

    We report a successful single crystal growth of the shandite-type half-metallic ferromagnet Co3Sn2S2, and its Fe-substituted compounds, Co3-xFexSn2S2, by employing the flux method. Although Fe3Sn2S2 is unstable phase, we found that using the self Sn flux enables us to obtain single phase crystals up to x=0.53. The chemical composition of the grown plate-shaped single crystals was examined using wavelength-dispersive X-ray spectroscopy. The shandite structure with R 3 ̅m symmetry was confirmed by powder X-ray diffraction and the crystal structure parameters were refined using the Rietveld method. Magnetization measurements show suppression of the ferromagnetic order upon Fe-substitution , as well as in other substituted systems such as In- and Ni-substituted Co3Sn2S2. The almost identical magnetic phase diagrams of the Fe- and In-substituted compounds indicate that the electron number is dominantly significant to the magnetism in the Co-based shandite.

  11. Shaping ability of 4 different single-file systems in simulated S-shaped canals.

    PubMed

    Saleh, Abdulrahman Mohammed; Vakili Gilani, Pouyan; Tavanafar, Saeid; Schäfer, Edgar

    2015-04-01

    The aim of this study was to compare the shaping ability of 4 different single-file systems in simulated S-shaped canals. Sixty-four S-shaped canals in resin blocks were prepared to an apical size of 25 using Reciproc (VDW, Munich, Germany), WaveOne (Dentsply Maillefer, Ballaigues, Switzerland), OneShape (Micro Méga, Besançon, France), and F360 (Komet Brasseler, Lemgo, Germany) (n = 16 canals/group) systems. Composite images were made from the superimposition of pre- and postinstrumentation images. The amount of resin removed by each system was measured by using a digital template and image analysis software. Canal aberrations and the preparation time were also recorded. The data were statistically analyzed by using analysis of variance, Tukey, and chi-square tests. Canals prepared with the F360 and OneShape systems were better centered compared with the Reciproc and WaveOne systems. Reciproc and WaveOne files removed significantly greater amounts of resin from the inner side of both curvatures (P < .05). Instrumentation with OneShape and Reciproc files was significantly faster compared with WaveOne and F360 files (P < .05). No instrument fractured during canal preparation. Under the conditions of this study, all single-file instruments were safe to use and were able to prepare the canals efficiently. However, single-file systems that are less tapered seem to be more favorable when preparing S-shaped canals. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Hooked Flare Ribbons and Flux-rope-related QSL Footprints

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Gilchrist, Stuart A.; Aulanier, Guillaume; Schmieder, Brigitte; Pariat, Etienne; Li, Hui

    2016-05-01

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare that begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly can be well reproduced from a Grad-Rubin nonlinear force-free field extrapolation method. Various inverse-S- and inverse-J-shaped magnetic field lines, which surround a coronal flux rope, coincide with the sigmoid as observed in different extreme-ultraviolet wavelengths, including its multithreaded curved ends. Also, the observed distribution of surface currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and setup of the Grad-Rubin method. The modeled double inverse-J-shaped quasi-separatrix layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latter may be related to a complex pre-eruptive flux rope with more than one turn of twist, as obtained in the model. These ribbon-associated flux-rope QSL footprints are consistent with the new standard flare model in 3D, with the presence of a hyperbolic flux tube located below an inverse-teardrop-shaped coronal QSL. This is a new step forward forecasting the locations of reconnection and ribbons in solar flares and the geometrical properties of eruptive flux ropes.

  13. HOOKED FLARE RIBBONS AND FLUX-ROPE-RELATED QSL FOOTPRINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jie; Li, Hui; Gilchrist, Stuart A.

    2016-05-20

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare that begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by the Solar Dynamics Observatory /Atmospheric Imaging Assembly can be well reproduced from a Grad–Rubin nonlinear force-free field extrapolation method. Various inverse-S- and inverse-J-shaped magnetic field lines, which surround a coronal flux rope, coincide with the sigmoid as observed in different extreme-ultraviolet wavelengths, including its multithreaded curved ends. Also, the observed distribution of surfacemore » currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and setup of the Grad–Rubin method. The modeled double inverse-J-shaped quasi-separatrix layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latter may be related to a complex pre-eruptive flux rope with more than one turn of twist, as obtained in the model. These ribbon-associated flux-rope QSL footprints are consistent with the new standard flare model in 3D, with the presence of a hyperbolic flux tube located below an inverse-teardrop-shaped coronal QSL. This is a new step forward forecasting the locations of reconnection and ribbons in solar flares and the geometrical properties of eruptive flux ropes.« less

  14. Evaluation of Latent Heat Flux Fields from Satellites and Models during SEMAPHORE.

    NASA Astrophysics Data System (ADS)

    Bourras, Denis; Liu, W. Timothy; Eymard, Laurence; Tang, Wenqing

    2003-02-01

    Latent heat fluxes were derived from satellite observations in the region of Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE), which was conducted near the Azores islands in the North Atlantic Ocean in autumn of 1993. The satellite fluxes were compared with output fields of two atmospheric circulation models and in situ measurements. The rms error of the instantaneous satellite fluxes is between 35 and 40 W m-2 and the bias is 60-85 W m-2. The large bias is mainly attributed to a bias in satellite-derived atmospheric humidity and is related to the particular shape of the vertical humidity profiles during SEMAPHORE. The bias in humidity implies that the range of estimated fluxes is smaller than the range of ship fluxes, by 34%-38%. The rms errors for fluxes from models are 30-35 W m-2, and the biases are smaller than the biases in satellite fluxes (14-18 W m-2). Two case studies suggest that the satellites detect horizontal gradients of wind speed and specific humidity if the magnitude of the gradients exceeds a detection threshold, which is 1.27 g kg-1 (100 km)-1 for specific humidity and between 0.35 and 0.82 m s-1 (30 km)-1 for wind speed. In contrast, the accuracy of the spatial gradients of bulk variables from models always varies as a function of the location and number of assimilated observations. A comparison between monthly fluxes from satellites and models reveals that satellite-derived flux anomaly fields are consistent with reanalyzed fields, whereas operational model products lack part of the mesoscale structures present in the satellite fields.

  15. Fast and robust shape diameter function.

    PubMed

    Chen, Shuangmin; Liu, Taijun; Shu, Zhenyu; Xin, Shiqing; He, Ying; Tu, Changhe

    2018-01-01

    The shape diameter function (SDF) is a scalar function defined on a closed manifold surface, measuring the neighborhood diameter of the object at each point. Due to its pose oblivious property, SDF is widely used in shape analysis, segmentation and retrieval. However, computing SDF is computationally expensive since one has to place an inverted cone at each point and then average the penetration distances for a number of rays inside the cone. Furthermore, the shape diameters are highly sensitive to local geometric features as well as the normal vectors, hence diminishing their applications to real-world meshes which often contain rich geometric details and/or various types of defects, such as noise and gaps. In order to increase the robustness of SDF and promote it to a wide range of 3D models, we define SDF by offsetting the input object a little bit. This seemingly minor change brings three significant benefits: First, it allows us to compute SDF in a robust manner since the offset surface is able to give reliable normal vectors. Second, it runs many times faster since at each point we only need to compute the penetration distance along a single direction, rather than tens of directions. Third, our method does not require watertight surfaces as the input-it supports both point clouds and meshes with noise and gaps. Extensive experimental results show that the offset-surface based SDF is robust to noise and insensitive to geometric details, and it also runs about 10 times faster than the existing method. We also exhibit its usefulness using two typical applications including shape retrieval and shape segmentation, and observe a significant improvement over the existing SDF.

  16. Tear film dynamics with evaporation, wetting, and time-dependent flux boundary condition on an eye-shaped domain

    PubMed Central

    Li, Longfei; Braun, R. J.; Maki, K. L.; Henshaw, W. D.; King-Smith, P. E.

    2014-01-01

    We study tear film dynamics with evaporation on a wettable eye-shaped ocular surface using a lubrication model. The mathematical model has a time-dependent flux boundary condition that models the cycles of tear fluid supply and drainage; it mimics blinks on a stationary eye-shaped domain. We generate computational grids and solve the nonlinear governing equations using the OVERTURE computational framework. In vivo experimental results using fluorescent imaging are used to visualize the influx and redistribution of tears for an open eye. Results from the numerical simulations are compared with the experiment. The model captures the flow around the meniscus and other dynamic features of human tear film observed in vivo. PMID:24926191

  17. Critical temperature for shape transition in hot nuclei within covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Niu, Y. F.

    2018-05-01

    Prompted by the simple proportional relation between critical temperature for pairing transition and pairing gap at zero temperature, we investigate the relation between critical temperature for shape transition and ground-state deformation by taking even-even Cm-304286 isotopes as examples. The finite-temperature axially deformed covariant density functional theory with BCS pairing correlation is used. Since the Cm isotopes are the newly proposed nuclei with octupole correlations, we studied in detail the free energy surface, the Nilsson single-particle (s.p.) levels, and the components of s.p. levels near the Fermi level in 292Cm. Through this study, the formation of octupole equilibrium is understood by the contribution coming from the octupole driving pairs with Ω [N ,nz,ml] and Ω [N +1 ,nz±3 ,ml] for single-particle levels near the Fermi surfaces as it provides a good manifestation of the octupole correlation. Furthermore, the systematics of deformations, pairing gaps, and the specific heat as functions of temperature for even-even Cm-304286 isotopes are discussed. Similar to the relation between the critical pairing transition temperature and the pairing gap at zero temperature Tc=0.6 Δ (0 ) , a proportional relation between the critical shape transition temperature and the deformation at zero temperature Tc=6.6 β (0 ) is found for both octupole shape transition and quadrupole shape transition for the isotopes considered.

  18. Flow-orthogonal bead oscillation in a microfluidic chip with a magnetic anisotropic flux-guide array.

    PubMed

    van Pelt, Stijn; Derks, Roy; Matteucci, Marco; Hansen, Mikkel Fougt; Dietzel, Andreas

    2011-04-01

    A new concept for the manipulation of superparamagnetic beads inside a microfluidic chip is presented in this paper. The concept allows for bead actuation orthogonal to the flow direction inside a microchannel. Basic manipulation functionalities were studied by means of finite element simulations and results were oval-shaped steady state oscillations with bead velocities up to 500 μm/s. The width of the trajectory could be controlled by prescribing external field rotation. Successful verification experiments were performed on a prototype chip fabricated with excimer laser ablation in polycarbonate and electroforming of nickel flux-guides. Bead velocities up to 450 μm/s were measured in a 75 μm wide channel. By prescribing the currents in the external quadrupole magnet, the shape of the bead trajectory could be controlled.

  19. A mobile ferromagnetic shape detection sensor using a Hall sensor array and magnetic imaging.

    PubMed

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a mobile Hall sensor array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the mobile Hall sensor array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of mobile Hall sensor array system for actual shape detection. The results prove that the mobile Hall sensor array system is able to perform magnetic imaging in identifying various ferromagnetic materials.

  20. A Mobile Ferromagnetic Shape Detection Sensor Using a Hall Sensor Array and Magnetic Imaging

    PubMed Central

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a Mobile Hall Sensor Array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the Mobile Hall Sensor Array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of Mobile Hall Sensor Array system for actual shape detection. The results prove that the Mobile Hall Sensor Array system is able to perform magnetic imaging in identifying various ferromagnetic materials. PMID:22346653

  1. Avian egg shape: Form, function, and evolution.

    PubMed

    Stoddard, Mary Caswell; Yong, Ee Hou; Akkaynak, Derya; Sheard, Catherine; Tobias, Joseph A; Mahadevan, L

    2017-06-23

    Avian egg shape is generally explained as an adaptation to life history, yet we currently lack a global synthesis of how egg-shape differences arise and evolve. Here, we apply morphometric, mechanistic, and macroevolutionary analyses to the egg shapes of 1400 bird species. We characterize egg-shape diversity in terms of two biologically relevant variables, asymmetry and ellipticity, allowing us to quantify the observed morphologies in a two-dimensional morphospace. We then propose a simple mechanical model that explains the observed egg-shape diversity based on geometric and material properties of the egg membrane. Finally, using phylogenetic models, we show that egg shape correlates with flight ability on broad taxonomic scales, suggesting that adaptations for flight may have been critical drivers of egg-shape variation in birds. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Characterisation of Redlen high-flux CdZnTe

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Veale, M. C.; Wilson, M. D.; Seller, P.; Schneider, A.; Iniewski, K.

    2017-12-01

    CdZnTe is a promising material for the current generation of free electron laser light sources and future laser-driven γ-ray sources which require detectors capable of high flux imaging at X-ray and γ-ray energies (> 10 keV) . However, at high fluxes CdZnTe has been shown to polarise due to hole trapping, leading to poor performance. Novel Redlen CdZnTe material with improved hole transport properties has been designed for high flux applications. Small pixel CdZnTe detectors were fabricated by Redlen Technologies and flip-chip bonded to PIXIE ASICs. An XIA Digital Gamma Finder PIXIE-16 system was used to digitise each of the nine analogue signals with a timing resolution of 10 ns. Pulse shape analysis was used to extract the rise times and amplitude of signals. These were measured as a function of applied bias voltage and used to calculate the mobility (μ) and mobility-lifetime (μτ) of electrons and holes in the material for three identical detectors. The measured values of the transport properties of electrons in the high-flux-capable material was lower than previously reported for Redlen CdZnTe material (μeτe ~ 1 × 10-3 cm2V-1 and μe ~ 1000 cm2V-1s-1) while the hole transport properties were found to have improved (μhτh ~ 3 × 10-4 cm2V-1 and μh ~ 100 cm2V-1s-1).

  3. Laser shape setting of superelastic nitinol wires: Functional properties and microstructure

    NASA Astrophysics Data System (ADS)

    Tuissi, Ausonio; Coduri, Mauro; Biffi, Carlo Alberto

    Shape setting is one of the most important steps in the production route of Nitinol Shape Memory Alloys (SMAs), as it can fix the functional properties, such as the shape memory effect and the superelasticity (SE). The conventional method for making the shape setting is performed at 400-500∘C in furnaces. In this work, a laser beam was adopted for performing straight shape setting on commercially available austenitic Nitinol thin wires. The laser beam, at different power levels, was moved along the wire length for inducing the functional performances. Calorimetric, pseudo-elastic and microstructural features of the laser annealed wires were studied through differential scanning calorimetry, tensile testing and high energy X-ray diffraction, respectively. It can be stated that the laser technology can induce SE in thin Nitinol wires: the wire performances can be modulated in function of the laser power and improved functional properties can be obtained.

  4. Shape of primary proton spectrum in multi-TeV region from data on vertical muon flux

    NASA Astrophysics Data System (ADS)

    Yushkov, A. V.; Lagutin, A. A.

    2008-12-01

    It is shown that the primary proton spectrum, reconstructed from sea-level and underground data on muon spectrum with the use of QGSJET 01, QGSJET II, NEXUS 3.97, and SIBYLL 2.1 interaction models, demonstrates not only model-dependent intensity, but also a model-dependent form. For correct reproduction of muon spectrum shape the primary proton flux should have a nonconstant power index for all considered models, except SIBYLL 2.1, with break at energies around 10 15 TeV and a value of exponent before break close to that obtained in the ATIC-2 experiment. To validate the presence of this break, understanding of inclusive spectra behavior in the fragmentation region in p-air collisions should be improved, but we show that is impossible to do on the basis of the existing experimental data on primary nuclei, atmospheric muon, and hadron fluxes.

  5. Precipitate shape fitting and reconstruction by means of 3D Zernike functions

    NASA Astrophysics Data System (ADS)

    Callahan, P. G.; De Graef, M.

    2012-01-01

    3D Zernike functions are defined and used for the reconstruction of precipitate shapes. These functions are orthogonal over the unit ball and allow for an arbitrary shape, scaled to fit inside an embedding sphere, to be decomposed into 3D harmonics. Explicit expressions are given for the general Zernike moments, correcting typographical errors in the literature. Explicit expressions of the Zernike moments for the ellipsoid and the cube are given. The 3D Zernike functions and moments are applied to the reconstruction of γ' precipitate shapes in two Ni-based superalloys, one with nearly cuboidal precipitate shapes, and one with more complex dendritic shapes.

  6. Probing noise in flux qubits via macroscopic resonant tunneling.

    PubMed

    Harris, R; Johnson, M W; Han, S; Berkley, A J; Johansson, J; Bunyk, P; Ladizinsky, E; Govorkov, S; Thom, M C; Uchaikin, S; Bumble, B; Fung, A; Kaul, A; Kleinsasser, A; Amin, M H S; Averin, D V

    2008-09-12

    Macroscopic resonant tunneling between the two lowest lying states of a bistable rf SQUID is used to characterize noise in a flux qubit. Measurements of the incoherent decay rate as a function of flux bias revealed a Gaussian-shaped profile that is not peaked at the resonance point but is shifted to a bias at which the initial well is higher than the target well. The rms amplitude of the noise, which is proportional to the dephasing rate 1/tauphi, was observed to be weakly dependent on temperature below 70 mK. Analysis of these results indicates that the dominant source of low energy flux noise in this device is a quantum mechanical environment in thermal equilibrium.

  7. S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation

    PubMed Central

    2014-01-01

    Background Surface electromyographic (S-EMG) signal processing has been emerging in the past few years due to its non-invasive assessment of muscle function and structure and because of the fast growing rate of digital technology which brings about new solutions and applications. Factors such as sampling rate, quantization word length, number of channels and experiment duration can lead to a potentially large volume of data. Efficient transmission and/or storage of S-EMG signals are actually a research issue. That is the aim of this work. Methods This paper presents an algorithm for the data compression of surface electromyographic (S-EMG) signals recorded during isometric contractions protocol and during dynamic experimental protocols such as the cycling activity. The proposed algorithm is based on discrete wavelet transform to proceed spectral decomposition and de-correlation, on a dynamic bit allocation procedure to code the wavelets transformed coefficients, and on an entropy coding to minimize the remaining redundancy and to pack all data. The bit allocation scheme is based on mathematical decreasing spectral shape models, which indicates a shorter digital word length to code high frequency wavelets transformed coefficients. Four bit allocation spectral shape methods were implemented and compared: decreasing exponential spectral shape, decreasing linear spectral shape, decreasing square-root spectral shape and rotated hyperbolic tangent spectral shape. Results The proposed method is demonstrated and evaluated for an isometric protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective performance evaluations metrics are presented. In addition, comparisons with other encoders proposed in scientific literature are shown. Conclusions The decreasing bit allocation shape applied to the quantized wavelet coefficients combined with arithmetic coding results is an efficient procedure. The performance comparisons of the proposed S-EMG data

  8. A unified free-form representation applied to the shape optimization of the hohlraum with octahedral 6 laser entrance holes

    NASA Astrophysics Data System (ADS)

    Jiang, Shaoen; Huang, Yunbao; Jing, Longfei; Li, Haiyan; Huang, Tianxuan; Ding, Yongkun

    2016-01-01

    The hohlraum is very crucial for indirect laser driven Inertial Confinement Fusion. Usually, its shape is designed as sphere, cylinder, or rugby with some kind of fixed functions, such as ellipse or parabola. Recently, a spherical hohlraum with octahedral 6 laser entrance holes (LEHs) has been presented with high flux symmetry [Lan et al., Phys. Plasmas 21, 010704 (2014); 21, 052704 (2014)]. However, there is only one shape parameter, i.e., the hohlraum to capsule radius ratio, being optimized. In this paper, we build the hohlraum with octahedral 6LEHs with a unified free-form representation, in which, by varying additional shape parameters: (1) available hohlraum shapes can be uniformly and accurately represented, (2) it can be used to understand why the spherical hohlraum has higher flux symmetry, (3) it allows us to obtain a feasible shape design field satisfying flux symmetry constraints, and (4) a synthetically optimized hohlraum can be obtained with a tradeoff of flux symmetry and other hohlraum performance. Finally, the hohlraum with octahedral 6LEHs is modeled, analyzed, and then optimized based on the unified free-form representation. The results show that a feasible shape design field with flux asymmetry no more than 1% can be obtained, and over the feasible design field, the spherical hohlraum is validated to have the highest flux symmetry, and a synthetically optimal hohlraum can be found with closing flux symmetry but larger volume between laser spots and centrally located capsule.

  9. Form follows function: the importance of endoplasmic reticulum shape.

    PubMed

    Westrate, L M; Lee, J E; Prinz, W A; Voeltz, G K

    2015-01-01

    The endoplasmic reticulum (ER) has a remarkably complex structure, composed of a single bilayer that forms the nuclear envelope, along with a network of sheets and dynamic tubules. Our understanding of the biological significance of the complex architecture of the ER has improved dramatically in the last few years. The identification of proteins and forces required for maintaining ER shape, as well as more advanced imaging techniques, has allowed the relationship between ER shape and function to come into focus. These studies have also revealed unexpected new functions of the ER and novel ER domains regulating alterations in ER dynamics. The importance of ER structure has become evident as recent research has identified diseases linked to mutations in ER-shaping proteins. In this review, we discuss what is known about the maintenance of ER architecture, the relationship between ER structure and function, and diseases associated with defects in ER structure.

  10. Eclipse and noneclipse differential photoelectron flux.

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.; Sharp, G. W.

    1972-01-01

    Differential photoelectron flux in the energy range of 3 to 50 eV has been measured in the lower ionosphere both during the March 7, 1970, solar eclipse and during a period 24 hours earlier. The two measurements were made with identical retarding potential analyzers carried on Nike-Apache rocket flights to a peak altitude of approximately 180 km. The differential electron flux spectrum within totality on the eclipse flight had the same shape but was a factor of 10 smaller in magnitude than that measured on the control day at altitudes between 120 and 180 km, an expected result for an eclipse function decreasing to 1/10 at totality. The differential flux spectrum measured in full sun has the same general energy dependence as that reported by Doering et al. (1970) but is larger by a factor of 2 to 10, depending on altitude.

  11. Internal wave energy flux from density perturbations in nonlinear stratifications

    NASA Astrophysics Data System (ADS)

    Lee, Frank M.; Allshouse, Michael R.; Swinney, Harry L.; Morrison, P. J.

    2017-11-01

    Tidal flow over the topography at the bottom of the ocean, whose density varies with depth, generates internal gravity waves that have a significant impact on the energy budget of the ocean. Thus, understanding the energy flux (J = p v) is important, but it is difficult to measure simultaneously the pressure and velocity perturbation fields, p and v . In a previous work, a Green's-function-based method was developed to calculate the instantaneous p, v , and thus J , given a density perturbation field for a constant buoyancy frequency N. Here we extend the previous analytic Green's function work to include nonuniform N profiles, namely the tanh-shaped and linear cases, because background density stratifications that occur in the ocean and some experiments are nonlinear. In addition, we present a finite-difference method for the general case where N has an arbitrary profile. Each method is validated against numerical simulations. The methods we present can be applied to measured density perturbation data by using our MATLAB graphical user interface EnergyFlux. PJM was supported by the U.S. Department of Energy Contract DE-FG05-80ET-53088. HLS and MRA were supported by ONR Grant No. N000141110701.

  12. Intramolecular Nuclear Flux Densities

    NASA Astrophysics Data System (ADS)

    Barth, I.; Daniel, C.; Gindensperger, E.; Manz, J.; PéRez-Torres, J. F.; Schild, A.; Stemmle, C.; Sulzer, D.; Yang, Y.

    The topic of this survey article has seen a renaissance during the past couple of years. Here we present and extend the results for various phenomena which we have published from 2012-2014, with gratitude to our coauthors. The new phenomena include (a) the first reduced nuclear flux densities in vibrating diatomic molecules or ions which have been deduced from experimental pump-probe spectra; these "experimental" nuclear flux densities reveal several quantum effects including (b) the "quantum accordion", i.e., during the turn from bond stretch to bond compression, the diatomic system never stands still — instead, various parts of it with different bond lengths flow into opposite directions. (c) Wavepacket interferometry has been extended from nuclear densities to flux densities, again revealing new phenomena: For example, (d) a vibrating nuclear wave function with compact initial shape may split into two partial waves which run into opposite directions, thus causing interfering flux densities. (e) Tunneling in symmetric 1-dimensional double-well systems yields maximum values of the associated nuclear flux density just below the potential barrier; this is in marked contrast with negligible values of the nuclear density just below the barrier. (f) Nuclear flux densities of pseudorotating nuclei may induce huge magnetic fields. A common methodologic theme of all topics is the continuity equation which connects the time derivative of the nuclear density to the divergence of the flux density, subject to the proper boundary conditions. (g) Nearly identical nuclear densities with different boundary conditions may be related to entirely different flux densities, e.g., during tunneling in cyclic versus non-cyclic systems. The original continuity equation, density and flux density of all nuclei, or of all nuclear degrees of freedom, may be reduced to the corresponding quantities for just a single nucleus, or just a single degree of freedom.

  13. Balanced sediment fluxes in southern California’s Mediterranean-climate zone salt marshes

    USGS Publications Warehouse

    Rosencranz, Jordan A.; Ganju, Neil K.; Ambrose, Richard F.; Brosnahan, Sandra M.; Dickhudt, Patrick J.; Guntenspergen, Glenn R.; MacDonald, Glen M.; Takekawa, John Y.; Thorne, Karen M.

    2016-01-01

    Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.

  14. Blade motion and nutrient flux to the kelp, Eisenia arborea.

    PubMed

    Denny, Mark; Roberson, Loretta

    2002-08-01

    Marine algae rely on currents and waves to replenish the nutrients required for photosynthesis. The interaction of algal blades with flow often involves dynamic reorientations of the blade surface (pitching and flapping) that may in turn affect nutrient flux. As a first step toward understanding the consequences of blade motion, we explore the effect of oscillatory pitching on the flux to a flat plate and to two morphologies of the kelp Eisenia arborea. In slow flow (equivalent to a water velocity of 2.7 cm s(-1)), pitching increases the time-averaged flux to both kelp morphologies, but not to the plate. In fast flow (equivalent to 20 cm s(-1) in water), pitching has negligible effect on flux regardless of shape. For many aspects of flux, the flat plate is a reliable model for the flow-protected algal blade, but predictions made from the plate would substantially underestimate the flux to the flow-exposed blade. These measurements highlight the complexities of flow-related nutrient transport and the need to understand better the dynamic interactions among nutrient flux, blade motion, blade morphology, and water flow.

  15. AmeriFlux US-SuS Maui Sugarcane Lee/Sheltered

    DOE Data Explorer

    Anderson, Ray [USDA-Agricultural Research Service, United States Salinity Laboratory, Contaminant Fate and Transport Unit; Wang, Dong [USDA - Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Water Management Research Unit

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-SuS Maui Sugarcane Lee/Sheltered. Site Description - Continuous, irrigated, sugarcane cultivation for >100 years. Practice is to grow plant sugarcane for 2 years, drydown, burn leaves, harvest cane, and then till and replant very shortly after harvest. First cycle of observations were from July 2011 to November 2012. Second cycle was from April 2013 to December 2013. Site differs from Sugarcane Windy and Sugarcane Middle in soil type and meteorology.

  16. Investigation of corrosion and stress corrosion cracking susceptibility of S30400 and S31600 stainless steels exposed to commercial soldering flux containing zinc chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, D.T.

    1995-10-01

    A corrosion investigation was conducted to determine corrosion behavior and stress corrosion cracking (SCC) susceptibility of S30400 and S31600 stainless steel exposed to soldering flux paste containing 25 wt% zinc chloride. Electrochemical test results indicated that soldering flux paste was not corrosive to S30400 and S31600 at room temperature. The wax phase (light phase) of soldering flux was also not corrosive to S30400 and S31600. However, the heavy phase of solder flux was corrosive to S30400 and S31600 at elevated temperatures. In heavy phase, S30400 did not passivate, while S31600 passivated at temperatures up to 80 C while no passivitymore » was observed at 85 C and above. AC impedance test results showed that S30400 and S31600 corroded at rates of less than 0.1 mpy in solder flux pastes at room temperature. In the soldering flux heavy phase, corrosion rates were about 2 mpy or less for S30400 at temperatures up to 75 C and S31600 at temperatures up to 70 C. However, corrosion rates of S30400 in the soldering flux heavy phase increased to 5, 8, 10, and 22 mpy at 80, 85, 90, and 95 C while corrosion rates of S31600 sst in the soldering flux heavy phase increased to 4, 5, 7, and 11, and 30 mpy at 75, 80, 85, 90 and 95 C, respectively. CERT results revealed that no SCC susceptibility when S30400 and S31600 were exposed to soldering flux paste at room temperature and wax phase at 65 and 95 C. However, both test alloys were susceptible to transgranular SCC when exposed to the soldering flux heavy phase at temperatures of 65+ C. Severity of SCC increased with temperature increase. SCC fractures were characterized by reduction of ductility and numerous SCC secondary cracks on the specimen gage length. The most severe SCC fracture was observed on a S30400 specimen partially submersed in the soldering flux heavy phase and partially submersed in the soldering flux wax phase at 95 C. No similar cracking was observed on S31600.« less

  17. Shape-Specific Patterning of Polymer-Functionalized Nanoparticles

    DOE PAGES

    Galati, Elizabeth; Tebbe, Moritz; Querejeta-Fernández, Ana; ...

    2017-05-01

    Chemically and topographically patterned nanoparticles (NPs) with dimensions on the order of tens of nanometers have a diverse range of applications and are a valuable system for fundamental research. Recently, thermodynamically controlled segregation of a smooth layer of polymer ligands into pinned micelles (patches) offered an approach to nanopatterning of polymer-functionalized NPs. Control of the patch number, size, and spatial distribution on the surface of spherical NPs has been achieved, however, the role of NP shape remained elusive. Here, we report the role of NP shape, namely, the effect of the local surface curvature, on polymer segregation into surface patches.more » For polymer-functionalized metal nanocubes, we show experimentally and theoretically that the patches form preferentially on the high-curvature regions such as vertices and edges. An in situ transformation of the nanocubes into nanospheres leads to the change in the number and distribution of patches; a process that is dominated by the balance between the surface energy and the stretching energy of the polymer ligands. The experimental and theoretical results presented in this work are applicable to surface patterning of polymer-capped NPs with different shapes, which then enables the exploration of patch-directed self-assembly, as colloidal surfactants, and as templates for the synthesis of hybrid nanomaterials.« less

  18. Environmental Drivers of Benthic Flux Variation and Ecosystem Functioning in Salish Sea and Northeast Pacific Sediments.

    PubMed

    Belley, Rénald; Snelgrove, Paul V R; Archambault, Philippe; Juniper, S Kim

    2016-01-01

    The upwelling of deep waters from the oxygen minimum zone in the Northeast Pacific from the continental slope to the shelf and into the Salish Sea during spring and summer offers a unique opportunity to study ecosystem functioning in the form of benthic fluxes along natural gradients. Using the ROV ROPOS we collected sediment cores from 10 sites in May and July 2011, and September 2013 to perform shipboard incubations and flux measurements. Specifically, we measured benthic fluxes of oxygen and nutrients to evaluate potential environmental drivers of benthic flux variation and ecosystem functioning along natural gradients of temperature and bottom water dissolved oxygen concentrations. The range of temperature and dissolved oxygen encountered across our study sites allowed us to apply a suite of multivariate analyses rarely used in flux studies to identify bottom water temperature as the primary environmental driver of benthic flux variation and organic matter remineralization. Redundancy analysis revealed that bottom water characteristics (temperature and dissolved oxygen), quality of organic matter (chl a:phaeo and C:N ratios) and sediment characteristics (mean grain size and porosity) explained 51.5% of benthic flux variation. Multivariate analyses identified significant spatial and temporal variation in benthic fluxes, demonstrating key differences between the Northeast Pacific and Salish Sea. Moreover, Northeast Pacific slope fluxes were generally lower than shelf fluxes. Spatial and temporal variation in benthic fluxes in the Salish Sea were driven primarily by differences in temperature and quality of organic matter on the seafloor following phytoplankton blooms. These results demonstrate the utility of multivariate approaches in differentiating among potential drivers of seafloor ecosystem functioning, and indicate that current and future predictive models of organic matter remineralization and ecosystem functioning of soft-muddy shelf and slope seafloor

  19. Influence of Oxygen on Cu Distribution Behavior Between Molten Iron and FeS-Based Flux

    NASA Astrophysics Data System (ADS)

    Kang, Youngjo; Shin, Kil-Sun; Morita, Kazuki

    2018-06-01

    Cu distribution behavior between molten iron and a sulfide flux was investigated under different oxygen contents in the sulfide flux to clarify the effect of oxygen content in FeS-based flux on Cu removal. The activity coefficient of CuS0.5 could be experimentally estimated according to the oxygen content. Based on the present result, the possibility of Cu removal by sulfide flux containing a certain amount of oxide was discussed.

  20. FORMATION AND ERUPTION OF A SMALL FLUX ROPE IN THE CHROMOSPHERE OBSERVED BY NST, IRIS, AND SDO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pankaj; Yurchyshyn, Vasyl; Cho, Kyung-Suk

    Using high-resolution images from the 1.6 m New Solar Telescope at Big Bear Solar Observatory, we report the direct evidence of chromospheric reconnection at the polarity inversion line between two small opposite polarity sunspots. Small jetlike structures (with velocities of ∼20–55 km s{sup −1}) were observed at the reconnection site before the onset of the first M1.0 flare. The slow rise of untwisting jets was followed by the onset of cool plasma inflow (∼10 km s{sup −1}) at the reconnection site, causing the onset of a two-ribbon flare. The reconnection between two sheared J-shaped cool Hα loops causes the formationmore » of a small twisted (S-shaped) flux rope in the chromosphere. In addition, Helioseismic and Magnetic Imager magnetograms show the flux cancellation (both positive and negative) during the first M1.0 flare. The emergence of negative flux and the cancellation of positive flux (with shear flows) continue until the successful eruption of the flux rope. The newly formed chromospheric flux rope becomes unstable and rises slowly with a speed of ∼108 km s{sup −1} during a second C8.5 flare that occurred after ∼3 hr of the first M1.0 flare. The flux rope was destroyed by repeated magnetic reconnection induced by its interaction with the ambient field (fan–spine topology) and looks like an untwisting surge (∼170 km s{sup −1}) in the coronal images recorded by the Solar Dynamics Observatory/Atmospheric Imaging Assembly. These observations suggest the formation of a chromospheric flux rope (by magnetic reconnection associated with flux cancellation) during the first M1.0 flare and its subsequent eruption/disruption during the second C8.5 flare.« less

  1. Bio-based hyperbranched thermosetting polyurethane/triethanolamine functionalized multi-walled carbon nanotube nanocomposites as shape memory materials.

    PubMed

    Kalita, Hemjyoti; Karak, Niranjan

    2014-07-01

    Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials.

  2. Mapping morphological shape as a high-dimensional functional curve

    PubMed Central

    Fu, Guifang; Huang, Mian; Bo, Wenhao; Hao, Han; Wu, Rongling

    2018-01-01

    Abstract Detecting how genes regulate biological shape has become a multidisciplinary research interest because of its wide application in many disciplines. Despite its fundamental importance, the challenges of accurately extracting information from an image, statistically modeling the high-dimensional shape and meticulously locating shape quantitative trait loci (QTL) affect the progress of this research. In this article, we propose a novel integrated framework that incorporates shape analysis, statistical curve modeling and genetic mapping to detect significant QTLs regulating variation of biological shape traits. After quantifying morphological shape via a radius centroid contour approach, each shape, as a phenotype, was characterized as a high-dimensional curve, varying as angle θ runs clockwise with the first point starting from angle zero. We then modeled the dynamic trajectories of three mean curves and variation patterns as functions of θ. Our framework led to the detection of a few significant QTLs regulating the variation of leaf shape collected from a natural population of poplar, Populus szechuanica var tibetica. This population, distributed at altitudes 2000–4500 m above sea level, is an evolutionarily important plant species. This is the first work in the quantitative genetic shape mapping area that emphasizes a sense of ‘function’ instead of decomposing the shape into a few discrete principal components, as the majority of shape studies do. PMID:28062411

  3. VISdish: A new tool for canting and shape-measuring solar-dish facets.

    PubMed

    Montecchi, Marco; Cara, Giuseppe; Benedetti, Arcangelo

    2017-06-01

    Solar dishes allow us to obtain highly concentrated solar fluxes used to produce electricity or feed thermal processes/storage. For practical reasons, the reflecting surface is composed by a number of facets. After the dish assembly, facet-canting is an important task for improving the concentration of solar radiation around the focus-point, as well as the capture ratio at the receiver placed there. Finally, flux profile should be measured or evaluated to verify the concentration quality. All these tasks can be achieved by the new tool we developed at ENEA, named VISdish. The instrument is based on the visual inspection system (VIS) approach and can work in two functionalities: canting and shape-measurement. The shape data are entered in a simulation software for evaluating the flux profile and concentration quality. With respect to prior methods, VISdish offers several advantages: (i) simpler data processing, because light point-source and its reflections are univocally related, (ii) higher accuracy. The instrument functionality is illustrated through the preliminary experimental results obtained on the dish recently installed in ENEA-Casaccia in the framework of the E.U. project OMSoP.

  4. Malagasy cichlids differentially limit impacts of body shape evolution on oral jaw functional morphology.

    PubMed

    Martinez, Christopher M; Sparks, John S

    2017-09-01

    Patterns of trait covariation, such as integration and modularity, are vital factors that influence the evolution of vertebrate body plans. In functional systems, decoupling of morphological modules buffers functional change in one trait by reducing correlated variation with another. However, for complex morphologies with many-to-one mapping of form to function (MTOM), resistance to functional change may also be achieved by constraining morphological variation within a functionally stable region of morphospace. For this research, we used geometric morphometrics to evaluate the evolution of body shape and its relationship with jaw functional morphology in two independent radiations of endemic Malagasy cichlid (Teleostei: Cichlidae). Our results suggested that the two subfamilies used different strategies to mitigate impacts of body shape variation on a metric of jaw function, maxillary kinematic transmission (MKT): (1) modularity between cranial and postcranial morphologies, and (2) integration of body and jaw evolution, with jaw morphologies varying in a manner that limits change in MKT. This research shows that, unlike modularity, MTOM allows traits to retain strong evolutionary covariation while still reducing impacts on functionality. These results suggest that MTOM, and its influence on the evolution of correlated traits, is likely much more widespread than is currently understood. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  5. Form, shape and function: segmented blood flow in the choriocapillaris

    PubMed Central

    Zouache, M. A.; Eames, I.; Klettner, C. A.; Luthert, P. J.

    2016-01-01

    The development of fluid transport systems was a key event in the evolution of animals and plants. While within vertebrates branched geometries predominate, the choriocapillaris, which is the microvascular bed that is responsible for the maintenance of the outer retina, has evolved a planar topology. Here we examine the flow and mass transfer properties associated with this unusual geometry. We show that as a result of the form of the choriocapillaris, the blood flow is decomposed into a tessellation of functional vascular segments of various shapes delineated by separation surfaces across which there is no flow, and in the vicinity of which the transport of passive substances is diffusion-limited. The shape of each functional segment is determined by the distribution of arterioles and venules and their respective relative flow rates. We also show that, remarkably, the mass exchange with the outer retina is a function of the shape of each functional segment. In addition to introducing a novel framework in which the structure and function of the metabolite delivery system to the outer retina may be investigated in health and disease, the present work provides a general characterisation of the flow and transfers in multipole Hele-Shaw configurations. PMID:27779198

  6. Shapes of the Trajectories of Five Major Biomarkers of Alzheimer’s Disease

    PubMed Central

    Jack, Clifford R.; Vemuri, Prashanthi; Wiste, Heather J.; Weigand, Stephen D.; Lesnick, Timothy G.; Lowe, Val; Kantarci, Kejal; Bernstein, Matt A.; Senjem, Matthew L.; Gunter, Jeffrey L.; Boeve, Bradley F.; Trojanowski, John Q.; Shaw, Leslie M.; Aisen, Paul S.; Weiner, Michael W.; Petersen, Ronald C.; Knopman, David S.

    2013-01-01

    Objective To characterize the shape of the trajectories of Alzheimer’s Disease (AD) biomarkers as a function of MMSE. Design Longitudinal registries from the Mayo Clinic and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Patients Two different samples (n=343 and n=598) were created that spanned the cognitive spectrum from normal to AD dementia. Subgroup analyses were performed in members of both cohorts (n=243 and n=328) who were amyloid positive at baseline. Main Outcome Measures The shape of biomarker trajectories as a function of MMSE, adjusted for age, was modeled and described as baseline (cross-sectional) and within-subject longitudinal effects. Biomarkers evaluated were cerebro spinal fluid (CSF) Aβ42 and tau; amyloid and fluoro deoxyglucose position emission tomography (PET) imaging, and structural magnetic resonance imaging (MRI). Results Baseline biomarker values generally worsened (i.e., non-zero slope) with lower baseline MMSE. Baseline hippocampal volume, amyloid PET and FDG PET values plateaued (i.e., non-linear slope) with lower MMSE in one or more analyses. Longitudinally, within-subject rates of biomarker change were associated with worsening MMSE. Non-constant within-subject rates (deceleration) of biomarker change were found in only one model. Conclusions Biomarker trajectory shapes by MMSE were complex and were affected by interactions with age and APOE status. Non-linearity was found in several baseline effects models. Non-constant within-subject rates of biomarker change were found in only one model, likely due to limited within-subject longitudinal follow up. Creating reliable models that describe the full trajectories of AD biomarkers will require significant additional longitudinal data in individual participants. PMID:22409939

  7. A micro S-shaped optical fiber temperature sensor based on dislocation fiber splice

    NASA Astrophysics Data System (ADS)

    Yan, Haitao; Li, Pengfei; Zhang, Haojie; Shen, Xiaoyue; Wang, Yongzhen

    2017-12-01

    We fabricated a simple, compact, and stable temperature sensor based on an S-shaped dislocated optical fiber. The dislocation optical fiber has two splice points, and we obtained the optimal parameters based on the theory and our experiment, such as the dislocation amount and length of the dislocation optical fiber. According to the relationship between the temperature and the peak wavelength shift, the temperature of the environment can be obtained. Then, we made this fiber a micro bending as S-shape between the two dislocation points, and the S-shaped micro bending part could release stress with the change in temperature and reduce the effect of stress on the temperature measurement. This structure could solve the problem of sensor distortion caused by the cross response of temperature and stress. We measured the S-shaped dislocation fiber sensor and the dislocation fiber without S-shape under the same environment and conditions, and the S-shaped dislocation fiber had the advantages of the stable reliability and good linearity.

  8. Evidence for ion heat flux in the light ion polar wind

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Moore, T. E.; Chappell, C. R.

    1985-01-01

    Cold flowing hydrogen and helium ions have been observed using the retarding ion mass spectrometer on board the Dynamics Explorer 1 spacecraft in the dayside magnetosphere at subauroral latitudes. The ions show a marked flux asymmetry with respect to the relative wind direction. The observed data are fitted by a model of drifting Maxwellian distributions perturbed by a first order-Spritzer-Haerm heat flux distribution function. It is shown that both ion species are supersonic just equatorward of the auroral zone at L = 14, and the shape of asymmetry and direction of the asymmetry are consistent with the presence of an upward heat flux. At L = 6, both species evolve smoothly into warmer subsonic upward flows with downward heat fluxes. In the case of subsonic flows the downward heat flux implies a significant heat source at higher altitudes. Spin curves of the spectrometer count rate versus the spin phase angle are provided.

  9. Pulsating strings with mixed three-form flux

    NASA Astrophysics Data System (ADS)

    Hernández, Rafael; Nieto, Juan Miguel; Ruiz, Roberto

    2018-04-01

    Circular strings pulsating in AdS 3 × S 3 × T 4 with mixed R-R and NS-NS three-form fluxes can be described by an integrable deformation of the one-dimensional Neumann-Rosochatius mechanical model. In this article we find a general class of pulsating solutions to this integrable system that can be expressed in terms of elliptic functions. In the limit of strings moving in AdS 3 with pure NS-NS three-form flux, where the action reduces to the SL(2, ℝ) WZW model, we find agreement with the analysis of the classical solutions of the system performed using spectral flow by Maldacena and Ooguri. We use our elliptic solutions in AdS 3 to extend the dispersion relation beyond the limit of pure NS-NS flux.

  10. The blind student’s interpretation of two-dimensional shapes in geometry

    NASA Astrophysics Data System (ADS)

    Andriyani; Budayasa, I. K.; Juniati, D.

    2018-01-01

    The blind student’s interpretation of two-dimensional shapes represents the blind student’s mental image of two-dimensional shapes that they can’t visualize directly, which is related to illustration of the characteristics and number of edges and angles. The objective of this research is to identify the blind student’s interpretation of two-dimensional shapes. This research was an exploratory study with qualitative approach. A subject of this research is a sixth-grade student who experiencing total blind from the fifth grade of elementary school. Researchers interviewed the subject about his interpretation of two-dimensional shapes according to his thinking.The findings of this study show the uniqueness of blind students, who have been totally blind since school age, in knowing and illustrating the characteristics of edges and angles of two-dimensional shapes by utilizing visual experiences that were previously obtained before the blind. The result can inspire teachers to design further learning for development of blind student geometry concepts.

  11. Colorimetric DNA detection of transgenic plants using gold nanoparticles functionalized with L-shaped DNA probes

    NASA Astrophysics Data System (ADS)

    Nourisaeid, Elham; Mousavi, Amir; Arpanaei, Ayyoob

    2016-01-01

    In this study, a DNA colorimetric detection system based on gold nanoparticles functionalized with L-shaped DNA probes was prepared and evaluated. We investigated the hybridization efficiency of the L-shaped probes and studied the effect of nanoparticle size and the L-shaped DNA probe length on the performance of the as-prepared system. Probes were attached to the surface of gold nanoparticles using an adenine sequence. An optimal sequence of 35S rRNA gene promoter from the cauliflower mosaic virus, which is frequently used in the development of transgenic plants, and the two complementary ends of this gene were employed as model target strands and probe molecules, respectively. The spectrophotometric properties of the as-prepared systems indicated that the large NPs show better changes in the absorption spectrum and consequently present a better performance. The results of this study revealed that the probe/Au-NPs prepared using a vertical spacer containing 5 thymine oligonucleotides exhibited a stronger spectrophotometric response in comparison to that of larger probes. These results in general indicate the suitable performance of the L-shaped DNA probe-functionalized Au-NPs, and in particular emphasize the important role of the gold nanoparticle size and length of the DNA probes in enhancing the performance of such a system.

  12. Curved Displacement Transfer Functions for Geometric Nonlinear Large Deformation Structure Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat

    2017-01-01

    For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.

  13. Simulation study of a geometric shape factor technique for estimating earth-emitted radiant flux densities from wide-field-of-view radiation measurements

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; Green, R. N.

    1980-01-01

    Geometric shape factors were computed and applied to satellite simulated irradiance measurements to estimate Earth emitted flux densities for global and zonal scales and for areas smaller than the detector field of view (FOV). Wide field of view flat plate detectors were emphasized, but spherical detectors were also studied. The radiation field was modeled after data from the Nimbus 2 and 3 satellites. At a satellite altitude of 600 km, zonal estimates were in error 1.0 to 1.2 percent and global estimates were in error less than 0.2 percent. Estimates with unrestricted field of view (UFOV) detectors were about the same for Lambertian and limb darkening radiation models. The opposite was found for restricted field of view detectors. The UFOV detectors are found to be poor estimators of flux density from the total FOV and are shown to be much better as estimators of flux density from a circle centered at the FOV with an area significantly smaller than that for the total FOV.

  14. Improved Displacement Transfer Functions for Structure Deformed Shape Predictions Using Discretely Distributed Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.

  15. Heat-Flux Measurements in Laser-Produced Plasmas Using Thomson Scattering from Electron Plasma Waves

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Goncharov, V. N.; Cao, D.; Katz, J.; Froula, D. H.; Rozmus, W.

    2017-10-01

    An experiment was designed to measure heat flux in coronal plasmas using collective Thomson scattering. Adjustments to the electron distribution function resulting from heat flux affect the shape of the collective Thomson scattering features through wave-particle resonance. The amplitude of the Spitzer-Härm electron distribution function correction term (f1) was varied to match the data and determines the value of the heat flux. Independent measurements of temperature and density obtained from Thomson scattering were used to infer the classical heat flux (q = - κ∇Te) . Time-resolved Thomson-scattering data were obtained at five locations in the corona along the target normal in a blowoff plasma formed from a planar Al target with 1.5 kJ of 351-nm laser light in a 2-ns square pulse. The flux measured through the Thomson-scattering spectra is a factor of 5 less than the κ∇Te measurements. The lack of collisions of heat-carrying electrons suggests a nonlocal model is needed to accurately describe the heat flux. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  16. Dropping the Other U: An Alternative Approach to U-Shaped Developmental Functions

    ERIC Educational Resources Information Center

    Brainerd, C. J.

    2004-01-01

    The aim of this article is to introduce readers to an alternative way of applying U-shaped functions to understand development, especially cognitive development. In classical developmental applications, age is the abscissa; that is, in the fundamental equation B = f(A), some behavioral variable (B) plots as a U-shaped or inverted U-shaped function…

  17. Powder Flux Regulation in the Laser Material Deposition Process

    NASA Astrophysics Data System (ADS)

    Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel

    In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.

  18. Plant functional diversity increases grassland productivity-related water vapor fluxes: an Ecotron and modeling approach.

    PubMed

    Milcu, Alexandru; Eugster, Werner; Bachmann, Dörte; Guderle, Marcus; Roscher, Christiane; Gockele, Annette; Landais, Damien; Ravel, Olivier; Gessler, Arthur; Lange, Markus; Ebeling, Anne; Weisser, Wolfgang W; Roy, Jacques; Hildebrandt, Anke; Buchmann, Nina

    2016-08-01

    The impact of species richness and functional diversity of plants on ecosystem water vapor fluxes has been little investigated. To address this knowledge gap, we combined a lysimeter setup in a controlled environment facility (Ecotron) with large ecosystem samples/monoliths originating from a long-term biodiversity experiment (The Jena Experiment) and a modeling approach. Our goals were (1) quantifying the impact of plant species richness (four vs. 16 species) on day- and nighttime ecosystem water vapor fluxes; (2) partitioning ecosystem evapotranspiration into evaporation and plant transpiration using the Shuttleworth and Wallace (SW) energy partitioning model; and (3) identifying the most parsimonious predictors of water vapor fluxes using plant functional-trait-based metrics such as functional diversity and community weighted means. Daytime measured and modeled evapotranspiration were significantly higher in the higher plant diversity treatment, suggesting increased water acquisition. The SW model suggests that, at low plant species richness, a higher proportion of the available energy was diverted to evaporation (a non-productive flux), while, at higher species richness, the proportion of ecosystem transpiration (a productivity-related water flux) increased. While it is well established that LAI controls ecosystem transpiration, here we also identified that the diversity of leaf nitrogen concentration among species in a community is a consistent predictor of ecosystem water vapor fluxes during daytime. The results provide evidence that, at the peak of the growing season, higher leaf area index (LAI) and lower percentage of bare ground at high plant diversity diverts more of the available water to transpiration, a flux closely coupled with photosynthesis and productivity. Higher rates of transpiration presumably contribute to the positive effect of diversity on productivity. © 2016 by the Ecological Society of America.

  19. Hearing the shape of the Ising model with a programmable superconducting-flux annealer.

    PubMed

    Vinci, Walter; Markström, Klas; Boixo, Sergio; Roy, Aidan; Spedalieri, Federico M; Warburton, Paul A; Severini, Simone

    2014-07-16

    Two objects can be distinguished if they have different measurable properties. Thus, distinguishability depends on the Physics of the objects. In considering graphs, we revisit the Ising model as a framework to define physically meaningful spectral invariants. In this context, we introduce a family of refinements of the classical spectrum and consider the quantum partition function. We demonstrate that the energy spectrum of the quantum Ising Hamiltonian is a stronger invariant than the classical one without refinements. For the purpose of implementing the related physical systems, we perform experiments on a programmable annealer with superconducting flux technology. Departing from the paradigm of adiabatic computation, we take advantage of a noisy evolution of the device to generate statistics of low energy states. The graphs considered in the experiments have the same classical partition functions, but different quantum spectra. The data obtained from the annealer distinguish non-isomorphic graphs via information contained in the classical refinements of the functions but not via the differences in the quantum spectra.

  20. Effects of Pump-turbine S-shaped Characteristics on Transient Behaviours: Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Zeng, Wei; Yang, Jiandong; Hu, Jinhong; Tang, Renbo

    2017-05-01

    A pumped storage stations model was set up and introduced in the previous paper. In the model station, the S-shaped characteristic curves was measured at the load rejection condition with the guide vanes stalling. Load rejection tests where guide-vane closed linearly were performed to validate the effect of the S-shaped characteristics on hydraulic transients. Load rejection experiments with different guide vane closing schemes were also performed to determine a suitable scheme considering the S-shaped characteristics. The condition of one pump turbine rejecting its load after another defined as one-after-another (OAA) load rejection was performed to validate the possibility of S-induced extreme draft tube pressure.

  1. [Application of the elliptic fourier functions to the description of avian egg shape].

    PubMed

    Ávila, Dennis Denis

    2014-12-01

    Egg shape is difficult to quantify due to the lack of an exact formula to describe its geometry. Here I described a simple algorithm to characterize and compare egg shapes using Fourier functions. These functions can delineate any closed contour and had been previously applied to describe several biological objects. I described, step by step, the process of data acquisition, processing and the use of the SHAPE software to extract function coefficients in a study case. I compared egg shapes in three birds' species representing different reproductive strategies: Cuban Parakeet (Aratinga euops), Royal Tern (Thalasseus maximus) and Cuban Blackbird (Dives atroviolaceus). Using 73 digital pictures of eggs kept in Cuban scientific collections, I calculated Fourier descriptors with 4, 6, 8, 16 and 20 harmonics. Descriptors were reduced by a Principal Component Analysis and the scores of the eigen-values that account for 90% of variance were used in a Lineal Discriminant Function to analyze the possibility to differentiate eggs according to its shapes. Using four harmonics, the first five component accounted for 97% of shape variances; more harmonics diluted the variance increasing to eight the number of components needed to explain most of the variation. Convex polygons in the discriminant space showed a clear separation between species, allowing trustful discrimination (classification errors between 7-15%). Misclassifications were related to specific egg shape variability between species. In the study case, A. euops eggs were perfectly classified, but for the other species, errors ranged from 5 to 29% of misclassifications, in relation to the numbers or harmonics and components used. The proposed algorithm, despite its apparent mathematical complexity, showed many advantages to describe eggs shape allowing a deeper understanding of factors related to this variable.

  2. Modified Displacement Transfer Functions for Deformed Shape Predictions of Slender Curved Structures with Varying Curvatives

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2014-01-01

    To eliminate the need to use finite-element modeling for structure shape predictions, a new method was invented. This method is to use the Displacement Transfer Functions to transform the measured surface strains into deflections for mapping out overall structural deformed shapes. The Displacement Transfer Functions are expressed in terms of rectilinearly distributed surface strains, and contain no material properties. This report is to apply the patented method to the shape predictions of non-symmetrically loaded slender curved structures with different curvatures up to a full circle. Because the measured surface strains are not available, finite-element analysis had to be used to analytically generate the surface strains. Previously formulated straight-beam Displacement Transfer Functions were modified by introducing the curvature-effect correction terms. Through single-point or dual-point collocations with finite-elementgenerated deflection curves, functional forms of the curvature-effect correction terms were empirically established. The resulting modified Displacement Transfer Functions can then provide quite accurate shape predictions. Also, the uniform straight-beam Displacement Transfer Function was applied to the shape predictions of a section-cut of a generic capsule (GC) outer curved sandwich wall. The resulting GC shape predictions are quite accurate in partial regions where the radius of curvature does not change sharply.

  3. Evidence for helical kink instability in the Venus magnetic flux ropes

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Russell, C. T.

    1983-01-01

    Empirical models of the magnetic field structure of flux ropes found in the Venus ionosphere are seen as suggesting that the ropes are unstable to long-wavelength (more than 100 km) helical-kink perturbations. The onset of such an instability can explain the apparent volume distribution of flux ropes with altitude, as well as their orientation as a function of altitude. In the subsolar region, the fraction of volume occupied by flux ropes increases from approximately 20 percent at high altitudes to more than 50 percent at low altitudes; this is a greater increase than would be expected if ropes convect downward as simple straight horizontal cylinders. The helical kink instability raises the fractional volume occupied by ropes by turning the originally straight, horizontal flux tubes into corkscrew-shaped structures as they convect to lower altitudes. It is noted that this instability also explains why high altitude ropes tend to be horizontal and low altitude ropes appear to have almost any orientation.

  4. Curios relationship revealed by looking at long term data sets-The geometry and allometric scaling of diel xylem sap flux in tropical trees.

    PubMed

    Kunert, Norbert

    2016-10-20

    Daily xylem sap flux values (daily J s ) and maximum xylem sap flux values (max J s ) from 125 tropical trees from different study sites in the Neotropics were compared. A cross species and study site relationship was found between daily and maximum values. The relationship can be expressed as daily J s =6.5x max J s . The geometrical relationship between the maximum xylem sap flux of a given day is thus defining the daily xylem sap flux rates. Assuming a bell-shaped diurnal sap flux course and a relatively constant day length the maximum xylem sap flux is the only possible changing variable to define daily fluxes. Further, this relationship is showing the inertia of the xylem sap flux as a physical object and highlights the delayed response to environmental changes and its subsequent inevitable susceptibility under environmental stress to hydraulic failure. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. France: Factors Shaping Foreign Policy, and Issues in U.S.-French Relations

    DTIC Science & Technology

    2009-05-20

    TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE France : Factors Shaping Foreign Policy, and Issues in U.S.- French ...Z39-18 France : Factors Shaping Foreign Policy, and Issues in U.S.- French Relations Congressional Research Service Summary The factors that shape... French foreign policy have changed since the end of the Cold War. The perspectives of France and the United States have diverged in some cases. More

  6. Observing Formation of Flux Rope by Tether-cutting Reconnection in the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Zhike; Yan, Xiaoli; Yang, Liheng

    Tether-cutting reconnection is considered as one mechanism for the formation of a flux rope. It has been proposed for more than 30 years; however, so far, direct observations of it are very rare. In this Letter, we present observations of the formation of a flux rope via tether-cutting reconnection in NOAA AR 11967 on 2014 February 2 by combining observations with the New Vacuum Solar Telescope and the Solar Dynamic Observatory . The tether-cutting reconnection occurs between two sets of highly sheared magnetic arcades. Comprehensive observational evidence of the reconnection is as follows: changes of the connections between the arcades,more » brightenings at the reconnection site, hot outflows, formation of a flux rope, slow-rise motion of the flux rope, and flux cancelation. The outflows are along three directions from the reconnection site to the footpoints with the velocities from 24 ± 1 km s{sup −1} to 69 ± 5 km s{sup −1}. Additionally, it is found that the newly formed flux rope connects far footpoints and has a left-handed twisted structure with many fine threads and a concave-up-shape structure in the middle. All the observations are in agreement with the tether-cutting model and provide evidence that tether-cutting reconnection leads to the formation of the flux rope associated with flux shear flow and cancelation.« less

  7. "Shape function + memory mechanism"-based hysteresis modeling of magnetorheological fluid actuators

    NASA Astrophysics Data System (ADS)

    Qian, Li-Jun; Chen, Peng; Cai, Fei-Long; Bai, Xian-Xu

    2018-03-01

    A hysteresis model based on "shape function + memory mechanism" is presented and its feasibility is verified through modeling the hysteresis behavior of a magnetorheological (MR) damper. A hysteresis phenomenon in resistor-capacitor (RC) circuit is first presented and analyzed. In the hysteresis model, the "memory mechanism" originating from the charging and discharging processes of the RC circuit is constructed by adopting a virtual displacement variable and updating laws for the reference points. The "shape function" is achieved and generalized from analytical solutions of the simple semi-linear Duhem model. Using the approach, the memory mechanism reveals the essence of specific Duhem model and the general shape function provides a direct and clear means to fit the hysteresis loop. In the frame of the structure of a "Restructured phenomenological model", the original hysteresis operator, i.e., the Bouc-Wen operator, is replaced with the new hysteresis operator. The comparative work with the Bouc-Wen operator based model demonstrates superior performances of high computational efficiency and comparable accuracy of the new hysteresis operator-based model.

  8. Shaped superconductor cylinder retains intense magnetic field

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Wahlquist, H.

    1964-01-01

    The curve of the inner walls of a superconducting cylinder is plotted from the flux lines of the magnetic field to be contained. This shaping reduces maximum flux densities and permits a stronger and more uniform magnetic field.

  9. Shape of the primary proton spectrum in the multi-TeV region from data on the vertical muon flux

    NASA Astrophysics Data System (ADS)

    Tyumentsev, A. G.; Lagutin, A. A.; Yushkov, A. V.

    2009-12-01

    It is shown, that the primary proton spectrum, reconstructed from sea-level and underground data on the muon spectrum using the QGSJET 01, QGSJET II, NEXUS 3.97 and SIBYLL 2.1 interaction models, demonstrates not only a model-dependent intensity, but also a model-dependent form. For a correct reproduction of the muon spectrum shape the primary proton flux should have a non-constant power index for all considered models, except SIBYLL 2.1, with a break at energies around 10-15 TeV and a value of the exponent before the break close to that obtained in the ATIC-2 experiment.

  10. Shaping ability of two M-wire and two traditional nickel-titanium instrumentation systems in S-shaped resin canals.

    PubMed

    Ceyhanli, K T; Kamaci, A; Taner, M; Erdilek, N; Celik, D

    2015-01-01

    The aim of this study was to evaluate the shaping effects of two M-wire and two traditional nickel-titanium (NiTi) rotary systems in simulated S-shaped resin canals. Forty simulated S-shaped canals in resin blocks were instrumented with two traditional (ProTaper, Sendoline S5) and two M-wire (WaveOne, GT series X) NiTi systems according to the manufacturers' instructions. Ten resin blocks were used for each system. Pre- and post-instrumentation images were captured using a stereomicroscope and superimposed with an image program. Canal transportation, material removal, and aberrations were evaluated and recorded as numeric parameters. Data were analyzed using one-way ANOVA and post-hoc Tukey tests with a 95% confidence interval. There were significant differences between systems in terms of transportation and material removal (P<0.05). Coronal danger zone was the most common aberration. Within the limits of this ex vivo study, it was found that the manufacturing methods (M-wire or traditional NiTi) and kinematics (rotary or reciprocating motion) did not affect the shaping abilities of the systems. The extended file designs of highly tapered NiTi systems (ProTaper, WaveOne) resulted in greater deviations from the original root canal trace and more material removal when compared to less tapered systems (Sendoline S5, GT series X).

  11. (13)C-metabolic flux analysis in S-adenosyl-L-methionine production by Saccharomyces cerevisiae.

    PubMed

    Hayakawa, Kenshi; Kajihata, Shuichi; Matsuda, Fumio; Shimizu, Hiroshi

    2015-11-01

    S-Adenosyl-L-methionine (SAM) is a major biological methyl group donor, and is used as a nutritional supplement and prescription drug. Yeast is used for the industrial production of SAM owing to its high intracellular SAM concentrations. To determine the regulation mechanisms responsible for such high SAM production, (13)C-metabolic flux analysis ((13)C-MFA) was conducted to compare the flux distributions in the central metabolism between Kyokai no. 6 (high SAM-producing) and S288C (control) strains. (13)C-MFA showed that the levels of tricarboxylic acid (TCA) cycle flux in SAM-overproducing strain were considerably increased compared to those in the S228C strain. Analysis of ATP balance also showed that a larger amount of excess ATP was produced in the Kyokai 6 strain because of increased oxidative phosphorylation. These results suggest that high SAM production in Kyokai 6 strains could be attributed to enhanced ATP regeneration with high TCA cycle fluxes and respiration activity. Thus, maintaining high respiration efficiency during cultivation is important for improving SAM production. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Application of the Principles of Systems Biology and Wiener’s Cybernetics for Analysis of Regulation of Energy Fluxes in Muscle Cells in Vivo

    PubMed Central

    Guzun, Rita; Saks, Valdur

    2010-01-01

    The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener’s cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener’s cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures – intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations

  13. Leaves as composites of latent developmental and evolutionary shapes

    USDA-ARS?s Scientific Manuscript database

    Across plants, leaves exhibit profound diversity in shape. As a single leaf expands, its shape is in constant flux. Additionally, plants may also produce leaves with different shapes at successive nodes. Because leaf shape can vary in many different ways, theoretically the effects of distinct proces...

  14. Adaptive grid embedding for the two-dimensional flux-split Euler equations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Warren, Gary Patrick

    1990-01-01

    A numerical algorithm is presented for solving the 2-D flux-split Euler equations using a multigrid method with adaptive grid embedding. The method uses an unstructured data set along with a system of pointers for communication on the irregularly shaped grid topologies. An explicit two-stage time advancement scheme is implemented. A multigrid algorithm is used to provide grid level communication and to accelerate the convergence of the solution to steady state. Results are presented for a subcritical airfoil and a transonic airfoil with 3 levels of adaptation. Comparisons are made with a structured upwind Euler code which uses the same flux integration techniques of the present algorithm. Good agreement is obtained with converged surface pressure coefficients. The lift coefficients of the adaptive code are within 2 1/2 percent of the structured code for the sub-critical case and within 4 1/2 percent of the structured code for the transonic case using approximately one-third the number of grid points.

  15. LEAF, BRANCH, STAND & LANDSCAPE SCALE MEASUREMENTS OF VOLATILE ORGANIC COMPOUND FLUXES FROM U.S. WOODLANDS

    EPA Science Inventory

    Natural volatile organic compounds (VOC) fluxes were measured in three U.S. woodlands in summer 1993. Fluxes from individual leaves and branches were estimated with enclosure techniques and used to initialize and evaluate VOC emission model estimates. Ambient measurements were us...

  16. Learning Under Stress: The Inverted-U-Shape Function Revisited

    ERIC Educational Resources Information Center

    Salehi, Basira; Cordero, M. Isabel; Sandi, Carmen

    2010-01-01

    Although the relationship between stress intensity and memory function is generally believed to follow an inverted-U-shaped curve, strikingly this phenomenon has not been demonstrated under the same experimental conditions. We investigated this phenomenon for rats' performance in a hippocampus-dependent learning task, the radial arm water maze…

  17. Transport of Internetwork Magnetic Flux Elements in the Solar Photosphere

    NASA Astrophysics Data System (ADS)

    Agrawal, Piyush; Rast, Mark P.; Gošić, Milan; Bellot Rubio, Luis R.; Rempel, Matthias

    2018-02-01

    The motions of small-scale magnetic flux elements in the solar photosphere can provide some measure of the Lagrangian properties of the convective flow. Measurements of these motions have been critical in estimating the turbulent diffusion coefficient in flux-transport dynamo models and in determining the Alfvén wave excitation spectrum for coronal heating models. We examine the motions of internetwork flux elements in Hinode/Narrowband Filter Imager magnetograms and study the scaling of their mean squared displacement and the shape of their displacement probability distribution as a function of time. We find that the mean squared displacement scales super-diffusively with a slope of about 1.48. Super-diffusive scaling has been observed in other studies for temporal increments as small as 5 s, increments over which ballistic scaling would be expected. Using high-cadence MURaM simulations, we show that the observed super-diffusive scaling at short increments is a consequence of random changes in barycenter positions due to flux evolution. We also find that for long temporal increments, beyond granular lifetimes, the observed displacement distribution deviates from that expected for a diffusive process, evolving from Rayleigh to Gaussian. This change in distribution can be modeled analytically by accounting for supergranular advection along with granular motions. These results complicate the interpretation of magnetic element motions as strictly advective or diffusive on short and long timescales and suggest that measurements of magnetic element motions must be used with caution in turbulent diffusion or wave excitation models. We propose that passive tracer motions in measured photospheric flows may yield more robust transport statistics.

  18. Two-Flux Green's Function Analysis for Transient Spectral Radiation in a Composite

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1996-01-01

    An analysis is developed for obtaining transient temperatures in a two-layer semitransparent composite with spectrally dependent properties. Each external boundary of the composite is subjected to radiation and convection. The two-flux radiative transfer equations are solved by deriving a Green's function. This yields the local radiative heat source needed to numerically solve the transient energy equation. An advantage of the two-flux method is that isotropic scattering is included without added complexity. The layer refractive indices are larger than one. This produces internal reflections at the boundaries and the internal interface; the reflections are assumed diffuse. Spectral results using the Green's function method are verified by comparing with numerical solutions using the exact radiative transfer equations. Transient temperature distributions are given to illustrate the effect of radiative heating on one side of a composite with external convective cooling. The protection of a material from incident radiation is illustrated by adding scattering to the layer adjacent to the radiative source.

  19. Control Mechanisms of the Electron Heat Flux in the Solar Wind: Observations in Comparison to Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Stverak, S.; Hellinger, P.; Landi, S.; Travnicek, P. M.; Maksimovic, M.

    2017-12-01

    Recent understanding of the heat transport and dissipation in the expanding solar wind propose number of complex control mechanisms down to the electron kinetic scales. We investigate the evolution of electron heat flux properties and constraints along the expansion using in situ observations from Helios spacecraft in comparison to numerical kinetic simulations. In particular we focus on the roles of Coulomb collisions and wave-particle interactions in shaping the electron velocity distribution functions and thus controlling the heat transported by the electron heat flux. We show the general evolution of the electron heat flux to be driven namely by the Coulomb collisions. Locally we demonstrate the wave-particle interactions related to the kinetic plasma instabilities to be providing effective constraints in case of extreme heat flux levels.

  20. YORP torque as the function of shape harmonics

    NASA Astrophysics Data System (ADS)

    Breiter, Sławomir; Michalska, Hanna

    2008-08-01

    The second-order analytical approximation of the mean Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) torque components is given as an explicit function of the shape spherical harmonics coefficients for a sufficiently regular minor body. The results are based upon a new expression for the insolation function, significantly simpler than in previous works. Linearized plane-parallel model of the temperature distribution derived from the insolation function allows us to take into account a non-zero conductivity. Final expressions for the three average components of the YORP torque related with rotation period, obliquity and precession are given in a form of the Legendre series of the cosine of obliquity. The series have good numerical properties and can be easily truncated according to the degree of the Legendre polynomials or associated functions, with first two terms playing the principal role.

  1. Using greenhouse gas fluxes to define soil functional types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrakis, Sandra; Barba, Josep; Bond-Lamberty, Ben

    Soils provide key ecosystem services and directly control ecosystem functions; thus, there is a need to define the reference state of soil functionality. Most common functional classifications of ecosystems are vegetation-centered and neglect soil characteristics and processes. We propose Soil Functional Types (SFTs) as a conceptual approach to represent and describe the functionality of soils based on characteristics of their greenhouse gas (GHG) flux dynamics. We used automated measurements of CO2, CH4 and N2O in a forested area to define SFTs following a simple statistical framework. This study supports the hypothesis that SFTs provide additional insights on the spatial variabilitymore » of soil functionality beyond information represented by commonly measured soil parameters (e.g., soil moisture, soil temperature, litter biomass). We discuss the implications of this framework at the plot-scale and the potential of this approach at larger scales. This approach is a first step to provide a framework to define SFTs, but a community effort is necessary to harmonize any global classification for soil functionality. A global application of the proposed SFT framework will only be possible if there is a community-wide effort to share data and create a global database of GHG emissions from soils.« less

  2. Packing a pinch: functional implications of chela shapes in scorpions using finite element analysis

    PubMed Central

    van der Meijden, Arie; Kleinteich, Thomas; Coelho, Pedro

    2012-01-01

    Scorpions depend on their pedipalps for prey capture, defense, mating and sensing their environment. Some species additionally use their pedipalps for burrowing or climbing. Because the pincers or chelae at the end of the pedipalps vary widely in shape, they have been used as part of a suite of characters to delimit ecomorphotypes. We here evaluate the influence of the different chela cuticular shapes on their performance under natural loading conditions. Chelae of 20 species, representing seven families and spanning most of the range of chela morphologies, were assigned to clusters based on chela shape parameters using hierarchical cluster analysis. Several clusters were identified corresponding approximately to described scorpion ecomorphotypes. Finite element models of the chela cuticulae were constructed from CT scans and loaded with estimated pinch forces based on in vivo force measurements. Chela shape clusters differed significantly in mean Von Mises stress and strain energy. Normalized FEA showed that chela shape significantly influenced Von Mises stress and strain energy in the chela cuticula, with Von Mises stress varying up to an order of magnitude and strain energy up to two orders of magnitude. More elongate, high-aspect ratio chela forms showed significantly higher mean stress compared with more robust low-aspect ratio forms. This suggests that elongate chelae are at a higher risk of failure when operating near the maximum pinch force. Phylogenetic independent contrasts (PIC) were calculated based on a partly resolved phylogram with branch lengths based on an alignment of the 12S, 16S and CO1 mitochondrial genes. PIC showed that cuticular stress and strain in the chela were correlated with several shape parameters, such as aspect ratio, movable finger length, and chela height, independently of phylogenetic history. Our results indicate that slender chela morphologies may be less suitable for high-force functions such as burrowing and defense. Further

  3. Superelastic SMA U-shaped dampers with self-centering functions

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Zhu, Songye

    2018-05-01

    As high-performance metallic materials, shape memory alloys (SMAs) have been investigated increasingly by the earthquake engineering community in recent years, because of their remarkable self-centering (SC) and energy-dissipating capabilities. This paper systematically presents an experimental study on a novel superelastic SMA U-shaped damper (SMA-UD) with SC function under cyclic loading. The mechanical properties, including strength, SC ability, and energy-dissipating capability with varying loading amplitudes and strain rates are evaluated. Test results show that excellent and stable flag-shaped hysteresis loops are exhibited in multiple loading cycles. Strain rate has a negligible effect on the cyclic behavior of the SMA-UD within the dynamic frequency range of typical interest in earthquake engineering. Furthermore, a numerical investigation is performed to understand the mechanical behavior of the SMA-UD. The numerical model is calibrated against the experimental results with reasonable accuracy. Then, the stress–strain states with different phase transformations are also discussed.

  4. Head-and-face shape variations of U.S. civilian workers

    PubMed Central

    Zhuang, Ziqing; Shu, Chang; Xi, Pengcheng; Bergman, Michael; Joseph, Michael

    2016-01-01

    The objective of this study was to quantify head-and-face shape variations of U.S. civilian workers using modern methods of shape analysis. The purpose of this study was based on previously highlighted changes in U.S. civilian worker head-and-face shape over the last few decades – touting the need for new and better fitting respirators – as well as the study's usefulness in designing more effective personal protective equipment (PPE) – specifically in the field of respirator design. The raw scan three-dimensional (3D) data for 1169 subjects were parameterized using geometry processing techniques. This process allowed the individual scans to be put in correspondence with each other in such a way that statistical shape analysis could be performed on a dense set of 3D points. This process also cleaned up the original scan data such that the noise was reduced and holes were filled in. The next step, statistical analysis of the variability of the head-and-face shape in the 3D database, was conducted using Principal Component Analysis (PCA) techniques. Through these analyses, it was shown that the space of the head-and-face shape was spanned by a small number of basis vectors. Less than 50 components explained more than 90% of the variability. Furthermore, the main mode of variations could be visualized through animating the shape changes along the PCA axes with computer software in executable form for Windows XP. The results from this study in turn could feed back into respirator design to achieve safer, more efficient product style and sizing. Future study is needed to determine the overall utility of the point cloud-based approach for the quantification of facial morphology variation and its relationship to respirator performance. PMID:23399025

  5. Head-and-face shape variations of U.S. civilian workers.

    PubMed

    Zhuang, Ziqing; Shu, Chang; Xi, Pengcheng; Bergman, Michael; Joseph, Michael

    2013-09-01

    The objective of this study was to quantify head-and-face shape variations of U.S. civilian workers using modern methods of shape analysis. The purpose of this study was based on previously highlighted changes in U.S. civilian worker head-and-face shape over the last few decades - touting the need for new and better fitting respirators - as well as the study's usefulness in designing more effective personal protective equipment (PPE) - specifically in the field of respirator design. The raw scan three-dimensional (3D) data for 1169 subjects were parameterized using geometry processing techniques. This process allowed the individual scans to be put in correspondence with each other in such a way that statistical shape analysis could be performed on a dense set of 3D points. This process also cleaned up the original scan data such that the noise was reduced and holes were filled in. The next step, statistical analysis of the variability of the head-and-face shape in the 3D database, was conducted using Principal Component Analysis (PCA) techniques. Through these analyses, it was shown that the space of the head-and-face shape was spanned by a small number of basis vectors. Less than 50 components explained more than 90% of the variability. Furthermore, the main mode of variations could be visualized through animating the shape changes along the PCA axes with computer software in executable form for Windows XP. The results from this study in turn could feed back into respirator design to achieve safer, more efficient product style and sizing. Future study is needed to determine the overall utility of the point cloud-based approach for the quantification of facial morphology variation and its relationship to respirator performance. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Flux and polarization signals of spatially inhomogeneous gaseous exoplanets

    NASA Astrophysics Data System (ADS)

    Karalidi, T.; Stam, D. M.; Guirado, D.

    2013-07-01

    Aims: We present numerically calculated, disk-integrated, spectropolarimetric signals of starlight that is reflected by vertically and horizontally inhomogeneous gaseous exoplanets. We include various spatial features that are present on Solar System's gaseous planets: belts and zones, cyclonic spots, and polar hazes, to test whether such features leave traces in the disk-integrated fux and polarization signals. Methods: Broadband flux and polarization signals of starlight that is reflected by gaseous exoplanets are calculated using an efficient, adding-doubling radiative transfer code, that fully includes single and multiple scattering and polarization. The planetary model atmospheres are vertically inhomogeneous and can be horizontally inhomogeneous, and contain gas molecules and/or cloud and/or aerosol particles. Results: The broadband flux and polarization signals are sensitive to cloud top pressures, although in the presence of local pressure differences, such as in belts and clouds, the flux and polarization phase functions have similar shapes as those of horizontally homogeneous planets. Fitting flux phase functions of a planet with belts and zones using a horizontally homogeneous planet could theoretically yield cloud top pressures that differ by a few hundred mbar from those derived from fitting polarization phase functions. In practice, however, observational errors and uncertainties in cloud properties would make such a fit unreliable. A cyclonic spot like Jupiter's Great Red Spot, covering a few percent of the disk, located in equatorial regions, and rotating in and out of the observer's view yields a temporal variation of a few percent in the broadband flux and a few percent in the degree of polarization. Polar hazes leave strong traces in the polarization of reflected starlight in spatially resolved observations, especially seen at phase angles near 90°. Integrated across the planetary disk, polar hazes that cover only part of the planetary disk

  7. Effects of temporal integration on the shape of visual backward masking functions.

    PubMed

    Francis, Gregory; Cho, Yang Seok

    2008-10-01

    Many studies of cognition and perception use a visual mask to explore the dynamics of information processing of a target. Especially important in these applications is the time between the target and mask stimuli. A plot of some measure of target visibility against stimulus onset asynchrony is called a masking function, which can sometimes be monotonic increasing but other times is U-shaped. Theories of backward masking have long hypothesized that temporal integration of the target and mask influences properties of masking but have not connected the influence of integration with the shape of the masking function. With two experiments that vary the spatial properties of the target and mask, the authors provide evidence that temporal integration of the stimuli plays a critical role in determining the shape of the masking function. The resulting data both challenge current theories of backward masking and indicate what changes to the theories are needed to account for the new data. The authors further discuss the implication of the findings for uses of backward masking to explore other aspects of cognition.

  8. Anisotropic Shape-Memory Alginate Scaffolds Functionalized with Either Type I or Type II Collagen for Cartilage Tissue Engineering.

    PubMed

    Almeida, Henrique V; Sathy, Binulal N; Dudurych, Ivan; Buckley, Conor T; O'Brien, Fergal J; Kelly, Daniel J

    2017-01-01

    Regenerating articular cartilage and fibrocartilaginous tissue such as the meniscus is still a challenge in orthopedic medicine. While a range of different scaffolds have been developed for joint repair, none have facilitated the development of a tissue that mimics the complexity of soft tissues such as articular cartilage. Furthermore, many of these scaffolds are not designed to function in mechanically challenging joint environments. The overall goal of this study was to develop a porous, biomimetic, shape-memory alginate scaffold for directing cartilage regeneration. To this end, a scaffold was designed with architectural cues to guide cellular and neo-tissue alignment, which was additionally functionalized with a range of extracellular matrix cues to direct stem cell differentiation toward the chondrogenic lineage. Shape-memory properties were introduced by covalent cross-linking alginate using carbodiimide chemistry, while the architecture of the scaffold was modified using a directional freezing technique. Introducing such an aligned pore structure was found to improve the mechanical properties of the scaffold, and promoted higher levels of sulfated glycosaminoglycans (sGAG) and collagen deposition compared to an isotropic (nonaligned) pore geometry when seeded with adult human stem cells. Functionalization with collagen improved stem cell recruitment into the scaffold and facilitated more homogenous cartilage tissue deposition throughout the construct. Incorporating type II collagen into the scaffolds led to greater cell proliferation, higher sGAG and collagen accumulation, and the development of a stiffer tissue compared to scaffolds functionalized with type I collagen. The results of this study demonstrate how both scaffold architecture and composition can be tailored in a shape-memory alginate scaffold to direct stem cell differentiation and support the development of complex cartilaginous tissues.

  9. First-and Second-Order Displacement Transfer Functions for Structural Shape Calculations Using Analytically Predicted Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    New first- and second-order displacement transfer functions have been developed for deformed shape calculations of nonuniform cross-sectional beam structures such as aircraft wings. The displacement transfer functions are expressed explicitly in terms of beam geometrical parameters and surface strains (uniaxial bending strains) obtained at equally spaced strain stations along the surface of the beam structure. By inputting the measured or analytically calculated surface strains into the displacement transfer functions, one could calculate local slopes, deflections, and cross-sectional twist angles of the nonuniform beam structure for mapping the overall structural deformed shapes for visual display. The accuracy of deformed shape calculations by the first- and second-order displacement transfer functions are determined by comparing these values to the analytically predicted values obtained from finite element analyses. This comparison shows that the new displacement transfer functions could quite accurately calculate the deformed shapes of tapered cantilever tubular beams with different tapered angles. The accuracy of the present displacement transfer functions also are compared to those of the previously developed displacement transfer functions.

  10. Latent developmental and evolutionary shapes embedded within the grapevine leaf

    USDA-ARS?s Scientific Manuscript database

    Across plants, leaves exhibit profound diversity in shape. As a single leaf expands, its shape is in constant flux. Plants may also produce leaves with different shapes at successive nodes. In addition, leaf shape varies among individuals, populations and species as a result of evolutionary processe...

  11. Nitrous oxide fluxes from cultivated areas and rangeland: U.S. High Plains

    USGS Publications Warehouse

    Weeks, Edwin P.; McMahon, Peter B.

    2007-01-01

    Concentration profiles of N2O, a greenhouse gas, and the conservative trace gases SF6 and the chlorofluorocarbons CFC-11, CFC-12, CFC-113, and were measured periodically through thick vadose zones at nine sites in the U.S. High Plains. The CFC and SF6 measurements were used to calibrate a one-dimensional gas diffusion model, using the parameter identification program UCODE. The calibrated model was used with N2O measurements to estimate average annual N2O flux from both the root zone and the deep vadose zone to the atmosphere. Estimates of root-zone N 2O fluxes from three rangeland sites ranged from near 0 to about 0.2 kg N2O-N ha-1 yr-1, values near the low end of the ranges determined for native grass from other studies. Estimates of root-zone N2O fluxes from two fields planted to corn (Zea mays L.) of about 2 to 6 kg N2O-N ha-1 yr-1 are similar to those determined for corn in other studies. Estimates of N2O flux from Conservation Reserve grassland converted from irrigated corn indicate that production of N2O is substantially reduced following conversion from cropland. Small N2O fluxes from the water table or from deep in the vadose zone occurred at three sites, ranging from 0.004 to 0.02 kg N 2O-N ha-1 yr-1. Our estimates of N2O flux represent space- and time-averaged values that should be useful to more fully evaluate the significance of instantaneous point flux measurements. ?? Soil Science Society of America.

  12. Upper limit on magnetic monopole flux from Baksan experiment

    NASA Technical Reports Server (NTRS)

    Alexeyev, E. N.; Boliev, M. M.; Chudakov, A. E.; Mikheyev, S. P.

    1985-01-01

    No indication of slowly moving penetrating particles in cosmic radiation underground was found during two years observation. Particle velocity and pulse shape are main criteria for search. Probability of the imitation of slow particles (Beta 0.1) by atmospheric muons is negligible. Our upper limit on superheavy magnetic monopole flux is now 1.86 x 10 to the minus 15th power cm(-2) sr(-1) s(-1) (90% c.l.) for velocity range 2 x 0.0001 beta 0.1.

  13. Divertor Heat Flux Reduction and Detachment in the National Spherical Torus eXperiment.

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, Vsevolod

    2007-11-01

    Steady-state handling of the heat flux is a critical divertor issue for both the International Thermonuclear Experimental Reactor and spherical torus (ST) devices. Because of an inherently compact divertor, it was thought that ST-based devices might not be able to fully utilize radiative and dissipative divertor techniques based on induced power and momentum loss. However, initial experiments conducted in the National Spherical Torus Experiment in an open geometry horizontal carbon plate divertor using 0.8 MA 2-6 MW NBI-heated lower single null H-mode plasmas at the lower end of elongations κ=1.8-2.4 and triangularities δ=0.45-0.75 demonstrated that high divertor peak heat fluxes, up to 6-10 MW/ m^2, could be reduced by 50-75% using a high-recycling radiative divertor regime with D2 injection. Furthermore, similar reduction was obtained with a partially detached divertor (PDD) at high D2 injection rates, however, it was accompanied by an X-point MARFE that quickly led to confinement degradation. Another approach takes advantage of the ST relation between strong shaping and high performance, and utilizes the poloidal magnetic flux expansion in the divertor region. Up to 60 % reduction in divertor peak heat flux was achieved at similar levels of scrape-off layer power by varying plasma shaping and thereby increasing the outer strike point (OSP) poloidal flux expansion from 4-6 to 18-22. In recent experiments conducted in highly-shaped 1.0-1.2 MA 6 MW NBI heated H-mode plasmas with divertor D2 injection at rates up to 10^22 s-1, a PDD regime with OSP peak heat flux 0.5-1.5 MW/m^2 was obtained without noticeable confinement degradation. Calculations based on a two point scrape-off layer model with parameterized power and momentum losses show that the short parallel connection length at the OSP sets the upper limit on the radiative exhaust channel, and both the impurity radiation and large momentum sink achievable only at high divertor neutral pressures are required

  14. Flux-Feedback Magnetic-Suspension Actuator

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1990-01-01

    Flux-feedback magnetic-suspension actuator provides magnetic suspension and control forces having linear transfer characteristics between force command and force output over large range of gaps. Hall-effect devices used as sensors for electronic feedback circuit controlling currents flowing in electromagnetic windings to maintain flux linking suspended element at substantially constant value independent of changes in length of gap. Technique provides effective method for maintenance of constant flux density in gap and simpler than previous methods. Applications include magnetic actuators for control of shapes and figures of antennas and of precise segmented reflectors, magnetic suspensions in devices for storage of angular momentum and/or kinetic energy, and systems for control, pointing, and isolation of instruments.

  15. France: Factors Shaping Foreign Policy, and Issues in U.S.-French Relations

    DTIC Science & Technology

    2005-01-10

    Policy, and Issues in U.S.- French Relations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 France : Factors Shaping Foreign Policy, and Issues in U.S.- French Relations Summary The factors that...shape French foreign policy have changed since the end of the Cold War. The perspectives of France and the United States have diverged in some cases

  16. France: Factors Shaping Foreign Policy, and Issues in U.S.-French Relations

    DTIC Science & Technology

    2006-05-19

    Policy, and Issues in U.S.- French Relations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 France : Factors Shaping Foreign Policy, and Issues in U.S.- French Relations Summary The factors that...shape French foreign policy have changed since the end of the Cold War. The perspectives of France and the United States have diverged in some cases

  17. Magnetic field and flavor effects on the gamma-ray burst neutrino flux

    NASA Astrophysics Data System (ADS)

    Baerwald, Philipp; Hümmer, Svenja; Winter, Walter

    2011-03-01

    We reanalyze the prompt muon neutrino flux from gamma-ray bursts (GRBs) in terms of the particle physics involved, as in the example of the often-used reference Waxman-Bahcall GRB flux. We first reproduce this reference flux explicitly treating synchrotron energy losses of the secondary pions. Then we include additional neutrino production modes, the neutrinos from muon decays, the magnetic field effects on all secondary species, and flavor mixing with the current parameter uncertainties. We demonstrate that the combination of these effects modifies the shape of the original Waxman-Bahcall GRB flux significantly and changes the normalization by a factor of 3 to 4. As a consequence, the gamma-ray burst search strategy of neutrino telescopes may be based on the wrong flux shape, and the constraints derived for the GRB neutrino flux, such as the baryonic loading, may in fact be much stronger than anticipated.

  18. Characterizing the Lyα forest flux probability distribution function using Legendre polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieplak, Agnieszka M.; Slosar, Anze

    The Lyman-α forest is a highly non-linear field with considerable information available in the data beyond the power spectrum. The flux probability distribution function (PDF) has been used as a successful probe of small-scale physics. In this paper we argue that measuring coefficients of the Legendre polynomial expansion of the PDF offers several advantages over measuring the binned values as is commonly done. In particular, the n-th Legendre coefficient can be expressed as a linear combination of the first n moments, allowing these coefficients to be measured in the presence of noise and allowing a clear route for marginalisation overmore » mean flux. Moreover, in the presence of noise, our numerical work shows that a finite number of coefficients are well measured with a very sharp transition into noise dominance. This compresses the available information into a small number of well-measured quantities. In conclusion, we find that the amount of recoverable information is a very non-linear function of spectral noise that strongly favors fewer quasars measured at better signal to noise.« less

  19. Characterizing the Lyα forest flux probability distribution function using Legendre polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieplak, Agnieszka M.; Slosar, Anže, E-mail: acieplak@bnl.gov, E-mail: anze@bnl.gov

    The Lyman-α forest is a highly non-linear field with considerable information available in the data beyond the power spectrum. The flux probability distribution function (PDF) has been used as a successful probe of small-scale physics. In this paper we argue that measuring coefficients of the Legendre polynomial expansion of the PDF offers several advantages over measuring the binned values as is commonly done. In particular, the n -th Legendre coefficient can be expressed as a linear combination of the first n moments, allowing these coefficients to be measured in the presence of noise and allowing a clear route for marginalisationmore » over mean flux. Moreover, in the presence of noise, our numerical work shows that a finite number of coefficients are well measured with a very sharp transition into noise dominance. This compresses the available information into a small number of well-measured quantities. We find that the amount of recoverable information is a very non-linear function of spectral noise that strongly favors fewer quasars measured at better signal to noise.« less

  20. Characterizing the Lyα forest flux probability distribution function using Legendre polynomials

    NASA Astrophysics Data System (ADS)

    Cieplak, Agnieszka M.; Slosar, Anže

    2017-10-01

    The Lyman-α forest is a highly non-linear field with considerable information available in the data beyond the power spectrum. The flux probability distribution function (PDF) has been used as a successful probe of small-scale physics. In this paper we argue that measuring coefficients of the Legendre polynomial expansion of the PDF offers several advantages over measuring the binned values as is commonly done. In particular, the n-th Legendre coefficient can be expressed as a linear combination of the first n moments, allowing these coefficients to be measured in the presence of noise and allowing a clear route for marginalisation over mean flux. Moreover, in the presence of noise, our numerical work shows that a finite number of coefficients are well measured with a very sharp transition into noise dominance. This compresses the available information into a small number of well-measured quantities. We find that the amount of recoverable information is a very non-linear function of spectral noise that strongly favors fewer quasars measured at better signal to noise.

  1. Characterizing the Lyα forest flux probability distribution function using Legendre polynomials

    DOE PAGES

    Cieplak, Agnieszka M.; Slosar, Anze

    2017-10-12

    The Lyman-α forest is a highly non-linear field with considerable information available in the data beyond the power spectrum. The flux probability distribution function (PDF) has been used as a successful probe of small-scale physics. In this paper we argue that measuring coefficients of the Legendre polynomial expansion of the PDF offers several advantages over measuring the binned values as is commonly done. In particular, the n-th Legendre coefficient can be expressed as a linear combination of the first n moments, allowing these coefficients to be measured in the presence of noise and allowing a clear route for marginalisation overmore » mean flux. Moreover, in the presence of noise, our numerical work shows that a finite number of coefficients are well measured with a very sharp transition into noise dominance. This compresses the available information into a small number of well-measured quantities. In conclusion, we find that the amount of recoverable information is a very non-linear function of spectral noise that strongly favors fewer quasars measured at better signal to noise.« less

  2. influx_s: increasing numerical stability and precision for metabolic flux analysis in isotope labelling experiments.

    PubMed

    Sokol, Serguei; Millard, Pierre; Portais, Jean-Charles

    2012-03-01

    The problem of stationary metabolic flux analysis based on isotope labelling experiments first appeared in the early 1950s and was basically solved in early 2000s. Several algorithms and software packages are available for this problem. However, the generic stochastic algorithms (simulated annealing or evolution algorithms) currently used in these software require a lot of time to achieve acceptable precision. For deterministic algorithms, a common drawback is the lack of convergence stability for ill-conditioned systems or when started from a random point. In this article, we present a new deterministic algorithm with significantly increased numerical stability and accuracy of flux estimation compared with commonly used algorithms. It requires relatively short CPU time (from several seconds to several minutes with a standard PC architecture) to estimate fluxes in the central carbon metabolism network of Escherichia coli. The software package influx_s implementing this algorithm is distributed under an OpenSource licence at http://metasys.insa-toulouse.fr/software/influx/. Supplementary data are available at Bioinformatics online.

  3. Numerical flux formulas for the Euler and Navier-Stokes equations. 2: Progress in flux-vector splitting

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Vanleer, Bram

    1991-01-01

    The accuracy of various numerical flux functions for the inviscid fluxes when used for Navier-Stokes computations is studied. The flux functions are benchmarked for solutions of the viscous, hypersonic flow past a 10 degree cone at zero angle of attack using first order, upwind spatial differencing. The Harten-Lax/Roe flux is found to give a good boundary layer representation, although its robustness is an issue. Some hybrid flux formulas, where the concepts of flux-vector and flux-difference splitting are combined, are shown to give unsatisfactory pressure distributions; there is still room for improvement. Investigations of low diffusion, pure flux-vector splittings indicate that a pure flux-vector splitting can be developed that eliminates spurious diffusion across the boundary layer. The resulting first-order scheme is marginally stable and not monotone.

  4. Ion temperature gradient driven transport in tokamaks with square shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joiner, N.; Dorland, W.

    2010-06-15

    Advanced tokamak schemes which may offer significant improvement to plasma confinement on the usual large aspect ratio Dee-shaped flux surface configuration are of great interest to the fusion community. One possibility is to introduce square shaping to the flux surfaces. The gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1996)] is used to study linear stability and the resulting nonlinear thermal transport of the ion temperature gradient driven (ITG) mode in tokamak equilibria with square shaping. The maximum linear growth rate of ITG modes is increased by negative squareness (diamond shaping) and reduced by positive values (square shaping).more » The dependence of thermal transport produced by saturated ITG instabilities on squareness is not as clear. The overall trend follows that of the linear instability, heat and particle fluxes increase with negative squareness and decrease with positive squareness. This is contradictory to recent experimental results [Holcomb et al., Phys. Plasmas 16, 056116 (2009)] which show a reduction in transport with negative squareness. This may be reconciled as a reduction in transport (consistent with the experiment) is observed at small negative values of the squareness parameter.« less

  5. France: Factors Shaping Foreign Policy, and Issues in U.S.-French Relations

    DTIC Science & Technology

    2008-05-21

    view, France should seek a balance that embraces diversity yet preserves a degree of uniformity that sustains the French “identity.” He believes that...Order Code RL32464 France : Factors Shaping Foreign Policy, and Issues in U.S.- French Relations Updated May 21, 2008 Paul Gallis Specialist in... France : Factors Shaping Foreign Policy, and Issues in U.S.- French Relations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  6. Plasma flux-dependent lipid A deactivation

    NASA Astrophysics Data System (ADS)

    Chang, Hung-Wen; Hsu, Cheng-Che; Ahmed, Musahid; Liu, Suet Yi; Fang, Yigang; Seog, Joonil; Oehrlein, Gottlieb S.; Graves, David B.

    2014-06-01

    This paper reports the influence of gas plasma flux on endotoxin lipid A film deactivation. To study the effect of the flux magnitude of reactive species, a modified low-pressure inductively coupled plasma (ICP) with O radical flux ˜1016 cm-2 s-1 was used. After ICP exposures, it was observed that while the Fourier transform infrared absorbance of fatty chains responsible for the toxicity drops by 80% through the film, no obvious film endotoxin deactivation is seen. This is in contrast to that previously observed under low flux exposure conducted in a vacuum beam system: near-surface only loss of fatty chains led to significant film deactivation. Secondary ion mass spectrometry characterization of changes at the film surface did not appear to correlate with the degree of deactivation. Lipid A films need to be nearly completely removed in order to detect significant deactivation under high flux conditions. Additional high reactive species flux experiments were conducted using an atmospheric pressure helium plasma jet and a UV/ozone device. Exposure of lipid A films to reactive species with these devices showed similar deactivation behaviour. The causes for the difference between low and high flux exposures may be due to the nature of near-surface structural modifications as a function of the rate of film removal.

  7. ASYMMETRY OF HELICITY INJECTION FLUX IN EMERGING ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian Lirong; Alexander, David

    Observational and modeling results indicate that typically the leading magnetic field of bipolar active regions (ARs) is often spatially more compact, while more dispersed and fragmented in following polarity. In this paper, we address the origin of this morphological asymmetry, which is not well understood. Although it may be assumed that, in an emerging {omega}-shaped flux tube, those portions of the flux tube in which the magnetic field has a higher twist may maintain its coherence more readily, this has not been tested observationally. To assess this possibility, it is important to characterize the nature of the fragmentation and asymmetrymore » in solar ARs and this provides the motivation for this paper. We separately calculate the distribution of the helicity flux injected in the leading and following polarities of 15 emerging bipolar ARs, using the Michelson Doppler Image 96 minute line-of-sight magnetograms and a local correlation tracking technique. We find from this statistical study that the leading (compact) polarity injects several times more helicity flux than the following (fragmented) one (typically 3-10 times). This result suggests that the leading polarity of the {omega}-shaped flux tube possesses a much larger amount of twist than the following field prior to emergence. We argue that the helicity asymmetry between the leading and following magnetic field for the ARs studied here results in the observed magnetic field asymmetry of the two polarities due to an imbalance in the magnetic tension of the emerging flux tube. We suggest that the observed imbalance in the helicity distribution results from a difference in the speed of emergence between the leading and following legs of an inclined {omega}-shaped flux tube. In addition, there is also the effect of magnetic flux imbalance between the two polarities with the fragmented following polarity displaying spatial fluctuation in both the magnitude and sign of helicity measured.« less

  8. E-Flux2 and SPOT: Validated Methods for Inferring Intracellular Metabolic Flux Distributions from Transcriptomic Data.

    PubMed

    Kim, Min Kyung; Lane, Anatoliy; Kelley, James J; Lun, Desmond S

    2016-01-01

    Several methods have been developed to predict system-wide and condition-specific intracellular metabolic fluxes by integrating transcriptomic data with genome-scale metabolic models. While powerful in many settings, existing methods have several shortcomings, and it is unclear which method has the best accuracy in general because of limited validation against experimentally measured intracellular fluxes. We present a general optimization strategy for inferring intracellular metabolic flux distributions from transcriptomic data coupled with genome-scale metabolic reconstructions. It consists of two different template models called DC (determined carbon source model) and AC (all possible carbon sources model) and two different new methods called E-Flux2 (E-Flux method combined with minimization of l2 norm) and SPOT (Simplified Pearson cOrrelation with Transcriptomic data), which can be chosen and combined depending on the availability of knowledge on carbon source or objective function. This enables us to simulate a broad range of experimental conditions. We examined E. coli and S. cerevisiae as representative prokaryotic and eukaryotic microorganisms respectively. The predictive accuracy of our algorithm was validated by calculating the uncentered Pearson correlation between predicted fluxes and measured fluxes. To this end, we compiled 20 experimental conditions (11 in E. coli and 9 in S. cerevisiae), of transcriptome measurements coupled with corresponding central carbon metabolism intracellular flux measurements determined by 13C metabolic flux analysis (13C-MFA), which is the largest dataset assembled to date for the purpose of validating inference methods for predicting intracellular fluxes. In both organisms, our method achieves an average correlation coefficient ranging from 0.59 to 0.87, outperforming a representative sample of competing methods. Easy-to-use implementations of E-Flux2 and SPOT are available as part of the open-source package MOST (http

  9. An S-shaped relationship between changes in appraisals and changes in emotions.

    PubMed

    Tong, Eddie M W; Ellsworth, Phoebe C; Bishop, George D

    2009-12-01

    Previous research on appraisal theories of emotion has shown that emotions and appraisals are related but has not specified the nature of the relationships. This research examined the functional forms of appraisal-emotion relationships and demonstrated that for all seven appraisals studied, appraisals relate to emotions in an S-shaped (ogival) fashion: Changes in appraisals at extreme levels are associated with only small changes in emotions, but changes at moderate levels are associated with substantial changes in emotions. With a few exceptions, ogival relationships were found for the relationships between seven appraisals (Goal Achievement Expectancy, Agency, Control, Certainty, Fairness, Pleasantness, and Motive Congruence) and numerous relevant emotions across different sample-types, cultures, and methods.

  10. Factors shaping bacterial phylogenetic and functional diversity in coastal waters of the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Boras, Julia A.; Vaqué, Dolors; Maynou, Francesc; Sà, Elisabet L.; Weinbauer, Markus G.; Sala, Maria Montserrat

    2015-03-01

    To evaluate the main factors shaping bacterioplankton phylogenetic and functional diversity in marine coastal waters, we carried out a two-year study based on a monthly sampling in Blanes Bay (NW Mediterranean). We expected the key factors driving bacterial diversity to be (1) temperature and nutrient concentration, together with chlorophyll a concentration as an indicator of phytoplankton biomass and, hence, a carbon source for bacteria (here called bottom-up factors), and (2) top-down pressure (virus- and protist-mediated mortality of bacteria). Phylogenetic diversity was analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA. Functional diversity was assessed by using monomeric carbon sources in Biolog EcoPlates and by determining the activity of six extracellular enzymes. Our results indicate that the bacterial phylogenetic and functional diversity in this coastal system is shaped mainly by bottom-up factors. A dendrogram analysis of the DGGE banding patterns revealed three main sample clusters. Two clusters differed significantly in temperature, nitrate and chlorophyll a concentration, and the third was characterized by the highest losses of bacterial production due to viral lysis detected over the whole study period. Protistan grazing had no effect on bacterial functional diversity, since there were no correlations between protist-mediated mortality (PMM) and extracellular enzyme activities, and utilization of only two out of the 31 carbon sources (N-acetyl-D-glucosamine and α-cyclodextrin) was correlated with PMM. In contrast, virus-mediated mortality correlated with changes in the percentage of use of four carbon sources, and also with specific leu-aminopeptidase and β-glucosidase activity. This suggests that viral lysate provides a pool of labile carbon sources, presumably including amino acids and glucose, which may inhibit proteolytic and glucosidic activity. Our results indicate that bottom-up factors play a more important role than

  11. Dirichlet boundary conditions for arbitrary-shaped boundaries in stellarator-like magnetic fields for the Flux-Coordinate Independent method

    NASA Astrophysics Data System (ADS)

    Hill, Peter; Shanahan, Brendan; Dudson, Ben

    2017-04-01

    We present a technique for handling Dirichlet boundary conditions with the Flux Coordinate Independent (FCI) parallel derivative operator with arbitrary-shaped material geometry in general 3D magnetic fields. The FCI method constructs a finite difference scheme for ∇∥ by following field lines between poloidal planes and interpolating within planes. Doing so removes the need for field-aligned coordinate systems that suffer from singularities in the metric tensor at null points in the magnetic field (or equivalently, when q → ∞). One cost of this method is that as the field lines are not on the mesh, they may leave the domain at any point between neighbouring planes, complicating the application of boundary conditions. The Leg Value Fill (LVF) boundary condition scheme presented here involves an extrapolation/interpolation of the boundary value onto the field line end point. The usual finite difference scheme can then be used unmodified. We implement the LVF scheme in BOUT++ and use the Method of Manufactured Solutions to verify the implementation in a rectangular domain, and show that it does not modify the error scaling of the finite difference scheme. The use of LVF for arbitrary wall geometry is outlined. We also demonstrate the feasibility of using the FCI approach in no n-axisymmetric configurations for a simple diffusion model in a "straight stellarator" magnetic field. A Gaussian blob diffuses along the field lines, tracing out flux surfaces. Dirichlet boundary conditions impose a last closed flux surface (LCFS) that confines the density. Including a poloidal limiter moves the LCFS to a smaller radius. The expected scaling of the numerical perpendicular diffusion, which is a consequence of the FCI method, in stellarator-like geometry is recovered. A novel technique for increasing the parallel resolution during post-processing, in order to reduce artefacts in visualisations, is described.

  12. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    DOE Data Explorer

    Ebrahimi, Fatima [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000331095367); Raman, Roger [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000220273271)

    2016-01-01

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet–Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.

  13. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    DOE Data Explorer

    Ebrahimi, F. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Raman, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-04-01

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet–Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.

  14. Why solidification has an S-shaped history

    PubMed Central

    Bejan, A.; Lorente, S.; Yilbas, B. S.; Sahin, A. Z.

    2013-01-01

    Here we show theoretically that the history of solid growth during “rapid” solidification must be S-shaped, in accord with the constructal law of design in nature. In the beginning the rate of solidification increases and after reaching a maximum it decreases monotonically as the volume of solid tends toward a plateau. The S-history is a consequence of four configurations for the flow of heat from the solidification front to the subcooled surroundings, in this chronological order: solid spheres centered at nucleation sites, needles that invade longitudinally, radial growth by conduction, and finally radial lateral conduction to interstices that are warming up. The solid volume (Bs) vs time (t) is an S-curve because it is a power law of type Bs ~ tn where the exponent n first increases and then decreases in time (n = 3/2, 2, 1, …). The initial portion of the S curve is not an exponential.

  15. Increasing dust fluxes on the northeastern Tibetan Plateau linked with the Little Ice Age and recent human activity since the 1950s

    NASA Astrophysics Data System (ADS)

    Wan, Dejun; Jin, Zhangdong; Zhang, Fei; Song, Lei; Yang, Jinsong

    2016-12-01

    Arid and semi-arid areas in inner Asia contribute lots of mineral dust in the northern hemisphere, but dust flux evolution in the past is poorly constrained. Based on particle sizes and elemental compositions of a sediment core from Lake Qinghai on the northeastern Tibetan Plateau, dust fluxes during ∼1518-2011 A.D. were reconstructed based on 18-100 μm fractions of the lake sediment. The dust fluxes during the past ∼500 years ranged between 100 and 300 g/m2/yr, averaging 202 g/m2/yr, experiencing four stages: Stage 1 (∼1518-1590s), the flux was averaged 165 g/m2/yr, much lower than that in the Stage 2 (1590s-1730s, 254 g/m2/yr); similarly, an average flux of 169 g/m2/yr in the Stage 3 (1730s-1950s) was followed by an increased flux of 259 g/m2/yr in the Stage 4 (1950s-2011). During the first three stages the fluxes were dominated by natural dust activities in arid inner Asia, having a positive relation with wind intensity but a poor correlation with effective moisture (or precipitation) and temperature. The high dust flux in Stage 2 was due to relatively strong wind during the maximum Little Ice Age, whereas the remarkably high flux in 1950s-2011 was resulted from recent increasing human activities in northwestern China. The dust record not only documents past dust fluxes on the northeastern Tibetan Plateau but also reflects evolutions and mechanisms of dust activity/emission in inner Asia during the past ∼500 years.

  16. Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea

    NASA Astrophysics Data System (ADS)

    Leifer, Ira; Chernykh, Denis; Shakhova, Natalia; Semiletov, Igor

    2017-06-01

    Sonar surveys provide an effective mechanism for mapping seabed methane flux emissions, with Arctic submerged permafrost seepage having great potential to significantly affect climate. We created in situ engineered bubble plumes from 40 m depth with fluxes spanning 0.019 to 1.1 L s-1 to derive the in situ calibration curve (Q(σ)). These nonlinear curves related flux (Q) to sonar return (σ) for a multibeam echosounder (MBES) and a single-beam echosounder (SBES) for a range of depths. The analysis demonstrated significant multiple bubble acoustic scattering - precluding the use of a theoretical approach to derive Q(σ) from the product of the bubble σ(r) and the bubble size distribution where r is bubble radius. The bubble plume σ occurrence probability distribution function (Ψ(σ)) with respect to Q found Ψ(σ) for weak σ well described by a power law that likely correlated with small-bubble dispersion and was strongly depth dependent. Ψ(σ) for strong σ was largely depth independent, consistent with bubble plume behavior where large bubbles in a plume remain in a focused core. Ψ(σ) was bimodal for all but the weakest plumes. Q(σ) was applied to sonar observations of natural arctic Laptev Sea seepage after accounting for volumetric change with numerical bubble plume simulations. Simulations addressed different depths and gases between calibration and seep plumes. Total mass fluxes (Qm) were 5.56, 42.73, and 4.88 mmol s-1 for MBES data with good to reasonable agreement (4-37 %) between the SBES and MBES systems. The seepage flux occurrence probability distribution function (Ψ(Q)) was bimodal, with weak Ψ(Q) in each seep area well described by a power law, suggesting primarily minor bubble plumes. The seepage-mapped spatial patterns suggested subsurface geologic control attributing methane fluxes to the current state of subsea permafrost.

  17. Plant-Based, Shape-Memory Material Could Replace Today’s Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A novel approach that creates a renewable, leathery material—programmed to remember its shape—may offer a low-cost alternative to conventional conductors for applications in sensors and robotics. To make the bio-based, shape-memory material, Oak Ridge National Laboratory scientists streamlined a solvent-free process that mixes rubber with lignin—the by-product of woody plants used to make biofuels. They fashioned the leathery material into small strips and brushed on a thin layer of silver nanoparticles to activate electrical conductivity. The strips were stretched or curled and then frozen as part of the process to program the material to return to its intended shape, whichmore » occurs after the application of low heat. “The performance of this polymer can be tuned further,” said ORNL’s Amit Naskar. “Variant lignins can be used at different ratios, which determines the material’s pliability.” This research was sponsored by the Department of Energy’s Bioenergy Technologies Office.« less

  18. Impact of P/In flux ratio and epilayer thickness on faceting for nanoscale selective area growth of InP by molecular beam epitaxy.

    PubMed

    Fahed, M; Desplanque, L; Coinon, C; Troadec, D; Wallart, X

    2015-07-24

    The impact of the P/In flux ratio and the deposited thickness on the faceting of InP nanostructures selectively grown by molecular beam epitaxy (MBE) is reported. Homoepitaxial growth of InP is performed inside 200 nm wide stripe openings oriented either along a [110] or [1-10] azimuth in a 10 nm thick SiO2 film deposited on an InP(001) substrate. When varying the P/In flux ratio, no major shape differences are observed for [1-10]-oriented apertures. On the other hand, the InP nanostructure cross sections strongly evolve for [110]-oriented apertures for which (111)B facets are more prominent and (001) ones shrink for large P/In flux ratio values. These results show that the growth conditions allow tailoring the nanocrystal shape. They are discussed in the framework of the equilibrium crystal shape model using existing theoretical calculations of the surface energies of different low-index InP surfaces as a function of the phosphorus chemical potential, directly related to the P/In ratio. Experimental observations strongly suggest that the relative (111)A surface energy is probably smaller than the calculated value. We also discuss the evolution of the nanostructure shape with the InP-deposited thickness.

  19. Sampling with poling-based flux balance analysis: optimal versus sub-optimal flux space analysis of Actinobacillus succinogenes.

    PubMed

    Binns, Michael; de Atauri, Pedro; Vlysidis, Anestis; Cascante, Marta; Theodoropoulos, Constantinos

    2015-02-18

    Flux balance analysis is traditionally implemented to identify the maximum theoretical flux for some specified reaction and a single distribution of flux values for all the reactions present which achieve this maximum value. However it is well known that the uncertainty in reaction networks due to branches, cycles and experimental errors results in a large number of combinations of internal reaction fluxes which can achieve the same optimal flux value. In this work, we have modified the applied linear objective of flux balance analysis to include a poling penalty function, which pushes each new set of reaction fluxes away from previous solutions generated. Repeated poling-based flux balance analysis generates a sample of different solutions (a characteristic set), which represents all the possible functionality of the reaction network. Compared to existing sampling methods, for the purpose of generating a relatively "small" characteristic set, our new method is shown to obtain a higher coverage than competing methods under most conditions. The influence of the linear objective function on the sampling (the linear bias) constrains optimisation results to a subspace of optimal solutions all producing the same maximal fluxes. Visualisation of reaction fluxes plotted against each other in 2 dimensions with and without the linear bias indicates the existence of correlations between fluxes. This method of sampling is applied to the organism Actinobacillus succinogenes for the production of succinic acid from glycerol. A new method of sampling for the generation of different flux distributions (sets of individual fluxes satisfying constraints on the steady-state mass balances of intermediates) has been developed using a relatively simple modification of flux balance analysis to include a poling penalty function inside the resulting optimisation objective function. This new methodology can achieve a high coverage of the possible flux space and can be used with and without

  20. Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a Central U.S. forest: Test Model in Ecosystem Functional Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Lianhong; Pallardy, Stephen G.; Yang, Bai

    Testing complex land surface models has often proceeded by asking the question: does the model prediction agree with the observation? This approach has yet led to high-performance terrestrial models that meet the challenges of climate and ecological studies. Here we test the Community Land Model (CLM) by asking the question: does the model behave like an ecosystem? We pursue its answer by testing CLM in the ecosystem functional space (EFS) at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the Central U.S., focusing on carbon and water flux responses to precipitation regimes and associated stresses. In the observed EFS, precipitationmore » regimes and associated water and heat stresses controlled seasonal and interannual variations of net ecosystem exchange (NEE) of CO 2 and evapotranspiration in this deciduous forest ecosystem. Such controls were exerted more strongly by precipitation variability than by the total precipitation amount per se. A few simply constructed climate variability indices captured these controls, suggesting a high degree of potential predictability. While the interannual fluctuation in NEE was large, a net carbon sink was maintained even during an extreme drought year. Although CLM predicted seasonal and interanual variations in evapotranspiration reasonably well, its predictions of net carbon uptake were too small across the observed range of climate variability. Also, the model systematically underestimated the sensitivities of NEE and evapotranspiration to climate variability and overestimated the coupling strength between carbon and water fluxes. Its suspected that the modeled and observed trajectories of ecosystem fluxes did not overlap in the EFS and the model did not behave like the ecosystem it attempted to simulate. A definitive conclusion will require comprehensive parameter and structural sensitivity tests in a rigorous mathematical framework. We also suggest that future model improvements should focus on better

  1. Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a Central U.S. forest: Test Model in Ecosystem Functional Space

    DOE PAGES

    Gu, Lianhong; Pallardy, Stephen G.; Yang, Bai; ...

    2016-07-14

    Testing complex land surface models has often proceeded by asking the question: does the model prediction agree with the observation? This approach has yet led to high-performance terrestrial models that meet the challenges of climate and ecological studies. Here we test the Community Land Model (CLM) by asking the question: does the model behave like an ecosystem? We pursue its answer by testing CLM in the ecosystem functional space (EFS) at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the Central U.S., focusing on carbon and water flux responses to precipitation regimes and associated stresses. In the observed EFS, precipitationmore » regimes and associated water and heat stresses controlled seasonal and interannual variations of net ecosystem exchange (NEE) of CO 2 and evapotranspiration in this deciduous forest ecosystem. Such controls were exerted more strongly by precipitation variability than by the total precipitation amount per se. A few simply constructed climate variability indices captured these controls, suggesting a high degree of potential predictability. While the interannual fluctuation in NEE was large, a net carbon sink was maintained even during an extreme drought year. Although CLM predicted seasonal and interanual variations in evapotranspiration reasonably well, its predictions of net carbon uptake were too small across the observed range of climate variability. Also, the model systematically underestimated the sensitivities of NEE and evapotranspiration to climate variability and overestimated the coupling strength between carbon and water fluxes. Its suspected that the modeled and observed trajectories of ecosystem fluxes did not overlap in the EFS and the model did not behave like the ecosystem it attempted to simulate. A definitive conclusion will require comprehensive parameter and structural sensitivity tests in a rigorous mathematical framework. We also suggest that future model improvements should focus on better

  2. Functional Performances of CuZnAl Shape Memory Alloy Open-Cell Foams

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Casati, R.; Bassani, P.; Tuissi, A.

    2018-01-01

    Shape memory alloys (SMAs) with cellular structure offer a unique mixture of thermo-physical-mechanical properties. These characteristics can be tuned by changing the pore size and make the shape memory metallic foams very attractive for developing new devices for structural and functional applications. In this work, CuZnAl SMA foams were produced through the liquid infiltration of space holder method. In comparison, a conventional CuZn brass alloy was foamed trough the same method. Functional performances were studied on both bulk and foamed SMA specimens. Calorimetric response shows similar martensitic transformation (MT) below 0 °C. Compressive response of CuZnAl revealed that mechanical behavior is strongly affected by sample morphology and that damping capacity of metallic foam is increased above the MT temperatures. The shape memory effect was detected in the CuZnAl foams. The conventional brass shows a compressive response similar to that of the martensitic CuZnAl, in which plastic deformation accumulation occurs up to the cellular structure densification after few thermal cycles.

  3. Radiant heat fluxes in supersonic flow of an inviscid gas past three-dimensional bodies

    NASA Astrophysics Data System (ADS)

    Apshtein, E. Z.; Vartanian, N. V.; Sakharov, V. I.; Tirskii, G. A.

    Supersonic flow of an inviscid non-heat-conducting gas past three-dimensional bodies of various shapes (spheres, ellipsoids, hyperboloids, paraboloids, and power-law bodies of revolution) in the earth atmosphere is investigated numerically in the velocity range 10-18 km/s for heights of 40-80 km and densities of the incoming flow ranging from 0.003 to 0.00017 kg/cu m. It is shown that, at a constant flight velocity, the ratio of the radiant heat flux to the flux at the critical point is largely determined by the angle of the shock wave and is practically independent of the body dimensions and flight height. The results are used to develop a simplified method for determining radiant fluxes toward the nose section of three-dimensional bodies.

  4. Comparison of the Impact of High-Flux Dialysis on Mortality in Hemodialysis Patients with and without Residual Renal Function

    PubMed Central

    Kim, Hyung Wook; Kim, Su-Hyun; Kim, Young Ok; Jin, Dong Chan; Song, Ho Chul; Choi, Euy Jin; Kim, Yong-Lim; Kim, Yon-Su; Kang, Shin-Wook; Kim, Nam-Ho; Yang, Chul Woo; Kim, Yong Kyun

    2014-01-01

    Background The effect of flux membranes on mortality in hemodialysis (HD) patients is controversial. Residual renal function (RRF) has shown to not only be as a predictor of mortality but also a contributor to β2-microglobulin clearance in HD patients. Our study aimed to determine the interaction of residual renal function with dialyzer membrane flux on mortality in HD patients. Methods HD Patients were included from the Clinical Research Center registry for End Stage Renal Disease, a prospective observational cohort study in Korea. Cox proportional hazards regression models were used to study the association between use of high-flux dialysis membranes and all-cause mortality with RRF and without RRF. The primary outcome was all-cause mortality. Results This study included 893 patients with 24 h-residual urine volume ≥100 ml (569 and 324 dialyzed using low-flux and high-flux dialysis membranes, respectively) and 913 patients with 24 h-residual urine volume <100 ml (570 and 343 dialyzed using low-flux and high-flux dialysis membranes, respectively). After a median follow-up period of 31 months, mortality was not significantly different between the high and low-flux groups in patients with 24 h-residual urine volume ≥100 ml (HR 0.86, 95% CI, 0.38–1.95, P = 0.723). In patients with 24 h-residual urine volume <100 ml, HD using high-flux dialysis membrane was associated with decreased mortality compared to HD using low-flux dialysis membrane in multivariate analysis (HR 0.40, 95% CI, 0.21–0.78, P = 0.007). Conclusions Our data showed that HD using high-flux dialysis membranes had a survival benefit in patients with 24 h-residual urine volume <100 ml, but not in patients with 24 h-residual urine volume ≥100 ml. These findings suggest that high-flux dialysis rather than low-flux dialysis might be considered in HD patients without RRF. PMID:24906205

  5. Variable-Domain Displacement Transfer Functions for Converting Surface Strains into Deflections for Structural Deformed Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2015-01-01

    Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions

  6. On the formation of tilted flux ropes in the Earth's magnetotail observed with ARTEMIS

    NASA Astrophysics Data System (ADS)

    Kiehas, S. A.; Angelopoulos, V.; Runov, A.; Moldwin, M. B.; Möstl, C.

    2012-05-01

    On 21 October 2010, ARTEMIS spacecraft P2, located at about -57 REGSM in the Earth's magnetotail, observed a series of flux ropes during the course of a moderate substorm. Subsequently, ARTEMIS spacecraft P1, located about 20 RE farther downtail and farther into the lobe than P2, observed a series of TCRs, consistent with the flux ropes observed by P2. The dual-spacecraft configuration allows simultaneous examination of these phenomena, which are interpreted as an O-line, followed by a series of flux ropes/TCRs. An inter-spacecraft time of flight analysis, assuming tailward propagation of cross-tail aligned ropes, suggests propagation speeds of up to ˜2000 km/s. A principal axis investigation, however, indicates that the flux ropes were tilted between 41° and 45° in the GSM x-y-plane with respect to the noon-midnight meridional plane. Taking this into account, the tailward propagation speed of the different flux ropes is determined to be between 900 and 1400 km/s. The same timing analysis also reveals that the flux rope velocity increased progressively from one flux rope to the next. A clear correlation between the magnetic field and plasma flow components inside the flux ropes was observed. As possible mechanisms leading to the formation of tilted flux ropes we suggest (a) a progressive spreading of the reconnection line along the east-west direction, leading to a boomerang-like shape and (b) a tilting of flux ropes during their formation by non-uniform reconnection with open field lines at the ends of the flux ropes. The progressive increase in the propagation velocity from the first to the last flux rope may be evidence of impulsive reconnection: initially deep inside the plasma sheet the reconnection rate is slow but as reconnection proceeds at the plasma sheet boundary and possibly lobes, the reconnection rate increases.

  7. Bivelocity hydrodynamics. Diffuse mass flux vs. diffuse volume flux

    NASA Astrophysics Data System (ADS)

    Brenner, Howard

    2013-02-01

    An intimate physical connection exists between a fluid’s mass and its volume, with the density ρ serving as a proportionality factor relating these two extensive thermodynamic properties when the fluid is homogeneous. This linkage has led to the erroneous belief among many researchers that a fluid’s diffusive (dissipative) mass flux and its diffusive volume flux counterpart, both occurring in inhomogeneous fluids undergoing transport are, in fact, synonymous. However, the existence of a truly dissipative mass flux (that is, a mass flux that is physically dissipative) has recently and convincingly been shown to be a physical impossibility [H.C. Öttinger, H. Struchtrup, M. Liu, On the impossibility of a dissipative contribution to the mass flux in hydrodynamics, Phys. Rev. E 80 (2009) 056303], owing, among other things, to its violation of the principle of angular momentum conservation. Unfortunately, as a consequence of the erroneous belief in the equality of the diffuse volume and mass fluxes (sans an algebraic sign), this has led many researchers to wrongly conclude that a diffuse volume flux is equally impossible. As a consequence, owing to the fundamental role played by the diffuse volume flux in the theory of bivelocity hydrodynamics [H. Brenner, Beyond Navier-Stokes, Int. J. Eng. Sci. 54 (2012) 67-98], many researchers have been led to falsely dismiss, without due consideration, the possibility of bivelocity hydrodynamics constituting a potentially viable physical theory, which it is believed to be. The present paper corrects this misconception by using a simple concrete example involving an isothermal rotating rigid-body fluid motion to clearly confirm that whereas a diffuse mass flux is indeed impossible, this fact does not exclude the possible existence of a diffuse volume flux and, concomitantly, the possibility that bivelocity hydrodynamics is indeed a potentially viable branch of fluid mechanics.

  8. Ontogenetic scaling of caudal fin shape in Squalus acanthias (Chondrichthyes, Elasmobranchii): a geometric morphometric analysis with implications for caudal fin functional morphology.

    PubMed

    Reiss, Katie L; Bonnan, Matthew F

    2010-07-01

    The shark heterocercal caudal fin and its contribution to locomotion are of interest to biologists and paleontologists. Current hydrodynamic data show that the stiff dorsal lobe leads the ventral lobe, both lobes of the tail are synchronized during propulsion, and tail shape reflects its overall locomotor function. Given the difficulties surrounding the analysis of shark caudal fins in vivo, little is known about changes in tail shape related to ontogeny and sex in sharks. A quantifiable analysis of caudal fin shape may provide an acceptable proxy for inferring gross functional morphology where direct testing is difficult or impossible. We examined ontogenetic and sex-related shape changes in the caudal fins of 115 Squalus acanthias museum specimens, to test the hypothesis that significant shape changes in the caudal fin shape occur with increasing size and between the sexes. Using linear and geometric morphometrics, we examined caudal shape changes within the context of current hydrodynamic models. We found no statistically significant linear or shape difference between sexes, and near-isometric scaling trends for caudal dimensions. These results suggest that lift and thrust increase linearly with size and caudal span. Thin-plate splines results showed a significant allometric shape change associated with size and caudal span: the dorsal lobe elongates and narrows, whereas the ventral lobe broadens and expands ventrally. Our data suggest a combination of caudal fin morphology with other body morphology aspects, would refine, and better elucidate the hydrodynamic factors (if any) that underlie the significant shape changes we report here for S. acanthias.

  9. Chemical Control of Lead Sulfide Quantum Dot Shape, Self-Assembly, and Charge Transport

    NASA Astrophysics Data System (ADS)

    McPhail, Martin R.

    Lead(II) sulfide quantum dots (PbS QDs) are a promising excitonic material for numerous application that require that control of fluxes of charge and energy at nanoscale interfaces, such as solar energy conversion, photo- and electrocatalysis, light emitting diodes, chemical sensing, single-electron logic elements, field effect transistors, and photovoltaics. PbS QDs are particularly suitable for photonics applications because they exhibit size-tunable band-edge absorption and fluorescence across the entire near-infrared spectrum, undergo efficient multi-exciton generation, exhibit a long radiative lifetime, and possess an eight-fold degenerate ground-state. The effective integration of PbS QDs into these applications requires a thorough understanding of how to control their synthesis, self-assembly, and charge transport phenomena. In this document, I describe a series of experiments to elucidate three levels of chemical control on the emergent properties of PbS QDs: (1) the role of surface chemistry in controlling PbS QD shape during solvothermal synthesis, (2) the role of QD shape and ligand functionalization in self-assembly at a liquid-air interface, and (3) the role of QD packing structure on steady-state conductivity and transient current dynamics. At the synthetic level (1), I show that the final shape and surface chemistry of PbS QDs is highly sensitive to the formation of organosulfur byproducts by commonly used sulfur reagents. The insight into PbS QD growth gained from this work is then developed to controllably tune PbS QD shape from cubic to octahedral to hexapodal while maintaining QD size. At the following level of QD self-assembly (2), I show how QD size and shape dictate packing geometry in extended 2D arrays and how this packing can be controllably interrupted in mixed monolayers. I also study the role of ligand structure on the reorganization of QD arrays at a liquid-air interface and find that the specific packing defects in QD arrays vary

  10. Concerning neutral flux shielding in the U-3M torsatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreval, N. B., E-mail: mdreval@kipt.kharkov.ua

    2015-03-15

    The volume of the torsatron U-3M vacuum chamber is about 70 m{sup 3}, whereas the plasma volume is about 0.3 m{sup 3}. The large buffer volume of the chamber serves as a source of a substantial neutral flux into the U-3M plasma. A fraction of this flux falls onto the torsatron helical coils located in front of the plasma, due to which the dynamics of neutral influx into the plasma modifies. The shielding of the molecular flux from the buffer volume into the plasma is estimated using numerical calculations. Only about 10% of the incident flux reaches the plasma volume.more » Estimates show that about 20% of atoms escape beyond the helical coils without colliding with them. Under these conditions, the helical coils substantially affect the neutral flux. A discharge regime with a hot low-density plasma produced by a frame antenna is considered. The spatial distribution of the molecular density produced in this regime by the molecular flux from the chamber buffer volume after it has passed between the helical coils is calculated. The contributions of the fluxes emerging from the side and inner surfaces of the helical coils are considered. The calculations show that the shape of the spatial distribution of the molecular density differs substantially from the shape of the magnetic surfaces.« less

  11. Reconnection of a Kinking Flux Rope Triggering the Ejection of a Microwave and Hard X-Ray Source. 2. Numerical Modeling

    DTIC Science & Technology

    2010-07-14

    apex. The external field is thus mainly poloidal, with the ratio between toroidal and poloidal components at the flux rope apex being Bet/ Bep = 0.075...eruption involved a kink-unstable flux rope that had a high twist of Φ & 6π. This yields a coherent framework to understand the inverse gamma shape...leading to these results has received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under the grant agreement n 218816

  12. Network structure shapes spontaneous functional connectivity dynamics.

    PubMed

    Shen, Kelly; Hutchison, R Matthew; Bezgin, Gleb; Everling, Stefan; McIntosh, Anthony R

    2015-04-08

    The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased. Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic pathways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture. Copyright © 2015 the authors 0270-6474/15/355579-10$15.00/0.

  13. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    DOE PAGES

    Ebrahimi, F.; Raman, R.

    2016-03-23

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form amore » narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet-Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. Furthermore, these results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.« less

  14. S-shaped versus conventional straight skin incision: Impact on primary functional maturation, stenosis and thrombosis of autogenous radiocephalic arteriovenous fistula: Impact of incision on maturation, stenosis & failure of RCAVF. Study design: Prospective observational comparative.

    PubMed

    Kordzadeh, Ali; Panayiotopolous, Yiannis

    2017-10-01

    The objective of this study is to test the null hypothesis that an S-shaped surgical incision versus conventional (straight) skin incision in the creation of autogenous radiocephalic arteriovenous fistulas (RCAVFs) have no impact on the primary end-point of primary functional maturation and secondary end points of stenosis and thrombosis. A prospective observational comparative consecutive study with intention-to-treat on individuals undergoing only radiocephalic arteriovenous fistula (RCAVFs) over a period of 12 months was conducted. Variables on patient's demographics, comorbidities, anesthesia type, mean arterial blood pressure, thrill, laterality, cephalic vein and radial artery diameter were collated. The test of probability was assessed through Chi-Square, Kaplan-Meier survival estimator and Log-Rank analysis. Total of n = 83 individuals with median age of 67 years (IQR, 20-89) and male predominance 83% during this period were subjected to RCAVF formation. Total of n = 45 patients in straight skin incision were compared to n = 38 individuals in S-shaped group. Despite equal prevalence of demographics, comorbidities, anesthesia type, mean arterial blood pressure (MAP), thrill, laterality, cephalic vein and radial artery diameter ( p  > 0.05) higher incidence of juxta-anastomotic stenosis was noted in the straight skin incision group ( p  = 0.029) in comparative and survival analysis (Log-Rank, p  = 0.036). The maturation of the entire cohort was 69% (S-shaped 76% vs. straight group 62%) (p > 0.05). The outcome of this study demonstrates that S-shaped surgical skin incision is associated with a lower incidence of stenosis in comparison to straight incision type in RCAVF formation.

  15. Effect of the influence function of deformable mirrors on laser beam shaping.

    PubMed

    González-Núñez, Héctor; Béchet, Clémentine; Ayancán, Boris; Neichel, Benoit; Guesalaga, Andrés

    2017-02-20

    The continuous membrane stiffness of a deformable mirror propagates the deformation of the actuators beyond their neighbors. When phase-retrieval algorithms are used to determine the desired shape of these mirrors, this cross-coupling-also known as influence function (IF)-is generally disregarded. We study this problem via simulations and bench tests for different target shapes to gain further insight into the phenomenon. Sound modeling of the IF effect is achieved as highlighted by the concurrence between the modeled and experimental results. In addition, we observe that the actuators IF is a key parameter that determines the accuracy of the output light pattern. Finally, it is shown that in some cases it is possible to achieve better shaping by modifying the input irradiance of the phase-retrieval algorithm. The results obtained from this analysis open the door to further improvements in this type of beam-shaping systems.

  16. Mott transition in the π -flux S U (4 ) Hubbard model on a square lattice

    NASA Astrophysics Data System (ADS)

    Zhou, Zhichao; Wu, Congjun; Wang, Yu

    2018-05-01

    With increasing repulsive interaction, we show that a Mott transition occurs from the semimetal to the valence bond solid, accompanied by the Z4 discrete symmetry breaking. Our simulations demonstrate the existence of a second-order phase transition, which confirms the Ginzburg-Landau analysis. The phase transition point and the critical exponent η are also estimated. To account for the effect of a π flux on the ordering in the strong-coupling regime, we analytically derive by the perturbation theory the ring-exchange term, which is the leading-order term that can reflect the difference between the π -flux and zero-flux S U (4 ) Hubbard models.

  17. The role of plasma/neutral source and loss processes in shaping the giant planet magnetospheres

    NASA Astrophysics Data System (ADS)

    Delamere, P. A.

    2014-12-01

    The giant planet magnetospheres are filled with neutral and ionized gases originating from satellites orbiting deep within the magnetosphere. The complex chemical and physical pathways for the flow of mass and energy in this partially ionized plasma environment is critical for understanding magnetospheric dynamics. The flow of mass at Jupiter and Saturn begins, primarily, with neutral gases emanating from Io (~1000 kg/s) and Enceladus (~200 kg/s). In addition to ionization losses, the neutral gases are absorbed by the planet, its rings, or escape at high speeds from the magnetosphere via charge exchange reactions. The net result is a centrifugally confined torus of plasma that is transported radially outward, distorting the magnetic field into a magnetodisc configuration. Ultimately the plasma is lost to the solar wind. A critical parameter for shaping the magnetodisc and determining its dynamics is the radial plasma mass transport rate (~500 kg/s and ~50 kg/s for Jupiter and Saturn respectively). Given the plasma transport rates, several simple properties of the giant magnetodiscs can be estimated including the physical scale of the magnetosphere, the magnetic flux transport, and the magnitude of azimuthal magnetic field bendback. We will discuss transport-related magnetic flux conservation and the mystery of plasma heating—two critical issues for shaping the giant planet magnetospheres.

  18. Improving the S-Shape Solar Radiation Estimation Method for Supporting Crop Models

    PubMed Central

    Fodor, Nándor

    2012-01-01

    In line with the critical comments formulated in relation to the S-shape global solar radiation estimation method, the original formula was improved via a 5-step procedure. The improved method was compared to four-reference methods on a large North-American database. According to the investigated error indicators, the final 7-parameter S-shape method has the same or even better estimation efficiency than the original formula. The improved formula is able to provide radiation estimates with a particularly low error pattern index (PIdoy) which is especially important concerning the usability of the estimated radiation values in crop models. Using site-specific calibration, the radiation estimates of the improved S-shape method caused an average of 2.72 ± 1.02 (α = 0.05) relative error in the calculated biomass. Using only readily available site specific metadata the radiation estimates caused less than 5% relative error in the crop model calculations when they were used for locations in the middle, plain territories of the USA. PMID:22645451

  19. Effects of plasma shaping on nonlinear gyrokinetic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belli, E. A.; Hammett, G. W.; Dorland, W.

    The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W. M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on bothmore » the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of {chi}{approx}{kappa}{sup -1.5} or {kappa}{sup -2.0}, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.« less

  20. Involvement of S6K1 in mitochondria function and structure in HeLa cells.

    PubMed

    Park, Jisoo; Tran, Quangdon; Mun, Kisun; Masuda, Kouhei; Kwon, So Hee; Kim, Seon-Hwan; Kim, Dong-Hoon; Thomas, George; Park, Jongsun

    2016-12-01

    The major biological function of mitochondria is to generate cellular energy through oxidative phosphorylation. Apart from cellular respiration, mitochondria also play a key role in signaling processes, including aging and cancer metabolism. It has been shown that S6K1-knockout mice are resistant to obesity due to enhanced beta-oxidation, with an increased number of large mitochondria. Therefore, in this report, the possible involvement of S6K1 in regulating mitochondria dynamics and function has been investigated in stable lenti-shS6K1-HeLa cells. Interestingly, S6K1-stably depleted HeLa cells showed phenotypical changes in mitochondria morphology. This observation was further confirmed by detailed image analysis of mitochondria shape. Corresponding molecular changes were also observed in these cells, such as the induction of mitochondrial fission proteins (Drp1 and Fis1). Oxygen consumption is elevated in S6K1-depeleted HeLa cells and FL5.12 cells. In addition, S6K1 depletion leads to enhancement of ATP production in cytoplasm and mitochondria. However, the relative ratio of mitochondrial ATP to cytoplasmic ATP is actually decreased in lenti-shS6K1-HeLa cells compared to control cells. Lastly, induction of mitophagy was found in lenti-shS6K1-HeLa cells with corresponding changes of mitochondria shape on electron microscope analysis. Taken together, our results indicate that S6K1 is involved in the regulation of mitochondria morphology and function in HeLa cells. This study will provide novel insights into S6K1 function in mitochondria-mediated cellular signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. On a new functional form for the dispersive flux in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tompson, A.F.B.

    A recently developed second-order model for local dispersive transport in porous media has been simplified to yield a new, closed-form relationship for the dispersive flux. In situations characterized by negligible velocity gradients, the flux can generally be represented as a convolution or memory integral over time of previous concentration gradients. The strength of this memory is controlled by an exponential weighting factor related to the magnitudes of the velocity and local molecular diffusive flux. The form of this result is consistent with other models of diffusive and dispersive transport phenomena over various spatial scales. In circumstances where the memory strengthmore » is small, the integral can be simplified and cast in the form of a standard Fickian relationship with apparent time-dependent dispersivity functions that grow to finite, asymptotic values. This specific formulation can be manipulated to yield a one-equation transport balance law in the form of a telegraph equation. Nonphysical effects, such as spurious upstream dispersion and instantaneous propagation of mass to extremely distant points predicted with a Fickian law, are reduced or eliminated. Although the importance of the new result in transport simulations will depend on the spatial and temporal scales of interest, it should provide some insight in the interpretation and design of new experiments.« less

  2. Pose-oblivious shape signature.

    PubMed

    Gal, Ran; Shamir, Ariel; Cohen-Or, Daniel

    2007-01-01

    A 3D shape signature is a compact representation for some essence of a shape. Shape signatures are commonly utilized as a fast indexing mechanism for shape retrieval. Effective shape signatures capture some global geometric properties which are scale, translation, and rotation invariant. In this paper, we introduce an effective shape signature which is also pose-oblivious. This means that the signature is also insensitive to transformations which change the pose of a 3D shape such as skeletal articulations. Although some topology-based matching methods can be considered pose-oblivious as well, our new signature retains the simplicity and speed of signature indexing. Moreover, contrary to topology-based methods, the new signature is also insensitive to the topology change of the shape, allowing us to match similar shapes with different genus. Our shape signature is a 2D histogram which is a combination of the distribution of two scalar functions defined on the boundary surface of the 3D shape. The first is a definition of a novel function called the local-diameter function. This function measures the diameter of the 3D shape in the neighborhood of each vertex. The histogram of this function is an informative measure of the shape which is insensitive to pose changes. The second is the centricity function that measures the average geodesic distance from one vertex to all other vertices on the mesh. We evaluate and compare a number of methods for measuring the similarity between two signatures, and demonstrate the effectiveness of our pose-oblivious shape signature within a 3D search engine application for different databases containing hundreds of models.

  3. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network

    PubMed Central

    Kuang, Meihua Christina; Hutchins, Paul D; Russell, Jason D; Coon, Joshua J; Hittinger, Chris Todd

    2016-01-01

    The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of the GALactose sugar utilization network in two yeast species. We show that the Saccharomyces uvarum network is more active, even as over-induction is prevented by a second co-repressor that the model yeast Saccharomyces cerevisiae lacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systems and exacerbate this phenotype. We further show that S. cerevisiae experiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. These results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation. DOI: http://dx.doi.org/10.7554/eLife.19027.001 PMID:27690225

  4. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network

    DOE PAGES

    Kuang, Meihua Christina; Hutchins, Paul D.; Russell, Jason D.; ...

    2016-09-30

    The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of theGALactose sugar utilization network in two yeast species. Here, we show that theSaccharomyces uvarumnetwork is more active, even as over-induction is prevented by a second co-repressor that the model yeastSaccharomyces cerevisiaelacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systemsmore » and exacerbate this phenotype. Furthermore, we show thatS. cerevisiaeexperiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. Our results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation.« less

  5. Health benefits of air pollution abatement policy: Role of the shape of the concentration-response function.

    PubMed

    Pope, C Arden; Cropper, Maureen; Coggins, Jay; Cohen, Aaron

    2015-05-01

    There is strong evidence that fine particulate matter (aerodynamic diameter<2.5 μm; PM2.5) air pollution contributes to increased risk of disease and death. Estimates of the burden of disease attributable to PM2.5 pollution and benefits of reducing pollution are dependent upon the shape of the concentration response (C-R) functions. Recent evidence suggests that the C-R function between PM2.5 air pollution and mortality risk may be supralinear across wide ranges of exposure. Such results imply that incremental pollution abatement efforts may yield greater benefits in relatively clean areas than in highly polluted areas. The role of the shape of the C-R function in evaluating and understanding the costs and health benefits of air pollution abatement policy is explored. There remain uncertainties regarding the shape of the C-R function, and additional efforts to more fully understand the C-R relationships between PM2.5 and adverse health effects are needed to allow for more informed and effective air pollution abatement policies. Current evidence, however, suggests that there are benefits both from reducing air pollution in the more polluted areas and from continuing to reduce air pollution in cleaner areas. Estimates of the benefits of reducing PM2.5 air pollution are highly dependent upon the shape of the PM2.5-mortality concentration-response (C-R) function. Recent evidence indicates that this C-R function may be supralinear across wide ranges of exposure, suggesting that incremental pollution abatement efforts may yield greater benefits in relatively clean areas than in highly polluted areas. This paper explores the role of the shape of the C-R function in evaluating and understanding the costs and health benefits of PM2.5 air pollution abatement.

  6. Ideal flux field dielectric concentrators.

    PubMed

    García-Botella, Angel

    2011-10-01

    The concept of the vector flux field was first introduced as a photometrical theory and later developed in the field of nonimaging optics; it has provided new perspectives in the design of concentrators, overcoming standard ray tracing techniques. The flux field method has shown that reflective concentrators with the geometry of the field lines achieve the theoretical limit of concentration. In this paper we study the role of surfaces orthogonal to the field vector J. For rotationally symmetric systems J is orthogonal to its curl, and then a family of surfaces orthogonal to the lines of J exists, which can be called the family of surfaces of constant pseudopotential. Using the concept of the flux tube, it is possible to demonstrate that refractive concentrators with the shape of these pseudopotential surfaces achieve the theoretical limit of concentration.

  7. Regularized Biot–Savart Laws for Modeling Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Titov, Viacheslav S.; Downs, Cooper; Mikić, Zoran; Török, Tibor; Linker, Jon A.; Caplan, Ronald M.

    2018-01-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the morphology of the pre-eruptive source region. For this purpose, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and circular cross-sections. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is the curl of the sum of axial and azimuthal vector potentials proportional to I and F, respectively. We expressed the vector potentials in terms of modified Biot–Savart laws, whose kernels are regularized at the axis in such a way that, when the axis is straight, these laws define a cylindrical force-free flux rope with a parabolic profile for the axial current density. For the cases we have studied so far, we determined the shape of the rope axis by following the polarity inversion line of the eruptions’ source region, using observed magnetograms. The height variation along the axis and other flux-rope parameters are estimated by means of potential-field extrapolations. Using this heuristic approach, we were able to construct pre-eruption configurations for the 2009 February 13 and 2011 October 1 CME events. These applications demonstrate the flexibility and efficiency of our new method for energizing pre-eruptive configurations in simulations of CMEs.

  8. Functionally-interdependent shape-switching nanoparticles with controllable properties

    PubMed Central

    Halman, Justin R.; Satterwhite, Emily; Roark, Brandon; Chandler, Morgan; Viard, Mathias; Ivanina, Anna; Bindewald, Eckart; Kasprzak, Wojciech K.; Panigaj, Martin; Bui, My N.; Lu, Jacob S.; Miller, Johann; Khisamutdinov, Emil F.; Shapiro, Bruce A.; Dobrovolskaia, Marina A.

    2017-01-01

    Abstract We introduce a new concept that utilizes cognate nucleic acid nanoparticles which are fully complementary and functionally-interdependent to each other. In the described approach, the physical interaction between sets of designed nanoparticles initiates a rapid isothermal shape change which triggers the activation of multiple functionalities and biological pathways including transcription, energy transfer, functional aptamers and RNA interference. The individual nanoparticles are not active and have controllable kinetics of re-association and fine-tunable chemical and thermodynamic stabilities. Computational algorithms were developed to accurately predict melting temperatures of nanoparticles of various compositions and trace the process of their re-association in silico. Additionally, tunable immunostimulatory properties of described nanoparticles suggest that the particles that do not induce pro-inflammatory cytokines and high levels of interferons can be used as scaffolds to carry therapeutic oligonucleotides, while particles with strong interferon and mild pro-inflammatory cytokine induction may qualify as vaccine adjuvants. The presented concept provides a simple, cost-effective and straightforward model for the development of combinatorial regulation of biological processes in nucleic acid nanotechnology. PMID:28108656

  9. Functional aspects of metatarsal head shape in humans, apes, and Old World monkeys.

    PubMed

    Fernández, Peter J; Almécija, Sergio; Patel, Biren A; Orr, Caley M; Tocheri, Matthew W; Jungers, William L

    2015-09-01

    Modern human metatarsal heads are typically described as "dorsally domed," mediolaterally wide, and dorsally flat. Despite the apparent functional importance of these features in forefoot stability during bipedalism, the distinctiveness of this morphology has not been quantitatively evaluated within a broad comparative framework. In order to use these features to reconstruct fossil hominin locomotor behaviors with any confidence, their connection to human bipedalism should be validated through a comparative analysis of other primates with different locomotor behaviors and foot postures, including species with biomechanical demands potentially similar to those of bipedalism (e.g., terrestrial digitigrady). This study explores shape variation in the distal metatarsus among humans and other extant catarrhines using three-dimensional geometric morphometrics (3 DGM). Shape differences among species in metatarsal head morphology are well captured by the first two principal components of Procrustes shape coordinates, and these two components summarize most of the variance related to "dorsal doming" and "dorsal expansion." Multivariate statistical tests reveal significant differences among clades in overall shape, and humans are reliably distinguishable from other species by aspects of shape related to a greater degree of dorsal doming. Within quadrupeds, terrestrial species also trend toward more domed metatarsal heads, but not to the extent seen in humans. Certain aspects of distal metatarsus shape are likely related to habitual dorsiflexion of the metatarsophalangeal joints, but the total morphological pattern seen in humans is distinct. These comparative results indicate that this geometric morphometric approach is useful to characterize the complexity of metatarsal head morphology and will help clarify its relationship with function in fossil primates, including early hominins. Published by Elsevier Ltd.

  10. LAND-USE CHANGE AND CARBON FLUX BETWEEN 1970S AND 1990S IN CENTRAL HIGHLANDS OF CHIAPAS, MEXICO

    EPA Science Inventory

    We present results of a study in an intensively impacted and highly fragmented landscape in which we apply field-measured carbon (C) density values to land-use/land-cover (LU/LC) statistics to estimate the flux of C between terrestrial ecosystems and the atmosphere from the 1970s...

  11. The shape memory alloy actuator controlled by the Sun’s radiation

    NASA Astrophysics Data System (ADS)

    Riad, Amine; Alhamany, Abdelilah; Benzohra, Mouna

    2017-07-01

    Shape memory alloys (SMAs) have many thermo-mechanical characteristics which can return to their original value once exposed to a specific temperature. These materials are able to change their mechanical features such as shape, displacement or frequency in response to stress or heating; this may be useful for actuators in many fields such as aircraft, robotics and microsystems. In order to know the effect of the Sun’s radiation on SMAs we have conducted a numerical study that simulates a SMA actuator.

  12. Flux frequency analysis of seasonally dry ecosystem fluxes in two unique biomes of Sonora Mexico

    NASA Astrophysics Data System (ADS)

    Verduzco, V. S.; Yepez, E. A.; Robles-Morua, A.; Garatuza, J.; Rodriguez, J. C.; Watts, C.

    2013-05-01

    Complex dynamics from the interactions of ecosystems processes makes difficult to model the behavior of ecosystems fluxes of carbon and water in response to the variation of environmental and biological drivers. Although process oriented ecosystem models are critical tools for studying land-atmosphere fluxes, its validity depends on the appropriate parameterization of equations describing temporal and spatial changes of model state variables and their interactions. This constraint often leads to discrepancies between model simulations and observed data that reduce models reliability especially in arid and semiarid ecosystems. In the semiarid north western Mexico, ecosystem processes are fundamentally controlled by the seasonality of water and the intermittence of rain pulses which are conditions that require calibration of specific fitting functions to describe the response of ecosystem variables (i.e. NEE, GPP, ET, respiration) to these wetting and drying periods. The goal is to find functions that describe the magnitude of ecosystem fluxes during individual rain pulses and the seasonality of the ecosystem. Relaying on five years of eddy covariance flux data of a tropical dry forest and a subtropical shrubland we present a flux frequency analysis that describe the variation of net ecosystem exchange (NEE) of CO2 to highlight the relevance of pulse driven dynamics controlling this flux. Preliminary results of flux frequency analysis of NEE indicate that these ecosystems are strongly controlled by the frequency distribution of rain. Also, the output of fitting functions for NEE, GPP, ET and respiration using semi-empirical functions applied at specific rain pulses compared with season-long statistically generated simulations do not agree. Seasonality and the intrinsic nature of individual pulses have different effects on ecosystem flux responses. This suggests that relationships between the nature of seasonality and individual pulses can help improve the

  13. Improvements in metabolic flux analysis using carbon bond labeling experiments: bondomer balancing and Boolean function mapping.

    PubMed

    Sriram, Ganesh; Shanks, Jacqueline V

    2004-04-01

    The biosynthetically directed fractional (13)C labeling method for metabolic flux evaluation relies on performing a 2-D [(13)C, (1)H] NMR experiment on extracts from organisms cultured on a uniformly labeled carbon substrate. This article focuses on improvements in the interpretation of data obtained from such an experiment by employing the concept of bondomers. Bondomers take into account the natural abundance of (13)C; therefore many bondomers in a real network are zero, and can be precluded a priori--thus resulting in fewer balances. Using this method, we obtained a set of linear equations which can be solved to obtain analytical formulas for NMR-measurable quantities in terms of fluxes in glycolysis and the pentose phosphate pathways. For a specific case of this network with four degrees of freedom, a priori identifiability of the fluxes was shown possible for any set of fluxes. For a more general case with five degrees of freedom, the fluxes were shown identifiable for a representative set of fluxes. Minimal sets of measurements which best identify the fluxes are listed. Furthermore, we have delineated Boolean function mapping, a new method to iteratively simulate bondomer abundances or efficiently convert carbon skeleton rearrangement information to mapping matrices. The efficiency of this method is expected to be valuable while analyzing metabolic networks which are not completely known (such as in plant metabolism) or while implementing iterative bondomer balancing methods.

  14. Applications of Displacement Transfer Functions to Deformed Shape Predictions of the GIII Swept-Wing Structure

    NASA Technical Reports Server (NTRS)

    Lung, Shun-Fat; Ko, William L.

    2016-01-01

    The displacement transfer functions (DTFs) were applied to the GIII swept wing for the deformed shape prediction. The calculated deformed shapes are very close to the correlated finite element results as well as the measured data. The convergence study showed that using 17 strain stations, the wing-tip displacement prediction error was 1.6 percent, and that there is no need to use a large number of strain stations for G-III wing shape predictions.

  15. Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux

    PubMed Central

    Lee, Jonghwan; Jiang, James Y.; Wu, Weicheng; Lesage, Frederic; Boas, David A.

    2014-01-01

    We present a novel optical coherence tomography (OCT)-based technique for rapid volumetric imaging of red blood cell (RBC) flux in capillary networks. Previously we reported that OCT can capture individual RBC passage within a capillary, where the OCT intensity signal at a voxel fluctuates when an RBC passes the voxel. Based on this finding, we defined a metric of statistical intensity variation (SIV) and validated that the mean SIV is proportional to the RBC flux [RBC/s] through simulations and measurements. From rapidly scanned volume data, we used Hessian matrix analysis to vectorize a segment path of each capillary and estimate its flux from the mean of the SIVs gathered along the path. Repeating this process led to a 3D flux map of the capillary network. The present technique enabled us to trace the RBC flux changes over hundreds of capillaries with a temporal resolution of ~1 s during functional activation. PMID:24761298

  16. Can functional gene abundance predict N-fluxes? Examples from a well-studied hydrological flow path in a forested watershed in SW China

    NASA Astrophysics Data System (ADS)

    Liu, Binbin; Muzammil, Bushra; Dörsch, Peter; Zhu, Jing; Mulder, Jan; Frostegård, Åsa

    2014-05-01

    Edaphic, climatic and management factors shape soil microbial communities taxonomically and functionally, resulting in spatial separation of nitrogen (N) oxidation and reduction processes along hydrological flowpaths. In a recent study, we investigated N-cycling processes and N2O emissions along a mesic hillslope (HS) and a hydrologically connected groundwater discharge zone (GDZ) in a forested headwater catchment dominated by acid soils (pH 4.0 - 4.5) in subtropical China (Chongqing). The watershed receives 50 kg N ha-1 a-1 through atmogenic deposition (2/3 as ammonium), most of which is removed before discharge. Surprisingly, N2O emissions were found to be greatest on the well-drained HS, whereas a drop of NO3- concentrations along the flow path indicated that N removal was highest in the moist GDZ. Nitrification was assumed to be none-limiting as the total flux of NO3- leaving the hill slope soils roughly equalled the input of NH4+. To understand watershed N-cycling and removal in more detail, we studied the abundance of functional genes involved in ammonium oxidation (amoA of AOB and AOA), nitrite oxidation (nxrB) and denitrification (nirK, nirS, nosZ) in top soils from 8 locations along the flow path spanning from the hilltop to the outlet of the GDZ. 16S rRNA gene abundance was assessed as a general marker for bacterial abundance. All genes showed highest abundance per gram soil in the heavily disturbed GDZ (formerly cultivated terraces), despite lower soil organic carbon content (1-4% w/w as opposed to 10-20% w/w in HS topsoil) and periodically stagnant conditions due to high water tables after monsoonal rainfalls. Ratios of nosZ/nirS+nirK, commonly used to predict denitrification product stoichiometry (N2O/N2), yielded counterintuitive results with higher values for HS than for GDZ. However, comparing nir gene with 16S rRNA gene abundance revealed that denitrifiers accounted for up to 10% of the bacterial community in the GDZ soils whereas this value was

  17. A Continuous Measure of Gross Primary Production for the Conterminous U.S. Derived from MODIS and AmeriFlux Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Jingfeng; Zhuang, Qianlai; Law, Beverly E.

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide rangemore » of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000-2004, and was validated using observed GPP over the period 2005-2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km x 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr{sup -1} for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were

  18. Effects of Pump-turbine S-shaped Characteristics on Transient Behaviours: Model Setup

    NASA Astrophysics Data System (ADS)

    Zeng, Wei; Yang, Jiandong; Hu, Jinhong

    2017-04-01

    Pumped storage stations undergo numerous transition processes, which make the pump turbines go through the unstable S-shaped region. The hydraulic transient in S-shaped region has normally been investigated through numerical simulations, while field experiments generally involve high risks and are difficult to perform. In this research, a pumped storage model composed of a piping system, two model units, two electrical control systems, a measurement system and a collection system was set up to study the transition processes. The model platform can be applied to simulate almost any hydraulic transition process that occurs in real power stations, such as load rejection, startup, frequency control and grid connection.

  19. A model for the flux-r.m.s. correlation in blazar variability or the minijets-in-a-jet statistical model

    NASA Astrophysics Data System (ADS)

    Biteau, J.; Giebels, B.

    2012-12-01

    Very high energy gamma-ray variability of blazar emission remains of puzzling origin. Fast flux variations down to the minute time scale, as observed with H.E.S.S. during flares of the blazar PKS 2155-304, suggests that variability originates from the jet, where Doppler boosting can be invoked to relax causal constraints on the size of the emission region. The observation of log-normality in the flux distributions should rule out additive processes, such as those resulting from uncorrelated multiple-zone emission models, and favour an origin of the variability from multiplicative processes not unlike those observed in a broad class of accreting systems. We show, using a simple kinematic model, that Doppler boosting of randomly oriented emitting regions generates flux distributions following a Pareto law, that the linear flux-r.m.s. relation found for a single zone holds for a large number of emitting regions, and that the skewed distribution of the total flux is close to a log-normal, despite arising from an additive process.

  20. The Airborne Measurements of Methane Fluxes (AIRMETH) Arctic Campaign (Invited)

    NASA Astrophysics Data System (ADS)

    Serafimovich, A.; Metzger, S.; Hartmann, J.; Kohnert, K.; Sachs, T.

    2013-12-01

    biophysical drivers in the flux footprints. Lastly, the resulting ERFs are used to extrapolate the methane release over spatio-temporally explicit grids of the Alaskan North Slope. Metzger et al. (2013) have demonstrated the efficacy of this technique for regionalizing airborne EC heat flux observations to within an accuracy of ≤18% and a precision of ≤5%. Here, we show for the first time results from applying the ERF procedure to airborne methane EC measurements, and report its potential for spatio-temporally explicit inventories of the regional-scale methane exchange. References: Metzger, S., Junkermann, W., Mauder, M., Butterbach-Bahl, K., Trancón y Widemann, B., Neidl, F., Schäfer, K., Wieneke, S., Zheng, X. H., Schmid, H. P., and Foken, T.: Spatially explicit regionalization of airborne flux measurements using environmental response functions, Biogeosciences, 10, 2193-2217, doi:10.5194/bg-10-2193-2013, 2013.

  1. Nodal Green’s Function Method Singular Source Term and Burnable Poison Treatment in Hexagonal Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.A. Bingham; R.M. Ferrer; A.M. ougouag

    2009-09-01

    An accurate and computationally efficient two or three-dimensional neutron diffusion model will be necessary for the development, safety parameters computation, and fuel cycle analysis of a prismatic Very High Temperature Reactor (VHTR) design under Next Generation Nuclear Plant Project (NGNP). For this purpose, an analytical nodal Green’s function solution for the transverse integrated neutron diffusion equation is developed in two and three-dimensional hexagonal geometry. This scheme is incorporated into HEXPEDITE, a code first developed by Fitzpatrick and Ougouag. HEXPEDITE neglects non-physical discontinuity terms that arise in the transverse leakage due to the transverse integration procedure application to hexagonal geometry andmore » cannot account for the effects of burnable poisons across nodal boundaries. The test code being developed for this document accounts for these terms by maintaining an inventory of neutrons by using the nodal balance equation as a constraint of the neutron flux equation. The method developed in this report is intended to restore neutron conservation and increase the accuracy of the code by adding these terms to the transverse integrated flux solution and applying the nodal Green’s function solution to the resulting equation to derive a semi-analytical solution.« less

  2. InN island shape and its dependence on growth condition of molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Cao, Y. G.; Xie, M. H.; Liu, Y.; Ng, Y. F.; Wu, H. S.; Tong, S. Y.

    2003-12-01

    During molecular-beam epitaxy of InN films on GaN(0001) surface, three-dimensional (3D) islands are observed following an initial wetting layer formation. Depending on deposition condition, the 3D islands take different shapes. Pyramidal islands form when excess nitrogen fluxes are used, whereas pillar-shaped islands are obtained when excess indium fluxes are employed. The pillar-shaped islands are identified to represent the equilibrium shape, whereas the pyramidal ones are limited by kinetics. As the size of islands increases, their aspect ratio shows a decreasing trend, which is attributed to a gradual relaxation of strain in the layer by defects.

  3. Why different gas flux velocity parameterizations result in so similar flux results in the North Atlantic?

    NASA Astrophysics Data System (ADS)

    Piskozub, Jacek; Wróbel, Iwona

    2016-04-01

    . The first one is the fact that most of the k functions intersect close to 9 m/s, the typical North Atlantic wind speeds. The squared and cubed function need to intersect in order to have similar global averages. This way the higher values of cubic functions for strong winds are offset by higher values of squared ones for weak ones. The wind speed of the intersection has to be higher than global wind speed average because discrepancies between different parameterizations increase with the wind speed. The North Atlantic region seem to have by chance just the right average wind speeds to make all the parameterizations resulting in similar annual fluxes. However there is a second reason for smaller inter-parameterization discrepancies in the North Atlantic than many other ocean basins. The North Atlantic CO2 fluxes are downward in every month. In many regions of the world, the direction of the flux changes between the winter and summer with wind speeds much stronger in the cold season. We show, using the actual formulas that in such a case the differences between the parameterizations partly cancel out which is not the case when the flux never changes its direction. Both the mechanisms accidentally make the North Atlantic an area where the choice of k parameterizations causes very small flux uncertainty in annual fluxes. On the other hand, it makes the North Atlantic data not very useful for choosing the parameterizations most closely representing real fluxes.

  4. Spitzer Mid-to-Far-Infrared Flux Densities of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Papovich, Casey J.; Rudnick, G.; Le Floc'h, E.; van Dokkum, P. G.; Rieke, G. H.; Taylor, E. N.; Armus, L.; Gawiser, E.; Marcillac, D.; Huang, J.; Franx, M.

    2007-05-01

    We study the 24, 70, and 160 μm properties of high-redshift galaxies. Our primary interest is to improve the constraints on the total infrared (IR) luminosities, L(IR), of these galaxies. We combine Spitzer data in the southern Extended Chandra Deep Field with a Ks-band-selected galaxy sample with photometric redshifts from the Multiwavelength Survey by Yale-Chile. We used a stacking analysis to measure the average 70 and 160 μm flux densities of 1.5 < zph < 2.5 galaxies as a function of 24 μm flux density, X-ray activity, and rest-frame near-IR color. Galaxies with 1.5 < zph < 2.5 and S(24) = 54-250 μJy have L(IR) derived from their average 24-160 μm flux densities within factors of 2-3 of those derived from the 24 μm flux densities only. However, L(IR) derived from the average 24-160 μm flux densities for galaxies with S(24) > 250 μJy and 1.5 < zph < 2.5 are lower than those derived using only the 24 μm flux density by factors of 2-6. Galaxies with S(24) > 250 μJy have S(70)/S(24) flux ratios comparable to sources with X-ray detections or red rest-frame IR colors, suggesting that warm dust possibly heated by AGN produces high 24 μm emission. Based on the average 24-160 μm flux densities, 24 μm-selected galaxies at 1.5 < zph < 2.5 have an upper envelope of L(IR) < 6 × 1012 L⊙, which if attributed to star formation corresponds to < 1000 M⊙ yr-1. This envelope is similar to the maximal star formation rate observed in low redshift galaxies, suggesting that high redshift galaxies have star formation efficiencies and feedback processes comparable to lower redshift analogs. Support for this work was provided by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by JPL, Caltech under a contract with NASA.

  5. Superfine powdered activated carbon (S-PAC) coatings on microfiltration membranes: Effects of milling time on contaminant removal and flux.

    PubMed

    Amaral, Pauline; Partlan, Erin; Li, Mengfei; Lapolli, Flavio; Mefford, O Thompson; Karanfil, Tanju; Ladner, David A

    2016-09-01

    In microfiltration processes for drinking water treatment, one method of removing trace contaminants is to add powdered activated carbon (PAC). Recently, a version of PAC called superfine PAC (S-PAC) has been under development. S-PAC has a smaller particle size and thus faster adsorption kinetics than conventionally sized PAC. Membrane coating performance of various S-PAC samples was evaluated by measuring adsorption of atrazine, a model micropollutant. S-PACs were created in-house from PACs of three different materials: coal, wood, and coconut shell. Milling time was varied to produce S-PACs pulverized with different amounts of energy. These had different particles sizes, but other properties (e.g. oxygen content), also differed. In pure water the coal based S-PACs showed superior atrazine adsorption; all milled carbons had over 90% removal while the PAC had only 45% removal. With addition of calcium and/or NOM, removal rates decreased, but milled carbons still removed more atrazine than PAC. Oxygen content and specific external surface area (both of which increased with longer milling times) were the most significant predictors of atrazine removal. S-PAC coatings resulted in loss of filtration flux compared to an uncoated membrane and smaller particles caused more flux decline than larger particles; however, the data suggest that NOM fouling is still more of a concern than S-PAC fouling. The addition of calcium improved the flux, especially for the longer-milled carbons. Overall the data show that when milling S-PAC with different levels of energy there is a tradeoff: smaller particles adsorb contaminants better, but cause greater flux decline. Fortunately, an acceptable balance may be possible; for example, in these experiments the coal-based S-PAC after 30 min of milling achieved a fairly high atrazine removal (overall 80%) with a fairly low flux reduction (under 30%) even in the presence of NOM. This suggests that relatively short duration (low energy

  6. zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function

    PubMed Central

    Herzog, Christian; Yang, Cheng; Holmes, Alexandrea

    2012-01-01

    Cisplatin injury to renal tubular epithelial cells (RTEC) is accompanied by autophagy and caspase activation. However, autophagy gradually decreases during the course of cisplatin injury. The role of autophagy and the mechanism of its decrease during cisplatin injury are not well understood. This study demonstrated that autophagy proteins beclin-1, Atg5, and Atg12 were cleaved and degraded during the course of cisplatin injury in RTEC and the kidney. zVAD-fmk, a widely used pancaspase inhibitor, blocked cleavage of autophagy proteins suggesting that zVAD-fmk would promote the autophagy pathway. Unexpectedly, zVAD-fmk blocked clearance of the autophagosomal cargo, indicating lysosomal dysfunction. zVAD-fmk markedly inhibited cisplatin-induced lysosomal cathepsin B and calpain activities and therefore impaired autophagic flux. In a mouse model of cisplatin nephrotoxicity, zVAD-fmk impaired autophagic flux by blocking autophagosomal clearance as revealed by accumulation of key autophagic substrates p62 and LC3-II. Furthermore, zVAD-fmk worsened cisplatin-induced renal dysfunction. Chloroquine, a lysomotropic agent that is known to impair autophagic flux, also exacerbated cisplatin-induced decline in renal function. These findings demonstrate that impaired autophagic flux induced by zVAD-fmk or a lysomotropic agent worsened renal function in cisplatin acute kidney injury (AKI) and support a protective role of autophagy in AKI. These studies also highlight that the widely used antiapoptotic agent zVAD-fmk may be contraindicated as a therapeutic agent for preserving renal function in AKI. PMID:22896037

  7. The shaping effects of three nickel-titanium rotary instruments in simulated S-shaped canals.

    PubMed

    Yoshimine, Y; Ono, M; Akamine, A

    2005-05-01

    The purpose of this study was to compare the shaping effects of three nickel-titanium rotary instruments, ProTaper, K3, and RaCe, with emphasis on canal transportation. Simulated canals with an S-shaped curvature in clear resin blocks were prepared with a torque-control, low-speed engine. Canals were prepared using the crown-down technique to the size of #30. Canal aberrations were assessed by comparing the pre- and postinstrumentation images under a stereomicroscope. ProTaper instruments caused greater widening of canals compared to K3 or RaCe. Furthermore, ProTaper files showed a tendency to ledge or zip formation at the end-point of preparation. These canal aberrations may be caused by ProTaper finishing files, which appear to be less flexible than other files of the same tip-size, because of their greater taper-size. These results suggest that nickel-titanium file systems including less tapered, more flexible instruments, like K3 and RaCe should be used in the apical preparation of canals with a complicated curvature.

  8. Measurements of the inclusive neutrino and antineutrino charged current cross sections in MINERvA using the low-ν flux method

    NASA Astrophysics Data System (ADS)

    Devan, J.; Ren, L.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tice, B. G.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Minerva Collaboration

    2016-12-01

    The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an in situ prediction of the shape of the flux as a function of neutrino energy from 2-50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy (ν ) have a nearly constant cross section as a function of incident neutrino energy. This measurement is the lowest energy application of the low-ν flux technique, the first time it has been used in the NuMI antineutrino beam configuration, and demonstrates that the technique is applicable to future neutrino beams operating at multi-GeV energies. The cross section measurements presented are the most precise measurements to date below 5 GeV.

  9. Measurements of the inclusive neutrino and antineutrino charged current cross sections in MINERvA using the low- ν flux method

    DOE PAGES

    Devan, J.

    2016-12-20

    The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an in situ prediction of the shape of the flux as a function of neutrino energy from 2–50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy (ν) have a nearly constant cross section as a function of incident neutrino energy. This measurement is the lowest energy application of the low-ν flux technique, the first timemore » it has been used in the NuMI antineutrino beam configuration, and demonstrates that the technique is applicable to future neutrino beams operating at multi-GeV energies. Lastly, the cross section measurements presented are the most precise measurements to date below 5 GeV.« less

  10. Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions

    NASA Astrophysics Data System (ADS)

    Serafimovich, Andrei; Metzger, Stefan; Hartmann, Jörg; Kohnert, Katrin; Zona, Donatella; Sachs, Torsten

    2018-03-01

    The objective of this study was to upscale airborne flux measurements of sensible heat and latent heat and to develop high resolution flux maps. In order to support the evaluation of coupled atmospheric/land-surface models we investigated spatial patterns of energy fluxes in relation to land-surface properties. We used airborne eddy-covariance measurements acquired by the POLAR 5 research aircraft in June-July 2012 to analyze surface fluxes. Footprint-weighted surface properties were then related to 21 529 sensible heat flux observations and 25 608 latent heat flux observations using both remote sensing and modelled data. A boosted regression tree technique was used to estimate environmental response functions between spatially and temporally resolved flux observations and corresponding biophysical and meteorological drivers. In order to improve the spatial coverage and spatial representativeness of energy fluxes we used relationships extracted across heterogeneous Arctic landscapes to infer high-resolution surface energy flux maps, thus directly upscaling the observational data. These maps of projected sensible heat and latent heat fluxes were used to assess energy partitioning in northern ecosystems and to determine the dominant energy exchange processes in permafrost areas. This allowed us to estimate energy fluxes for specific types of land cover, taking into account meteorological conditions. Airborne and modelled fluxes were then compared with measurements from an eddy-covariance tower near Atqasuk. Our results are an important contribution for the advanced, scale-dependent quantification of surface energy fluxes and provide new insights into the processes affecting these fluxes for the main vegetation types in high-latitude permafrost areas.

  11. Effect of Capillary Tube’s Shape on Capillary Rising Regime for Viscos Fluids

    NASA Astrophysics Data System (ADS)

    Soroush, F.; Moosavi, A.

    2018-05-01

    When properties of the displacing fluid are considered, the rising profile of the penetrating fluid in a capillary tube deviates from its classical Lucas-Washburn profile. Also, shape of capillary tube can affect the rising profile in different aspects. In this article, effect of capillary tube’s shape on the vertical capillary motion in presence of gravity is investigated by considering the properties of the displacing fluid. According to the fact that the differential equation of the capillary rising for a non-simple wall type is very difficult to solve analytically, a finite element simulation model is used for this study. After validation of the simulation model with an experiment that has been done with a simple capillary tube, shape of the capillary tube’s wall is changed in order to understand its effects on the capillary rising and different motion regimes that may appear according to different geometries. The main focus of this article is on the sinusoidal wall shapes and comparing them with a simple wall.

  12. AdS and dS Entropy from String Junctions or The Function of Junction Conjunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverstein, Eva M

    Flux compactifications of string theory exhibiting the possibility of discretely tuning the cosmological constant to small values have been constructed. The highly tuned vacua in this discretuum have curvature radii which scale as large powers of the flux quantum numbers, exponential in the number of cycles in the compactification. By the arguments of Susskind/Witten (in the AdS case) and Gibbons/Hawking (in the dS case), we expect correspondingly large entropies associated with these vacua. If they are to provide a dual description of these vacua on their Coulomb branch, branes traded for the flux need to account for this entropy atmore » the appropriate energy scale. In this note, we argue that simple string junctions and webs ending on the branes can account for this large entropy, obtaining a rough estimate for junction entropy that agrees with the existing rough estimates for the spacing of the discretuum. In particular, the brane entropy can account for the (A)dS entropy far away from string scale correspondence limits.« less

  13. Cyclic Parameter Refinement of 4S-10 Hybrid Flux-Switching Motor for Lightweight Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Rani, J. Abd; Sulaiman, E.; Kumar, R.

    2017-08-01

    A great deal of attention has been given to the reduction of lighting the vehicle because the lighter the vehicle the energy consumption is comparatively low. Hence, the lightweight electric vehicle was introduced for lower carbon footprint and the sizing of the vehicle itself. One of the components to reduce the weight of the vehicle is the propulsion system which comprised of electric motor functioning as the source of torque to drive the propulsion system of the machine. This paper presents the refinement methodology for the optimized design of the 4S-10P E-Core hybrid excitation flux switching motor. The purpose of the refinement methodology is to improve the torque production of the optimized motor. The result of the successful improvement of the torque production is justifiable for a lightweight electric vehicle to drive the propulsion system.

  14. Foot shape and its effect on functioning in Royal Australian Air Force recruits. Part 1: Prospective cohort study.

    PubMed

    Esterman, Adrian; Pilotto, Louis

    2005-07-01

    To determine whether foot shape (flat, normal, or cavus feet) affects functioning among military recruits. A total of 230 Royal Australian Air Force recruits embarking on a 10-week basic training course took part in a prospective cohort study of foot shape and its effect on functioning. Recruits were divided into three groups based on their foot shape, i.e., flat feet (n = 22), normal feet (n = 139), and cavus feet (n = 44), with the diagnosis being made from the arch index measured from their footprints. The groups were assessed at baseline and week 8. Outcome measures included pain, injury, foot health, and quality of life. There were no significant differences in outcome measures at baseline. At the end of the trial, foot shape was not related to injury. The flat feet group had significantly poorer subjective physical health than did the normal feet group (p = 0.001). This study provides high-level evidence that foot shape has little impact on pain, injury, and functioning among military recruits.

  15. A simple route to shape controlled CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Nejo, Ayorinde O.; Nejo, Adeola A.; Pullabhotla, Rajasekhar V. S. R.; Revaprasadu, Neerish

    2013-02-01

    We report the synthesis of CdS nanoparticles in the form of spheres, triangles and wire-like structures. The method involves the reaction of reduced sulfur with a cadmium salt followed by thermolysis in hexadecylamine (HDA). The different shapes were obtained by variation of reaction conditions such as reaction time, temperature and cadmium source. The optical studies show the particles to be quantum confined and luminescent at room temperature.

  16. Resonant tunneling through S- and U-shaped graphene nanoribbons.

    PubMed

    Zhang, Z Z; Wu, Z H; Chang, Kai; Peeters, F M

    2009-10-14

    We theoretically investigate resonant tunneling through S- and U-shaped nanostructured graphene nanoribbons. A rich structure of resonant tunneling peaks is found emanating from different quasi-bound states in the middle region. The tunneling current can be turned on and off by varying the Fermi energy. Tunability of resonant tunneling is realized by changing the width of the left and/or right leads and without the use of any external gates.

  17. Changes in subcortical shape and cognitive function in patients with chronic insomnia.

    PubMed

    Koo, Dae Lim; Shin, Jeong-Hyeon; Lim, Jae-Sung; Seong, Joon-Kyung; Joo, Eun Yeon

    2017-07-01

    The aim of this study was to examine morphological changes in subcortical structures via surface-based analysis and to correlate local shape changes with cognitive function. We analyzed subcortical brain morphology and compared the shape changes with clinical and neuropsychological features in patients with chronic insomnia. Hippocampal atrophy was associated with higher Pittsburgh Sleep Quality Index scores (r = -0.4, p = 0.0408) and higher arousal indices (r = -0.4, p = 0.0332). Local volume loss of the putamen was associated with higher arousal indices (r = -0.5, p = 0.0416). Atrophic change of subcortical structures including the hippocampus, amygdala, basal ganglia, and thalamus, correlated negatively with verbal fluency, frontal function, verbal memory, and visual memory, respectively, in these patients (|r| ≥ 0.3, p < 0.05). This study shows that sleep quality and fragmentation are closely related to atrophic changes in hippocampus and putamen. In addition, atrophic changes in global subcortical structures are associated with impaired cognitive function in patients with chronic insomnia. Copyright © 2017. Published by Elsevier B.V.

  18. High-flux soft x-ray harmonic generation from ionization-shaped few-cycle laser pulses

    PubMed Central

    Brahms, Christian; Gregory, Andrew; Tisch, John W. G.; Marangos, Jon P.

    2018-01-01

    Laser-driven high-harmonic generation provides the only demonstrated route to generating stable, tabletop attosecond x-ray pulses but has low flux compared to other x-ray technologies. We show that high-harmonic generation can produce higher photon energies and flux by using higher laser intensities than are typical, strongly ionizing the medium and creating plasma that reshapes the driving laser field. We obtain high harmonics capable of supporting attosecond pulses up to photon energies of 600 eV and a photon flux inside the water window (284 to 540 eV) 10 times higher than previous attosecond sources. We demonstrate that operating in this regime is key for attosecond pulse generation in the x-ray range and will become increasingly important as harmonic generation moves to fields that drive even longer wavelengths. PMID:29756033

  19. Wedge-shaped potential and Airy-function electron localization in oxide superlattices.

    PubMed

    Popovic, Z S; Satpathy, S

    2005-05-06

    Oxide superlattices and microstructures hold the promise for creating a new class of devices with unprecedented functionalities. Density-functional studies of the recently fabricated, lattice-matched perovskite titanates (SrTiO3)n/(LaTiO3)m reveal a classic wedge-shaped potential well for the monolayer (m = 1) structure, originating from the Coulomb potential of a two-dimensional charged La sheet. The potential in turn confines the electrons in the Airy-function-localized states. Magnetism is suppressed for the monolayer structure, while in structures with a thicker LaTiO3 part, bulk antiferromagnetism is recovered, with a narrow transition region separating the magnetic LaTiO3 and the nonmagnetic SrTiO3.

  20. Effects of wave shape on sheet flow sediment transport

    USGS Publications Warehouse

    Hsu, T.-J.; Hanes, D.M.

    2004-01-01

    A two-phase model is implemented to study the effects of wave shape on the transport of coarse-grained sediment in the sheet flow regime. The model is based on balance equations for the average mass, momentum, and fluctuation energy for both the fluid and sediment phases. Model simulations indicate that the responses of the sheet flow, such as the velocity profiles, the instantaneous bed shear stress, the sediment flux, and the total amount of the mobilized sediment, cannot be fully parameterized by quasi-steady free-stream velocity and may be correlated with the magnitude of local horizontal pressure gradient (or free-stream acceleration). A net sediment flux in the direction of wave advance is obtained for both skewed and saw-tooth wave shapes typical of shoaled and breaking waves. The model further suggests that at critical values of the horizontal pressure gradient, there is a failure event within the bed that mobilizes more sediment into the mobile sheet and enhances the sediment flux. Preliminary attempts to parameterize the total bed shear stress and the total sediment flux appear promising. Copyright 2004 by the American Geophysical Union.

  1. Heat deposition analysis for the High Flux Isotope Reactor’s HEU and LEU core models

    DOE PAGES

    Davidson, Eva E.; Betzler, Benjamin R.; Chandler, David; ...

    2017-08-01

    The High Flux Isotope Reactor at Oak Ridge National Laboratory is an 85 MW th pressurized light-water-cooled and -moderated flux-trap type research reactor. The reactor is used to conduct numerous experiments, advancing various scientific and engineering disciplines. As part of an ongoing program sponsored by the US Department of Energy National Nuclear Security Administration Office of Material Management and Minimization, studies are being performed to assess the feasibility of converting the reactor’s highly enriched uranium fuel to low-enriched uranium fuel. To support this conversion project, reference models with representative experiment target loading and explicit fuel plate representation were developed andmore » benchmarked for both fuels to (1) allow for consistent comparison between designs for both fuel types and (2) assess the potential impact of low-enriched uranium conversion. These high-fidelity models were used to conduct heat deposition analyses at the beginning and end of the reactor cycle and are presented herein. This article (1) discusses the High Flux Isotope Reactor models developed to facilitate detailed heat deposition analyses of the reactor’s highly enriched and low-enriched uranium cores, (2) examines the computational approach for performing heat deposition analysis, which includes a discussion on the methodology for calculating the amount of energy released per fission, heating rates, power and volumetric heating rates, and (3) provides results calculated throughout various regions of the highly enriched and low-enriched uranium core at the beginning and end of the reactor cycle. These are the first detailed high-fidelity heat deposition analyses for the High Flux Isotope Reactor’s highly enriched and low-enriched core models with explicit fuel plate representation. Lastly, these analyses are used to compare heat distributions obtained for both fuel designs at the beginning and end of the reactor cycle, and they are essential

  2. G0S2: A small giant controller of lipolysis and adipose-liver fatty acid flux.

    PubMed

    Zhang, Xiaodong; Heckmann, Bradlee L; Campbell, Latoya E; Liu, Jun

    2017-10-01

    The discovery of adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) provided a major paradigm shift in the understanding of intracellular lipolysis in both adipocytes and nonadipocyte cells. The subsequent discovery of G0/G1 switch gene 2 (G0S2) as a potent endogenous inhibitor of ATGL revealed a unique mechanism governing lipolysis and fatty acid (FA) availability. G0S2 is highly conserved in vertebrates, and exhibits cyclical expression pattern between adipose tissue and liver that is critical to lipid flux and energy homeostasis in these two tissues. Biochemical and cell biological studies have demonstrated that a direct interaction with ATGL mediates G0S2's inhibitory effects on lipolysis and lipid droplet degradation. In this review we examine evidence obtained from recent in vitro and in vivo studies that lends support to the proof-of-principle concept that G0S2 functions as a master regulator of tissue-specific balance of TG storage vs. mobilization, partitioning of metabolic fuels between adipose and liver, and the whole-body adaptive energy response. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Hubble reveals the Ring Nebula’s true shape

    NASA Image and Video Library

    2017-12-08

    Caption: In this composite image, visible-light observations by NASA’s Hubble Space Telescope are combined with infrared data from the ground-based Large Binocular Telescope in Arizona to assemble a dramatic view of the well-known Ring Nebula. Credit: NASA, ESA, C.R. Robert O’Dell (Vanderbilt University), G.J. Ferland (University of Kentucky), W.J. Henney and M. Peimbert (National Autonomous University of Mexico) Credit for Large Binocular Telescope data: David Thompson (University of Arizona) ---- The Ring Nebula's distinctive shape makes it a popular illustration for astronomy books. But new observations by NASA's Hubble Space Telescope of the glowing gas shroud around an old, dying, sun-like star reveal a new twist. "The nebula is not like a bagel, but rather, it's like a jelly doughnut, because it's filled with material in the middle," said C. Robert O'Dell of Vanderbilt University in Nashville, Tenn. He leads a research team that used Hubble and several ground-based telescopes to obtain the best view yet of the iconic nebula. The images show a more complex structure than astronomers once thought and have allowed them to construct the most precise 3-D model of the nebula. "With Hubble's detail, we see a completely different shape than what's been thought about historically for this classic nebula," O'Dell said. "The new Hubble observations show the nebula in much clearer detail, and we see things are not as simple as we previously thought." The Ring Nebula is about 2,000 light-years from Earth and measures roughly 1 light-year across. Located in the constellation Lyra, the nebula is a popular target for amateur astronomers. Read more: 1.usa.gov/14VAOMk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the

  4. MINERvA’s flux prediction

    DOE PAGES

    Golan, Tomasz; Aliaga, Leonidas; Kordosky, Mike

    2016-12-12

    Here, the MINERvA (Main INjector ExpeRiment: νA) experiment is focused on the measurement of neutrino cross sections on various nuclear targets. For this kind of study it is crucial to know precisely neutrino flux. MINERvA uses the NuMI (Neutrinos at the Main Injector) beam produced at Fermilab. The recent study on the evaluation of the beam and its uncertainty is presented. The NuMI beam is also used by other neutrino experiment, like MINOS, ArgoNeuT, PEANUT, and NOvA, therefore, the results can be used by other collaborations.

  5. Assessing HYDRUS-2D model to estimate soil water contents and olive tree transpiration fluxes under different water distribution systems

    NASA Astrophysics Data System (ADS)

    Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe

    2016-04-01

    comparison between measured and simulated soil water content and actual transpiration fluxes, under the hypothesis to neglect the contribute of the tree capacitance. Moreover, two different crop water stress functions and in particular the linear model proposed by Feddes et al. (1978) and the S-shape model suggested by van Genuchten et al. (1987), were considered. The result of the study evidenced that for the investigated crop and under the examined conditions, HYDRUS-2D model reproduces fairly well the dynamic of soil water contents at different distances from the emitters (RMSE<0.09 cm3 cm-3) and actual crop transpiration fluxes (RMSE<0.11 mm d-1), whose estimations can be slightly improved by assuming a S-shape crop water stress function. Key-words: Olive tree, HYDRUS-2D, Soil water content, Actual transpiration fluxes

  6. Heat flux and shock shape measurements on an Aeroassist Flight Experiment model in a high enthalpy free piston shock tunnel

    NASA Technical Reports Server (NTRS)

    Gai, S. L.; Mudford, N. R.; Hackett, C.

    1992-01-01

    This paper describes measurements of heat flux and shock shapes made on a 2.08 percent scale model of the proposed Aeroassist Flight Experiment model in a high enthalpy free piston shock tunnel T3 at the Australian National University in Canberra, Australia. The enthalpy and Reynolds number range covered were 7.5 MJ/kg to 20 MJ/kg and 150,000 to 270,000 per meter respectively. The test Mach number varied between 7.5 and 8. Two test gases, air and nitrogen, were used and the model angle of attack varied from -10 deg to +10 deg to the free stream. The results are discussed and compared to the Mach 10 cold hypersonic air data as obtained in the Langley 31 inch Mach 10 Facility as well as the perfect gas CFD calculations of NASA LaRC.

  7. Geometry and supersymmetry of heterotic warped flux AdS backgrounds

    NASA Astrophysics Data System (ADS)

    Beck, S.; Gutowski, J.; Papadopoulos, G.

    2015-07-01

    We classify the geometries of the most general warped, flux AdS backgrounds of heterotic supergravity up to two loop order in sigma model perturbation theory. We show under some mild assumptions that there are no AdS n backgrounds with n ≠ 3. Moreover the warp factor of AdS3 backgrounds is constant, the geometry is a product AdS 3 × M 7 and such solutions preserve, 2, 4, 6 and 8 supersymmetries. The geometry of M 7 has been specified in all cases. For 2 supersymmetries, it has been found that M 7 admits a suitably restricted G 2 structure. For 4 supersymmetries, M 7 has an SU(3) structure and can be described locally as a circle fibration over a 6-dimensional KT manifold. For 6 and 8 supersymmetries, M 7 has an SU(2) structure and can be described locally as a S 3 fibration over a 4-dimensional manifold which either has an anti-self dual Weyl tensor or a hyper-Kähler structure, respectively. We also demonstrate a new Lichnerowicz type theorem in the presence of α' corrections.

  8. Lithium fluxes indicate presence of Na-Cl cotransport (NCC) in human lens epithelial cells.

    PubMed

    Lauf, Peter K; Chimote, Ameet A; Adragna, Norma C

    2008-01-01

    During regulatory volume decrease (RVD) of human lens epithelial cells (hLECs) by clotrimazole (CTZ)-sensitive K fluxes, Na-K-2Cl cotransport (NKCC) remains active and K-Cl cotransport (KCC) inactive. To determine whether such an abnormal behavior was caused by RVD-induced cell shrinkage, NKCC was measured in the presence of either CTZ or in high K media to prevent RVD. NKCC transports RbCl + NaCl, and LiCl + KCl; thus ouabain-insensitive, bumetanide-sensitive (BS) or Cl-dependent (ClD) Rb and Li fluxes were determined in hyposmotic high NaCl media with CTZ, or in high KCl media alone, or with sulfamate (Sf) or nitrate as Cl replacement at varying Rb, Li or Cl mol fractions (MF). Unexpectedly, NKCC was inhibited by 80% with CTZ (IC(50) = 31 microM). In isosmotic (300 mOsM) K, Li influx was approximately 1/3 of Rb influx in Na, 50% lower in Sf, and bumetanide-insensitive (BI). In hypotonic (200 mOsM) K, only the ClD but not BS Li fluxes were detected. At Li MFs from 0.1-1, Li fluxes fitted a bell-shaped curve maxing at approximately 0.6 Li MF, with the BS fluxes equaling approximately 1/4 of the ClD-Li influx. The difference, i.e. the BI/ClD Li influx, saturated with increasing Li and Cl MFs, with K(ms) for Li of 11 with, and 7 mM without K, and of approximately 46 mM for Cl. Inhibition of this K-independent Li influx by thiazides was weak whilst furosemide (<100 microM) was ineffective. Reverse transcription polymerase chain reaction and Western blots verified presence of both NKCC1 and Na-Cl cotransport (NCC). In conclusion, in hyposmotic high K media, which prevents CTZ-sensitive K flux-mediated RVD in hLECs, NKCC1, though molecularly expressed, was functionally silent. However, a K-independent and moderately thiazide-sensitive ClD-Li flux, i.e. LiCC, likely occurring through NCC was detected operationally and molecularly. (c) 2008 S. Karger AG, Basel.

  9. Concentrated solar-flux measurements at the IEA-SSPS solar-central-receiver power plant, Tabernas - Lameria (Spain)

    NASA Astrophysics Data System (ADS)

    Vontobel, G.; Schelders, C.; Real, M.

    A flux analyzing system (F.A.S.) was installed at the central receiver system of the SSPS project to determine the relative flux distribution of the heliostat field and to measure the entire optical solar flux reflected from the heliostat field into the receiver cavity. The functional principles of the F.A.S. are described. The raw data and the evaluation of the measurements of the entire helistat field are given, and an approach to determine the actual fluxes which hit the receiver tube bundle is presented. A method is described to qualify the performance of each heliostat using a computer code. The data of the measurements of the direct radiation are presented.

  10. Equilibrium features and eruptive instabilities in laboratory magnetic flux rope plasmas

    NASA Astrophysics Data System (ADS)

    Myers, Clayton E; Yamada, Masaaki; Belova, Elena V; Ji, Hantao; Yoo, Jongsoo; Fox, William

    2014-06-01

    One avenue for connecting laboratory and solar plasma studies is to carry out laboratory plasma experiments that serve as a well-diagnosed model for specific solar phenomena. In this paper, we present the latest results from one such laboratory experiment that is designed to address ideal instabilities that drive flux rope eruptions in the solar corona. The experiment, which utilizes the existing Magnetic Reconnection Experiment (MRX) at Princeton Plasma Physics Laboratory, generates a quasi-statically driven line-tied magnetic flux rope in a solar-relevant potential field arcade. The parameters of the potential field arcade (e.g., its magnitude, orientation, and vertical profile) are systematically scanned in order to study their influence on the evolution and possible eruption of the line-tied flux rope. Each flux rope discharge is diagnosed using a combination of fast visible light cameras and an in situ 2D magnetic probe array that measures all three components of the magnetic field over a large cross-section of the plasma. In this paper, we present the first results obtained from this new 2D magnetic probe array. With regard to the flux rope equilibrium, non-potential features such as the formation of a characteristic sigmoid shape and the generation of core toroidal field within the flux rope are studied in detail. With regard to instabilities, the onset and evolution of two key eruptive instabilities—the kink and torus instabilities—are quantitatively assessed as a function of the potential field arcade parameters and the amount of magnetic energy stored in the flux rope.This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).

  11. Moving mode shape function approach for spinning disk and asymmetric disc brake squeal

    NASA Astrophysics Data System (ADS)

    Kang, Jaeyoung

    2018-06-01

    The solution approach of an asymmetric spinning disk under stationary friction loads requires the mode shape function fixed in the disk in the assumed mode method when the equations of motion is described in the space-fixed frame. This model description will be termed the 'moving mode shape function approach' and it allows us to formulate the stationary contact load problem in both the axisymmetric and asymmetric disk cases. Numerical results show that the eigenvalues of the time-periodic axisymmetric disk system are time-invariant. When the axisymmetry of the disk is broken, the positive real parts of the eigenvalues highly vary with the rotation of the disk in the slow speeds in such application as disc brake squeal. By using the Floquet stability analysis, it is also shown that breaking the axisymmetry of the disc alters the stability boundaries of the system.

  12. Resolving LDEF's flux distribution: Orbital (debris?) and natural meteoroid populations

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.

    1993-01-01

    A consistent methodology for the collation of data from both penetration and perforation experiments and from data in the Meteoroid and Debris Special Investigator Group (M-D SIG) data-base has led to the derivation of the average impact flux over LDEF's exposure history 1984-1990. Data are first presented for LDEF's N,S,E,W and Space faces ('offset' by 8 deg and 'tilted' by 1 deg respectively). A model fit is derived for ballistic limits of penetration from 1 micron to 1mm of aluminium target, corresponding to impactor masses from 10(exp -18) kg (for rho sub p = 2g/cu cm) to 10(exp -10) kg (for rho sub p = 1g/cu cm). A second order harmonic function is fitted to the N,S,E, and W fluxes to establish the angular distribution at regular size intervals; this fit is then used to provide 'corrected' data corresponding to fluxes applicable to true N,S,E,W and Space directions for a LEO 28.5 degree inclination orbit at a mean altitude of 465 km.

  13. The CU mobile Solar Occultation Flux instrument: structure functions and emission rates of NH3, NO2 and C2H6

    NASA Astrophysics Data System (ADS)

    Kille, Natalie; Baidar, Sunil; Handley, Philip; Ortega, Ivan; Sinreich, Roman; Cooper, Owen R.; Hase, Frank; Hannigan, James W.; Pfister, Gabriele; Volkamer, Rainer

    2017-02-01

    We describe the University of Colorado mobile Solar Occultation Flux instrument (CU mobile SOF). The instrument consists of a digital mobile solar tracker that is coupled to a Fourier transform spectrometer (FTS) of 0.5 cm-1 resolution and a UV-visible spectrometer (UV-vis) of 0.55 nm resolution. The instrument is used to simultaneously measure the absorption of ammonia (NH3), ethane (C2H6) and nitrogen dioxide (NO2) along the direct solar beam from a moving laboratory. These direct-sun observations provide high photon flux and enable measurements of vertical column densities (VCDs) with geometric air mass factors, high temporal resolution of 2 s and spatial resolution of 5-19 m. It is shown that the instrument line shape (ILS) of the FTS is independent of the azimuth and elevation angle pointing of the solar tracker. Further, collocated measurements next to a high-resolution FTS at the National Center for Atmospheric Research (HR-NCAR-FTS) show that the CU mobile SOF measurements of NH3 and C2H6 are precise and accurate; the VCD error at high signal to noise ratio is 2-7 %. During the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) from 21 July to 3 September 2014 in Colorado, the CU mobile SOF instrument measured median (minimum, maximum) VCDs of 4.3 (0.5, 45) × 1016 molecules cm-2 NH3, 0.30 (0.06, 2.23) × 1016 molecules cm-2 NO2 and 3.5 (1.5, 7.7) × 1016 molecules cm-2 C2H6. All gases were detected in larger 95 % of the spectra recorded in urban, semi-polluted rural and remote rural areas of the Colorado Front Range. We calculate structure functions based on VCDs, which describe the variability of a gas column over distance, and find the largest variability for NH3. The structure functions suggest that currently available satellites resolve about 10 % of the observed NH3 and NO2 VCD variability in the study area. We further quantify the trace gas emission fluxes of NH3 and C2H6 and production rates of NO2 from concentrated animal feeding

  14. Nuclear export of RNA: Different sizes, shapes and functions.

    PubMed

    Williams, Tobias; Ngo, Linh H; Wickramasinghe, Vihandha O

    2018-03-01

    Export of protein-coding and non-coding RNA molecules from the nucleus to the cytoplasm is critical for gene expression. This necessitates the continuous transport of RNA species of different size, shape and function through nuclear pore complexes via export receptors and adaptor proteins. Here, we provide an overview of the major RNA export pathways in humans, highlighting the similarities and differences between each. Its importance is underscored by the growing appreciation that deregulation of RNA export pathways is associated with human diseases like cancer. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. Cyclic Fatigue Resistance of Reciproc Blue and Reciproc Files in an S-shaped Canal.

    PubMed

    Topçuoğlu, Hüseyin Sinan; Topçuoğlu, Gamze

    2017-10-01

    This study evaluated the cyclic fatigue resistance (CFR) of Reciproc (R25 and R40; VDW, Munich, Germany) and Reciproc Blue (R25 and R40, VDW) instruments used in an artificial S-shaped canal. A total of 80 files were tested in an S-shaped canal (n = 20 for each file, Reciproc R25 and R40 and Reciproc Blue R25 and R40). This study compared Reciproc R25 with Reciproc Blue R25 files and Reciproc R40 with Reciproc Blue R40 files. All files were rotated in an S-shaped artificial canal until fracture. CFR was determined by recording the time to fracture in the artificial canal. The length of each fractured fragment was measured in millimeters. An independent sample t test was used to analyze the data. Between the R25 files, Reciproc Blue instruments showed significantly greater CFR than the Reciproc files in the apical and coronal curves (P < .05). Between the R40 files, Reciproc Blue instruments exhibited greater CFR in the apical and coronal curves (P < .05). There was no difference in the fractured fragment lengths of the Reciproc Blue files compared with the Reciproc files (P > .05). The Reciproc Blue R25 and R40 files showed greater CFR than the Reciproc R25 and R40 files in an S-shaped canal. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  17. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  18. A Metric on Phylogenetic Tree Shapes.

    PubMed

    Colijn, C; Plazzotta, G

    2018-01-01

    The shapes of evolutionary trees are influenced by the nature of the evolutionary process but comparisons of trees from different processes are hindered by the challenge of completely describing tree shape. We present a full characterization of the shapes of rooted branching trees in a form that lends itself to natural tree comparisons. We use this characterization to define a metric, in the sense of a true distance function, on tree shapes. The metric distinguishes trees from random models known to produce different tree shapes. It separates trees derived from tropical versus USA influenza A sequences, which reflect the differing epidemiology of tropical and seasonal flu. We describe several metrics based on the same core characterization, and illustrate how to extend the metric to incorporate trees' branch lengths or other features such as overall imbalance. Our approach allows us to construct addition and multiplication on trees, and to create a convex metric on tree shapes which formally allows computation of average tree shapes. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  19. Geographical variation in parasitism shapes larval immune function in a phytophagous insect

    NASA Astrophysics Data System (ADS)

    Vogelweith, Fanny; Dourneau, Morgane; Thiéry, Denis; Moret, Yannick; Moreau, Jérôme

    2013-12-01

    Two of the central goals of immunoecology are to understand natural variation in the immune system among populations and to identify those selection pressures that shape immune traits. Maintenance of the immune system can be costly, and both food quality and parasitism selection pressure are factors potentially driving immunocompetence. In tritrophic interactions involving phytophagous insects, host plants, and natural enemies, the immunocompetence of phytophagous insects is constrained by selective forces from both the host plants and the natural enemies. Here, we assessed the roles of host plants and natural enemies as selective pressures on immune variation among natural populations of Lobesia botrana. Our results showed marked geographical variation in immune defenses and parasitism among different natural populations. Larval immune functions were dependent of the host plant quality and were positively correlated to parasitism, suggesting that parasitoids select for greater investment into immunity in moth. Furthermore, investment in immune defense was negatively correlated with body size, suggesting that it is metabolically expensive. The findings emphasize the roles of host plants and parasitoids as selective forces shaping host immune functions in natural conditions. We argue that kinds of study are central to understanding natural variations in immune functions, and the selective forces beyond.

  20. Genetic interactions between a phospholipase A2 and the Rim101 pathway components in S. cerevisiae reveal a role for this pathway in response to changes in membrane composition and shape

    PubMed Central

    Mattiazzi, M.; Jambhekar, A.; Kaferle, P.; DeRisi, J. L.; Križaj, I.

    2010-01-01

    Modulating composition and shape of biological membranes is an emerging mode of regulation of cellular processes. We investigated the global effects that such perturbations have on a model eukaryotic cell. Phospholipases A2 (PLA2s), enzymes that cleave one fatty acid molecule from membrane phospholipids, exert their biological activities through affecting both membrane composition and shape. We have conducted a genome-wide analysis of cellular effects of a PLA2 in the yeast Saccharomyces cerevisiae as a model system. We demonstrate functional genetic and biochemical interactions between PLA2 activity and the Rim101 signaling pathway in S. cerevisiae. Our results suggest that the composition and/or the shape of the endosomal membrane affect the Rim101 pathway. We describe a genetically and functionally related network, consisting of components of the Rim101 pathway and the prefoldin, retromer and SWR1 complexes, and predict its functional relation to PLA2 activity in a model eukaryotic cell. This study provides a list of the players involved in the global response to changes in membrane composition and shape in a model eukaryotic cell, and further studies are needed to understand the precise molecular mechanisms connecting them. Electronic supplementary material The online version of this article (doi:10.1007/s00438-010-0533-8) contains supplementary material, which is available to authorized users. PMID:20379744

  1. Emerging S-shaped curves in congenital scoliosis after hemivertebra resection and short segmental fusion.

    PubMed

    Yang, Xi; Song, Yueming; Liu, Limin; Zhou, Chunguang; Zhou, Zhongjie; Wang, Lei; Wang, Liang

    2016-10-01

    Posterior hemivertebra resection with short fusion has gradually become the mainstream treatment for the congenital scoliosis due to single fully segmented hemivertebra. A kind of unexpected emerging S-shaped scoliosis was found secondary to this surgery, and that has not been reported yet. The aim of the present study was to analyze the possible pathogenesis, clinical feature, and treatment of the emerging S-shaped scoliosis after posterior hemivertebra resection and short fusion. This study is a retrospective case series. A total of 128 patients participated. Preoperative and postoperative whole spine radiographs were used to measure the Cobb angle of main curve, compensatory curve, and emerging curves. And the hemivertebra location, the fused segment, the apical and ending vertebrae of postoperative-emerging curve (and preoperative compensatory curves) were assessed. Both the demographics and radiographic data were reviewed. Postoperative-emerging scoliosis was defined as the curve with an increasing angle of 20° and an apical vertebra locating at least two levels away from fusion region. Of the 128 patients, 9 (7%) showed postoperative-emerging S-shaped scoliosis. The mean age was 11.4 years old. The mean main curve was 36.1±14.4° preoperatively and been significantly corrected to 6.9±6.1° (p<.001). No significant difference was found in the main curve, kyphosis, coronal balance, or sagittal balance during follow-up. The emerging scoliosis occurred at 3 months (in four patients) or 6 months (in five patients) after initial surgery with an average angle of 42.6±12.9° at last follow-up. All patients underwent bracing or observation when the S-shaped scoliosis was arising, and four patients underwent a revision surgery because of deformity developing. The emerging S-shaped scoliosis was an extraordinary complication that may be developing from the preoperative compensatory scoliosis and usually occurred at 3-6 months after hemivertebra resection. The

  2. Significant human impact on the flux and δ(34)S of sulfate from the largest river in North America.

    PubMed

    Killingsworth, Bryan A; Bao, Huiming

    2015-04-21

    Riverine dissolved sulfate (SO4(2-)) flux and sulfur stable isotope composition (δ(34)S) yield information on the sources and processes affecting sulfur cycling on different spatial and temporal scales. However, because pristine preindustrial natural baselines of riverine SO4(2-) flux and δ(34)S cannot be directly measured, anthropogenic impact remains largely unconstrained. Here we quantify natural and anthropogenic SO4(2-) flux and δ(34)S for North America's largest river, the Mississippi, by means of an exhaustive source compilation and multiyear monitoring. Our data and analysis show that, since before industrialization to the present, Mississippi River SO4(2-) has increased in flux from 7.0 to 27.8 Tg SO4(2-) yr(-1), and in mean δ(34)S from -5.0‰, within 95% confidence limits of -14.8‰ to 4.1‰ (assuming normal distribution for mixing model input parameters), to -2.7 ± 1.6‰, reflecting an impressive footprint of bedrocks particular to this river basin and human activities. Our first-order modern Mississippi River sulfate partition is 25 ± 6% natural and 75% ± 6% anthropogenic sources. Furthermore, anthropogenic coal usage is implicated as the dominant source of modern Mississippi River sulfate, with an estimated 47 ± 5% and 13% of total Mississippi River sulfate due to coal mining and burning, respectively.

  3. West Antarctic Balance Fluxes: Impact of Smoothing, Algorithm and Topography.

    NASA Astrophysics Data System (ADS)

    Le Brocq, A.; Payne, A. J.; Siegert, M. J.; Bamber, J. L.

    2004-12-01

    Grid-based calculations of balance flux and velocity have been widely used to understand the large-scale dynamics of ice masses and as indicators of their state of balance. This research investigates a number of issues relating to their calculation for the West Antarctic Ice Sheet (see below for further details): 1) different topography smoothing techniques; 2) different grid based flow-apportioning algorithms; 3) the source of the flow direction, whether from smoothed topography, or smoothed gravitational driving stress; 4) different flux routing techniques and 5) the impact of different topographic datasets. The different algorithms described below lead to significant differences in both ice stream margins and values of fluxes within them. This encourages caution in the use of grid-based balance flux/velocity distributions and values, especially when considering the state of balance of individual ice streams. 1) Most previous calculations have used the same numerical scheme (Budd and Warner, 1996) applied to a smoothed topography in order to incorporate the longitudinal stresses that smooth ice flow. There are two options to consider when smoothing the topography, the size of the averaging filter and the shape of the averaging function. However, this is not a physically-based approach to incorporating smoothed ice flow and also introduces significant flow artefacts when using a variable weighting function. 2) Different algorithms to apportion flow are investigated; using 4 or 8 neighbours, and apportioning flow to all down-slope cells or only 2 (based on derived flow direction). 3) A theoretically more acceptable approach of incorporating smoothed ice flow is to use the smoothed gravitational driving stress in x and y components to derive a flow direction. The flux can then be apportioned using the flow direction approach used above. 4) The original scheme (Budd and Warner, 1996) uses an elevation sort technique to calculate the balance flux contribution from all

  4. Solar Scientist Confirm Existence of Flux Ropes on the Sun

    NASA Image and Video Library

    2017-12-08

    Caption: This is an image of magnetic loops on the sun, captured by NASA's Solar Dynamics Observatory on July 18, 2012. It has been processed to highlight the edges of each loop to make the structure more clear. A series of loops such as this is known as a flux rope, and these lie at the heart of eruptions on the sun known as coronal mass ejections (CMEs.) This is the first time scientists were able to discern the timing of a flux rope's formation. Credit: NASA/Goddard Space Flight Center/SDO ---- On July 18, 2012, a fairly small explosion of light burst off the lower right limb of the sun. Such flares often come with an associated eruption of solar material, known as a coronal mass ejection or CME – but this one did not. Something interesting did happen, however. Magnetic field lines in this area of the sun's atmosphere, the corona, began to twist and kink, generating the hottest solar material – a charged gas called plasma – to trace out the newly-formed slinky shape. The plasma glowed brightly in extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) and scientists were able to watch for the first time the very formation of something they had long theorized was at the heart of many eruptive events on the sun: a flux rope. Eight hours later, on July 19, the same region flared again. This time the flux rope's connection to the sun was severed, and the magnetic fields escaped into space, dragging billions of tons of solar material along for the ride -- a classic CME. "Seeing this structure was amazing," says Angelos Vourlidas, a solar scientist at the Naval Research Laboratory in Washington, D.C. "It looks exactly like the cartoon sketches theorists have been drawing of flux ropes since the 1970s. It was a series of figure eights lined up to look like a giant slinky on the sun." To read more about this new discovery go to: 1.usa.gov/14UHsTt NASA image use policy. NASA Goddard Space Flight Center

  5. The search for a 100MA RancheroS magnetic flux compression generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watt, Robert Gregory

    2016-09-01

    The Eulerian AMR rad-hydro-MHD code Roxane was used to investigate modifications to existing designs of the new RancheroS class of Magnetic Flux Compression Generators (FCGs) which might allow some members of this FCG family to exceed 100 MA driving a 10 nH static load. This report details the results of that study and proposes a specific generator modification which seems to satisfy both the peak current and desired risetime for the current pulse into the load. The details of the study and necessary modifications are presented. For details of the LA43S RancheroS FCG design and predictions for the first usemore » of the generator refer to the relevant publications.« less

  6. Characteristics of ion distribution functions in dipolarizing flux bundles: Event studies

    NASA Astrophysics Data System (ADS)

    Runov, A.; Angelopoulos, V.; Artemyev, A.; Birn, J.; Pritchett, P. L.; Zhou, X.-Z.

    2017-06-01

    Taking advantage of multipoint observations from a repeating configuration of the five Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes separated by 1 to 2 Earth radii (RE) along X, Y, and Z in the geocentric solar magnetospheric system (GSM), we study ion distribution functions collected by the probes during three dipolarizing flux bundle (DFB) events observed at geocentric distances 9 < R < 14 RE. By comparing these probes' observations, we characterize changes in the ion distribution functions with respect to probe separation along the X and Y GSM directions and |Bx| levels, which characterize the distance from the neutral sheet. We found that the characteristics of the ion distribution functions strongly depended on the |Bx| level, whereas changes with respect to X and Y were minor. In all three events, ion distribution functions f(v) observed inside DFBs were organized by magnetic and electric fields. The probes near the magnetic equator observed perpendicular anisotropy of the phase space density in the range between thermal energy and twice the thermal energy, although the distribution in the ambient plasma sheet was isotropic. The anisotropic ion distribution in DFBs injected toward the inner magnetosphere may provide the free energy for waves and instabilities, which are important elements of particle energization.

  7. Inverted S-Shaped Compact Antenna for X-Band Applications

    PubMed Central

    Samsuzzaman, M.; Islam, M. T.

    2014-01-01

    A novel probe-fed compact inverted S-shaped multifrequency patch antenna is designed. By employing two rectangular slots that change the conventional rectangular patch into an inverted S-shaped patch, the antenna is able to operate in triple frequency in the X-band. The performance criteria of the proposed design have been experimentally verified by fabricating a printed prototype. The measured results show that the −10 dB impedance bandwidth of the proposed antenna at lower band is 5.02% (8.69–9.14 GHz), at middle band is 9.13% (10.47–11.48 GHz), and at upper band is 3.79% (11.53–11.98 GHz). Two elliptical slots are introduced in the ground plane to increase the peak gain. The antenna is excited by a simple probe feeding mechanism. The overall antenna dimension is  0.52λ × 0.60λ × 0.046λ at a lower resonance frequency of 9.08 GHz. The antenna configuration and parametric investigation are conducted with the help of the high frequency structural simulator, and a good agreement is achieved between the simulated and measured data. The stable gain, omnidirectional radiation pattern, and consistent radiation efficiency in the achieved operating band make the proposed antenna a suitable candidate for X-band applications. PMID:24895656

  8. A review of shape memory material’s applications in the offshore oil and gas industry

    NASA Astrophysics Data System (ADS)

    Patil, Devendra; Song, Gangbing

    2017-09-01

    The continuously increasing demand for oil and gas and the depleting number of new large reservoir discoveries have made it necessary for the oil and gas industry to investigate and design new, improved technologies that unlock new sources of energy and squeeze more from existing resources. Shape memory materials (SMM), with their remarkable properties such as the shape memory effect (SME), corrosion resistance, and superelasticity have shown great potential to meet these demands by significantly improving the functionality and durability of offshore systems. Shape memory alloy (SMA) and shape memory polymer (SMP) are two types of most commonly used SMM’s and are ideally suited for use over a range of robust engineering applications found within the oil and gas industry, such as deepwater actuators, valves, underwater connectors, seals, self-torqueing fasteners and sand management. The potential high strain and high force output of the SME of SMA can be harnessed to create a lightweight, solid state alternative to conventional hydraulic, pneumatic or motor based actuator systems. The phase transformation property enables the SMA to withstand erosive stresses, which is useful for minimizing the effect of erosion often experienced by downhole devices. The superelasticity of the SMA provides good energy dissipation, and can overcome the various defects and limitations suffered by conventional passive damping methods. The higher strain recovery during SME makes SMP ideal for developments of packers and sand management in downhole. The increasing number of SMM related research papers and patents from oil and gas industry indicate the growing research interest of the industry to implement SMM in offshore applications. This paper reviews the recent developments and applications of SMM in the offshore oil and gas industry.

  9. Bend sweep angle and Reynolds number effects on hemodynamics of s-shaped arteries.

    PubMed

    Niazmand, H; Rajabi Jaghargh, E

    2010-09-01

    The purpose of this study is to investigate the effects of the Reynolds number and the bend sweep angle on the blood flow patterns of S-shaped bends. The numerical simulations of steady flows in S-shaped bends with sweep angles of 45 degrees , 90 degrees , and 135 degrees are performed at Reynolds numbers of 125, 500, and 960. Hemodynamic characteristics such as secondary flows, vorticity, and axial velocity profiles are analyzed in detail. Flow patterns in S-shaped bends are strongly dependent on both Reynolds number and bend sweep angle, which can be categorized into three groups based on the first bend secondary flow effects on the transverse flow of the second bend. For low Reynolds numbers and any sweep angles, secondary flows in the second bend eliminate the first bend effects in the early sections of the second bend and therefore the axial velocity profile is consistent with the bend curvature, while for high Reynolds numbers depending on the bend sweep angles the secondary vortex pattern of the first bend may persist partially or totally throughout the second bend leading to a four-vortex secondary structure. Moreover, an interesting flow feature observed at the Reynolds number of 960 is that the secondary flow asymmetrical behavior occurred around the second bend exit and along the outflow straight section. This symmetry-breaking phenomenon which has not been reported in the previous studies is shown to be more pronounced in the 90 degrees S-shaped bend as compared to other models considered here. The probability of flow separation as one of the important flow features contributing to the onset and development of arterial wall diseases is also studied. It is observed that the second bend outer wall of gentle bends with sweep angles from 20 degrees to 30 degrees at high enough Reynolds numbers are prone to flow separation.

  10. Radiation source with shaped emission

    DOEpatents

    Kubiak, Glenn D.; Sweatt, William C.

    2003-05-13

    Employing a source of radiation, such as an electric discharge source, that is equipped with a capillary region configured into some predetermined shape, such as an arc or slit, can significantly improve the amount of flux delivered to the lithographic wafers while maintaining high efficiency. The source is particularly suited for photolithography systems that employs a ringfield camera. The invention permits the condenser which delivers critical illumination to the reticle to be simplified from five or more reflective elements to a total of three or four reflective elements thereby increasing condenser efficiency. It maximizes the flux delivered and maintains a high coupling efficiency. This architecture couples EUV radiation from the discharge source into a ring field lithography camera.

  11. Regularized Biot-Savart Laws for Modeling Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Titov, Viacheslav; Downs, Cooper; Mikic, Zoran; Torok, Tibor; Linker, Jon A.

    2017-08-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the initial morphology of CMEs. As our new step in this direction, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and a circular cross-section. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is a curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. The vector potentials are expressed in terms of Biot-Savart laws whose kernels are regularized at the rope axis. We regularized them in such a way that for a straight-line axis the form provides a cylindrical force-free flux rope with a parabolic profile of the axial current density. So far, we set the shape of the rope axis by tracking the polarity inversion lines of observed magnetograms and estimating its height and other parameters of the rope from a calculated potential field above these lines. In spite of this heuristic approach, we were able to successfully construct pre-eruption configurations for the 2009 February13 and 2011 October 1 CME events. These applications demonstrate that our regularized Biot-Savart laws are indeed a very flexible and efficient method for energizing initial configurations in MHD simulations of CMEs. We discuss possible ways of optimizing the axis paths and other extensions of the method in order to make it more useful and robust.Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  12. Numerical Simulation of Interacting Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Odstrcil, Dusan; Vandas, Marek; Pizzo, Victor J.; MacNeice, Peter

    2003-09-01

    A 2SHAPE="CASE">12-D MHD numerical model is used to investigate the dynamic interaction between two flux ropes (clouds) in a homogeneous magnetized plasma. One cloud is set into motion while the other is initially at rest. The moving cloud generates a shock which interacts with the second cloud. Two cases with different characteristic speeds within the second cloud are presented. The shock front is significantly distorted when it propagates faster (slower) in the cloud with larger (smaller) characteristic speed. Correspondingly, the density behind the shock front becomes smaller (larger). Later, the clouds approach each other and by a momentum exchange they come to a common speed. The oppositely directed magnetic fields are pushed together, a driven magnetic reconnection takes a place, and the two flux ropes gradually coalescence into a single flux rope.

  13. Cogging Torque Minimization in Transverse Flux Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz

    2017-02-16

    This paper presents the design considerations in cogging torque minimization in two types of transverse flux machines. The machines have a double stator-single rotor configuration with flux concentrating ferrite magnets. One of the machines has pole windings across each leg of an E-Core stator. Another machine has quasi-U-shaped stator cores and a ring winding. The flux in the stator back iron is transverse in both machines. Different methods of cogging torque minimization are investigated. Key methods of cogging torque minimization are identified and used as design variables for optimization using a design of experiments (DOE) based on the Taguchi method.more » A three-level DOE is performed to reach an optimum solution with minimum simulations. Finite element analysis is used to study the different effects. Two prototypes are being fabricated for experimental verification.« less

  14. Quantum theory of atoms in molecules charge-charge flux-dipole flux models for the infrared intensities of X(2)CY (X = H, F, Cl; Y = O, S) molecules.

    PubMed

    Faria, Sergio H D M; da Silva, João Viçozo; Haiduke, Roberto L A; Vidal, Luciano N; Vazquez, Pedro A M; Bruns, Roy E

    2007-08-16

    The molecular dipole moments, their derivatives, and the fundamental IR intensities of the X2CY (X = H, F, Cl; Y = O, S) molecules are determined from QTAIM atomic charges and dipoles and their fluxes at the MP2/6-311++G(3d,3p) level. Root-mean-square errors of +/-0.03 D and +/-1.4 km mol(-1) are found for the molecular dipole moments and fundamental IR intensities calculated using quantum theory of atoms in molecules (QTAIM) parameters when compared with those obtained directly from the MP2/6-311++G(3d,3p) calculations and +/-0.05 D and 51.2 km mol(-1) when compared with the experimental values. Charge (C), charge flux (CF), and dipole flux (DF) contributions are reported for all the normal vibrations of these molecules. A large negative correlation coefficient of -0.83 is calculated between the charge flux and dipole flux contributions and indicates that electronic charge transfer from one side of the molecule to the other during vibrations is accompanied by a relaxation effect with electron density polarization in the opposite direction. The characteristic substituent effect that has been observed for experimental infrared intensity parameters and core electron ionization energies has been applied to the CCFDF/QTAIM parameters of F2CO, Cl2CO, F2CS, and Cl2CS. The individual atomic charge, atomic charge flux, and atomic dipole flux contributions are seen to obey the characteristic substituent effect equation just as accurately as the total dipole moment derivative. The CH, CF, and CCl stretching normal modes of these molecules are shown to have characteristic sets of charge, charge flux, and dipole flux contributions.

  15. Simulation of atmospheric temperature effects on cosmic ray muon flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tognini, Stefano Castro; Gomes, Ricardo Avelino

    2015-05-15

    The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere’s effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting inmore » a major number of meson decays. Such correlation between the muon flux and the atmosphere’s effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.« less

  16. Miniature Convection Cooled Plug-type Heat Flux Gauges

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1994-01-01

    Tests and analysis of a new miniature plug-type heat flux gauge configuration are described. This gauge can simultaneously measure heat flux on two opposed active surfaces when heat flux levels are equal to or greater than about 0.2 MW/m(sup 2). The performance of this dual active surface gauge was investigated over a wide transient and steady heat flux and temperature range. The tests were performed by radiatively heating the front surface with an argon arc lamp while the back surface was convection cooled with air. Accuracy is about +20 percent. The gauge is responsive to fast heat flux transients and is designed to withstand the high temperature (1300 K), high pressure (15 MPa), erosive and corrosive environments in modern engines. This gauge can be used to measure heat flux on the surfaces of internally cooled apparatus such as turbine blades and combustors used in jet propulsion systems and on the surfaces of hypersonic vehicles. Heat flux measurement accuracy is not compromised when design considerations call for various size gauges to be fabricated into alloys of various shapes and properties. Significant gauge temperature reductions (120 K), which can lead to potential gauge durability improvement, were obtained when the gauges were air-cooled by forced convection.

  17. How effective are geometric morphometric techniques for assessing functional shape variation? An example from the great ape temporomandibular joint.

    PubMed

    Terhune, Claire E

    2013-08-01

    Functional shape analyses have long relied on the use of shape ratios to test biomechanical hypotheses. This method is powerful because of the ease with which results are interpreted, but these techniques fall short in quantifying complex morphologies that may not have a strong biomechanical foundation but may still be functionally informative. In contrast, geometric morphometric methods are continually being adopted for quantifying complex shapes, but they tend to prove inadequate in functional analyses because they have little foundation in an explicit biomechanical framework. The goal of this study was to evaluate the intersection of these two methods using the great ape temporomandibular joint as a case study. Three-dimensional coordinates of glenoid fossa and mandibular condyle shape were collected using a Microscribe digitizer. Linear distances extracted from these landmarks were analyzed using a series of one-way ANOVAs; further, the landmark configurations were analyzed using geometric morphometric techniques. Results suggest that the two methods are broadly similar, although the geometric morphometric data allow for the identification of shape differences among taxa that were not immediately apparent in the univariate analyses. Furthermore, this study suggests several new approaches for translating these shape data into a biomechanical context by adjusting the data using a biomechanically relevant variable. Copyright © 2013 Wiley Periodicals, Inc.

  18. Variation character of stagnation point heat flux for hypersonic pointed bodies from continuum to rarefied flow states and its bridge function study

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Bao, Lin; Tong, Binggang

    2009-12-01

    This paper is a research on the variation character of stagnation point heat flux for hypersonic pointed bodies from continuum to rarefied flow states by using theoretical analysis and numerical simulation methods. The newly developed near space hypersonic cruise vehicles have sharp noses and wingtips, which desires exact and relatively simple methods to estimate the stagnation point heat flux. With the decrease of the curvature radius of the leading edge, the flow becomes rarefied gradually, and viscous interaction effects and rarefied gas effects come forth successively, which results in that the classical Fay-Riddell equation under continuum hypothesis will become invalid and the variation of stagnation point heat flux is characterized by a new trend. The heat flux approaches the free molecular flow limit instead of an infinite value when the curvature radius of the leading edge tends to 0. The physical mechanism behind this phenomenon remains in need of theoretical study. Firstly, due to the fact that the whole flow regime can be described by Boltzmann equation, the continuum and rarefied flow are analyzed under a uniform framework. A relationship is established between the molecular collision insufficiency in rarefied flow and the failure of Fourier’s heat conduction law along with the increasing significance of the nonlinear heat flux. Then based on an inspiration drew from Burnett approximation, control factors are grasped and a specific heat flux expression containing the nonlinear term is designed in the stagnation region of hypersonic leading edge. Together with flow pattern analysis, the ratio of nonlinear to linear heat flux W r is theoretically obtained as a parameter which reflects the influence of nonlinear factors, i.e. a criterion to classify the hypersonic rarefied flows. Ultimately, based on the characteristic parameter W r , a bridge function with physical background is constructed, which predicts comparative reasonable results in coincidence

  19. On the intrinsic spectrum of PKS 2155-304 from H.E.S.S. 2003 data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costamante, L.; Benbow, W.; Horns, D.

    2005-02-21

    In 2003, PKS 2155-304 has been significantly detected by H.E.S.S. at Very High Energies (VHE), with an average spectrum of {gamma} = 3.3. Due to absorption by the Extragalactic Background Light (EBL), the intrinsic spectrum is heavily modified both in shape and intensity. To correct for this effect, and locate the Inverse Compton (IC) peak of the Spectral Energy Distribution (SED), we used three EBL models (representatives of three different flux levels for the stellar peak component). The resulting TeV spectrum has a peak around 1 TeV for stellar peak fluxes above the Primack (2001) calculation, while the spectrum ismore » steeper than {gamma} = 2 (thus locating the IC peak < 200 GeV) for fluxes below. With bulk Lorentz factors {delta} = 20 - 30 (typically used for this object), in the first case the IC peak is in the Klein-Nishina transition region, while in the other case it is in the Thompson regime, and in agreement with the commonly fitted source parameters (e.g. [17]). The constraint on {delta} given by transparency to 2 TeV photons is {delta} > 19 (for historical SED fluxes and 2 hours variability timescale)« less

  20. On the intrinsic spectrum of PKS 2155-304 from H.E.S.S. 2003 data

    NASA Astrophysics Data System (ADS)

    Costamante, L.; Benbow, W.; Horns, D.; Reimer, A.; H.E.S.S. Collaboration

    2005-02-01

    In 2003, PKS 2155-304 has been significantly detected by H.E.S.S. at Very High Energies (VHE), with an average spectrum of Γ = 3.3. Due to absorption by the Extragalactic Background Light (EBL), the intrinsic spectrum is heavily modified both in shape and intensity. To correct for this effect, and locate the Inverse Compton (IC) peak of the Spectral Energy Distribution (SED), we used three EBL models (representatives of three different flux levels for the stellar peak component). The resulting TeV spectrum has a peak around 1 TeV for stellar peak fluxes above the Primack (2001) calculation, while the spectrum is steeper than Γ = 2 (thus locating the IC peak < 200 GeV) for fluxes below. With bulk Lorentz factors δ = 20 - 30 (typically used for this object), in the first case the IC peak is in the Klein-Nishina transition region, while in the other case it is in the Thompson regime, and in agreement with the commonly fitted source parameters (e.g. [17]). The constraint on δ given by transparency to 2 TeV photons is δ > 19 (for historical SED fluxes and 2 hours variability timescale).

  1. The magnetic non-equilibrium of buoyant flux tubes in the solar corona

    NASA Technical Reports Server (NTRS)

    Browning, P. K.; Priest, E. R.

    1984-01-01

    The magnetic field in the convection zone and photosphere of the sun exists mostly as concentrated tubes of magnetic flux. It is, therefore, necessary to study the basic properties of magnetic flux tubes to obtain a basis for understanding the behavior of the sun's magnetic field. The present investigation is concerned with the global equilibrium shape of a flux tube in the stratified solar atmosphere. A fundamental property of isolated flux tubes is magnetic buoyancy. Attention is given to flux tubes with external field, and twisted flux tubes. It is shown that the analysis of Parker (1975, 1979) and Spruit (1981) for calculating the equilibrium of a slender flux tube in a stratified atmosphere may be extended to more general situations. The slender tube approximation provides a method of solving the problem of modeling the overall curvature of flux tubes. It is found that for a twisted flux tube, there can be two possible equilibrium values of the height.

  2. Characterizing the Lyman-alpha forest flux probability distribution function using Legendre polynomials

    NASA Astrophysics Data System (ADS)

    Cieplak, Agnieszka; Slosar, Anze

    2017-01-01

    The Lyman-alpha forest has become a powerful cosmological probe of the underlying matter distribution at high redshift. It is a highly non-linear field with much information present beyond the two-point statistics of the power spectrum. The flux probability distribution function (PDF) in particular has been used as a successful probe of small-scale physics. In addition to the cosmological evolution however, it is also sensitive to pixel noise, spectrum resolution, and continuum fitting, all of which lead to possible biased estimators. Here we argue that measuring coefficients of the Legendre polynomial expansion of the PDF offers several advantages over the binned PDF as is commonly done. Since the n-th coefficient can be expressed as a linear combination of the first n moments of the field, this allows for the coefficients to be measured in the presence of noise and allows for a clear route towards marginalization over the mean flux. In addition, we use hydrodynamic cosmological simulations to demonstrate that in the presence of noise, a finite number of these coefficients are well measured with a very sharp transition into noise dominance. This compresses the information into a finite small number of well-measured quantities.

  3. Flux flow and flux dynamics in high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Bennett, L. H.; Turchinskaya, M.; Swartzendruber, L. J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D. L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed.

  4. FunChIP: an R/Bioconductor package for functional classification of ChIP-seq shapes.

    PubMed

    Parodi, Alice C L; Sangalli, Laura M; Vantini, Simone; Amati, Bruno; Secchi, Piercesare; Morelli, Marco J

    2017-08-15

    Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) generates local accumulations of sequencing reads on the genome ("peaks"), which correspond to specific protein-DNA interactions or chromatin modifications. Peaks are detected by considering their total area above a background signal, usually neglecting their shapes, which instead may convey additional biological information. We present FunChIP, an R/Bioconductor package for clustering peaks according to a functional representation of their shapes: after approximating their profiles with cubic B-splines, FunChIP minimizes their functional distance and classifies the peaks applying a k-mean alignment and clustering algorithm. The whole pipeline is user-friendly and provides visualization functions for a quick inspection of the results. An application to the transcription factor Myc in 3T9 murine fibroblasts shows that clusters of peaks with different shapes are associated with different genomic locations and different transcriptional regulatory activity. The package is implemented in R and is available under Artistic Licence 2.0 from the Bioconductor website (http://bioconductor.org/packages/FunChIP). marco.morelli@iit.it. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. Fluxes, holography and twistors: String theory paths to four dimensions

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2007-12-01

    There are presently three popular paths to obtain four dimensional physics from string theory: compactification, holography and twistor space. We present results in this thesis on each of them, discussing the geometric structure of flux compactifications, the interplay between holography and S -duality in M-theory and the perturbative amplitudes of the marginally deformed super-Yang-Mills theory obtained from topological string theory on a supertwistor space. First we analyze supersymmetric flux compactifications of ten dimensional string theories to four dimensions. Back reaction of the fluxes on the six dimensional internal geometry is characterized by G-structures. In type IIB compactification on SU(3)-structure manifold with N = 1 supersymmetry, we solve the equations dictating the five components of intrinsic torsion. We find that the six dimensional manifold always retains an integrable almost complex structure compatible with supersymmetry. In terms of the various vacuum fields, the axion/dilaton is found to be generically non-holomorphic, and the four dimensional cosmological constant is nonvanishing only if the SU(3) structure group is reduced to SU(2). The equations are solved by one holomorphic function. Around the poles and zeros of the holomorphic function, the geometry locally looks like the well known type-A and type-B solutions. When this function is a constant, the geometry can be viewed as a holographic RG flow. After classifying the type IIB SU(3)-structure flux vacua, we analyze the effect of non-perturbative corrections on the moduli space of N = 2 flux compactifications. At energy below the Kaluza-Klein scale, the four dimensional effective theory is a gauged supergravity theory with vanishing cosmological constant. The gauging of isometries on the hyper-multiplet moduli space is induced by the fluxes. We show that instanton corrections which could potentially lift the gauged isometries are in fact prohibited both in the type IIA and heterotic

  6. Interaction without intent: the shape of the social world in Huntington’s disease

    PubMed Central

    Rickards, Hugh E.

    2015-01-01

    Huntington’s disease (HD) is an inherited neurodegenerative condition. Patients with this movement disorder can exhibit deficits on tasks involving Theory of Mind (ToM): the ability to understand mental states such as beliefs and emotions. We investigated mental state inference in HD in response to ambiguous animations involving geometric shapes, while exploring the impact of symptoms within cognitive, emotional and motor domains. Forty patients with HD and twenty healthy controls described the events in videos showing random movements of two triangles (i.e. floating), simple interactions (e.g. following) and more complex interactions prompting the inference of mental states (e.g. one triangle encouraging the other). Relationships were explored between animation interpretation and measures of executive functioning, alexithymia and motor symptoms. Individuals with HD exhibited alexithymia and a reduced tendency to spontaneously attribute intentions to interacting triangles on the animations task. Attribution of intentions on the animations task correlated with motor symptoms and burden of pathology. Importantly, patients without motor symptoms showed similar ToM deficits despite intact executive functions. Subtle changes in ToM that are unrelated to executive dysfunction could therefore feature in basal ganglia disorders prior to motor onset. PMID:25680992

  7. Enhanced magnetoelectric effects in composite of piezoelectric ceramics, rare-earth iron alloys, and shape-optimized nanocrystalline alloys.

    PubMed

    Zhang, Jitao; Li, Ping; Wen, Yumei; He, Wei; Yang, Aichao; Lu, Caijiang

    2014-03-01

    An enhancement for magnetoelectric (ME) effects is studied in a three-phase ME architecture consisting of two magnetostrictive Terfenol-D (Tb(0.3)Dy(0.7)Fe(1.92)) plates, a piezoelectric PZT (Pb(Zr,Ti)O3) plate, and a pair of shape-optimized FeCuNbSiB nanocrystalline alloys. By modifying the conventional shape of the magnetic flux concentrator, the shape-optimized flux concentrator has an improved effective permeability (μ(eff)) due to the shape-induced demagnetizing effect at its end surface. The flux concentrator concentrates and amplifies the external magnetic flux into Terfenol-D plate by means of changing its internal flux concentrating manner. Consequently, more flux lines can be uniformly concentrated into Terfenol-D plates. The effective piezomagnetic coefficients (d(33m)) of Terfenol-D plate and the ME voltage coefficients (α(ME)) can be further improved under a lower magnetic bias field. The dynamic magneto-elastic properties and the effective magnetic induction of Terfenol-D are taken into account to derive the enhanced effective ME voltage coefficients (α(ME,eff)), the consistency of experimental results and theoretical analyses verifies this enhancement. The experimental results demonstrate that the maximum d(33m) in our proposed architecture achieves 22.48 nm/A under a bias of 114 Oe. The maximum α(ME) in the bias magnetic range 0-900 Oe reaches 84.73 mV/Oe under the low frequency of 1 kHz, and 2.996 V/Oe under the resonance frequency of 102.3 kHz, respectively. It exhibits a 1.43 times larger piezomagnetic coefficient and a 1.87 times higher ME voltage coefficient under a smaller magnetic bias of 82 Oe than those of a conventional Terfenol-D/PZT/Terfenol-D composite. These shape-induced magnetoelectric behaviors provide the possibility of using this ME architecture in ultra-sensitive magnetic sensors.

  8. Capabilities of VOS-based fluxes for estimating ocean heat budget and its variability

    NASA Astrophysics Data System (ADS)

    Gulev, S.; Belyaev, K.

    2016-12-01

    We consider here the perspective of using VOS observations by merchant ships available form the ICOADS data for estimating ocean surface heat budget at different time scale. To this purpose we compute surface turbulent heat fluxes as well as short- and long-wave radiative fluxes from the ICOADS reports for the last several decades in the North Atlantic mid latitudes. Turbulent fluxes were derived using COARE-3 algorithm and for computation of radiative fluxes new algorithms accounting for cloud types were used. Sampling uncertainties in the VOS-based fluxes were estimated by sub-sampling of the recomputed reanalysis (ERA-Interim) fluxes according to the VOS sampling scheme. For the turbulent heat fluxes we suggest an approach to minimize sampling uncertainties. The approach is based on the integration of the turbulent heat fluxes in the coordinates of steering parameters (vertical surface temperature and humidity gradients on one hand and wind speed on the other) for which theoretical probability distributions are known. For short-wave radiative fluxes sampling uncertainties were minimized by "rotating local observation time around the clock" and using probability density functions for the cloud cover occurrence distributions. Analysis was performed for the North Atlantic latitudinal band from 25 N to 60 N, for which also estimates of the meridional heat transport are available from the ocean cross-sections. Over the last 35 years turbulent fluxes within the region analysed increase by about 6 W/m2 with the major growth during the 1990s and early 2000s. Decreasing incoming short wave radiation during the same time (about 1 W/m2) implies upward change of the ocean surface heat loss by about 7-8 W/m2. We discuss different sources of uncertainties of computations as well as potential of the application of the analysis concept to longer time series going back to 1920s.

  9. Seasonal fluxes of carbonyl sulfide in a midlatitude forest

    PubMed Central

    Commane, Róisín; Meredith, Laura K.; Baker, Ian T.; Berry, Joseph A.; Munger, J. William; Montzka, Stephen A.; Templer, Pamela H.; Juice, Stephanie M.; Zahniser, Mark S.; Wofsy, Steven C.

    2015-01-01

    Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale. PMID:26578759

  10. Seasonal fluxes of carbonyl sulfide in a midlatitude forest.

    PubMed

    Commane, Róisín; Meredith, Laura K; Baker, Ian T; Berry, Joseph A; Munger, J William; Montzka, Stephen A; Templer, Pamela H; Juice, Stephanie M; Zahniser, Mark S; Wofsy, Steven C

    2015-11-17

    Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale.

  11. Distribution Functions of Sizes and Fluxes Determined from Supra-Arcade Downflows

    NASA Technical Reports Server (NTRS)

    McKenzie, D.; Savage, S.

    2011-01-01

    The frequency distributions of sizes and fluxes of supra-arcade downflows (SADs) provide information about the process of their creation. For example, a fractal creation process may be expected to yield a power-law distribution of sizes and/or fluxes. We examine 120 cross-sectional areas and magnetic flux estimates found by Savage & McKenzie for SADs, and find that (1) the areas are consistent with a log-normal distribution and (2) the fluxes are consistent with both a log-normal and an exponential distribution. Neither set of measurements is compatible with a power-law distribution nor a normal distribution. As a demonstration of the applicability of these findings to improved understanding of reconnection, we consider a simple SAD growth scenario with minimal assumptions, capable of producing a log-normal distribution.

  12. S-shaped flow curves of shear thickening suspensions: direct observation of frictional rheology.

    PubMed

    Pan, Zhongcheng; de Cagny, Henri; Weber, Bart; Bonn, Daniel

    2015-09-01

    We study the rheological behavior of concentrated granular suspensions of simple spherical particles. Under controlled stress, the system exhibits an S-shaped flow curve (stress vs shear rate) with a negative slope in between the low-viscosity Newtonian regime and the shear thickened regime. Under controlled shear rate, a discontinuous transition between the two states is observed. Stress visualization experiments with a fluorescent probe suggest that friction is at the origin of shear thickening. Stress visualization shows that the stress in the system remains homogeneous (no shear banding) if a stress is imposed that is intermediate between the high- and low-stress branches. The S-shaped shear thickening is then due to the discontinuous formation of a frictional force network between particles upon increasing the stress.

  13. Self-shaping composites with programmable bioinspired microstructures

    NASA Astrophysics Data System (ADS)

    Erb, Randall M.; Sander, Jonathan S.; Grisch, Roman; Studart, André R.

    2013-04-01

    Shape change is a prevalent function apparent in a diverse set of natural structures, including seed dispersal units, climbing plants and carnivorous plants. Many of these natural materials change shape by using cellulose microfibrils at specific orientations to anisotropically restrict the swelling/shrinkage of their organic matrices upon external stimuli. This is in contrast to the material-specific mechanisms found in synthetic shape-memory systems. Here we propose a robust and universal method to replicate this unusual shape-changing mechanism of natural systems in artificial bioinspired composites. The technique is based upon the remote control of the orientation of reinforcing inorganic particles within the composite using a weak external magnetic field. Combining this reinforcement orientational control with swellable/shrinkable polymer matrices enables the creation of composites whose shape change can be programmed into the material’s microstructure rather than externally imposed. Such bioinspired approach can generate composites with unusual reversibility, twisting effects and site-specific programmable shape changes.

  14. Mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury by improving lysosomal function and autophagic flux.

    PubMed

    Zhou, Tianen; Liang, Lian; Liang, Yanran; Yu, Tao; Zeng, Chaotao; Jiang, Longyuan

    2017-09-15

    Mild hypothermia has been proven to be useful to treat brain ischemia/reperfusion injury. However, the underlying mechanisms have not yet been fully elucidated. The present study was undertaken to determine whether mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion(OGD/R)-induced injury via improving lysosomal function and autophagic flux. The results showed that OGD/R induced the occurrence of autophagy, while the acidic environment inside the lysosomes was altered. The autophagic flux assay with RFP-GFP tf-LC3 was impeded in hippocampal neurons after OGD/R. Mild hypothermia recovered the lysosomal acidic fluorescence and the lysosomal marker protein expression of LAMP2, which decreased after OGD/R.Furthermore, we found that mild hypothermia up-regulated autophagic flux and promoted the fusion of autophagosomes and lysosomes in hippocampal neurons following OGD/R injury, but could be reversed by treatment with chloroquine, which acts as a lysosome inhibitor. We also found that mild hypothermia improved mitochondrial autophagy in hippocampal neurons following OGD/R injury. Finally,we found that chloroquine blocked the protective effects of mild hypothermia against OGD/R-induced cell death and injury. Taken together, the present study indicates that mild hypothermia protects hippocampal neurons against OGD/R-induced injury by improving lysosomal function and autophagic flux. Copyright © 2017. Published by Elsevier Inc.

  15. A motionless actuation system for magnetic shape memory devices

    NASA Astrophysics Data System (ADS)

    Armstrong, Andrew; Finn, Kevin; Hobza, Anthony; Lindquist, Paul; Rafla, Nader; Müllner, Peter

    2017-10-01

    Ni-Mn-Ga is a Magnetic Shape Memory (MSM) alloy that changes shape in response to a variable magnetic field. We can intentionally manipulate the shape of the material to function as an actuator, and the material can thus replace complicated small electromechanical systems. In previous work, a very simple and precise solid-state micropump was developed, but a mechanical rotation was required to translate the position of the magnetic field. This mechanical rotation defeats the purpose of the motionless solid-state device. Here we present a solid-state electromagnetic driver to linearly progress the position of the applied magnetic field and the associated shrinkage. The generated magnetic field was focused at either of two pole pieces, providing a mechanism for moving the localized shrinkage in the MSM element. We confirmed that our driver has sufficient strength to actuate the MSM element using optical microscopy. We validated the whole design by comparing results obtained with finite element analysis with the experimentally measured flux density. This drive system serves as a possible replacement to the mechanical rotation of the magnetic field by using a multi-pole electromagnet that sweeps the magnetic field across the MSM micropump element, solid-state switching the current to each pole piece in the multi-pole electromagnet.

  16. Shape-Based Virtual Screening with Volumetric Aligned Molecular Shapes

    PubMed Central

    Koes, David Ryan; Camacho, Carlos J.

    2014-01-01

    Shape-based virtual screening is an established and effective method for identifying small molecules that are similar in shape and function to a reference ligand. We describe a new method of shape-based virtual screening, volumetric aligned molecular shapes (VAMS). VAMS uses efficient data structures to encode and search molecular shapes. We demonstrate that VAMS is an effective method for shape-based virtual screening and that it can be successfully used as a pre-filter to accelerate more computationally demanding search algorithms. Unique to VAMS is a novel minimum/maximum shape constraint query for precisely specifying the desired molecular shape. Shape constraint searches in VAMS are particularly efficient and millions of shapes can be searched in a fraction of a second. We compare the performance of VAMS with two other shape-based virtual screening algorithms a benchmark of 102 protein targets consisting of more than 32 million molecular shapes and find that VAMS provides a competitive trade-off between run-time performance and virtual screening performance. PMID:25049193

  17. Evidences on the Existence of Magnetic Flux Rope Before and During a Solar Eruption

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Cheng, Xin; Liu, Kai

    2013-03-01

    We report the observational evidences from the advanced SDO observations that magnetic flux ropes exist before and during solar eruptions. The solar eruption is defined as coronal mass ejection, whether or not associated with a solar flare. Magnetic flux ropes are directly observed as hot EUV channels as seen in the hot AIA 131 (10 MK) and/or AIA 94 (6.4 MK) passbands, but are absent in cool AIA passbands. The fact that flux ropes are only seen in hot temperatures explains their evasion of detection from previous EUV observations, such as SOHO/EIT, TRACE and STEREO/EUVI. The hot channel usually appears as a writhed sigmoidal shape and slowly rises prior to the onset of the impulsive acceleration as well as the onset of the flare. The hot channel transforms into a CME-like semi-circular shape in a continuous way, indicating its trapping or organization by a coherent magnetic structure. The dynamic and thermal properties of flux ropes will also be presented. We further discuss the critical role of flux ropes in CME initiation and subsequent acceleration, in light of contrasting the standard eruptive flare models.

  18. Foraging theory predicts predator-prey energy fluxes.

    PubMed

    Brose, U; Ehnes, R B; Rall, B C; Vucic-Pestic, O; Berlow, E L; Scheu, S

    2008-09-01

    1. In natural communities, populations are linked by feeding interactions that make up complex food webs. The stability of these complex networks is critically dependent on the distribution of energy fluxes across these feeding links. 2. In laboratory experiments with predatory beetles and spiders, we studied the allometric scaling (body-mass dependence) of metabolism and per capita consumption at the level of predator individuals and per link energy fluxes at the level of feeding links. 3. Despite clear power-law scaling of the metabolic and per capita consumption rates with predator body mass, the per link predation rates on individual prey followed hump-shaped relationships with the predator-prey body mass ratios. These results contrast with the current metabolic paradigm, and find better support in foraging theory. 4. This suggests that per link energy fluxes from prey populations to predator individuals peak at intermediate body mass ratios, and total energy fluxes from prey to predator populations decrease monotonically with predator and prey mass. Surprisingly, contrary to predictions of metabolic models, this suggests that for any prey species, the per link and total energy fluxes to its largest predators are smaller than those to predators of intermediate body size. 5. An integration of metabolic and foraging theory may enable a quantitative and predictive understanding of energy flux distributions in natural food webs.

  19. Low pH overrides the need of calcium ions for the shape-function relationship of calmodulin: resolving prevailing debates.

    PubMed

    Pandey, Kalpana; Dhoke, Reema R; Rathore, Yogendra Singh; Nath, Samir K; Verma, Neha; Bawa, Simranjot; Ashish

    2014-05-15

    Calmodulin (CaM) regulates numerous cellular functions by sensing Ca(2+) levels inside cells. Although its structure as a function of the Ca(2+)-bound state remains hotly debated, no report is available on how pH independently or in interaction with Ca(2+) ions regulates shape and function of CaM. From SAXS data analysis of CaM at different levels of Ca(2+)-ion concentration and buffer pH, we found that (1) CaM molecules possess a Gaussian-chain-like shape in solution even in the presence of Ca(2+) ion or at low pH, (2) the global shape of apo CaM is very similar to its NMR structure rather than the crystal structures, (3) about 16 Ca(2+) ions or more are required per CaM molecule in solution to achieve the four-Ca(2+)-bound crystal structure, (4) low pH alone can impart shape changes in CaM similar to Ca(2+) ions, and (5) at different [Ca(2+)]/[CaM] ratio or pH values, the predominant shape of CaM is essentially a weighted average of its apo and fully activated shape. Results were further substantiated by analysis of sedimentation coefficient values from analytical ultracentrifugation and peptide binding assays using two peptides, each known to preferentially bind the apo or the Ca(2+)-activated state.

  20. Solar Scientist Confirm Existence of Flux Ropes on the Sun

    NASA Image and Video Library

    2013-02-14

    Caption: This is an image of magnetic loops on the sun, captured by NASA's Solar Dynamics Observatory (SDO). It has been processed to highlight the edges of each loop to make the structure more clear. A series of loops such as this is known as a flux rope, and these lie at the heart of eruptions on the sun known as coronal mass ejections (CMEs.) This is the first time scientists were able to discern the timing of a flux rope's formation. (SDO AIA 131 and 171 difference blended image of flux ropes during CME.) Credit: NASA/Goddard Space Flight Center/SDO ---- On July 18, 2012, a fairly small explosion of light burst off the lower right limb of the sun. Such flares often come with an associated eruption of solar material, known as a coronal mass ejection or CME – but this one did not. Something interesting did happen, however. Magnetic field lines in this area of the sun's atmosphere, the corona, began to twist and kink, generating the hottest solar material – a charged gas called plasma – to trace out the newly-formed slinky shape. The plasma glowed brightly in extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) and scientists were able to watch for the first time the very formation of something they had long theorized was at the heart of many eruptive events on the sun: a flux rope. Eight hours later, on July 19, the same region flared again. This time the flux rope's connection to the sun was severed, and the magnetic fields escaped into space, dragging billions of tons of solar material along for the ride -- a classic CME. "Seeing this structure was amazing," says Angelos Vourlidas, a solar scientist at the Naval Research Laboratory in Washington, D.C. "It looks exactly like the cartoon sketches theorists have been drawing of flux ropes since the 1970s. It was a series of figure eights lined up to look like a giant slinky on the sun." To read more about this new discovery go to: 1.usa

  1. Solar Scientist Confirm Existence of Flux Ropes on the Sun

    NASA Image and Video Library

    2017-12-08

    Caption: This is an image of magnetic loops on the sun, captured by NASA's Solar Dynamics Observatory (SDO). It has been processed to highlight the edges of each loop to make the structure more clear. A series of loops such as this is known as a flux rope, and these lie at the heart of eruptions on the sun known as coronal mass ejections (CMEs.) This is the first time scientists were able to discern the timing of a flux rope's formation. (SDO AIA 131 and 171 difference blended image of flux ropes during CME.) Credit: NASA/Goddard Space Flight Center/SDO ---- On July 18, 2012, a fairly small explosion of light burst off the lower right limb of the sun. Such flares often come with an associated eruption of solar material, known as a coronal mass ejection or CME – but this one did not. Something interesting did happen, however. Magnetic field lines in this area of the sun's atmosphere, the corona, began to twist and kink, generating the hottest solar material – a charged gas called plasma – to trace out the newly-formed slinky shape. The plasma glowed brightly in extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) and scientists were able to watch for the first time the very formation of something they had long theorized was at the heart of many eruptive events on the sun: a flux rope. Eight hours later, on July 19, the same region flared again. This time the flux rope's connection to the sun was severed, and the magnetic fields escaped into space, dragging billions of tons of solar material along for the ride -- a classic CME. "Seeing this structure was amazing," says Angelos Vourlidas, a solar scientist at the Naval Research Laboratory in Washington, D.C. "It looks exactly like the cartoon sketches theorists have been drawing of flux ropes since the 1970s. It was a series of figure eights lined up to look like a giant slinky on the sun." To read more about this new discovery go to: 1.usa

  2. Land-use and fire drive temporal patterns of soil solution chemistry and nutrient fluxes.

    PubMed

    Potthast, Karin; Meyer, Stefanie; Crecelius, Anna C; Schubert, Ulrich S; Tischer, Alexander; Michalzik, Beate

    2017-12-15

    Land-use type and ecosystem disturbances are important drivers for element cycling and bear the potential to modulate soil processes and hence ecosystem functions. To better understand the effect of such drivers on the magnitude and temporal patterns of organic matter (OM) and associated nutrient fluxes in soils, continuous flux monitoring is indispensable but insufficiently studied yet. We conducted a field study to elucidate the impact of land-use and surface fires on OM and nutrient fluxes with soil solution regarding seasonal and temporal patterns analyzing short (<3months) and medium-term (3-12months) effects. Control and prescribed fire-treated topsoil horizons in beech forests and pastures were monitored biweekly for dissolved and particulate OM (DOM, POM) and solution chemistry (pH value, elements: Ca, Mg, Na, K, Al, Fe, Mn, P, S, Si) over one post-fire year. Linear mixed model analyses exhibited that mean annual DOM and POM fluxes did not differ between the two land-use types, but were subjected to strong seasonal patterns. Fire disturbance significantly lowered the annual soil solution pH in both land-uses and increased water fluxes, while DOC fluxes remained unaffected. A positive response of POC and S to fire was limited to short-term effects, while amplified particulate and dissolved nitrogen fluxes were observed in the longer run and co-ocurred with accelerated Ca and Mg fluxes. In summary, surface fires generated stronger effects on element fluxes than the land-use. Fire-induced increases in POM fluxes suggest that the particulate fraction represent a major pathway of OM translocation into the subsoil and beyond. With regard to ecosystem functions, pasture ecosystems were less prone to the risk of nutrient losses following fire events than the forest. In pastures, fire-induced base cation export may accelerate soil acidification, consequently exhausting soil buffer systems and thus may reduce the resilience to acidic depositions and disturbances

  3. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vemareddy, P.; Zhang, J., E-mail: vema@prl.res.in

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the risemore » motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.« less

  4. Social class shapes the form and function of relationships and selves.

    PubMed

    Carey, Rebecca M; Markus, Hazel Rose

    2017-12-01

    Social class shapes relational realities, which in turn situate and structure different selves and their associated psychological tendencies. We first briefly review how higher class contexts tend to foster independent models of self and lower class contexts tend to foster interdependent models of self. We then consider how these independent and interdependent models of self are situated in and adapted to different social class-driven relational realities. We review research demonstrating that in lower social class contexts, social networks tend to be small, dense, homogenous and strongly connected. Ties in these networks provide the bonding capital that is key for survival and that promotes the interdependence between self and other(s). In higher social class contexts, social networks tend to be large, far-reaching, diverse and loosely connected. Ties in these networks provide the bridging capital that is key for achieving personal goals and that promotes an independence of self from other. We conclude that understanding and addressing issues tied to social class and inequality requires understanding the form and function of relationships across class contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. What Produce Energetic Flares with X-Shaped Ribbons on the Outskirts of Solar Active Region?

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Chen, Jun; Wang, Yuming; Kailiu

    2016-10-01

    Typical solar flares display two quasi-parallel, bright ribbons on the chromosphere. In between is the polarity inversion line separating concentrated magnetic fluxes of opposite polarities in active regions (ARs). Intriguingly a series of flares exhibiting X-shaped ribbons occur at the similar location on the outskirts of NOAA AR 11967, where magnetic fluxes are scattered, yet three of them are alarmingly energetic. The X shape is similar in UV/EUV with hard X-ray emission projected in the center, which cannot be accommodated in the standard flare model. Mapping out magnetic connectivities in potential fields, we found that the X morphology is dictated by the intersection of two quasi-separatrix layers, i.e., a hyperbolic flux tube (HFT), within which a separator connecting a double null is embedded. This topology is not purely local but regulated by fluxes and flows over the whole AR. The nonlinear force-free field model suggests the formation of a current layer at the HFT, where the current dissipation can be mapped to the X-shaped ribbons via field-aligned heat conduction. These results highlight the critical role of structural skeletons in 3D magnetic reconnection.

  6. Prediction of bedload sediment transport for heterogeneous sediments in shape

    NASA Astrophysics Data System (ADS)

    Durafour, Marine; Jarno, Armelle; Le Bot, Sophie; Lafite, Robert; Marin, François

    2015-04-01

    agreement is found for the non-uniform site between measured fluxes and predictions given by the Wu et al. (2000) model. However, some discrepancies still remain, especially for granules. Hundreds of pictures of grains composing the sediment cover and the bedload discharges are performed. Particle shapes are statistically characterized by three 2D coefficients (circularity, roundness and elongation) after an image processing with the ImageJ software. Present results show a preferential transport of the most circular sediment particles available for transport and reveal that the consideration of particle shape, through the integration of the circularity index in formulations, enhanced the estimations of bedload rates. A new adjustment of the Wu et al. (2000) formula is proposed, which improves significantly the model predictions, especially for granules. Durafour M, Jarno A, Le Bot S, Lafite R, Marin F (2014) Bedload transport for heterogeneous sediments. Environmental Fluid Mechanics. doi: 10.1007/s10652-014-9380-1

  7. Sediment Flux, East Greenland Margin

    DTIC Science & Technology

    1991-09-17

    D.. T 0ATE [3. AEORT TYPE AND ý -2-’S .’:2,E.i 09/17/91 Final Oct. . 1988 - Seot.l. 1991 4. TITLE AND SU.3TITLE S. F*.i1CjG . AU • 12..5 Sediment Flux...and s le ,; its ditribution is unlimited. 13. ABSTRACT (Maximum 2CO words) We investigated sediment flux across an ice-dominated, high latitude...investigated an area off the East Greenland margin where the world’s second largest ice sheet still exists and where information on the extent of glaciation on

  8. Plants Rather than Mineral Fertilization Shape Microbial Community Structure and Functional Potential in Legacy Contaminated Soil.

    PubMed

    Ridl, Jakub; Kolar, Michal; Strejcek, Michal; Strnad, Hynek; Stursa, Petr; Paces, Jan; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Plant-microbe interactions are of particular importance in polluted soils. This study sought to determine how selected plants (horseradish, black nightshade and tobacco) and NPK mineral fertilization shape the structure of soil microbial communities in legacy contaminated soil and the resultant impact of treatment on the soil microbial community functional potential. To explore these objectives, we combined shotgun metagenomics and 16S rRNA gene amplicon high throughput sequencing with data analysis approaches developed for RNA-seq. We observed that the presence of any of the selected plants rather than fertilization shaped the microbial community structure, and the microbial populations of the root zone of each plant significantly differed from one another and/or from the bulk soil, whereas the effect of the fertilizer proved to be insignificant. When we compared microbial diversity in root zones versus bulk soil, we observed an increase in the relative abundance of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria or Bacteroidetes, taxa which are commonly considered copiotrophic. Our results thus align with the theory that fast-growing, copiotrophic, microorganisms which are adapted to ephemeral carbon inputs are enriched in the vegetated soil. Microbial functional potential indicated that some genetic determinants associated with signal transduction mechanisms, defense mechanisms or amino acid transport and metabolism differed significantly among treatments. Genetic determinants of these categories tend to be overrepresented in copiotrophic organisms. The results of our study further elucidate plant-microbe relationships in a contaminated environment with possible implications for the phyto/rhizoremediation of contaminated areas.

  9. The inverse Numerical Computer Program FLUX-BOT for estimating Vertical Water Fluxes from Temperature Time-Series.

    NASA Astrophysics Data System (ADS)

    Trauth, N.; Schmidt, C.; Munz, M.

    2016-12-01

    Heat as a natural tracer to quantify water fluxes between groundwater and surface water has evolved to a standard hydrological method. Typically, time series of temperatures in the surface water and in the sediment are observed and are subsequently evaluated by a vertical 1D representation of heat transport by advection and dispersion. Several analytical solutions as well as their implementation into user-friendly software exist in order to estimate water fluxes from the observed temperatures. Analytical solutions can be easily implemented but assumptions on the boundary conditions have to be made a priori, e.g. sinusoidal upper temperature boundary. Numerical models offer more flexibility and can handle temperature data which is characterized by irregular variations such as storm-event induced temperature changes and thus cannot readily be incorporated in analytical solutions. This also reduced the effort of data preprocessing such as the extraction of the diurnal temperature variation. We developed a software to estimate water FLUXes Based On Temperatures- FLUX-BOT. FLUX-BOT is a numerical code written in MATLAB which is intended to calculate vertical water fluxes in saturated sediments, based on the inversion of measured temperature time series observed at multiple depths. It applies a cell-centered Crank-Nicolson implicit finite difference scheme to solve the one-dimensional heat advection-conduction equation. Besides its core inverse numerical routines, FLUX-BOT includes functions visualizing the results and functions for performing uncertainty analysis. We provide applications of FLUX-BOT to generic as well as to measured temperature data to demonstrate its performance.

  10. Numerical study on AC loss reduction of stacked HTS tapes by optimal design of flux diverter

    NASA Astrophysics Data System (ADS)

    Liu, Guole; Zhang, Guomin; Jing, Liwei; Yu, Hui

    2017-12-01

    High temperature superconducting (HTS) coils are key parts of many AC applications, such as generators, superconducting magnetic energy storage and transformers. AC loss reduction in HTS coils is essential for the commercialization of these HTS devices. Magnetic material is generally used as the flux diverter in an effort to reduce the AC loss in HTS coils. To achieve the greatest reduction in the AC loss of the coils, the flux diverter should be made of a material with low loss and high saturated magnetic density, and the optimization of the geometric size and location of the flux diverter is required. In this paper, we chose Ni-alloy as the flux diverter, which can be processed into a specific shape and size. The influence of the shape and location of the flux diverter on the AC loss characteristics of stacked (RE)BCO tapes is investigated by use of a finite element method. Taking both the AC loss of the (RE)BCO coils and the ferromagnetic loss of the flux diverter into account, the optimal geometry of the flux diverter is obtained. It is found that when the applied current is at half the value of the critical current, the total loss of the HTS stack with the optimal flux diverter is only 18% of the original loss of the HTS stack without the flux diverter. Besides, the effect of the flux diverter on the critical current of the (RE)BCO stack is investigated.

  11. The Open Flux Problem

    NASA Astrophysics Data System (ADS)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R.; Henney, C. J.; Arge, C. N.; Liu, Y.; Derosa, M. L.; Yeates, A.; Owens, M. J.

    2017-10-01

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  12. The Open Flux Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linker, J. A.; Caplan, R. M.; Downs, C.

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. Inmore » this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.« less

  13. Two-qubit gates and coupling with low-impedance flux qubits

    NASA Astrophysics Data System (ADS)

    Chow, Jerry; Corcoles, Antonio; Rigetti, Chad; Rozen, Jim; Keefe, George; Rothwell, Mary-Beth; Rohrs, John; Borstelmann, Mark; Divincenzo, David; Ketchen, Mark; Steffen, Matthias

    2011-03-01

    We experimentally demonstrate the coupling of two low-impedance flux qubits mediated via a transmission line resonator. We explore the viability of experimental coupling protocols which involve selective microwave driving on the qubits independently as well as fast frequency tuning through on-chip flux-bias. Pulse-shaping techniques for single-qubit and two-qubit gates are employed for reducing unwanted leakage and phase errors. A joint readout through the transmission line resonator is used for characterizing single-qubit and two-qubit states.

  14. Regularized Biot-Savart Laws for Modeling Magnetic Configurations with Flux Ropes

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Downs, C.; Mikic, Z.; Torok, T.; Linker, J.

    2017-12-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the initial morphology of CMEs. For this purpose, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and a circular cross-section. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is the curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. We expressed the vector potentials in terms of modified Biot-Savart laws whose kernels are regularized at the axis in such a way that these laws define a cylindrical force-free flux rope with a parabolic profile of the axial current density, when the axis is straight. For the cases we have studied so far, we determined the shape of the rope axis by following the polarity inversion line of the eruptions' source region, using observed magnetograms. The height variation along the axis and other flux-rope parameters are estimated by means of potential field extrapolations. Using this heuristic approach, we were able to construct pre-eruption configurations for the 2009 February13 and 2011 October 1 CME events. These applications demonstrate the flexibility and efficiency of our new method for energizing pre-eruptive configurations in MHD simulations of CMEs. We discuss possible ways of optimizing the axis paths and other extensions of the method in order to make it more useful and robust. Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  15. Contrasting Convective Flux Gradients in the U.S. Corn Belt as a Result of Vegetation Land Cover Type

    NASA Astrophysics Data System (ADS)

    Hiestand, M.

    2017-12-01

    Phenological differences between extensive croplands and remnant forests in the U.S. Corn Belt have been suggested as enhancing spatial gradients of latent and sensible heat fluxes that contribute to the distribution and amounts of convective rainfall on mesoscales. However, the exact magnitude of the intra-seasonal variability in convective fluxes between these two land-cover types has yet to be quantified. Previous work suggesting that non-classical mesoscale circulations operate within the Corn Belt has not involved direct flux observations obtained using the eddy flux covariance technique. This study compares five day running means of daily heat fluxes between two Ameriflux towers (US-Bo1 in Illinois and US-MMS in Indiana) representing rain-fed cropland and remnant forest, respectively for the growing seasons of 1999-2008. Latent heat values normalized to the net radiation show higher rates of evapotranspiration at the forested site than over the cropland during the start of the growing season. However, toward the end of the growing season, latent heat fluxes from the forest decrease and the cropland becomes the dominate source of evapotranspiration. Conversely, croplands dominate sensible heat fluxes at the start of the growing season whereas the remnant forests are associated with strong sensible heat fluxes in late summer. These intra-seasonal spatial differences of latent and sensible heat fluxes across the Corn Belt imply differences in moisture pooling that are suggested as enhancing atmospheric convection during favorable synoptic conditions, especially near the boundaries of these two land cover types. Understanding the physical mechanisms by which the spatial distribution of vegetated land cover can generate contrasting latent and sensible heat fluxes will lay the groundwork for improving mesoscale precipitation forecasts in the Corn Belt, and determining the possible impacts of ongoing land-cover and climate changes there.

  16. The effect of inlet boundary layer thickness on the flow within an annular S-shaped duct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonoda, T.; Arima, T.; Oana, M.

    1999-07-01

    Experimental and numerical investigations were carried out to gain a better understanding of the flow characteristics within an annular S-shaped duct, including the effect of the inlet boundary layer (IBL) on the flow. A duct with six struts and the geometry as that used to connect compressor spools on the experimental small two-spool turbofan engine was investigated. A curved downstream annular passage with similar meridional flow path geometry to that of the centrifugal compressor has been fitted at the exit of S-shaped duct. Two types of the IBL (i.e., thin and thick IBL) were used. Results showed that large differencesmore » of flow patterns were observed at the S-shaped duct exit between two types of IBL, though the value of net total pressure loss has not been remarkably changed. According to overall total pressure loss, which includes the IBL loss, the total pressure loss was greatly increased near the hub as compared to that for a thin one. For the thick IBL, a vortex pair related to the hub-side horseshoe vortex and the separated flow found at the strut trailing edge has been clearly captured in the form of the total pressure loss contours and secondary flow vectors, experimentally and numerically. The high-pressure loss regions on either side of the strut wake near the hub may act on a downstream compressor performance. There is a much-distorted three-dimensional flow patterns at the exit of S-shaped duct. This means that the aerodynamic sensitivity of S-shaped duct to the IBL thickness is very high. Therefore, sufficient care is needed to design not only downstream aerodynamic components (for example, centrifugal impeller) but also upstream aerodynamic components (LPC OGV).« less

  17. Shape information from glucose curves: Functional data analysis compared with traditional summary measures

    PubMed Central

    2013-01-01

    Background Plasma glucose levels are important measures in medical care and research, and are often obtained from oral glucose tolerance tests (OGTT) with repeated measurements over 2–3 hours. It is common practice to use simple summary measures of OGTT curves. However, different OGTT curves can yield similar summary measures, and information of physiological or clinical interest may be lost. Our mean aim was to extract information inherent in the shape of OGTT glucose curves, compare it with the information from simple summary measures, and explore the clinical usefulness of such information. Methods OGTTs with five glucose measurements over two hours were recorded for 974 healthy pregnant women in their first trimester. For each woman, the five measurements were transformed into smooth OGTT glucose curves by functional data analysis (FDA), a collection of statistical methods developed specifically to analyse curve data. The essential modes of temporal variation between OGTT glucose curves were extracted by functional principal component analysis. The resultant functional principal component (FPC) scores were compared with commonly used simple summary measures: fasting and two-hour (2-h) values, area under the curve (AUC) and simple shape index (2-h minus 90-min values, or 90-min minus 60-min values). Clinical usefulness of FDA was explored by regression analyses of glucose tolerance later in pregnancy. Results Over 99% of the variation between individually fitted curves was expressed in the first three FPCs, interpreted physiologically as “general level” (FPC1), “time to peak” (FPC2) and “oscillations” (FPC3). FPC1 scores correlated strongly with AUC (r=0.999), but less with the other simple summary measures (−0.42≤r≤0.79). FPC2 scores gave shape information not captured by simple summary measures (−0.12≤r≤0.40). FPC2 scores, but not FPC1 nor the simple summary measures, discriminated between women who did and did not develop

  18. Shape information from glucose curves: functional data analysis compared with traditional summary measures.

    PubMed

    Frøslie, Kathrine Frey; Røislien, Jo; Qvigstad, Elisabeth; Godang, Kristin; Bollerslev, Jens; Voldner, Nanna; Henriksen, Tore; Veierød, Marit B

    2013-01-17

    Plasma glucose levels are important measures in medical care and research, and are often obtained from oral glucose tolerance tests (OGTT) with repeated measurements over 2-3  hours. It is common practice to use simple summary measures of OGTT curves. However, different OGTT curves can yield similar summary measures, and information of physiological or clinical interest may be lost. Our mean aim was to extract information inherent in the shape of OGTT glucose curves, compare it with the information from simple summary measures, and explore the clinical usefulness of such information. OGTTs with five glucose measurements over two hours were recorded for 974 healthy pregnant women in their first trimester. For each woman, the five measurements were transformed into smooth OGTT glucose curves by functional data analysis (FDA), a collection of statistical methods developed specifically to analyse curve data. The essential modes of temporal variation between OGTT glucose curves were extracted by functional principal component analysis. The resultant functional principal component (FPC) scores were compared with commonly used simple summary measures: fasting and two-hour (2-h) values, area under the curve (AUC) and simple shape index (2-h minus 90-min values, or 90-min minus 60-min values). Clinical usefulness of FDA was explored by regression analyses of glucose tolerance later in pregnancy. Over 99% of the variation between individually fitted curves was expressed in the first three FPCs, interpreted physiologically as "general level" (FPC1), "time to peak" (FPC2) and "oscillations" (FPC3). FPC1 scores correlated strongly with AUC (r=0.999), but less with the other simple summary measures (-0.42≤r≤0.79). FPC2 scores gave shape information not captured by simple summary measures (-0.12≤r≤0.40). FPC2 scores, but not FPC1 nor the simple summary measures, discriminated between women who did and did not develop gestational diabetes later in pregnancy. FDA of OGTT

  19. Towards Improved Estimates of Ocean Heat Flux

    NASA Astrophysics Data System (ADS)

    Bentamy, Abderrahim; Hollman, Rainer; Kent, Elisabeth; Haines, Keith

    2014-05-01

    Recommendations and priorities for ocean heat flux research are for instance outlined in recent CLIVAR and WCRP reports, eg. Yu et al (2013). Among these is the need for improving the accuracy, the consistency, and the spatial and temporal resolution of air-sea fluxes over global as well as at region scales. To meet the main air-sea flux requirements, this study is aimed at obtaining and analyzing all the heat flux components (latent, sensible and radiative) at the ocean surface over global oceans using multiple satellite sensor observations in combination with in-situ measurements and numerical model analyses. The fluxes will be generated daily and monthly for the 20-year (1992-2011) period, between 80N and 80S and at 0.25deg resolution. Simultaneous estimates of all surface heat flux terms have not yet been calculated at such large scale and long time period. Such an effort requires a wide range of expertise and data sources that only recently are becoming available. Needed are methods for integrating many data sources to calculate energy fluxes (short-wave, long wave, sensible and latent heat) across the air-sea interface. We have access to all the relevant, recently available satellite data to perform such computations. Yu, L., K. Haines, M. Bourassa, M. Cronin, S. Gulev, S. Josey, S. Kato, A. Kumar, T. Lee, D. Roemmich: Towards achieving global closure of ocean heat and freshwater budgets: Recommendations for advancing research in air-sea fluxes through collaborative activities. INTERNATIONAL CLIVAR PROJECT OFFICE, 2013: International CLIVAR Publication Series No 189. http://www.clivar.org/sites/default/files/ICPO189_WHOI_fluxes_workshop.pdf

  20. Comparison of heat flux measurement techniques during the DIII-D metal ring campaign

    NASA Astrophysics Data System (ADS)

    Barton, J. L.; Nygren, R. E.; Unterberg, E. A.; Watkins, J. G.; Makowski, M. A.; Moser, A.; Rudakov, D. L.; Buchenauer, D.

    2017-12-01

    The heat fluxes expected in the ITER divertor raise concerns about the damage tolerances of tungsten, especially due to thermal transients caused by edge localized modes (ELMs) as well as frequent temperature cycling from high to low extremes. Therefore we are motivated to understand the heat flux conditions that can cause not only enhanced erosion but also bulk thermo-mechanical damage to a tungsten divertor. For the metal ring campaign in DIII-D, tungsten-coated TZM tile inserts were installed making two toroidal arrays of metal tile inserts in the lower divertor. This study examines the deposited heat flux on these rings with embedded thermocouples (TCs) sampling at 10 kHz and compares them to Langmuir probe (LP) and infrared thermography (IRTV) heat flux measurements. We see agreement of the TC, LP, and IRTV data within 20% of the heat flux averaged over the entire discharge, and that all three diagnostics suggest parallel heat flux at the OSP location increases linearly with input heating power. The TC and LP heat flux time traces during the discharge trend together during large changes to the average heat flux. By subtracting the LP measured inter-ELM heat flux from TC data, using a rectangular ELM energy pulse shape, and taking the relative size and duration of each ELM from {{D}}α measurements, we extract the ELM heat fluxes from TC data. This over-estimates the IRTV measured ELM heat fluxes by a factor of 1.9, and could be due to the simplicity of the TC heat flux model and the assumed ELM energy pulse shape. ELM heat fluxes deposited on the inserts are used to model tungsten erosion in this campaign. These TC ELM heat flux estimates are used in addition to IRTV, especially in cases where the IRTV view to the metal ring is obstructed. We observe that some metal inserts were deformed due to exposed leading edges. The thermal conditions on these inserts are investigated with the thermal modeling code ABAQUS using our heat flux measurements when these edges

  1. Solar Scientist Confirm Existence of Flux Ropes on the Sun

    NASA Image and Video Library

    2017-12-08

    Caption: This is an image of magnetic loops on the sun, captured by NASA's Solar Dynamics Observatory (SDO). It has been processed to highlight the edges of each loop to make the structure more clear. A series of loops such as this is known as a flux rope, and these lie at the heart of eruptions on the sun known as coronal mass ejections (CMEs.) This is the first time scientists were able to discern the timing of a flux rope's formation. (Blended 131 Angstrom and 171 Angstrom images of July 19, 2012 flare and CME.) Credit: NASA/Goddard Space Flight Center/SDO ---- On July 18, 2012, a fairly small explosion of light burst off the lower right limb of the sun. Such flares often come with an associated eruption of solar material, known as a coronal mass ejection or CME – but this one did not. Something interesting did happen, however. Magnetic field lines in this area of the sun's atmosphere, the corona, began to twist and kink, generating the hottest solar material – a charged gas called plasma – to trace out the newly-formed slinky shape. The plasma glowed brightly in extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) and scientists were able to watch for the first time the very formation of something they had long theorized was at the heart of many eruptive events on the sun: a flux rope. Eight hours later, on July 19, the same region flared again. This time the flux rope's connection to the sun was severed, and the magnetic fields escaped into space, dragging billions of tons of solar material along for the ride -- a classic CME. "Seeing this structure was amazing," says Angelos Vourlidas, a solar scientist at the Naval Research Laboratory in Washington, D.C. "It looks exactly like the cartoon sketches theorists have been drawing of flux ropes since the 1970s. It was a series of figure eights lined up to look like a giant slinky on the sun." To read more about this new discovery go to: 1.usa

  2. Inverse design of a proper number, shapes, sizes, and locations of coolant flow passages

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1992-01-01

    During the past several years we have developed an inverse method that allows a thermal cooling system designer to determine proper sizes, shapes, and locations of coolant passages (holes) in, say, an internally cooled turbine blade, a scram jet strut, a rocket chamber wall, etc. Using this method the designer can enforce a desired heat flux distribution on the hot outer surface of the object, while simultaneously enforcing desired temperature distributions on the same hot outer surface as well as on the cooled interior surfaces of each of the coolant passages. This constitutes an over-specified problem which is solved by allowing the number, sizes, locations and shapes of the holes to adjust iteratively until the final internally cooled configuration satisfies the over-specified surface thermal conditions and the governing equation for the steady temperature field. The problem is solved by minimizing an error function expressing the difference between the specified and the computed hot surface heat fluxes. The temperature field analysis was performed using our highly accurate boundary integral element code with linearly varying temperature along straight surface panels. Examples of the inverse design applied to internally cooled turbine blades and scram jet struts (coated and non-coated) having circular and non-circular coolant flow passages will be shown.

  3. Characteristics of Ion Distribution Functions in Dipolarizing FluxBundles: THEMIS Event Studies

    NASA Astrophysics Data System (ADS)

    Runov, A.; Artemyev, A.; Birn, J.; Pritchett, P. L.; Zhou, X.

    2016-12-01

    Taking advantage of multi-point observations from repeating configuration of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) fleet with probe separation of 1 to 2 Earth radii (RE) along X, Y, and Z in the geocentric solar magnetospheric system (GSM), we study ion distribution functions observed by the probes during three transient dipolarization events. Comparing observations by the multiple probes, we characterize changes in the ion distribution functions with respect to geocentric distance (X), cross-tail probe separation (Y), and levels of |Bx|, which characterize the distance from the neutral sheet. We examined 2-D and 1-D cuts of the 3-D velocity distribution functions by the {Vb,Vbxv} plane. The results indicate that the velocity distribution functions observed inside the dipolarizing flux bundles (DFB) close to the magnetic equator are often perpendicularly anisotropic for velocities Vth≤v≤2Vth, where Vth is the ion thermal velocity. Ions of higher energies (v>2Vth) are isotropic. Hence, interaction of DFBs and ambient ions may result in the perpendicular anisotropy of the injecting energetic ions, which is an important factor for plasma waves and instabilities excitation and further particle acceleration in the inner magnetosphere. We also compare the observations with the results of test-particles and PIC simulations.

  4. Confined partial filament eruption and its reformation within a stable magnetic flux rope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Navin Chandra; Kayshap, Pradeep; Uddin, Wahab

    2014-05-20

    We present observations of a confined partial eruption of a filament on 2012 August 4, which restores its initial shape within ≈2 hr after eruption. From the Global Oscillation Network Group Hα observations, we find that the filament plasma turns into dynamic motion at around 11:20 UT from the middle part of the filament toward the northwest direction with an average speed of ≈105 km s{sup –1}. A little brightening underneath the filament possibly shows the signature of low-altitude reconnection below the filament eruptive part. In Solar Dynamics Observatory/Atmospheric Imaging Assembly 171 Å images, we observe an activation of right-handedmore » helically twisted magnetic flux rope that contains the filament material and confines it during its dynamical motion. The motion of cool filament plasma stops after traveling a distance of ≈215 Mm toward the northwest from the point of eruption. The plasma moves partly toward the right foot point of the flux rope, while most of the plasma returns after 12:20 UT toward the left foot point with an average speed of ≈60 km s{sup –1} to reform the filament within the same stable magnetic structure. On the basis of the filament internal fine structure and its position relative to the photospheric magnetic fields, we find filament chirality to be sinistral, while the activated enveloping flux rope shows a clear right-handed twist. Thus, this dynamic event is an apparent example of one-to-one correspondence between the filament chirality (sinistral) and the enveloping flux rope helicity (positive). From the coronal magnetic field decay index, n, calculation near the flux rope axis, it is evident that the whole filament axis lies within the domain of stability (i.e., n < 1), which provides the filament stability despite strong disturbances at its eastern foot point.« less

  5. "Phase capture" in amblyopia: the influence function for sampled shape.

    PubMed

    Levi, Dennis M; Li, Roger W; Klein, Stanley A

    2005-06-01

    This study was concerned with what stimulus information humans with amblyopia use to judge the shape of simple objects. We used a string of four Gabor patches to define a contour. A fifth, center patch served as the test pattern. The observers' task was to judge the location of the test pattern relative to the contour. The contour was either a straight line, or an arc with positive or negative curvature. We asked whether phase shifts in the inner or outer pairs of patches distributed along the contour influence the perceived shape. That is, we measured the phase shift influence function. Our results, consistent with previous studies, show that amblyopes are imprecise in shape discrimination, showing elevated thresholds for both lines and curves. We found that amblyopes often make much larger perceptual errors (biases) than do normal observers in the absence of phase shifts. These errors tend to be largest for curved shapes and at large separations. In normal observers, shifting the phase of inner patches of the string by 0.25 cycle results in almost complete phase capture (attraction) at the smallest separation (2 lambda), and the capture effect falls off rapidly with separation. A 0.25 cycle shift of the outer pair of patches has a much smaller effect, in the opposite direction (repulsion). While several amblyopic observers showed reduced capture by the phase of the inner patches, to our surprise, several of the amblyopes were sensitive to the phase of the outer patches. We used linear multiple regression to determine the weights of all cues to the task: the carrier phase of the inner patches, carrier phase of the outer patches and the envelope of the outer patches. Compared to normal observers, some amblyopes show a weaker influence of the phase of the inner patches, and a stronger influence of both the phase and envelope of the outer patches. We speculate that this may be a consequence of abnormal "crowding" of the inner patches by the outer ones.

  6. Ecosystem-scale fluxes in seminatural Pyrenean grasslands: role of annual dynamics of plant functional types

    NASA Astrophysics Data System (ADS)

    Altimir, Nuria; Ibañez, Mercedes; Elbers, Jan; Rota, Cristina; Arias, Claudia; Carrara, Arnaud; Nogues, Salvador; Sebastia, Maria-Teresa

    2013-04-01

    The net ecosystem exchange (NEE) and the annual C balance of a site are in general modulated by light, temperature and availability of water and other resources to the plants. In grasslands, NEE is expected to depend strongly on the vegetation with a relationship that can be summarized by the above-ground biomass, its amount and dynamics. Any factor controlling the amount of green biomass is expected to have a strong impact on the short-term NEE, such as amount of solar radiation, water availability and grazing pressure. These controls are modulated differently depending on the plant functional type enduring them. Furthermore, as different guilds follow different functional strategies for optimization of the resources, they also present different patterns of change in their capacities such as photosynthetic fixation, belowground C allocation, and C loss via respiration. We examined these relationships at several semi-natural pastures to determine how the seasonal distribution of plant functional types is detected in the short-term ecosystem exchange and what role it plays. We have looked into these patterns to determine the general variation of key processes and whether different temporal patterns arise between different guilds. The study sites are in the Pyrenees, on the mountain pastures of La Bertolina, Alinyà, and Castellar at 1300, 1700, 1900 m a.s.l. respectively. We performed ecosystem-scale flux measurements by means of micrometeorologial stations combined with a thorough description of the vegetation including below- and above-ground biomass and leaf area as well as monitoring of natural abundance of C isotopes, discriminated by plant functional types. We present here the results of the study.

  7. Structural Control of Metabolic Flux

    PubMed Central

    Sajitz-Hermstein, Max; Nikoloski, Zoran

    2013-01-01

    Organisms have to continuously adapt to changing environmental conditions or undergo developmental transitions. To meet the accompanying change in metabolic demands, the molecular mechanisms of adaptation involve concerted interactions which ultimately induce a modification of the metabolic state, which is characterized by reaction fluxes and metabolite concentrations. These state transitions are the effect of simultaneously manipulating fluxes through several reactions. While metabolic control analysis has provided a powerful framework for elucidating the principles governing this orchestrated action to understand metabolic control, its applications are restricted by the limited availability of kinetic information. Here, we introduce structural metabolic control as a framework to examine individual reactions' potential to control metabolic functions, such as biomass production, based on structural modeling. The capability to carry out a metabolic function is determined using flux balance analysis (FBA). We examine structural metabolic control on the example of the central carbon metabolism of Escherichia coli by the recently introduced framework of functional centrality (FC). This framework is based on the Shapley value from cooperative game theory and FBA, and we demonstrate its superior ability to assign “share of control” to individual reactions with respect to metabolic functions and environmental conditions. A comparative analysis of various scenarios illustrates the usefulness of FC and its relations to other structural approaches pertaining to metabolic control. We propose a Monte Carlo algorithm to estimate FCs for large networks, based on the enumeration of elementary flux modes. We further give detailed biological interpretation of FCs for production of lactate and ATP under various respiratory conditions. PMID:24367246

  8. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    PubMed

    Wu, Hau-Tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong

    2016-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  9. Using Simplistic Shape/Surface Models to Predict Brightness in Estimation Filters

    NASA Astrophysics Data System (ADS)

    Wetterer, C.; Sheppard, D.; Hunt, B.

    The prerequisite for using brightness (radiometric flux intensity) measurements in an estimation filter is to have a measurement function that accurately predicts a space objects brightness for variations in the parameters of interest. These parameters include changes in attitude and articulations of particular components (e.g. solar panel east-west offsets to direct sun-tracking). Typically, shape models and bidirectional reflectance distribution functions are combined to provide this forward light curve modeling capability. To achieve precise orbit predictions with the inclusion of shape/surface dependent forces such as radiation pressure, relatively complex and sophisticated modeling is required. Unfortunately, increasing the complexity of the models makes it difficult to estimate all those parameters simultaneously because changes in light curve features can now be explained by variations in a number of different properties. The classic example of this is the connection between the albedo and the area of a surface. If, however, the desire is to extract information about a single and specific parameter or feature from the light curve, a simple shape/surface model could be used. This paper details an example of this where a complex model is used to create simulated light curves, and then a simple model is used in an estimation filter to extract out a particular feature of interest. In order for this to be successful, however, the simple model must be first constructed using training data where the feature of interest is known or at least known to be constant.

  10. Ligand-binding pocket shape differences between S1P1 and S1P3 determine efficiency of chemical probe identification by uHTS

    PubMed Central

    Schürer, Stephan C.; Brown, Steven J.; Cabrera, Pedro Gonzales; Schaeffer, Marie-Therese; Chapman, Jacqueline; Jo, Euijung; Chase, Peter; Spicer, Tim; Hodder, Peter; Rosen, Hugh

    2008-01-01

    We have studied the Sphingosine 1-phosphate (S1P) receptor system to better understand why certain molecular targets within a closely related family are much more tractable when identifying compelling chemical leads. Five medically important G protein-coupled receptors for S1P regulate heart rate, coronary artery caliber, endothelial barrier integrity, and lymphocyte trafficking. Selective S1P receptor agonist probes would be of great utility to study receptor subtype-specific function. Through systematic screening of the same libraries, we identified novel selective agonists chemotypes for each of the S1P1 and S1P3 receptors. uHTS for S1P1 was more effective than for S1P3, with many selective, low nanomolar hits of proven mechanism emerging for. Receptor structure modeling and ligand docking reveal differences between the receptor binding pockets, which are the basis for sub-type selectivity. Novel selective agonists interact primarily in the hydrophobic pocket of the receptor in the absence of head-group interactions. Chemistry-space and shape-based analysis of the screening libraries in combination with the binding models explain the observed differential hit rates and enhanced efficiency for lead discovery for S1P1 vs. S1P3 in this closely related receptor family. PMID:18590333

  11. Employment of sawtooth-shaped-function excitation signal and oversampling for improving resistance measurement accuracy

    NASA Astrophysics Data System (ADS)

    Lin, Ling; Li, Shujuan; Yan, Wenjuan; Li, Gang

    2016-10-01

    In order to achieve higher measurement accuracy of routine resistance without increasing the complexity and cost of the system circuit of existing methods, this paper presents a novel method that exploits a shaped-function excitation signal and oversampling technology. The excitation signal source for resistance measurement is modulated by the sawtooth-shaped-function signal, and oversampling technology is employed to increase the resolution and the accuracy of the measurement system. Compared with the traditional method of using constant amplitude excitation signal, this method can effectively enhance the measuring accuracy by almost one order of magnitude and reduce the root mean square error by 3.75 times under the same measurement conditions. The results of experiments show that the novel method can attain the aim of significantly improve the measurement accuracy of resistance on the premise of not increasing the system cost and complexity of the circuit, which is significantly valuable for applying in electronic instruments.

  12. Shaping Crystal-Crystal Phase Transitions

    NASA Astrophysics Data System (ADS)

    Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon

    Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.

  13. Neoclassical transport in toroidal plasmas with nonaxisymmetric flux surfaces

    DOE PAGES

    Belli, Emily A.; Candy, Jefferey M.

    2015-04-15

    The capability to treat nonaxisymmetric flux surface geometry has been added to the drift-kinetic code NEO. Geometric quantities (i.e. metric elements) are supplied by a recently-developed local 3D equilibrium solver, allowing neoclassical transport coefficients to be systematically computed while varying the 3D plasma shape in a simple and intuitive manner. Code verification is accomplished via detailed comparison with 3D Pfirsch–Schlüter theory. A discussion of the various collisionality regimes associated with 3D transport is given, with an emphasis on non-ambipolar particle flux, neoclassical toroidal viscosity, energy flux and bootstrap current. As a result, we compute the transport in the presence ofmore » ripple-type perturbations in a DIII-D-like H-mode edge plasma.« less

  14. Comparisons between TiO2- and SiO2-flux assisted TIG welding processes.

    PubMed

    Tseng, Kuang-Hung; Chen, Kuan-Lung

    2012-08-01

    This study investigates the effects of flux compounds on the weld shape, ferrite content, and hardness profile in the tungsten inert gas (TIG) welding of 6 mm-thick austenitic 316 L stainless steel plates, using TiO2 and SiO2 powders as the activated fluxes. The metallurgical characterizations of weld metal produced with the oxide powders were evaluated using ferritoscope, optical microscopy, and Vickers microhardness test. Under the same welding parameters, the penetration capability of TIG welding with TiO2 and SiO2 fluxes was approximately 240% and 292%, respectively. A plasma column made with SiO2 flux exhibited greater constriction than that made with TiO2 flux. In addition, an anode root made with SiO2 flux exhibited more condensation than that made with TiO2 flux. Results indicate that energy density of SiO2-flux assisted TIG welding is higher than that of TiO2-flux assisted TIG welding.

  15. SPRUCE S1 Bog Sphagnum CO2 Flux Measurements and Partitioning into Re and GPP

    DOE Data Explorer

    Walker, A. P. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Carter, K. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Nettles, W. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Philips, J. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Sebestyen, S. D. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Weston, D. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2015-06-01

    This data set provides (1) the results of in-situ Sphagnum-peat hourly net ecosystem exchange (NEE) measured using a LICOR 8100 gas exchange system and (2) the component fluxes -- gross primary production (GPP) and ecosystem respiration (Re), derived using empirical regressions.NEE measurements were made from 6 June to 6 November 2014 and 20 March to 10 May 2015. Three 8100 chambers per dominant species (S. magellanicum or S. fallax) were placed in the S1 Bog in relatively open ground where there was no obvious hummock-hollow microtopography. The 8100 chambers were not located in the SPRUCE experimental enclosures.

  16. Shape transition with temperature of the pear-shaped nuclei in covariant density functional theory

    DOE PAGES

    Zhang, Wei; Niu, Yi-Fei

    2017-11-10

    The shape evolutions of the pear-shaped nucleimore » $$^{224}$$Ra and even-even $$^{144-154}$$Ba with temperature are investigated by the finite-temperature relativistic mean field theory with the treatment of pairing correlations by the BCS approach. We study the free energy surfaces as well as the bulk properties including deformations, pairing gaps, excitation energy, and specific heat for the global minimum. For $$^{224}$$Ra, three discontinuities found in the specific heat curve indicate the pairing transition at temperature 0.4 MeV, and two shape transitions at temperatures 0.9 and 1.0 MeV, namely one from quadrupole-octupole deformed to quadrupole deformed, and the other from quadrupole deformed to spherical. Furthermore, the gaps at $N$=136 and $Z$=88 are responsible for stabilizing the octupole-deformed global minimum at low temperatures. Similar pairing transition at $$T\\sim$$0.5 MeV and shape transitions at $T$=0.5-2.2 MeV are found for even-even $$^{144-154}$$Ba. Finally, the transition temperatures are roughly proportional to the corresponding deformations at the ground states.« less

  17. Shape evolution of 72,74Kr with temperature in covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Niu, Yi-Fei

    2017-09-01

    The rich phenomena of deformations in neutron-deficient krypton isotopes, such as shape evolution with neutron number and shape coexistence, have attracted the interest of nuclear physicists for decades. It is interesting to study such shape phenomena using a novel way, e.g. by thermally exciting the nucleus. In this work, we develop the finite temperature covariant density functional theory for axially deformed nuclei with the treatment of pairing correlations by the BCS approach, and apply this approach for the study of shape evolution in 72,74Kr with increasing temperature. For 72Kr, with temperature increasing, the nucleus firstly experiences a relatively quick weakening in oblate deformation at temperature T ˜0.9 MeV, and then changes from oblate to spherical at T ˜2.1 MeV. For 74Kr, its global minimum is at quadrupole deformation β 2 ˜ -0.14 and abruptly changes to spherical at T˜ 1.7 MeV. The proton pairing transition occurs at critical temperature 0.6 MeV following the rule T c=0.6Δ p(0), where Δ p(0) is the proton pairing gap at zero temperature. The signatures of the above pairing transition and shape changes can be found in the specific heat curve. The single-particle level evolutions with temperature are presented. Supported by National Natural Science Foundation of China (11105042, 11305161, 11505157), Open Fund of Key Laboratory of Time and Frequency Primary Standards, CAS, and Support from Henan Administration of Foreign Experts Affairs

  18. The impact of photon flight path on S1 pulse shape analysis in liquid xenon two-phase detectors

    NASA Astrophysics Data System (ADS)

    Moongweluwan, M.

    2016-02-01

    The LUX dark matter search experiment is a 350 kg dual-phase xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The success of two-phase xenon detectors for dark matter searches relies on their ability to distinguish electron recoil (ER) background events from nuclear recoil (NR) signal events. Typically, the NR-ER discrimination is obtained from the ratio of the electroluminescence light (S2) to the prompt scintillation light (S1). Analysis of the S1 pulse shape is an additional discrimination technique that can be used to distinguish NR from ER. Pulse-shape NR-ER discrimination can be achieved based on the ratio of the de-excitation processes from singlet and triplet states that generate the S1. The NR S1 is dominated by the de-excitation process from singlet states with a time constant of about 3 ns while the ER S1 is dominated by the de-excitation process from triplet states with a time constant of about 24 ns. As the size of the detectors increases, the variation in the S1 photon flight path can become comparable to these decay constants, reducing the utility of pulse-shape analysis to separate NR from ER. The effect of path length variations in the LUX detector has been studied using the results of simulations and the impact on the S1 pulse shape analysis is discussed.

  19. On the intrinsic spectrum of PKS 2155-304 from the H.E.S.S. 2003 data.

    NASA Astrophysics Data System (ADS)

    Costamante, L.; Aharonian, F.; Benbow, W.; Horns, D.; Reimer, A.; Reimer, O.; Rowell, G.; H.E.S.S. Collaboration

    2004-08-01

    In 2003, PKS 2155-304 (z=0.116) has been significantly detected by H.E.S.S. ( 44sigma) at TeV energies, with an average spectrum of Γ =3.3. Due to absorption by the Extragalactic Background Light (EBL), the intrinsic spectrum is heavily modified both in shape and intensity. To correct for this effect, and see where could be the Inverse Compton (IC) peak of the SED, we used 3 EBL models (representatives of 3 different flux levels for the stellar peak component). The resulting TeV spectrum has a peak around 1 TeV for stellar peak fluxes above the Primack (2001) calculation, while the spectrum is steeper than 2 (thus locating the IC peak <200 GeV) for fluxes below. With bulk Lorentz factors δ =20-30 (typically used for this object), in the first case the IC peak is in the Klein-Nishina transition region, while in the other case it is in the Thomson regime, and in agreement with the commonly fitted source parameters (e.g. Tavecchio et al. 1998). The constraint on δ given by transparency to 1-2 TeV photons is δ >19 (for historical SED fluxes and 2 hrs variability timescale).

  20. Effects of electrode bevel angle on argon arc properties and weld shape

    NASA Astrophysics Data System (ADS)

    Dong, W. C.; Lu, S. P.; Li, D. Z.; Y Li, Y.

    2012-07-01

    A numerical modeling of coupled welding arc with weld pool is established using FLUENT software for moving shielded GTA welding to systematically investigate the effects of electrode bevel angle on the argon arc properties as well as the weld shape on SUS304 stainless steel. The calculated results show that the argon arc is constricted and the peak values of heat flux and shear stress on the weld pool decrease with increasing electrode bevel angle, while the radial distribution of heat flux and shear stress varying slightly. The weld shape is controlled by the pool flow patterns driving by the surface tension, gas shear stress, electromagnetic force and buoyancy. The Marangoni convection induced by surface tension plays an important role on weld shapes. All the weld shapes are wide and shallow with low weld metal oxygen content, while the narrow and deep weld shapes form under high weld metal oxygen content, which is related with the oxygen concentration in the shielding gas. The weld depth/width (D/W) ratio increases with increasing electrode bevel angle for high weld metal oxygen content and is not sensitive to the electrode bevel angle under low weld metal oxygen content. The calculated results for the weld shape, weld size and weld D/W ratio agree well with the experimental ones.

  1. GAMSOR: Gamma Source Preparation and DIF3D Flux Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M. A.; Lee, C. H.; Hill, R. N.

    2017-06-28

    Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron capture reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problemsmore » with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, and then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence.« less

  2. Growth and characterization of ZnO multipods on functional surfaces with different sizes and shapes of Ag particles

    NASA Astrophysics Data System (ADS)

    A, Kamalianfar; S, A. Halim; Mahmoud Godarz, Naseri; M, Navasery; Fasih, Ud Din; J, A. M. Zahedi; Kasra, Behzad; K, P. Lim; A Lavari, Monghadam; S, K. Chen

    2013-08-01

    Three-dimensional ZnO multipods are successfully synthesized on functional substrates using the vapor transport method in a quartz tube. The functional surfaces, which include two different distributions of Ag nanoparticles and a layer of commercial Ag nanowires, are coated onto silicon substrates before the growth of ZnO nanostructures. The structures and morphologies of the ZnO/Ag heterostructures are investigated using X-ray diffraction and field emission scanning electron microscopy. The sizes and shapes of the Ag particles affect the growth rates and initial nucleations of the ZnO structures, resulting in different numbers and shapes of multipods. They also influence the orientation and growth quality of the rods. The optical properties are studied by photoluminescence, UV-vis, and Raman spectroscopy. The results indicate that the surface plasmon resonance strongly depends on the sizes and shapes of the Ag particles.

  3. Effects of active flux on plasma behavior and weld shape in laser welding of X5CrNi189 stainless steel

    NASA Astrophysics Data System (ADS)

    Dai, Hongbin; Peng, Jun

    2016-11-01

    In this paper, stainless steel was welded by active flux-aided laser welding method. The effects of single active flux (Cr2O3, SiO2 and TiO2) and composite active flux on laser welding were studied. In the welding process, laser plasma behavior was recorded by a high-speed imaging system. The results show that, with the addition of active flux, the absorption of laser energy and melting efficiency increase. In the laser power of 750 W, effects of active flux on weld depth to width ratio are given by the order: composite active flux > SiO2 > Cr2O3 > TiO2. The effect of composite active flux is the most significant and it can increase the weld depth to width ratio to 85%. Active flux can restrict the laser plasma. With the addition of composite active flux, the projected area of laser plasma obtained obviously reduced, and it can be reduced by 41.39%. Active flux cannot obviously change the main components in weld zone, but can change the grains of austenite and ferrite.

  4. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform

    PubMed Central

    Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong

    2016-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features. PMID:27304979

  5. Superior adsorption and photoinduced carries transfer behaviors of dandelion-shaped Bi2S3@MoS2: experiments and theory

    PubMed Central

    Li, Mengjiao; Wang, Junyong; Zhang, Peng; Deng, Qinglin; Zhang, Jinzhong; Jiang, Kai; Hu, Zhigao; Chu, Junhao

    2017-01-01

    The enhanced light-harvesting capacity and effective separation of photogenerated carriers in fantastic hierarchical heterostructures enjoy striking attention for potential applications in the field of solar cells and photocatalysis. A three-dimensional (3D) dandelion-shaped hierarchical Bi2S3 microsphere compactly decorated with wing-shaped few layered MoS2 lamella (D-BM) was fabricated via a facile hydrothermal self-assembly process. Especially, polyethylene glycol (PEG) has been proven as the vital template to form D-BM microsphere. Importantly, the as-prepared D-BM microsphere presents pH-dependent superior adsorption behavior and remarkable visible light photocatalytic activity for degradation of organic dyestuffs (Rhodamine B/RhB and Methylene blue/MB), far exceeding those for the pure Bi2S3 and MoS2. It is understandable that D-BM with high surface area possesses more active sites and promotes light utilization due to the unique porous structure with outspread wings. Besides, based on the experiments and theoretical calculations, the staggered type II band alignment of D-BM permits the charge injection from Bi2S3 to MoS2, subsequently accelerates the separation and restrains the recombination of carriers, leading to excellent photocatalytic activity, as well as the photoconductance and photoresponse performance (with Ilight/Idark ratio 567). PMID:28211893

  6. Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums

    NASA Astrophysics Data System (ADS)

    Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Monteil, M. C.; Liberatore, S.; Park, H. S.; Amendt, P.; Robey, H.; Sorce, C.; Li, C. K.; Seguin, F.; Rosenberg, M.; Petrasso, R.; Glebov, V.; Stoeckl, C.

    2010-01-01

    Rugby-shaped hohlraums have been suggested as a way to enhance x-ray drive in the indirect drive approach to inertial confinement fusion. This Letter presents an experimental comparison of rugby-shaped and cylinder hohlraums used for D2 and DHe3-filled capsules implosions on the Omega laser facility, demonstrating an increase of x-ray flux by 18% in rugby-shaped hohlraums. The highest yields to date for deuterium gas implosions in indirect drive on Omega (1.5×1010 neutrons) were obtained, allowing for the first time the measurement of a DD burn history. Proton spectra measurements provide additional validation of the higher drive in rugby-shaped hohlraums.

  7. Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel

    NASA Astrophysics Data System (ADS)

    Guckenberger, Achim; Kihm, Alexander; John, Thomas; Wagner, Christian; Gekle, Stephan

    Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in-vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm/s) and high velocities (>3 mm/s) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions.

  8. Studies of numerical algorithms for gyrokinetics and the effects of shaping on plasma turbulence

    NASA Astrophysics Data System (ADS)

    Belli, Emily Ann

    Advanced numerical algorithms for gyrokinetic simulations are explored for more effective studies of plasma turbulent transport. The gyrokinetic equations describe the dynamics of particles in 5-dimensional phase space, averaging over the fast gyromotion, and provide a foundation for studying plasma microturbulence in fusion devices and in astrophysical plasmas. Several algorithms for Eulerian/continuum gyrokinetic solvers are compared. An iterative implicit scheme based on numerical approximations of the plasma response is developed. This method reduces the long time needed to set-up implicit arrays, yet still has larger time step advantages similar to a fully implicit method. Various model preconditioners and iteration schemes, including Krylov-based solvers, are explored. An Alternating Direction Implicit algorithm is also studied and is surprisingly found to yield a severe stability restriction on the time step. Overall, an iterative Krylov algorithm might be the best approach for extensions of core tokamak gyrokinetic simulations to edge kinetic formulations and may be particularly useful for studies of large-scale ExB shear effects. The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the nonlinear GS2 gyrokinetic code with analytic equilibria based on interpolations of representative JET-like shapes. High shaping is found to be a stabilizing influence on both the linear ITG instability and nonlinear ITG turbulence. A scaling of the heat flux with elongation of chi ˜ kappa-1.5 or kappa-2 (depending on the triangularity) is observed, which is consistent with previous gyrofluid simulations. Thus, the GS2 turbulence simulations are explaining a significant fraction, but not all, of the empirical elongation scaling. The remainder of the scaling may come from (1) the edge boundary conditions for core turbulence, and (2) the larger Dimits nonlinear critical temperature gradient shift due to the

  9. The deformation of flux tubes in the solar wind with applications to the structure of magnetic clouds and CMEs

    NASA Technical Reports Server (NTRS)

    Cargill, Peter J.; Chen, James; Spicer, D. S.; Zalesak, S. T.

    1994-01-01

    Two dimensional magnetohydrodynamic simulations of the distortion of a magnetic flux tube, accelerated through ambient solar wind plasma, are presented. Vortices form on the trailing edge of the flux tube, and couple strongly to its interior. If the flux tube azimuthal field is weak, it deforms into an elongated banana-like shape after a few Alfven transit times. A significant azimuthal field component inhibits this distortion. In the case of magnetic clouds in the solar wind, it is suggested that the shape observed at 1 AU was determined by distortion of the cloud in the inner heliosphere. Distortion of the cloud beyond 1 AU takes many days. It is estimated that effective drag coefficients slightly greater than unity are appropriate for modeling flux tube propagation. Synthetic magnetic field profiles as would be seen by a spacecraft traversing the cloud are presented.

  10. AmeriFlux US-KFS Kansas Field Station

    DOE Data Explorer

    Brunsell, Nathaniel [Kansas University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-KFS Kansas Field Station. Site Description - The study is an abandoned grassland at the Kansas Field Station and Ecological Reserves. The site is located within the tallgrass prairie-deciduous forest ecotonal area. The site was subjected to intensive agriculture from the 1940s through the late 1960s. In the mid-1970s, the site was planted with the cool-season grass Bromus inermis and used as a hay meadow until 1987. Then, mowing and burning approximately every five years maintained it as a grassland until 2007, when the eddy flux tower was installed.

  11. Vadose zone controls on damping of climate-induced transient recharge fluxes in U.S. agroecosystems

    NASA Astrophysics Data System (ADS)

    Gurdak, Jason

    2017-04-01

    Understanding the physical processes in the vadose zone that link climate variability with transient recharge fluxes has particular relevance for the sustainability of groundwater-supported irrigated agriculture and other groundwater-dependent ecosystems. Natural climate variability on interannual to multidecadal timescales has well-documented influence on precipitation, evapotranspiration, soil moisture, infiltration flux, and can augment or diminish human stresses on water resources. Here the behavior and damping depth of climate-induced transient water flux in the vadose zone is explored. The damping depth is the depth in the vadose zone that the flux variation damps to 5% of the land surface variation. Steady-state recharge occurs when the damping depth is above the water table, and transient recharge occurs when the damping depth is below the water table. Findings are presented from major agroecosystems of the United States (U.S.), including the High Plains, Central Valley, California Coastal Basin, and Mississippi Embayment aquifer systems. Singular spectrum analysis (SSA) is used to identify quasi-periodic signals in precipitation and groundwater time series that are coincident with the Arctic Oscillation (AO) (6-12 mo cycle), Pacific/North American oscillation (PNA) (<1-4 yr cycle), El Niño/Southern Oscillation (ENSO) (2-7 yr cycle), North Atlantic Oscillation (NAO) (3-6 yr cycle), Pacific Decadal Oscillation (PDO) (15-30 yr cycle), and Atlantic Multidecadal Oscillation (AMO) (50-70 yr cycle). SSA results indicate that nearly all of the quasi-periodic signals in the precipitation and groundwater levels have a statistically significant lag correlation (95% confidence interval) with the AO, PNA, ENSO, NAO, PDO, and AMO indices. Results from HYDRUS-1D simulations indicate that transient water flux through the vadose zone are controlled by highly nonlinear interactions between mean infiltration flux and infiltration period related to the modes of climate

  12. The column strength of aluminum alloy 75S-T extruded shapes

    NASA Technical Reports Server (NTRS)

    Holt, Marshall; Leary, J R

    1946-01-01

    Because the tensile strength and tensile yield strength of alloy 75S-T are appreciably higher than those of the materials used in the tests leading to the use of the straight-line column curve, it appeared advisable to establish the curve of column strength by test rather than by extrapolation of relations determined empirically in the earlier tests. The object of this investigation was to determine the curve of column strength for extruded aluminum alloy 75S-T. In addition to three extruded shapes, a rolled-and-drawn round rod was included. Specimens of various lengths covering the range of effective slenderness ratios up to about 100 were tested.

  13. Mass, heat and freshwater fluxes in the South Indian Ocean

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng

    1986-01-01

    Six hydrographic sections were used to examine the circulation and property fluxes in the South Indian Ocean from 10 to 32 deg S. The calculations were made by applying an inverse method to the data. In the interior of the South Indian Ocean, the geostrophic flow is generally northward. At 18 deg S, the northward interior mass flux is balanced by the southward Ekman mass flux at the surface, whereas at 32 deg S the northward interior mass flux is balanced by the southward mass flux of the Agulhas Current. There is a weak, southward mass flux of 6 x 10 to the 9th kg/s in the Mozambique Channel. The rate of water exchange between the Pacific Ocean and the Indian Ocean is dependent on the choice of the initial reference level used in the inverse calculation. The choice of 1500 m, the depth of the deep oxygen minimum, has led to a flux of water from the Pacific Ocean to the Indian Ocean at a rate of 6.6 x 10 to the 9th kg/s. Heat flux calculations indicate that the Indian Ocean is exporting heat to the rest of the world's oceans at a rate of -0.69 x 10 to the 15th W at 18 deg S and -0.25 x 10 to the 15th W at 32 deg S (negative values being southward).

  14. High-Temperature Shape Memory Polymers

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  15. AC Electric Field Activated Shape Memory Polymer Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  16. Functional Differentiation of Three Pores for Effective Sulfur Confinement in Li-S Battery.

    PubMed

    Wang, Qian; Yang, Minghui; Wang, Zhen-Bo; Li, Chao; Gu, Da-Ming

    2018-03-01

    Shuttle effect of the dissolved intermediates is regarded as the primary cause that leads to fast capacity degradation of Li-S battery. Herein, a microporous carbon-coated sulfur composite with novel rambutan shape (R-S@MPC) is synthesized from microporous carbon-coated rambutan-like zinc sulfide (R-ZnS@MPC), via an in situ oxidation process. The R-ZnS is employed as both template and sulfur precursor. The carbon frame of R-S@MPC composite possesses three kinds of pores that are distinctly separated from each other in space and are endowed with the exclusive functions. The central macropore serves as buffer pool to accommodate the dissolved lithium polysulfides (LPSs) and volumetric variation during cycling. The marginal straight-through mesoporous, connected with the central macropore, takes the responsibility of sulfur storage. The micropores, evenly distributed in the outer carbon shell of the as-synthesized R-S@MPC, enable the blockage of LPSs. These pores are expected to perform their respective single function, and collaborate synergistically to suppress the sulfur loss. Therefore, it delivers an outstanding cycling stability, decay rate of 0.013% cycle -1 after 500 cycles at 1 C, when the sulfur loading is kept at 4 mg cm -2 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Radon flux at King George Island, Antarctic Peninsula.

    PubMed

    Evangelista, H; Pereira, E B

    2002-01-01

    Fluxes of 222Rn from the ice-free terrain to the atmosphere were measured directly, for the first time, at the Brazilian Antarctic Station Ferraz during the summer field campaign of 1998/99. Average value for the flux was 7.7 +/- 4.8 x 10(-2) atoms cm(-2) s(-1) and it ranged between 0.21 x 10(-2) atoms cm(-2) s(-1) and 28 x l0(-2) atoms cm(-2) s(-1). The average flux of 220Rn was estimated to be 23 atoms cm(-2) s(-1), using a combination of two techniques: nuclear track detection and alpha spectrometry of radon daughters. It was found that the production of radon by uranium (41.54 + /-7.17 Bq kg(-1)) and thorium (57.97 +/- 12.14 Bq kg(-1)) equivalent soil contents, and a diffusion coefficient derived from experimental data for the local terrain could account for this average flux. Nevertheless, the large surges of 222Rn in the atmosphere frequently observed for that area could not be explained by this flux only.

  18. Type IIB flux vacua from G-theory II

    NASA Astrophysics Data System (ADS)

    Candelas, Philip; Constantin, Andrei; Damian, Cesar; Larfors, Magdalena; Morales, Jose Francisco

    2015-02-01

    We find analytic solutions of type IIB supergravity on geometries that locally take the form Mink × M 4 × ℂ with M 4 a generalised complex manifold. The solutions involve the metric, the dilaton, NSNS and RR flux potentials (oriented along the M 4) parametrised by functions varying only over ℂ. Under this assumption, the supersymmetry equations are solved using the formalism of pure spinors in terms of a finite number of holomorphic functions. Alternatively, the solutions can be viewed as vacua of maximally supersymmetric supergravity in six dimensions with a set of scalar fields varying holomorphically over ℂ. For a class of solutions characterised by up to five holomorphic functions, we outline how the local solutions can be completed to four-dimensional flux vacua of type IIB theory. A detailed study of this global completion for solutions with two holomorphic functions has been carried out in the companion paper [1]. The fluxes of the global solutions are, as in F-theory, entirely codified in the geometry of an auxiliary K3 fibration over ℂℙ1. The results provide a geometric construction of fluxes in F-theory.

  19. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.

    PubMed

    Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph

    2008-12-01

    Forest transpiration estimates are frequently based on xylem sap flux measurements in the outer sections of the hydro-active stem sapwood. We used Granier's constant-heating technique with heating probes at various xylem depths to analyze radial patterns of sap flux density in the sapwood of seven broad-leaved tree species differing in wood density and xylem structure. Study aims were to (1) compare radial sap flux density profiles between diffuse- and ring-porous trees and (2) analyze the relationship between hydro-active sapwood area and stem diameter. In all investigated species except the diffuse-porous beech (Fagus sylvatica L.) and ring-porous ash (Fraxinus excelsior L.), sap flux density peaked at a depth of 1 to 4 cm beneath the cambium, revealing a hump-shaped curve with species-specific slopes. Beech and ash reached maximum sap flux densities immediately beneath the cambium in the youngest annual growth rings. Experiments with dyes showed that the hydro-active sapwood occupied 70 to 90% of the stem cross-sectional area in mature trees of diffuse-porous species, whereas it occupied only about 21% in ring-porous ash. Dendrochronological analyses indicated that vessels in the older sapwood may remain functional for 100 years or more in diffuse-porous species and for up to 27 years in ring-porous ash. We conclude that radial sap flux density patterns are largely dependent on tree species, which may introduce serious bias in sap-flux-derived forest transpiration estimates, if non-specific sap flux profiles are assumed.

  20. What Shaped Elias 2-27's Disk?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    The young star Elias 2-27 is surrounded by a massive disk with spectacular spiral arms. A team of scientists from University of Cambridges Institute of Astronomy has now examined what might cause this disks appearance.Top: ALMA 1.3-mm observations of Elias 2-27s spiral arms, processed with an unsharp masking filter. Two symmetric spiral arms, a bright inner ellipse, and two dark crescents are clearly visible. Bottom: a deprojection of the top image (i.e., what the system would look like face-on). [Meru et al. 2017]ALMA-Imaged Spiral ArmsWith the dawn of new telescopes such as the Atacama Large Millimeter/submillimeter Array, were now able to study the birth of young stars and their newly forming planetary systems in more detail than ever before. But these new images require new models and interpretations!Case in point: Elias 2-27 is a low-mass star thats only a million years old and is surrounded by an unusually massive disk of gas and dust. Recent spatially-resolved ALMA observations of Elias 2-27 have revealed the stunning structure of the stars disk: it contains two enormous, symmetric spiral arms, as well as additional features interior to the spirals.What caused the disk to develop this structure? Led by Farzana Meru, a group of Institute of Astronomy researchers has run a series of simulations that explore different ways that Elias 2-27s disk might have evolved into the shape we see today.Modeling a DiskMeru and collaborators performed a total of 72 three-dimensional smoothed particle hydrodynamics simulations tracking 250,000 gas particles in a model disk around a star like Elias 2-27. They then modeled the transfer of energy through these simulated disks and produced synthetic ALMA observations based on the outcomes.Left: Synthetic ALMA observations of disks shaped by an internal companion (top), an external companion (middle), and gravitational instability within the disk (bottom). Right: Deprojections of the images on the left. Scales are the same as in

  1. Hysteresis Bearingless Slice Motors with Homopolar Flux-biasing.

    PubMed

    Noh, Minkyun; Gruber, Wolfgang; Trumper, David L

    2017-10-01

    We present a new concept of bearingless slice motor that levitates and rotates a ring-shaped solid rotor. The rotor is made of a semi-hard magnetic material exhibiting magnetic hysteresis, such as D2 steel. The rotor is radially biased with a homopolar permanent-magnetic flux, on which the stator can superimpose 2-pole flux to generate suspension forces. By regulating the suspension forces based on position feedback, the two radial rotor degrees of freedom are actively stabilized. The two tilting degrees of freedom and the axial translation are passively stable due to the reluctance forces from the bias flux. In addition, the stator can generate a torque by superimposing 6- pole rotating flux, which drags the rotor via hysteresis coupling. This 6-pole flux does not generate radial forces in conjunction with the homopolar flux or 2-pole flux, and therefore the suspension force generation is in principle decoupled from the driving torque generation. We have developed a prototype system as a proof of concept. The stator has twelve teeth, each of which has a single phase winding that is individually driven by a linear transconductance power amplifier. The system has four reflective-type optical sensors to differentially measure the two radial degrees of freedom of the rotor. The suspension control loop is implemented such that the phase margin is 25 degrees at the cross-over frequency of 110 Hz. The prototype system can levitate the rotor and drive it up to about 1730 rpm. The maximum driving torque is about 2.7 mNm.

  2. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less

  3. A Solar-flux Line-broadening Analysis

    NASA Astrophysics Data System (ADS)

    Gray, David F.

    2018-04-01

    The Fourier technique of extracting rotation rates and macroturbulence-velocity dispersions from the shapes and broadening of stellar spectral lines is applied to the solar-flux spectrum. Lines with equivalent widths less than ∼0.055 Å are shown to have the advantage over stronger lines by allowing the residual transform to be followed to higher frequencies. The standard radial-tangential macroturbulence formulation fits the observations well and yields an equatorial velocity that is within a few percent of the correct rate.

  4. Single surface barrier detectors for neutron dosimetry and associated light-ion fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treado, P.A.; Allas, R.G.; Eman, B.

    1981-04-01

    In this paper the authors have attempted to perfect a simple, compact and inexpensive single surface barrier detection system to measure both the intensities and approximate spectral shape of continuous neutron and light ion fluxes. They have measured such fluxes for three known collimated and uncollimated neutron beams with two geometrical configurations and with at least two different thicknesses of CH/sub 2/ and CD/sub 2/ radiators. All neutron flux data were obtained with a Au shield in front of the detector; this was removed for LIF measurements. The known shapes of the impinging neutron beams were used to calculate themore » expected recoil-particle spectra and such predictions have been compared with the experimental data. Also, data have been obtained with telescopes, with carbon foil and thin detector-grade silicon foil radiators. These data allow the authors to estimate contributions to the higher-energy portion of the recoil-particle spectra from reactions due to the carbon in the CH/sub 2/ and CD/sub 2/ radiators and due to the silicon in the detector. Corrections for rim effects in the detector and multiple scattering in the radiator are calculable. The precipitous decrease in the number of observed events, expected at the maximum energy that can be deposited by a recoil particle from the radiator, was observed for each of the radiator/detector combinations studied. The data agree reasonably well with both the intensity and spectral shape predictions for recoil-particle energies above about 300 keV. The telescope data confirm the single-detector data and add significant information about the LIFs created by the collimation of the neutron beams. In fact, both the single-detector and telescope data indicate that (n,p) reactions in collimation and target-backing materials contribute significant proton components to the light-ion fluxes.« less

  5. Distortion in Two-Dimensional Shapes of Merging Nanobubbles: Evidence for Anisotropic Gas Flow Mechanism.

    PubMed

    Park, Jong Bo; Shin, Dongha; Kang, Sangmin; Cho, Sung-Pyo; Hong, Byung Hee

    2016-11-01

    Two nanobubbles that merge in a graphene liquid cell take elliptical shapes rather than the ideal circular shapes. This phenomenon was investigated in detail by using in situ transmission electron microscopy (TEM). The results show that the distortion in the two-dimensional shapes of the merging nanobubbles is attributed to the anisotropic gas transport flux between the nanobubbles. We also predicted and confirmed the same phenomenon in a three-nanobubble system, indicating that the relative size difference is important in determining the shape of merging nanobubbles.

  6. Extreme air-sea surface turbulent fluxes in mid latitudes - estimation, origins and mechanisms

    NASA Astrophysics Data System (ADS)

    Gulev, Sergey; Natalia, Tilinina

    2014-05-01

    Extreme turbulent heat fluxes in the North Atlantic and North Pacific mid latitudes were estimated from the modern era and first generation reanalyses (NCEP-DOE, ERA-Interim, MERRA NCEP-CFSR, JRA-25) for the period from 1979 onwards. We used direct surface turbulent flux output as well as reanalysis state variables from which fluxes have been computed using COARE-3 bulk algorithm. For estimation of extreme flux values we analyzed surface flux probability density distribution which was approximated by Modified Fisher-Tippett distribution. In all reanalyses extreme turbulent heat fluxes amount to 1500-2000 W/m2 (for the 99th percentile) and can exceed 2000 W/m2 for higher percentiles in the western boundary current extension (WBCE) regions. Different reanalyses show significantly different shape of MFT distribution, implying considerable differences in the estimates of extreme fluxes. The highest extreme turbulent latent heat fluxes are diagnosed in NCEP-DOE, ERA-Interim and NCEP-CFSR reanalyses with the smallest being in MERRA. These differences may not necessarily reflect the differences in mean values. Analysis shows that differences in statistical properties of the state variables are the major source of differences in the shape of PDF of fluxes and in the estimates of extreme fluxes while the contribution of computational schemes used in different reanalyses is minor. The strongest differences in the characteristics of probability distributions of surface fluxes and extreme surface flux values between different reanalyses are found in the WBCE extension regions and high latitudes. In the next instance we analyzed the mechanisms responsible for forming surface turbulent fluxes and their potential role in changes of midlatitudinal heat balance. Midlatitudinal cyclones were considered as the major mechanism responsible for extreme turbulent fluxes which are typically occur during the cold air outbreaks in the rear parts of cyclones when atmospheric conditions

  7. Non-parametric determination of H and He interstellar fluxes from cosmic-ray data

    NASA Astrophysics Data System (ADS)

    Ghelfi, A.; Barao, F.; Derome, L.; Maurin, D.

    2016-06-01

    Context. Top-of-atmosphere (TOA) cosmic-ray (CR) fluxes from satellites and balloon-borne experiments are snapshots of the solar activity imprinted on the interstellar (IS) fluxes. Given a series of snapshots, the unknown IS flux shape and the level of modulation (for each snapshot) can be recovered. Aims: We wish (I) to provide the most accurate determination of the IS H and He fluxes from TOA data alone; (II) to obtain the associated modulation levels (and uncertainties) while fully accounting for the correlations with the IS flux uncertainties; and (III) to inspect whether the minimal force-field approximation is sufficient to explain all the data at hand. Methods: Using H and He TOA measurements, including the recent high-precision AMS, BESS-Polar, and PAMELA data, we performed a non-parametric fit of the IS fluxes JISH,~He and modulation level φI for each data-taking period. We relied on a Markov chain Monte Carlo (MCMC) engine to extract the probability density function and correlations (hence the credible intervals) of the sought parameters. Results: Although H and He are the most abundant and best measured CR species, several datasets had to be excluded from the analysis because of inconsistencies with other measurements. From the subset of data passing our consistency cut, we provide ready-to-use best-fit and credible intervals for the H and He IS fluxes from MeV/n to PeV/n energy (with a relative precision in the range [ 2-10% ] at 1σ). Given the strong correlation between JIS and φI parameters, the uncertainties on JIS translate into Δφ ≈ ± 30 MV (at 1σ) for all experiments. We also find that the presence of 3He in He data biases φ towards higher φ values by ~30 MV. The force-field approximation, despite its limitation, gives an excellent (χ2/d.o.f. = 1.02) description of the recent high-precision TOA H and He fluxes. Conclusions: The analysis must be extended to different charge species and more realistic modulation models. It would benefit

  8. Flux Cancellation Leading to Solar Filament Eruptions

    NASA Astrophysics Data System (ADS)

    Popescu, R. M.; Panesar, N. K.; Sterling, A. C.; Moore, R. L.

    2016-12-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to 100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable by either magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both onboard the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions and find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two events in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field and are in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  9. Flux Cancellation Leading to CME Filament Eruptions

    NASA Technical Reports Server (NTRS)

    Popescu, Roxana M.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to approx.100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable, often by magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions. We find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two CME-producing eruptions in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field, and thereafter evolve in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  10. Frozen flux violation, electron demagnetization and magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scudder, J. D.; Karimabadi, H.; Roytershteyn, V.

    2015-10-15

    We argue that the analogue in collisionless plasma of the collisional diffusion region of magnetic reconnection is properly defined in terms of the demagnetization of the plasma electrons that enable “frozen flux” slippage to occur. This condition differs from the violation of the “frozen-in” condition, which only implies that two fluid effects are involved, rather than the necessary slippage of magnetic flux as viewed in the electron frame. Using 2D Particle In Cell (PIC) simulations, this approach properly finds the saddle point region of the flux function. Our demagnetization conditions are the dimensionless guiding center approximation expansion parameters for electronsmore » which we show are observable and determined locally by the ratio of non-ideal electric to magnetic field strengths. Proxies for frozen flux slippage are developed that (a) are measurable on a single spacecraft, (b) are dimensionless with theoretically justified threshold values of significance, and (c) are shown in 2D simulations to recover distinctions theoretically possible with the (unmeasurable) flux function. A new potentially observable dimensionless frozen flux rate, Λ{sub Φ}, differentiates significant from anecdotal frozen flux slippage. A single spacecraft observable, ϒ, is shown with PIC simulations to be essentially proportional to the unobservable local Maxwell frozen flux rate. This relationship theoretically establishes electron demagnetization in 3D as the general cause of frozen flux slippage. In simple 2D cases with an isolated central diffusion region surrounded by separatrices, these diagnostics uniquely identify the traditional diffusion region (without confusing it with the two fluid “ion-diffusion” region) and clarify the role of the separatrices where frozen flux violations do occur but are not substantial. In the more complicated guide and asymmetric 2D cases, substantial flux slippage regions extend out along, but inside of, the preferred

  11. Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.

    1998-01-01

    Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.

  12. Lattice density functional theory investigation of pore shape effects. I. Adsorption in single nonperiodic pores.

    PubMed

    Malanoski, A P; van Swol, Frank

    2002-10-01

    A fully explicit in three dimensions lattice density functional theory is used to investigate adsorption in single nonperiodic pores. The effect of varying pore shape from the slits and cylinders that are normally simulated was our primary interest. A secondary concern was the results for pores with very large diameters. The shapes investigated were square pores with or without surface roughness, cylinders, right triangle pores, and trapezoidal pores. It was found that pores with very similar shape factors gave similar results but that the introduction of acute angled corners or very large side ratio lengths in rectangular pores gave results that were significantly different. Further, a rectangular pore going towards the limit of infinite side ratio does not approach the results of a slit pore. In all of these cases, the importance of features that are present for only a small portion of the pore is demonstrated.

  13. The missing flux in a 35S budget for the soils of a small polluted catchment

    USGS Publications Warehouse

    Novak, M.; Michel, R.L.; Prechova, E.; Stepanova, M.

    2004-01-01

    A combination of cosmogenic and artificial 35S was used to assess the movement of sulfur in a steep Central European catchment affected by spruce die-back. The Jezer??i?? catchment, Krus??ne?? Hory Mts. (Czech Republic) is characterized by a large disproportion between atmospheric S input and S output via stream discharge, with S output currently exceeding S input three times. A relatively high natural concentration of cosmogenic 35S (42 mBq L-1) was found in atmospheric deposition into the catchment in winter and spring of 2000. In contrast, stream discharge contained only 2 mBq L-1. Consequently, more than 95% of the deposited S is cycled or retained within the catchment for more than several months, while older S is exported via surface water. In spring, when the soil temperature is above 0 ??C, practically no S from instantaneous rainfall is exported, despite the steepness of the slopes and the relatively short mean residence time of water in the catchment (6.5 months). Sulfur cycling in the soil includes not just adsorption of inorganic sulfate and biological uptake, but also volatilization of S compounds back into the atmosphere. Laboratory incubations of an Orthic Podzol from Jezer??i?? spiked with h 720 kBq of artificial 35S showed a 20% loss of the spike within 18 weeks under summer conditions. Under winter conditions, the 35S loss was insignificant (< 5%). This missing S flux was interpreted as volatilized hydrogen sulfide resulting from intermittent dissimilatory bacterial sulfate reduction. The missing S flux is comparable to the estimated uncertainty in many catchment S mass balances (??10%), or even larger, and should be considered in constructing these mass balances. In severely polluted forest catchments, such as Jezer??i??, sulfur loss to volatilization may exceed 13 kg ha-1 a-1, which is more than the current total atmospheric S input in large parts of North America and Europe. ?? 2004 Kluwer Academic Publishers.

  14. Reliability analysis using an exponential power model with bathtub-shaped failure rate function: a Bayes study.

    PubMed

    Shehla, Romana; Khan, Athar Ali

    2016-01-01

    Models with bathtub-shaped hazard function have been widely accepted in the field of reliability and medicine and are particularly useful in reliability related decision making and cost analysis. In this paper, the exponential power model capable of assuming increasing as well as bathtub-shape, is studied. This article makes a Bayesian study of the same model and simultaneously shows how posterior simulations based on Markov chain Monte Carlo algorithms can be straightforward and routine in R. The study is carried out for complete as well as censored data, under the assumption of weakly-informative priors for the parameters. In addition to this, inference interest focuses on the posterior distribution of non-linear functions of the parameters. Also, the model has been extended to include continuous explanatory variables and R-codes are well illustrated. Two real data sets are considered for illustrative purposes.

  15. Nonimaging achromatic shaped Fresnel lenses for ultrahigh solar concentration.

    PubMed

    Languy, Fabian; Habraken, Serge

    2013-05-15

    The maximum concentration ratio achievable with a solar concentrator made of a single refractive primary optics is much more limited by the chromatic aberration than by any other aberration. Therefore achromatic doublets made with poly(methyl methacrylate) and polycarbonate are of great interest to enhance the concentration ratio and to achieve a spectrally uniform flux on the receiver. In this Letter, shaped achromatic Fresnel lenses are investigated. One lossless design is of high interest since it provides spectrally and spatially uniform flux without being affected by soiling problems. With this design an optical concentration ratio of about 8500× can be achieved.

  16. Refractive laser beam shaping by means of a functional differential equation based design approach.

    PubMed

    Duerr, Fabian; Thienpont, Hugo

    2014-04-07

    Many laser applications require specific irradiance distributions to ensure optimal performance. Geometric optical design methods based on numerical calculation of two plano-aspheric lenses have been thoroughly studied in the past. In this work, we present an alternative new design approach based on functional differential equations that allows direct calculation of the rotational symmetric lens profiles described by two-point Taylor polynomials. The formalism is used to design a Gaussian to flat-top irradiance beam shaping system but also to generate a more complex dark-hollow Gaussian (donut-like) irradiance distribution with zero intensity in the on-axis region. The presented ray tracing results confirm the high accuracy of both calculated solutions and emphasize the potential of this design approach for refractive beam shaping applications.

  17. Apex Dips of Experimental Flux Ropes: Helix or Cusp?

    NASA Astrophysics Data System (ADS)

    Wongwaitayakornkul, Pakorn; Haw, Magnus A.; Li, Hui; Li, Shengtai; Bellan, Paul M.

    2017-10-01

    We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressure or gravitational forces. The density pileup at the apex also suppresses the m = 1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to model the stability and shape of solar and astrophysical flux ropes.

  18. Physical states and finite-size effects in Kitaev's honeycomb model: Bond disorder, spin excitations, and NMR line shape

    NASA Astrophysics Data System (ADS)

    Zschocke, Fabian; Vojta, Matthias

    2015-07-01

    Kitaev's compass model on the honeycomb lattice realizes a spin liquid whose emergent excitations are dispersive Majorana fermions and static Z2 gauge fluxes. We discuss the proper selection of physical states for finite-size simulations in the Majorana representation, based on a recent paper by F. L. Pedrocchi, S. Chesi, and D. Loss [Phys. Rev. B 84, 165414 (2011), 10.1103/PhysRevB.84.165414]. Certain physical observables acquire large finite-size effects, in particular if the ground state is not fermion-free, which we prove to generally apply to the system in the gapless phase and with periodic boundary conditions. To illustrate our findings, we compute the static and dynamic spin susceptibilities for finite-size systems. Specifically, we consider random-bond disorder (which preserves the solubility of the model), calculate the distribution of local flux gaps, and extract the NMR line shape. We also predict a transition to a random-flux state with increasing disorder.

  19. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS (BVOCS) II. LANDSCAPE FLUX POTENTIALS FROM THREE CONTINENTAL SITES IN THE U.S.

    EPA Science Inventory

    Landscape flux potentials for biogenic volatile organic compounds (BVOCs) were derived for three ecosystems in the continental U. S. (Fernbank Forest, Atlanta, GA; Willow Creek, Rhinelander, WI; Temple Ridge, CO). Analytical data from branch enclosure measurements reported in a ...

  20. Divertor heat flux mitigation in the National Spherical Torus Experimenta)

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Maingi, R.; Gates, D. A.; Menard, J. E.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Bell, M. G.; Bell, R. E.; Boedo, J. A.; Bush, C. E.; Kaita, R.; Kugel, H. W.; Leblanc, B. P.; Mueller, D.; NSTX Team

    2009-02-01

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6MWm-2to0.5-2MWm-2 in small-ELM 0.8-1.0MA, 4-6MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  1. Predicting kinetic nanocrystal shapes through multi-scale theory and simulation: Polyvinylpyrrolidone-mediated growth of Ag nanocrystals

    NASA Astrophysics Data System (ADS)

    Balankura, Tonnam; Qi, Xin; Zhou, Ya; Fichthorn, Kristen A.

    2016-10-01

    In the shape-controlled synthesis of colloidal Ag nanocrystals, structure-directing agents, particularly polyvinylpyrrolidone (PVP), are known to be a key additive in making nanostructures with well-defined shapes. Although many Ag nanocrystals have been successfully synthesized using PVP, the mechanism by which PVP actuates shape control remains elusive. Here, we present a multi-scale theoretical framework for kinetic Wulff shape predictions that accounts for the chemical environment, which we used to probe the kinetic influence of the adsorbed PVP film. Within this framework, we use umbrella-sampling molecular dynamics simulations to calculate the potential of mean force and diffusion coefficient profiles of Ag atom deposition onto Ag(100) and Ag(111) in ethylene glycol solution with surface-adsorbed PVP. We use these profiles to calculate the mean-first passage times and implement extensive Brownian dynamics simulations, which allows the kinetic effects to be quantitatively evaluated. Our results show that PVP films can regulate the flux of Ag atoms to be greater towards Ag(111) than Ag(100). PVP's preferential binding towards Ag(100) over Ag(111) gives PVP its flux-regulating capabilities through the lower free-energy barrier of Ag atoms to cross the lower-density PVP film on Ag(111) and enhanced Ag trapping by the extended PVP film on Ag(111). Under kinetic control, {100}-faceted nanocrystals will be formed when the Ag flux is greater towards Ag(111). The predicted kinetic Wulff shapes are in agreement with the analogous experimental system.

  2. Fan-shaped antennas: Realization of wideband characteristics and generation of stop bands

    NASA Astrophysics Data System (ADS)

    Nakano, H.; Morishita, K.; Iitsuka, Y.; Mimaki, H.; Yoshida, T.; Yamauchi, J.

    2008-08-01

    This paper presents four fan-shaped antennas: U.S.-FAN, CROSS-FAN, CROSS-FAN-W, and CROSS-FAN-S. Each of these antennas stands upright above a ground plane, and has edges expressed by an exponential function and a circle function. The four antennas are investigated using frequencies from 1.5 GHz to 11 GHz. The CROSS-FAN is found to have a lower VSWR over a wide frequency band compared to the U.S.-FAN. The CROSS-FAN-W and CROSS-FAN-S are modified versions of the CROSS-FAN, each designed to have a stop band (a high VSWR frequency range) for interference cancellation. The stop band for the CROSS-FAN-W is controlled by a wire (total length 4Lwire) that connects the fan-shaped elements. The center frequency of the stop band fstop is close to the frequency corresponding to a wire segment length Lwire of half the wavelength. It is also found that the stop band in the CROSS-FAN-S can be controlled by four slots, one cut into each of the fan-shaped elements. The center frequency of the stop band fstop is close to the frequency corresponding to a slot length Lslot of one-quarter of the wavelength. Experimental work is performed to confirm the theoretical results, using the CROSS-FAN-S.

  3. Software applications for flux balance analysis.

    PubMed

    Lakshmanan, Meiyappan; Koh, Geoffrey; Chung, Bevan K S; Lee, Dong-Yup

    2014-01-01

    Flux balance analysis (FBA) is a widely used computational method for characterizing and engineering intrinsic cellular metabolism. The increasing number of its successful applications and growing popularity are possibly attributable to the availability of specific software tools for FBA. Each tool has its unique features and limitations with respect to operational environment, user-interface and supported analysis algorithms. Presented herein is an in-depth evaluation of currently available FBA applications, focusing mainly on usability, functionality, graphical representation and inter-operability. Overall, most of the applications are able to perform basic features of model creation and FBA simulation. COBRA toolbox, OptFlux and FASIMU are versatile to support advanced in silico algorithms to identify environmental and genetic targets for strain design. SurreyFBA, WEbcoli, Acorn, FAME, GEMSiRV and MetaFluxNet are the distinct tools which provide the user friendly interfaces in model handling. In terms of software architecture, FBA-SimVis and OptFlux have the flexible environments as they enable the plug-in/add-on feature to aid prospective functional extensions. Notably, an increasing trend towards the implementation of more tailored e-services such as central model repository and assistance to collaborative efforts was observed among the web-based applications with the help of advanced web-technologies. Furthermore, most recent applications such as the Model SEED, FAME, MetaFlux and MicrobesFlux have even included several routines to facilitate the reconstruction of genome-scale metabolic models. Finally, a brief discussion on the future directions of FBA applications was made for the benefit of potential tool developers.

  4. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

    NASA Astrophysics Data System (ADS)

    Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador

    2008-08-01

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  5. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties.

    PubMed

    Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador

    2008-08-06

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  6. Brain shape in human microcephalics and Homo floresiensis.

    PubMed

    Falk, Dean; Hildebolt, Charles; Smith, Kirk; Morwood, M J; Sutikna, Thomas; Jatmiko; Saptomo, E Wayhu; Imhof, Herwig; Seidler, Horst; Prior, Fred

    2007-02-13

    Because the cranial capacity of LB1 (Homo floresiensis) is only 417 cm(3), some workers propose that it represents a microcephalic Homo sapiens rather than a new species. This hypothesis is difficult to assess, however, without a clear understanding of how brain shape of microcephalics compares with that of normal humans. We compare three-dimensional computed tomographic reconstructions of the internal braincases (virtual endocasts that reproduce details of external brain morphology, including cranial capacities and shape) from a sample of 9 microcephalic humans and 10 normal humans. Discriminant and canonical analyses are used to identify two variables that classify normal and microcephalic humans with 100% success. The classification functions classify the virtual endocast from LB1 with normal humans rather than microcephalics. On the other hand, our classification functions classify a pathological H. sapiens specimen that, like LB1, represents an approximately 3-foot-tall adult female and an adult Basuto microcephalic woman that is alleged to have an endocast similar to LB1's with the microcephalic humans. Although microcephaly is genetically and clinically variable, virtual endocasts from our highly heterogeneous sample share similarities in protruding and proportionately large cerebella and relatively narrow, flattened orbital surfaces compared with normal humans. These findings have relevance for hypotheses regarding the genetic substrates of hominin brain evolution and may have medical diagnostic value. Despite LB1's having brain shape features that sort it with normal humans rather than microcephalics, other shape features and its small brain size are consistent with its assignment to a separate species.

  7. High data density and capacity in chipless radiofrequency identification (chipless-RFID) tags based on double-chains of S-shaped split ring resonators (S-SRRs)

    NASA Astrophysics Data System (ADS)

    Herrojo, Cristian; Mata-Contreras, Javier; Paredes, Ferran; Martín, Ferran

    2017-11-01

    The data density per surface (DPS) is a figure of merit in chipless radiofrequency identification (chipless-RFID) tags. In this paper, it is demonstrated that chipless-RFID tags with high DPS can be implemented by using double-chains of S-shaped split ring resonators (S-SRRs). Tag reading is achieved by near-field coupling between the tag and the reader, a CPW transmission line fed by a harmonic signal tuned to the resonance frequency of the S-SRRs. By transversally displacing the tag over the CPW, the transmission coefficient of the line is modulated by tag motion. This effectively modulates the amplitude of the injected (carrier) signal at the output port of the line, and the identification (ID) code, determined by the presence or absence of S-SRRs at predefined and equidistant positions in the chains, is contained in the envelope function. The DPS is determined by S-SRR dimensions and by the distance between S-SRRs in the chains. However, by using two chains of S-SRRs, the number of bits per unit length that can be accommodated is very high. This chipless-RFID system is of special interest in applications where the reading distance can be sacrificed in favor of data capacity (e.g., security and authentication). Encoding of corporate documents, ballots, exams, etc., by directly printing the proposed tags on the item product to prevent counterfeiting is envisaged.

  8. Current Sheet Structures Observed by the TESIS EUV Telescope during a Flux Rope Eruption on the Sun

    NASA Astrophysics Data System (ADS)

    Reva, A. A.; Ulyanov, A. S.; Kuzin, S. V.

    2016-11-01

    We use the TESIS EUV telescope to study the current sheet signatures observed during flux rope eruption. The special feature of the TESIS telescope was its ability to image the solar corona up to a distance of 2 {R}⊙ from the Sun’s center in the Fe 171 Å line. The Fe 171 Å line emission illuminates the magnetic field lines, and the TESIS images reveal the coronal magnetic structure at high altitudes. The analyzed coronal mass ejection (CME) had a core with a spiral—flux rope—structure. The spiral shape indicates that the flux rope radius varied along its length. The flux rope had a complex temperature structure: cold legs (70,000 K, observed in He 304 Å line) and a hotter core (0.7 MK, observed in Fe 171 Å line). Such a structure contradicts the common assumption that the CME core is a cold prominence. When the CME impulsively accelerated, a dark double Y-structure appeared below the flux rope. The Y-structure timing, location, and morphology agree with the previously performed MHD simulations of the current sheet. We interpreted the Y-structure as a hot envelope of the current sheet and hot reconnection outflows. The Y-structure had a thickness of 6.0 Mm. Its length increased over time from 79 Mm to more than 411 Mm.

  9. Multifunctional shape-memory polymers.

    PubMed

    Behl, Marc; Razzaq, Muhammad Yasar; Lendlein, Andreas

    2010-08-17

    The thermally-induced shape-memory effect (SME) is the capability of a material to change its shape in a predefined way in response to heat. In shape-memory polymers (SMP) this shape change is the entropy-driven recovery of a mechanical deformation, which was obtained before by application of external stress and was temporarily fixed by formation of physical crosslinks. The high technological significance of SMP becomes apparent in many established products (e.g., packaging materials, assembling devices, textiles, and membranes) and the broad SMP development activities in the field of biomedical as well as aerospace applications (e.g., medical devices or morphing structures for aerospace vehicles). Inspired by the complex and diverse requirements of these applications fundamental research is aiming at multifunctional SMP, in which SME is combined with additional functions and is proceeding rapidly. In this review different concepts for the creation of multifunctionality are derived from the various polymer network architectures of thermally-induced SMP. Multimaterial systems, such as nanocomposites, are described as well as one-component polymer systems, in which independent functions are integrated. Future challenges will be to transfer the concept of multifunctionality to other emerging shape-memory technologies like light-sensitive SMP, reversible shape changing effects or triple-shape polymers.

  10. 2D double-layer-tube-shaped structure Bi2S3/ZnS heterojunction with enhanced photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Wang, Zihang; Fu, Feng; Li, Xiang; Li, Wenhong

    2015-10-01

    Bi2S3/ZnS heterojunction with 2D double-layer-tube-shaped structures was prepared by the facile synthesis method. The corresponding relationship was obtained among loaded content to phase, morphology, and optical absorption property of Bi2S3/ZnS composite. The results shown that Bi2S3 loaded could evidently change the crystallinity of ZnS, enhance the optical absorption ability for visible light of ZnS, and improve the morphologies and microstructure of ZnS. The photocatalytic activities of the Bi2S3/ZnS sample were evaluated for the photodegradation of phenol and desulfurization of thiophene under visible light irradiation. The results showed that Bi2S3 loaded greatly improved the photocatalytic activity of ZnS, and the content of loaded Bi2S3 had an impact on the catalytic activity of ZnS. Moreover, the mechanism of enhanced photocatalytic activity was also investigated by analysis of relative band positions of Bi2S3 and ZnS, and photo-generated hole was main active radicals during photocatalytic oxidation process.

  11. Functional Properties of Porous Ti-48.0 at.% Ni Shape Memory Alloy Produced by Self-Propagating High-Temperature Synthesis

    NASA Astrophysics Data System (ADS)

    Resnina, Natalia; Belyaev, Sergey; Voronkov, Andrew

    2018-03-01

    The functional behavior of the porous shape memory alloy produced by self-propagating high-temperature synthesis from the Ti-48.0 at.% Ni powder mixture was studied. It was found that a large unelastic strain recovered on unloading and it was not attributed to the pseudoelasticity effect. A decrease in deformation temperatures did not influence the value of strain that recovered on unloading, while the effective modulus decreased from 1.9 to 1.44 GPa. It was found that the porous Ti-48.0 at.% Ni alloy revealed the one-way shape memory effect, where the maximum recoverable strain was 5%. The porous Ti-48.0 at.% Ni alloy demonstrated the transformation plasticity and the shape memory effects on cooling and heating under a stress. An increase in stress did not influence the shape memory effect value, which was equal to 1%. It was shown that the functional properties of the porous alloy were determined by the TiNi phase consisted of the two volumes Ti49.3Ni50.7 and Ti50Ni50 where the martensitic transformation occurred at different temperatures. The results of the study showed that the existence of the Ti49.3Ni50.7 volumes in the porous Ti-48.0 at.% Ni alloy improved the functional properties of the alloy.

  12. Lithium ion dynamics in Li2S+GeS2+GeO2 glasses studied using (7)Li NMR field-cycling relaxometry and line-shape analysis.

    PubMed

    Gabriel, Jan; Petrov, Oleg V; Kim, Youngsik; Martin, Steve W; Vogel, Michael

    2015-09-01

    We use (7)Li NMR to study the ionic jump motion in ternary 0.5Li2S+0.5[(1-x)GeS2+xGeO2] glassy lithium ion conductors. Exploring the "mixed glass former effect" in this system led to the assumption of a homogeneous and random variation of diffusion barriers in this system. We exploit that combining traditional line-shape analysis with novel field-cycling relaxometry, it is possible to measure the spectral density of the ionic jump motion in broad frequency and temperature ranges and, thus, to determine the distribution of activation energies. Two models are employed to parameterize the (7)Li NMR data, namely, the multi-exponential autocorrelation function model and the power-law waiting times model. Careful evaluation of both of these models indicates a broadly inhomogeneous energy landscape for both the single (x=0.0) and the mixed (x=0.1) network former glasses. The multi-exponential autocorrelation function model can be well described by a Gaussian distribution of activation barriers. Applicability of the methods used and their sensitivity to microscopic details of ionic motion are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Ion fluxes and neurotransmitters signaling in neural development.

    PubMed

    Andäng, Michael; Lendahl, Urban

    2008-06-01

    The brain develops and functions in a complex ionic milieu, which is a prerequisite for neurotransmitter function and neuronal signaling. Neurotransmitters and ion fluxes are, however, important not only in neuronal signaling, but also in the control of neural differentiation, and in this review, we highlight the recent advances in our understanding of how the gamma-amino butyric acid (GABA) neurotransmitter and ion fluxes are relevant for cell cycle control and neural differentiation. Conversely, proteins previously associated with ion transport across membranes have been endowed with novel ion-independent functions, and we discuss this in the context of gap junctions in cell adhesion and of the neuron-specific K(+)-Cl(-) cotransporter KCC2 in dendritic spine development. Collectively, these findings provide a richer and more complex picture of when ion fluxes are needed in neural development and when they are not.

  14. Computer-assisted design of flux-cored wires

    NASA Astrophysics Data System (ADS)

    Dubtsov, Yu N.; Zorin, I. V.; Sokolov, G. N.; Antonov, A. A.; Artem'ev, A. A.; Lysak, V. I.

    2017-02-01

    The algorithm and description of the AlMe-WireLaB software for the computer-assisted design of flux-cored wires are introduced. The software functionality is illustrated with the selection of the components for the flux-cored wire, ensuring the acquisition of the deposited metal of the Fe-Cr-C-Mo-Ni-Ti-B system. It is demonstrated that the developed software enables the technologically reliable flux-cored wire to be designed for surfacing, resulting in a metal of an ordered composition.

  15. The socioeconomic origins of physical functioning among older U.S. adults.

    PubMed

    Montez, Jennifer Karas

    2013-12-01

    Mounting evidence finds that adult health reflects socioeconomic circumstances (SES) in early life and adulthood. However, it is unclear how the health consequences of SES in early life and adulthood accumulate-for example, additively, synergistically. This study tests four hypotheses about how the health effects of early-life SES (measured by parental education) and adult SES (measured by own education) accumulate to shape functional limitations, whether the accumulation differs between men and women, and the extent to which key mechanisms explain the accumulation. It uses data from the 1994-2010 Health and Retirement Study on U.S. adults 50-100 years of age (N=24,026). The physical functioning benefits of parental and own education accumulated additively among men. While the physical functioning benefits generally accumulated among women, the functioning benefits from one's own education were dampened among women with low-educated mothers. The dampening partly reflected a strong tie between mothers' education level and women's obesity risk. Taken together, the findings reveal subtle differences between men and women in the life course origins of physical functioning. They also shed light on a key mechanism-obesity-that may help explain why a growing number of studies find that early-life SES is especially important for women's health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. AmeriFlux US-Dia Diablo

    DOE Data Explorer

    Wharton, Sonia [Lawrence Livermore National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Dia Diablo. Site Description - The site is on land owned by Lawrence Livermore National Laboratory (Site 300) and has no grazing or management history since the 1950's except for summer-time burning of selected acres for fire management (not included in the tower footprint).

  17. Flux transformers made of commercial high critical temperature superconducting wires.

    PubMed

    Dyvorne, H; Scola, J; Fermon, C; Jacquinot, J F; Pannetier-Lecoeur, M

    2008-02-01

    We have designed flux transformers made of commercial BiSCCO tapes closed by soldering with normal metal. The magnetic field transfer function of the flux transformer was calculated as a function of the resistance of the soldered contacts. The performances of different kinds of wires were investigated for signal delocalization and gradiometry. We also estimated the noise introduced by the resistance and showed that the flux transformer can be used efficiently for weak magnetic field detection down to 1 Hz.

  18. Eddy covariance measurement of isoprene fluxes

    NASA Astrophysics Data System (ADS)

    Guenther, Alex B.; Hills, Alan J.

    1998-06-01

    A system has been developed to directly measure isoprene flux above a forest canopy by eddy covariance using the combination of a fast response, real-time isoprene sensor and sonic anemometer. This system is suitable for making nearly unattended, long-term, and continuous measurements of isoprene fluxes. Isoprene detection is based on chemiluminescence between isoprene and reactant ozone, which produces green light at 500 nm. The sensor has a noise level (1σ) of 450 pptv for a 1-s integration which is dominated by random high-frequency noise that does not significantly degrade eddy covariance flux measurements. Interference from the flux of other compounds is primarily due to the emission of monoterpenes, propene, ethene, and methyl butenol and the deposition of methacrolein and methyl vinyl ketone. The average total interference for North American landscapes in midday summer is estimated to be about 5% for emissions and -3% for deposition fluxes. In only a few North American landscapes, where isoprene emissions are very low and methyl butenol emissions are high, are interferences predicted to be significant. The system was field tested on a tower above a mixed deciduous forest canopy (Duke Forest, North Carolina, U.S.A.) dominated by oak trees, which are strong isoprene emitters. Isoprene fluxes were estimated for 307 half-hour sampling periods over 10 days. Daytime fluxes ranging from 1 to 14 mg C m-2 h-1 were strongly correlated with light and temperature. The daytime mean flux of 6 mg C m-2 h-1 is similar to previous estimates determined by relaxed eddy accumulation by Geron et al [1997] at this site. Nighttime fluxes were near zero (0.01±0.03 mg C m-2 h-1).

  19. A Jet Source of Event Horizon Telescope Correlated Flux in M87

    NASA Astrophysics Data System (ADS)

    Punsly, Brian

    2017-12-01

    Event Horizon Telescope (EHT) observations at 230 GHz are combined with Very Long Baseline Interferometry (VLBI) observations at 86 GHz and high-resolution Hubble Space Telescope optical observations in order to constrain the broadband spectrum of the emission from the base of the jet in M87. The recent VLBI observations of Hada et al. provide much stricter limits on the 86 GHz luminosity and component acceleration in the jet base than were available to previous modelers. They reveal an almost hollow jet on sub-mas scales. Thus, tubular models of the jet base emanating from the innermost accretion disk are considered within the region responsible for the EHT correlated flux. There is substantial synchrotron self-absorbed opacity at 86 GHz. A parametric analysis indicates that the jet dimensions and power depend strongly on the 86 GHz flux density and the black hole spin, but depend weakly on other parameters, such as jet speed, 230 GHz flux density, and optical flux. The entire power budget of the M87 jet, ≲ {10}44 {erg} {{{s}}}-1, can be accommodated by the tubular jet. No invisible, powerful spine is required. Even though this analysis never employs the resolution of the EHT, the spectral shape implies a dimension transverse to the jet direction of 12-21 μ {as} (˜ 24{--}27 μ {as}) for 0.99> a/M> 0.95 (a/M˜ 0.7), where M is the mass and a is the angular momentum per unit mass of the central black hole.

  20. FabricS: A user-friendly, complete and robust software for particle shape-fabric analysis

    NASA Astrophysics Data System (ADS)

    Moreno Chávez, G.; Castillo Rivera, F.; Sarocchi, D.; Borselli, L.; Rodríguez-Sedano, L. A.

    2018-06-01

    Shape-fabric is a textural parameter related to the spatial arrangement of elongated particles in geological samples. Its usefulness spans a range from sedimentary petrology to igneous and metamorphic petrology. Independently of the process being studied, when a material flows, the elongated particles are oriented with the major axis in the direction of flow. In sedimentary petrology this information has been used for studies of paleo-flow direction of turbidites, the origin of quartz sediments, and locating ignimbrite vents, among others. In addition to flow direction and its polarity, the method enables flow rheology to be inferred. The use of shape-fabric has been limited due to the difficulties of automatically measuring particles and analyzing them with reliable circular statistics programs. This has dampened interest in the method for a long time. Shape-fabric measurement has increased in popularity since the 1980s thanks to the development of new image analysis techniques and circular statistics software. However, the programs currently available are unreliable, old and are incompatible with newer operating systems, or require programming skills. The goal of our work is to develop a user-friendly program, in the MATLAB environment, with a graphical user interface, that can process images and includes editing functions, and thresholds (elongation and size) for selecting a particle population and analyzing it with reliable circular statistics algorithms. Moreover, the method also has to produce rose diagrams, orientation vectors, and a complete series of statistical parameters. All these requirements are met by our new software. In this paper, we briefly explain the methodology from collection of oriented samples in the field to the minimum number of particles needed to obtain reliable fabric data. We obtained the data using specific statistical tests and taking into account the degree of iso-orientation of the samples and the required degree of reliability

  1. Using active shape modeling based on MRI to study morphologic and pitch-related functional changes affecting vocal structures and the airway.

    PubMed

    Miller, Nicola A; Gregory, Jennifer S; Aspden, Richard M; Stollery, Peter J; Gilbert, Fiona J

    2014-09-01

    The shape of the vocal tract and associated structures (eg, tongue and velum) is complicated and varies according to development and function. This variability challenges interpretation of voice experiments. Quantifying differences between shapes and understanding how vocal structures move in relation to each other is difficult using traditional linear and angle measurements. With statistical shape models, shape can be characterized in terms of independent modes of variation. Here, we build an active shape model (ASM) to assess morphologic and pitch-related functional changes affecting vocal structures and the airway. Using a cross-sectional study design, we obtained six midsagittal magnetic resonance images from 10 healthy adults (five men and five women) at rest, while breathing out, and while listening to, and humming low and high notes. Eighty landmark points were chosen to define the shape of interest and an ASM was built using these (60) images. Principal component analysis was used to identify independent modes of variation, and statistical analysis was performed using one-way repeated-measures analysis of variance. Twenty modes of variation were identified with modes 1 and 2 accounting for half the total variance. Modes 1 and 9 were significantly associated with humming low and high notes (P < 0.001) and showed coordinated changes affecting the cervical spine, vocal structures, and airway. Mode 2 highlighted wide structural variations between subjects. This study highlights the potential of active shape modeling to advance understanding of factors underlying morphologic and pitch-related functional variations affecting vocal structures and the airway in health and disease. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Glide path preparation in S-shaped canals with rotary pathfinding nickel-titanium instruments.

    PubMed

    Ajuz, Natasha C C; Armada, Luciana; Gonçalves, Lucio S; Debelian, Gilberto; Siqueira, José F

    2013-04-01

    This study compared the incidence of deviation along S-shaped (double-curved) canals after glide path preparation with 2 nickel-titanium (NiTi) rotary pathfinding instruments and hand K-files. S-shaped canals from 60 training blocks were filled with ink, and preinstrumentation images were obtained by using a stereomicroscope. Glide path preparation was performed by an endodontist who used hand stainless steel K-files (up to size 20), rotary NiTi PathFile instruments (up to size 19), or rotary NiTi Scout RaCe instruments (up to size 20). Postinstrumentation images were taken by using exactly the same conditions as for the preinstrumentation images, and both pictures were superimposed. Differences along the S-shaped canal for the mesial and distal aspects were measured to evaluate the occurrence of deviation. Intragroup analysis showed that all instruments promoted some deviation in virtually all levels. Overall, regardless of the group, deviations were observed in the mesial wall at the canal terminus and at levels 4, 5, 6 and 7 mm and in the distal wall at levels 1, 2, and 3 mm. These levels corresponded to the inner walls of each curvature. Both rotary NiTi instruments performed significantly better than hand K-files at all levels (P < .05), except for PathFiles at the 0-mm level. ScoutRaCe instruments showed significantly better results than PathFiles at levels 0, 2, 3, 5, and 6 mm (P < .05). Findings suggest that rotary NiTi instruments are suitable for adequate glide path preparation because they promoted less deviation from the original canal anatomy when compared with hand-operated instruments. Of the 2 rotary pathfinding instruments, Scout RaCe showed an overall significantly better performance. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less

  4. SU-G-IeP3-08: Image Reconstruction for Scanning Imaging System Based On Shape-Modulated Point Spreading Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixing; Yang, LV; Xu, Kele

    Purpose: Deconvolution is a widely used tool in the field of image reconstruction algorithm when the linear imaging system has been blurred by the imperfect system transfer function. However, due to the nature of Gaussian-liked distribution for point spread function (PSF), the components with coherent high frequency in the image are hard to restored in most of the previous scanning imaging system, even the relatively accurate PSF is acquired. We propose a novel method for deconvolution of images which are obtained by using shape-modulated PSF. Methods: We use two different types of PSF - Gaussian shape and donut shape -more » to convolute the original image in order to simulate the process of scanning imaging. By employing deconvolution of the two images with corresponding given priors, the image quality of the deblurred images are compared. Then we find the critical size of the donut shape compared with the Gaussian shape which has similar deconvolution results. Through calculation of tightened focusing process using radially polarized beam, such size of donut is achievable under same conditions. Results: The effects of different relative size of donut and Gaussian shapes are investigated. When the full width at half maximum (FWHM) ratio of donut and Gaussian shape is set about 1.83, similar resolution results are obtained through our deconvolution method. Decreasing the size of donut will favor the deconvolution method. A mask with both amplitude and phase modulation is used to create a donut-shaped PSF compared with the non-modulated Gaussian PSF. Donut with size smaller than our critical value is obtained. Conclusion: The utility of donutshaped PSF are proved useful and achievable in the imaging and deconvolution processing, which is expected to have potential practical applications in high resolution imaging for biological samples.« less

  5. Homologous and cannibalistic coronal mass ejections from twisted magnetic flux rope simulations

    NASA Astrophysics Data System (ADS)

    Chatterjee, Piyali; Fan, Yuhong

    We present results from magnetohydrodynamic simulations of the development of homologous sequence of coronal mass ejections (CMEs) and demonstrate their so-called cannibalistic behavior. These CMEs originate from the repeated formations and partial eruptions of kink unstable flux ropes as a result of continued emergence of a twisted flux rope across the lower boundary into a pre-existing coronal potential arcade field. Our simulation shows that a CME erupting into the open magnetic field created by a preceding CME has a higher speed. The second of the three successive CMEs in one of the simulations is cannibalistic, catching up and merging with the first into a single fast CME before exiting the domain. All the CMEs including the leading merged CME, attained speeds of about 1000 km s-1 as they exit the domain. The reformation of a twisted flux rope after each CME eruption during the sustained flux emergence can naturally explain the X-ray observations of repeated reformations of sigmoids and "sigmoid-under-cusp" configurations at a low-coronal source of homologous CMEs. We also investigate the initiation mechanism and ejecta topology of these energetic CMEs as a function of the twist parameter of the flux rope.

  6. High-beta analytic equilibria in circular, elliptical, and D-shaped large aspect ratio axisymmetric configurations with poloidal and toroidal flows

    NASA Astrophysics Data System (ADS)

    López, O. E.; Guazzotto, L.

    2017-03-01

    The Grad-Shafranov-Bernoulli system of equations is a single fluid magnetohydrodynamical description of axisymmetric equilibria with mass flows. Using a variational perturbative approach [E. Hameiri, Phys. Plasmas 20, 024504 (2013)], analytic approximations for high-beta equilibria in circular, elliptical, and D-shaped cross sections in the high aspect ratio approximation are found, which include finite toroidal and poloidal flows. Assuming a polynomial dependence of the free functions on the poloidal flux, the equilibrium problem is reduced to an inhomogeneous Helmholtz partial differential equation (PDE) subject to homogeneous Dirichlet conditions. An application of the Green's function method leads to a closed form for the circular solution and to a series solution in terms of Mathieu functions for the elliptical case, which is valid for arbitrary elongations. To extend the elliptical solution to a D-shaped domain, a boundary perturbation in terms of the triangularity is used. A comparison with the code FLOW [L. Guazzotto et al., Phys. Plasmas 11(2), 604-614 (2004)] is presented for relevant scenarios.

  7. U-Shaped and Surface Functionalized Polymer Optical Fiber Probe for Glucose Detection.

    PubMed

    Azkune, Mikel; Ruiz-Rubio, Leire; Aldabaldetreku, Gotzon; Arrospide, Eneko; Pérez-Álvarez, Leyre; Bikandi, Iñaki; Zubia, Joseba; Vilas-Vilela, Jose Luis

    2017-12-25

    In this work we show an optical fiber evanescent wave absorption probe for glucose detection in different physiological media. High selectivity is achieved by functionalizing the surface of an only-core poly(methyl methacrylate) (PMMA) polymer optical fiber with phenilboronic groups, and enhanced sensitivity by using a U-shaped geometry. Employing a supercontinuum light source and a high-resolution spectrometer, absorption measurements are performed in the broadband visible light spectrum. Experimental results suggest the feasibility of such a fiber probe as a low-cost and selective glucose detector.

  8. Thin-plate spline analysis of mandibular shape changes induced by functional appliances in Class II malocclusion : A long-term evaluation.

    PubMed

    Franchi, Lorenzo; Pavoni, Chiara; Faltin, Kurt; Bigliazzi, Renato; Gazzani, Francesca; Cozza, Paola

    2016-09-01

    The purpose of this work was to evaluate the long-term morphological mandibular changes induced by functional treatment of Class II malocclusion with mandibular retrusion. Forty patients (20 females, 20 males) with Class II malocclusion consecutively treated with either a Bionator or an Activator followed by fixed appliances were compared with a control group of 40 subjects (19 females, 21 males) with untreated Class II malocclusion. Lateral cephalograms were available at the start of treatment (T1, mean age 9.9 years), at the end of treatment with functional appliances (T2, mean age 12.2 years), and for long-term follow-up (T3, mean age 18.3 years). Mandibular shape changes were analyzed on lateral cephalograms of the subjects in both groups via thin-plate spline (TPS) analysis. Shape differences were statistically analyzed by conducting permutation tests on Goodall F statistics. In the long term, both the treated and control groups exhibited significant longitudinal mandibular shape changes characterized by upward and forward dislocation of point Co associated with a vertical extension in the gonial region and backward dislocation of point B. Functional appliances induced mandible's significant posterior morphogenetic rotation over the short term. The treated and control groups demonstrated similar mandibular shape over the long term.

  9. Elliptical flux vortices in YBa2Cu3O7

    NASA Technical Reports Server (NTRS)

    Hickman, H.; Dekker, A. J.; Chen, T. M.

    1991-01-01

    The most energetically favorable vortex in YBa2Cu3O7 forms perpendicular to an anisotropic plane. This vortex is elliptical in shape and is distinguished by an effective interchange of London penetration depths from one axis of the ellipse to another. By generalizing qualitatively from the isotropic to the anisotropic case, we suggest that the flux flow resistivity for the vortex that forms perpendicular to an anistropic plane should have a preferred direction. Similar reasoning indicates that the Kosterlitz-Thouless transition temperature for a vortex mediated transition should be lower if the vortex is elliptical in shape.

  10. Experimental verification of the shape of the excitation depth distribution function for AES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tougaard, S.; Jablonski, A.; Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw

    2011-09-15

    In the common formalism of AES, it is assumed that the in-depth distribution of ionizations is uniform. There are experimental indications that this assumption may not be true for certain primary electron energies and solids. The term ''excitation depth distribution function'' (EXDDF) has been introduced to describe the distribution of ionizations at energies used in AES. This function is conceptually equivalent to the Phi-rho-z function of electron microprobe analysis (EPMA). There are, however, experimental difficulties to determine this function in particular for energies below {approx} 10 keV. In the present paper, we investigate the possibility of determining the shape ofmore » the EXDDF from the background of inelastically scattered electrons on the low energy side of the Auger electron features in the electron energy spectra. The experimentally determined EXDDFs are compared with the EXDDFs determined from Monte Carlo simulations of electron trajectories in solids. It is found that this technique is useful for the experimental determination of the EXDDF function.« less

  11. Assessing Regional Scale Fluxes of Mass, Momentum, and Energy with Small Environmental Research Aircraft

    NASA Astrophysics Data System (ADS)

    Zulueta, Rommel Callejo

    Natural ecosystems are rarely structurally or functionally homogeneous. This is true for the complex coastal regions of Magdalena Bay, Baja California Sur, Mexico, and the Barrow Peninsula on the Arctic Coastal Plain of Alaska. The coastal region of Magdalena Bay is comprised of the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert ecosystems all adjacent and within a few kilometers, while the Barrow Peninsula is a mosaic of small ponds, thaw lakes, different aged vegetated thaw-lake basins ( VDTLBs ) and interstitial tundra which have been dynamically formed by both short- and long-term processes. We used a combination of tower- and small environmental research aircraft (SERA)-based eddy covariance measurements to characterize the spatial and temporal patterns of CO2, latent, and sensible heat fluxes along with MODIS NDVI, and land surface information, to scale the SERA-based CO2 fluxes up to the regional scale. In the first part of this research, the spatial variability in ecosystem fluxes from the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert areas of northern Magdalena Bay were studied. SERA-derived average midday CO2 fluxes from the desert showed a slight uptake of -1.32 mumol CO2 m-2 s-1, the coastal ocean also showed uptake of -3.48 mumol CO2 m-2 s -1, and the lagoon mangroves showed the highest uptake of -8.11 mumol CO2 m-2 s-1. Additional simultaneous measurements of NDVI allowed simple linear modeling of CO2 flux as a function of NDVI for the mangroves of the Magdalena Bay region. In the second part of this research, the spatial variability of ecosystem fluxes across the 1802 km2 Barrow Peninsula region was studied. During typical 2006 summer conditions, the midday hourly CO2 flux over the region was -2.04 x 105 kgCO2 hr-1. The CO2 fluxes among the interstitial tundra, Ancient and Old VDTLBs, as well as between the Medium and Young VDTLBs were not significantly different. Combined, the interstitial tundra and Old and Ancient

  12. Exploring Redox States, Doping and Ordering of Electroactive Star-Shaped Oligo(aniline)s.

    PubMed

    Mills, Benjamin M; Fey, Natalie; Marszalek, Tomasz; Pisula, Wojciech; Rannou, Patrice; Faul, Charl F J

    2016-11-14

    We have prepared a simple star-shaped oligo(aniline) (TDPB) and characterised it in detail by MALDI-TOF MS, UV/Vis/NIR spectroscopy, time-dependent DFT, cyclic voltammetry and EPR spectroscopy. TDPB is part of an underdeveloped class of π-conjugated molecules with great potential for organic electronics, display and sensor applications. It is redox active and reacts with acids to form radical cations. Acid-doped TDPB shows behaviour similar to discotic liquid crystals, with X-ray scattering investigations revealing columnar self-assembled arrays. The combination of unpaired electrons and supramolecular stacking suggests that star-shaped oligo(aniline)s like TDPB have the potential to form conducting nanowires and organic magnetic materials. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. 13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Amit; Ando, David; Gin, Jennifer

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. Thesemore » genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.« less

  14. 13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

    DOE PAGES

    Ghosh, Amit; Ando, David; Gin, Jennifer; ...

    2016-10-05

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. Thesemore » genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.« less

  15. Measurement of local high-level, transient surface heat flux

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1988-01-01

    This study is part of a continuing investigation to develop methods for measuring local transient surface heat flux. A method is presented for simultaneous measurements of dual heat fluxes at a surface location by considering the heat flux as a separate function of heat stored and heat conducted within a heat flux gage. Surface heat flux information is obtained from transient temperature measurements taken at points within the gage. Heat flux was determined over a range of 4 to 22 MW/sq m. It was concluded that the method is feasible. Possible applications are for heat flux measurements on the turbine blade surfaces of space shuttle main engine turbopumps and on the component surfaces of rocket and advanced gas turbine engines and for testing sensors in heat flux gage calibrators.

  16. Effect of Ponderomotive Terms on Heat Flux in Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Li, G.

    2005-10-01

    A laser electromagnetic field introduces ponderomotive termsootnotetextV. N. Goncharov and G. Li, Phys. Plasmas 11, 5680 (2004). in the heat flux in a plasma. To account for the nonlocal effects in the ponderomotive terms, first, the kinetic equation coupled with the Maxwell equations is numerically solved for the isotropic part of the electron distribution function. Such an equation includes self-consistent electromagnetic fields and laser absorption through the inverse bremsstrahlung. Then, the anisotropic part is found by solving a simplified Fokker--Planck equation. Using the distribution function, the electric current and heat flux are obtained and substituted into the hydrocode LILAC to simulate ICF implosions. The simulation results are compared against the existing nonlocal electron conduction modelsootnotetextG. P. Schurtz, P. D. Nicola"i, and M. Busquet, Phys. Plasmas 9, 4238 (2000). and Fokker--Planck simulations. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460.

  17. Apex Dips of Experimental Flux Ropes: Helix or Cusp?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wongwaitayakornkul, Pakorn; Haw, Magnus A.; Bellan, Paul M.

    We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressuremore » or gravitational forces. The density pileup at the apex also suppresses the m = 1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to model the stability and shape of solar and astrophysical flux ropes.« less

  18. Mold Flux Crystallization and Mold Thermal Behavior

    NASA Astrophysics Data System (ADS)

    Peterson, Elizabeth Irene

    Mold flux plays a small but critical role in the continuous casting of steel. The carbon-coated powder is added at the top of the water-cooled copper mold, over time it melts and infiltrates the gap between the copper mold and the solidifying steel strand. Mold powders serve five primary functions: (1) chemical insulation, (2) thermal insulation, (3) lubrication between the steel strand and mold, (4) absorption of inclusions, and (5) promotion of even heat flux. All five functions are critical to slab casting, but surface defect prevention is primarily controlled through even heat flux. Glassy fluxes have high heat transfer and result in a thicker steel shell. Steels with large volumetric shrinkage on cooling must have a crystalline flux to reduce the radiative heat transfer and avoid the formation of cracks in the shell. Crystallinity plays a critical role in steel shell formation, therefore it is important to study the thermal conditions that promote each phase and its morphology. Laboratory tests were performed to generate continuous cooling transformation (CCT) and time-temperature-transformation (TTT) diagrams. Continuous cooling transformation tests were performed in an instrumented eight cell step chill mold. Results showed that cuspidine was the only phase formed in conventional fluxes and all observed structures were dendritic. An isothermal tin bath quench method was also developed to isothermally age glassy samples. Isothermal tests yielded different microstructures and different phases than those observed by continuous cooling. Comparison of aged tests with industrial flux films indicates similar faceted structures along the mold wall, suggesting that mold flux first solidifies as a glass along the mold wall, but the elevated temperature devitrifies the glassy structure forming crystals that cannot form by continuous cooling.

  19. SAMOS Surface Fluxes

    NASA Astrophysics Data System (ADS)

    Smith, Shawn; Bourassa, Mark

    2014-05-01

    The development of a new surface flux dataset based on underway meteorological observations from research vessels will be presented. The research vessel data center at the Florida State University routinely acquires, quality controls, and distributes underway surface meteorological and oceanographic observations from over 30 oceanographic vessels. These activities are coordinated by the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative in partnership with the Rolling Deck to Repository (R2R) project. Recently, the SAMOS data center has used these underway observations to produce bulk flux estimates for each vessel along individual cruise tracks. A description of this new flux product, along with the underlying data quality control procedures applied to SAMOS observations, will be provided. Research vessels provide underway observations at high-temporal frequency (1 min. sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Vessels recruited to the SAMOS initiative collect a high concentration of data within the U.S. continental shelf and also frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern, Arctic, South Atlantic, and South Pacific oceans). These observations are atypical for their spatial and temporal sampling, making them very useful for many applications including validation of numerical models and satellite retrievals, as well as local assessments of natural variability. Individual SAMOS observations undergo routine automated quality control and select vessels receive detailed visual data quality inspection. The result is a quality-flagged data set that is ideal for calculating turbulent flux estimates. We will describe the bulk flux algorithms that have been applied to the

  20. Constraining the 7Be(p,γ)8B S-factor with the new precise 7Be solar neutrino flux from Borexino

    NASA Astrophysics Data System (ADS)

    Takács, M. P.; Bemmerer, D.; Junghans, A. R.; Zuber, K.

    2018-02-01

    Among the solar fusion reactions, the rate of the 7Be(p , γ)8B reaction is one of the most difficult to determine rates. In a number of previous experiments, its astrophysical S-factor has been measured at E = 0.1- 2.5 MeV centre-of-mass energy. However, no experimental data is available below 0.1 MeV. Thus, an extrapolation to solar energies is necessary, resulting in significant uncertainty for the extrapolated S-factor. On the other hand, the measured solar neutrino fluxes are now very precise. Therefore, the problem of the S-factor determination is turned around here: Using the measured 7Be and 8B neutrino fluxes and the Standard Solar Model, the 7Be(p , γ)8B astrophysical S-factor is determined at the solar Gamow peak. In addition, the 3He(α , γ)7Be S-factor is redetermined with a similar method.

  1. Modeling the Solar Convective Dynamo and Emerging Flux

    NASA Astrophysics Data System (ADS)

    Fan, Y.

    2017-12-01

    Significant advances have been made in recent years in global-scale fully dynamic three-dimensional convective dynamo simulations of the solar/stellar convective envelopes to reproduce some of the basic features of the Sun's large-scale cyclic magnetic field. It is found that the presence of the dynamo-generated magnetic fields plays an important role for the maintenance of the solar differential rotation, without which the differential rotation tends to become anti-solar (with a faster rotating pole instead of the observed faster rotation at the equator). Convective dynamo simulations are also found to produce emergence of coherent super-equipartition toroidal flux bundles with a statistically significant mean tilt angle that is consistent with the mean tilt of solar active regions. The emerging flux bundles are sheared by the giant cell convection into a forward leaning loop shape with its leading side (in the direction of rotation) pushed closer to the strong downflow lanes. Such asymmetric emerging flux pattern may lead to the observed asymmetric properties of solar active regions.

  2. Radiative Flux Analysis

    DOE Data Explorer

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  3. Inference and Prediction of Metabolic Network Fluxes

    PubMed Central

    Nikoloski, Zoran; Perez-Storey, Richard; Sweetlove, Lee J.

    2015-01-01

    In this Update, we cover the basic principles of the estimation and prediction of the rates of the many interconnected biochemical reactions that constitute plant metabolic networks. This includes metabolic flux analysis approaches that utilize the rates or patterns of redistribution of stable isotopes of carbon and other atoms to estimate fluxes, as well as constraints-based optimization approaches such as flux balance analysis. Some of the major insights that have been gained from analysis of fluxes in plants are discussed, including the functioning of metabolic pathways in a network context, the robustness of the metabolic phenotype, the importance of cell maintenance costs, and the mechanisms that enable energy and redox balancing at steady state. We also discuss methodologies to exploit 'omic data sets for the construction of tissue-specific metabolic network models and to constrain the range of permissible fluxes in such models. Finally, we consider the future directions and challenges faced by the field of metabolic network flux phenotyping. PMID:26392262

  4. Fast flux module detection using matroid theory.

    PubMed

    Reimers, Arne C; Bruggeman, Frank J; Olivier, Brett G; Stougie, Leen

    2015-05-01

    Flux balance analysis (FBA) is one of the most often applied methods on genome-scale metabolic networks. Although FBA uniquely determines the optimal yield, the pathway that achieves this is usually not unique. The analysis of the optimal-yield flux space has been an open challenge. Flux variability analysis is only capturing some properties of the flux space, while elementary mode analysis is intractable due to the enormous number of elementary modes. However, it has been found by Kelk et al. (2012) that the space of optimal-yield fluxes decomposes into flux modules. These decompositions allow a much easier but still comprehensive analysis of the optimal-yield flux space. Using the mathematical definition of module introduced by Müller and Bockmayr (2013b), we discovered useful connections to matroid theory, through which efficient algorithms enable us to compute the decomposition into modules in a few seconds for genome-scale networks. Using that every module can be represented by one reaction that represents its function, in this article, we also present a method that uses this decomposition to visualize the interplay of modules. We expect the new method to replace flux variability analysis in the pipelines for metabolic networks.

  5. Quantitative analysis of autophagic flux by confocal pH-imaging of autophagic intermediates

    PubMed Central

    Maulucci, Giuseppe; Chiarpotto, Michela; Papi, Massimiliano; Samengo, Daniela; Pani, Giovambattista; De Spirito, Marco

    2015-01-01

    Although numerous techniques have been developed to monitor autophagy and to probe its cellular functions, these methods cannot evaluate in sufficient detail the autophagy process, and suffer limitations from complex experimental setups and/or systematic errors. Here we developed a method to image, contextually, the number and pH of autophagic intermediates by using the probe mRFP-GFP-LC3B as a ratiometric pH sensor. This information is expressed functionally by AIPD, the pH distribution of the number of autophagic intermediates per cell. AIPD analysis reveals how intermediates are characterized by a continuous pH distribution, in the range 4.5–6.5, and therefore can be described by a more complex set of states rather than the usual biphasic one (autophagosomes and autolysosomes). AIPD shape and amplitude are sensitive to alterations in the autophagy pathway induced by drugs or environmental states, and allow a quantitative estimation of autophagic flux by retrieving the concentrations of autophagic intermediates. PMID:26506895

  6. SODA Repuslive Function Shaping

    NASA Image and Video Library

    2017-06-16

    SODA, Swarm Orbital Dynamics Advisor, a tool that provides the orbital maneuvers required to achieve a desired type of relative swarm motion. The SODA algorithm uses a repulsive potential that is a function of the distances between each pair of satellites. Choosing the parameters of the function is a swarm design choice, as different values can yield very different maneuvers and thus impact fuel use and mission life. This is an animation illustrating how the peaks of the repulsive potential function vary when varying certain parameters.

  7. Tape functionality: position, change in shape, and outcome after TVT procedure--mid-term results.

    PubMed

    Kociszewski, Jacek; Rautenberg, Oliver; Kolben, Sebastian; Eberhard, Jakob; Hilgers, Reinhard; Viereck, Volker

    2010-07-01

    This study evaluates the relevance of the tape position and change in shape (tape functionality) under in vivo conditions for mid-term outcome. Changes in the sonographic tension-free vaginal tape (TVT) position relative to the percentage urethral length and the tape-urethra distance were determined after 6 and 48 months in 41 women with stress urinary incontinence. At 48 months, 76% (31/41) of women were cured, 17% (7/41) were improved, and 7% (3/41) were failures. Disturbed bladder voiding was present in 12% (5/41), de novo urge incontinence in 7% (3/41). The median TVT position was at 63% of urethral length. Median tape-urethra distance was 2.7 mm, ranging from 2.9 mm in continent patients without complications to 1.1 mm in those with obstructive complications. Patients with postoperative urine loss had a median distance of 3.9 mm. The tape was stretched at rest and C-shaped during straining in 15 of 41 women (37%) at 48 months (all continent). Patients with this tape functionality at 6 months were also cured at 48 months in 86% of cases (19/22), and only 14% (3/22) showed recurrent incontinence. Mid-term data suggest an optimal outcome if the tape is positioned at least 2 mm from the urethra at the junction of the middle and distal thirds. Patients with optimal tape functionality at 6 months are likely to show mid-term therapeutic success.

  8. Ionospheric S-shaped Doppler fluctuations produced by the tornadoes

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Rao, G. L.; Smith, R. E.

    1974-01-01

    A three-dimensional nine element HF-CW Doppler sounder array has been used to detect ionospheric disturbances which may be due to tornadoes. The typical events chosen in the present study occurred on November 20 and 27, 1973. Both events are apparently associated with tornadoes sighted in the Huntsville, Alabama area. The Doppler records show S-shaped waves rather than the quasi-sinusoidal waves observed in conjunction with and apparently due to thunderstorms. The wave-periods are in the range of 6 to 8 minutes instead of the 3 to 5 minute periods associated with thunderstorms. Dissipation of waves is mostly due to the evanescent effect and they cannot propagate very far from the path of the tornado center. A theory is presented which is in good agreement with the observations.

  9. Convergence in the temperature response of leaf respiration across biomes and plant functional types.

    PubMed

    Heskel, Mary A; O'Sullivan, Odhran S; Reich, Peter B; Tjoelker, Mark G; Weerasinghe, Lasantha K; Penillard, Aurore; Egerton, John J G; Creek, Danielle; Bloomfield, Keith J; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R; Martinez-de la Torre, Alberto; Griffin, Kevin L; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H; Atkin, Owen K

    2016-04-05

    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.

  10. Martian CH(4): sources, flux, and detection.

    PubMed

    Onstott, T C; McGown, D; Kessler, J; Lollar, B Sherwood; Lehmann, K K; Clifford, S M

    2006-04-01

    Recent observations have detected trace amounts of CH(4) heterogeneously distributed in the martian atmosphere, which indicated a subsurface CH(4) flux of ~2 x 10(5) to 2 x 10(9) cm(2) s(1). Four different origins for this CH(4) were considered: (1) volcanogenic; (2) sublimation of hydrate- rich ice; (3) diffusive transport through hydrate-saturated cryosphere; and (4) microbial CH(4) generation above the cryosphere. A diffusive flux model of the martian crust for He, H(2), and CH(4) was developed based upon measurements of deep fracture water samples from South Africa. This model distinguishes between abiogenic and microbial CH(4) sources based upon their isotopic composition, and couples microbial CH(4) production to H(2) generation by H(2)O radiolysis. For a He flux of approximately 10(5) cm(2) s(1) this model yields an abiogenic CH(4) flux and a microbial CH(4) flux of approximately 10(6) and approximately 10(9) cm(2) s(1), respectively. This flux will only reach the martian surface if CH(4) hydrate is saturated in the cryosphere; otherwise it will be captured within the cryosphere. The sublimation of a hydrate-rich cryosphere could generate the observed CH(4) flux, whereas microbial CH(4) production in a hypersaline environment above the hydrate stability zone only seems capable of supplying approximately 10(5) cm(2) s(1) of CH(4). The model predicts that He/H(2)/CH(4)/C(2)H(6) abundances and the C and H isotopic values of CH(4) and the C isotopic composition of C(2)H(6) could reveal the different sources. Cavity ring-down spectrometers represent the instrument type that would be most capable of performing the C and H measurements of CH(4) on near future rover missions and pinpointing the cause and source of the CH(4) emissions.

  11. Flux trap effect study in a sub-critical neutron assembly using activation methods

    NASA Astrophysics Data System (ADS)

    Routsonis, K.; Stoulos, S.; Clouvas, A.; Catsaros, N.; Varvayianni, M.; Manolopoulou, M.

    2016-09-01

    The neutron flux trap effect was experimentally studied in the subcritical assembly of the Atomic and Nuclear Physics Laboratory of the Aristotle University of Thessaloniki, using delayed gamma neutron activation analysis. Measurements were taken within the natural uranium fuel grid, in vertical levels symmetrical to the Am-Be neutron source, before and after the removal of fuel elements, permitting likewise a basic study of the vertical flux profile. Three identical flux traps of diamond shape were created by removing four fuel rods for each one. Two (n, γ) reactions and one (n, p) threshold reaction were selected for thermal, epithermal and fast flux study. Results of thermal and epithermal flux obtained through the 197Au (n, γ) 198Au and 186W (n, γ) 187W reactions, with and without Cd covers, to differentiate between the two flux regions. The 58Ni (n, p) 58Co reaction was used for the fast flux determination. An interpolation technique based on local procedures was applied to fit the cross sections data and the neutron flux spectrum. End results show a maximum thermal flux increase of 105% at the source level, pointing to a high potential to increase in the available thermal flux for future experiments. The increase in thermal flux is not accompanied by a comparable decrease in epithermal or fast flux, since thermal flux gain is higher than epithermal and fast neutron flux loss. So, the neutron reflection is mainly responsible for the thermal neutron increase, contributing to 89% at the central axial position.

  12. Subject-specific longitudinal shape analysis by coupling spatiotemporal shape modeling with medial analysis

    NASA Astrophysics Data System (ADS)

    Hong, Sungmin; Fishbaugh, James; Rezanejad, Morteza; Siddiqi, Kaleem; Johnson, Hans; Paulsen, Jane; Kim, Eun Young; Gerig, Guido

    2017-02-01

    Modeling subject-specific shape change is one of the most important challenges in longitudinal shape analysis of disease progression. Whereas anatomical change over time can be a function of normal aging, anatomy can also be impacted by disease related degeneration. Anatomical shape change may also be affected by structural changes from neighboring shapes, which may cause non-linear variations in pose. In this paper, we propose a framework to analyze disease related shape changes by coupling extrinsic modeling of the ambient anatomical space via spatiotemporal deformations with intrinsic shape properties from medial surface analysis. We compare intrinsic shape properties of a subject-specific shape trajectory to a normative 4D shape atlas representing normal aging to isolate shape changes related to disease. The spatiotemporal shape modeling establishes inter/intra subject anatomical correspondence, which in turn enables comparisons between subjects and the 4D shape atlas, and also quantitative analysis of disease related shape change. The medial surface analysis captures intrinsic shape properties related to local patterns of deformation. The proposed framework jointly models extrinsic longitudinal shape changes in the ambient anatomical space, as well as intrinsic shape properties to give localized measurements of degeneration. Six high risk subjects and six controls are randomly sampled from a Huntington's disease image database for qualitative and quantitative comparison.

  13. Large-Deformation Displacement Transfer Functions for Shape Predictions of Highly Flexible Slender Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2013-01-01

    Large deformation displacement transfer functions were formulated for deformed shape predictions of highly flexible slender structures like aircraft wings. In the formulation, the embedded beam (depth wise cross section of structure along the surface strain sensing line) was first evenly discretized into multiple small domains, with surface strain sensing stations located at the domain junctures. Thus, the surface strain (bending strains) variation within each domain could be expressed with linear of nonlinear function. Such piecewise approach enabled piecewise integrations of the embedded beam curvature equations [classical (Eulerian), physical (Lagrangian), and shifted curvature equations] to yield closed form slope and deflection equations in recursive forms.

  14. The shape of the extragalactic cosmic ray spectrum from galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harari, Diego; Mollerach, Silvia; Roulet, Esteban, E-mail: harari@cab.cnea.gov.ar, E-mail: mollerach@cab.cnea.gov.ar, E-mail: roulet@cab.cnea.gov.ar

    2016-08-01

    We study the diffusive escape of cosmic rays from a central source inside a galaxy cluster to obtain the suppression in the outgoing flux appearing when the confinement times get comparable or larger than the age of the sources. We also discuss the attenuation of the flux due to the interactions of the cosmic rays with the cluster medium, which can be sizeable for heavy nuclei. The overall suppression in the total cosmic ray flux expected on Earth is important to understand the shape of the extragalactic contribution to the cosmic ray spectrum for E / Z < 1 EeVmore » . This suppression can also be relevant to interpret the results of fits to composition-sensitive observables measured at ultra-high energies.« less

  15. Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes

    PubMed Central

    Sato, Tatsuhiko

    2016-01-01

    A new model called “PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 4.0” was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth’s atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS). The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model’s applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS). PMID:27490175

  16. Vocal tract shapes in different singing functions used in musical theater singing-a pilot study.

    PubMed

    Echternach, Matthias; Popeil, Lisa; Traser, Louisa; Wienhausen, Sascha; Richter, Bernhard

    2014-09-01

    Singing styles in Musical Theater singing might differ in many ways from Western Classical singing. However, vocal tract adjustments are not understood in detail. Vocal tract shapes of a single professional Music Theater female subject were analyzed concerning different aspects of singing styles using dynamic real-time magnetic resonance imaging technology with a frame rate of 8 fps. The different tasks include register differences, belting, and vibrato strategies. Articulatory differences were found between head register, modal register, and belting. Also, some vibrato strategies ("jazzy" vibrato) do involve vocal tract adjustments, whereas others (classical vibrato) do not. Vocal tract shaping might contribute to the establishment of different singing functions in Musical Theater singing. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Warming alters energetic structure and function but not resilience of soil food webs

    NASA Astrophysics Data System (ADS)

    Schwarz, Benjamin; Barnes, Andrew D.; Thakur, Madhav P.; Brose, Ulrich; Ciobanu, Marcel; Reich, Peter B.; Rich, Roy L.; Rosenbaum, Benjamin; Stefanski, Artur; Eisenhauer, Nico

    2017-12-01

    Climate warming is predicted to alter the structure, stability, and functioning of food webs1-5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, the effects of warming on these food webs—particularly in combination with other global change drivers—are largely unknown. Here, we present results from two complementary field experiments that test the interactive effects of warming with forest canopy disturbance and drought on energy flux in boreal-temperate ecotonal forest soil food webs. The first experiment applied a simultaneous above- and belowground warming treatment (ambient, +1.7 °C, +3.4 °C) to closed-canopy and recently clear-cut forest, simulating common forest disturbance6. The second experiment crossed warming with a summer drought treatment (-40% rainfall) in the clear-cut habitats. We show that warming reduces energy flux to microbes, while forest canopy disturbance and drought facilitates warming-induced increases in energy flux to higher trophic levels and exacerbates the reduction in energy flux to microbes, respectively. Contrary to expectations, we find no change in whole-network resilience to perturbations, but significant losses in ecosystem functioning. Warming thus interacts with forest disturbance and drought, shaping the energetic structure of soil food webs and threatening the provisioning of multiple ecosystem functions in boreal-temperate ecotonal forests.

  18. Shape component analysis: structure-preserving dimension reduction on biological shape spaces.

    PubMed

    Lee, Hao-Chih; Liao, Tao; Zhang, Yongjie Jessica; Yang, Ge

    2016-03-01

    Quantitative shape analysis is required by a wide range of biological studies across diverse scales, ranging from molecules to cells and organisms. In particular, high-throughput and systems-level studies of biological structures and functions have started to produce large volumes of complex high-dimensional shape data. Analysis and understanding of high-dimensional biological shape data require dimension-reduction techniques. We have developed a technique for non-linear dimension reduction of 2D and 3D biological shape representations on their Riemannian spaces. A key feature of this technique is that it preserves distances between different shapes in an embedded low-dimensional shape space. We demonstrate an application of this technique by combining it with non-linear mean-shift clustering on the Riemannian spaces for unsupervised clustering of shapes of cellular organelles and proteins. Source code and data for reproducing results of this article are freely available at https://github.com/ccdlcmu/shape_component_analysis_Matlab The implementation was made in MATLAB and supported on MS Windows, Linux and Mac OS. geyang@andrew.cmu.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Electrical Transport Properties of Single-Crystalline β-Zn4Sb3 Prepared Through the Zn-Sn Mixed-Flux Method

    NASA Astrophysics Data System (ADS)

    Liu, Hongxia; Deng, Shuping; Shen, Lanxian; Wang, Jinsong; Feng, Cheng; Deng, Shukang

    2017-03-01

    β-Zn4Sb3 is a promising p-type thermoelectric material for utilization in moderate temperatures. This study prepares a group of single-crystalline β-Zn4Sb3 samples using the Zn-Sn mixed-flux method based on the stoichiometric ratios of Zn4+ x Sb3Sn y . The effect of Zn-to-Sn proportion in the flux on the structure and electrical transport properties is investigated. All samples are strip-shaped single crystals of different sizes. The actual Zn content of the present samples is improved (>3.9) compared with that of the samples prepared through the Sn flux method. Larger lattice parameters are also obtained. The carrier concentration of all the samples is in the order of over 1019 cm-3. With increasing Sn rate in the flux, this carrier concentration decreases, whereas mobility is significantly enhanced. The electrical conductivity and Seebeck coefficients of all the samples exhibit a behavior that of a degenerate semiconductor transport. Electrical conductivity initially increases and then decreases as the Sn ratio in the flux increases. The electrical conductivity of the x: y = 5:1 sample reaches 6.45 × 104 S m-1 at 300 K. Benefitting from the electrical conductivity and Seebeck coefficient, the flux proportion of the x: y = 7:1 sample finally achieves the highest power factor value of 1.4 × 10-3 W m-1 K-2 at 598 K.

  20. Tunable Superconducting Qubits with Flux-Independent Coherence

    NASA Astrophysics Data System (ADS)

    Hutchings, M. D.; Hertzberg, J. B.; Liu, Y.; Bronn, N. T.; Keefe, G. A.; Brink, Markus; Chow, Jerry M.; Plourde, B. L. T.

    2017-10-01

    We study the impact of low-frequency magnetic flux noise upon superconducting transmon qubits with various levels of tunability. We find that qubits with weaker tunability exhibit dephasing that is less sensitive to flux noise. This insight is used to fabricate qubits where dephasing due to flux noise is suppressed below other dephasing sources, leading to flux-independent dephasing times T2*˜15 μ s over a tunable range of approximately 340 MHz. Such tunable qubits have the potential to create high-fidelity, fault-tolerant qubit gates and to fundamentally improve scalability for a quantum processor.

  1. Functional Characterization of a Novel Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Collado, M.; Cabás, R.; San Juan, J.; López-Ferreño, I.

    2014-07-01

    A novel shape memory alloy (SMA) has been developed as an alternative to currently available alloys. This alloy, commercially known by its proprietary brand SMARQ, shows a higher working range of temperatures with respect to the SMA materials used until now in actuators, limited to environment temperatures below 90 °C. SMARQ is a high temperature SMA (HTSMA) based on a fully European material technology and production processes, which allows the manufacture of high quality products, with tuneable transformation temperatures up to 200 °C. Both, material and production processes have been evaluated for its use in space applications. A full characterization test campaign has been completed in order to obtain the material properties and check its suitability to be used as active material in space actuators. In order to perform the functional characterization of the material, it has been considered as the key element of a basic SMA actuator, consisting in the SMA wire and the mechanical and electrical interfaces. The functional tests presented in this work have been focused on the actuator behavior when heated by means of an electrical current. Alloy composition has been adjusted in order to match a transition temperature (As) of +145 °C, which satisfies the application requirements of operating temperatures in the range of -70 and +125 °C. Details of the tests and results of the characterization test campaign, focused in the material unique properties for their use in actuators, will be presented in this work. Some application examples in the field of space mechanisms and actuators, currently under development, will be summarized as part of this work, demonstrating the technology suitability as active material for space actuators.

  2. Increasing Pyruvate Dehydrogenase Flux as a Treatment for Diabetic Cardiomyopathy: A Combined 13C Hyperpolarized Magnetic Resonance and Echocardiography Study.

    PubMed

    Le Page, Lydia M; Rider, Oliver J; Lewis, Andrew J; Ball, Vicky; Clarke, Kieran; Johansson, Edvin; Carr, Carolyn A; Heather, Lisa C; Tyler, Damian J

    2015-08-01

    Although diabetic cardiomyopathy is widely recognized, there are no specific treatments available. Altered myocardial substrate selection has emerged as a candidate mechanism behind the development of cardiac dysfunction in diabetes. As pyruvate dehydrogenase (PDH) activity appears central to the balance of substrate use, we aimed to investigate the relationship between PDH flux and myocardial function in a rodent model of type 2 diabetes and to explore whether or not increasing PDH flux, with dichloroacetate, would restore the balance of substrate use and improve cardiac function. All animals underwent in vivo hyperpolarized [1-(13)C]pyruvate magnetic resonance spectroscopy and echocardiography to assess cardiac PDH flux and function, respectively. Diabetic animals showed significantly higher blood glucose levels (10.8 ± 0.7 vs. 8.4 ± 0.5 mmol/L), lower PDH flux (0.005 ± 0.001 vs. 0.017 ± 0.002 s(-1)), and significantly impaired diastolic function (transmitral early diastolic peak velocity/early diastolic myocardial velocity ratio [E/E'] 12.2 ± 0.8 vs. 20 ± 2), which are in keeping with early diabetic cardiomyopathy. Twenty-eight days of treatment with dichloroacetate restored PDH flux to normal levels (0.018 ± 0.002 s(-1)), reversed diastolic dysfunction (E/E' 14 ± 1), and normalized blood glucose levels (7.5 ± 0.7 mmol/L). The treatment of diabetes with dichloroacetate therefore restored the balance of myocardial substrate selection, reversed diastolic dysfunction, and normalized blood glucose levels. This suggests that PDH modulation could be a novel therapy for the treatment and/or prevention of diabetic cardiomyopathy. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. A hybrid asymptotic-modal analysis of the EM scattering by an open-ended S-shaped rectangular waveguide cavity

    NASA Technical Reports Server (NTRS)

    Law, P. H.; Burkholder, R. J.; Pathak, P. H.

    1988-01-01

    The electromagnetic fields (EM) backscatter from a 3-dimensional perfectly conducting S-shaped open-ended cavity with a planar interior termination is analyzed when it is illuminated by an external plane wave. The analysis is based on a self-consistent multiple scattering method which accounts for the multiple wave interactions between the open end and the interior termination. The scattering matrices which described the reflection and transmission coefficients of the waveguide modes reflected and transmitted at each junction between the different waveguide sections, as well at the scattering from the edges at the open end are found via asymptotic high frequency methods such as the geometrical and physical theories of diffraction used in conjunction with the equivalent current method. The numerical results for an S-shaped inlet cavity are compared with the backscatter from a straight inlet cavity; the backscattered patterns are different because the curvature of an S-shaped inlet cavity redistributes the energy reflected from the interior termination in a way that is different from a straight inlet cavity.

  4. Carbon dioxide fluxes from an urban area in Beijing

    NASA Astrophysics Data System (ADS)

    Song, Tao; Wang, Yuesi

    2012-03-01

    A better understanding of urban carbon dioxide (CO 2) emissions is important for quantifying urban contributions to the global carbon budget. From January to December 2008, CO 2 fluxes were measured, by eddy covariance at 47 m above ground on a meteorological tower in a high-density residential area in Beijing. The results showed that the urban surface was a net source of CO 2 in the atmosphere. Diurnal flux patterns were similar to those previously observed in other cities and were largely influenced by traffic volume. Carbon uptake by both urban vegetation during the growing season and the reduction of fuel consumption for domestic heating resulted in less-positive daily fluxes in the summer. The average daily flux measured in the summer was 0.48 mg m - 2 s - 1 , which was 82%, 35% and 36% lower than those in the winter, spring and autumn, respectively. The reduction of vehicles on the road during the 29th Olympic and Paralympic Games had a significant impact on CO 2 flux. The flux of 0.40 mg m - 2 s - 1 for September 2008 was approximately 0.17 mg m - 2 s - 1 lower than the flux for September 2007. Annual CO 2 emissions from the study site were estimated at 20.6 kg CO 2 m - 2 y - 1 , considerably higher than yearly emissions obtained from other urban and suburban landscapes.

  5. Dipole-dipole resonance line shapes in a cold Rydberg gas

    NASA Astrophysics Data System (ADS)

    Richards, B. G.; Jones, R. R.

    2016-04-01

    We have explored the dipole-dipole mediated, resonant energy transfer reaction, 32 p3 /2+32 p3 /2→32 s +33 s , in an ensemble of cold 85Rb Rydberg atoms. Stark tuning is employed to measure the population transfer probability as a function of the total electronic energy difference between the initial and final atom-pair states over a range of Rydberg densities, 2 ×108≤ρ ≤3 ×109 cm-3. The observed line shapes provide information on the role of beyond nearest-neighbor interactions, the range of Rydberg atom separations, and the electric field inhomogeneity in the sample. The widths of the resonance line shapes increase approximately linearly with the Rydberg density and are only a factor of 2 larger than expected for two-body, nearest-neighbor interactions alone. These results are in agreement with the prediction [B. Sun and F. Robicheaux, Phys. Rev. A 78, 040701(R) (2008), 10.1103/PhysRevA.78.040701] that beyond nearest-neighbor exchange interactions should not influence the population transfer process to the degree once thought. At low densities, Gaussian rather than Lorentzian line shapes are observed due to electric field inhomogeneities, allowing us to set an upper limit for the field variation across the Rydberg sample. At higher densities, non-Lorentzian, cusplike line shapes characterized by sharp central peaks and broad wings reflect the random distribution of interatomic distances within the magneto-optical trap (MOT). These line shapes are well reproduced by an analytic expression derived from a nearest-neighbor interaction model and may serve as a useful fingerprint for characterizing the position correlation function for atoms within the MOT.

  6. Focusing, collimation and flux throughput at the IMCA-CAT bending-magnet beamline at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshelev, Irina; Huang, Rong; Graber, Timothy

    2009-09-02

    The IMCA-CAT bending-magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high-quality multi- and single-wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending-magnet beamline achieves a flux of 8 x 10{sup 11} photons s{sup -1} at 1 {angstrom} wavelength, at a beamline aperture of 1.5 mrad (horizontal) x 86 {mu}rad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) {delta}E/E = 1.5 x 10{sup -4} (at 10 kV). The beamline operates in a dynamic range of 7.5-17.5 keV and deliversmore » to the sample focused beam of size (FWHM) 240 {micro}m (horizontally) x 160 {micro}m (vertically). The performance of the 17-BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.« less

  7. Oxygen flux and dielectric response study of Mixed Ionic-Electronic Conducting (MIEC) heterogeneous functional materials

    NASA Astrophysics Data System (ADS)

    Rabbi, Fazle

    -50%CFO and 80%GDC-20%CFO mixtures. Material characterization suggests the emergence of a third phase contributing to the behavior. Microstructural studies suggested changes in micro-structure of a given volume fraction for different sintering temperature and sintering time. Flux variation was observed for membranes with the same constituent volume fraction but different micro-structure indicating the effects of the micro-structure on the overall oxygen permeation. To correlate the experimental flux measurement with a standard Wagner's flux equation, different microstructural characteristics were studied to incorporate them into a modified Wagner's flux equation. In-situ broadband dielectric spectroscopy measurements over a temperature range of 850°C-1060°C and frequency range of (0.1Hz-1MHz) of the operating 60%GDC-40%CFO mixture oxygen separation membranes were measured using a NOVOCONTROL dielectric spectroscopy test system. Dielectric response of the operating membrane was studied to identify the charge transfer process in the membrane. A computational model to study the dielectric impedance response of different microstructure was developed using a COMSOL(TM) Multiphysics qasi-static electromagnetic module. This model was validated using model materials with regular geometric shapes. To measure impedance of real micro/nano-structures of the membrane material, domains required for the COMSOL calculation were obtained from actual micro/nano structures by using 3D scans from X-ray nano and micro tomography. Simpleware(TM) software was used to generate 3D domains from image slices obtained from the 3D x-ray scans. Initial voltage distributions on the original microstructure were obtained from the computational model. Similarly, development of a primary model for simulating ionic/electronic species flow inside of an MIEC was also begun. The possibility of using broadband dielectric spectroscopy methods to understand and anticipate the flux capabilities of MIECs to

  8. Paired Pulse Basis Functions for the Method of Moments EFIE Solution of Electromagnetic Problems Involving Arbitrarily-shaped, Three-dimensional Dielectric Scatterers

    NASA Technical Reports Server (NTRS)

    MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.

    2007-01-01

    A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.

  9. Modeling downward particulate organic nitrogen flux from zooplankton ammonium regeneration in the northern Benguela

    NASA Astrophysics Data System (ADS)

    Fernández-Urruzola, I.; Osma, N.; Gómez, M.; Pollehne, F.; Postel, L.; Packard, T. T.

    2016-12-01

    The vertical fluxes of particulate organic matter play a crucial role in the distribution of nutrients throughout the oceans. Although they have been the focus of intensive research, little effort has been made to explore alternative approaches that quantify the particle export at a high spatial resolution. In this study, we assess the minimum nitrogen flux (FN) required to sustain the heterotrophic metabolism in the water column from ocean depth profiles of zooplankton NH4+ excretion (RNH4+). The reduction of RNH4+ as a function of depth was described by a power law fit, RNH4+ = (RNH4+)m (z /zm)b , whereby the b-value determines the net particulate nitrogen loss with increasing depth. Integrating these excretory functions from the base of the euphotic zone to the ocean bottom, we calculated FN at two stations located over the Namibian outer shelf. Estimates of FN (ranging between 0.52 and 1.14 mmol N m-2 d-1) were compared with the sinking fluxes of particles collected in sediment traps (0.15-1.01 mmol N m-2 d-1) 50 m over the seafloor. We found a reasonable agreement between the two approaches when fast-sinking particles dominated the ecosystem, but the FN was somewhat at odds with the measured gravitational flux during a low-sedimentation regime. Applying our conceptual model to the mesozooplankton RNH4+ we further constructed a section of FN along a cross-shelf transect at 20° S, and estimated the efficiency of the epipelagic ecosystem to retain nutrients. Finally, we address the impact of the active flux driven by the migrant mesozooplankton to the total nitrogen export. Depending on the sedimentation regime, the downward active flux (0.86 mmol N m-2 d-1 at 150 m) accounted for between 50 and 307% of the gravitational flux.

  10. Test functions for three-dimensional control-volume mixed finite-element methods on irregular grids

    USGS Publications Warehouse

    Naff, R.L.; Russell, T.F.; Wilson, J.D.; ,; ,; ,; ,; ,

    2000-01-01

    Numerical methods based on unstructured grids, with irregular cells, usually require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element methods, vector shape functions are used to approximate the distribution of velocities across cells and vector test functions are used to minimize the error associated with the numerical approximation scheme. For a logically cubic mesh, the lowest-order shape functions are chosen in a natural way to conserve intercell fluxes that vary linearly in logical space. Vector test functions, while somewhat restricted by the mapping into the logical reference cube, admit a wider class of possibilities. Ideally, an error minimization procedure to select the test function from an acceptable class of candidates would be the best procedure. Lacking such a procedure, we first investigate the effect of possible test functions on the pressure distribution over the control volume; specifically, we look for test functions that allow for the elimination of intermediate pressures on cell faces. From these results, we select three forms for the test function for use in a control-volume mixed method code and subject them to an error analysis for different forms of grid irregularity; errors are reported in terms of the discrete L2 norm of the velocity error. Of these three forms, one appears to produce optimal results for most forms of grid irregularity.

  11. Horizon-absorbed energy flux in circularized, nonspinning black-hole binaries, and its effective-one-body representation

    NASA Astrophysics Data System (ADS)

    Nagar, Alessandro; Akcay, Sarp

    2012-02-01

    We propose, within the effective-one-body approach, a new, resummed analytical representation of the gravitational-wave energy flux absorbed by a system of two circularized (nonspinning) black holes. This expression is such that it is well-behaved in the strong-field, fast-motion regime, notably up to the effective-one-body-defined last unstable orbit. Building conceptually upon the procedure adopted to resum the multipolar asymptotic energy flux, we introduce a multiplicative decomposition of the multipolar absorbed flux made by three factors: (i) the leading-order contribution, (ii) an “effective source” and (iii) a new residual amplitude correction (ρ˜ℓmH)2ℓ. In the test-mass limit, we use a frequency-domain perturbative approach to accurately compute numerically the horizon-absorbed fluxes along a sequence of stable and unstable circular orbits, and we extract from them the functions ρ˜ℓmH. These quantities are then fitted via rational functions. The resulting analytically represented test-mass knowledge is then suitably hybridized with lower-order analytical information that is valid for any mass ratio. This yields a resummed representation of the absorbed flux for a generic, circularized, nonspinning black-hole binary. Our result adds new information to the state-of-the-art calculation of the absorbed flux at fractional 5 post-Newtonian order [S. Taylor and E. Poisson, Phys. Rev. D 78, 084016 (2008)], which is recovered in the weak-field limit approximation by construction.

  12. Tailoring vibration mode shapes using topology optimization and functionally graded material concepts

    NASA Astrophysics Data System (ADS)

    Montealegre Rubio, Wilfredo; Paulino, Glaucio H.; Nelli Silva, Emilio Carlos

    2011-02-01

    Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures—FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method.

  13. A novel design of beam shaping assembly to use D-T neutron generator for BNCT.

    PubMed

    Kasesaz, Yaser; Karimi, Marjan

    2016-12-01

    In order to use 14.1MeV neutrons produced by d-T neutron generators, two special and novel Beam Shaping Assemblies (BSA), including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. The results show that the proposed BSA can provide the qualified epithermal neutron beam for BNCT. The final epithermal neutron flux is about 6e9 n/cm2.s. The final proposed BSA has some different advantages: 1) it consists of usual and well-known materials (Pb, Al, Fluental and Cd); 2) it has a simple geometry; 3) it does not need any additional gamma filter; 4) it can provide high flux of epithermal neutrons. As this type of neutron source is under development in the world, it seems that they can be used clinically in a hospital considering the proposed BSA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Regional Scaling of Airborne Eddy Covariance Flux Observation

    NASA Astrophysics Data System (ADS)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    The earth's surface is tightly coupled to the global climate system by the vertical exchange of energy and matter. Thus, to better understand and potentially predict changes to our climate system, it is critical to quantify the surface-atmosphere exchange of heat, water vapor, and greenhouse gases on climate-relevant spatial and temporal scales. Currently, most flux observations consist of ground-based, continuous but local measurements. These provide a good basis for temporal integration, but may not be representative of the larger regional context. This is particularly true for the Arctic, where site selection is additionally bound by logistical constraints, among others. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this issue: The research aircraft POLAR 5 is used to acquire thousands of kilometers of eddy-covariance flux data. During the AIRMETH-2012 and AIRMETH-2013 campaigns we measured the turbulent exchange of energy, methane, and (in 2013) carbon dioxide over the North Slope of Alaska, USA, and the Mackenzie Delta, Canada. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking flux observations to meteorological and biophysical drivers in the flux footprints. We use wavelet transforms of the original high-frequency data to improve spatial discretization of the flux observations. This also enables the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between flux observations and the meteorological and biophysical drivers. The resulting ERFs are used to extrapolate fluxes over spatio-temporally explicit grids of the study area. The

  15. Impacts of rewetting on hydrological functioning and dissolved organic carbon flux in a degraded peatland (La Guette, France)

    NASA Astrophysics Data System (ADS)

    Bernard-Jannin, Léonard; Binet, Stéphane; Gogo, Sébastien; Lemoing, Franck; Zocatelli, Renata; Jozja, Nevila; Défarge, Christian; Laggoun-Défarge, Fatima

    2016-04-01

    In Sphagnum-dominated peatlands, dissolved organic carbon (DOC) fluxes are mainly controlled by peat water saturation state corresponding to the equilibrium between recharge/drainage fluxes and to the peat storage capacity. Rewetting is a wide spread method that has been used for restoring the global hydrological behavior of degraded peatland ecosystems. Therefore, there is a need to assess the impact of rewetting on peatland hydrology but also on the modification of dynamics and DOC fluxes that significantly impact on carbon sink function of these ecosystems. To investigate this question, meteorology, hydrological data, DOC concentrations and dissolved organic matter (DOM) quality (aromaticity and fluorescence) were monthly monitored at the watershed scales and in two piezometer transects since 2010 in a hydrologically disturbed peatland, La Guette, which experienced a rewetting action on February 2014. One piezometer transect (called downstream plots) was supposedly influenced by the hydrological restoration while the other (called upstream plots) was considered as a control. Collected data allowed studying the impact of the restoration on hydrology and dynamics and DOC fluxes in the peatland. Preliminary results indicate that water table level became more stable after the rewetting in the area affected by the restoration. This seems to have an impact on DOC quantity and quality since concentrations became higher in the same area with also a higher aromaticity degree and a larger proportion of low-weight molecules compared to upstream area. This could indicate that in the downstream area, more anaerobic conditions inhibit microorganism activity responsible for the mineralization of peat organic matter.

  16. Eddy covariance N2O flux measurements at low flux rates: results from the InGOS campaign in a Danish willow field.

    NASA Astrophysics Data System (ADS)

    Ibrom, Andreas; Brümmer, Christian; Hensen, Arjan; van Asperen, Hella; Carter, Mette S.; Gasche, Rainer; Famulari, Daniela; Kutsch, Werner; Pilegaard, Kim; Ambus, Per

    2014-05-01

    rates. All three EC systems showed 30 min. flux values varying around zero nmol m-2 s-1. This noise was considerably lower in the EC systems that used QCL analysers. The maximum daily averages of the uncorrected fluxes from two of the EC systems reached 0.26 (ICOS/HS50) and 0.28 (QCL/R3) nmol m-2 s-1.Spectral correction increased the flux estimates up to, e.g., 180% equivalent to 0.54 nmol m-2 s-1. The flux estimates from the soil chambers were with one exception higher than the flux estimates obtained from the EC systems with highest daily averages ranging from 0.1 up to 2 nmol m-2 s-1. These large differences were unexpected, because at least two of the EC systems were shown to accurately measure fluxes at such higher levels at another InGOS campaign in a fertilised Scottish grazed meadow. We use spectral analysis to examine the raw data for the effects of sensor noise on the flux estimates and discuss strategies on how to correct or account for it. Furthermore possible causes for the observed differences between the observed EC and chamber flux estimates will be discussed.

  17. Photospheric Magnetic Flux Transport - Supergranules Rule

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Rightmire-Upton, Lisa

    2012-01-01

    Observations of the transport of magnetic flux in the Sun's photosphere show that active region magnetic flux is carried far from its origin by a combination of flows. These flows have previously been identified and modeled as separate axisymmetric processes: differential rotation, meridional flow, and supergranule diffusion. Experiments with a surface convective flow model reveal that the true nature of this transport is advection by the non-axisymmetric cellular flows themselves - supergranules. Magnetic elements are transported to the boundaries of the cells and then follow the evolving boundaries. The convective flows in supergranules have peak velocities near 500 m/s. These flows completely overpower the superimposed 20 m/s meridional flow and 100 m/s differential rotation. The magnetic elements remain pinned at the supergranule boundaries. Experiments with and without the superimposed axisymmetric photospheric flows show that the axisymmetric transport of magnetic flux is controlled by the advection of the cellular pattern by underlying flows representative of deeper layers. The magnetic elements follow the differential rotation and meridional flow associated with the convection cells themselves -- supergranules rule!

  18. Diffeomorphic Sulcal Shape Analysis on the Cortex

    PubMed Central

    Joshi, Shantanu H.; Cabeen, Ryan P.; Joshi, Anand A.; Sun, Bo; Dinov, Ivo; Narr, Katherine L.; Toga, Arthur W.; Woods, Roger P.

    2014-01-01

    We present a diffeomorphic approach for constructing intrinsic shape atlases of sulci on the human cortex. Sulci are represented as square-root velocity functions of continuous open curves in ℝ3, and their shapes are studied as functional representations of an infinite-dimensional sphere. This spherical manifold has some advantageous properties – it is equipped with a Riemannian metric on the tangent space and facilitates computational analyses and correspondences between sulcal shapes. Sulcal shape mapping is achieved by computing geodesics in the quotient space of shapes modulo scales, translations, rigid rotations and reparameterizations. The resulting sulcal shape atlas preserves important local geometry inherently present in the sample population. The sulcal shape atlas is integrated in a cortical registration framework and exhibits better geometric matching compared to the conventional euclidean method. We demonstrate experimental results for sulcal shape mapping, cortical surface registration, and sulcal classification for two different surface extraction protocols for separate subject populations. PMID:22328177

  19. Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators

    NASA Astrophysics Data System (ADS)

    Friedman, Robert P.; Gordon, Jeffrey M.; Ries, Harald

    1995-08-01

    Using the recently-invented tailored edge-ray concentrator (TERC) approach for the design of compact two-stage high-flux solar collectors--a focusing primary reflector and a nonimaging TERC secondary reflector--we present: 1) a new primary reflector shape based on the TERC approach and a secondary TERC tailored to its particular flux map, such that more compact concentrators emerge at flux concentration levels in excess of 90% of the thermodynamic limit; and 2) calculations and raytrace simulations result which demonstrate the V-cone approximations to a wide variety of TERCs attain the concentration of the TERC to within a few percent, and hence represent practical secondary concentrators that may be superior to corresponding compound parabolic concentrator or trumpet secondaries.

  20. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  1. PFA toolbox: a MATLAB tool for Metabolic Flux Analysis.

    PubMed

    Morales, Yeimy; Bosque, Gabriel; Vehí, Josep; Picó, Jesús; Llaneras, Francisco

    2016-07-11

    Metabolic Flux Analysis (MFA) is a methodology that has been successfully applied to estimate metabolic fluxes in living cells. However, traditional frameworks based on this approach have some limitations, particularly when measurements are scarce and imprecise. This is very common in industrial environments. The PFA Toolbox can be used to face those scenarios. Here we present the PFA (Possibilistic Flux Analysis) Toolbox for MATLAB, which simplifies the use of Interval and Possibilistic Metabolic Flux Analysis. The main features of the PFA Toolbox are the following: (a) It provides reliable MFA estimations in scenarios where only a few fluxes can be measured or those available are imprecise. (b) It provides tools to easily plot the results as interval estimates or flux distributions. (c) It is composed of simple functions that MATLAB users can apply in flexible ways. (d) It includes a Graphical User Interface (GUI), which provides a visual representation of the measurements and their uncertainty. (e) It can use stoichiometric models in COBRA format. In addition, the PFA Toolbox includes a User's Guide with a thorough description of its functions and several examples. The PFA Toolbox for MATLAB is a freely available Toolbox that is able to perform Interval and Possibilistic MFA estimations.

  2. Shape-Independent Model of Monitor Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Yusuf, Siaka Ojo

    The technique of monitor neutron activation analysis has been improved by developing a shape-independent model to solve the problem of the treatment of the epithermal reaction contribution to the reaction rate in reactor neutron activation analysis. It is a form of facility characterization in which differential approximations to neither the neutron flux distribution as a function of energy nor the reaction cross section as a function of energy are necessary. The model predicts a linear relationship when the k-factors (ratios of reaction rates of two nuclides at a given irradiation position) for element x, k _{c} (x), is plotted against the k-factor for the monitor, k_{c} (m). The slope of this line, B(x,c,m) is measured for each element x to provide the calibration of the irradiation facility for monitor activation analysis. In this thesis, scandium was chosen as the comparator and antimony as the epithermal monitor. B(x, Sc, Sb) has been accurately measured for a number of nuclides in three different reactors. The measurement was done by irradiating filter papers containing binary mixture of the elements x and the flux monitor Sc at the various irradiation positions in these three reactors. The experiment was designed in such a way that systematic errors due to mass ratios and efficiency ratios cancel out. Also, rate related errors and backgrounds were kept at negligible values. The results show that B(x,c,m) depends not only on x, c, and m, but also on the type of moderator used for the reactor. We want this new approach to be adopted at all laboratories where routine analysis of multi-element samples are done with the monitor method since the choices of c and m are flexible.

  3. Seasonal variations of the particle flux in the Peru-Chile current at 30°S under `normal' and El Niño conditions

    NASA Astrophysics Data System (ADS)

    Hebbeln, Dierk; Marchant, Margarita; Wefer, Gerold

    Time-series sediment traps were deployed 180 km off the Chilean coast at 30°S in the Peru-Chile Current during the El Niño period 1991/1992 (6 months) and during the 'normal' period 1993/1994 (12 months). Under normal conditions in 1993/1994 the particle fluxes display a pronounced seasonal cycle marked by a settling phytoplankton bloom in September, intermediate fluxes until January, and low fluxes between January and July. This seasonal pattern is also reflected in stable isotope data, measured on the planktic foraminifera species Neogloboquadrina pachyderma (dex.) and Globigerina bulloides, which indicate persistent upwelling conditions between August and February followed by a stratified water column between March and July. The total flux under normal conditions amounts to 65.1 g m -2 a-1, with the main flux constituents contributing 47.6% (carbonate), 26.4% (lithogenic matter), 17.4% (biogenic opal), and 8.6% (organic matter), respectively. Based on these particle flux data the export production has been estimated to be 42 gC m -2 a-1. Although the main flux event in September was not sampled in the El Niño period 1991/1992, the available record from November 1991 to April 1992 allows an interesting comparison with the fluxes of the normal year. The total amount of fluxes and the timing of minor flux events are very similar under normal and under El Niño conditions. However, increased proportions of organic carbon and lithogenic matter under El Niño conditions are interpreted to reflect faster sedimentation and preferred scavenging of organic matter by elevated lithogenic fluxes rather than increased productivity. The higher lithogenic fluxes under El Niño conditions are probably due to increased precipitation and terrestial runoff in the arid to semiarid northern part of Chile.

  4. From COS ecosystem fluxes to GPP: integrating soil, branch and ecosystem fluxes.

    NASA Astrophysics Data System (ADS)

    Kooijmans, L.; Maseyk, K. S.; Vesala, T.; Mammarella, I.; Baker, I. T.; Seibt, U.; Sun, W.; Aalto, J.; Franchin, A.; Kolari, P.; Keskinen, H.; Levula, J.; Chen, H.

    2016-12-01

    The close coupling of Carbonyl Sulfide (COS) and CO2 due to a similar uptake pathway into plant stomata makes COS a promising new tracer that can potentially be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. Although ecosystem-scale measurements have been made at several sites, the contribution of different ecosystem components to the total COS budget is often unknown. Besides that, the average Leaf Relative Uptake (LRU) ratio needs to be better determined to accurately translate COS ecosystem fluxes into GPP estimates when the simple linear correlation between GPP estimates and COS plant uptake is used. We performed two campaigns in the summer of 2015 and 2016 at the SMEAR II site in Hyytiälä, Finland to provide better constrained COS flux data for boreal forests. A combination of COS measurements were made during both years, i.e. atmospheric profile concentrations up to 125 m, eddy-covariance fluxes and soil chamber fluxes. In addition to these, branch chamber measurements were done in 2016 in an attempt to observe the LRU throughout the whole season. The LRU ratio shows an exponential correlation with photosynthetic active radiation (PAR) but is constant for PAR levels above 500 µmol m-2 s-1. Mid-day LRU values are 1.0 (aspen) and 1.5 (pine). The correlation between LRU and PAR can be explained by the fact that COS is hydrolyzed with the presence of the enzyme carbonic anhydrase, and is not light dependent, whereas the photosynthetic uptake of CO2 is. We observed nighttime fluxes on the order of 25-30 % of the daily maximum COS uptake. Soils are a small sink of COS and contribute to 3 % of the total ecosystem COS flux during daytime. In a comparison between observed and simulated fluxes from the Simple Biosphere (SiB) model, the modelled COS and CO2 ecosystem fluxes are on average 40 % smaller than the observed fluxes, however, the Ecosystem Relative Uptake (ERU) ratios are identical at a value of 1.9 ± 0

  5. Warming alters the energetic structure and function but not resilience of soil food webs

    PubMed Central

    Schwarz, Benjamin; Barnes, Andrew D.; Thakur, Madhav P.; Brose, Ulrich; Ciobanu, Marcel; Reich, Peter B.; Rich, Roy L.; Rosenbaum, Benjamin; Stefanski, Artur; Eisenhauer, Nico

    2017-01-01

    Climate warming is predicted to alter the structure, stability, and functioning of food webs1–5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, warming effects on these food webs—particularly in combination with other global change drivers—are largely unknown. Here, we present results from two complementary field experiments testing the interactive effects of warming with forest canopy disturbance and drought on energy fluxes in boreal-temperate ecotonal forest soil food webs. The first experiment applied a simultaneous above- and belowground warming treatment (ambient, +1.7°C, +3.4°C) to closed canopy and recently clear-cut forest, simulating common forest disturbance6. The second experiment crossed warming with a summer drought treatment (-40% rainfall) in the clear-cut habitats. We show that warming reduces energy fluxes to microbes, while forest canopy disturbance and drought facilitates warming-induced increases in energy flux to higher trophic levels and exacerbates reductions in energy flux to microbes, respectively. Contrary to expectations, we find no change in whole-network resilience to perturbations, but significant losses of ecosystem functioning. Warming thus interacts with forest disturbance and drought, shaping the energetic structure of soil food webs and threatening the provisioning of multiple ecosystem functions in boreal-temperate ecotonal forests. PMID:29218059

  6. Does shape co-variation between the skull and the mandible have functional consequences? A 3D approach for a 3D problem

    PubMed Central

    Cornette, Raphaël; Baylac, Michel; Souter, Thibaud; Herrel, Anthony

    2013-01-01

    Morpho-functional patterns are important drivers of phenotypic diversity given their importance in a fitness-related context. Although modularity of the mandible and skull has been studied extensively in mammals, few studies have explored shape co-variation between these two structures. Despite being developmentally independent, the skull and mandible form a functionally integrated unit. In the present paper we use 3D surface geometric morphometric methods allowing us to explore the form of both skull and mandible in its 3D complexity using the greater white-toothed shrew as a model. This approach allows an accurate 3D description of zones devoid of anatomical landmarks that are functionally important. Two-block partial least-squares approaches were used to describe the co-variation of form between skull and mandible. Moreover, a 3D biomechanical model was used to explore the functional consequences of the observed patterns of co-variation. Our results show the efficiency of the method in investigations of complex morpho-functional patterns. Indeed, the description of shape co-variation between the skull and the mandible highlighted the location and the intensity of their functional relationships through the jaw adductor muscles linking these two structures. Our results also demonstrated that shape co-variation in form between the skull and mandible has direct functional consequences on the recruitment of muscles during biting. PMID:23964811

  7. The Effect of Breaking Waves on CO_2 Air-Sea Fluxes in the Coastal Zone

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.; García-Nava, Héctor

    2018-03-01

    The influence of wave-associated parameters controlling turbulent CO_2 fluxes through the air-sea interface is investigated in a coastal region. A full year of high-quality data of direct estimates of air-sea CO_2 fluxes based on eddy-covariance measurements is presented. The study area located in Todos Santos Bay, Baja California, Mexico, is a net sink of CO_2 with a mean flux of -1.3 μmol m^{-2}s^{-1} (-41.6 mol m^{-2}yr^{-1} ). The results of a quantile-regression analysis computed between the CO_2 flux and, (1) wind speed, (2) significant wave height, (3) wave steepness, and (4) water temperature, suggest that the significant wave height is the most correlated parameter with the magnitude of the flux but the behaviour of the relation varies along the probability distribution function, with the slopes of the regression lines presenting both positive and negative values. These results imply that the presence of surface waves in coastal areas is the key factor that promotes the increase of the flux from and into the ocean. Further analysis suggests that the local characteristics of the aqueous and atmospheric layers might determine the direction of the flux.

  8. Third law of thermodynamics in the presence of a heat flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camacho, J.

    1995-01-01

    Following a maximum entropy formalism, we study a one-dimensional crystal under a heat flux. We obtain the phonon distribution function and evaluate the nonequilibrium temperature, the specific heat, and the entropy as functions of the internal energy and the heat flux, in both the quantum and the classical limits. Some analogies between the behavior of equilibrium systems at low absolute temperature and nonequilibrium steady states under high values of the heat flux are shown, which point to a possible generalization of the third law in nonequilibrium situations.

  9. A framework for joint image-and-shape analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Tannenbaum, Allen; Bouix, Sylvain

    2014-03-01

    Techniques in medical image analysis are many times used for the comparison or regression on the intensities of images. In general, the domain of the image is a given Cartesian grids. Shape analysis, on the other hand, studies the similarities and differences among spatial objects of arbitrary geometry and topology. Usually, there is no function defined on the domain of shapes. Recently, there has been a growing needs for defining and analyzing functions defined on the shape space, and a coupled analysis on both the shapes and the functions defined on them. Following this direction, in this work we present a coupled analysis for both images and shapes. As a result, the statistically significant discrepancies in both the image intensities as well as on the underlying shapes are detected. The method is applied on both brain images for the schizophrenia and heart images for atrial fibrillation patients.

  10. Turbulent flux variability and energy balance closure in the TERENO prealpine observatory: a hydrometeorological data analysis

    NASA Astrophysics Data System (ADS)

    Soltani, Mohsen; Mauder, Matthias; Laux, Patrick; Kunstmann, Harald

    2017-07-01

    The temporal multiscale variability of the surface heat fluxes is assessed by the analysis of the turbulent heat and moisture fluxes using the eddy covariance (EC) technique at the TERrestrial ENvironmental Observatories (TERENO) prealpine region. The fast and slow response variables from three EC sites located at Fendt, Rottenbuch, and Graswang are gathered for the period of 2013 to 2014. Here, the main goals are to characterize the multiscale variations and drivers of the turbulent fluxes, as well as to quantify the energy balance closure (EBC) and analyze the possible reasons for the lack of EBC at the EC sites. To achieve these goals, we conducted a principal component analysis (PCA) and a climatological turbulent flux footprint analysis. The results show significant differences in the mean diurnal variations of the sensible heat (H) and latent heat (LE) fluxes, because of variations in the solar radiation, precipitation patterns, soil moisture, and the vegetation fraction throughout the year. LE was the main consumer of net radiation. Based on the first principal component (PC1), the radiation and temperature components with a total mean contribution of 29.5 and 41.3%, respectively, were found to be the main drivers of the turbulent fluxes at the study EC sites. A general lack of EBC is observed, where the energy imbalance values amount 35, 44, and 35% at the Fendt, Rottenbuch, and Graswang sites, respectively. An average energy balance ratio (EBR) of 0.65 is obtained in the region. The best closure occurred in the afternoon peaking shortly before sunset with a different pattern and intensity between the study sites. The size and shape of the annual mean half-hourly turbulent flux footprint climatology was analyzed. On average, 80% of the flux footprint was emitted from a radius of approximately 250 m around the EC stations. Moreover, the overall shape of the flux footprints was in good agreement with the prevailing wind direction for all three TERENO EC sites.

  11. Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield.

    PubMed

    Grünhage, Ludger; Pleijel, Håkan; Mills, Gina; Bender, Jürgen; Danielsson, Helena; Lehmann, Yvonne; Castell, Jean-Francois; Bethenod, Olivier

    2012-06-01

    Field measurements and open-top chamber experiments using nine current European winter wheat cultivars provided a data set that was used to revise and improve the parameterisation of a stomatal conductance model for wheat, including a revised value for maximum stomatal conductance and new functions for phenology and soil moisture. For the calculation of stomatal conductance for ozone a diffusivity ratio between O(3) and H(2)O in air of 0.663 was applied, based on a critical review of the literature. By applying the improved parameterisation for stomatal conductance, new flux-effect relationships for grain yield, grain mass and protein yield were developed for use in ozone risk assessments including effects on food security. An example of application of the flux model at the local scale in Germany shows that negative effects of ozone on wheat grain yield were likely each year and on protein yield in most years since the mid 1980s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Shaping Landscape Identity in Jewish State Education during the 1950s to 1960s

    ERIC Educational Resources Information Center

    Tadmor-Shimony, Tali

    2013-01-01

    This paper discusses the attempts of Israeli education, in a similar fashion to other national educational systems, to shape a territorial identity for the pupils of the new State. The Israeli school used a variety of educational means to shape a person who would be modelled on his new birthplace's landscape, including the use of textbooks,…

  13. Laser Consolidation - A Novel One-Step Manufacturing Process for Making Net-Shape Functional Components

    DTIC Science & Technology

    2006-05-01

    dies. This process uses a laser beam to melt a controlled amount of injected powder on a base plate to deposit the first layer and on previous passes...Consolidation” to build functional net-shape components directly from metallic powder in one step [1-3]. The laser consolidation is a one-step computer-aided...A focused laser beam is irradiated on the substrate to create a molten pool, while metallic powder is injected simultaneously into the pool. A

  14. AmeriFlux Site and Data Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.; Yang, B.; Jackson, B.

    2011-12-01

    investigators, inform AmeriFlux investigators of users of their data, and facilitate meaningful usage statistics. Comprehensive site descriptions are available via the same interface along with site-related publications and data visualization functionality. This presentation reflects the present state and functionality of the AmeriFlux Site and Data Exploration System as well as future plans for expansion. For example, future plans call for expansion of the relational database to house similar data from large-scale ecosystem experiments (e.g., FACE, NGEE - Next Generation Ecosystem Experiment) and inclusion of enhanced query capabilities (e.g., sorting data via day and night).

  15. Late-time flux evolution of magnetars SGR 1627-41 and Swift J1822.3-1606

    NASA Astrophysics Data System (ADS)

    An, Hongjun

    2013-10-01

    The flux relaxations of magnetars post-outburst are of great interest as they permit detailed studies of magnetars and their environments. One model that can explain the flux relaxation is crustal cooling. In the model, heat is deposited after an energetic event in the crust and emitted at the surface. A significant amount of heat can propagate deeper inside, heating the core/crust boundary and changing the shape of the light curve at late times. Therefore, studying the flux relaxation at late times may provides a new opportunity to study the extreme environment near the core. We propose XMM-Newton observations to study the late-time flux evolution of two magnetars, SGR 1627-41 and Swift J1822.3- 1606 to test the crustal cooling model and infer physical properties of the magnetars.

  16. A magnetoelectric flux gate: new approach for weak DC magnetic field detection.

    PubMed

    Chu, Zhaoqiang; Shi, Huaduo; PourhosseiniAsl, Mohammad Javad; Wu, Jingen; Shi, Weiliang; Gao, Xiangyu; Yuan, Xiaoting; Dong, Shuxiang

    2017-08-17

    The magnetic flux gate sensors based on Faraday's Law of Induction are widely used for DC or extremely low frequency magnetic field detection. Recently, as the fast development of multiferroics and magnetoelectric (ME) composite materials, a new technology based on ME coupling effect is emerging for potential devices application. Here, we report a magnetoelectric flux gate sensor (MEFGS) for weak DC magnetic field detection for the first time, which works on a similar magnetic flux gate principle, but based on ME coupling effect. The proposed MEFGS has a shuttle-shaped configuration made of amorphous FeBSi alloy (Metglas) serving as both magnetic and magnetostrictive cores for producing a closed-loop high-frequency magnetic flux and also a longitudinal vibration, and one pair of embedded piezoelectric PMN-PT fibers ([011]-oriented Pb(Mg,Nb)O 3 -PbTiO 3 single crystal) serving as ME flux gate in a differential mode for detecting magnetic anomaly. In this way, the relative change in output signal of the MEFGS under an applied DC magnetic anomaly of 1 nT was greatly enhanced by a factor of 4 to 5 in comparison with the previous reports. The proposed ME flux gate shows a great potential for magnetic anomaly detections, such as magnetic navigation, magnetic based medical diagnosis, etc.

  17. Linear ac Response of Thin Superconductors during Flux Creep

    NASA Astrophysics Data System (ADS)

    Brandt, Ernst Helmut; Gurevich, Alexander

    1996-03-01

    The linear magnetic susceptibility χ\\(ω\\) of superconducting strips and disks in a transverse magnetic field is calculated in the flux-creep regime. It is shown that χ\\(ω\\) = χ'-iχ'' for ω>>1/t is universal, independent of temperature, dc field, and material parameters, depending only on the sample shape, ac frequency ω/2π, and time t elapsed after creep has started. Qualitatively, χ\\(ω\\) can be obtained from the χ\\(ω\\) of metallic conductors by replacing the Ohmic relaxation time by t. At ωt>>1, which may apply down to rather low frequencies, the dissipative flux-creep state exhibits a nearly Meissner-like response with χ' = -1+0.40/ωt and χ'' = 0.25ln\\(29ωt\\)/ωt for disks.

  18. The structure of untwisted magnetic flux tubes. [solar magnetic field distribution

    NASA Technical Reports Server (NTRS)

    Browning, P. K.; Priest, E. R.

    1982-01-01

    While most previous investigations have concentrated on slender flux tubes, the present study of the equilibrium structure of an axisymmetric magnetic flux tube, confined by an external pressure that varies along the length of the tube, explores the properties of thick tubes in order to establish the degree to which slender tube theory is valid. It is found that slender flux tube results may in some cases give no indication of thick tube behavior in a nonuniform atmosphere. Depending on boundary conditions applied at the ends of the tube, it may expand or contract upon entering a region of increasing pressure. Rather than expanding indefinitely, the tube surface may form a cusped shape when a point of external pressure on the tube surface falls to equality with the internal pressure. Numerical solutions for an initially uniform tube give smaller expansions than would be expected from slender tube theory.

  19. Equality of hemisphere soft functions for e + e - , DIS and pp collisions at O ( α s 2 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Daekyoung; Labun, Ou Z.; Lee, Christopher

    We present a simple observation about soft amplitudes and soft functions appearing in factorizable cross sections in ee, ep, and pp collisions that has not clearly been made in previous literature, namely, that the hemisphere soft functions that appear in event shape distributions in e +e - → dijets, deep inelastic scattering (DIS), and in Drell–Yan (DY) processes are equal in perturbation theory up to O(α s 2), even though individual amplitudes may have opposite sign imaginary parts due to changing complex pole prescriptions in eikonal propagators for incoming vs. outgoing lines. We also explore potential generalizations of this observationmore » to soft functions for other observables or with more jets in the final state.« less

  20. FORMATION AND ERUPTION OF A FLUX ROPE FROM THE SIGMOID ACTIVE REGION NOAA 11719 AND ASSOCIATED M6.5 FLARE: A MULTI-WAVELENGTH STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Bhuwan; Kushwaha, Upendra; Dhara, Sajal Kumar

    We investigate the formation, activation, and eruption of a flux rope (FR) from the sigmoid active region NOAA 11719 by analyzing E(UV), X-ray, and radio measurements. During the pre-eruption period of ∼7 hr, the AIA 94 Å images reveal the emergence of a coronal sigmoid through the interaction between two J-shaped bundles of loops, which proceeds with multiple episodes of coronal loop brightenings and significant variations in the magnetic flux through the photosphere. These observations imply that repetitive magnetic reconnections likely play a key role in the formation of the sigmoidal FR in the corona and also contribute toward sustaining themore » temperature of the FR higher than that of the ambient coronal structures. Notably, the formation of the sigmoid is associated with the fast morphological evolution of an S-shaped filament channel in the chromosphere. The sigmoid activates toward eruption with the ascent of a large FR in the corona, which is preceded by the decrease in photospheric magnetic flux through the core flaring region, suggesting tether-cutting reconnection as a possible triggering mechanism. The FR eruption results in a two-ribbon M6.5 flare with a prolonged rise phase of ∼21 minutes. The flare exhibits significant deviation from the standard flare model in the early rise phase, during which a pair of J-shaped flare ribbons form and apparently exhibit converging motions parallel to the polarity inversion line, which is further confirmed by the motions of hard X-ray footpoint sources. In the later stages, the flare follows the standard flare model and the source region undergoes a complete sigmoid-to-arcade transformation.« less

  1. Benchmarking gyrokinetic simulations in a toroidal flux-tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.; Parker, S. E.; Wan, W.

    2013-09-15

    A flux-tube model is implemented in the global turbulence code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)] in order to facilitate benchmarking with Eulerian codes. The global GEM assumes the magnetic equilibrium to be completely given. The initial flux-tube implementation simply selects a radial location as the center of the flux-tube and a radial size of the flux-tube, sets all equilibrium quantities (B, ∇B, etc.) to be equal to the values at the center of the flux-tube, and retains only a linear radial profile of the safety factor needed for boundary conditions. This implementationmore » shows disagreement with Eulerian codes in linear simulations. An alternative flux-tube model based on a complete local equilibrium solution of the Grad-Shafranov equation [J. Candy, Plasma Phys. Controlled Fusion 51, 105009 (2009)] is then implemented. This results in better agreement between Eulerian codes and the particle-in-cell (PIC) method. The PIC algorithm based on the v{sub ||}-formalism [J. Reynders, Ph.D. dissertation, Princeton University, 1992] and the gyrokinetic ion/fluid electron hybrid model with kinetic electron closure [Y. Chan and S. E. Parker, Phys. Plasmas 18, 055703 (2011)] are also implemented in the flux-tube geometry and compared with the direct method for both the ion temperature gradient driven modes and the kinetic ballooning modes.« less

  2. Mathematical simulation of efficiency of various shapes of solar panels for NASA geostationary satellites

    NASA Astrophysics Data System (ADS)

    Pandya, Raaghav; Raja, Hammad; Enriquez-Torres, Delfino; Serey-Roman, Maria Ignacia; Hassebo, Yasser; Marciniak, Małgorzata

    2018-02-01

    The purpose of this research is to analyze mathematically cylindrical shapes of flexible solar panels and compare their efficiency to the flat panels. The efficiency is defined to be the flux density, which is the ratio of the mathematical flux and the surface area. In addition we describe the trajectory of the Sun at specific locations: the North Pole, The Equator and a geostationary satellite above the Equator. The calculations were performed with software: Maple, Mathematica, and MATLAB.

  3. Feedback Control Systems Loop Shaping Design with Practical Considerations

    NASA Technical Reports Server (NTRS)

    Kopsakis, George

    2007-01-01

    This paper describes loop shaping control design in feedback control systems, primarily from a practical stand point that considers design specifications. Classical feedback control design theory, for linear systems where the plant transfer function is known, has been around for a long time. But it s still a challenge of how to translate the theory into practical and methodical design techniques that simultaneously satisfy a variety of performance requirements such as transient response, stability, and disturbance attenuation while taking into account the capabilities of the plant and its actuation system. This paper briefly addresses some relevant theory, first in layman s terms, so that it becomes easily understood and then it embarks into a practical and systematic design approach incorporating loop shaping design coupled with lead-lag control compensation design. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs.

  4. Modification of jet shapes in PbPb collisions at $$\\sqrt {s_{NN}} = 2.76$$ TeV

    DOE PAGES

    Chatrchyan, Serguei

    2014-03-01

    The first measurement of jet shapes, defined as the fractional transverse momentum radial distribution, for inclusive jets produced in heavy-ion collisions is presented. Data samples of PbPb and pp collisions, corresponding to integrated luminosities of 150 inverse microbarns and 5.3 inverse picobarns respectively, were collected at a nucleon-nucleon centre-of-mass energy of sqrt(s[NN]) = 2.76 TeV with the CMS detector at the LHC. The jets are reconstructed with the anti-kt algorithm with a distance parameter R=0.3, and the jet shapes are measured for charged particles with transverse momentum pt > 1 GeV. The jet shapes measured in PbPb collisions in differentmore » collision centralities are compared to reference distributions based on the pp data. A centrality-dependent modification of the jet shapes is observed in the more central PbPb collisions, indicating a redistribution of the energy inside the jet cone. This measurement provides information about the parton shower mechanism in the hot and dense medium produced in heavy-ion collisions.« less

  5. Heat flux viscosity in collisional magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C., E-mail: cliu@pppl.gov; Fox, W.; Bhattacharjee, A.

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through themore » generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.« less

  6. Radiation Hardness tests with neutron flux on different Silicon photomultiplier devices

    NASA Astrophysics Data System (ADS)

    Cattaneo, P. W.; Cervi, T.; Menegolli, A.; Oddone, M.; Prata, M.; Prata, M. C.; Rossella, M.

    2017-07-01

    Radiation hardness is an important requirement for solid state readout devices operating in high radiation environments common in particle physics experiments. The MEG II experiment, at PSI, Switzerland, investigates the forbidden decay μ+ → e+ γ. Exploiting the most intense muon beam of the world. A significant flux of non-thermal neutrons (kinetic energy Ek>= 0.5 MeV) is present in the experimental hall produced along the beam-line and in the hall itself. We present the effects of neutron fluxes comparable to the MEG II expected doses on several Silicon Photomultiplier (SiPMs). The tested models are: AdvanSiD ASD-NUV3S-P50 (used in MEG II experiment), AdvanSiD ASD-NUV3S-P40, AdvanSiD ASD-RGB3S-P40, Hamamatsu and Excelitas C30742-33-050-X. The neutron source is the thermal Sub-critical Multiplication complex (SM1) moderated with water, located at the University of Pavia (Italy). We report the change of SiPMs most important electric parameters: dark current, dark pulse frequency, gain, direct bias resistance, as a function of the integrated neutron fluency.

  7. Greenhouse gas fluxes of grazed and hayed wetland catchments in the U.S. Prairie Pothole Ecoregion

    USGS Publications Warehouse

    Finocchiaro, Raymond G.; Tangen, Brian A.; Gleason, Robert A.

    2014-01-01

    Wetland catchments are major ecosystems in the Prairie Pothole Region (PPR) and play an important role in greenhouse gases (GHG) flux. However, there is limited information regarding effects of land-use on GHG fluxes from these wetland systems. We examined the effects of grazing and haying, two common land-use practices in the region, on GHG fluxes from wetland catchments during 2007 and 2008. Fluxes of methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2), along with soil water content and temperature, were measured along a topographic gradient every other week during the growing season near Ipswich, SD, USA. Closed, opaque chambers were used to measure fluxes of soil and plant respiration from native sod catchments that were grazed or left idle, and from recently restored catchments which were seeded with native plant species; half of these catchments were hayed once during the growing season. Catchments were adjacent to each other and had similar soils, soil nitrogen and organic carbon content, precipitation, and vegetation. When compared with idle catchments, grazing as a land-use had little effect on GHG fluxes. Likewise, haying had little effect on fluxes of CH4 and N2O compared with non-hayed catchments. Haying, however, did have a significant effect on combined soil and vegetative CO2 flux in restored wetland catchments owing to the immediate and comprehensive effect haying has on plant productivity. This study also examined soil conditions that affect GHG fluxes and provides cumulative annual estimates of GHG fluxes from wetland catchment in the PPR.

  8. Convergence in the temperature response of leaf respiration across biomes and plant functional types

    PubMed Central

    Heskel, Mary A.; O’Sullivan, Odhran S.; Reich, Peter B.; Tjoelker, Mark G.; Weerasinghe, Lasantha K.; Penillard, Aurore; Egerton, John J. G.; Creek, Danielle; Bloomfield, Keith J.; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R.; Martinez-de la Torre, Alberto; Griffin, Kevin L.; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H.; Atkin, Owen K.

    2016-01-01

    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration–temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates. PMID:27001849

  9. New Basis Functions for the Electromagnetic Solution of Arbitrarily-shaped, Three Dimensional Conducting Bodies using Method of Moments

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.

    2008-01-01

    In this work, we present a new set of basis functions, defined over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also defined over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.

  10. Carbon storage and greenhouse gas fluxes in the San Juan ...

    EPA Pesticide Factsheets

    Mangrove systems are known carbon (C) and greenhouse gas (GHG) sinks, but this function may be affected by global change drivers that include (but are not limited to) eutrophication, climate change, species composition shifts, and hydrological changes. In Puerto Rico’s San Juan Bay Estuary, mangrove wetlands are characterized by anthropogenic impacts, particularly tidal restriction due to infilling of the Martin Pena Canal and eutrophication. The objective of our research is to measure carbon sequestration and carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes in the San Juan Bay Estuary to understand the sustainability and role in global climate of this urban mangrove ecosystem. Cores for C sequestration measurements were collected and GHG fluxes were measured during rainy and dry seasons at 5 sites along a gradient of development and nitrogen loading in the San Juan Bay Estuary. At each site, paired GHG flux measurements were performed for mangrove wetland soil and estuarine water using static and floating chambers. Our results suggest a positive relationship between urban development and CH4 and N2O emissions, and demonstrate that in this system, estuarine waters are a major methane source. In addition to providing characterization of GHG fluxes in an urban subtropical estuary, these data provide a baseline against which future states of the estuary (after planned hydrological restoration has been implemented) may be compared. Thi

  11. Linking plant and ecosystem functional biogeography.

    PubMed

    Reichstein, Markus; Bahn, Michael; Mahecha, Miguel D; Kattge, Jens; Baldocchi, Dennis D

    2014-09-23

    Classical biogeographical observations suggest that ecosystems are strongly shaped by climatic constraints in terms of their structure and function. On the other hand, vegetation function feeds back on the climate system via biosphere-atmosphere exchange of matter and energy. Ecosystem-level observations of this exchange reveal very large functional biogeographical variation of climate-relevant ecosystem functional properties related to carbon and water cycles. This variation is explained insufficiently by climate control and a classical plant functional type classification approach. For example, correlations between seasonal carbon-use efficiency and climate or environmental variables remain below 0.6, leaving almost 70% of variance unexplained. We suggest that a substantial part of this unexplained variation of ecosystem functional properties is related to variations in plant and microbial traits. Therefore, to progress with global functional biogeography, we should seek to understand the link between organismic traits and flux-derived ecosystem properties at ecosystem observation sites and the spatial variation of vegetation traits given geoecological covariates. This understanding can be fostered by synergistic use of both data-driven and theory-driven ecological as well as biophysical approaches.

  12. Ginzburg-Landau Theory for Flux Phase and Superconductivity in t-J Model

    NASA Astrophysics Data System (ADS)

    Kuboki, Kazuhiro

    2018-02-01

    Ginzburg-Landau (GL) equations and GL free energy for flux phase and superconductivity are derived microscopically from the t-J model on a square lattice. Order parameter (OP) for the flux phase has direct coupling to a magnetic field, in contrast to the superconducting OP which has minimal coupling to a vector potential. Therefore, when the flux phase OP has unidirectional spatial variation, staggered currents would flow in a perpendicular direction. The derived GL theory can be used for various problems in high-Tc cuprate superconductors, e.g., states near a surface or impurities, and the effect of an external magnetic field. Since the GL theory derived microscopically directly reflects the electronic structure of the system, e.g., the shape of the Fermi surface that changes with doping, it can provide more useful information than that from phenomenological GL theories.

  13. On s*g-continuous Functions on Topological Spaces

    NASA Astrophysics Data System (ADS)

    Khan, M.; Hussain, Murad

    2010-11-01

    The aim of this paper is to introduce and study the concept of s*g-continuous and s*g-closed functions. We investigate their relation with already existing notions. We also introduce s*g-irresolute function and investigate its relation with s*g-continuous function. When the s*g-closed sets are preserved, is also studied. In the end, we define and study the notions of s*g-compactness and s*g-connectedness.

  14. Multi-GEM Detectors in High Particle Fluxes

    NASA Astrophysics Data System (ADS)

    Thuiner, P.; Resnati, F.; Franchino, S.; Gonzalez Diaz, D.; Hall-Wilton, R.; Müller, H.; Oliveri, E.; Pfeiffer, D.; Ropelewski, L.; Van Stenis, M.; Streli, C.; Veenhof, R.

    2018-02-01

    Gaseous Electron Multipliers (GEM) are well known for stable operation at high particle fluxes. We present a study of the intrinsic limits of GEMdetectors when exposed to very high particle fluxes of the order of MHz/mm2. We give an interpretation to the variations of the effective gain, which, as a function of the particle flux, first increases and then decreases. We also discuss the reduction of the ion back-flow with increasing flux. We present measurements and simulations of a triple GEM detector, describing its behaviour in terms of accumulation of positive ions that results in changes of the transfer fields and the amplification fields. The behaviour is expected to be common to all multi-stage amplification devices where the efficiency of transferring the electrons from one stage to the next one is not 100%.

  15. Microscopic analysis of octupole shape transitions in neutron-rich actinides with relativistic energy density functional

    NASA Astrophysics Data System (ADS)

    Xu, Zhong; Li, Zhi-Pan

    2017-12-01

    Quadrupole and octupole deformation energy surfaces, low-energy excitation spectra, and electric transition rates in eight neutron-rich isotopic chains - Ra, Th, U, Pu, Cm, Cf, Fm, and No - are systematically analyzed using a quadrupole-octupole collective Hamiltonian model, with parameters determined by constrained reflection-asymmetric and axially-symmetric relativistic mean-field calculations based on the PC-PK1 energy density functional. The theoretical results of low-lying negative-parity bands, odd-even staggering, average octupole deformations ⟨β 3⟩, and show evidence of a shape transition from nearly spherical to stable octupole-deformed, and finally octupole-soft equilibrium shapes in the neutron-rich actinides. A microscopic mechanism for the onset of stable octupole deformation is also discussed in terms of the evolution of single-nucleon orbitals with deformation. Supported by National Natural Science Foundation of China (11475140, 11575148)

  16. Reducing Recon 2 for steady-state flux analysis of HEK cell culture.

    PubMed

    Quek, Lake-Ee; Dietmair, Stefanie; Hanscho, Michael; Martínez, Verónica S; Borth, Nicole; Nielsen, Lars K

    2014-08-20

    A representative stoichiometric model is essential to perform metabolic flux analysis (MFA) using experimentally measured consumption (or production) rates as constraints. For Human Embryonic Kidney (HEK) cell culture, there is the opportunity to use an extremely well-curated and annotated human genome-scale model Recon 2 for MFA. Performing MFA using Recon 2 without any modification would have implied that cells have access to all functionality encoded by the genome, which is not realistic. The majority of intracellular fluxes are poorly determined as only extracellular exchange rates are measured. This is compounded by the fact that there is no suitable metabolic objective function to suppress non-specific fluxes. We devised a heuristic to systematically reduce Recon 2 to emphasize flux through core metabolic reactions. This implies that cells would engage these dominant metabolic pathways to grow, and any significant changes in gross metabolic phenotypes would have invoked changes in these pathways. The reduced metabolic model becomes a functionalized version of Recon 2 used for identifying significant metabolic changes in cells by flux analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A systematic approach for finding the objective function and active constraints for dynamic flux balance analysis.

    PubMed

    Nikdel, Ali; Braatz, Richard D; Budman, Hector M

    2018-05-01

    Dynamic flux balance analysis (DFBA) has become an instrumental modeling tool for describing the dynamic behavior of bioprocesses. DFBA involves the maximization of a biologically meaningful objective subject to kinetic constraints on the rate of consumption/production of metabolites. In this paper, we propose a systematic data-based approach for finding both the biological objective function and a minimum set of active constraints necessary for matching the model predictions to the experimental data. The proposed algorithm accounts for the errors in the experiments and eliminates the need for ad hoc choices of objective function and constraints as done in previous studies. The method is illustrated for two cases: (1) for in silico (simulated) data generated by a mathematical model for Escherichia coli and (2) for actual experimental data collected from the batch fermentation of Bordetella Pertussis (whooping cough).

  18. Derivation of the Energy and Flux Morphology in an Aurora Observed at Midlatitude Using Multispectral Imaging

    NASA Astrophysics Data System (ADS)

    Aryal, Saurav; Finn, Susanna C.; Hewawasam, Kuravi; Maguire, Ryan; Geddes, George; Cook, Timothy; Martel, Jason; Baumgardner, Jeffrey L.; Chakrabarti, Supriya

    2018-05-01

    Energies and fluxes of precipitating electrons in an aurora over Lowell, MA on 22-23 June 2015 were derived based on simultaneous, high-resolution (≈ 0.02 nm) brightness measurements of N2+ (427.8 nm, blue line), OI (557.7 nm, green line), and OI (630.0 nm, red line) emissions. The electron energies and energy fluxes as a function of time and look direction were derived by nonlinear minimization of model predictions with respect to the measurements. Three different methods were compared; in the first two methods, we constrained the modeled brightnesses and brightness ratios, respectively, with measurements to simultaneously derive energies and fluxes. Then we used a hybrid method where we constrained the individual modeled brightness ratios with measurements to derive energies and then constrained modeled brightnesses with measurements to derive fluxes. Derived energy, assuming Maxwellian distribution, during this storm ranged from 109 to 262 eV and the total energy flux ranged from 0.8 to 2.2 ergs·cm-2·s-1. This approach provides a way to estimate energies and energy fluxes of the precipitating electrons using simultaneous multispectral measurements.

  19. Response of mantle transition zone thickness to plume buoyancy flux

    NASA Astrophysics Data System (ADS)

    Das Sharma, S.; Ramesh, D. S.; Li, X.; Yuan, X.; Sreenivas, B.; Kind, R.

    2010-01-01

    The debate concerning thermal plumes in the Earth's mantle, their geophysical detection and depth characterization remains contentious. Available geophysical, petrological and geochemical evidence is at variance regarding the very existence of mantle plumes. Utilizing P-to-S converted seismic waves (P receiver functions) from the 410 and 660 km discontinuities, we investigate disposition of these boundaries beneath a number of prominent hotspot regions. The thickness of the mantle transition zone (MTZ), measured as P660s-P410s differential times (tMTZ), is determined. Our analyses suggest that the MTZ thickness beneath some hotspots correlates with the plume strength. The relationship between tMTZ, in response to the thermal perturbation, and the strength of plumes, as buoyancy flux B, follows a power law. This B-tMTZ behavior provides unprecedented insights into the relation of buoyancy flux and excess temperature at 410-660 km depth below hotspots. We find that the strongest hotspots, which are located in the Pacific, are indeed plumes originating at the MTZ or deeper. According to the detected power law, even the strongest plumes may not shrink the transition zone by significantly more than ~40 km (corresponding to a maximum of 300-400° excess temperature).

  20. Simulating the effect of high column density absorbers on the one-dimensional Lyman α forest flux power spectrum

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris

    2018-03-01

    We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman α forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with H I column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman α forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman α forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.

  1. Relating Cirrus Cloud Properties to Observed Fluxes: A Critical Assessment.

    NASA Astrophysics Data System (ADS)

    Vogelmann, A. M.; Ackerman, T. P.

    1995-12-01

    The accuracy needed in cirrus cloud scattering and microphysical properties is quantified such that the radiative effect on climate can he determined. Our ability to compute and observe these properties to within needed accuracies is assessed, with the greatest attention given to those properties that most affect the fluxes.Model calculations indicate that computing net longwave fluxes at the surface to within ±5% requires that cloud temperature be known to within as little as ±3 K in cold climates for extinction optical depths greater than two. Such accuracy could be more difficult to obtain than that needed in the values of scattering parameters. For a baseline case (defined in text), computing net shortwave fluxes at the surface to within ±5% requires accuracies in cloud ice water content that, when the optical depth is greater than 1.25, are beyond the accuracies of current measurements. Similarly, surface shortwave flux computations require accuracies in the asymmetry parameter that are beyond our current abilities when the optical depth is greater than four. Unless simplifications are discovered, the scattering properties needed to compute cirrus cloud fluxes cannot be obtained explicitly with existing scattering algorithms because the range of crystal sizes is too great and crystal shapes are too varied to be treated computationally. Thus, bulk cirrus scattering properties might be better obtained by inverting cirrus cloud fluxes and radiances. Finally, typical aircraft broadband flux measurements are not sufficiently accurate to provide a convincing validation of calculations. In light of these findings we recommend a reexamination of the methodology used in field programs such as FIRE and suggest a complementary approach.

  2. Flux of Total Mercury and Methylmercury to the Northern Gulf of Mexico from U.S. Estuaries.

    PubMed

    Buck, Clifton S; Hammerschmidt, Chad R; Bowman, Katlin L; Gill, Gary A; Landing, William M

    2015-12-15

    To better understand the source of elevated methylmercury (MeHg) concentrations in Gulf of Mexico (GOM) fish, we quantified fluxes of total Hg and MeHg from 11 rivers in the southeastern United States, including the 10 largest rivers discharging to the GOM. Filtered water and suspended particles were collected across estuarine salinity gradients in Spring and Fall 2012 to estimate fluxes from rivers to estuaries and from estuaries to coastal waters. Fluxes of total Hg and MeHg from rivers to estuaries varied as much as 100-fold among rivers. The Mississippi River accounted for 59% of the total Hg flux and 49% of the fluvial MeHg flux into GOM estuaries. While some estuaries were sources of Hg, the combined estimated fluxes of total Hg (~5200 mol y(-1)) and MeHg (~120 mol y(-1)) from the estuaries to the GOM were less than those from rivers to estuaries, suggesting an overall estuarine sink. Fluxes of total Hg from the estuaries to coastal waters of the northern GOM are approximately an order of magnitude less than from atmospheric deposition. However, fluxes from rivers are significant sources of MeHg to estuaries and coastal regions of the northern GOM.

  3. Wind Tunnel Measurement of Turbulent and Advective Scalar Fluxes: A Case Study on Intersection Ventilation

    PubMed Central

    Kukačka, Libor; Nosek, Štĕpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2012-01-01

    The objective of this study is to determine processes of pollution ventilation in the X-shaped street intersection in an idealized symmetric urban area for the changing approach flow direction. A unique experimental setup for simultaneous wind tunnel measurement of the flow velocity and the tracer gas concentration in a high temporal resolution is assembled. Advective horizontal and vertical scalar fluxes are computed from averaged measured velocity and concentration data within the street intersection. Vertical advective and turbulent scalar fluxes are computed from synchronized velocity and concentration signals measured in the plane above the intersection. All the results are obtained for five approach flow directions. The influence of the approach flow on the advective and turbulent fluxes is determined. The contribution of the advective and turbulent flux to the ventilation is discussed. Wind direction with the best dispersive conditions in the area is found. The quadrant analysis is applied to the synchronized signals of velocity and concentration fluctuation to determine events with the dominant contribution to the momentum flux and turbulent scalar flux. PMID:22649290

  4. Wind tunnel measurement of turbulent and advective scalar fluxes: a case study on intersection ventilation.

    PubMed

    Kukačka, Libor; Nosek, Štĕpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2012-01-01

    The objective of this study is to determine processes of pollution ventilation in the X-shaped street intersection in an idealized symmetric urban area for the changing approach flow direction. A unique experimental setup for simultaneous wind tunnel measurement of the flow velocity and the tracer gas concentration in a high temporal resolution is assembled. Advective horizontal and vertical scalar fluxes are computed from averaged measured velocity and concentration data within the street intersection. Vertical advective and turbulent scalar fluxes are computed from synchronized velocity and concentration signals measured in the plane above the intersection. All the results are obtained for five approach flow directions. The influence of the approach flow on the advective and turbulent fluxes is determined. The contribution of the advective and turbulent flux to the ventilation is discussed. Wind direction with the best dispersive conditions in the area is found. The quadrant analysis is applied to the synchronized signals of velocity and concentration fluctuation to determine events with the dominant contribution to the momentum flux and turbulent scalar flux.

  5. H.E.S.S. observations of the binary system PSR B1259-63/LS 2883 around the 2010/2011 periastron passage

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chaves, R. C. G.; Cheesebrough, A.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Grudzińska, M.; Häer, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Krüger, P. P.; Lan, H.; Lamanna, G.; Lefaucheur, J.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nguyen, N.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Willmann, P.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2013-03-01

    Aims: We present very high energy (VHE; E > 100 GeV) data from the γ-ray binary system PSR B1259-63/LS 2883 taken around its periastron passage on 15th of December 2010 with the High Energy Stereoscopic System (H.E.S.S.) of Cherenkov Telescopes. We aim to search for a possible TeV counterpart of the GeV flare detected by the Fermi LAT. In addition, we aim to study the current periastron passage in the context of previous observations taken at similar orbital phases, testing the repetitive behaviour of the source. Methods: Observations at VHEs were conducted with H.E.S.S. from 9th to 16th of January 2011. The total dataset amounts to ~6 h of observing time. The data taken around the 2004 periastron passage were also re-analysed with the current analysis techniques in order to extend the energy spectrum above 3 TeV to fully compare observation results from 2004 and 2011. Results: The source is detected in the 2011 data at a significance level of 11.5σ revealing an averaged integral flux above 1 TeV of (1.01 ± 0.18stat ± 0.20sys) × 10-12 cm-2 s-1. The differential energy spectrum follows a power-law shape with a spectral index Γ = 2.92 ± 0.30stat ± 0.20sys and a flux normalisation at 1 TeV of N0 = (1.95 ± 0.32stat ± 0.39sys) × 10-12 TeV-1 cm-2 s-1. The measured light curve does not show any evidence for variability of the source on the daily scale. The re-analysis of the 2004 data yields results compatible with the published ones. The differential energy spectrum measured up to ~10 TeV is consistent with a power law with a spectral index Γ = 2.81 ± 0.10stat ± 0.20sys and a flux normalisation at 1 TeV of N0 = (1.29 ± 0.08stat ± 0.26sys) × 10-12 TeV-1 cm-2 s-1. Conclusions: The measured integral flux and the spectral shape of the 2011 data are compatible with the results obtained around previous periastron passages. The absence of variability in the H.E.S.S. data indicates that the GeV flare observed by Fermi LAT in the time period covered also by H.E.S.S

  6. Determination of 3D Equilibria from Flux Surface Knowledge Only

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H.E. Mynick; N. Pomphrey

    We show that the method of Christiansen and Taylor, from which complete tokamak equilibria can be determined given only knowledge of the shape of the flux surfaces, can be extended to 3-dimensional equilibria, such as those of stellarators. As for the tokamak case, the given geometric knowledge has a high degree of redundancy, so that the full equilibrium can be obtained using only a small portion of that information.

  7. Conservation of high-flux backbone in alternate optimal and near-optimal flux distributions of metabolic networks.

    PubMed

    Samal, Areejit

    2008-12-01

    Constraint-based flux balance analysis (FBA) has proven successful in predicting the flux distribution of metabolic networks in diverse environmental conditions. FBA finds one of the alternate optimal solutions that maximizes the biomass production rate. Almaas et al. have shown that the flux distribution follows a power law, and it is possible to associate with most metabolites two reactions which maximally produce and consume a given metabolite, respectively. This observation led to the concept of high-flux backbone (HFB) in metabolic networks. In previous work, the HFB has been computed using a particular optima obtained using FBA. In this paper, we investigate the conservation of HFB of a particular solution for a given medium across different alternate optima and near-optima in metabolic networks of E. coli and S. cerevisiae. Using flux variability analysis (FVA), we propose a method to determine reactions that are guaranteed to be in HFB regardless of alternate solutions. We find that the HFB of a particular optima is largely conserved across alternate optima in E. coli, while it is only moderately conserved in S. cerevisiae. However, the HFB of a particular near-optima shows a large variation across alternate near-optima in both organisms. We show that the conserved set of reactions in HFB across alternate near-optima has a large overlap with essential reactions and reactions which are both uniquely consuming (UC) and uniquely producing (UP). Our findings suggest that the structure of the metabolic network admits a high degree of redundancy and plasticity in near-optimal flow patterns enhancing system robustness for a given environmental condition.

  8. On weak lensing shape noise

    NASA Astrophysics Data System (ADS)

    Niemi, Sami-Matias; Kitching, Thomas D.; Cropper, Mark

    2015-12-01

    One of the most powerful techniques to study the dark sector of the Universe is weak gravitational lensing. In practice, to infer the reduced shear, weak lensing measures galaxy shapes, which are the consequence of both the intrinsic ellipticity of the sources and of the integrated gravitational lensing effect along the line of sight. Hence, a very large number of galaxies is required in order to average over their individual properties and to isolate the weak lensing cosmic shear signal. If this `shape noise' can be reduced, significant advances in the power of a weak lensing surveys can be expected. This paper describes a general method for extracting the probability distributions of parameters from catalogues of data using Voronoi cells, which has several applications, and has synergies with Bayesian hierarchical modelling approaches. This allows us to construct a probability distribution for the variance of the intrinsic ellipticity as a function of galaxy property using only photometric data, allowing a reduction of shape noise. As a proof of concept the method is applied to the CFHTLenS survey data. We use this approach to investigate trends of galaxy properties in the data and apply this to the case of weak lensing power spectra.

  9. STUDY OF THE POYNTING FLUX IN ACTIVE REGION 10930 USING DATA-DRIVEN MAGNETOHYDRODYNAMIC SIMULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Y. L.; Wang, H. N.; He, H.

    2011-08-10

    Powerful solar flares are closely related to the evolution of magnetic field configuration on the photosphere. We choose the Poynting flux as a parameter in the study of magnetic field changes. We use time-dependent multidimensional MHD simulations around a flare occurrence to generate the results, with the temporal variation of the bottom boundary conditions being deduced from the projected normal characteristic method. By this method, the photospheric magnetogram could be incorporated self-consistently as the bottom condition of data-driven simulations. The model is first applied to a simulation datum produced by an emerging magnetic flux rope as a test case. Then,more » the model is used to study NOAA AR 10930, which has an X3.4 flare, the data of which has been obtained by the Hinode/Solar Optical Telescope on 2006 December 13. We compute the magnitude of Poynting flux (S{sub total}), radial Poynting flux (S{sub z} ), a proxy for ideal radial Poynting flux (S{sub proxy}), Poynting flux due to plasma surface motion (S{sub sur}), and Poynting flux due to plasma emergence (S{sub emg}) and analyze their extensive properties in four selected areas: the whole sunspot, the positive sunspot, the negative sunspot, and the strong-field polarity inversion line (SPIL) area. It is found that (1) the S{sub total}, S{sub z} , and S{sub proxy} parameters show similar behaviors in the whole sunspot area and in the negative sunspot area. The evolutions of these three parameters in the positive area and the SPIL area are more volatile because of the effect of sunspot rotation and flux emergence. (2) The evolution of S{sub sur} is largely influenced by the process of sunspot rotation, especially in the positive sunspot. The evolution of S{sub emg} is greatly affected by flux emergence, especially in the SPIL area.« less

  10. Shape measurement biases from underfitting and ellipticity gradients

    DOE PAGES

    Bernstein, Gary M.

    2010-08-21

    With this study, precision weak gravitational lensing experiments require measurements of galaxy shapes accurate to <1 part in 1000. We investigate measurement biases, noted by Voigt and Bridle (2009) and Melchior et al. (2009), that are common to shape measurement methodologies that rely upon fitting elliptical-isophote galaxy models to observed data. The first bias arises when the true galaxy shapes do not match the models being fit. We show that this "underfitting bias" is due, at root, to these methods' attempts to use information at high spatial frequencies that has been destroyed by the convolution with the point-spread function (PSF)more » and/or by sampling. We propose a new shape-measurement technique that is explicitly confined to observable regions of k-space. A second bias arises for galaxies whose ellipticity varies with radius. For most shape-measurement methods, such galaxies are subject to "ellipticity gradient bias". We show how to reduce such biases by factors of 20–100 within the new shape-measurement method. The resulting shear estimator has multiplicative errors < 1 part in 10 3 for high-S/N images, even for highly asymmetric galaxies. Without any training or recalibration, the new method obtains Q = 3000 in the GREAT08 Challenge of blind shear reconstruction on low-noise galaxies, several times better than any previous method.« less

  11. Shape-morphing composites with designed micro-architectures

    DOE PAGES

    Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; ...

    2016-06-15

    Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designedmore » for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. As a result, the ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.« less

  12. Shape-morphing composites with designed micro-architectures

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; Wilson, Thomas S.; Spadaccini, Christopher M.; Lewicki, James P.

    2016-06-01

    Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.

  13. Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis.

    PubMed

    Nicholas, Dequina; Proctor, Elizabeth A; Raval, Forum M; Ip, Blanche C; Habib, Chloe; Ritou, Eleni; Grammatopoulos, Tom N; Steenkamp, Devin; Dooms, Hans; Apovian, Caroline M; Lauffenburger, Douglas A; Nikolajczyk, Barbara S

    2017-01-01

    Numerous studies show that mitochondrial energy generation determines the effectiveness of immune responses. Furthermore, changes in mitochondrial function may regulate lymphocyte function in inflammatory diseases like type 2 diabetes. Analysis of lymphocyte mitochondrial function has been facilitated by introduction of 96-well format extracellular flux (XF96) analyzers, but the technology remains imperfect for analysis of human lymphocytes. Limitations in XF technology include the lack of practical protocols for analysis of archived human cells, and inadequate data analysis tools that require manual quality checks. Current analysis tools for XF outcomes are also unable to automatically assess data quality and delete untenable data from the relatively high number of biological replicates needed to power complex human cell studies. The objectives of work presented herein are to test the impact of common cellular manipulations on XF outcomes, and to develop and validate a new automated tool that objectively analyzes a virtually unlimited number of samples to quantitate mitochondrial function in immune cells. We present significant improvements on previous XF analyses of primary human cells that will be absolutely essential to test the prediction that changes in immune cell mitochondrial function and fuel sources support immune dysfunction in chronic inflammatory diseases like type 2 diabetes.

  14. CFD Code Validation of Wall Heat Fluxes for a G02/GH2 Single Element Combustor

    NASA Technical Reports Server (NTRS)

    Lin, Jeff; West, Jeff S.; Williams, Robert W.; Tucker, P. Kevin

    2005-01-01

    This paper puts forth the case for the need for improved injector design tools to meet NASA s Vision for Space Exploration goals. Requirements for this improved tool are outlined and discussed. The potential for Computational Fluid Dynamics (CFD) to meet these requirements is noted along with its current shortcomings, especially relative to demonstrated solution accuracy. The concept of verification and validation is introduced as the primary process for building and quantifying the confidence necessary for CFD to be useful as an injector design tool. The verification and validation process is considered in the context of the Marshall Space Flight Center (MSFC) Combustion Devices CFD Simulation Capability Roadmap via the Simulation Readiness Level (SRL) concept. The portion of the validation process which demonstrates the ability of a CFD code to simulate heat fluxes to a rocket engine combustor wall is the focus of the current effort. The FDNS and Loci-CHEM codes are used to simulate a shear coaxial single element G02/GH2 injector experiment. The experiment was conducted a t a chamber pressure of 750 psia using hot propellants from preburners. A measured wall temperature profile is used as a boundary condition to facilitate the calculations. Converged solutions, obtained from both codes by using wall functions with the K-E turbulence model and integrating to the wall using Mentor s baseline turbulence model, are compared to the experimental data. The initial solutions from both codes revealed significant issues with the wall function implementation associated with the recirculation zone between the shear coaxial jet and the chamber wall. The FDNS solution with a corrected implementation shows marked improvement in overall character and level of comparison to the data. With the FDNS code, integrating to the wall with Mentor s baseline turbulence model actually produce a degraded solution when compared to the wall function solution with the K--E model. The Loci

  15. Persistent shoreline shape induced from offshore geologic framework: Effects of shoreface connected ridges

    USGS Publications Warehouse

    Safak, Ilgar; List, Jeffrey; Warner, John C.; Schwab, William C.

    2017-01-01

    Mechanisms relating offshore geologic framework to shoreline evolution are determined through geologic investigations, oceanographic deployments, and numerical modeling. Analysis of shoreline positions from the past 50 years along Fire Island, New York, a 50 km long barrier island, demonstrates a persistent undulating shape along the western half of the island. The shelf offshore of these persistent undulations is characterized with shoreface-connected sand ridges (SFCR) of a similar alongshore length scale, leading to a hypothesis that the ridges control the shoreline shape through the modification of flow. To evaluate this, a hydrodynamic model was configured to start with the US East Coast and scale down to resolve the Fire Island nearshore. The model was validated using observations along western Fire Island and buoy data, and used to compute waves, currents and sediment fluxes. To isolate the influence of the SFCR on the generation of the persistent shoreline shape, simulations were performed with a linearized nearshore bathymetry to remove alongshore transport gradients associated with shoreline shape. The model accurately predicts the scale and variation of the alongshore transport that would generate the persistent shoreline undulations. In one location, however, the ridge crest connects to the nearshore and leads to an offshore-directed transport that produces a difference in the shoreline shape. This qualitatively supports the hypothesized effect of cross-shore fluxes on coastal evolution. Alongshore flows in the nearshore during a representative storm are driven by wave breaking, vortex force, advection and pressure gradient, all of which are affected by the SFCR.

  16. Dendritic growth shapes in kinetic Monte Carlo models

    NASA Astrophysics Data System (ADS)

    Krumwiede, Tim R.; Schulze, Tim P.

    2017-02-01

    For the most part, the study of dendritic crystal growth has focused on continuum models featuring surface energies that yield six pointed dendrites. In such models, the growth shape is a function of the surface energy anisotropy, and recent work has shown that considering a broader class of anisotropies yields a correspondingly richer set of growth morphologies. Motivated by this work, we generalize nanoscale models of dendritic growth based on kinetic Monte Carlo simulation. In particular, we examine the effects of extending the truncation radius for atomic interactions in a bond-counting model. This is done by calculating the model’s corresponding surface energy and equilibrium shape, as well as by running KMC simulations to obtain nanodendritic growth shapes. Additionally, we compare the effects of extending the interaction radius in bond-counting models to that of extending the number of terms retained in the cubic harmonic expansion of surface energy anisotropy in the context of continuum models.

  17. Momentum flux of convective gravity waves derived from an off-line gravity wave parameterization: Spatiotemporal variations at source level

    NASA Astrophysics Data System (ADS)

    Kang, Min-Jee; Chun, Hye-Yeong; Kim, Young-Ha

    2017-04-01

    Spatiotemporal variations in momentum flux spectra of convective gravity waves (CGWs) at the source level (cloud top), including nonlinear forcing effects, are examined using an off-line version of CGW parameterization and global reanalysis data. We used 1-hourly NCEP Climate Forecast System Reanalysis (CFSR) forecast data for a period of 32 years (1979-2010), with a horizontal resolution of 1° x1°. The cloud-top momentum flux (CTMF) is not solely proportional to the convective heating rate but is affected by the wave-filtering and resonance factor (WFRF), background stability and temperature underlying the convection. Consequently, the primary peak of CTMF is in the winter hemisphere midlatitude in association with storm-track region where secondary peak of convective heating exists, whereas the secondary peak of CTMF appears in the summer hemisphere tropics and intertropical convergence zone (ITCZ), where primary peak of convective heating exists. The magnitude of CTMF fluctuates largely with 1 year and 1 day periods, commonly in major CTMF regions. At low latitudes and Pacific storm track region, a 6-month period is also significant, and the decadal cycle appears in the Asian summer monsoon region and the Andes Mountains. The equatorial eastern Pacific region exhibits substantial inter-annual to decadal scale of variability with decreasing trend that is described as statistically significant. Interestingly, the correlation between convective heating and the CTMF is relatively lower in the equatorial region than in other regions. The CTMF spectra in the large-CTMF regions reveal that the spectrum shape and width changes with season and location, along with anisotropic shape of the CTMF spectrum, caused by changes in wind speed at the cloud top and the moving speed of convection. The CTMF in the 10°N to 10°S during the period of February to May 2010, when the PreConcordiasi campaign held, approximately follows a lognormal distribution but with a slight

  18. Numerical Modeling of the Sensitivity of X-Ray Driven Implosions to Low-Mode Flux Asymmetries

    DOE PAGES

    Scott, R. H. H.; Clark, D. S.; Bradley, D. K.; ...

    2013-02-01

    In this study, the sensitivity of inertial confinement fusion implosions of the type performed on the National Ignition Facility (NIF) [1] to low-mode flux asymmetries has been investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P4), resulting from associated low order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the DT “ice” layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of kinetic to internal energy of the central hot spot, thus reducing neutron yield. Furthermore, synthetic gated x-ray images indicate that the P4 component of hotmore » spot self-emission shape is insensitive to P4 hot spot shapes, and a positive P4 asymmetry aliases itself as a negative or oblate P2 in these images. Correction of this apparent P2 distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed post-shot 2D simulations.« less

  19. New Basis Functions for the Electromagnetic Solution of Arbitrarily-shaped, Three Dimensional Conducting Bodies Using Method of Moments

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.

    2007-01-01

    In this work, we present a new set of basis functions, de ned over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also de ned over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.

  20. Enhancing sediment flux control and natural hazard risk mitigation through a structured conceptual planning approach

    NASA Astrophysics Data System (ADS)

    Simoni, S.; Vignoli, G.; Mazzorana, B.

    2017-08-01

    Sediment fluxes from mountain rivers contribute to shape the geomorphologic features of lowland rivers and to establish the physical basis for an optimal set of ecosystem functions and related services to people. Through significant public funding, the hydro-morphological regimes of mountain rivers in the European Alps have been progressively altered over the last century, with the aim to provide a safe dwelling space, to boost transport, mobility and to support economic growth. We claim that the underlying planning weaknesses contribute to determine these inefficient resource allocations, since flood risk is still high and the ecosystem services are far from being optimal. Hence, with the overall aim to enhance sediment flux control and hazard risk mitigation in such heavily modified alpine streams, we propose a structured design workflow which guides the planner through system analysis and synthesis. As a first step the proposed workflow sets the relevant planning goals and assesses the protection structure functionality. Then a methodology is proposed to achieve the goals. This methodology consists in characterising the hydrologic basin of interest and the sediment availability and determining the sediment connectivity to channels. The focus is set on the detailed analysis of existing river cross sections where the sediment continuity is interrupted (e.g. slit and check dams). By retaining relevant sediment volumes these structures prevent the reactivation of hydro-morphological and associated ecological functionalities. Since their actual performance can be unsatisfying with respect to flood risk mitigation (e.g. mainly old structures), we introduce specific efficiency indicators as a support for the conceptual design stage to quantify effects related to sediment flux control and risk management. The proposed planning approach is then applied to the Gadria system (stream, slit dam, retention basin and culvert), located in South Tyrol, Italy. This case study

  1. Cosmic Ray Flux in the Presence of a Neutral Background

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Lodhi, Arfin; Diaz, Abel

    2007-01-01

    The study of cosmic rays (CRs) is a very mature subject developed around the concept of radiative particle flux phi as a mono-variant function of energy E, that is phi = phi(E). This is based on the notion of the cosmos as being filled with cosmic radiation in the form of a collisionless exosphere of plasma. Neutrals, however, are likewise ubiquitous in space and planetary trapped-radiation belts. It will be shown that in the presence of a neutral background of density rho, flux phi is actually bivariant in energy E and rho, creating a surface phi(E,rho). This is an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present. The effect is produced by multiple scattering of charged particles off neutral and ionized atoms along with ionization loss where charged and neutral populations interact. For the harder portion of CR spectra, flux is mono-variant but at nonrelativistic energies (below approx, 350 MeV) it becomes sensitive to the presence of neutral backgrounds. The dependence of phi(E,rho) upon background neutrals is helpful in discussing the anomalous CR (ACR) flux made up of ionized components of the heliospheric neutral atmosphere.

  2. Methane flux from Minnesota Peatlands

    NASA Astrophysics Data System (ADS)

    Crill, P. M.; Bartlett, K. B.; Harriss, R. C.; Gorham, E.; Verry, E. S.; Sebacher, D. I.; Madzar, L.; Sanner, W.

    1988-12-01

    Northern (>40°N) wetlands have been suggested as the largest natural source of methane (CH4) to the troposphere. To refine our estimates of source strengths from this region and to investigate climatic controls on the process, fluxes were measured from a variety of Minnesota peatlands during May, June, and August 1986. Sites included forested and unforested ombrotrophic bogs and minerotrophic fens in and near the U.S. Department of Agriculture Marcell Experimental Forest and the Red Lake peatlands. Late spring and summer fluxes ranged from 11 to 866 mg CH4 m-2 d-1, averaging 207 mg CH4 m-2 d-1 overall. At Marcell Forest, forested bogs and fen sites had lower fluxes (averages of 77 ± 21 mg CH4 m-2 d-1 and 142 ± 19 mg CH4 m-2 d-1) than open bogs (average of 294 ± 30 mg CH4 m-2 d-1). In the Red Lake peatland, circumneutral fens, with standing water above the peat surface, produced more methane than acid bog sites in which the water table was beneath the moss surface (325 ± 31 and 102 ± 13 mg CH4 m-2 d-1, respectively). Peat temperature was an important control. Methane flux increased in response to increasing soil temperature. For example, the open bog in the Marcell Forest with the highest CH4 flux exhibited a 74-fold increase in flux over a three-fold increase in temperature. We estimate that the methane flux from all peatlands north of 40° may be on the order of 70 to 90 Tg/yr though estimates of this sort are plagued by uncertainties in the areal extent of peatlands, length of the CH4 producing season, and the spatial and temporal variability of the flux.

  3. MESSENGER Observations of Large Flux Transfer Events at Mercury

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Lepping, Ronald P.; Wu, Chin-Chun; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Killen, Rosemary M.; Korth, Haje; Krimigis, Stamatios M.; hide

    2010-01-01

    Six flux transfer events (FTEs) were encountered during MESSENGER's first two flybys of Mercury (M1 and M2). For M1 the interplanetary magnetic field (IMF) was predominantly northward and four FTEs with durations of 1 to 6 s were observed in the magnetosheath following southward IMF turnings. The IMF was steadily southward during M2, and an FTE 4 s in duration was observed just inside the dawn magnetopause followed approx. 32 s later by a 7 s FTE in the magnetosheath. Flux rope models were fit to the magnetic field data to determine FTE dimensions and flux content. The largest FTE observed by MESSENGER had a diameter of approx. 1 R(sub M) (where R(sub M) is Mercury s radius), and its open magnetic field increased the fraction of the surface exposed to the solar wind by 10 - 20 percent and contributed up to approx. 30 kV to the cross-magnetospheric electric potential.

  4. Jig-Shape Optimization of a Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2018-01-01

    A simple approach for optimizing the jig-shape is proposed in this study. This simple approach is based on an unconstrained optimization problem and applied to a low-boom supersonic aircraft. In this study, the jig-shape optimization is performed using the two-step approach. First, starting design variables are computed using the least-squares surface fitting technique. Next, the jig-shape is further tuned using a numerical optimization procedure based on an in-house object-oriented optimization tool. During the numerical optimization procedure, a design jig-shape is determined by the baseline jig-shape and basis functions. A total of 12 symmetric mode shapes of the cruise-weight configuration, rigid pitch shape, rigid left and right stabilator rotation shapes, and a residual shape are selected as sixteen basis functions. After three optimization runs, the trim shape error distribution is improved, and the maximum trim shape error of 0.9844 inches of the starting configuration becomes 0.00367 inch by the end of the third optimization run.

  5. Six new mechanics corresponding to further shape theories

    NASA Astrophysics Data System (ADS)

    Anderson, Edward

    2016-02-01

    In this paper, suite of relational notions of shape are presented at the level of configuration space geometry, with corresponding new theories of shape mechanics and shape statistics. These further generalize two quite well known examples: (i) Kendall’s (metric) shape space with his shape statistics and Barbour’s mechanics thereupon. (ii) Leibnizian relational space alias metric scale-and-shape space to which corresponds Barbour-Bertotti mechanics. This paper’s new theories include, using the invariant and group namings, (iii) Angle alias conformal shape mechanics. (iv) Area ratio alias e shape mechanics. (v) Area alias e scale-and-shape mechanics. (iii)-(v) rest respectively on angle space, area-ratio space, and area space configuration spaces. Probability and statistics applications are also pointed to in outline. (vi) Various supersymmetric counterparts of (i)-(v) are considered. Since supergravity differs considerably from GR-based conceptions of background independence, some of the new supersymmetric shape mechanics are compared with both. These reveal compatibility between supersymmetry and GR-based conceptions of background independence, at least within these simpler model arenas.

  6. Scattering from arbitrarily shaped microstrip patch antennas

    NASA Technical Reports Server (NTRS)

    Shively, David G.; Deshpande, Manohar D.; Cockrell, Capers R.

    1992-01-01

    The scattering properties of arbitrarily shaped microstrip patch antennas are examined. The electric field integral equation for a current element on a grounded dielectric slab is developed for a rectangular geometry based on Galerkin's technique with subdomain rooftop basis functions. A shape function is introduced that allows a rectangular grid approximation to the arbitrarily shaped patch. The incident field on the patch is expressed as a function of incidence angle theta(i), phi(i). The resulting system of equations is then solved for the unknown current modes on the patch, and the electromagnetic scattering is calculated for a given angle. Comparisons are made with other calculated results as well as with measurements.

  7. Particle Fluxes Over a Ponderosa Pine Plantation

    NASA Astrophysics Data System (ADS)

    Baker, B.; Goldstein, A.

    2006-12-01

    Atmospheric aerosols can affect visibility, climate, and health. Particle fluxes were measured continuously over a 15 year-old ponderosa pine plantation in the foothills of the Sierra Nevada from mid July to the end of September in the year 2005. Air at this field site is affected by both biogenic emissions from the dense forests of the surrounding area and by urban pollution transported from the Sacramento valley. It is believed that fluxes of very reactive hydrocarbons from plants to the atmosphere have an impact on the production and growth of atmospheric particles at this site. Two condensation particle counters (CPCs) were located near the top of a 12 m measurement tower, several meters above the top of the tree canopy. Particle count data was collected at 10 Hz and particle fluxes were determined using the eddy covariance method. A set of diffusion screens was added to the inlet of one of the CPCs such that the lower particle size limit for detection was increased to a diameter of approximately 40 nm. The other CPC counted particles with minimum diameters of 3 nm. Particle concentrations showed a distinct diurnal pattern with minimum daily average concentrations of 2000 particles cm-3 occurring at dawn, and average daily maximum concentrations of 5700 particles cm-3 occurring at dusk. The evening increase of particle number corresponded to the arrival of polluted air from the Sacramento region. During the day, deposition of particles to the forest canopy (daytime average of 5.8x106 particles m-2 s-1 was generally observed. Concentrations and fluxes of particles under 40 nm could be examined by subtracting the data of one CPC from the other. On average, the fraction of particles under 40 nm increased from less than 20% at dawn to more than 50% at dusk; indicating that air coming from the Sacramento region was enriched in smaller, newly formed aerosol. Daily average deposition fluxes of particles under 40 nm were 1.0x107 particles m-2 s-1. Much of this flux was

  8. Book Review: Fluxes as functions of ecosystem and drivers of atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Lianhong

    2015-06-01

    The review is of the book Terrestrial biosphere-atmospheric fluxes, by Russell Monson and Dennis Baldochi. The book was published by Cambridge University Press, NY, 487 p. in 2014. ISBN 978-1-107-04065-6

  9. Superconducting quantum interference device with frequency-dependent damping: Readout of flux qubits

    NASA Astrophysics Data System (ADS)

    Robertson, T. L.; Plourde, B. L. T.; Hime, T.; Linzen, S.; Reichardt, P. A.; Wilhelm, F. K.; Clarke, John

    2005-07-01

    Recent experiments on superconducting flux qubits, consisting of a superconducting loop interrupted by Josephson junctions, have demonstrated quantum coherence between two different quantum states. The state of the qubit is measured with a superconducting quantum interference device (SQUID). Such measurements require the SQUID to have high resolution while exerting minimal backaction on the qubit. By designing shunts across the SQUID junctions appropriately, one can improve the measurement resolution without increasing the backaction significantly. Using a path-integral approach to analyze the Caldeira-Leggett model, we calculate the narrowing of the distribution of the switching events from the zero-voltage state of the SQUID for arbitrary shunt admittances, focusing on shunts consisting of a capacitance Cs and resistance Rs in series. To test this model, we fabricated a dc SQUID in which each junction is shunted with a thin-film interdigitated capacitor in series with a resistor, and measured the switching distribution as a function of temperature and applied magnetic flux. After accounting for the damping due to the SQUID leads, we found good agreement between the measured escape rates and the predictions of our model. We analyze the backaction of a shunted symmetric SQUID on a flux qubit. For the given parameters of our SQUID and realistic parameters for a flux qubit, at the degeneracy point we find a relaxation time of 113μs , which limits the decoherence time to 226μs . Based on our analysis of the escape process, we determine that a SQUID with purely capacitive shunts should have narrow switching distributions and no dissipation.

  10. Applications of Displacement Transfer Functions to Deformed Shape Predictions of the G-III Swept-Wing Structure

    NASA Technical Reports Server (NTRS)

    Lung, Shun-Fat; Ko, William L.

    2016-01-01

    In support of the Adaptive Compliant Trailing Edge [ACTE] project at the NASA Armstrong Flight Research Center, displacement transfer functions were applied to the swept wing of a Gulfstream G-III airplane (Gulfstream Aerospace Corporation, Savannah, Georgia) to obtain deformed shape predictions. Four strainsensing lines (two on the lower surface, two on the upper surface) were used to calculate the deformed shape of the G III wing under bending and torsion. There being an insufficient number of surface strain sensors, the existing G III wing box finite element model was used to generate simulated surface strains for input to the displacement transfer functions. The resulting predicted deflections have good correlation with the finite-element generated deflections as well as the measured deflections from the ground load calibration test. The convergence study showed that the displacement prediction error at the G III wing tip can be reduced by increasing the number of strain stations (for each strain-sensing line) down to a minimum error of l.6 percent at 17 strain stations; using more than 17 strain stations yielded no benefit because the error slightly increased to 1.9% when 32 strain stations were used.

  11. Shape-Morphing Nanocomposite Origami

    PubMed Central

    2015-01-01

    Nature provides a vast array of solid materials that repeatedly and reversibly transform in shape in response to environmental variations. This property is essential, for example, for new energy-saving technologies, efficient collection of solar radiation, and thermal management. Here we report a similar shape-morphing mechanism using differential swelling of hydrophilic polyelectrolyte multilayer inkjets deposited on an LBL carbon nanotube (CNT) composite. The out-of-plane deflection can be precisely controlled, as predicted by theoretical analysis. We also demonstrate a controlled and stimuli-responsive twisting motion on a spiral-shaped LBL nanocomposite. By mimicking the motions achieved in nature, this method offers new opportunities for the design and fabrication of functional stimuli-responsive shape-morphing nanoscale and microscale structures for a variety of applications. PMID:24689908

  12. How Much Flux does a Flux Transfer Event Transfer?

    NASA Astrophysics Data System (ADS)

    Fear, R. C.; Trenchi, L.; Coxon, J.; Milan, S. E.

    2016-12-01

    Flux transfer events are bursts of reconnection at the dayside magnetopause, which give rise to characteristic signatures that are observed by a range of magnetospheric/ionospheric instrumentation. Spacecraft situated near the magnetopause observe a bipolar variation in the component of the magnetic field normal to the magnetopause (BN); auroral instrumentation (either ground- or space-based) observe poleward moving auroral forms which indicate the convection of newly-opened flux into the polar cap, and ionospheric radars similarly observe pulsed ionospheric flows or poleward moving radar auroral forms. One outstanding problem is the fact that there is a fundamental mismatch between the estimates of the flux that is opened by each flux transfer event - in other words, their overall significance in the Dungey cycle. Spacecraft-based estimates of the flux content of individual FTEs correspond to each event transferring flux equivalent to approximately 1% of the open flux in the magnetosphere, whereas studies based on global-scale radar and auroral observations suggest this figure could be more like 10%. In the former case, flux transfer events would be a minor detail in the Dungey cycle, but in the latter they could be its main driver. We present observations of a conjunction between flux transfer event signatures observed by the Cluster spacecraft, and pulsed ionospheric flows observed by the SuperDARN network on the 8th February 2002. Over the course of an hour, a similar number of FTE signatures were observed by Cluster (at 13 MLT) and the Prince George radar (at 7 MLT). We argue that the reason for the existing mismatch in flux estimates is that implicit assumptions about flux transfer event structure lead to a major underestimate of the flux content based on spacecraft observations. If these assumptions are removed, a much better match is found.

  13. Metabolite-balancing techniques vs. 13C tracer experiments to determine metabolic fluxes in hybridoma cells.

    PubMed

    Bonarius, H P; Timmerarends, B; de Gooijer, C D; Tramper, J

    The estimation of intracellular fluxes of mammalian cells using only mass balances of the relevant metabolites is not possible because the set of linear equations defined by these mass balances is underdetermined. In order to quantify fluxes in cyclic pathways the mass balance equations can be complemented with several constraints: (1) the mass balances of co-metabolites, such as ATP or NAD(P)H, (2) linear objective functions, (3) flux data obtained by isotopic-tracer experiments. Here, these three methods are compared for the analysis of fluxes in the primary metabolism of continuously cultured hybridoma cells. The significance of different theoretical constraints and different objective functions is discussed after comparing their resulting flux distributions to the fluxes determined using 13CO2 and 13C-lactate measurements of 1 - 13C-glucose-fed hybridoma cells. Metabolic fluxes estimated using the objective functions "maximize ATP" and "maximize NADH" are relatively similar to the experimentally determined fluxes. This is consistent with the observation that cancer cells, such as hybridomas, are metabolically hyperactive, and produce ATP and NADH regardless of the need for these cofactors. Copyright 1998 John Wiley & Sons, Inc.

  14. Simulation of Surface Energy Fluxes and Snow Interception Using a Higher Order Closure Multi-Layer Soil-Vegetation-Atmospheric Model: The Effect of Canopy Shape and Structure

    NASA Astrophysics Data System (ADS)

    McGowan, L. E.; Dahlke, H. E.; Paw U, K. T.

    2015-12-01

    Snow cover is a critical driver of the Earth's surface energy budget, climate change, and water resources. Variations in snow cover not only affect the energy budget of the land surface but also represent a major water supply source. In California, US estimates of snow depth, extent, and melt in the Sierra Nevada are critical to estimating the amount of water available for both California agriculture and urban users. However, accurate estimates of snow cover and snow melt processes in forested area still remain a challenge. Canopy structure influences the vertical and spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability in forested regions. In this study we use the Advanced Canopy-Atmosphere-Soil algorithm (ACASA), a multi-layer soil-vegetation-atmosphere numerical model, to simulate the effect of different snow-covered canopy structures on the energy budget, and temperature and other scalar profiles within different forest types in the Sierra Nevada, California. ACASA incorporates a higher order turbulence closure scheme which allows the detailed simulation of turbulent fluxes of heat and water vapor as well as the CO2 exchange of several layers within the canopy. As such ACASA can capture the counter gradient fluxes within canopies that may occur frequently, but are typically unaccounted for, in most snow hydrology models. Six different canopy types were modeled ranging from coniferous forests (e.g. most biomass near the ground) to top-heavy (e.g. most biomass near the top of the crown) deciduous forests to multi-layered forest canopies (e.g. mixture of young and mature trees). Preliminary results indicate that the canopy shape and structure associated with different canopy types fundamentally influence the vertical scalar profiles (including those of temperature, moisture, and wind speed) in the canopy and thus alter the interception and snow

  15. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints.

    PubMed

    Klamt, Steffen; Regensburger, Georg; Gerstl, Matthias P; Jungreuthmayer, Christian; Schuster, Stefan; Mahadevan, Radhakrishnan; Zanghellini, Jürgen; Müller, Stefan

    2017-04-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks.

  16. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints

    PubMed Central

    Klamt, Steffen; Gerstl, Matthias P.; Jungreuthmayer, Christian; Mahadevan, Radhakrishnan; Müller, Stefan

    2017-01-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks. PMID:28406903

  17. Fine-tuning with brane-localized flux in 6D supergravity

    NASA Astrophysics Data System (ADS)

    Niedermann, Florian; Schneider, Robert

    2016-02-01

    There are claims in the literature that the cosmological constant problem could be solved in a braneworld model with two large (micron-sized) supersymmetric extra dimensions. The mechanism relies on two basic ingredients: first, the cosmological constant only curves the compact bulk geometry into a rugby shape while the 4D curvature stays flat. Second, a brane-localized flux term is introduced in order to circumvent Weinberg's fine-tuning argument, which otherwise enters here through a backdoor via the flux quantization condition. In this paper, we show that the latter mechanism does not work in the way it was designed: the only localized flux coupling that guarantees a flat on-brane geometry is one which preserves the scale invariance of the bulk theory. Consequently, Weinberg's argument applies, making a fine-tuning necessary again. The only remaining window of opportunity lies within scale invariance breaking brane couplings, for which the tuning could be avoided. Whether the corresponding 4D curvature could be kept under control and in agreement with the observed value will be answered in our companion paper [1].

  18. "Phase capture" in the perception of interpolated shape: cue combination and the influence function.

    PubMed

    Levi, Dennis M; Wing-Hong Li, Roger; Klein, Stanley A

    2003-09-01

    This study was concerned with what stimulus information observers use to judge the shape of simple objects. We used a string of four Gabor patches to define a contour. A fifth, center patch served as a test pattern. The observers' task was to judge the location of the test pattern relative to the contour. The contour was either a straight line, or an arc with positive or negative curvature (the radius of curvature was either 2 or 6 deg). We asked whether phase shifts in the inner or outer pairs of patches distributed along the contour influence the perceived shape. That is, we measured the phase shift influence function. We found that shifting the inner patches of the string by 0.25 cycle results in almost complete phase capture (attraction) at the smallest separation (2 lambda), and the capture effect falls off rapidly with separation. A 0.25 cycle shift of the outer pair of patches has a much smaller effect, in the opposite direction (repulsion). In our experiments, the contour is defined by two cues--the cue provided by the Gabor carrier (the 'feature' cue) and that defined by the Gaussian envelope (the 'envelope' cue). Our phase shift influence function can be thought of as a cue combination task. An ideal observer would weight the cues by the inverse variance of the two cues. The variance in each of these cues predicts the main features of our results quite accurately.

  19. A flux-gradient system for simultaneous measurement of the CH4, CO2, and H2O fluxes at a lake-air interface.

    PubMed

    Xiao, Wei; Liu, Shoudong; Li, Hanchao; Xiao, Qitao; Wang, Wei; Hu, Zhenghua; Hu, Cheng; Gao, Yunqiu; Shen, Jing; Zhao, Xiaoyan; Zhang, Mi; Lee, Xuhui

    2014-12-16

    Inland lakes play important roles in water and greenhouse gas cycling in the environment. This study aims to test the performance of a flux-gradient system for simultaneous measurement of the fluxes of water vapor, CO2, and CH4 at a lake-air interface. The concentration gradients over the water surface were measured with an analyzer based on the wavelength-scanned cavity ring-down spectroscopy technology, and the eddy diffusivity was measured with a sonic anemometer. Results of a zero-gradient test indicate a flux measurement precision of 4.8 W m(-2) for water vapor, 0.010 mg m(-2) s(-1) for CO2, and 0.029 μg m(-2) s(-1) for CH4. During the 620 day measurement period, 97%, 69%, and 67% of H2O, CO2, and CH4 hourly fluxes were higher in magnitude than the measurement precision, which confirms that the flux-gradient system had adequate precision for the measurement of the lake-air exchanges. This study illustrates four strengths of the flux-gradient method: (1) the ability to simultaneously measure the flux of H2O, CO2, and CH4; (2) negligibly small density corrections; (3) the ability to resolve small CH4 gradient and flux; and (4) continuous and noninvasive operation. The annual mean CH4 flux (1.8 g CH4 m(-2) year(-1)) at this hypereutrophic lake was close to the median value for inland lakes in the world (1.6 g CH4 m(-2) year(-1)). The system has adequate precision for CH4 flux for broad applications but requires further improvement to resolve small CO2 flux in many lakes.

  20. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.

    PubMed

    Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2017-04-18

    The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light