Sample records for s1 nuclease digestion

  1. Characterization of a periplasmic S1-like nuclease coded by the Mesorhizobium loti symbiosis island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimkin, Maxim; Miller, C. Glenn; Blakesley, Lauryn

    DNA sequences encoding hypothetical proteins homologous to S1 nuclease from Aspergillus oryzae are found in many organisms including fungi, plants, pathogenic bacteria, and eukaryotic parasites. One of these is the M1 nuclease of Mesorhizobium loti which we demonstrate herein to be an enzymatically active, soluble, and stable S1 homolog that lacks the extensive mannosyl-glycosylation found in eukaryotic S1 nuclease homologs. We have expressed the cloned M1 protein in M. loti and purified recombinant native M1 to near homogeneity and have also isolated a homogeneous M1 carboxy-terminal hexahistidine tag fusion protein. Mass spectrometry and N-terminal Edman degradation sequencing confirmed the proteinmore » identity. The enzymatic properties of the purified M1 nuclease are similar to those of S1. At acidic pH M1 is 25 times more active on single-stranded DNA than on double-stranded DNA and 3 times more active on single-stranded DNA than on single-stranded RNA. At neutral pH the RNase activity of M1 exceeds the DNase activity. M1 nicks supercoiled RF-I plasmid DNA and rapidly cuts the phosphodiester bond across from the nick in the resultant relaxed RF-II plasmid DNA. Therefore, M1 represents an active bacterial S1 homolog in spite of great sequence divergence. The biochemical characterization of M1 nuclease supports our sequence alignment that reveals the minimal 21 amino acid residues that are necessarily conserved for the structure and functions of this enzyme family. The ability of M1 to degrade RNA at neutral pH implies previously unappreciated roles of these nucleases in biological systems.« less

  2. Mismatch cleavage by single-strand specific nucleases

    PubMed Central

    Till, Bradley J.; Burtner, Chris; Comai, Luca; Henikoff, Steven

    2004-01-01

    We have investigated the ability of single-strand specific (sss) nucleases from different sources to cleave single base pair mismatches in heteroduplex DNA templates used for mutation and single-nucleotide polymorphism analysis. The TILLING (Targeting Induced Local Lesions IN Genomes) mismatch cleavage protocol was used with the LI-COR gel detection system to assay cleavage of amplified heteroduplexes derived from a variety of induced mutations and naturally occurring polymorphisms. We found that purified nucleases derived from celery (CEL I), mung bean sprouts and Aspergillus (S1) were able to specifically cleave nearly all single base pair mismatches tested. Optimal nicking of heteroduplexes for mismatch detection was achieved using higher pH, temperature and divalent cation conditions than are routinely used for digestion of single-stranded DNA. Surprisingly, crude plant extracts performed as well as the highly purified preparations for this application. These observations suggest that diverse members of the S1 family of sss nucleases act similarly in cleaving non-specifically at bulges in heteroduplexes, and single-base mismatches are the least accessible because they present the smallest single-stranded region for enzyme binding. We conclude that a variety of sss nucleases and extracts can be effectively used for high-throughput mutation and polymorphism discovery. PMID:15141034

  3. Nuclease digestion and mass spectrometric characterization of oligodeoxyribonucleotides containing 1,2-GpG, 1,2-ApG, and 1,3-GpXpG cisplatin intrastrand cross-links.

    PubMed

    Williams, Renee T; Nalbandian, Jenifer N; Tu, Audrey; Wang, Yinsheng

    2013-05-01

    The primary mode of action for cis-diamminedichloroplatinum (II), referred to as cisplatin, toward the treatment of solid malignancies is through formation of cross-links with DNA at purine sites, especially guanines. We prepared oligodeoxyribonucleotides (ODNs) containing a 1,2-GpG, 1,2-ApG, or 1,3-GpXpG cisplatin intrastrand cross-link and the corresponding ODNs modified with (15)N2-labeled cisplatin, and characterized these ODNs with electrospray ionization mass spectrometry (ESI-MS) and tandem MS (MS/MS). We also employed LC-MS/MS to characterize the digestion products of these ODNs after treatment with a cocktail of 4 enzymes (nuclease P1, phosphodiesterases I and II, and alkaline phosphatase). 1,2-GpG was released from the ODNs as a dinucleoside monophosphate or a dinucleotide. Analyses of the digestion products of ODNs containing a 1,2-GpG cross-link on the 5' or 3' terminus revealed that the dinucleotide carries a terminal 5' phosphate. On the other hand, digestion of the 1,3-GpXpG intrastrand cross-link yielded 3 dinucleoside products with 0, 1, or 2 phosphate groups. The availability of the ODNs carrying the stable isotope-labeled lesions, MS/MS analyses of the cisplatin-modified ODNs, and the characterization of the enzymatic digestion products of these ODNs set the stage for the future LC-MS/MS quantification of the 1,2-GpG, 1,2-ApG, and 1,3-GpXpG lesions in cellular DNA. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Nuclease Digestion and Mass Spectrometric Characterization of Oligodeoxyribonucleotides Containing 1,2-GpG, 1,2-ApG, and 1,3-GpXpG Cisplatin Intrastrand Cross-links

    PubMed Central

    Williams, Renee T.; Nalbandian, Jenifer; Tu, Audrey; Wang, Yinsheng

    2013-01-01

    Background The primary mode of action for cis-diamminedichloroplatinum (II), referred to as cisplatin, towards the treatment of solid malignancies is through formation of cross-links with DNA at purine sites, especially guanines. Methods We prepared oligodeoxyribonucleotides (ODNs) containing a 1,2-GpG, 1,2-ApG, or 1,3-GpXpG cisplatin intrastrand cross-link and the corresponding ODNs modified with 15N2-labeled cisplatin, and characterized these ODNs with electrospray ionization mass spectrometry (ESI-MS) and tandem MS (MS/MS). We also employed LC-MS/MS to characterize the digestion products of these ODNs after treatment with a cocktail of 4 enzymes (nuclease P1, phosphodiesterases I and II, and alkaline phosphatase). Results 1,2-GpG was released from the ODNs as a dinucleoside monophosphate or a dinucleotide. Analyses of the digestion products of ODNs containing a 1,2-GpG cross-link on the 5′ or 3′ terminus revealed that the dinucleotide carries a terminal 5′ phosphate. On the other hand, digestion of the 1,3-GpXpG intrastrand cross-link yielded 3 dinucleoside products with 0, 1, or 2 phosphate groups. Results The availability of the ODNs carrying the stable isotope-labeled lesions, MS/MS analyses of the cisplatin-modified ODNs, and the characterization of the enzymatic digestion products of these ODNs set the stage for the future LC-MS/MS quantification of the 1,2-GpG, 1,2-ApG, and 1,3-GpXpG lesions in cellular DNA. PMID:23266768

  5. Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS₂ Nanosheets.

    PubMed

    Li, Junting; Zhao, Qi; Tang, Yanli

    2016-06-13

    We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS₂) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS₂ is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS₂ and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS₂ can sense S1 nuclease with a low detection limit of 5 × 10(-6) U/mL. Additionally, this method is cost-effective by using affordable WS₂ as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening.

  6. Functional Specificity of Extracellular Nucleases of Shewanella oneidensis MR-1

    PubMed Central

    Heun, Magnus; Binnenkade, Lucas; Kreienbaum, Maximilian

    2012-01-01

    Bacterial species such as Shewanella oneidensis MR-1 require extracellular nucleolytic activity for the utilization of extracellular DNA (eDNA) as a source of nutrients and for the turnover of eDNA as a structural matrix component during biofilm formation. We have previously characterized two extracellular nucleases of S. oneidensis MR-1, ExeM and ExeS. Although both are involved in biofilm formation, they are not specifically required for the utilization of eDNA as a nutrient. Here we identified and characterized EndA, a third extracellular nuclease of Shewanella. The heterologously overproduced and purified protein was highly active and rapidly degraded linear and supercoiled DNAs of various origins. Divalent metal ions (Mg2+ or Mn2+) were required for function. endA is cotranscribed with phoA, an extracellular phosphatase, and is not upregulated upon phosphostarvation. Deletion of endA abolished both extracellular degradation of DNA by S. oneidensis MR-1 and the ability to use eDNA as a sole source of phosphorus. PhoA is not strictly required for the exploitation of eDNA as a nutrient. The activity of EndA prevents the formation of large cell aggregates during planktonic growth. However, in contrast to the findings for ExeM, endA deletion had only minor effects on biofilm formation. The findings strongly suggest that the extracellular nucleases of S. oneidensis exert specific functions required under different conditions. PMID:22492434

  7. Early zygote-specific nuclease in mitochondria of the true slime mold Physarum polycephalum.

    PubMed

    Moriyama, Yohsuke; Yamazaki, Tomokazu; Nomura, Hideo; Sasaki, Narie; Kawano, Shigeyuki

    2005-11-01

    The active, selective digestion of mtDNA from one parent is a possible molecular mechanism for the uniparental inheritance of mtDNA. In Physarum polycephalum, mtDNA is packed by DNA-binding protein Glom, which packs mtDNA into rod-shaped mt-nucleoids. After the mating, mtDNA from one parent is selectively digested, and the Glom began to disperse. Dispersed Glom was retained for at least 6 h after mtDNA digestion, but disappeared completely by about 12 h after mixing two strains. We identified two novel nucleases using DNA zymography with native-PAGE and SDS-PAGE. One is a Ca2+-dependent, high-molecular-weight nuclease complex (about 670 kDa), and the other is a Mn2+-dependent, high-molecular-weight nuclease complex (440-670 kDa); the activity of the latter was detected as a Mn2+-dependent, 13-kDa DNase band on SDS-PAGE. All mitochondria isolated from myxamoebae had mt-nucleoids, whereas half of the mitochondria isolated from the zygotes at 12 h after mixing had lost the mt-nucleoids. The activity of the Mn2+-dependent nuclease in the isolated mitochondria was detected at least 8 h after mixing of two strains. The timing and localization of the Mn2+-dependent DNase activity matched the selective digestion of mtDNA.

  8. Proteases and nucleases involved in the biphasic digestion process of the brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae).

    PubMed

    Lomate, Purushottam R; Bonning, Bryony C

    2018-07-01

    Management of the brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), an invasive, agricultural pest in the United States, has presented significant challenges. This polyphagous insect uses both extra-oral and gut-based digestion thwarting protein- or nucleotide-based control strategies. The objective of this study was to biochemically characterize the digestive enzymes (proteases and nucleases) from the saliva, salivary gland and the gut of H. halys. Enzyme profiles for the two tissues and saliva radically differ: The pH optimum for proteases in the gut was six, with cysteine proteases predominant. In contrast, the alkaline pH optima for protease activity in the salivary gland (8-10) and saliva (7) reflected abundant serine protease and cathepsin activities. RNase enzymes were most abundant in saliva, while dsRNase and DNase activities were higher in the salivary gland and saliva compared to those in the gut. These very different enzyme profiles highlight the biphasic digestive system used by this invasive species for efficient processing of plant nutrients. Knowledge of H. halys digestive physiology will allow for counteractive measures targeting digestive enzymes or for appropriate protection of protein- or nucleotide-based management options targeting this pest. © 2018 Wiley Periodicals, Inc.

  9. Design of a colicin E7 based chimeric zinc-finger nuclease

    NASA Astrophysics Data System (ADS)

    Németh, Eszter; Schilli, Gabriella K.; Nagy, Gábor; Hasenhindl, Christoph; Gyurcsik, Béla; Oostenbrink, Chris

    2014-08-01

    Colicin E7 is a natural bacterial toxin. Its nuclease domain (NColE7) enters the target cell and kills it by digesting the nucleic acids. The HNH-motif as the catalytic centre of NColE7 at the C-terminus requires the positively charged N-terminal loop for the nuclease activity—offering opportunities for allosteric control in a NColE7-based artificial nuclease. Accordingly, four novel zinc finger nucleases were designed by computational methods exploiting the special structural features of NColE7. The constructed models were subjected to MD simulations. The comparison of structural stability and functional aspects showed that these models may function as safely controlled artificial nucleases. This study was complemented by random mutagenesis experiments identifying potentially important residues for NColE7 function outside the catalytic region.

  10. Disruption of the Membrane Nuclease Gene (MBOVPG45_0215) of Mycoplasma bovis Greatly Reduces Cellular Nuclease Activity

    PubMed Central

    Sharma, Shukriti; Tivendale, Kelly A.; Markham, Philip F.

    2015-01-01

    ABSTRACT Although the complete genome sequences of three strains of Mycoplasma bovis are available, few studies have examined gene function in this important pathogen. Mycoplasmas lack the biosynthetic machinery for the de novo synthesis of nucleic acid precursors, so nucleases are likely to be essential for them to acquire nucleotide precursors. Three putative membrane nucleases have been annotated in the genome of M. bovis strain PG45, MBOVPG45_0089 and MBOVPG45_0310, both of which have the thermonuclease (TNASE_3) functional domain, and MBOVPG45_0215 (mnuA), which has an exonuclease/endonuclease/phosphatase domain. While previous studies have demonstrated the function of TNASE_3 domain nucleases in several mycoplasmas, quantitative comparisons of the contributions of different nucleases to cellular nuclease activity have been lacking. Mapping of a library of 319 transposon mutants of M. bovis PG45 by direct genome sequencing identified mutants with insertions in MBOVPG45_0310 (the Δ0310 mutant) and MBOVPG45_0215 (the Δ0215 mutant). In this study, the detection of the product of MBOVPG45_0215 in the Triton X-114 fraction of M. bovis cell lysates, its cell surface exposure, and its predicted signal peptide suggested that it is a surface-exposed lipoprotein nuclease. Comparison of a ΔmnuA mutant with wild-type M. bovis on native and denatured DNA gels and in digestion assays using double-stranded phage λ DNA and closed circular plasmid DNA demonstrated that inactivation of this gene abolishes most of the cellular exonuclease and endonuclease activity of M. bovis. This activity could be fully restored by complementation with the wild-type mnuA gene, demonstrating that MnuA is the major cellular nuclease of M. bovis. IMPORTANCE Nucleases are thought to be important contributors to virulence and crucial for the maintenance of a nutritional supply of nucleotides in mycoplasmas that are pathogenic in animals. This study demonstrates for the first time that of the

  11. Isolating DNA from sexual assault cases: a comparison of standard methods with a nuclease-based approach

    PubMed Central

    2012-01-01

    Background Profiling sperm DNA present on vaginal swabs taken from rape victims often contributes to identifying and incarcerating rapists. Large amounts of the victim’s epithelial cells contaminate the sperm present on swabs, however, and complicate this process. The standard method for obtaining relatively pure sperm DNA from a vaginal swab is to digest the epithelial cells with Proteinase K in order to solubilize the victim’s DNA, and to then physically separate the soluble DNA from the intact sperm by pelleting the sperm, removing the victim’s fraction, and repeatedly washing the sperm pellet. An alternative approach that does not require washing steps is to digest with Proteinase K, pellet the sperm, remove the victim’s fraction, and then digest the residual victim’s DNA with a nuclease. Methods The nuclease approach has been commercialized in a product, the Erase Sperm Isolation Kit (PTC Labs, Columbia, MO, USA), and five crime laboratories have tested it on semen-spiked female buccal swabs in a direct comparison with their standard methods. Comparisons have also been performed on timed post-coital vaginal swabs and evidence collected from sexual assault cases. Results For the semen-spiked buccal swabs, Erase outperformed the standard methods in all five laboratories and in most cases was able to provide a clean male profile from buccal swabs spiked with only 1,500 sperm. The vaginal swabs taken after consensual sex and the evidence collected from rape victims showed a similar pattern of Erase providing superior profiles. Conclusions In all samples tested, STR profiles of the male DNA fractions obtained with Erase were as good as or better than those obtained using the standard methods. PMID:23211019

  12. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation

    NASA Astrophysics Data System (ADS)

    Ponnuswamy, Nandhini; Bastings, Maartje M. C.; Nathwani, Bhavik; Ryu, Ju Hee; Chou, Leo Y. T.; Vinther, Mathias; Li, Weiwei Aileen; Anastassacos, Frances M.; Mooney, David J.; Shih, William M.

    2017-05-01

    DNA nanostructures have evoked great interest as potential therapeutics and diagnostics due to ease and robustness of programming their shapes, site-specific functionalizations and responsive behaviours. However, their utility in biological fluids can be compromised through denaturation induced by physiological salt concentrations and degradation mediated by nucleases. Here we demonstrate that DNA nanostructures coated by oligolysines to 0.5:1 N:P (ratio of nitrogen in lysine to phosphorus in DNA), are stable in low salt and up to tenfold more resistant to DNase I digestion than when uncoated. Higher N:P ratios can lead to aggregation, but this can be circumvented by coating instead with an oligolysine-PEG copolymer, enabling up to a 1,000-fold protection against digestion by serum nucleases. Oligolysine-PEG-stabilized DNA nanostructures survive uptake into endosomal compartments and, in a mouse model, exhibit a modest increase in pharmacokinetic bioavailability. Thus, oligolysine-PEG is a one-step, structure-independent approach that provides low-cost and effective protection of DNA nanostructures for in vivo applications.

  13. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation

    PubMed Central

    Ponnuswamy, Nandhini; Bastings, Maartje M. C.; Nathwani, Bhavik; Ryu, Ju Hee; Chou, Leo Y. T.; Vinther, Mathias; Li, Weiwei Aileen; Anastassacos, Frances M.; Mooney, David J.; Shih, William M.

    2017-01-01

    DNA nanostructures have evoked great interest as potential therapeutics and diagnostics due to ease and robustness of programming their shapes, site-specific functionalizations and responsive behaviours. However, their utility in biological fluids can be compromised through denaturation induced by physiological salt concentrations and degradation mediated by nucleases. Here we demonstrate that DNA nanostructures coated by oligolysines to 0.5:1 N:P (ratio of nitrogen in lysine to phosphorus in DNA), are stable in low salt and up to tenfold more resistant to DNase I digestion than when uncoated. Higher N:P ratios can lead to aggregation, but this can be circumvented by coating instead with an oligolysine-PEG copolymer, enabling up to a 1,000-fold protection against digestion by serum nucleases. Oligolysine-PEG-stabilized DNA nanostructures survive uptake into endosomal compartments and, in a mouse model, exhibit a modest increase in pharmacokinetic bioavailability. Thus, oligolysine-PEG is a one-step, structure-independent approach that provides low-cost and effective protection of DNA nanostructures for in vivo applications. PMID:28561045

  14. Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis.

    PubMed

    Pérez-Amador, M A; Abler, M L; De Rocher, E J; Thompson, D M; van Hoof, A; LeBrasseur, N D; Lers, A; Green, P J

    2000-01-01

    Nuclease I enzymes are responsible for the degradation of RNA and single-stranded DNA during several plant growth and developmental processes, including senescence. However, in the case of senescence the corresponding genes have not been reported. We describe the identification and characterization of BFN1 of Arabidopsis, and demonstrate that it is a senescence-associated nuclease I gene. BFN1 nuclease shows high similarity to the sequence of a barley nuclease induced during germination and a zinnia (Zinnia elegans) nuclease induced during xylogenesis. In transgenic plants overexpressing the BFN1 cDNA, a nuclease activity of about 38 kD was detected on both RNase and DNase activity gels. Levels of BFN1 mRNA were extremely low or undetectable in roots, leaves, and stems. In contrast, relatively high BFN1 mRNA levels were detected in flowers and during leaf and stem senescence. BFN1 nuclease activity was also induced during leaf and stem senescence. The strong response of the BFN1 gene to senescence indicated that it would be an excellent tool with which to study the mechanisms of senescence induction, as well as the role of the BFN1 enzyme in senescence using reverse genetic approaches in Arabidopsis.

  15. Cell wall-anchored nuclease of Streptococcus sanguinis contributes to escape from neutrophil extracellular trap-mediated bacteriocidal activity.

    PubMed

    Morita, Chisato; Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Wada, Satoshi; Yamashiro, Takashi; Hayashi, Mikako; Hamada, Shigeyuki; Sumitomo, Tomoko; Kawabata, Shigetada

    2014-01-01

    Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease), and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs). Recombinant SWAN protein (rSWAN) digested multiple forms of DNA including NET DNA and human RNA, which required both Mg(2+) and Ca(2+) for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression.

  16. Cell Wall-Anchored Nuclease of Streptococcus sanguinis Contributes to Escape from Neutrophil Extracellular Trap-Mediated Bacteriocidal Activity

    PubMed Central

    Nakata, Masanobu; Okahashi, Nobuo; Wada, Satoshi; Yamashiro, Takashi; Hayashi, Mikako; Hamada, Shigeyuki; Sumitomo, Tomoko; Kawabata, Shigetada

    2014-01-01

    Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease), and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs). Recombinant SWAN protein (rSWAN) digested multiple forms of DNA including NET DNA and human RNA, which required both Mg2+ and Ca2+ for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression. PMID:25084357

  17. Label-free optical detection of single-base mismatches by the combination of nuclease and gold nanoparticles.

    PubMed

    Liu, Meiying; Yuan, Min; Lou, Xinhui; Mao, Hongju; Zheng, Dongmei; Zou, Ruxing; Zou, Nengli; Tang, Xiangrong; Zhao, Jianlong

    2011-07-15

    We report here an optical approach that enables highly selective and colorimetric single-base mismatch detection without the need of target modification, precise temperature control or stringent washes. The method is based on the finding that nucleoside monophosphates (dNMPs), which are digested elements of DNA, can better stabilize unmodified gold nanoparticles (AuNPs) than single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with the same base-composition and concentration. The method combines the exceptional mismatch discrimination capability of the structure-selective nucleases with the attractive optical property of AuNPs. Taking S1 nuclease as one example, the perfectly matched 16-base synthetic DNA target was distinctively differentiated from those with single-base mutation located at any position of the 16-base synthetic target. Single-base mutations present in targets with varied length up to 80-base, located either in the middle or near to the end of the targets, were all effectively detected. In order to prove that the method can be potentially used for real clinic samples, the single-base mismatch detections with two HBV genomic DNA samples were conducted. To further prove the generality of this method and potentially overcome the limitation on the detectable lengths of the targets of the S1 nuclease-based method, we also demonstrated the use of a duplex-specific nuclease (DSN) for color reversed single-base mismatch detection. The main limitation of the demonstrated methods is that it is limited to detect mutations in purified ssDNA targets. However, the method coupled with various convenient ssDNA generation and purification techniques, has the potential to be used for the future development of detector-free testing kits in single nucleotide polymorphism screenings for disease diagnostics and treatments. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The structures of the SNM1A and SNM1B/Apollo nuclease domains reveal a potential basis for their distinct DNA processing activities.

    PubMed

    Allerston, Charles K; Lee, Sook Y; Newman, Joseph A; Schofield, Christopher J; McHugh, Peter J; Gileadi, Opher

    2015-12-15

    The human SNM1A and SNM1B/Apollo proteins are members of an extended family of eukaryotic nuclease containing a motif related to the prokaryotic metallo-β-lactamase (MBL) fold. SNM1A is a key exonuclease during replication-dependent and transcription-coupled interstrand crosslink repair, while SNM1B/Apollo is required for maintaining telomeric overhangs. Here, we report the crystal structures of SNM1A and SNM1B at 2.16 Å. While both proteins contain a typical MBL-β-CASP domain, a region of positive charge surrounds the active site of SNM1A, which is absent in SNM1B and explains the greater apparent processivity of SNM1A. The structures of both proteins also reveal a putative, wide DNA-binding groove. Extensive mutagenesis of this groove, coupled with detailed biochemical analysis, identified residues that did not impact on SNM1A catalytic activity, but drastically reduced its processivity. Moreover, we identified a key role for this groove for efficient digestion past DNA interstrand crosslinks, facilitating the key DNA repair reaction catalysed by SNM1A. Together, the architecture and dimensions of this groove, coupled to the surrounding region of high positive charge, explain the remarkable ability of SNM1A to accommodate and efficiently digest highly distorted DNA substrates, such as those containing DNA lesions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Nucleases from Prevotella intermedia can degrade neutrophil extracellular traps.

    PubMed

    Doke, M; Fukamachi, H; Morisaki, H; Arimoto, T; Kataoka, H; Kuwata, H

    2017-08-01

    Periodontitis is an inflammatory disease caused by periodontal bacteria in subgingival plaque. These bacteria are able to colonize the periodontal region by evading the host immune response. Neutrophils, the host's first line of defense against infection, use various strategies to kill invading pathogens, including neutrophil extracellular traps (NETs). These are extracellular net-like fibers comprising DNA and antimicrobial components such as histones, LL-37, defensins, myeloperoxidase, and neutrophil elastase from neutrophils that disarm and kill bacteria extracellularly. Bacterial nuclease degrades the NETs to escape NET killing. It has now been shown that extracellular nucleases enable bacteria to evade this host antimicrobial mechanism, leading to increased pathogenicity. Here, we compared the DNA degradation activity of major Gram-negative periodontopathogenic bacteria, Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We found that Pr. intermedia showed the highest DNA degradation activity. A genome search of Pr. intermedia revealed the presence of two genes, nucA and nucD, putatively encoding secreted nucleases, although their enzymatic and biological activities are unknown. We cloned nucA- and nucD-encoding nucleases from Pr. intermedia ATCC 25611 and characterized their gene products. Recombinant NucA and NucD digested DNA and RNA, which required both Mg 2+ and Ca 2+ for optimal activity. In addition, NucA and NucD were able to degrade the DNA matrix comprising NETs. © 2016 The Authors Molecular Oral Microbiology Published by John Wiley & Sons Ltd.

  20. Nucleases activities during French bean leaf aging and dark-induced senescence.

    PubMed

    Lambert, Rocío; Quiles, Francisco Antonio; Gálvez-Valdivieso, Gregorio; Piedras, Pedro

    2017-11-01

    During leaf senescence resources are managed, with nutrients mobilized from older leaves to new sink tissues. The latter implies a dilemma in terms of resource utilization, the leaf senescence should increase seed quality whereas delay in senescence should improve the seed yield. Increased knowledge about nutrient recycling during leaf senescence could lead to advances in agriculture and improved seed quality. Macromolecules mobilized during leaf senescence include proteins and nucleic acids. Although nucleic acids have been less well studied than protein degradation, they are possible reservoirs of nitrogen and phosphorous. The present study investigated nuclease activities and gene expression patterns of five members of the S1/P1 family in French bean (Phaseolus vulgaris L. cv.)Page: 2 during leaf senescence. An in-gel assay was used to detect nuclease activity during natural and dark-induced senescence, with single-stranded DNA (ssDNA) used as a substrate. The results revealed two nucleases (glycoproteins), with molecular masses of 34 and 39kDa in the senescent leaves. The nuclease activities were higher at a neutral than at an acidic pH. EDTA treatment inhibited the activities of the nucleases, and the addition of zinc resulted in the recovery of these activities. Both the 34 and 39kDa nucleases were able to use RNA and double-stranded DNA (dsDNA) as substrates, although their activities were low when dsDNA was used as a substrate. In addition, two ribonucleases with molecular masses of 14 and 16kDa, both of which could only utilize RNA as a substrate, were detected in the senescent leaves. Two members of the S1/P1 family, PVN2 and PVN5, were expressed under the experimental conditions, suggesting that these two genes were involved in senescence. The nuclease activity of the glycoproteins and gene expression were similar under both natural senescence and dark-induced senescence conditions. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights

  1. Tsetse Salivary Gland Proteins 1 and 2 Are High Affinity Nucleic Acid Binding Proteins with Residual Nuclease Activity

    PubMed Central

    Caljon, Guy; Ridder, Karin De; Stijlemans, Benoît; Coosemans, Marc; Magez, Stefan; De Baetselier, Patrick; Van Den Abbeele, Jan

    2012-01-01

    Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans) saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2) display DNA/RNA non-specific, high affinity nucleic acid binding with KD values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents. PMID:23110062

  2. The structures of the SNM1A and SNM1B/Apollo nuclease domains reveal a potential basis for their distinct DNA processing activities

    PubMed Central

    Allerston, Charles K.; Lee, Sook Y.; Newman, Joseph A.; Schofield, Christopher J.; McHugh, Peter J.; Gileadi, Opher

    2015-01-01

    The human SNM1A and SNM1B/Apollo proteins are members of an extended family of eukaryotic nuclease containing a motif related to the prokaryotic metallo-β-lactamase (MBL) fold. SNM1A is a key exonuclease during replication-dependent and transcription-coupled interstrand crosslink repair, while SNM1B/Apollo is required for maintaining telomeric overhangs. Here, we report the crystal structures of SNM1A and SNM1B at 2.16 Å. While both proteins contain a typical MBL-β-CASP domain, a region of positive charge surrounds the active site of SNM1A, which is absent in SNM1B and explains the greater apparent processivity of SNM1A. The structures of both proteins also reveal a putative, wide DNA-binding groove. Extensive mutagenesis of this groove, coupled with detailed biochemical analysis, identified residues that did not impact on SNM1A catalytic activity, but drastically reduced its processivity. Moreover, we identified a key role for this groove for efficient digestion past DNA interstrand crosslinks, facilitating the key DNA repair reaction catalysed by SNM1A. Together, the architecture and dimensions of this groove, coupled to the surrounding region of high positive charge, explain the remarkable ability of SNM1A to accommodate and efficiently digest highly distorted DNA substrates, such as those containing DNA lesions. PMID:26582912

  3. Purification and identification of a nuclease activity in embryo axes from French bean.

    PubMed

    Lambert, Rocío; Quiles, Francisco Antonio; Cabello-Díaz, Juan Miguel; Piedras, Pedro

    2014-07-01

    Plant nucleases are involved in nucleic acid degradation associated to programmed cell death processes as well as in DNA restriction, repair and recombination processes. However, the knowledge about the function of plant nucleases is limited. A major nuclease activity was detected by in-gel assay with whole embryonic axes of common bean by using ssDNA or RNA as substrate, whereas this activity was minimal in cotyledons. The enzyme has been purified to electrophoretic homogeneity from embryonic axes. The main biochemical properties of the purified enzyme indicate that it belongs to the S1/P1 family of nucleases. This was corroborated when this protein, after SDS-electrophoresis, was excised from the gel and further analysis by MALDI TOF/TOF allowed identification of the gene (PVN1) that codes this protein. The gene that codes the purified protein was identified. The expression of PVN1 gene was induced at the specific moment of radicle protrusion. The inclusion of inorganic phosphate to the imbibition media reduced the level of expression of this gene and the nuclease activity suggesting a relationship with the phosphorous status in French bean seedlings. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase.

    PubMed

    van Overbeek, Megan; de Lange, Titia

    2006-07-11

    Human chromosome ends are protected by shelterin, an abundant six-subunit protein complex that binds specifically to the telomeric-repeat sequences, regulates telomere length, and ensures that chromosome ends do not elicit a DNA-damage response (reviewed in). Using mass spectrometry of proteins associated with the shelterin component Rap1, we identified an SMN1/PSO2 nuclease family member that is closely related to Artemis. We refer to this protein as Apollo and report that Apollo has the ability to localize to telomeres through an interaction with the shelterin component TRF2. Although its low abundance at telomeres indicates that Apollo is not a core component of shelterin, Apollo knockdown with RNAi resulted in senescence and the activation of a DNA-damage signal at telomeres as evidenced by telomere-dysfunction-induced foci (TIFs). The TIFs occurred primarily in S phase, suggesting that Apollo contributes to a processing step associated with the replication of chromosome ends. Furthermore, some of the metaphase chromosomes showed two telomeric signals at single-chromatid ends, suggesting an aberrant telomere structure. We propose that the Artemis-like nuclease Apollo is a shelterin accessory factor required for the protection of telomeres during or after their replication.

  5. Distinct properties of proteases and nucleases in the gut, salivary gland and saliva of southern green stink bug, Nezara viridula

    PubMed Central

    Lomate, Purushottam R.; Bonning, Bryony C.

    2016-01-01

    Stink bugs negatively impact numerous plant species of agricultural and horticultural importance. While efforts to develop effective control measures are underway, the unique digestive physiology of these pests presents a significant hurdle for either protein- or nucleotide-based management options. Here we report the comparative biochemical and proteomic characterization of proteases and nucleases from the gut, salivary gland and saliva of the southern green stink bug, Nezara viridula. The pH optimum for protease activity was acidic (5 to 6) in the gut with the primary proteases being cysteine proteases, and alkaline (8 to 9) in the saliva and salivary gland with the primary proteases being serine proteases. The serine proteases in saliva differ biochemically from trypsin and chymotrypsin, and the cathepsins in the gut and saliva showed distinct properties in inhibitor assays. Nuclease activity (DNase, RNase, dsRNase) was concentrated in the salivary gland and saliva with negligible activity in the gut. The most abundant proteins of the gut (530) and salivary gland (631) identified by proteomic analysis included four gut proteases along with eight proteases and one nuclease from the salivary gland. Understanding of N. viridula digestive physiology will facilitate the design of new strategies for management of this significant pest. PMID:27282882

  6. TaqMan 5′-Nuclease Human Immunodeficiency Virus Type 1 PCR Assay with Phage-Packaged Competitive Internal Control for High-Throughput Blood Donor Screening

    PubMed Central

    Drosten, C.; Seifried, E.; Roth, W. K.

    2001-01-01

    Screening of blood donors for human immunodeficiency virus type 1 (HIV-1) infection by PCR permits the earlier diagnosis of HIV-1 infection compared with that by serologic assays. We have established a high-throughput reverse transcription (RT)-PCR assay based on 5′-nuclease PCR. By in-tube detection of HIV-1 RNA with a fluorogenic probe, the 5′-nuclease PCR technology (TaqMan PCR) eliminates the risk of carryover contamination, a major problem in PCR testing. We outline the development and evaluation of the PCR assay from a technical point of view. A one-step RT-PCR that targets the gag genes of all known HIV-1 group M isolates was developed. An internal control RNA detectable with a heterologous 5′-nuclease probe was derived from the viral target cDNA and was packaged into MS2 coliphages (Armored RNA). Because the RNA was protected against digestion with RNase, it could be spiked into patient plasma to control the complete sample preparation and amplification process. The assay detected 831 HIV-1 type B genome equivalents per ml of native plasma (95% confidence interval [CI], 759 to 936 HIV-1 B genome equivalents per ml) with a ≥95% probability of a positive result, as determined by probit regression analysis. A detection limit of 1,195 genome equivalents per ml of (individual) donor plasma (95% CI, 1,014 to 1,470 genome equivalents per ml of plasma pooled from individuals) was achieved when 96 samples were pooled and enriched by centrifugation. Up to 4,000 plasma samples per PCR run were tested in a 3-month trial period. Although data from the present pilot feasibility study will have to be complemented by a large clinical validation study, the assay is a promising approach to the high-throughput screening of blood donors and is the first noncommercial test for high-throughput screening for HIV-1. PMID:11724836

  7. Noninvasive imaging of Staphylococcus aureus infections with a nuclease-activated probe.

    PubMed

    Hernandez, Frank J; Huang, Lingyan; Olson, Michael E; Powers, Kristy M; Hernandez, Luiza I; Meyerholz, David K; Thedens, Daniel R; Behlke, Mark A; Horswill, Alexander R; McNamara, James O

    2014-03-01

    Technologies that enable the rapid detection and localization of bacterial infections in living animals could address an unmet need for infectious disease diagnostics. We describe a molecular imaging approach for the specific, noninvasive detection of S. aureus based on the activity of the S. aureus secreted nuclease, micrococcal nuclease (MN). Several short synthetic oligonucleotides, rendered resistant to mammalian serum nucleases by various chemical modifications and flanked with a fluorophore and quencher, were activated upon degradation by purified MN and in S. aureus culture supernatants. A probe consisting of a pair of deoxythymidines flanked by several 2'-O-methyl-modified nucleotides was activated in culture supernatants of S. aureus but not in culture supernatants of several other pathogenic bacteria. Systemic administration of this probe to mice bearing S. aureus muscle infections resulted in probe activation at the infection sites in an MN-dependent manner. This new bacterial imaging approach has potential clinical applicability for infections with S. aureus and several other medically important pathogens.

  8. A Novel Nuclease Activity that is Activated by Ca2+ Chelated to EGTA

    PubMed Central

    Dominguez, Kenneth; Ward, W. Steven

    2010-01-01

    Most nucleases require a divalent cation as a cofactor, usually Mg2+ or Ca2+, and are inhibited by the chelators EDTA and EGTA. We report the existence of a novel nuclease activity, initially identified in the luminal fluids of the mouse male reproductive tract but subsequently found in other tissues, that requires EGTA chelated to calcium to digest DNA. We refer to this unique enzyme as CEAN (Chelated EGTA Activated Nuclease). Using a fraction of vas deferens luminal fluid, plasmid DNA was degraded in the presence of excess Ca2+ (Ca2+:EGTA = 16) or excess EGTA (Ca2+:EGTA = 0.25), but required the presence of both. Higher levels of EGTA (Ca2+:EGTA = 0.10) prevented activity, suggesting that unchelated EGTA may be a competitive inhibitor. The EGTA-Ca2+ activation of CEAN is reversible as removing EGTA-Ca2+ stops ongoing DNA degradation, but adding EGTA-Ca2+ again reactivates the enzyme. This suggests the possibility that CEAN binds directly to EGTA-Ca2+. CEAN has a greater specificity for the chelator than for the divalent cation. Two other chelators, BAPTA and sodium citrate, do not activate CEAN in the presence of cation, but chelated EDTA does. EGTA chelated to other divalent cations such as Mn2+, Zn2+, and Cu2+ activate CEAN, but not Mg2+. The activity is lost upon boiling suggesting that it is a protein. These data suggest that EGTA and EDTA may not always prevent DNA from nuclease damage. PMID:19938954

  9. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials.

    PubMed

    Bikard, David; Euler, Chad W; Jiang, Wenyan; Nussenzweig, Philip M; Goldberg, Gregory W; Duportet, Xavier; Fischetti, Vincent A; Marraffini, Luciano A

    2014-11-01

    Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas9 (refs.1,2) delivered by a bacteriophage. We show that Cas9, reprogrammed to target virulence genes, kills virulent, but not avirulent, Staphylococcus aureus. Reprogramming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also show that CRISPR-Cas9 antimicrobials function in vivo to kill S. aureus in a mouse skin colonization model. This technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner.

  10. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases.

    PubMed

    Ishida, Kentaro; Gee, Peter; Hotta, Akitsu

    2015-10-16

    Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9.

  11. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases

    PubMed Central

    Ishida, Kentaro; Gee, Peter; Hotta, Akitsu

    2015-01-01

    Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9. PMID:26501275

  12. Potentiometric sensing of nuclease activities and oxidative damage of single-stranded DNA using a polycation-sensitive membrane electrode.

    PubMed

    Ding, Jiawang; Qin, Wei

    2013-09-15

    A simple, general and label-free potentiometric method to measure nuclease activities and oxidative DNA damage in a homogeneous solution using a polycation-sensitive membrane electrode is reported. Protamine, a linear polyionic species, is used as an indicator to report the cleavage of DNA by nucleases such as restriction and nonspecific nucleases, and the damage of DNA induced by hydroxyl radicals. Measurements can be done with a titration mode or a direct detection mode. For the potentiometric titration mode, the enzymatic cleavage dramatically affects the electrostatical interaction between DNA and protamine and thus shifts the response curve for the potentiometric titration of the DNA with protamine. Under the optimized conditions, the enzyme activities can be sensed potentiometrically with detection limits of 2.7×10(-4)U/µL for S1 nuclease, and of 3.9×10(-4)U/µL for DNase I. For the direct detection mode, a biocomplex between protamine and DNA is used as a substrate. The nuclease of interest cleaves the DNA from the protamine/DNA complex into smaller fragments, so that free protamine is generated and can be detected potentiometrically via the polycation-sensitive membrane electrode. Using a direct measurement, the nuclease activities could be rapidly detected with detection limits of 3.2×10(-4)U/µL for S1 nuclease, and of 4.5×10(-4)U/µL for DNase I. Moreover, the proposed potentiometric assays demonstrate the potential applications in the detection of hydroxyl radicals. It is anticipated that the present potentiometric strategy will provide a promising platform for high-throughput screening of nucleases, reactive oxygen species and the drugs with potential inhibition abilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Methylation-sensitive enrichment of minor DNA alleles using a double-strand DNA-specific nuclease.

    PubMed

    Liu, Yibin; Song, Chen; Ladas, Ioannis; Fitarelli-Kiehl, Mariana; Makrigiorgos, G Mike

    2017-04-07

    Aberrant methylation changes, often present in a minor allelic fraction in clinical samples such as plasma-circulating DNA (cfDNA), are potentially powerful prognostic and predictive biomarkers in human disease including cancer. We report on a novel, highly-multiplexed approach to facilitate analysis of clinically useful methylation changes in minor DNA populations. Methylation Specific Nuclease-assisted Minor-allele Enrichment (MS-NaME) employs a double-strand-specific DNA nuclease (DSN) to remove excess DNA with normal methylation patterns. The technique utilizes oligonucleotide-probes that direct DSN activity to multiple targets in bisulfite-treated DNA, simultaneously. Oligonucleotide probes targeting unmethylated sequences generate local double stranded regions resulting to digestion of unmethylated targets, and leaving methylated targets intact; and vice versa. Subsequent amplification of the targeted regions results in enrichment of the targeted methylated or unmethylated minority-epigenetic-alleles. We validate MS-NaME by demonstrating enrichment of RARb2, ATM, MGMT and GSTP1 promoters in multiplexed MS-NaME reactions (177-plex) using dilutions of methylated/unmethylated DNA and in DNA from clinical lung cancer samples and matched normal tissue. MS-NaME is a highly scalable single-step approach performed at the genomic DNA level in solution that combines with most downstream detection technologies including Sanger sequencing, methylation-sensitive-high-resolution melting (MS-HRM) and methylation-specific-Taqman-based-digital-PCR (digital Methylight) to boost detection of low-level aberrant methylation-changes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Mouse Spermatozoa Contain a Nuclease that Is Activated by Pretreatment with EGTA and Subsequent Calcium Incubation

    PubMed Central

    Boaz, Segal M.; Dominguez, Kenneth; Shaman, Jeffrey A.; Ward, W. Steven

    2009-01-01

    We demonstrated that mouse spermatozoa cleave their DNA into ~50 kb loop-sized fragments with topoisomerase IIB when treated with MnCl2 and CaCl2 in a process we term sperm chromatin fragmentation (SCF). SCF can be reversed by EDTA. A nuclease then further degrades the DNA in a process we term sperm DNA degradation (SDD). MnCl2 alone could elicit this activity, but CaCl2 had no effect. Here, we demonstrate the existence of a nuclease in the vas deferens that can be activated by EGTA to digest the sperm DNA by SDD. Spermatozoa were extracted with salt and dithiothreitol to remove protamines and then incubated with EGTA. Next, the EGTA was removed and divalent cations were added. We found that Mn+2, Ca+2, or Zn+2 could each activate SDD in spermatozoa but Mg+2 could not. When the reaction was slowed by incubation on ice, EGTA pretreatment followed by incubation in Ca+2 elicited the reversible fragmentation of sperm DNA evident in SCF. When the reactions were then incubated at 37°C they progressed to the more complete degradation of DNA by SDD. EDTA could also be used to activate the nuclease, but required a higher concentration than EGTA. This EGTA-activatable nuclease activity was found in each fraction of the vas deferens plasma: in the spermatozoa, in the surrounding fluid, and in the insoluble components in the fluid. These results suggest that this sperm nuclease is regulated by a mechanism that is sensitive to EGTA, possibly by removing inhibition of a calcium binding protein. PMID:17879959

  15. [Nuclease activity of the recombinant plancitoxin-1-like proteins with mutations in the active site from Trichinella spiralis].

    PubMed

    Liao, Chengshui; Wang, Xiaoli; Tian, Wenjing; Zhang, Mengke; Zhang, Chunjie; Li, Yinju; Wu, Tingcai; Cheng, Xiangchao

    2017-08-25

    Although there are 125 predicted DNase Ⅱ-like family genes in the Trichinella spiralis genome, plancitoxin-1-like (Ts-Pt) contains the HKD motif, a typical conserved region of DNase Ⅱ, in N- and C-terminal. It is generally believed that histidine is the active site in DNase Ⅱ. To study the nuclease activity of recombinant Ts-Pt with mutations in the active site from T. spiralis, different fragments of the mutated Ts-Pt genes were cloned using overlap PCR technique and inserted into the expressing vector pET-28a(+), and transformed into Escherichia coli Rosseta (DE3). The fusion proteins were purified by Ni-NTA affinity chromatography and SDS-PAGE. Nuclease activity of the recombinant proteins was detected by agarose gel electrophoresis and nuclease-zymography. The recombinant plasmids harboring the mutated Ts-Pt genes were constructed and expressed as inclusive body in a prokaryotic expression system. After renaturation in vitro, the recombinant proteins had no nuclease activity according to agarose gel electrophoresis. However, the expressed proteins as inclusive body displayed the ability to degrade DNA after renaturation in gel. And the nuclease activity was not affected after subjected to mutation of active site in N- and C-termini of Ts-Pt. These results provide the basis to study the relationship between DNase Ⅱ-like protein family and infection of T. spiralis.

  16. Non-viral delivery of genome-editing nucleases for gene therapy.

    PubMed

    Wang, M; Glass, Z A; Xu, Q

    2017-03-01

    Manipulating the genetic makeup of mammalian cells using programmable nuclease-based genome-editing technology has recently evolved into a powerful avenue that holds great potential for treating genetic disorders. There are four types of genome-editing nucleases, including meganucleases, zinc finger nucleases, transcription activator-like effector nucleases and clustered, regularly interspaced, short palindromic repeat-associated nucleases such as Cas9. These nucleases have been harnessed to introduce precise and specific changes of the genome sequence at virtually any genome locus of interest. The therapeutic relevance of these genome-editing technologies, however, is challenged by the safe and efficient delivery of nuclease into targeted cells. Herein, we summarize recent advances that have been made on non-viral delivery of genome-editing nucleases. In particular, we focus on non-viral delivery of Cas9/sgRNA ribonucleoproteins for genome editing. In addition, the future direction for developing non-viral delivery of programmable nucleases for genome editing is discussed.

  17. Halophilic Nuclease from a Moderately Halophilic Micrococcus varians

    PubMed Central

    Kamekura, Masahiro; Onishi, Hiroshi

    1974-01-01

    The moderately halophilic bacterium Micrococcus varians, isolated from soy sauce mash, produced extracellular nuclease when cultivated aerobically in media containing 1 to 4 M NaCl or KCl. The enzyme, purified to an electrophoretically homogeneous state, had both ribonuclease and deoxyribonuclease activities. The nuclease had maximal activity in the presence of 2.9 M NaCl or 2.1 M KCl at 40 C. The enzymatic activity was lost by dialysis against low-salt buffer, whereas when the inactivated enzyme was dialyzed against 3.4 M NaCl buffer as much as 77% of the initial activity could be restored. Images PMID:4852218

  18. Efficient Modification of the CCR5 Locus in Primary Human T Cells With megaTAL Nuclease Establishes HIV-1 Resistance

    PubMed Central

    Romano Ibarra, Guillermo S; Paul, Biswajit; Sather, Blythe D; Younan, Patrick M; Sommer, Karen; Kowalski, John P; Hale, Malika; Stoddard, Barry; Jarjour, Jordan; Astrakhan, Alexander; Kiem, Hans-Peter; Rawlings, David J

    2016-01-01

    A naturally occurring 32-base pair deletion of the HIV-1 co-receptor CCR5 has demonstrated protection against HIV infection of human CD4+ T cells. Recent genetic engineering approaches using engineered nucleases to disrupt the gene and mimic this mutation show promise for HIV therapy. We developed a megaTAL nuclease targeting the third extracellular loop of CCR5 that we delivered to primary human T cells by mRNA transfection. The CCR5 megaTAL nuclease established resistance to HIV in cell lines and disrupted the expression of CCR5 on primary human CD4+ T cells with a high efficiency, achieving up to 80% modification of the locus in primary cells as measured by molecular analysis. Gene-modified cells engrafted at levels equivalent to unmodified cells when transplanted into immunodeficient mice. Furthermore, genetically modified CD4+ cells were preferentially expanded during HIV-1 infection in vivo in an immunodeficient mouse model. Our results demonstrate the feasibility of targeting CCR5 in primary T cells using an engineered megaTAL nuclease, and the potential to use gene-modified cells to reconstitute a patient's immune system and provide protection from HIV infection. PMID:27741222

  19. Syntheses of prodrug-type phosphotriester oligonucleotides responsive to intracellular reducing environment for improvement of cell membrane permeability and nuclease resistance.

    PubMed

    Hayashi, Junsuke; Samezawa, Yusuke; Ochi, Yosuke; Wada, Shun-Ichi; Urata, Hidehito

    2017-07-15

    We synthesized prodrug-type phosphotriester (PTE) oligonucleotides containing the six-membered cyclic disulfide moiety by using phosphoramidite chemistry. Prodrug-type oligonucleotides named "Reducing-Environment-Dependent Uncatalyzed Chemical Transforming (REDUCT) PTE oligonucleotides" were converted into natural oligonucleotides under cytosol-mimetic reductive condition. Furthermore, the REDUCT PTE oligonucleotides were robust to nuclease digestion and exhibited good cell membrane permeability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The protein composition of the digestive fluid from the venus flytrap sheds light on prey digestion mechanisms.

    PubMed

    Schulze, Waltraud X; Sanggaard, Kristian W; Kreuzer, Ines; Knudsen, Anders D; Bemm, Felix; Thøgersen, Ida B; Bräutigam, Andrea; Thomsen, Line R; Schliesky, Simon; Dyrlund, Thomas F; Escalante-Perez, Maria; Becker, Dirk; Schultz, Jörg; Karring, Henrik; Weber, Andreas; Højrup, Peter; Hedrich, Rainer; Enghild, Jan J

    2012-11-01

    The Venus flytrap (Dionaea muscipula) is one of the most well-known carnivorous plants because of its unique ability to capture small animals, usually insects or spiders, through a unique snap-trapping mechanism. The animals are subsequently killed and digested so that the plants can assimilate nutrients, as they grow in mineral-deficient soils. We deep sequenced the cDNA from Dionaea traps to obtain transcript libraries, which were used in the mass spectrometry-based identification of the proteins secreted during digestion. The identified proteins consisted of peroxidases, nucleases, phosphatases, phospholipases, a glucanase, chitinases, and proteolytic enzymes, including four cysteine proteases, two aspartic proteases, and a serine carboxypeptidase. The majority of the most abundant proteins were categorized as pathogenesis-related proteins, suggesting that the plant's digestive system evolved from defense-related processes. This in-depth characterization of a highly specialized secreted fluid from a carnivorous plant provides new information about the plant's prey digestion mechanism and the evolutionary processes driving its defense pathways and nutrient acquisition.

  1. HIF-1α P582S and A588T polymorphisms and digestive system cancer risk-a meta-analysis.

    PubMed

    Yang, Xi; Zhang, Chi; Zhu, Hong-Cheng; Qin, Qin; Zhao, Lian-Jun; Liu, Jia; Xu, Li-Ping; Zhang, Qu; Cai, Jing; Ma, Jian-Xin; Cheng, Hong-Yan; Sun, Xin-Chen

    2014-03-01

    Hypoxia-inducible factor-1 (HIF-1) influences cancer progression and metastasis through various mechanisms, and HIF-1α polymorphisms are reportedly associated with many cancers; however, the associations of HIF-1α P582S and A588T polymorphisms with the risk of digestive system cancer remain inconclusive. To understand the role of HIF-1α P582S and A588T genotypes in digestive cancer development, we conducted a comprehensive meta-analysis involving 1,517 cases and 3,740 controls. Overall, the P582S polymorphism was not significantly associated with digestive system cancers in all genotypes. By contrast, the A588T polymorphism was significantly associated with digestive system cancers in the dominant model (TT/AT vs. AA: OR = 3.17, 95% CI: 1.21, 8.25; P heterogeneity < 0.001). In subgroup analysis for cancer types, the two polymorphisms were only associated with increased risk of pancreatic cancer (P582S: SS vs. PP: OR = 2.51, 95% CI: 1.31, 4.81; SS vs. OR = 8.73, 95% CI: 1.33, 57.1; A588T: TT vs. AA: OR = 9.30, 95% CI: 1.12, 77.6; P heterogeneity = 0.478; TT vs. OR = 3.14, 95% CI: 1.99, 4.97; P heterogeneity = 0.098; TT/AT vs. AA: OR = 8.65, 95% CI: 1.05, 71.6; P heterogeneity = 0.418). According to the source of ethnicity, the P582S and the A588T polymorphisms are both significantly associated with an increased risk of cancer among Caucasians in the homozygote model (SS vs. PP: OR = 2.41, 95% CI: 1.24, 4.691; P heterogeneity = 0.010; TT vs. AA: OR = 98.6, 95% CI: 4.37, 2,224; P heterogeneity = 0.040) and the recessive model (SS vs. OR = 9.48, 95% CI: 1.12, 80.3; P heterogeneity < 0.001; TT vs. OR = 82.7, 95% CI: 3.79, 1,802; P heterogeneity = 0.041). Our findings suggest that the HIF-1α A588T polymorphism is significantly associated with higher cancer risk and the P582S polymorphism is significantly associated with pancreatic cancer risk. Furthermore, the effect of both polymorphisms on

  2. Creating Directed Double-strand Breaks with the Ref Protein: A Novel Rec A-Dependent Nuclease from Bacteriophage P1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruenig, Marielle C.; Lu, Duo; Won, Sang Joon

    2012-03-16

    The bacteriophage P1-encoded Ref protein enhances RecA-dependent recombination in vivo by an unknown mechanism. We demonstrate that Ref is a new type of enzyme; that is, a RecA-dependent nuclease. Ref binds to ss- and dsDNA but does not cleave any DNA substrate until RecA protein and ATP are added to form RecA nucleoprotein filaments. Ref cleaves only where RecA protein is bound. RecA functions as a co-nuclease in the Ref/RecA system. Ref nuclease activity can be limited to the targeted strands of short RecA-containing D-loops. The result is a uniquely programmable endonuclease activity, producing targeted double-strand breaks at any chosenmore » DNA sequence in an oligonucleotide-directed fashion. We present evidence indicating that cleavage occurs in the RecA filament groove. The structure of the Ref protein has been determined to 1.4 {angstrom} resolution. The core structure, consisting of residues 77-186, consists of a central 2-stranded {beta}-hairpin that is sandwiched between several {alpha}-helical and extended loop elements. The N-terminal 76 amino acid residues are disordered; this flexible region is required for optimal activity. The overall structure of Ref, including several putative active site histidine residues, defines a new subclass of HNH-family nucleases. We propose that enhancement of recombination by Ref reflects the introduction of directed, recombinogenic double-strand breaks.« less

  3. Genome Editing in Rats Using TALE Nucleases.

    PubMed

    Tesson, Laurent; Remy, Séverine; Ménoret, Séverine; Usal, Claire; Thinard, Reynald; Savignard, Chloé; De Cian, Anne; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio

    2016-01-01

    The rat is an important animal model to understand gene function and model human diseases. Since recent years, the development of gene-specific nucleases has become important for generating new rat models of human diseases, to analyze the role of genes and to generate human antibodies. Transcription activator-like (TALE) nucleases efficiently create gene-specific knockout rats and lead to the possibility of gene targeting by homology-directed recombination (HDR) and generating knock-in rats. We describe a detailed protocol for generating knockout and knock-in rats via microinjection of TALE nucleases into fertilized eggs. This technology is an efficient, cost- and time-effective method for creating new rat models.

  4. A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases.

    PubMed

    Periwal, Vinita

    2017-07-01

    Genome editing with engineered nucleases (zinc finger nucleases, TAL effector nucleases s and Clustered regularly inter-spaced short palindromic repeats/CRISPR-associated) has recently been shown to have great promise in a variety of therapeutic and biotechnological applications. However, their exploitation in genetic analysis and clinical settings largely depends on their specificity for the intended genomic target. Large and complex genomes often contain highly homologous/repetitive sequences, which limits the specificity of genome editing tools and could result in off-target activity. Over the past few years, various computational approaches have been developed to assist the design process and predict/reduce the off-target activity of these nucleases. These tools could be efficiently used to guide the design of constructs for engineered nucleases and evaluate results after genome editing. This review provides a comprehensive overview of various databases, tools, web servers and resources for genome editing and compares their features and functionalities. Additionally, it also describes tools that have been developed to analyse post-genome editing results. The article also discusses important design parameters that could be considered while designing these nucleases. This review is intended to be a quick reference guide for experimentalists as well as computational biologists working in the field of genome editing with engineered nucleases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis.

    PubMed

    Almeida Garcia, Rayssa; Lima Pepino Macedo, Leonardo; Cabral do Nascimento, Danila; Gillet, François-Xavier; Moreira-Pinto, Clidia Eduarda; Faheem, Muhammad; Moreschi Basso, Angelina Maria; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-01-01

    RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests.

  6. The Protein Composition of the Digestive Fluid from the Venus Flytrap Sheds Light on Prey Digestion Mechanisms*

    PubMed Central

    Schulze, Waltraud X.; Sanggaard, Kristian W.; Kreuzer, Ines; Knudsen, Anders D.; Bemm, Felix; Thøgersen, Ida B.; Bräutigam, Andrea; Thomsen, Line R.; Schliesky, Simon; Dyrlund, Thomas F.; Escalante-Perez, Maria; Becker, Dirk; Schultz, Jörg; Karring, Henrik; Weber, Andreas; Højrup, Peter; Hedrich, Rainer; Enghild, Jan J.

    2012-01-01

    The Venus flytrap (Dionaea muscipula) is one of the most well-known carnivorous plants because of its unique ability to capture small animals, usually insects or spiders, through a unique snap-trapping mechanism. The animals are subsequently killed and digested so that the plants can assimilate nutrients, as they grow in mineral-deficient soils. We deep sequenced the cDNA from Dionaea traps to obtain transcript libraries, which were used in the mass spectrometry-based identification of the proteins secreted during digestion. The identified proteins consisted of peroxidases, nucleases, phosphatases, phospholipases, a glucanase, chitinases, and proteolytic enzymes, including four cysteine proteases, two aspartic proteases, and a serine carboxypeptidase. The majority of the most abundant proteins were categorized as pathogenesis-related proteins, suggesting that the plant's digestive system evolved from defense-related processes. This in-depth characterization of a highly specialized secreted fluid from a carnivorous plant provides new information about the plant's prey digestion mechanism and the evolutionary processes driving its defense pathways and nutrient acquisition. PMID:22891002

  7. Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis

    PubMed Central

    Almeida Garcia, Rayssa; Lima Pepino Macedo, Leonardo; Cabral do Nascimento, Danila; Gillet, François-Xavier; Moreira-Pinto, Clidia Eduarda; Faheem, Muhammad; Moreschi Basso, Angelina Maria; Mattar Silva, Maria Cristina

    2017-01-01

    RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests. PMID:29261729

  8. Crystal structure of a Fanconi anemia-associated nuclease homolog bound to 5' flap DNA: basis of interstrand cross-link repair by FAN1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwon, Gwang Hyeon; Kim, Youngran; Liu, Yaqi

    2014-10-15

    Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5' flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domainmore » playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5' flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair.« less

  9. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.

    PubMed

    Mashimo, Tomoji

    2014-01-01

    The laboratory rat has been widely used as an animal model in biomedical science for more than 150 years. Applying zinc-finger nucleases or transcription activator-like effector nucleases to rat embryos via microinjection is an efficient genome editing tool for generating targeted knockout rats. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonucleases have been used as an effective tool for precise and multiplex genome editing in mice and rats. In this review, the advantages and disadvantages of these site-specific nuclease technologies for genetic analysis and manipulation in rats are discussed. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  10. Targeting of a Nuclease to Murine Leukemia Virus Capsids Inhibits Viral Multiplication

    NASA Astrophysics Data System (ADS)

    Natsoulis, Georges; Seshaiah, Partha; Federspiel, Mark J.; Rein, Alan; Hughes, Stephen H.; Boeke, Jef D.

    1995-01-01

    Capsid-targeted viral inactivation is an antiviral strategy in which toxic fusion proteins are targeted to virions, where they inhibit viral multiplication by destroying viral components. These fusion proteins consist of a virion structural protein moiety and an enzymatic moiety such as a nuclease. Such fusion proteins can severely inhibit transposition of yeast retrotransposon Ty1, an element whose transposition mechanistically resembles retroviral multiplication. We demonstrate that expression of a murine retrovirus capsid-staphylococcal nuclease fusion protein inhibits multiplication of the corresponding murine leukemia virus by 30- to 100-fold. Staphylococcal nuclease is apparently inactive intracellularly and hence nontoxic to the host cell, but it is active extracellularly because of its requirement for high concentrations of Ca2+ ions. Virions assembled in and shed from cells expressing the fusion protein contain very small amounts of intact viral RNA, as would be predicted for nuclease-mediated inhibition of viral multiplication.

  11. Cold denaturation and 2H2O stabilization of a staphylococcal nuclease mutant.

    PubMed Central

    Antonino, L C; Kautz, R A; Nakano, T; Fox, R O; Fink, A L

    1991-01-01

    Cold denaturation is now recognized as a general property of proteins but has been observed only under destabilizing conditions, such as moderate denaturant concentration or low pH. By destabilizing the protein using site-directed mutagenesis, we have observed cold denaturation at pH 7.0 in the absence of denaturants in a mutant of staphylococcal nuclease, which we call NCA S28G for a hybrid protein between staphylococcal nuclease and concanavalin A in which there is the point mutation Ser-28----Gly. The temperature of maximum stability (tmax) as determined by circular dichroism (CD) was 18.1 degrees C, and the midpoints of the thermal unfolding transitions (tm) were 0.6 degrees C and 30.0 degrees C. These values may be compared with the tm of 52.5 degrees C for wild-type staphylococcal nuclease, for which no cold denaturation was observed under these conditions. When the stability of the mutant was examined in 2H2O by NMR, CD, or fluorescence, a substantial increase in the amount of folded protein at the tmax was noted as well as a decrease in tmax, reflecting increased stability. PMID:1652762

  12. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN.

    PubMed

    Ul Ain, Qurrat; Chung, Jee Young; Kim, Yong-Hee

    2015-05-10

    Gene therapy by engineered nucleases is a genetic intervention being investigated for curing the hereditary disorders by targeting selected genes with specific nucleotides for establishment, suppression, abolishment of a function or correction of mutation. Here, we review the fast developing technology of targeted genome engineering using site specific programmable nucleases zinc finger nucleases (ZFNs), transcription activator like nucleases (TALENs) and cluster regulatory interspaced short palindromic repeat/CRISPR associated proteins (CRISPR/Cas) based RNA-guided DNA endonucleases (RGENs) and their different characteristics including pros and cons of genome modifications by these nucleases. We have further discussed different types of delivery methods to induce gene editing, novel development in genetic engineering other than nucleases and future prospects. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The quantitative determination of metabolites of 6-mercaptopurine in biological materials. VI. Evidence for posttranscriptional modification of 6-thioguanosine residues in RNA from L5178Y cells treated with 6-mercaptopurine.

    PubMed

    Breter, H J

    1985-05-24

    Mammalian cells incorporate 6-thioguanosine into their nucleic acids when grown in the presence of 6-mercaptopurine. 35S-labeled total RNA was prepared from L5178Y murine lymphoma cells grown in vitro in the presence of 6-[35S]mercaptopurine. Base analyses of this RNA suggested that 6-thioguanosine residues in RNA molecules undergo posttranscriptional modification. Thus, enzymatic peak-shifting analyses using anion-exchange high-performance liquid chromatography were applied to the hydrolysis products released from total RNA preparations by digestion with nuclease P1 or nuclease P1 plus nucleotide pyrophosphatase. At least eight 35S-labeled, phosphatase-sensitive compounds structurally different from [35S]6thioGMP were found in nuclease P1 digests. Four of these compounds were susceptible to cleavage with nucleotide pyrophosphatase, thus indicating that they contained phosphoric acid anhydride bonds. Individual RNA species were not separately examined, the radiochromatographic data, however, which were obtained from digests of total RNA preparations, present evidence that 6-thioguanosine 5'-diphosphate and 6-thioguanosine 5'-triphosphate exist as 5'-terminal starting nucleotides (in tRNA and rRNA) and that 6-thioguanosine becomes incorporated into the highly modified dinucleoside triphosphate structures (caps) which commonly block the 5'-termini of eukaryotic poly(A)+ mRNA-molecules.

  14. Structural characterization of the virulence factor nuclease A from Streptococcus agalactiae.

    PubMed

    Moon, Andrea F; Gaudu, Philippe; Pedersen, Lars C

    2014-11-01

    The group B pathogen Streptococcus agalactiae commonly populates the human gut and urogenital tract, and is a major cause of infection-based mortality in neonatal infants and in elderly or immunocompromised adults. Nuclease A (GBS_NucA), a secreted DNA/RNA nuclease, serves as a virulence factor for S. agalactiae, facilitating bacterial evasion of the human innate immune response. GBS_NucA efficiently degrades the DNA matrix component of neutrophil extracellular traps (NETs), which attempt to kill and clear invading bacteria during the early stages of infection. In order to better understand the mechanisms of DNA substrate binding and catalysis of GBS_NucA, the high-resolution structure of a catalytically inactive mutant (H148G) was solved by X-ray crystallography. Several mutants on the surface of GBS_NucA which might influence DNA substrate binding and catalysis were generated and evaluated using an imidazole chemical rescue technique. While several of these mutants severely inhibited nuclease activity, two mutants (K146R and Q183A) exhibited significantly increased activity. These structural and biochemical studies have greatly increased our understanding of the mechanism of action of GBS_NucA in bacterial virulence and may serve as a foundation for the structure-based drug design of antibacterial compounds targeted to S. agalactiae.

  15. Spacer-length DNA intermediates are associated with Cas1 in cells undergoing primed CRISPR adaptation.

    PubMed

    Musharova, Olga; Klimuk, Evgeny; Datsenko, Kirill A; Metlitskaya, Anastasia; Logacheva, Maria; Semenova, Ekaterina; Severinov, Konstantin; Savitskaya, Ekaterina

    2017-04-07

    During primed CRISPR adaptation spacers are preferentially selected from DNA recognized by CRISPR interference machinery, which in the case of Type I CRISPR-Cas systems consists of CRISPR RNA (crRNA) bound effector Cascade complex that locates complementary targets, and Cas3 executor nuclease/helicase. A complex of Cas1 and Cas2 proteins is capable of inserting new spacers in the CRISPR array. Here, we show that in Escherichia coli cells undergoing primed adaptation, spacer-sized fragments of foreign DNA are associated with Cas1. Based on sensitivity to digestion with nucleases, the associated DNA is not in a standard double-stranded state. Spacer-sized fragments are cut from one strand of foreign DNA in Cas1- and Cas3-dependent manner. These fragments are generated from much longer S1-nuclease sensitive fragments of foreign DNA that require Cas3 for their production. We propose that in the course of CRISPR interference Cas3 generates fragments of foreign DNA that are recognized by the Cas1-Cas2 adaptation complex, which excises spacer-sized fragments and channels them for insertion into CRISPR array. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Generation of knockout rabbits using transcription activator-like effector nucleases.

    PubMed

    Wang, Yu; Fan, Nana; Song, Jun; Zhong, Juan; Guo, Xiaogang; Tian, Weihua; Zhang, Quanjun; Cui, Fenggong; Li, Li; Newsome, Philip N; Frampton, Jon; Esteban, Miguel A; Lai, Liangxue

    2014-01-01

    Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.

  17. High throughput techniques to reveal the molecular physiology and evolution of digestion in spiders.

    PubMed

    Fuzita, Felipe J; Pinkse, Martijn W H; Patane, José S L; Verhaert, Peter D E M; Lopes, Adriana R

    2016-09-07

    Spiders are known for their predatory efficiency and for their high capacity of digesting relatively large prey. They do this by combining both extracorporeal and intracellular digestion. Whereas many high throughput ("-omics") techniques focus on biomolecules in spider venom, so far this approach has not yet been applied to investigate the protein composition of spider midgut diverticula (MD) and digestive fluid (DF). We here report on our investigations of both MD and DF of the spider Nephilingis (Nephilengys) cruentata through the use of next generation sequencing and shotgun proteomics. This shows that the DF is composed of a variety of hydrolases including peptidases, carbohydrases, lipases and nuclease, as well as of toxins and regulatory proteins. We detect 25 astacins in the DF. Phylogenetic analysis of the corresponding transcript(s) in Arachnida suggests that astacins have acquired an unprecedented role for extracorporeal digestion in Araneae, with different orthologs used by each family. The results of a comparative study of spiders in distinct physiological conditions allow us to propose some digestion mechanisms in this interesting animal taxon. All the high throughput data allowed the demonstration that DF is a secretion originating from the MD. We identified enzymes involved in the extracellular and intracellular phases of digestion. Besides that, data analyses show a large gene duplication event in Araneae digestive process evolution, mainly of astacin genes. We were also able to identify proteins expressed and translated in the digestive system, which until now had been exclusively associated to venom glands.

  18. Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9

    PubMed Central

    Koo, Taeyoung; Lee, Jungjoon; Kim, Jin-Soo

    2015-01-01

    Programmable nucleases, which include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and RNA-guided engineered nucleases (RGENs) repurposed from the type II clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system are now widely used for genome editing in higher eukaryotic cells and whole organisms, revolutionising almost every discipline in biological research, medicine, and biotechnology. All of these nucleases, however, induce off-target mutations at sites homologous in sequence with on-target sites, limiting their utility in many applications including gene or cell therapy. In this review, we compare methods for detecting nuclease off-target mutations. We also review methods for profiling genome-wide off-target effects and discuss how to reduce or avoid off-target mutations. PMID:25985872

  19. Synthesis of 2',4'-propylene-bridged (carba-ENA) thymidine and its analogues: the engineering of electrostatic and steric effects at the bottom of the minor groove for nuclease and thermodynamic stabilities and elicitation of RNase H.

    PubMed

    Liu, Yi; Xu, Jianfeng; Karimiahmadabadi, Mansoureh; Zhou, Chuanzheng; Chattopadhyaya, Jyoti

    2010-11-05

    2',4'-Propylene-bridged thymidine (carba-ENA-T) and five 8'-Me/NH(2)/OH modified carba-ENA-T analogues have been prepared through intramolecular radical addition to C═N of the tethered oxime-ether. These carba-ENA nucleosides have been subsequently incorporated into 15mer oligodeoxynucleotides (AON), and their affinity toward cDNA and RNA, nuclease resistance, and RNase H recruitment capability have been investigated in comparison with those of the native and ENA counterparts. These carba-ENAs modified AONs are highly RNA-selective since all of them led to slight thermal stabilization effect for the AON:RNA duplex, but quite large destabilization effect for the AON:DNA duplex. It was found that different C8' substituents (at the bottom of the minor groove) on carba-ENA-T only led to rather small variation of thermal stability of the AON:RNA duplexes. We, however, observed that the parent carba-ENA-T modified AONs exhibited higher nucleolytic stability than those of the ENA-T modified counterparts. The nucleolytic stability of carba-ENA-T modified AONs can be further modulated by C8' substituent to variable extents depending on not only the chemical nature but also the stereochemical orientation of the C8' substituents: Thus, (1) 8'S-Me on carba-ENA increases the nucleolytic stability but 8'R-Me leads to a decreased effect; (2) 8'R-OH on carba-ENA had little, if any, effect on nuclease resistance but 8'S-OH resulted in significantly decreased nucleolytic stability; and (3) 8'-NH(2) substituted carba-ENA leads to obvious loss in the nuclease resistance. The RNA strand in all of the carba-ENA derivatives modified AON:RNA hybrid duplexes can be digested by RNase H1 with high efficiency, even at twice the rate of those of the native and ENA modified counterpart.

  20. Structural characterization of the virulence factor nuclease A from Streptococcus agalactiae

    DOE PAGES

    Moon, Andrea F.; Gaudu, Philippe; Pedersen, Lars C.

    2014-11-01

    The group B pathogen Streptococcus agalactiae commonly populates the human gut and urogenital tract, and is a major cause of infection-based mortality in neonatal infants and in elderly or immunocompromised adults. Nuclease A (GBS_NucA), a secreted DNA/RNA nuclease, serves as a virulence factor for S. agalactiae , facilitating bacterial evasion of the human innate immune response. GBS_NucA efficiently degrades the DNA matrix component of neutrophil extracellular traps (NETs), which attempt to kill and clear invading bacteria during the early stages of infection. In order to better understand the mechanisms of DNA substrate binding and catalysis of GBS_NucA, the high-resolution structuremore » of a catalytically inactive mutant (H148G) was solved by X-ray crystallography. Several mutants on the surface of GBS_NucA which might influence DNA substrate binding and catalysis were generated and evaluated using an imidazole chemical rescue technique. While several of these mutants severely inhibited nuclease activity, two mutants (K146R and Q183A) exhibited significantly increased activity. Lastly, these structural and biochemical studies have greatly increased our understanding of the mechanism of action of GBS_NucA in bacterial virulence and may serve as a foundation for the structure-based drug design of antibacterial compounds targeted to S. agalactiae.« less

  1. Biological availability and nuclease resistance extend the in vitro activity of a phosphorothioate-3'hydroxypropylamine oligonucleotide.

    PubMed Central

    Tam, R C; Li, Y; Noonberg, S; Hwang, D G; Lui, G; Hunt, C A; Garovoy, M R

    1994-01-01

    Augmented biological activity in vitro has been demonstrated in oligonucleotides (oligos) modified to provide nuclease resistance, to enhance cellular uptake or to increase target affinity. How chemical modification affects the duration of effect of an oligo with potent activity has not been investigated directly. We postulated that modification with internucleotide phosphorothioates and 3' alkylamine provided additional nuclease protection which could significantly extend the biological activity of a 26 mer, (T2). We showed this analog, sT2a, could maximally inhibit interferon gamma-induced HLA-DR mRNA synthesis and surface expression in both HeLa and retinal pigmented epithelial cells and could continue to be effective, in the absence of oligo, 15 days following initial oligo treatment; an effect not observed with its 3'amine counterpart, T2a. In vitro stability studies confirmed that sT2a conferred the greatest stability to nucleases and that cellular accumulation of 32P-sT2a in both cell types was also greater than other T2 oligos. Using confocal microscopy, we revealed that the intracellular distribution of sT2a favored greater nuclear accumulation and release of oligo from cytoplasmic vesicles; a pattern not observed with T2a. These results suggest that phosphorothioate-3'amine modification could increase the duration of effect of T2 oligo by altering nuclease resistance as well as intracellular accumulation and distribution; factors known to affect biological availability. Images PMID:8152930

  2. Surveyor Nuclease: a new strategy for a rapid identification of heteroplasmic mitochondrial DNA mutations in patients with respiratory chain defects.

    PubMed

    Bannwarth, Sylvie; Procaccio, Vincent; Paquis-Flucklinger, Veronique

    2005-06-01

    Molecular analysis of mitochondrial DNA (mtDNA) is a critical step in diagnosis and genetic counseling of respiratory chain defects. No fast method is currently available for the identification of unknown mtDNA point mutations. We have developed a new strategy based on complete mtDNA PCR amplification followed by digestion with a mismatch-specific DNA endonuclease, Surveyor Nuclease. This enzyme, a member of the CEL nuclease family of plant DNA endonucleases, cleaves double-strand DNA at any mismatch site including base substitutions and small insertions/deletions. After digestion, cleavage products are separated and analyzed by agarose gel electrophoresis. The size of the digestion products indicates the location of the mutation, which is then confirmed and characterized by sequencing. Although this method allows the analysis of 2 kb mtDNA amplicons and the detection of multiple mutations within the same fragment, it does not lead to the identification of homoplasmic base substitutions. Homoplasmic pathogenic mutations have been described. Nevertheless, most homoplasmic base substitutions are neutral polymorphisms while deleterious mutations are typically heteroplasmic. Here, we report that this method can be used to detect mtDNA mutations such as m.3243A>G tRNA(Leu) and m.14709T>C tRNA(Glu) even when they are present at levels as low as 3% in DNA samples derived from patients with respiratory chain defects. Then, we tested five patients suffering from a mitochondrial respiratory chain defect and we identified a variant (m.16189T>C) in two of them, which was previously associated with susceptibility to diabetes and cardiomyopathy. In conclusion, this method can be effectively used to rapidly and completely screen the entire human mitochondrial genome for heteroplasmic mutations and in this context represents an important advance for the diagnosis of mitochondrial diseases.

  3. Enhanced gene disruption by programmable nucleases delivered by a minicircle vector.

    PubMed

    Dad, A-B K; Ramakrishna, S; Song, M; Kim, H

    2014-11-01

    Targeted genetic modification using programmable nucleases such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) is of great value in biomedical research, medicine and biotechnology. Minicircle vectors, which lack extraneous bacterial sequences, have several advantages over conventional plasmids for transgene delivery. Here, for the first time, we delivered programmable nucleases into human cells using transient transfection of a minicircle vector and compared the results with those obtained using a conventional plasmid. Surrogate reporter assays and T7 endonuclease analyses revealed that cells in the minicircle vector group displayed significantly higher mutation frequencies at the target sites than those in the conventional plasmid group. Quantitative PCR and reverse transcription-PCR showed higher vector copy number and programmable nuclease transcript levels, respectively, in 293T cells after minicircle versus conventional plasmid vector transfection. In addition, tryphan blue staining and flow cytometry after annexin V and propidium iodide staining showed that cell viability was also significantly higher in the minicircle group than in the conventional plasmid group. Taken together, our results show that gene disruption using minicircle vector-mediated delivery of ZFNs and TALENs is a more efficient, safer and less toxic method than using a conventional plasmid, and indicate that the minicircle vector could serve as an advanced delivery method for programmable nucleases.

  4. MALDI-MS SCREENING FOR PSEUDOURIDINE IN MIXTURES OF SMALL RNAS BY CHEMICAL DERIVATIZATION, RNASE DIGESTION AND SIGNATURE PRODUCTS

    PubMed Central

    Durairaj, Anita; Limbach, Patrick A.

    2010-01-01

    We have developed a method to screen for pseudouridines in complex mixtures of small RNAs using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS). First, the unfractionated crude mixture of tRNAs is digested to completion with an endoribonuclease, such as RNase T1, and the digestion products are examined using MALDI-MS. Individual RNAs are identified by their signature digestion products, which arise through the detection of unique mass values after nuclease digestion. Next, the endonuclease digest is derivatized using N-cyclohexyl-N’-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate (CMCT), which selectively modifies all pseudouridine, thiouridine and 2-methylthio-6-isopentenyladenosine nucleosides. MALDI-MS determination of the CMCT-derivatized endonuclease digest reveals the presence of pseudouridine through a 252 Da mass increase over the underivatized digest. Proof-of-concept experiments were conducted using a mixture of Escherichia coli transfer RNAs and endoribonucleases T1 and A. More than 80% of the expected pseudouridines from this mixture were detected using this screening approach, even on a unfractionated sample of tRNAs. This approach should be particularly useful in the identification of putative pseudouridine synthases through detection of their target RNAs and can provide insight into specific small RNAs that may contain pseudouridine. PMID:18973194

  5. Genetic correction using engineered nucleases for gene therapy applications.

    PubMed

    Li, Hongmei Lisa; Nakano, Takao; Hotta, Akitsu

    2014-01-01

    Genetic mutations in humans are associated with congenital disorders and phenotypic traits. Gene therapy holds the promise to cure such genetic disorders, although it has suffered from several technical limitations for decades. Recent progress in gene editing technology using tailor-made nucleases, such as meganucleases (MNs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and, more recently, CRISPR/Cas9, has significantly broadened our ability to precisely modify target sites in the human genome. In this review, we summarize recent progress in gene correction approaches of the human genome, with a particular emphasis on the clinical applications of gene therapy. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  6. Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases

    PubMed Central

    Bikard, David; Euler, Chad; Jiang, Wenyan; Nussenzweig, Philip M.; Goldberg, Gregory W.; Duportet, Xavier; Fischetti, Vincent A.; Marraffini, Luciano A.

    2014-01-01

    Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas91, 2 delivered by a bacteriophage. We show that Cas9 re-programmed to target virulence genes kills virulent, but not avirulent, Staphylococcus aureus. Re-programming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes3, 4 and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also demonstrate the approach in vivo, showing its efficacy against S. aureus in a mouse skin colonization model. This new technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner. PMID:25282355

  7. DNA aptamers against FokI nuclease domain for genome editing applications.

    PubMed

    Nishio, Maui; Matsumoto, Daisuke; Kato, Yoshio; Abe, Koichi; Lee, Jinhee; Tsukakoshi, Kaori; Yamagishi, Ayana; Nakamura, Chikashi; Ikebukuro, Kazunori

    2017-07-15

    Genome editing with site-specific nucleases (SSNs) can modify only the target gene and may be effective for gene therapy. The main limitation of genome editing for clinical use is off-target effects; excess SSNs in the cells and their longevity can contribute to off-target effects. Therefore, a controlled delivery system for SSNs is necessary. FokI nuclease domain (FokI) is a common DNA cleavage domain in zinc finger nuclease (ZFN) and transcription activator-like effector nuclease. Previously, we reported a zinc finger protein delivery system that combined aptamer-fused, double-strand oligonucleotides and nanoneedles. Here, we report the development of DNA aptamers that bind to the target molecules, with high affinity and specificity to the FokI. DNA aptamers were selected in six rounds of systematic evolution of ligands by exponential enrichment. Aptamers F6#8 and #71, which showed high binding affinity to FokI (K d =82nM, 74nM each), showed resistance to nuclease activity itself and did not inhibit nuclease activity. We immobilized the ZFN-fused GFP to nanoneedles through these aptamers and inserted the nanoneedles into HEK293 cells. We observed the release of ZFN-fused GFP from the nanoneedles in the presence of cells. Therefore, these aptamers are useful for genome editing applications such as controlled delivery of SSNs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Probing chromatin structure with nuclease sensitivity assays.

    PubMed

    Gregory, R I; Khosla, S; Feil, R

    2001-01-01

    To further our understanding of genomic imprinting it will be essential to identify key control elements, and to investigate their regulation by both epigenetic modifications (such as DNA methylation) and trans-acting factors. So far, sequence elements that regulate parental allele-specific gene expression have been identified in a number of imprinted loci, either because of their differential DNA methylation or through functional studies in transgenic mice (1,2). A systematic search for allele-specific chromatin features constitutes an alternative strategy to identify elements that regulate imprinting. The validity of such an in vivo chromatin approach derives from the fact that in several known imprinting control-elements, a specialized organization of chromatin characterized by nuclease hypersensitivity is present on only one of the two parental chromosome (3). For example, the differentially methylated 5 -portion of the human SNRPN gene-a sequence element that controls imprinting in the Prader-Willi and Angelman syndromes' domain on chromosome 15q11- q13-has strong DNase-I hypersensitive sites on the unmethylated paternal chromosome (4). A differentially methylated region that regulates the imprinting of H19 and that of the neighboring insulin-like growth factor-2 gene on mouse chromosome 7 was also found to have parental chromosome-specific hypersensitive sites (5,6). The precise nature of the allelic nuclease hypersensitivity in these and other imprinted loci remains to be determined in more detail, for example, by applying complementary chromatin methodologies (7,8). However, it is commonly observed that a nuclease hypersensitive site corresponds to a small region where nucleosomes are absent or partially disrupted.

  9. Rapid Detection of Urinary Tract Infections via Bacterial Nuclease Activity.

    PubMed

    Flenker, Katie S; Burghardt, Elliot L; Dutta, Nirmal; Burns, William J; Grover, Julia M; Kenkel, Elizabeth J; Weaver, Tyler M; Mills, James; Kim, Hyeon; Huang, Lingyan; Owczarzy, Richard; Musselman, Catherine A; Behlke, Mark A; Ford, Bradley; McNamara, James O

    2017-06-07

    Rapid and accurate bacterial detection methods are needed for clinical diagnostic, water, and food testing applications. The wide diversity of bacterial nucleases provides a rich source of enzymes that could be exploited as signal amplifying biomarkers to enable rapid, selective detection of bacterial species. With the exception of the use of micrococcal nuclease activity to detect Staphylococcus aureus, rapid methods that detect bacterial pathogens via their nuclease activities have not been developed. Here, we identify endonuclease I as a robust biomarker for E. coli and develop a rapid ultrasensitive assay that detects its activity. Comparison of nuclease activities of wild-type and nuclease-knockout E. coli clones revealed that endonuclease I is the predominant DNase in E. coli lysates. Endonuclease I is detectable by immunoblot and activity assays in uropathogenic E. coli strains. A rapid assay that detects endonuclease I activity in patient urine with an oligonucleotide probe exhibited substantially higher sensitivity for urinary tract infections than that reported for rapid urinalysis methods. The 3 hr turnaround time is much shorter than that of culture-based methods, thereby providing a means for expedited administration of appropriate antimicrobial therapy. We suggest this approach could address various unmet needs for rapid detection of E. coli. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  10. An ultrasensitive fluorescence method suitable for quantitative analysis of mung bean nuclease and inhibitor screening in vitro and vivo.

    PubMed

    Peng, Lan; Fan, Jialong; Tong, Chunyi; Xie, Zhenhua; Zhao, Chuan; Liu, Xuanming; Zhu, Yonghua; Liu, Bin

    2016-09-15

    Mung bean nuclease is a single stranded specific DNA and RNA endonuclease purified from mung bean sprouts. It yields 5'-phosphate terminated mono- and oligonucleotides. The activity level of this nuclease can act as a marker to monitor the developmental process of mung bean sprouts. In order to facilitate the activity and physiological analysis of this nuclease, we have developed a biosensing assay system based on the mung bean nuclease-induced single-stranded DNA scission and the affinity difference of graphene oxide for single-stranded DNA containing different numbers of bases. This end-point measurement method can detect mung bean nuclease in a range of 2×10(-4) to 4×10(-2) with a detection limit of 1×10(-4) unit/mL. In addition, we demonstrate the utility of the assay for screening chemical antibiotics and metal ions, resulting in the identification of several inhibitors of this enzyme in vitro. Furthermore, we firstly report that inhibiting mung bean nuclease by gentamycin sulfate and kanamycin in vivo can suppress mung bean sprouts growth. In summary, this method provides an alternative tool for the biochemical analysis for mung bean nuclease and indicates the feasibility of high-throughput screening specific inhibitors of this nuclease in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Nuclease-mediated genome editing: At the front-line of functional genomics technology.

    PubMed

    Sakuma, Tetsushi; Woltjen, Knut

    2014-01-01

    Genome editing with engineered endonucleases is rapidly becoming a staple method in developmental biology studies. Engineered nucleases permit random or designed genomic modification at precise loci through the stimulation of endogenous double-strand break repair. Homology-directed repair following targeted DNA damage is mediated by co-introduction of a custom repair template, allowing the derivation of knock-out and knock-in alleles in animal models previously refractory to classic gene targeting procedures. Currently there are three main types of customizable site-specific nucleases delineated by the source mechanism of DNA binding that guides nuclease activity to a genomic target: zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR). Among these genome engineering tools, characteristics such as the ease of design and construction, mechanism of inducing DNA damage, and DNA sequence specificity all differ, making their application complementary. By understanding the advantages and disadvantages of each method, one may make the best choice for their particular purpose. © 2014 The Authors Development, Growth & Differentiation © 2014 Japanese Society of Developmental Biologists.

  12. Small Molecule Targeted Recruitment of a Nuclease to RNA.

    PubMed

    Costales, Matthew G; Matsumoto, Yasumasa; Velagapudi, Sai Pradeep; Disney, Matthew D

    2018-06-06

    The choreography between RNA synthesis and degradation is a key determinant in biology. Engineered systems such as CRISPR have been developed to rid a cell of RNAs. Here, we show that a small molecule can recruit a nuclease to a specific transcript, triggering its destruction. A small molecule that selectively binds the oncogenic microRNA(miR)-96 hairpin precursor was appended with a short 2'-5' poly(A) oligonucleotide. The conjugate locally activated endogenous, latent ribonuclease (RNase L), which selectively cleaved the miR-96 precursor in cancer cells in a catalytic and sub-stoichiometric fashion. Silencing miR-96 derepressed pro-apoptotic FOXO1 transcription factor, triggering apoptosis in breast cancer, but not healthy breast, cells. These results demonstrate that small molecules can be programmed to selectively cleave RNA via nuclease recruitment and has broad implications.

  13. Hybrid nanosensor for colorimetric and ultrasensitive detection of nuclease contaminations

    NASA Astrophysics Data System (ADS)

    Cecere, Paola; Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Nucleases are ubiquitous enzymes that degrade DNA or RNA, thus they can prejudice the good outcome of molecular biology experiments involving nucleic acids. We propose a colorimetric test for the naked-eye detection of nuclease contaminations. The system uses an hybrid nanosensor, based on gold nanoparticles functionalized with DNA probes. Our assay is rapid, instrument-free, simple and low-cost. Moreover, it reaches sensitivity equal or better than those of commercial kits, and presents a lot of advantageous aspects. Therefore, it is very competitive, with a real market potential. This test will be relevant in routine process monitoring in scientific laboratories, and in quality control in clinical laboratories and industrial processes, allowing the simultaneous detection of nucleases with different substrate specificities and large-scale screening.

  14. Investigation of a redox-sensitive predictive model of mouse embryonic stem cells differentiation using quantitative nuclease protection assays and glutathione redox status

    EPA Science Inventory

    Investigation of a redox-sensitive predictive model of mouse embryonic stem cell differentiation via quantitative nuclease protection assays and glutathione redox status Chandler KJ,Hansen JM, Knudsen T,and Hunter ES 1. U.S. Environmental Protection Agency, Research Triangl...

  15. Design principles for nuclease-deficient CRISPR-based transcriptional regulators

    PubMed Central

    Jensen, Michael K

    2018-01-01

    Abstract The engineering of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated proteins continues to expand the toolkit available for genome editing, reprogramming gene regulation, genome visualisation and epigenetic studies of living organisms. In this review, the emerging design principles on the use of nuclease-deficient CRISPR-based reprogramming of gene expression will be presented. The review will focus on the designs implemented in yeast both at the level of CRISPR proteins and guide RNA (gRNA), but will lend due credits to the seminal studies performed in other species where relevant. In addition to design principles, this review also highlights applications benefitting from the use of CRISPR-mediated transcriptional regulation and discusses the future directions to further expand the toolkit for nuclease-deficient reprogramming of genomes. As such, this review should be of general interest for experimentalists to get familiarised with the parameters underlying the power of reprogramming genomic functions by use of nuclease-deficient CRISPR technologies. PMID:29726937

  16. Design principles for nuclease-deficient CRISPR-based transcriptional regulators.

    PubMed

    Jensen, Michael K

    2018-06-01

    The engineering of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated proteins continues to expand the toolkit available for genome editing, reprogramming gene regulation, genome visualisation and epigenetic studies of living organisms. In this review, the emerging design principles on the use of nuclease-deficient CRISPR-based reprogramming of gene expression will be presented. The review will focus on the designs implemented in yeast both at the level of CRISPR proteins and guide RNA (gRNA), but will lend due credits to the seminal studies performed in other species where relevant. In addition to design principles, this review also highlights applications benefitting from the use of CRISPR-mediated transcriptional regulation and discusses the future directions to further expand the toolkit for nuclease-deficient reprogramming of genomes. As such, this review should be of general interest for experimentalists to get familiarised with the parameters underlying the power of reprogramming genomic functions by use of nuclease-deficient CRISPR technologies.

  17. Long non-coding RNA PVT1: Emerging biomarker in digestive system cancer.

    PubMed

    Zhou, Dan-Dan; Liu, Xiu-Fen; Lu, Cheng-Wei; Pant, Om Prakash; Liu, Xiao-Dong

    2017-12-01

    The digestive system cancers are leading cause of cancer-related death worldwide, and have high risks of morbidity and mortality. More and more long non-coding RNAs (lncRNAs) have been studied to be abnormally expressed in cancers and play a key role in the process of digestive system tumour progression. Plasmacytoma variant translocation 1 (PVT1) seems fairly novel. Since 1984, PVT1 was identified to be an activator of MYC in mice. Its role in human tumour initiation and progression has long been a subject of interest. The expression of PVT1 is elevated in digestive system cancers and correlates with poor prognosis. In this review, we illustrate the various functions of PVT1 during the different stages in the complex process of digestive system tumours (including oesophageal cancer, gastric cancer, colorectal cancer, hepatocellular carcinoma and pancreatic cancer). The growing evidence shows the involvement of PVT1 in both proliferation and differentiation process in addition to its involvement in epithelial to mesenchymal transition (EMT). These findings lead us to conclude that PVT1 promotes proliferation, survival, invasion, metastasis and drug resistance in digestive system cancer cells. We will also discuss PVT1's potential in diagnosis and treatment target of digestive system cancer. There was a great probability PVT1 could be a novel biomarker in screening tumours, prognosis biomarkers and future targeted therapy to improve the survival rate in cancer patients. © 2017 John Wiley & Sons Ltd.

  18. Repair of DNA-polypeptide crosslinks by human excision nuclease

    NASA Astrophysics Data System (ADS)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  19. Determinants of the cytotoxicity of PrrC anticodon nuclease and its amelioration by tRNA repair

    PubMed Central

    Meineke, Birthe; Shuman, Stewart

    2012-01-01

    Breakage of tRNALys(UUU) by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection that is ultimately thwarted by a virus-encoded RNA repair system. PrrC homologs are prevalent in other bacteria, but their activities and substrates are not defined. We find that induced expression of EcoPrrC is toxic in Saccharomyces cerevisiae and E. coli, whereas the Neisseria meningitidis PrrC (NmePrrC) is not. PrrCs consist of an N-terminal NTPase module and a C-terminal nuclease module. Domain swaps identified the EcoPrrC nuclease domain as decisive for toxicity when linked to either the Eco or Nme NTPase. Indeed, a single arginine-to-tryptophan change in the NmePrrC nuclease domain (R316W) educed a gain-of-function and rendered NmePrrC toxic to yeast, with genetic evidence for tRNALys(UUU) being the relevant target. The reciprocal Trp-to-Arg change in EcoPrrC (W335R) abolished its toxicity. Further mutagenesis of the EcoPrrC nuclease domain highlighted an ensemble of 15 essential residues and distinguished between hypomorphic alleles and potential nuclease-nulls. We report that the RNA repair phase of the bacterial virus-host dynamic is also portable to yeast, where coexpression of the T4 enzymes Pnkp and Rnl1 ameliorated the toxicity of NmePrrC-R316W. Plant tRNA ligase AtRNL also countered NmePrrC-R316W toxicity, in a manner that depended on AtRNL's 5′-kinase and ligase functions. PMID:22101242

  20. Determinants of the cytotoxicity of PrrC anticodon nuclease and its amelioration by tRNA repair.

    PubMed

    Meineke, Birthe; Shuman, Stewart

    2012-01-01

    Breakage of tRNA(Lys(UUU)) by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection that is ultimately thwarted by a virus-encoded RNA repair system. PrrC homologs are prevalent in other bacteria, but their activities and substrates are not defined. We find that induced expression of EcoPrrC is toxic in Saccharomyces cerevisiae and E. coli, whereas the Neisseria meningitidis PrrC (NmePrrC) is not. PrrCs consist of an N-terminal NTPase module and a C-terminal nuclease module. Domain swaps identified the EcoPrrC nuclease domain as decisive for toxicity when linked to either the Eco or Nme NTPase. Indeed, a single arginine-to-tryptophan change in the NmePrrC nuclease domain (R316W) educed a gain-of-function and rendered NmePrrC toxic to yeast, with genetic evidence for tRNA(Lys(UUU)) being the relevant target. The reciprocal Trp-to-Arg change in EcoPrrC (W335R) abolished its toxicity. Further mutagenesis of the EcoPrrC nuclease domain highlighted an ensemble of 15 essential residues and distinguished between hypomorphic alleles and potential nuclease-nulls. We report that the RNA repair phase of the bacterial virus-host dynamic is also portable to yeast, where coexpression of the T4 enzymes Pnkp and Rnl1 ameliorated the toxicity of NmePrrC-R316W. Plant tRNA ligase AtRNL also countered NmePrrC-R316W toxicity, in a manner that depended on AtRNL's 5'-kinase and ligase functions.

  1. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis

    PubMed Central

    Ipsaro, Jonathan J.; Haase, Astrid D.; Knott, Simon R.; Joshua-Tor, Leemor; Hannon, Gregory J.

    2012-01-01

    PIWI-family proteins and their associated small RNAs (piRNAs) act in an evolutionarily conserved innate immune mechanism that provides an essential protection for germ cell genomes against the activity of mobile genetic elements1. piRNA populations comprise a molecular definition of transposons that permits them to be distinguished from host genes and selectively silenced. piRNAs can be generated in two distinct ways. Primary piRNAs emanate from discrete genomic loci, termed piRNA clusters, and appear to be derived from long, single-stranded precursors2. The biogenesis of primary piRNAs involves at least two nucleolytic steps. An unknown enzyme cleaves piRNA cluster transcripts to generate monophosphorylated piRNA 5' ends. piRNA 3' ends are likely formed by exonucleolytic trimming, after a piRNA precursor is loaded into its PIWI partner1,3. Secondary piRNAs arise during the adaptive ping-pong cycle, with their 5' termini being formed by the activity of PIWIs themselves2,4. A number of proteins have been implicated genetically in primary piRNA biogenesis. One of these, Zucchini, is a member of the phospholipase D family of phosphodiesterases, which includes both phospholipases and nucleases5–7. We have produced a dimeric, soluble fragment of the mouse Zucchini homolog (mZuc/PLD6) and have shown that it possesses single strand-specific nuclease activity. A crystal structure of mZuc at 1.75 Å resolution indicates greater architectural similarity to PLD-family nucleases than to phospholipases. Considered together, our data suggest that the Zucchini proteins act in primary piRNA biogenesis as nucleases, perhaps generating the 5' ends of primary piRNAs. PMID:23064227

  2. GUIDEseq: a bioconductor package to analyze GUIDE-Seq datasets for CRISPR-Cas nucleases.

    PubMed

    Zhu, Lihua Julie; Lawrence, Michael; Gupta, Ankit; Pagès, Hervé; Kucukural, Alper; Garber, Manuel; Wolfe, Scot A

    2017-05-15

    Genome editing technologies developed around the CRISPR-Cas9 nuclease system have facilitated the investigation of a broad range of biological questions. These nucleases also hold tremendous promise for treating a variety of genetic disorders. In the context of their therapeutic application, it is important to identify the spectrum of genomic sequences that are cleaved by a candidate nuclease when programmed with a particular guide RNA, as well as the cleavage efficiency of these sites. Powerful new experimental approaches, such as GUIDE-seq, facilitate the sensitive, unbiased genome-wide detection of nuclease cleavage sites within the genome. Flexible bioinformatics analysis tools for processing GUIDE-seq data are needed. Here, we describe an open source, open development software suite, GUIDEseq, for GUIDE-seq data analysis and annotation as a Bioconductor package in R. The GUIDEseq package provides a flexible platform with more than 60 adjustable parameters for the analysis of datasets associated with custom nuclease applications. These parameters allow data analysis to be tailored to different nuclease platforms with different length and complexity in their guide and PAM recognition sequences or their DNA cleavage position. They also enable users to customize sequence aggregation criteria, and vary peak calling thresholds that can influence the number of potential off-target sites recovered. GUIDEseq also annotates potential off-target sites that overlap with genes based on genome annotation information, as these may be the most important off-target sites for further characterization. In addition, GUIDEseq enables the comparison and visualization of off-target site overlap between different datasets for a rapid comparison of different nuclease configurations or experimental conditions. For each identified off-target, the GUIDEseq package outputs mapped GUIDE-Seq read count as well as cleavage score from a user specified off-target cleavage score prediction

  3. Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2

    PubMed Central

    Tsabar, Michael; Eapen, Vinay V.; Mason, Jennifer M.; Memisoglu, Gonen; Waterman, David P.; Long, Marcus J.; Bishop, Douglas K.; Haber, James E.

    2015-01-01

    In response to chromosomal double-strand breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint, which is orchestrated by the PI3 kinase-like protein kinases ATR and ATM (Mec1 and Tel1 in budding yeast). Following DSB formation, Mec1 and Tel1 phosphorylate histone H2A on serine 129 (known as γ-H2AX). We used caffeine to inhibit the checkpoint kinases after DSB induction. We show that prolonged phosphorylation of H2A-S129 does not require continuous Mec1 and Tel1 activity. Unexpectedly, caffeine treatment impaired homologous recombination by inhibiting 5′ to 3′ end resection, independent of Mec1 and Tel1 inhibition. Caffeine treatment led to the rapid loss, by proteasomal degradation, of both Sae2, a nuclease that plays a role in early steps of resection, and Dna2, a nuclease that facilitates one of two extensive resection pathways. Sae2's instability is evident in the absence of DNA damage. A similar loss is seen when protein synthesis is inhibited by cycloheximide. Caffeine treatment had similar effects on irradiated HeLa cells, blocking the formation of RPA and Rad51 foci that depend on 5′ to 3′ resection of broken chromosome ends. Our findings provide insight toward the use of caffeine as a DNA damage-sensitizing agent in cancer cells. PMID:26019182

  4. [Comparative analysis between diatom nitric acid digestion method and plankton 16S rDNA PCR method].

    PubMed

    Han, Jun-ge; Wang, Cheng-bao; Li, Xing-biao; Fan, Yan-yan; Feng, Xiang-ping

    2013-10-01

    To compare and explore the application value of diatom nitric acid digestion method and plankton 16S rDNA PCR method for drowning identification. Forty drowning cases from 2010 to 2011 were collected from Department of Forensic Medicine of Wenzhou Medical University. Samples including lung, kidney, liver and field water from each case were tested with diatom nitric acid digestion method and plankton 16S rDNA PCR method, respectively. The Diatom nitric acid digestion method and plankton 16S rDNA PCR method required 20 g and 2 g of each organ, and 15 mL and 1.5 mL of field water, respectively. The inspection time and detection rate were compared between the two methods. Diatom nitric acid digestion method mainly detected two species of diatoms, Centriae and Pennatae, while plankton 16S rDNA PCR method amplified a length of 162 bp band. The average inspection time of each case of the Diatom nitric acid digestion method was (95.30 +/- 2.78) min less than (325.33 +/- 14.18) min of plankton 16S rDNA PCR method (P < 0.05). The detection rates of two methods for field water and lung were both 100%. For liver and kidney, the detection rate of plankton 16S rDNA PCR method was both 80%, higher than 40% and 30% of diatom nitric acid digestion method (P < 0.05), respectively. The laboratory testing method needs to be appropriately selected according to the specific circumstances in the forensic appraisal of drowning. Compared with diatom nitric acid digestion method, plankton 16S rDNA PCR method has practice values with such advantages as less quantity of samples, huge information and high specificity.

  5. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases

    PubMed Central

    Butler, Nathaniel M.; Baltes, Nicholas J.; Voytas, Daniel F.; Douches, David S.

    2016-01-01

    Genome editing using sequence-specific nucleases (SSNs) is rapidly being developed for genetic engineering in crop species. The utilization of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems (CRISPR/Cas) for inducing double-strand breaks facilitates targeting of virtually any sequence for modification. Targeted mutagenesis via non-homologous end-joining (NHEJ) has been demonstrated extensively as being the preferred DNA repair pathway in plants. However, gene targeting via homologous recombination (HR) remains more elusive but could be a powerful tool for directed DNA repair. To overcome barriers associated with gene targeting, a geminivirus replicon (GVR) was used to deliver SSNs targeting the potato ACETOLACTATE SYNTHASE1 (ALS1) gene and repair templates designed to incorporate herbicide-inhibiting point mutations within the ALS1 locus. Transformed events modified with GVRs held point mutations that were capable of supporting a reduced herbicide susceptibility phenotype, while events transformed with conventional T-DNAs held no detectable mutations and were similar to wild-type. Regeneration of transformed events improved detection of point mutations that supported a stronger reduced herbicide susceptibility phenotype. These results demonstrate the use of geminiviruses for delivering genome editing reagents in plant species, and a novel approach to gene targeting in a vegetatively propagated species. PMID:27493650

  6. Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.

    PubMed

    Termglinchan, Vittavat; Seeger, Timon; Chen, Caressa; Wu, Joseph C; Karakikes, Ioannis

    2017-01-01

    Precision genome engineering is rapidly advancing the application of the induced pluripotent stem cells (iPSCs) technology for in vitro disease modeling of cardiovascular diseases. Targeted genome editing using engineered nucleases is a powerful tool that allows for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. However, nuclease-mediated homologous recombination is an inefficient process. Herein, we describe the development of an optimized method combining site-specific nucleases and the piggyBac transposon system for "seamless" genome editing in pluripotent stem cells with high efficiency and fidelity in vitro.

  7. A novel mitochondrial nuclease-associated protein: a major executor of the programmed nuclear death in Tetrahymena thermophila.

    PubMed

    Osada, Eriko; Akematsu, Takahiko; Asano, Tomoya; Endoh, Hiroshi

    2014-03-01

    Programmed nuclear death (PND) in the ciliate Tetrahymena is an apoptosis-like phenomenon that occurs in a restricted space of cytoplasm during conjugation. In the process, only the parental macronucleus is selectively eliminated from the progeny cytoplasm, in conjunction with differentiation of new macronuclei for the next generation. For the last decade, mitochondria have been elucidated to be a crucial executioner like apoptosis: apoptosis-inducing factor and yet-unidentified nucleases localised in mitochondria are major factors for PND. To identify such nucleases, we performed a DNase assay in a PAGE (SDS-DNA-PAGE) using total mitochondrial proteins. Some proteins showed DNase activity, but particularly a 17 kDa protein exhibited the highest and predominant activity. Mass spectrometric analysis revealed a novel mitochondrial nuclease, named TMN1, whose homologue has been discovered only in the ciliate Paramecium tetraurelia, but not in other eukaryotes. Gene disruption of TMN1 led to a drastic reduction of mitochondrial nuclease activity and blocked nuclear degradation during conjugation, but did not affect accumulation of autophagic and lysosomal machinery around the parental macronucleus. These observations strongly suggest that the mitochondrial nuclease-associated protein plays a key role in PND as a major executor. Taking the novel protein specific to ciliates in consideration, Tetrahymena would have diverted a different protein from common apoptotic factors shared in eukaryotes to PND in the course of ciliate evolution. © 2014 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  8. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing.

    PubMed

    Liu, Jia; Shui, Sai-Lan

    2016-12-28

    The advent of site-specific nucleases, particularly CRISPR/Cas9, provides researchers with the unprecedented ability to manipulate genomic sequences. These nucleases are used to create model cell lines, engineer metabolic pathways, produce transgenic animals and plants, perform genome-wide functional screen and, most importantly, treat human diseases that are difficult to tackle by traditional medications. Considerable efforts have been devoted to improving the efficiency and specificity of nucleases for clinical applications. However, safe and efficient delivery methods remain the major obstacle for therapeutic gene editing. In this review, we summarize the recent progress on nuclease delivery methods, highlight their impact on the outcomes of gene editing and discuss the potential of different delivery approaches for therapeutic gene editing. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Construction of a quadruple auxotrophic mutant of an industrial polyploid saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease.

    PubMed

    Zhang, Guo-Chang; Kong, In Iok; Kim, Heejin; Liu, Jing-Jing; Cate, Jamie H D; Jin, Yong-Su

    2014-12-01

    Industrial polyploid yeast strains harbor numerous beneficial traits but suffer from a lack of available auxotrophic markers for genetic manipulation. Here we demonstrated a quick and efficient strategy to generate auxotrophic markers in industrial polyploid yeast strains with the RNA-guided Cas9 nuclease. We successfully constructed a quadruple auxotrophic mutant of a popular industrial polyploid yeast strain, Saccharomyces cerevisiae ATCC 4124, with ura3, trp1, leu2, and his3 auxotrophies through RNA-guided Cas9 nuclease. Even though multiple alleles of auxotrophic marker genes had to be disrupted simultaneously, we observed knockouts in up to 60% of the positive colonies after targeted gene disruption. In addition, growth-based spotting assays and fermentation experiments showed that the auxotrophic mutants inherited the beneficial traits of the parental strain, such as tolerance of major fermentation inhibitors and high temperature. Moreover, the auxotrophic mutants could be transformed with plasmids containing selection marker genes. These results indicate that precise gene disruptions based on the RNA-guided Cas9 nuclease now enable metabolic engineering of polyploid S. cerevisiae strains that have been widely used in the wine, beer, and fermentation industries. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Sensitive detection of microRNAs based on the conversion of colorimetric assay into electrochemical analysis with duplex-specific nuclease-assisted signal amplification

    PubMed Central

    Xia, Ning; Liu, Ke; Zhou, Yingying; Li, Yuanyuan; Yi, Xinyao

    2017-01-01

    miRNAs have emerged as new biomarkers for the detection of a wide variety of cancers. By employing duplex-specific nuclease for signal amplification and gold nanoparticles (AuNPs) as the carriers of detection probes, a novel electrochemical assay of miRNAs was performed. The method is based on conversion of the well-known colorimetric assay into electrochemical analysis with enhanced sensitivity. DNA capture probes immobilized on the electrode surface and ferrocene (Fc)-labeled DNA detection probes (denoted “Fc-DNA-Fc”) presented in the solution induced the assembly of positively charged AuNPs on the electrode surface through the electrostatic interaction. As a result, a large number of Fc-DNA-Fc molecules were attached on the electrode surface, thus amplifying the electrochemical signal. When duplex-specific nuclease was added to recycle the process of miRNA-initiated digestion of the immobilized DNA probes, Fc-DNA-Fc-induced assembly of AuNPs on the electrode surface could not occur. This resulted in a significant fall in the oxidation current of Fc. The current was found to be inversely proportional to the concentration of miRNAs in the range of 0–25 fM, and a detection limit of 0.1 fM was achieved. Moreover, this work presents a new method for converting colorimetric assays into sensitive electrochemical analyses, and thus would be valuable for design of novel chemical/biosensors. PMID:28761341

  11. Paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption.

    PubMed

    Gopalappa, Ramu; Suresh, Bharathi; Ramakrishna, Suresh; Kim, Hyongbum Henry

    2018-03-23

    The use of paired Cas9 nickases instead of Cas9 nuclease drastically reduces off-target effects. Because both nickases must function for a nickase pair to make a double-strand break, the efficiency of paired nickases can intuitively be expected to be lower than that of either corresponding nuclease alone. Here, we carefully compared the gene-disrupting efficiency of Cas9 paired nickases with that of nucleases. Interestingly, the T7E1 assay and deep sequencing showed that on-target efficiency of paired D10A Cas9 nickases was frequently comparable, but sometimes higher than that of either corresponding nucleases in mammalian cells. As the underlying mechanism, we found that the HNH domain, which is preserved in the D10A Cas9 nickase, has higher activity than the RuvC domain in mammalian cells. In this study, we showed: (i) the in vivo cleavage efficiency of the HNH domain of Cas9 in mammalian cells is higher than that of the RuvC domain, (ii) paired Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. We envision that our findings which were overlooked in previous reports will serve as a new potential guideline for tool selection for CRISPR-Cas9-mediated gene disruption, facilitating efficient and precise genome editing.

  12. Engineering nucleases for gene targeting: safety and regulatory considerations.

    PubMed

    Pauwels, Katia; Podevin, Nancy; Breyer, Didier; Carroll, Dana; Herman, Philippe

    2014-01-25

    Nuclease-based gene targeting (NBGT) represents a significant breakthrough in targeted genome editing since it is applicable from single-celled protozoa to human, including several species of economic importance. Along with the fast progress in NBGT and the increasing availability of customized nucleases, more data are available about off-target effects associated with the use of this approach. We discuss how NBGT may offer a new perspective for genetic modification, we address some aspects crucial for a safety improvement of the corresponding techniques and we also briefly relate the use of NBGT applications and products to the regulatory oversight. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. In vivo topography of Rap1p-DNA complex at Saccharomyces cerevisiae TEF2 UAS(RPG) during transcriptional regulation.

    PubMed

    De Sanctis, Veronica; La Terra, Sabrina; Bianchi, Alessandro; Shore, David; Burderi, Luciano; Di Mauro, Ernesto; Negri, Rodolfo

    2002-04-26

    We have analyzed in detail the structure of RAP1-UAS(RPG) complexes in Saccharomyces cerevisiae cells using multi-hit KMnO(4), UV and micrococcal nuclease high-resolution footprinting. Three copies of the Rap1 protein are bound to the promoter simultaneously in exponentially growing cells, as shown by KMnO(4) multi-hit footprinting analysis, causing extended and diagnostic changes in the DNA structure of the region containing the UAS(RPG). Amino acid starvation does not cause loss of Rap1p from the complex; however, in vivo UV-footprinting reveals the occurrence of structural modifications of the complex. Moreover, low-resolution micrococcal nuclease digestion shows that the chromatin of the entire region is devoid of positioned nucleosomes but is susceptible to changes in accessibility to the nuclease upon amino acid starvation. The implications of these results for the mechanism of Rap1p action are discussed. (c) 2002 Elsevier Science Ltd.

  14. Modular Nuclease-Responsive DNA Three-Way Junction-Based Dynamic Assembly of a DNA Device and Its Sensing Application.

    PubMed

    Zhu, Jing; Wang, Lei; Xu, Xiaowen; Wei, Haiping; Jiang, Wei

    2016-04-05

    Here, we explored a modular strategy for rational design of nuclease-responsive three-way junctions (TWJs) and fabricated a dynamic DNA device in a "plug-and-play" fashion. First, inactivated TWJs were designed, which contained three functional domains: the inaccessible toehold and branch migration domains, the specific sites of nucleases, and the auxiliary complementary sequence. The actions of different nucleases on their specific sites in TWJs caused the close proximity of the same toehold and branch migration domains, resulting in the activation of the TWJs and the formation of a universal trigger for the subsequent dynamic assembly. Second, two hairpins (H1 and H2) were introduced, which could coexist in a metastable state, initially to act as the components for the dynamic assembly. Once the trigger initiated the opening of H1 via TWJs-driven strand displacement, the cascade hybridization of hairpins immediately switched on, resulting in the formation of the concatemers of H1/H2 complex appending numerous integrated G-quadruplexes, which were used to obtain label-free signal readout. The inherent modularity of this design allowed us to fabricate a flexible DNA dynamic device and detect multiple nucleases through altering the recognition pattern slightly. Taking uracil-DNA glycosylase and CpG methyltransferase M.SssI as models, we successfully realized the butt joint between the uracil-DNA glycosylase and M.SssI recognition events and the dynamic assembly process. Furthermore, we achieved ultrasensitive assay of nuclease activity and the inhibitor screening. The DNA device proposed here will offer an adaptive and flexible tool for clinical diagnosis and anticancer drug discovery.

  15. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases

    PubMed Central

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J.; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-01-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%–5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. PMID:24989021

  16. Cancer translocations in human cells induced by zinc finger and TALE nucleases

    PubMed Central

    Piganeau, Marion; Ghezraoui, Hind; De Cian, Anne; Guittat, Lionel; Tomishima, Mark; Perrouault, Loic; René, Oliver; Katibah, George E.; Zhang, Lei; Holmes, Michael C.; Doyon, Yannick; Concordet, Jean-Paul; Giovannangeli, Carine; Jasin, Maria; Brunet, Erika

    2013-01-01

    Chromosomal translocations are signatures of numerous cancers and lead to expression of fusion genes that act as oncogenes. The wealth of genomic aberrations found in cancer, however, makes it challenging to assign a specific phenotypic change to a specific aberration. In this study, we set out to use genome editing with zinc finger (ZFN) and transcription activator-like effector (TALEN) nucleases to engineer, de novo, translocation-associated oncogenes at cognate endogenous loci in human cells. Using ZFNs and TALENs designed to cut precisely at relevant translocation breakpoints, we induced cancer-relevant t(11;22)(q24;q12) and t(2;5)(p23;q35) translocations found in Ewing sarcoma and anaplastic large cell lymphoma (ALCL), respectively. We recovered both translocations with high efficiency, resulting in the expression of the EWSR1–FLI1 and NPM1–ALK fusions. Breakpoint junctions recovered after ZFN cleavage in human embryonic stem (ES) cell–derived mesenchymal precursor cells fully recapitulated the genomic characteristics found in tumor cells from Ewing sarcoma patients. This approach with tailored nucleases demonstrates that expression of fusion genes found in cancer cells can be induced from the native promoter, allowing interrogation of both the underlying mechanisms and oncogenic consequences of tumor-related translocations in human cells. With an analogous strategy, the ALCL translocation was reverted in a patient cell line to restore the integrity of the two participating chromosomes, further expanding the repertoire of genomic rearrangements that can be engineered by tailored nucleases. PMID:23568838

  17. Implications from distinct sulfate-reducing bacteria populations between cattle manure and digestate in the elucidation of H2S production during anaerobic digestion of animal slurry.

    PubMed

    St-Pierre, Benoit; Wright, André-Denis G

    2017-07-01

    Biogas produced from the anaerobic digestion of animal slurry consists mainly of methane (CH 4 ) and carbon dioxide (CO 2 ), but also includes other minor gases, such as hydrogen sulfide (H 2 S). Since it can act as a potent corrosive agent and presents a health hazard even at low concentrations, H 2 S is considered an undesirable by-product of anaerobic digestion. Sulfate-reducing bacteria (SRBs) have been identified as the main biological source of H 2 S in a number of natural, biological, and human-made habitats, and thus represent likely candidate microorganisms responsible for the production of H 2 S in anaerobic manure digesters. Phylogenetically, SRBs form a divergent group of bacteria that share a common anaerobic respiration pathway that allows them to use sulfate as a terminal electron acceptor. While the composition and activity of SRBs have been well documented in other environments, their metabolic potential remains largely uncharacterized and their populations poorly defined in anaerobic manure digesters. In this context, a combination of in vitro culture-based studies and DNA-based approaches, respectively, were used to gain further insight. Unexpectedly, only low to nondetectable levels of H 2 S were produced by digestate collected from a manure biogas plant documented to have persistently high concentrations of H 2 S in its biogas (2000-3000 ppm). In contrast, combining digestate with untreated manure (a substrate with comparatively lower sulfate and SRB cell densities than digestate) was found to produce elevated H 2 S levels in culture. While a 16S rRNA gene-based community composition approach did not reveal likely candidate SRBs in digestate or untreated manure, the use of the dsrAB gene as a phylogenetic marker provided more insight. In digestate, the predominant SRBs were found to be uncharacterized species likely belonging to the genus Desulfosporosinus (Peptococcaceae, Clostridiales, Firmicutes), while Desulfovibrio-related SRBs

  18. Identification of Staphylococcal Nuclease Domain-containing 1 (SND1) as a Metadherin-interacting Protein with Metastasis-promoting Functions*

    PubMed Central

    Blanco, Mario Andres; Alečković, Maša; Hua, Yuling; Li, Tuo; Wei, Yong; Xu, Zhen; Cristea, Ileana M.; Kang, Yibin

    2011-01-01

    Metastasis is the deadliest and most poorly understood feature of malignant diseases. Recent work has shown that Metadherin (MTDH) is overexpressed in over 40% of breast cancer patients and promotes metastasis and chemoresistance in experimental models of breast cancer progression. Here we applied mass spectrometry-based screen to identify staphylococcal nuclease domain-containing 1 (SND1) as a candidate MTDH-interacting protein. After confirming the interaction between SND1 and MTDH, we tested the role of SND1 in breast cancer and found that it strongly promotes lung metastasis. SND1 was further shown to promote resistance to apoptosis and to regulate the expression of genes associated with metastasis and chemoresistance. Analyses of breast cancer clinical microarray data indicated that high expression of SND1 in primary tumors is strongly associated with reduced metastasis-free survival in multiple large scale data sets. Thus, we have uncovered SND1 as a novel MTDH-interacting protein and shown that it is a functionally and clinically significant mediator of metastasis. PMID:21478147

  19. Improving Fab' fragment retention in an autonucleolytic Escherichia coli strain by swapping periplasmic nuclease translocation signal from OmpA to DsbA.

    PubMed

    Schofield, Desmond M; Sirka, Ernestas; Keshavarz-Moore, Eli; Ward, John M; Nesbeth, Darren N

    2017-12-01

    To reduce unwanted Fab' leakage from an autonucleolytic Escherichia coli strain, which co-expresses OmpA-signalled Staphylococcal nuclease and Fab' fragment in the periplasm, by substituting in Serratial nuclease and the DsbA periplasm translocation signal as alternatives. We attempted to genetically fuse a nuclease from Serratia marcescens to the OmpA signal peptide but plasmid construction failed, possibly due to toxicity of the resultant nuclease. Combining Serratial nuclease to the DsbA signal peptide was successful. The strain co-expressing this nuclease and periplasmic Fab' grew in complex media and exhibited nuclease activity detectable by DNAse agar plate but its growth in defined medium was retarded. Fab' coexpression with Staphylococcal nuclease fused to the DsbA signal peptide resulted in cells exhibiting nuclease activity and growth in defined medium. In cultivation to high cell density in a 5 l bioreactor, DsbA-fused Staphylococcal nuclease co-expression coincided with reduced Fab' leakage relative to the original autonucleolytic Fab' strain with OmpA-fused staphylococcal nuclease. We successfully rescued Fab' leakage back to acceptable levels and established a basis for future investigation of the linkage between periplasmic nuclease expression and leakage of co-expressed periplasmic Fab' fragment to the surrounding growth media.

  20. Identification of Plasmodium falciparum DNA Repair Protein Mre11 with an Evolutionarily Conserved Nuclease Function

    PubMed Central

    Badugu, Sugith Babu; Nabi, Shaik Abdul; Vaidyam, Pratap; Laskar, Shyamasree; Bhattacharyya, Sunanda; Bhattacharyya, Mrinal Kanti

    2015-01-01

    The eukaryotic Meiotic Recombination protein 11 (Mre11) plays pivotal roles in the DNA damage response (DDR). Specifically, Mre11 senses and signals DNA double strand breaks (DSB) and facilitates their repair through effector proteins belonging to either homologous recombination (HR) or non-homologous end joining (NHEJ) repair mechanisms. In the human malaria parasite Plasmodium falciparum, HR and alternative-NHEJ have been identified; however, little is known about the upstream factors involved in the DDR of this organism. In this report, we identify a putative ortholog of Mre11 in P. falciparum (PfalMre11) that shares 22% sequence similarity to human Mre11. Homology modeling reveals striking structural resemblance of the predicted PfalMre11 nuclease domain to the nuclease domain of Saccharomyces cerevisiae Mre11 (ScMre11). Complementation analyses reveal functional conservation of PfalMre11 nuclease activity as demonstrated by the ability of the PfalMre11 nuclease domain, in conjunction with the C-terminal domain of ScMre11, to functionally complement an mre11 deficient yeast strain. Functional complementation was virtually abrogated by an amino acid substitution in the PfalMre11 nuclease domain (D398N). PfalMre11 is abundant in the mitotically active trophozoite and schizont stages of P. falciparum and is up-regulated in response to DNA damage, suggesting a role in the DDR. PfalMre11 exhibits physical interaction with PfalRad50. In addition, yeast 2-hybrid studies show that PfalMre11 interacts with ScRad50 and ScXrs2, two important components of the well characterized Mre11-Rad50-Xrs2 complex which is involved in DDR signaling and repair in S. cerevisiae, further supporting a role for PfalMre11 in the DDR. Taken together, these findings provide evidence that PfalMre11 is an evolutionarily conserved component of the DDR in Plasmodium. PMID:25938776

  1. Dna2 nuclease-helicase structure, mechanism and regulation by Rpa.

    PubMed

    Zhou, Chun; Pourmal, Sergei; Pavletich, Nikola P

    2015-11-02

    The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narrow tunnel through which the DNA has to thread. The helicase domain is required for DNA binding but not threading. We also present the structure of a flexibly-tethered Dna2-Rpa interaction that recruits Dna2 to Rpa-coated DNA. We establish that a second Dna2-Rpa interaction is mutually exclusive with Rpa-DNA interactions and mediates the displacement of Rpa from ssDNA. This interaction occurs at the nuclease tunnel entrance and the 5' end of the Rpa-DNA complex. Hence, it only displaces Rpa from the 5' but not 3' end, explaining how Rpa regulates cleavage polarity.

  2. Inactivation of Hepatitis B Virus Replication in Cultured Cells and In Vivo with Engineered Transcription Activator-Like Effector Nucleases

    PubMed Central

    Bloom, Kristie; Ely, Abdullah; Mussolino, Claudio; Cathomen, Toni; Arbuthnot, Patrick

    2013-01-01

    Chronic hepatitis B virus (HBV) infection remains an important global health problem. Stability of the episomal covalently closed circular HBV DNA (cccDNA) is largely responsible for the modest curative efficacy of available therapy. Since licensed anti-HBV drugs have a post-transcriptional mechanism of action, disabling cccDNA is potentially of therapeutic benefit. To develop this approach, we engineered mutagenic transcription activator-like effector nucleases (TALENs) that target four HBV-specific sites within the viral genome. TALENs with cognate sequences in the S or C open-reading frames (ORFs) efficiently disrupted sequences at the intended sites and suppressed markers of viral replication. Following triple transfection of cultured HepG2.2.15 cells under mildly hypothermic conditions, the S TALEN caused targeted mutation in ~35% of cccDNA molecules. Markers of viral replication were also inhibited in vivo in a murine hydrodynamic injection model of HBV replication. HBV target sites within S and C ORFs of the injected HBV DNA were mutated without evidence of toxicity. These findings are the first to demonstrate a targeted nuclease-mediated disruption of HBV cccDNA. Efficacy in vivo also indicates that these engineered nucleases have potential for use in treatment of chronic HBV infection. PMID:23883864

  3. Comparison of culture and a novel 5' Taq nuclease assay for direct detection of Campylobacter fetus subsp. venerealis in clinical specimens from cattle.

    PubMed

    McMillen, Lyle; Fordyce, Geoffry; Doogan, Vivienne J; Lew, Ala E

    2006-03-01

    A Campylobacter fetus subsp. venerealis-specific 5' Taq nuclease PCR assay using a 3' minor groove binder-DNA probe (TaqMan MGB) was developed based on a subspecies-specific fragment of unknown identity (S. Hum, K. Quinn, J. Brunner, and S. L. On, Aust. Vet. J. 75:827-831, 1997). The assay specifically detected four C. fetus subsp. venerealis strains with no observed cross-reaction with C. fetus subsp. fetus-related Campylobacter species or other bovine venereal microflora. The 5' Taq nuclease assay detected approximately one single cell compared to 100 and 10 cells in the conventional PCR assay and 2,500 and 25,000 cells from selective culture from inoculated smegma and mucus, respectively. The respective detection limits following the enrichments from smegma and mucus were 5,000 and 50 cells/inoculum for the conventional PCR compared to 500 and 50 cells/inoculum for the 5' Taq nuclease assay. Field sampling confirmed the sensitivity and the specificity of the 5' Taq nuclease assay by detecting an additional 40 bulls that were not detected by culture. Urine-inoculated samples demonstrated comparable detection of C. fetus subsp. venerealis by both culture and the 5' Taq nuclease assay; however, urine was found to be less effective than smegma for bull sampling. Three infected bulls were tested repetitively to compare sampling tools, and the bull rasper proved to be the most suitable, as evidenced by the improved ease of specimen collection and the consistent detection of higher levels of C. fetus subsp. venerealis. The 5' Taq nuclease assay demonstrates a statistically significant association with culture (chi2 = 29.8; P < 0.001) and significant improvements for the detection of C. fetus subsp. venerealis-infected animals from crude clinical extracts following prolonged transport.

  4. Structural specificity of Rn nuclease I as probed on yeast tRNA(Phe) and tRNA(Asp).

    PubMed Central

    Przykorska, A; el Adlouni, C; Keith, G; Szarkowski, J W; Dirheimer, G

    1992-01-01

    A single-strand-specific nuclease from rye germ (Rn nuclease I) was characterized as a tool for secondary and tertiary structure investigation of RNAs. To test the procedure, yeast tRNA(Phe) and tRNA(Asp) for which the tertiary structures are known, as well as the 3'-half of tRNA(Asp) were used as substrates. In tRNA(Phe) the nuclease introduced main primary cuts at positions U33 and A35 of the anticodon loop and G18 and G19 of the D loop. No primary cuts were observed within the double stranded stems. In tRNA(Asp) the main cuts occurred at positions U33, G34, U35, C36 of the anticodon loop and G18 and C20:1 positions in the D loop. No cuts were observed in the T loop in intact tRNA(Asp) but strong primary cleavages occurred at positions psi 55, C56, A57 within that loop in the absence of the tertiary interactions between T and D loops (use of 3'-half tRNA(Asp)). These results show that Rn nuclease I is specific for exposed single-stranded regions. Images PMID:1542562

  5. [Digestive system manifestations in children infected with novel influenza A (H1N1) virus].

    PubMed

    Wei, Ju-Rong; Lu, Zhi-Wei; Tang, Zheng-Zhen; Wang, He-Ping; Zheng, Yue-Jie

    2010-10-01

    To study the digestive system manifestations in children infected with novel influenza A (H1N1) virus. A prospective study of 153 children infected with novel influenza A (H1N1) virus in Shenzhen Children's Hospital from November 2009 to January 2010 was conducted. The clinical features and outcomes of 69 children with digestive system manifestations were analyzed. The children presenting with digestive system manifestations accounted for 45% (69 cases) in the 153 hospitalized children with novel influenza A (H1N1) infection. Gastrointestinal manifestations were observed in 50 cases (33%) and liver function abnormality in 19 cases (12%). The incidence rate of coma, neurological complications, increase in creative kinase level, ICU admission, and death in the patients with digestive system manifestations were significantly higher than those without digestive system manifestations (P<0.05). In the 69 patients with digestive system manifestations, 5 died from severe complications and 64 recovered fully. Gastrointestinal manifestations disappeared through 1 to 3 days and abnormal liver function recovered through 4 to 7 days. Digestive system manifestations are common in children infected with novel influenza A (H1N1) virus. Neurological system involvements are more common in the patients with digestive system manifestations than those without.

  6. Evaluation of Biological and Physical Protection against Nuclease Degradation of Clay-Bound Plasmid DNA

    PubMed Central

    Demanèche, Sandrine; Jocteur-Monrozier, Lucile; Quiquampoix, Hervé; Simonet, Pascal

    2001-01-01

    In order to determine the mechanisms involved in the persistence of extracellular DNA in soils and to monitor whether bacterial transformation could occur in such an environment, we developed artificial models composed of plasmid DNA adsorbed on clay particles. We determined that clay-bound DNA submitted to an increasing range of nuclease concentrations was physically protected. The protection mechanism was mainly related to the adsorption of the nuclease on the clay mineral. The biological potential of the resulting DNA was monitored by transforming the naturally competent proteobacterium Acinetobacter sp. strain BD413, allowing us to demonstrate that adsorbed DNA was only partially available for transformation. This part of the clay-bound DNA which was available for bacteria, was also accessible to nucleases, while the remaining fraction escaped both transformation and degradation. Finally, transformation efficiency was related to the perpetuation mechanism, with homologous recombination being less sensitive to nucleases than autonomous replication, which requires intact molecules. PMID:11133458

  7. 1 CFR 6.5 - Indexes, digests, and guides.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Indexes, digests, and guides. 6.5 Section 6.5 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.5 Indexes, digests, and guides. (a) The Director of the Federal Register may order the...

  8. 1 CFR 6.5 - Indexes, digests, and guides.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 1 General Provisions 1 2014-01-01 2012-01-01 true Indexes, digests, and guides. 6.5 Section 6.5 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.5 Indexes, digests, and guides. (a) The Director of the Federal Register may order the...

  9. 1 CFR 6.5 - Indexes, digests, and guides.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false Indexes, digests, and guides. 6.5 Section 6.5 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.5 Indexes, digests, and guides. (a) The Director of the Federal Register may order the...

  10. 1 CFR 6.5 - Indexes, digests, and guides.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1 General Provisions 1 2013-01-01 2012-01-01 true Indexes, digests, and guides. 6.5 Section 6.5 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.5 Indexes, digests, and guides. (a) The Director of the Federal Register may order the...

  11. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases.

    PubMed

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-08-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. © 2014 Remy et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Assays for the determination of the activity of DNA nucleases based on the fluorometric properties of the YOYO dye.

    PubMed

    Fernández-Sierra, Mónica; Quiñones, Edwin

    2015-03-15

    Here we characterize the fluorescence of the YOYO dye as a tool for studying DNA-protein interactions in real time and present two continuous YOYO-based assays for sensitively monitoring the kinetics of DNA digestion by λ-exonuclease and the endonuclease EcoRV. The described assays rely on the different fluorescence intensities between single- and double-stranded DNA-YOYO complexes, allowing straightforward determination of nuclease activity and quantitative determination of reaction products. The assays were also employed to assess the effect of single-stranded DNA-binding proteins on the λ-exonuclease reaction kinetics, showing that the extreme thermostable single-stranded DNA-binding protein (ET-SSB) significantly reduced the reaction rate, while the recombination protein A (RecA) displayed no effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Dna2 nuclease-helicase structure, mechanism and regulation by Rpa

    PubMed Central

    Zhou, Chun; Pourmal, Sergei; Pavletich, Nikola P

    2015-01-01

    The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narrow tunnel through which the DNA has to thread. The helicase domain is required for DNA binding but not threading. We also present the structure of a flexibly-tethered Dna2-Rpa interaction that recruits Dna2 to Rpa-coated DNA. We establish that a second Dna2-Rpa interaction is mutually exclusive with Rpa-DNA interactions and mediates the displacement of Rpa from ssDNA. This interaction occurs at the nuclease tunnel entrance and the 5’ end of the Rpa-DNA complex. Hence, it only displaces Rpa from the 5’ but not 3’ end, explaining how Rpa regulates cleavage polarity. DOI: http://dx.doi.org/10.7554/eLife.09832.001 PMID:26491943

  14. Selective Enhancement of Nucleases by Polyvalent DNA-Functionalized Gold Nanoparticles

    PubMed Central

    Prigodich, Andrew E.; Alhasan, Ali H.

    2011-01-01

    We demonstrate that polyvalent DNA-functionalized gold nanoparticles (DNA-Au NPs) selectively enhance Ribonuclease H (RNase H) activity, while inhibiting most biologically relevant nucleases. This combination of properties is particularly interesting in the context of gene regulation, since high RNase H activity results in rapid mRNA degradation and general nuclease inhibition results in high biological stability. We investigate the mechanism of selective RNase H activation and find that the high DNA density of DNA-Au NPs is responsible for this unusual behavior. This work adds to our understanding of polyvalent DNA-Au NPs as gene regulation agents, and suggests a new model for selectively controlling protein-nanoparticle interactions. PMID:21268581

  15. The extracellular nuclease Dns and its role in natural transformation of Vibrio cholerae.

    PubMed

    Blokesch, Melanie; Schoolnik, Gary K

    2008-11-01

    Free extracellular DNA is abundant in many aquatic environments. While much of this DNA will be degraded by nucleases secreted by the surrounding microbial community, some is available as transforming material that can be taken up by naturally competent bacteria. One such species is Vibrio cholerae, an autochthonous member of estuarine, riverine, and marine habitats and the causative agent of cholera, whose competence program is induced after colonization of chitin surfaces. In this study, we investigate how Vibrio cholerae's two extracellular nucleases, Xds and Dns, influence its natural transformability. We show that in the absence of Dns, transformation frequencies are significantly higher than in its presence. During growth on a chitin surface, an increase in transformation efficiency was found to correspond in time with increasing cell density and the repression of dns expression by the quorum-sensing regulator HapR. In contrast, at low cell density, the absence of HapR relieves dns repression, leading to the degradation of free DNA and to the abrogation of the transformation phenotype. Thus, as cell density increases, Vibrio cholerae undergoes a switch from nuclease-mediated degradation of extracellular DNA to the uptake of DNA by bacteria induced to a state of competence by chitin. Taken together, these results suggest the following model: nuclease production by low-density populations of V. cholerae might foster rapid growth by providing a source of nucleotides for the repletion of nucleotide pools. In contrast, the termination of nuclease production by static, high-density populations allows the uptake of intact DNA and coincides with a phase of potential genome diversification.

  16. The Extracellular Nuclease Dns and Its Role in Natural Transformation of Vibrio cholerae▿

    PubMed Central

    Blokesch, Melanie; Schoolnik, Gary K.

    2008-01-01

    Free extracellular DNA is abundant in many aquatic environments. While much of this DNA will be degraded by nucleases secreted by the surrounding microbial community, some is available as transforming material that can be taken up by naturally competent bacteria. One such species is Vibrio cholerae, an autochthonous member of estuarine, riverine, and marine habitats and the causative agent of cholera, whose competence program is induced after colonization of chitin surfaces. In this study, we investigate how Vibrio cholerae's two extracellular nucleases, Xds and Dns, influence its natural transformability. We show that in the absence of Dns, transformation frequencies are significantly higher than in its presence. During growth on a chitin surface, an increase in transformation efficiency was found to correspond in time with increasing cell density and the repression of dns expression by the quorum-sensing regulator HapR. In contrast, at low cell density, the absence of HapR relieves dns repression, leading to the degradation of free DNA and to the abrogation of the transformation phenotype. Thus, as cell density increases, Vibrio cholerae undergoes a switch from nuclease-mediated degradation of extracellular DNA to the uptake of DNA by bacteria induced to a state of competence by chitin. Taken together, these results suggest the following model: nuclease production by low-density populations of V. cholerae might foster rapid growth by providing a source of nucleotides for the repletion of nucleotide pools. In contrast, the termination of nuclease production by static, high-density populations allows the uptake of intact DNA and coincides with a phase of potential genome diversification. PMID:18757542

  17. [Isolation and purification of nonspecific nuclease of cyanobacterium Plectonema boryanum CALU 465].

    PubMed

    Tsymbal, N V; Samoĭlenko, V A; Syrchin, S A; Mendzhul, M I

    2004-01-01

    Nonspecific nuclease has been isolated from the cells of cyanobacterium Plectonema boryanum and purified to homogenic state. It has been established that the method of centrifugation of cell-free culture extract in the sucrose density gradient is efficient for the separation of pigment proteins and enzyme concentration. Under the successive use of two ion-exchangers the nuclease activity was determined in the concentration range of NaCl 0.065-0.085 M after separation of the cell-free cyanobacterium extract on the column with phosphocellulose in the range of 0.2-0.25 M, on the column with DEAE--Toyopearl respectively. The molecular mass of nuclease which is 40 kDa, has been determined by electrophoresis in polyacrylamide gel under denaturating conditions and gel-filtration on Sephadex G-100. It has been also established that the given enzyme is monosubunitary as to its structure.

  18. Alteration of gene conversion tract length and associated crossing over during plasmid gap repair in nuclease-deficient strains of Saccharomyces cerevisiae.

    PubMed

    Symington, L S; Kang, L E; Moreau, S

    2000-12-01

    A plasmid gap repair assay was used to assess the role of three known nucleases, Exo1, Mre11 and Rad1, in the processing of DNA ends and resolution of recombination intermediates during double-strand gap repair. In this assay, alterations in end processing or branch migration are reflected by the frequency of co-conversion of a chromosomal marker 200 bp from the gap. Gap repair associated with crossing over results in integration at the homologous chromosomal locus, whereas the plasmid remains episomal for non-crossover repair events. In mre11 strains, the frequency of gap repair was reduced 3- to 10-fold and conversion tracts were shorter than in the wild-type strain, consistent with a role for this nuclease in processing double-strand breaks. However, conversion tracts were longer in a strain containing the nuclease deficient allele, mre11-H125N, suggesting increased end processing by redundant nucleases. The frequency of gap repair was reduced 2-fold in rad1 mutants and crossing over was reduced, consistent with a role for Rad1 in cleaving recombination intermediates. The frequency of gap repair was increased in exo1 mutants with a significant increase in crossing over. In exo1 mre11 double mutants gap repair was reduced to below the mre11 single mutant level.

  19. The SNM1B/APOLLO DNA nuclease functions in resolution of replication stress and maintenance of common fragile site stability.

    PubMed

    Mason, Jennifer M; Das, Ishita; Arlt, Martin; Patel, Neil; Kraftson, Stephanie; Glover, Thomas W; Sekiguchi, JoAnn M

    2013-12-15

    SNM1B/Apollo is a DNA nuclease that has important functions in telomere maintenance and repair of DNA interstrand crosslinks (ICLs) within the Fanconi anemia (FA) pathway. SNM1B is required for efficient localization of key repair proteins, such as the FA protein, FANCD2, to sites of ICL damage and functions epistatically to FANCD2 in cellular survival to ICLs and homology-directed repair. The FA pathway is also activated in response to replication fork stalling. Here, we sought to determine the importance of SNM1B in cellular responses to stalled forks in the absence of a blocking lesion, such as ICLs. We found that depletion of SNM1B results in hypersensitivity to aphidicolin, a DNA polymerase inhibitor that causes replication stress. We observed that the SNM1B nuclease is required for efficient localization of the DNA repair proteins, FANCD2 and BRCA1, to subnuclear foci upon aphidicolin treatment, thereby indicating SNM1B facilitates direct repair of stalled forks. Consistent with a role for SNM1B subsequent to recognition of the lesion, we found that SNM1B is dispensable for upstream events, including activation of ATR-dependent signaling and localization of RPA, γH2AX and the MRE11/RAD50/NBS1 complex to aphidicolin-induced foci. We determined that a major consequence of SNM1B depletion is a marked increase in spontaneous and aphidicolin-induced chromosomal gaps and breaks, including breakage at common fragile sites. Thus, this study provides evidence that SNM1B functions in resolving replication stress and preventing accumulation of genomic damage.

  20. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing

    PubMed Central

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-01-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  1. Distinct Mechanisms of Nuclease-Directed DNA-Structure-Induced Genetic Instability in Cancer Genomes.

    PubMed

    Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M

    2018-01-30

    Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. The digestive system: part 1.

    PubMed

    Johnstone, Carolyn; Hendry, Charles; Farley, Alistair; McLafferty, Ella

    This article, which forms part of the life sciences series and is the first of two articles on the digestive system, explores the structure and function of the digestive system. It is important that nurses understand how the digestive system works and its role in maintaining health. The article describes the gross structure of the gastrointestinal tract along with relevant physiology. It also outlines several disorders of the gastrointestinal tract and their treatment and nursing management. The second article will explain the liver, pancreas and gall bladder and their digestive functions, and provides a brief overview of the disorders of chronic liver disease, pancreatitis and gallstones.

  3. The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain

    PubMed Central

    Hilbert, Brendan J.; Hayes, Janelle A.; Stone, Nicholas P.; Xu, Rui-Gang

    2017-01-01

    Abstract Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA. PMID:28082398

  4. Au nanoparticles/hollow molybdenum disulfide microcubes based biosensor for microRNA-21 detection coupled with duplex-specific nuclease and enzyme signal amplification.

    PubMed

    Shuai, Hong-Lei; Huang, Ke-Jing; Chen, Ying-Xu; Fang, Lin-Xia; Jia, Meng-Pei

    2017-03-15

    An ultrasensitive electrochemical biosensor for detecting microRNAs is fabricated based on hollow molybdenum disulfide (MoS 2 ) microcubes. Duplex-specific nuclease, enzyme and electrochemical-chemical-chemical redox cycling are used for signal amplification. Hollow MoS 2 microcubes constructed by ultrathin nanosheets are synthesized by a facile template-assisted strategy and used as supporting substrate. For biosensor assembling, biotinylated ssDNA capture probes are first immobilized on Au nanoparticles (AuNPs)/MoS 2 modified electrode in order to combine with streptavidin-conjugated alkaline phosphatase (SA-ALP). When capture probes hybridize with miRNAs, duplex-specific nuclease cleaves the formative duplexes. At the moment, the biotin group strips from the electrode surface and SA-ALP is incapacitated to attach onto electrode. Then, ascorbic acids induce the electrochemical-chemical-chemical redox cycling to produce electrochemical response in the presence of ferrocene methanol and tris (2-carboxyethyl) phosphine. Under optimum conditions, the proposed biosensor shows a good linear relationship between the current variation and logarithm of the microRNAs concentration ranging from 0.1fM to 0.1pM with a detection limit of 0.086fM (S/N=3). Furthermore, the biosensor is successfully applied to detect target miRNA-21 in human serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Installing logic gates in permeability controllable polyelectrolyte-carbon nitride films for detecting proteases and nucleases.

    PubMed

    Chen, Lichan; Zeng, Xiaoting; Dandapat, Anirban; Chi, Yuwu; Kim, Donghwan

    2015-09-01

    Proteases and nucleases are enzymes heavily involved in many important biological processes, such as cancer initiation, progression, and metastasis; hence, they are indicative of potential diagnostic biomarkers. Here, we demonstrate a new label free and sensitive electrochemiluminescent (ECL) sensing strategy for protease and nuclease assays that utilize target-triggered desorption of programmable polyelectrolyte films assembled on graphite-like carbon nitride (g-C3N4) film to regulate the diffusion flux of a coreactant. Furthermore, we have built Boolean logic gates OR and AND into the polyelectrolyte films, capable of simultaneously sensing proteases and nucleases in a complicated system by breaking it into simple functions. The developed intelligent permeability controlled enzyme sensor may prove valuable in future medical diagnostics.

  6. Functional analysis of Streptococcus pyogenes nuclease A (SpnA), a novel group A streptococcal virulence factor.

    PubMed

    Chang, Ann; Khemlani, Adrina; Kang, HaeJoo; Proft, Thomas

    2011-03-01

    Streptococcus pyogenes nuclease A (SpnA) is a recently discovered DNase that plays a role in virulence as shown in a mouse infection model. SpnA is the only cell wall-anchored DNase found in S. pyogenes thus far and shows a unique protein architecture. The C-terminal nuclease domain contains highly conserved catalytic site and Mg(2+) binding site residues. However, expression of the SpnA nuclease domain alone resulted in a soluble, but enzymatically inactive protein. We found that at least two out of three oligonucleotide/oligosaccharide-binding fold motifs found in the N-terminal domain are required for SpnA activity, probably contributing to substrate binding. Using a combination of a spnA deletion mutant and a Lactococcus lactis'gain-of-function' mutant, we have shown that SpnA promotes survival in whole human blood and in neutrophil killing assays and this is, at least in part, achieved by the destruction of neutrophil extracellular traps (NETs). We observed higher frequencies for anti-SpnA antibodies in streptococcal disease patient sera (79%, n = 19) compared with sera from healthy donors (33%, n = 9) suggesting that SpnA is expressed during infection. Detection of anti-SpnA antibodies in patient serum might be useful for the diagnostic of post-streptococcal diseases, such as acute rheumatic fever or glomerulonephritis. © 2011 Blackwell Publishing Ltd.

  7. Isolation and characterization of naturally occurring hairpin structures in single-stranded DNA of coliphage M13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niyogi, S.K.; Mitra, S.

    With precise conditions of digestion with single-strand-specific nucleases, namely, endonuclease S1 of Aspergillus oryzae and exonuclease I of Escherichia coli, nuclease-resistant DNA cores can be obtained reproducibly from single-stranded M13 DNA. The DNA cores are composed almost exclusively of two sizes (60 and 44 nucleotides long). These have high (G + C)-contents relative to that of intact M13 DNA, and arise from restricted regions of the M13 genome. The resistance of these fragments to single-strand-specific nucleases and their nondenaturability strongly suggest the presence of double-stranded segments in these core pieces. That the core pieces are only partially double-stranded is shownmore » by their lack of complete base complementarity and their pattern of elution from hydroxyapatite.« less

  8. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.

    PubMed

    Overlack, Nora; Goldmann, Tobias; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-06-26

    Human Usher syndrome (USH) is the most frequent cause of inherited deaf-blindness. It is clinically and genetically heterogeneous, assigned to three clinical types of which the most severe type is USH1. No effective treatment for the ophthalmic component of USH exists. Gene augmentation is an attractive strategy for hereditary retinal diseases. However, several USH genes, like USH1C, are expressed in various isoforms, hampering gene augmentation. As an alternative treatment strategy, we applied the zinc-finger nuclease (ZFN) technology for targeted gene repair of an USH1C, causing mutation by homologous recombination. We designed ZFNs customized for the p.R31X nonsense mutation in Ush1c. We evaluated ZFNs for DNA cleavage capability and analyzed ZFNs biocompatibilities by XTT assays. We demonstrated ZFNs mediated gene repair on genomic level by digestion assays and DNA sequencing, and on protein level by indirect immunofluorescence and Western blot analyses. The specifically designed ZFNs did not show cytotoxic effects in a p.R31X cell line. We demonstrated that ZFN induced cleavage of their target sequence. We showed that simultaneous application of ZFN and rescue DNA induced gene repair of the disease-causing mutation on the genomic level, resulting in recovery of protein expression. In our present study, we analyzed for the first time ZFN-activated gene repair of an USH gene. The data highlight the ability of ZFNs to induce targeted homologous recombination and mediate gene repair in USH. We provide further evidence that the ZFN technology holds great potential to recover disease-causing mutations in inherited retinal disorders.

  9. Exploring the transcription activator-like effectors scaffold versatility to expand the toolbox of designer nucleases

    PubMed Central

    2014-01-01

    Background The past decade has seen the emergence of several molecular tools that render possible modification of cellular functions through accurate and easy addition, removal, or exchange of genomic DNA sequences. Among these technologies, transcription activator-like effectors (TALE) has turned out to be one of the most versatile and incredibly robust platform for generating targeted molecular tools as demonstrated by fusion to various domains such as transcription activator, repressor and nucleases. Results In this study, we generated a novel nuclease architecture based on the transcription activator-like effector scaffold. In contrast to the existing Tail to Tail (TtT) and head to Head (HtH) nuclease architectures based on the symmetrical association of two TALE DNA binding domains fused to the C-terminal (TtT) or N-terminal (HtH) end of FokI, this novel architecture consists of the asymmetrical association of two different engineered TALE DNA binding domains fused to the N- and C-terminal ends of FokI (TALE::FokI and FokI::TALE scaffolds respectively). The characterization of this novel Tail to Head (TtH) architecture in yeast enabled us to demonstrate its nuclease activity and define its optimal target configuration. We further showed that this architecture was able to promote substantial level of targeted mutagenesis at three endogenous loci present in two different mammalian cell lines. Conclusion Our results demonstrated that this novel functional TtH architecture which requires binding to only one DNA strand of a given endogenous locus has the potential to extend the targeting possibility of FokI-based TALE nucleases. PMID:24997498

  10. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendes, Carlos, E-mail: carllosmendez@gmail.com; Esquerre, Karla, E-mail: karlaesquerre@ufba.br; Matos Queiroz, Luciano, E-mail: lmqueiroz@ufba.br

    2015-01-15

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m{sup 3} day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present studymore » focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m{sup 3} day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge.« less

  11. Synthesis of CdSe/ZnS and CdTe/ZnS Quantum Dots: Refined Digestive Ripening

    DOE PAGES

    Cingarapu, Sreeram; Yang, Zhiqiang; Sorensen, Christopher M.; ...

    2012-01-01

    We report synthesis of CdSe and CdTe quantum dots (QDs) from the bulk CdSe and CdTe material by evaporation/co-condensation using the solvated metal atom dispersion (SMAD) technique and refined digestive ripening. The outcomes of this new process are (1) the reduction of digestive ripening time by employing ligands (trioctylphosphine oxide (TOPO) and oleylamine (OA)) as capping agent as well as digestive ripening solvent, (2) ability to tune the photoluminescence (PL) from 410 nm to 670 nm, (3) demonstrate the ability of SMAD synthesis technique for other semiconductors (CdTe), (4) direct comparison of CdSe QDs growth with CdTe QDs growth based on digestivemore » ripening times, and (5) enhanced PL quantum yield (QY) of CdSe QDs and CdTe QDs upon covering with a ZnS shell. Further, the merit of this synthesis is the use of bulk CdSe and CdTe as the starting materials, which avoids usage of toxic organometallic compounds, eliminates the hot injection procedure, and size selective precipitation processes. It also allows the possibility of scale up. These QDs were characterized by UV-vis, photoluminescence (PL), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and powder XRD.« less

  12. Digested disorder

    PubMed Central

    Uversky, Vladimir N

    2013-01-01

    The current literature on intrinsically disordered proteins is blooming. A simple PubMed search for “intrinsically disordered protein OR natively unfolded protein” returns about 1,800 hits (as of June 17, 2013), with many papers published quite recently. To keep interested readers up to speed with this literature, we are starting a “Digested Disorder” project, which will encompass a series of reader’s digest type of publications aiming at the objective representation of the research papers and reviews on intrinsically disordered proteins. The only two criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest covers papers published during the period of January, February and March of 2013. The papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings. PMID:28516015

  13. The Writer's Digest Guide to Good Writing.

    ERIC Educational Resources Information Center

    Clark, Thomas, Ed.; And Others

    Marking "Writer's Digest"'s upcoming 75th anniversary, this book presents a collection of the best writing instruction, advice, and inspiration written by famous and not-so-famous writers and published in the magazine from the 1920s to the 1990s. The 49 selections in the book are arranged chronologically and address: (1) selecting an…

  14. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells.

    PubMed

    Heo, Young Tae; Quan, Xiaoyuan; Xu, Yong Nan; Baek, Soonbong; Choi, Hwan; Kim, Nam-Hyung; Kim, Jongpil

    2015-02-01

    Efficient and precise genetic engineering in livestock such as cattle holds great promise in agriculture and biomedicine. However, techniques that generate pluripotent stem cells, as well as reliable tools for gene targeting in livestock, are still inefficient, and thus not routinely used. Here, we report highly efficient gene targeting in the bovine genome using bovine pluripotent cells and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 nuclease. First, we generate induced pluripotent stem cells (iPSCs) from bovine somatic fibroblasts by the ectopic expression of yamanaka factors and GSK3β and MEK inhibitor (2i) treatment. We observed that these bovine iPSCs are highly similar to naïve pluripotent stem cells with regard to gene expression and developmental potential in teratomas. Moreover, CRISPR/Cas9 nuclease, which was specific for the bovine NANOG locus, showed highly efficient editing of the bovine genome in bovine iPSCs and embryos. To conclude, CRISPR/Cas9 nuclease-mediated homologous recombination targeting in bovine pluripotent cells is an efficient gene editing method that can be used to generate transgenic livestock in the future.

  15. Characterization of Hydrolysis Kinetics in Staged Anaerobic Digestion of Wastewater Treatment Sludge.

    PubMed

    Zamanzadeh, Mirzaman; Parker, Wayne J

    2018-01-01

      The hydrolysis of mixed primary and secondary sludges in two-stage anaerobic digestion was evaluated and compared with conventional single-stage digestion, using various temperature-phased configurations of M1-M2, M1-T3, T1-T2, and T1-M3. A dual hydrolysis model best described the hydrolysis in all tests. This model was also able to consistently estimate the readily and slowly fractions of particulate chemical oxygen demand (COD) of raw sludge used in the tests. The hydrolysis kinetic coefficients (Khyd_s and Khyd_r) estimated for the mesophilic digesters were significantly greater in the short hydraulic retention time (HRT) M1 digester than those of the extended HRT digesters. Conversely, at thermophilic temperatures only Khyd_r was greater in short HRT T1 digester when compared to the extended HRT digesters. The increased Khyd_r and reduced Khyd_s values due to staging effect were explained with surface reaction models and endogenous decay. The temperature dependency of Khyd_s and Khyd_r was also explored in the staged digesters.

  16. Crystal structures of the structure-selective nuclease Mus81-Eme1 bound to flap DNA substrates

    PubMed Central

    Gwon, Gwang Hyeon; Jo, Aera; Baek, Kyuwon; Jin, Kyeong Sik; Fu, Yaoyao; Lee, Jong-Bong; Kim, YoungChang; Cho, Yunje

    2014-01-01

    The Mus81-Eme1 complex is a structure-selective endonuclease with a critical role in the resolution of recombination intermediates during DNA repair after interstrand cross-links, replication fork collapse, or double-strand breaks. To explain the molecular basis of 3′ flap substrate recognition and cleavage mechanism by Mus81-Eme1, we determined crystal structures of human Mus81-Eme1 bound to various flap DNA substrates. Mus81-Eme1 undergoes gross substrate-induced conformational changes that reveal two key features: (i) a hydrophobic wedge of Mus81 that separates pre- and post-nick duplex DNA and (ii) a “5′ end binding pocket” that hosts the 5′ nicked end of post-nick DNA. These features are crucial for comprehensive protein-DNA interaction, sharp bending of the 3′ flap DNA substrate, and incision strand placement at the active site. While Mus81-Eme1 unexpectedly shares several common features with members of the 5′ flap nuclease family, the combined structural, biochemical, and biophysical analyses explain why Mus81-Eme1 preferentially cleaves 3′ flap DNA substrates with 5′ nicked ends. PMID:24733841

  17. Proline cis-trans isomerization in staphylococcal nuclease: multi-substrate free energy perturbation calculations.

    PubMed Central

    Hodel, A.; Rice, L. M.; Simonson, T.; Fox, R. O.; Brünger, A. T.

    1995-01-01

    Staphylococcal nuclease A exists in two folded forms that differ in the isomerization state of the Lys 116-Pro 117 peptide bond. The dominant form (90% occupancy) adopts a cis peptide bond, which is observed in the crystal structure. NMR studies show that the relatively small difference in free energy between the cis and trans forms (delta Gcis-->trans approximately 1.2 kcal/mol) results from large and nearly compensating differences in enthalpy and entropy (delta Hcis-->trans approximately delta TScis-->trans approximately 10 kcal/mol). There is evidence from X-ray crystal structures that the structural differences between the cis and the trans forms of nuclease are confined to the conformation of residues 112-117, a solvated protein loop. Here, we obtain a thermodynamic and structural description of the conformational equilibrium of this protein loop through an exhaustive conformational search that identified several substates followed by free energy simulations between the substrates. By partitioning the search into conformational substates, we overcame the multiple minima problem in this particular case and obtained precise and reproducible free energy values. The protein and water environment was implicitly modeled by appropriately chosen nonbonded terms between the explicitly treated loop and the rest of the protein. These simulations correctly predicted a small free energy difference between the cis and trans forms composed of larger, compensating differences in enthalpy and entropy. The structural predictions of these simulations were qualitatively consistent with known X-ray structures of nuclease variants and yield a model of the unknown minor trans conformation. PMID:7613463

  18. Secondary Structure and Subunit Composition of Soy Protein In Vitro Digested by Pepsin and Its Relation with Digestibility

    PubMed Central

    Yang, Yong; Wang, Zhongjiang; Wang, Rui; Sui, Xiaonan; Qi, Baokun; Han, Feifei; Li, Yang; Jiang, Lianzhou

    2016-01-01

    In the present study, in vitro digestibility and structure of soybean protein isolates (SPIs) prepared from five soybean varieties were investigated in simulated gastric fluid (SGF), using FT-IR microspectroscopy and SDS-PAGE. The result indicated that β-conformations were prone to be hydrolyzed by pepsin preferentially and transformed to unordered structure during in vitro digestion, followed by the digestion of α-helix and unordered structure. A negative linear correlation coefficient was found between the β-conformation contents of five SPIs and their in vitro digestibility values. The intensities of the protein bands corresponding to 7S and 11S fractions were decreased and many peptide bands appeared at 11~15 kDa during enzymatic hydrolysis. β-conglycinin was poorly hydrolyzed with pepsin, especially the β-7S subunit. On the other hand, basic polypeptides of glycinin degraded slower than acidic polypeptides and represented a large proportion of the residual protein after digestion. 11S-A3 of all SPIs disappeared after 1 h digestion. Moreover, a significant negative linear correlation coefficient (r = −0.89) was found between the β-7S contents of five SPIs and their in vitro digestibility values. These results are useful for further studies of the functional properties and bioactive properties of these varieties and laid theoretical foundations for the development of the specific functional soy protein isolate. PMID:27298825

  19. Generation of Esr1-Knockout Rats Using Zinc Finger Nuclease-Mediated Genome Editing

    PubMed Central

    Dhakal, Pramod; Kubota, Kaiyu; Chakraborty, Damayanti; Lei, Tianhua; Larson, Melissa A.; Wolfe, Michael W.; Roby, Katherine F.; Vivian, Jay L.

    2014-01-01

    Estrogens play pivotal roles in development and function of many organ systems, including the reproductive system. We have generated estrogen receptor 1 (Esr1)-knockout rats using zinc finger nuclease (ZFN) genome targeting. mRNAs encoding ZFNs targeted to exon 3 of Esr1 were microinjected into single-cell rat embryos and transferred to pseudopregnant recipients. Of 17 live births, 5 had biallelic and 1 had monoallelic Esr1 mutations. A founder with monoallelic mutations was backcrossed to a wild-type rat. Offspring possessed only wild-type Esr1 alleles or wild-type alleles and Esr1 alleles containing either 482 bp (Δ482) or 223 bp (Δ223) deletions, indicating mosaicism in the founder. These heterozygous mutants were bred for colony expansion, generation of homozygous mutants, and phenotypic characterization. The Δ482 Esr1 allele yielded altered transcript processing, including the absence of exon 3, aberrant splicing of exon 2 and 4, and a frameshift that generated premature stop codons located immediately after the codon for Thr157. ESR1 protein was not detected in homozygous Δ482 mutant uteri. ESR1 disruption affected sexually dimorphic postnatal growth patterns and serum levels of gonadotropins and sex steroid hormones. Both male and female Esr1-null rats were infertile. Esr1-null males had small testes with distended and dysplastic seminiferous tubules, whereas Esr1-null females possessed large polycystic ovaries, thread-like uteri, and poorly developed mammary glands. In addition, uteri of Esr1-null rats did not effectively respond to 17β-estradiol treatment, further demonstrating that the Δ482 Esr1 mutation created a null allele. This rat model provides a new experimental tool for investigating the pathophysiology of estrogen action. PMID:24506075

  20. Generation of Esr1-knockout rats using zinc finger nuclease-mediated genome editing.

    PubMed

    Rumi, M A Karim; Dhakal, Pramod; Kubota, Kaiyu; Chakraborty, Damayanti; Lei, Tianhua; Larson, Melissa A; Wolfe, Michael W; Roby, Katherine F; Vivian, Jay L; Soares, Michael J

    2014-05-01

    Estrogens play pivotal roles in development and function of many organ systems, including the reproductive system. We have generated estrogen receptor 1 (Esr1)-knockout rats using zinc finger nuclease (ZFN) genome targeting. mRNAs encoding ZFNs targeted to exon 3 of Esr1 were microinjected into single-cell rat embryos and transferred to pseudopregnant recipients. Of 17 live births, 5 had biallelic and 1 had monoallelic Esr1 mutations. A founder with monoallelic mutations was backcrossed to a wild-type rat. Offspring possessed only wild-type Esr1 alleles or wild-type alleles and Esr1 alleles containing either 482 bp (Δ482) or 223 bp (Δ223) deletions, indicating mosaicism in the founder. These heterozygous mutants were bred for colony expansion, generation of homozygous mutants, and phenotypic characterization. The Δ482 Esr1 allele yielded altered transcript processing, including the absence of exon 3, aberrant splicing of exon 2 and 4, and a frameshift that generated premature stop codons located immediately after the codon for Thr157. ESR1 protein was not detected in homozygous Δ482 mutant uteri. ESR1 disruption affected sexually dimorphic postnatal growth patterns and serum levels of gonadotropins and sex steroid hormones. Both male and female Esr1-null rats were infertile. Esr1-null males had small testes with distended and dysplastic seminiferous tubules, whereas Esr1-null females possessed large polycystic ovaries, thread-like uteri, and poorly developed mammary glands. In addition, uteri of Esr1-null rats did not effectively respond to 17β-estradiol treatment, further demonstrating that the Δ482 Esr1 mutation created a null allele. This rat model provides a new experimental tool for investigating the pathophysiology of estrogen action.

  1. Characteristic CYP2A6 genetic polymorphisms detected by TA cloning-based sequencing in Chinese digestive system cancer patients with S-1 based chemotherapy.

    PubMed

    Fang, Wei-Jia; Mou, Hai-Bo; Jin, Da-Zhi; Zheng, Yu-Long; Zhao, Peng; Mao, Chen-Yu; Peng, Ling; Huang, Ming-Zhu; Xu, Nong

    2012-05-01

    S-1 is an oral antitumor agent that contains tegafur, which is converted to fluorouracil (5-FU) in the human body. Cytochrome P450 2A6 (CYP2A6) is the principal enzyme responsible for bioconversion of tegafur to 5-FU. A number of CYP2A6 polymorphisms have been associated with variations in enzyme activity in several ethnic populations. The CYP2A6*4C allele leads to deletion of the entire CYP2A6 gene, and is the main finding in patients with reduced CYP2A6 enzymatic activity. Thus, the aim of our study was to evaluate the allele frequencies of CYP2A6 polymorphisms in a population with cancer of the digestive system. We developed a simple screening method, which combined TA cloning and direct-sequencing, to detect CYP2A6 genetic polymorphisms in Chinese patients with cancers of the digestive system. A total of 77 patients with various types of digestive system cancers were screened for CYP2A6 genetic polymorphisms. The allele frequencies of CYP2A6*1A, CYP2A6*1B and CYP2A6*4C in the 77 patients screened were 62, 42 and 13%, respectively. Frequencies of the homozygous genotypes for CYP2A6*1A and CYP2A6*4C were 27 and 12%, respectively. As expected, patients that were determined to be homozygous for CYP2A6*4C exhibited the characteristic chemotherapy efficacy and toxicity profiles. The TA cloning-based direct sequencing method facilitated allele frequency and genotyping determination for CYP2A6*1A, 1B and 4C of cancer patients. The findings indicated that the population carries a high frequency of the CYP2A6*4C homozygous genotype. Thus, the reduced efficacy of standard chemotherapy dosage in Chinese cancer patients may be explained by the lack of CYP2A6-mediated S-1 bioconversion to 5-FU.

  2. Electrostatic effects in unfolded staphylococcal nuclease

    PubMed Central

    Fitzkee, Nicholas C.; García-Moreno E, Bertrand

    2008-01-01

    Structure-based calculations of pK a values and electrostatic free energies of proteins assume that electrostatic effects in the unfolded state are negligible. In light of experimental evidence showing that this assumption is invalid for many proteins, and with increasing awareness that the unfolded state is more structured and compact than previously thought, a detailed examination of electrostatic effects in unfolded proteins is warranted. Here we address this issue with structure-based calculations of electrostatic interactions in unfolded staphylococcal nuclease. The approach involves the generation of ensembles of structures representing the unfolded state, and calculation of Coulomb energies to Boltzmann weight the unfolded state ensembles. Four different structural models of the unfolded state were tested. Experimental proton binding data measured with a variant of nuclease that is unfolded under native conditions were used to establish the validity of the calculations. These calculations suggest that weak Coulomb interactions are an unavoidable property of unfolded proteins. At neutral pH, the interactions are too weak to organize the unfolded state; however, at extreme pH values, where the protein has a significant net charge, the combined action of a large number of weak repulsive interactions can lead to the expansion of the unfolded state. The calculated pK a values of ionizable groups in the unfolded state are similar but not identical to the values in small peptides in water. These studies suggest that the accuracy of structure-based calculations of electrostatic contributions to stability cannot be improved unless electrostatic effects in the unfolded state are calculated explicitly. PMID:18227429

  3. Genome Editing in Mice Using TALE Nucleases.

    PubMed

    Wefers, Benedikt; Brandl, Christina; Ortiz, Oskar; Wurst, Wolfgang; Kühn, Ralf

    2016-01-01

    Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as sequence-specific nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step without the need for embryonic stem cells. By embryo microinjection of TALEN mRNAs and targeting vectors, knockout and knock-in alleles can be generated fast and efficiently. In this chapter we provide protocols for the application of TALENs in mouse zygotes.

  4. The antigenic surface of staphylococcal nuclease. II. Analysis of the N-1 epitope by site-directed mutagenesis.

    PubMed

    Smith, A M; Benjamin, D C

    1991-02-15

    Previous studies in our laboratory on the production and isolation of a panel of mAb to staphylococcal nuclease allowed us to define a series of eight overlapping epitopes. Using site-directed mutagenesis of the nuclease coding sequences we were able to map the nonoverlapping epitopes recognized by two members of this panel. In the study reported here, we report the generation and analysis of a number of single amino acid substitutions for seven surface residues predicted to lie within one of these two epitopes. Immunochemical analysis showed that one or more substitutions at each of these seven positions had a major effect on mAb binding, whereas other substitutions had none. Based on the nature of these substitutions and the chemical and physical properties of the variant molecules, we believe that any structural effects induced by these substitutions are local and do not result in long-range structural alterations that indirectly influence antibody reactivity. Therefore, we conclude that disruption of mAb binding can be directly attributed to changes in amino acid side chains and that not only are all seven of the residues studied part of the epitope but all seven make contact with the antibody combining site. These studies demonstrate the advantages of using site-directed mutagenesis to study antigen structure and emphasize the importance of constructing the examining multiple substitutions for any given amino acid.

  5. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster.

    PubMed

    Simoni, Alekos; Siniscalchi, Carla; Chan, Yuk-Sang; Huen, David S; Russell, Steven; Windbichler, Nikolai; Crisanti, Andrea

    2014-06-01

    Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline. We show here that SSEs can spread via DNA break-induced homologous recombination, a process known as 'homing' similar to that observed for homing endonuclease genes (HEGs), despite their fundamentally different modes of DNA binding and cleavage. We observed that TALEN and ZFN have a reduced capability of secondary homing compared to HEG as their repetitive structure had a negative effect on their genetic stability. The modular architecture of ZFNs and TALENs allows for the rapid design of novel SSEs against specific genomic sequences making them potentially suitable for the genetic engineering of wild-type populations of animals and plants, in applications such as gene replacement or population suppression of pest species. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.

    PubMed

    Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi

    2008-04-15

    The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.

  7. (NZ)CH...O contacts assist crystallization of a ParB-like nuclease.

    PubMed

    Shaw, Neil; Cheng, Chongyun; Tempel, Wolfram; Chang, Jessie; Ng, Joseph; Wang, Xin-Yu; Perrett, Sarah; Rose, John; Rao, Zihe; Wang, Bi-Cheng; Liu, Zhi-Jie

    2007-07-07

    The major bottleneck for determination of 3 D structures of proteins using X-rays is the production of diffraction quality crystals. Often proteins are subjected to chemical modification to improve the chances of crystallization Here, we report the successful crystallization of a nuclease employing a reductive methylation protocol. The key to crystallization was the successful introduction of 44 new cohesive (NZ) CH...O contacts (3.2-3.7 A) by the addition of 2 methyl groups to the side chain amine nitrogen (NZ) of 9 lysine residues of the nuclease. The new contacts dramatically altered the crystallization properties of the protein, resulting in crystals that diffracted to 1.2 A resolution. Analytical ultracentrifugation analysis and thermodynamics results revealed a more compact protein structure with better solvent exclusion of buried Trp residues in the folded state of the methylated protein, assisting crystallization. In this study, introduction of novel cohesive (NZ)CH...O contacts by reductive methylation resulted in the crystallization of a protein that had previously resisted crystallization in spite of extensive purification and crystallization space screening. Introduction of (NZ)CH...O contacts could provide a solution to crystallization problems for a broad range of protein targets.

  8. GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases

    PubMed Central

    Nguyen, Nhu T.; Liebers, Matthew; Topkar, Ved V.; Thapar, Vishal; Wyvekens, Nicolas; Khayter, Cyd; Iafrate, A. John; Le, Long P.; Aryee, Martin J.; Joung, J. Keith

    2014-01-01

    CRISPR RNA-guided nucleases (RGNs) are widely used genome-editing reagents, but methods to delineate their genome-wide off-target cleavage activities have been lacking. Here we describe an approach for global detection of DNA double-stranded breaks (DSBs) introduced by RGNs and potentially other nucleases. This method, called Genome-wide Unbiased Identification of DSBs Enabled by Sequencing (GUIDE-Seq), relies on capture of double-stranded oligodeoxynucleotides into breaks Application of GUIDE-Seq to thirteen RGNs in two human cell lines revealed wide variability in RGN off-target activities and unappreciated characteristics of off-target sequences. The majority of identified sites were not detected by existing computational methods or ChIP-Seq. GUIDE-Seq also identified RGN-independent genomic breakpoint ‘hotspots’. Finally, GUIDE-Seq revealed that truncated guide RNAs exhibit substantially reduced RGN-induced off-target DSBs. Our experiments define the most rigorous framework for genome-wide identification of RGN off-target effects to date and provide a method for evaluating the safety of these nucleases prior to clinical use. PMID:25513782

  9. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.

    PubMed

    Doetschman, Thomas; Georgieva, Teodora

    2017-03-03

    Genetic engineering of model organisms and cultured cells has for decades provided important insights into the mechanisms underlying cardiovascular development and disease. In the past few years the development of several nuclease systems has broadened the range of model/cell systems that can be engineered. Of these, the CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9) system has become the favorite for its ease of application. Here we will review this RNA-guided nuclease system for gene editing with respect to its usefulness for cardiovascular studies and with an eye toward potential therapy. Studies on its off-target activity, along with approaches to minimize this activity will be given. The advantages of gene editing versus gene targeting in embryonic stem cells, including the breadth of species and cell types to which it is applicable, will be discussed. We will also cover its use in iPSC for research and possible therapeutic purposes; and we will review its use in muscular dystrophy studies where considerable progress has been made toward dystrophin correction in mice. The CRISPR/Ca9s system is also being used for high-throughput screening of genes, gene regulatory regions, and long noncoding RNAs. In addition, the CRISPR system is being used for nongene-editing purposes such as activation and inhibition of gene expression, as well as for fluorescence tagging of chromosomal regions and individual mRNAs to track their cellular location. Finally, an approach to circumvent the inability of post-mitotic cells to support homologous recombination-based gene editing will be presented. In conclusion, applications of the CRISPR/Cas system are expanding at a breath-taking pace and are revolutionizing approaches to gain a better understanding of human diseases. © 2017 American Heart Association, Inc.

  10. Linker DNA accessibility in chromatin fibers of different conformations: a reevaluation.

    PubMed Central

    Zlatanova, J; Leuba, S H; Yang, G; Bustamante, C; van Holde, K

    1994-01-01

    New studies on chromatin fiber morphology, using the technique of scanning force microscopy (SFM), have caused us to reexamine recent analysis of nuclease digestion of chromatin. Chicken erythrocyte chromatin fibers, glutaraldehyde-fixed at 0, 10, and 80 mM NaCl, were imaged with the help of SFM. The chromatin fibers possessed a loose three-dimensional 30-nm structure even in the absence of added salt. This structure slightly condensed upon addition of 10 mM NaCl, and highly compacted, irregularly segmented fibers were observed at 80 mM NaCl. This sheds new light upon our previously reported analysis of the kinetics of digestion by soluble and membrane-immobilized micrococcal nuclease [Leuba, S. H., Zlatanova, J. & van Holde, K. (1994) J. Mol. Biol. 235, 871-880]. While the low-ionic-strength fibers were readily digested, the highly compacted structure formed at 80 mM NaCl was refractory to nuclease attack, implying that the linkers were fully accessible in the low-ionic-strength conformation but not in the condensed fibers. We now find that cleavage of the linker DNA by a small molecule, methidiumpropyl-EDTA-Fe(II), proceeds for all types of conformations at similar rates. Thus, steric hindrance is responsible for the lack of accessibility to micrococcal nuclease in the condensed fiber. Taken in total the data suggest that reexamination of existing models of chromatin conformation is warranted. Images PMID:8202481

  11. Modified Anaerobic Digestion Model No.1 for dry and semi-dry anaerobic digestion of solid organic waste.

    PubMed

    Liotta, Flavia; Chatellier, Patrice; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco

    2015-01-01

    The role of total solids (TS) content in anaerobic digestion of selected complex organic matter, e.g. rice straw and food waste, was investigated. A range of TS from wet (4.5%) to dry (23%) was evaluated. A modified version of the Anaerobic Digestion Model No.1 for a complex organic substrate is proposed to take into account the effect of the TS content on anaerobic digestion. A linear function that correlates the kinetic constants of three specific processes (i.e. disintegration, acetate and propionate up-take) was included in the model. Results of biomethanation and volatile fatty acids production tests were used to calibrate the proposed model. Model simulations showed a good agreement between numerical and observed data.

  12. Transfer of D-phenylalanine from gramicidin S synthetase 1 to gramicidin S synthetase 2 in gramicidin S synthesis.

    PubMed

    Hori, K; Kanda, M; Miura, S; Yamada, Y; Saito, Y

    1983-01-01

    The transfer of phenylalanine from gramicidin S synthetase 1 (GS 1) to gramicidin S synthetase 2 (GS 2) was studied by the use of combinations of wild-type GS 1 with various GS 2s from a wild strain and gramicidin S non-producing mutant strains of Bacillus brevis Nagano. The combinations of mutant GS 2s lacking 4'-phosphopantetheine (from BI-4, C-3, E-1, and E-2) did not transfer D-phenylalanine from GS 1, although they could activate all the constituent amino acids. Other mutant GS 2s containing 4'-phosphopantetheine, except GS 2 from BII-3 (proline-activation lacking) accepted D-phenylalanine from intact GS 1. To ascertain more directly whether 4'-phosphopantetheine is involved in the transfer of D-phenylalanine from GS 1 to GS 2, pepsin digests of GS 2 that accepted [14C]phenylalanine were analyzed by Sephadex G-50 column chromatography and thin-layer chromatography (TLC). Radioactivity of [14C]phenylalanine was always associated with a peptide containing 4'-phosphopantetheine. Furthermore, the position of radioactivity was distinct from the position of 4'-phosphopantetheine on TLC after alkaline treatment or performic acid oxidation of the digests.

  13. Effect of Acylglycerol Composition and Fatty Acyl Chain Length on Lipid Digestion in pH-Stat Digestion Model and Simulated In Vitro Digestion Model.

    PubMed

    Qi, Jin F; Jia, Cai H; Shin, Jung A; Woo, Jeong M; Wang, Xiang Y; Park, Jong T; Hong, Soon T; Lee, K-T

    2016-02-01

    In this study, a pH-stat digestion model and a simulated in vitro digestion model were employed to evaluate the digestion degree of lipids depending on different acylglycerols and acyl chain length (that is, diacylglycerol [DAG] compared with soybean oil representing long-chain triacylglycerol compared with medium-chain triacylglycerol [MCT]). In the pH-stat digestion model, differences were observed among the digestion degrees of 3 oils using digestion rate (k), digestion half-time (t1/2 ), and digestion extent (Φmax). The results showed the digestion rate order was MCT > soybean oil > DAG. Accordingly, the order of digestion half-times was MCT < soybean oil < DAG. In simulated in vitro digestion model, digestion rates (k') and digestion half-times (t'1/2 ) were also obtained and the results showed a digestion rate order of MCT (k' = 0.068 min(-1) ) > soybean oil (k' = 0.037 min(-1) ) > DAG (k' = 0.024 min(-1) ). Consequently, the order of digestion half-times was MCT (t'1/2 = 10.20 min) < soybean oil (t'1/2 = 18.74 min) < DAG (t'1/2 = 29.08 min). The parameters obtained using the 2 models showed MCT was digested faster than soybean oil, and that soybean oil was digested faster than DAG. © 2015 Institute of Food Technologists®

  14. megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering.

    PubMed

    Boissel, Sandrine; Jarjour, Jordan; Astrakhan, Alexander; Adey, Andrew; Gouble, Agnès; Duchateau, Philippe; Shendure, Jay; Stoddard, Barry L; Certo, Michael T; Baker, David; Scharenberg, Andrew M

    2014-02-01

    Rare-cleaving endonucleases have emerged as important tools for making targeted genome modifications. While multiple platforms are now available to generate reagents for research applications, each existing platform has significant limitations in one or more of three key properties necessary for therapeutic application: efficiency of cleavage at the desired target site, specificity of cleavage (i.e. rate of cleavage at 'off-target' sites), and efficient/facile means for delivery to desired target cells. Here, we describe the development of a single-chain rare-cleaving nuclease architecture, which we designate 'megaTAL', in which the DNA binding region of a transcription activator-like (TAL) effector is used to 'address' a site-specific meganuclease adjacent to a single desired genomic target site. This architecture allows the generation of extremely active and hyper-specific compact nucleases that are compatible with all current viral and nonviral cell delivery methods.

  15. Identification of myo-inositol hexakisphosphate (IP6) as a β-secretase 1 (BACE1) inhibitory molecule in rice grain extract and digest

    PubMed Central

    Abe, Takako K.; Taniguchi, Masayuki

    2014-01-01

    Alzheimer’s disease (AD) is widely considered to be caused by amyloid-β peptide (Aβ) accumulation in the brain. Aβ is excised from amyloid-β precursor protein through sequential cleavage by β-secretase 1 (BACE1) and γ-secretase. Thus, BACE1 inhibition could prevent Aβ accumulation. Here, we identified myo-inositol hexakisphosphate (IP6) as a BACE1 inhibitory molecule in rice grain extract and digest. The rice digest and IP6 significantly inhibited Aβ production in neuroblastoma cells without cytotoxicity. These results suggested that rice components, including IP6, may be promising starting materials for the development of potent and safe drugs and/or food to prevent AD. PMID:24649396

  16. [Simultaneous Determination of Sn and S in Methyltin Mercaptide by Microwave-Assisted Acid Digestion and ICP-OES].

    PubMed

    Chen, Qian; Wu, Xi; Hou, Xian-deng; Xu, Kai-lai

    2015-09-01

    Methyltin mercaptide is widely used as one of the best heat stabilizer in the polyvinylchloride (PVC) thermal processing due to its excellent stability, good transparency, high compatibility and weather resistance. The content of sulfur and tin significantly affects its quality and performance, so it is of great significance to develop an analytical method for the simultaneous determination of sulfur and tin. Inductively coupled plasma atomic emission spectrometry (ICP-OES) has been a powerful analytical tool for a myriad of complex samples owing to its advantages of the low detection limits, rapid and precise determinations over wide dynamic ranges, freedom from chemical inter-element interferences, the high sample throughput and above all, simultaneous multi-elements analysis. Microwave technique as a well-developed method for sample preparation can dramatically reduce the digestion time and the loss of volatile elements compared with the traditional open digestion. Hereby, a microwave-assisted acid digestion (MW-AAD) procedure followed by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis was developed for the simultaneous determination of Sn and S in methyltin mercaptide. This method has the advantages of simplicity, rapidness, good accuracy, green and less use of samples. Parameters affecting the MW-AAD such as the digestion solution and digestion time were optimized by using a chemical analyzed reference sample (DX-181) to attain tin and sulfur quantitative recoveries. HNO3-HCl-HClO4 (v/v/v=9:3:1) and 10 min were the optimum digestion solution and digestion time, respectively. Under optimum conditions, the standard addition method and the standard calibration curve method were both been used to detect Sn and S in DX-181. There was no significant difference between two methods and the relative deviations to the chemical analysis values were both less than 2%. Additionally, the accuracy of the MW-AAD method was examined by analyzing

  17. The adnAB Locus, Encoding a Putative Helicase-Nuclease Activity, Is Essential in Streptomyces

    PubMed Central

    Zhang, Lingli; Nguyen, Hoang Chuong; Chipot, Ludovic; Piotrowski, Emilie; Bertrand, Claire

    2014-01-01

    Homologous recombination is a crucial mechanism that repairs a wide range of DNA lesions, including the most deleterious ones, double-strand breaks (DSBs). This multistep process is initiated by the resection of the broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB, and newly discovered Mycobacterium tuberculosis AdnAB. Here we show that in Streptomyces, neither recBCD nor addAB homologues could be detected. The only putative helicase-nuclease-encoding genes identified were homologous to M. tuberculosis adnAB genes. These genes are conserved as a single copy in all sequenced genomes of Streptomyces. The disruption of adnAB in Streptomyces ambofaciens and Streptomyces coelicolor could not be achieved unless an ectopic copy was provided, indicating that adnAB is essential for growth. Both adnA and adnB genes were shown to be inducible in response to DNA damage (mitomycin C) and to be independently transcribed. Introduction of S. ambofaciens adnAB genes in an E. coli recB mutant restored viability and resistance to UV light, suggesting that Streptomyces AdnAB could be a functional homologue of RecBCD and be involved in DNA damage resistance. PMID:24837284

  18. Rethinking the starch digestion hypothesis for AMY1 copy number variation in humans.

    PubMed

    Fernández, Catalina I; Wiley, Andrea S

    2017-08-01

    Alpha-amylase exists across taxonomic kingdoms with a deep evolutionary history of gene duplications that resulted in several α-amylase paralogs. Copy number variation (CNV) in the salivary α-amylase gene (AMY1) exists in many taxa, but among primates, humans appear to have higher average AMY1 copies than nonhuman primates. Additionally, AMY1 CNV in humans has been associated with starch content of diets, and one known function of α-amylase is its involvement in starch digestion. Thus high AMY1 CNV is considered to result from selection favoring more efficient starch digestion in the Homo lineage. Here, we present several lines of evidence that challenge the hypothesis that increased AMY1 CNV is an adaptation to starch consumption. We observe that α- amylase plays a very limited role in starch digestion, with additional steps required for starch digestion and glucose metabolism. Specifically, we note that α-amylase hydrolysis only produces a minute amount of free glucose with further enzymatic digestion and glucose absorption being rate-limiting steps for glucose availability. Indeed α-amylase is nonessential for starch digestion since sucrase-isomaltase and maltase-glucoamylase can hydrolyze whole starch granules while releasing glucose. While higher AMY1 CN and CNV among human populations may result from natural selection, existing evidence does not support starch digestion as the major selective force. We report that in humans α-amylase is expressed in several other tissues where it may have potential roles of evolutionary significance. © 2017 Wiley Periodicals, Inc.

  19. Cleavage of influenza RNA by using a human PUF-based artificial RNA-binding protein–staphylococcal nuclease hybrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Tomoaki; Nakamura, Kento; Masaoka, Keisuke

    Various viruses infect animals and humans and cause a variety of diseases, including cancer. However, effective methodologies to prevent virus infection have not yet been established. Therefore, development of technologies to inactivate viruses is highly desired. We have already demonstrated that cleavage of a DNA virus genome was effective to prevent its replication. Here, we expanded this methodology to RNA viruses. In the present study, we used staphylococcal nuclease (SNase) instead of the PIN domain (PilT N-terminus) of human SMG6 as an RNA-cleavage domain and fused the SNase to a human Pumilio/fem-3 binding factor (PUF)-based artificial RNA-binding protein to constructmore » an artificial RNA restriction enzyme with enhanced RNA-cleavage rates for influenzavirus. The resulting SNase-fusion nuclease cleaved influenza RNA at rates 120-fold greater than the corresponding PIN-fusion nuclease. The cleaving ability of the PIN-fusion nuclease was not improved even though the linker moiety between the PUF and RNA-cleavage domain was changed. Gel shift assays revealed that the RNA-binding properties of the PUF derivative used was not as good as wild type PUF. Improvement of the binding properties or the design method will allow the SNase-fusion nuclease to cleave an RNA target in mammalian animal cells and/or organisms. - Highlights: • A novel RNA restriction enzyme using SNase was developed tor cleave viral RNA. • Our enzyme cleaved influenza RNA with rates >120-fold higher rates a PIN-fusion one. • Our artificial enzyme with the L5 linker showed the highest RNA cleavage rate. • Our artificial enzyme site-selectively cleaved influenza RNA in vitro.« less

  20. The Effect of Herbaceous Legume of Feed in In-Vitro Digestibility

    NASA Astrophysics Data System (ADS)

    Ratnawaty, S.; Hartutik; Chuzaemi, S.

    2018-02-01

    This study was carried out to evaluate in-vitro digestibility of herbal legumesin feed. The materials used in this study were three types of herbal legumes namely Clitoria ternatea Q5455 (CT Q5455), Clitoria ternatea cv. Milgarra (CT cv Milgarra) and Stylosanthes seabrana (S. seabrana), The treatments were P0 = 100% Grass; P1 = 50% Grass+ 50% CT Q5455, P2 = 50% Grass + 50% CT cv. Milgarra, P3 = 50% Grass + 50% S. seabrana. The result showed that the treatments had a significant effect (P <0.05). The highest dry matter (DM) digestibilitywas in P1 (60.35%) and P3 (60.22%). The DM digestibility of the highest raw materials was in CT cv. Milgarra (73.49%) and the lowest one was in S. seabrana (63.90%). The treatments had a very significant effect (P <0.01) on the organic matter (OM) Digestibility. The highest OM digestibility wasin P1 (63.04%) and P3 (61.89%). The highest value of OM digestibility of raw materials was in CT cv. Milgarra (73.90%) and the lowest one was in S. seabrana (63.85%). The treatmentshad a significant effect (P <0.05) on the crude protein (CP) digestibility. The average CP digestibility of feed was at the same value in all treatments but in CT Q5455 (67.25%). The treatmentshad a significant effect (P <0.05) on the total digestible nutrients (TDN). The highest TDN was in P1 (66.19%) and the lowest one was in P0 (51.38%). Average TDN of the highest raw material was in CT cv. Milgarra (77.59%) and the lowest was in S. seabrana (67.04%).

  1. Zinc finger nuclease: a new approach for excising HIV-1 proviral DNA from infected human T cells.

    PubMed

    Qu, Xiying; Wang, Pengfei; Ding, Donglin; Wang, Xiaohui; Zhang, Gongmin; Zhou, Xin; Liu, Lin; Zhu, Xiaoli; Zeng, Hanxian; Zhu, Huanzhang

    2014-09-01

    A major reason that Acquired Immune Deficiency Syndrome (AIDS) cannot be completely cured is the human immunodeficiency virus 1 (HIV-1) provirus integrated into the human genome. Though existing therapies can inhibit replication of HIV-1, they cannot eradicate it. A molecular therapy gains popularity due to its specifically targeting to HIV-1 infected cells and effectively removing the HIV-1, regardless of viral genes being active or dormant. Now, we propose a new method which can excellently delete the HIV provirus from the infected human T cell genome. First, we designed zinc-finger nucleases (ZFNs) that target a sequence within the long terminal repeat (LTR) U3 region that is highly conserved in whole clade. Then, we screened out one pair of ZFN and named it as ZFN-U3. We discovered that ZFN-U3 can exactly target and eliminate the full-length HIV-1 proviral DNA after the infected human cell lines treated with it, and the frequency of its excision was about 30 % without cytotoxicity. These results prove that ZFN-U3 can efficiently excise integrated HIV-1 from the human genome in infected cells. This method to delete full length HIV-1 in human genome can therefore provide a novel approach to cure HIV-infected individuals in the future.

  2. Loop propensity of the sequence YKGQP from staphylococcal nuclease: implications for the folding of nuclease.

    PubMed

    Patel, Sunita; Sasidhar, Yellamraju U

    2007-10-01

    Recently we performed molecular dynamics (MD) simulations on the folding of the hairpin peptide DTVKLMYKGQPMTFR from staphylococcal nuclease in explicit water. We found that the peptide folds into a hairpin conformation with native and nonnative hydrogen-bonding patterns. In all the folding events observed in the folding of the hairpin peptide, loop formation involving the region YKGQP was an important event. In order to trace the origins of the loop propensity of the sequence YKGQP, we performed MD simulations on the sequence starting from extended, polyproline II and native type I' turn conformations for a total simulation length of 300 ns, using the GROMOS96 force field under constant volume and temperature (NVT) conditions. The free-energy landscape of the peptide YKGQP shows minima corresponding to loop conformation with Tyr and Pro side-chain association, turn and extended conformational forms, with modest free-energy barriers separating the minima. To elucidate the role of Gly in facilitating loop formation, we also performed MD simulations of the mutated peptide YKAQP (Gly --> Ala mutation) under similar conditions starting from polyproline II conformation for 100 ns. Two minima corresponding to bend/turn and extended conformations were observed in the free-energy landscape for the peptide YKAQP. The free-energy barrier between the minima in the free-energy landscape of the peptide YKAQP was also modest. Loop conformation is largely sampled by the YKGQP peptide, while extended conformation is largely sampled by the YKAQP peptide. We also explain why the YKGQP sequence samples type II turn conformation in these simulations, whereas the sequence as part of the hairpin peptide DTVKLMYKGQPMTFR samples type I' turn conformation both in the X-ray crystal structure and in our earlier simulations on the folding of the hairpin peptide. We discuss the implications of our results to the folding of the staphylococcal nuclease. Copyright (c) 2007 European Peptide

  3. USSR Space Life Sciences Digest. Index to issues 1-4

    NASA Technical Reports Server (NTRS)

    Teeter, R.; Hooke, L. R.

    1986-01-01

    This document is an index to issues 1 to 4 of the USSR Space Life Sciences Digest and is arranged in three sections. In section 1, abstracts from the first four issues are grouped according to subject; please note the four letter codes in the upper right hand corner of the pages. Section 2 lists the categories according to which digest entries are grouped and cites additional entries relevant to that category by four letter code and entry number in section 1. Refer to section 1 for titles and other pertinent information. Key words are indexed in section 3.

  4. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing.

    PubMed

    Miyaoka, Yuichiro; Berman, Jennifer R; Cooper, Samantha B; Mayerl, Steven J; Chan, Amanda H; Zhang, Bin; Karlin-Neumann, George A; Conklin, Bruce R

    2016-03-31

    Precise genome-editing relies on the repair of sequence-specific nuclease-induced DNA nicking or double-strand breaks (DSBs) by homology-directed repair (HDR). However, nonhomologous end-joining (NHEJ), an error-prone repair, acts concurrently, reducing the rate of high-fidelity edits. The identification of genome-editing conditions that favor HDR over NHEJ has been hindered by the lack of a simple method to measure HDR and NHEJ directly and simultaneously at endogenous loci. To overcome this challenge, we developed a novel, rapid, digital PCR-based assay that can simultaneously detect one HDR or NHEJ event out of 1,000 copies of the genome. Using this assay, we systematically monitored genome-editing outcomes of CRISPR-associated protein 9 (Cas9), Cas9 nickases, catalytically dead Cas9 fused to FokI, and transcription activator-like effector nuclease at three disease-associated endogenous gene loci in HEK293T cells, HeLa cells, and human induced pluripotent stem cells. Although it is widely thought that NHEJ generally occurs more often than HDR, we found that more HDR than NHEJ was induced under multiple conditions. Surprisingly, the HDR/NHEJ ratios were highly dependent on gene locus, nuclease platform, and cell type. The new assay system, and our findings based on it, will enable mechanistic studies of genome-editing and help improve genome-editing technology.

  5. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; comparison of a nitric acid in-bottle digestion procedure to other whole-water digestion procedures

    USGS Publications Warehouse

    Garbarino, John R.; Hoffman, Gerald L.

    1999-01-01

    A hydrochloric acid in-bottle digestion procedure is used to partially digest wholewater samples prior to determining recoverable elements by various analytical methods. The use of hydrochloric acid is problematic for some methods of analysis because of spectral interference. The inbottle digestion procedure has been modified to eliminate such interference by using nitric acid instead of hydrochloric acid in the digestion. Implications of this modification are evaluated by comparing results for a series of synthetic whole-water samples. Results are also compared with those obtained by using U.S. Environmental Protection Agency (1994) (USEPA) Method 200.2 total-recoverable digestion procedure. Percentage yields that use the nitric acid inbottle digestion procedure are within 10 percent of the hydrochloric acid in-bottle yields for 25 of the 26 elements determined in two of the three synthetic whole-water samples tested. Differences in percentage yields for the third synthetic whole-water sample were greater than 10 percent for 16 of the 26 elements determined. The USEPA method was the most rigorous for solubilizing elements from particulate matter in all three synthetic whole-water samples. Nevertheless, the variability in the percentage yield by using the USEPA digestion procedure was generally greater than the in-bottle digestion procedure, presumably because of the difficulty in controlling the digestion conditions accurately.

  6. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci.

    PubMed

    Canver, Matthew C; Lessard, Samuel; Pinello, Luca; Wu, Yuxuan; Ilboudo, Yann; Stern, Emily N; Needleman, Austen J; Galactéros, Frédéric; Brugnara, Carlo; Kutlar, Abdullah; McKenzie, Colin; Reid, Marvin; Chen, Diane D; Das, Partha Pratim; A Cole, Mitchel; Zeng, Jing; Kurita, Ryo; Nakamura, Yukio; Yuan, Guo-Cheng; Lettre, Guillaume; Bauer, Daniel E; Orkin, Stuart H

    2017-04-01

    Cas9-mediated, high-throughput, saturating in situ mutagenesis permits fine-mapping of function across genomic segments. Disease- and trait-associated variants identified in genome-wide association studies largely cluster at regulatory loci. Here we demonstrate the use of multiple designer nucleases and variant-aware library design to interrogate trait-associated regulatory DNA at high resolution. We developed a computational tool for the creation of saturating-mutagenesis libraries with single or multiple nucleases with incorporation of variants. We applied this methodology to the HBS1L-MYB intergenic region, which is associated with red-blood-cell traits, including fetal hemoglobin levels. This approach identified putative regulatory elements that control MYB expression. Analysis of genomic copy number highlighted potential false-positive regions, thus emphasizing the importance of off-target analysis in the design of saturating-mutagenesis experiments. Together, these data establish a widely applicable high-throughput and high-resolution methodology to identify minimal functional sequences within large disease- and trait-associated regions.

  7. Prognostic value of long noncoding RNA MALAT1 in digestive system malignancies.

    PubMed

    Zhai, Hui; Li, Xiao-Mei; Maimaiti, Ailifeire; Chen, Qing-Jie; Liao, Wu; Lai, Hong-Mei; Liu, Fen; Yang, Yi-Ning

    2015-01-01

    MALAT1, a newly discovered long noncoding RNA (lncRNA), has been reported to be highly expressed in many types of cancers. This meta-analysis summarizes its potential prognostic value in digestive system malignancies. A quantitative meta-analysis was performed through a systematic search in PubMed, Cochrane Library, Web of Science and Chinese National Knowledge Infrastructure (CNKI) for eligible papers on the prognostic impact of MALAT1 in digestive system malignancies from inception to Apr. 25, 2015. Pooled hazard ratios (HRs) with 95% confidence interval (95% CI) were calculated to summarize the effect. Five studies were included in the study, with a total of 527 patients. A significant association was observed between MALAT1 abundance and poor overall survival (OS) of patients with digestive system malignancies, with pooled hazard ratio (HR) of 7.68 (95% confidence interval [CI]: 4.32-13.66, P<0.001). Meta sensitivity analysis suggested the reliability of our findings. No publication bias was observed. MALAT1 abundance may serve as a novel predictive factor for poor prognosis in patients with digestive system malignancies.

  8. Pyrosequencing of mcrA and Archaeal 16S rRNA Genes Reveals Diversity and Substrate Preferences of Methanogen Communities in Anaerobic Digesters

    PubMed Central

    Wilkins, David; Lu, Xiao-Ying; Shen, Zhiyong; Chen, Jiapeng

    2014-01-01

    Methanogenic archaea play a key role in biogas-producing anaerobic digestion and yet remain poorly taxonomically characterized. This is in part due to the limitations of low-throughput Sanger sequencing of a single (16S rRNA) gene, which in the past may have undersampled methanogen diversity. In this study, archaeal communities from three sludge digesters in Hong Kong and one wastewater digester in China were examined using high-throughput pyrosequencing of the methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Methanobacteriales, Methanomicrobiales, and Methanosarcinales were detected in each digester, indicating that both hydrogenotrophic and acetoclastic methanogenesis was occurring. Two sludge digesters had similar community structures, likely due to their similar design and feedstock. Taxonomic classification of the mcrA genes suggested that these digesters were dominated by acetoclastic methanogens, particularly Methanosarcinales, while the other digesters were dominated by hydrogenotrophic Methanomicrobiales. The proposed euryarchaeotal order Methanomassiliicoccales and the uncultured WSA2 group were detected with the 16S rRNA gene, and potential mcrA genes for these groups were identified. 16S rRNA gene sequencing also recovered several crenarchaeotal groups potentially involved in the initial anaerobic digestion processes. Overall, the two genes produced different taxonomic profiles for the digesters, while greater methanogen richness was detected using the mcrA gene, supporting the use of this functional gene as a complement to the 16S rRNA gene to better assess methanogen diversity. A significant positive correlation was detected between methane production and the abundance of mcrA transcripts in digesters treating sludge and wastewater samples, supporting the mcrA gene as a biomarker for methane yield. PMID:25381241

  9. Cloning and Expression of the Erwinia carotovora subsp. carotovora Gene Encoding the Low-Molecular-Weight Bacteriocin Carocin S1

    PubMed Central

    Chuang, Duen-yau; Chien, Yung-chei; Wu, Huang-Pin

    2007-01-01

    The purpose of this study was to clone the carocin S1 gene and express it in a non-carocin-producing strain of Erwinia carotovora. A mutant, TH22-10, which produced a high-molecular-weight bacteriocin but not a low-molecular-weight bacteriocin, was obtained by Tn5 insertional mutagenesis using H-rif-8-2 (a spontaneous rifampin-resistant mutant of Erwinia carotovora subsp. carotovora 89-H-4). Using thermal asymmetric interlaced PCR, the DNA sequence from the Tn5 insertion site and the DNA sequence of the contiguous 2,280-bp region were determined. Two complete open reading frames (ORF), designated ORF2 and ORF3, were identified within the sequence fragment. ORF2 and ORF3 were identified with the carocin S1 genes, caroS1K (ORF2) and caroS1I (ORF3), which, respectively, encode a killing protein (CaroS1K) and an immunity protein (CaroS1I). These genes were homologous to the pyocin S3 gene and the pyocin AP41 gene. Carocin S1 was expressed in E. carotovora subsp. carotovora Ea1068 and replicated in TH22-10 but could not be expressed in Escherichia coli (JM101) because a consensus sequence resembling an SOS box was absent. A putative sequence similar to the consensus sequence for the E. coli cyclic AMP receptor protein binding site (−312 bp) was found upstream of the start codon. Production of this bacteriocin was also induced by glucose and lactose. The homology search results indicated that the carocin S1 gene (between bp 1078 and bp 1704) was homologous to the pyocin S3 and pyocin AP41 genes in Pseudomonas aeruginosa. These genes encode proteins with nuclease activity (domain 4). This study found that carocin S1 also has nuclease activity. PMID:17071754

  10. Transcriptional mapping of the ribosomal RNA region of mouse L-cell mitochondrial DNA.

    PubMed Central

    Nagley, P; Clayton, D A

    1980-01-01

    The map positions in mouse mitochondrial DNA of the two ribosomal RNA genes and adjacent genes coding several small transcripts have been determined precisely by application of a procedure in which DNA-RNA hybrids have been subjected to digestion by S1 nuclease under conditions of varying severity. Digestion of the DNA-RNA hybrids with S1 nuclease yielded a series of species which were shown to contain ribosomal RNA molecules together with adjacent transcripts hybridized conjointly to a continuous segment of mitochondrial DNA. There is one small transcript about 60 bases long whose gene adjoins the sequences coding the 5'-end of the small ribosomal RNA (950 bases) and which lies approximately 200 nucleotides from the D-loop origin of heavy strand mitochondrial DNA synthesis. An 80-base transcript lies between the small and large ribosomal RNA genes, and genes for two further short transcript (each about 80 bases in length) abut the sequences coding the 3'-end of the large ribosomal RNA (approximately 1500 bases). The ability to isolate a discrete DNA-RNA hybrid species approximately 2700 base pairs in length containing all these transcripts suggests that there can be few nucleotides in this region of mouse mitochondrial DNA which are not represented as stable RNA species. Images PMID:6253898

  11. Design of nuclease-based target recycling signal amplification in aptasensors.

    PubMed

    Yan, Mengmeng; Bai, Wenhui; Zhu, Chao; Huang, Yafei; Yan, Jiao; Chen, Ailiang

    2016-03-15

    Compared with conventional antibody-based immunoassay methods, aptasensors based on nucleic acid aptamer have made at least two significant breakthroughs. One is that aptamers are more easily used for developing various simple and rapid homogeneous detection methods by "sample in signal out" without multi-step washing. The other is that aptamers are more easily employed for developing highly sensitive detection methods by using various nucleic acid-based signal amplification approaches. As many substances playing regulatory roles in physiology or pathology exist at an extremely low concentration and many chemical contaminants occur in trace amounts in food or environment, aptasensors for signal amplification contribute greatly to detection of such targets. Among the signal amplification approaches in highly sensitive aptasensors, the nuclease-based target recycling signal amplification has recently become a research focus because it shows easy design, simple operation, and rapid reaction and can be easily developed for homogenous assay. In this review, we summarized recent advances in the development of various nuclease-based target recycling signal amplification with the aim to provide a general guide for the design of aptamer-based ultrasensitive biosensing assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Biogas production generated through continuous digestion of natural and cultivated seaweeds with dairy slurry.

    PubMed

    Tabassum, Muhammad Rizwan; Wall, David M; Murphy, Jerry D

    2016-11-01

    The technical feasibility of long term anaerobic mono-digestion of two brown seaweeds, and co-digestion of both seaweeds with dairy slurry was investigated whilst increasing the organic loading rate (OLR). One seaweed was natural (L. digitata); the second seaweed (S. Latissima) was cultivated. Higher proportions of L. digitata in co-digestion (66.6%) allowed the digester to operate more efficiently (OLR of 5kgVSm(-3)d(-1) achieving a specific methane yield (SMY) of 232LCH4kg(-1)VS) as compared to lower proportions (33.3%). Co-digestion of 66.6% cultivated S. latissima, with dairy slurry allowed a higher SMY of 252LCH4kg(-1)VS but at a lower OLR of 4kgVSm(-3)d(-1). Optimum conditions for mono-digestion of both seaweeds were effected at 4kgVSm(-3)d(-1). Chloride concentrations increased to high levels in the digestion of both seaweeds but were not detrimental to operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Does viscosity or structure govern the rate at which starch granules are digested?

    PubMed

    Hardacre, Allan K; Lentle, Roger G; Yap, Sia-Yen; Monro, John A

    2016-01-20

    The rates of in vitro digestion of incompletely or fully gelatinised potato and corn starch were measured at 37 °C over 20 min in a rheometer fitted with cup and vane geometry at shear rates of 0.1, 1 and 10 s(-1). Shear rate did not influence the rate of starch digestion provided it was close to physiological levels. However, rates of digestion were significantly reduced when shear rates were below the physiological range (0.1 s(-1)) or when gelatinisation was incomplete. At physiological shear rates the relationship between starch digestion and viscosity was sigmoid in form and following a short initial slow phase a rapid decline in viscosity occurred as starch was digested and the structural integrity of the granules was lost. Conversely, when shear rate was reduced below physiological levels or gelatinisation was incomplete, digestion was hindered, granule integrity was maintained and the relationship between starch and viscosity became linear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Developmental expression and distribution of nesfatin-1/NUCB2 in the canine digestive system.

    PubMed

    Jiang, Shudong; Zhou, Weijuan; Zhang, Xingwang; Wang, Dengfeng; Zhu, Hui; Hong, Meizhen; Gong, Yajing; Ye, Jing; Fang, Fugui

    2016-03-01

    Nesfatin-1/NUCB2 is a neuropeptide that plays important roles in regulating food intake and energy homeostasis. The distribution of nesfatin-1/NUCB2 protein and mRNA has not been investigated in the canine digestive system. The present study was conducted to evaluate the expression of nesfatin-1/NUCB2 protein and NUCB2 mRNA in the canine digestive organs (esophagus, stomach, duodenum, jejunum, ileum, cecum, colon, rectum, liver and pancreas). The tissues of the digestive system were collected from dogs at different developmental stages (infantile, juvenile, pubertal and adult). Nesfatin-1/NUCB2 protein localization in the organs of adult dogs was detected by immunohistochemistry. The expression of NUCB2 mRNA at the four developmental stages was analyzed by real-time fluorescence quantitative PCR (qRT-PCR). Nesfatin-1/NUCB2 protein was distributed in the fundic gland region of the stomach, and the islet area and exocrine portions of the pancreas. However, NUCB2 mRNA was found in all digestive organs, although the expression levels in the pancreas and stomach were higher than those in liver, duodenum and other digestive tract tissues (P<0.05) at the four different developmental stages of the dogs. In this study, nesfatin-1/NUCB2 was found to be present at high levels in the stomach and pancreas at both the protein and mRNA levels; however, NUCB2 expression was found at lower levels in all of the digestive organs. These findings provide the basis of further investigations to elucidate the functions of nefatin-1 in the canine digestive system. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Food waste co-digestion with slaughterhouse waste and sewage sludge: Digestate conditioning and supernatant quality.

    PubMed

    Borowski, Sebastian; Boniecki, Paweł; Kubacki, Przemysław; Czyżowska, Agata

    2018-04-01

    In this study, the anaerobic mesophilic co-digestion of food waste (FW) with municipal sewage sludge (MSS) and slaughterhouse waste (SHW) was undertaken in 3-dm 3 laboratory reactors as well as in 50-dm 3 reactors operated in semi-continuous conditions. The highest methane yield of around 0.63 m 3 CH 4 /kgVS fed was achieved for the mixture of FW and SHW treated in the laboratory digester operated at solids retention time (SRT) of 30 days, whereas the co-digestion of FW with MSS under similar operating conditions produced 0.46 m 3 of methane from 1 kgVS fed . No significant differences between methane yields from laboratory digesters and large-scale reactors were reported. The conditioning tests with the digestates from reactor experiments revealed the highest efficiency of inorganic coagulants among all investigated chemicals, which applied in a dose of 10 g/kg allowed to reduce capiliary suction time (CST) of the digestate below 20 s. The combined conditioning with coagulants and bentonite did not further reduce the CST value but improved the quality of the digestate supernatant. In particular, the concentrations of suspended solids, COD as well as metals in the supernatant were considerably lowered. Copyright © 2017. Published by Elsevier Ltd.

  16. Genome Editing in Mouse Spermatogonial Stem/Progenitor Cells Using Engineered Nucleases

    PubMed Central

    Fanslow, Danielle A.; Wirt, Stacey E.; Barker, Jenny C.; Connelly, Jon P.; Porteus, Matthew H.; Dann, Christina Tenenhaus

    2014-01-01

    Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse “GS” (germline stem) cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro. PMID:25409432

  17. Digestibility and antigenicity of β-lactoglobulin as affected by heat, pH and applied shear.

    PubMed

    Rahaman, Toheder; Vasiljevic, Todor; Ramchandran, Lata

    2017-02-15

    Processing induced conformational changes can modulate digestibility of food allergens and thereby their antigenicity. Effect of different pH (3, 5, 7), temperature (room temperature, 120°C) and shear (0s(-1), 1000s(-1)) on simulated gastrointestinal digestibility of β-lg and post digestion antigenic characteristics have been studied. At all pH levels unheated β-lg showed resistance to peptic digestion with high antigenic value while it was fairly susceptible to pancreatin with moderate reduction in antigenicity. Heating at 120°C significantly improved both peptic and pancreatic digestion attributed to structural alterations that resulted in much lower antigenicity; the level of reduction being pH dependant. The lowest antigenicity was recorded at pH 5. Shearing (1000s(-1)) had a minor impact reducing digestibility and thereby enhancing antigenicity of unheated β-lg at pH 5 and 7 slightly; however in conjunction with heating (120°C) it reduced antigenicity further irrespective of the pH. Overall, treatment at pH 5, 120°C and 1000s(-1) could potentially reduce post digestion antigenicity of β-lg. Copyright © 2016. Published by Elsevier Ltd.

  18. Prognostic value of long noncoding RNA MALAT1 in digestive system malignancies

    PubMed Central

    Zhai, Hui; Li, Xiao-Mei; Maimaiti, Ailifeire; Chen, Qing-Jie; Liao, Wu; Lai, Hong-Mei; Liu, Fen; Yang, Yi-Ning

    2015-01-01

    Background: MALAT1, a newly discovered long noncoding RNA (lncRNA), has been reported to be highly expressed in many types of cancers. This meta-analysis summarizes its potential prognostic value in digestive system malignancies. Methods: A quantitative meta-analysis was performed through a systematic search in PubMed, Cochrane Library, Web of Science and Chinese National Knowledge Infrastructure (CNKI) for eligible papers on the prognostic impact of MALAT1 in digestive system malignancies from inception to Apr. 25, 2015. Pooled hazard ratios (HRs) with 95% confidence interval (95% CI) were calculated to summarize the effect. Results: Five studies were included in the study, with a total of 527 patients. A significant association was observed between MALAT1 abundance and poor overall survival (OS) of patients with digestive system malignancies, with pooled hazard ratio (HR) of 7.68 (95% confidence interval [CI]: 4.32-13.66, P<0.001). Meta sensitivity analysis suggested the reliability of our findings. No publication bias was observed. Conclusions: MALAT1 abundance may serve as a novel predictive factor for poor prognosis in patients with digestive system malignancies. PMID:26770406

  19. The prognostic significance of UCA1 for predicting clinical outcome in patients with digestive system malignancies

    PubMed Central

    Zhu, Zheng-Ming

    2017-01-01

    Background Urothelial Carcinoma Associated 1 (UCA1) was an originally identified lncRNA in bladder cancer. Previous studies have reported that UCA1 played a significant role in various types of cancer. This study aimed to clarify the prognostic value of UCA1 in digestive system cancers. Results The meta-analysis of 15 studies were included, comprising 1441 patients with digestive system cancers. The pooled results of 14 studies indicated that high expression of UCA1 was significantly associated with poorer OS in patients with digestive system cancers (HR: 1.89, 95 % CI: 1.52–2.26). In addition, UCA1 could be as an independent prognostic factor for predicting OS of patients (HR: 1.85, 95 % CI: 1.45–2.25). The pooled results of 3 studies indicated a significant association between UCA1 and DFS in patients with digestive system cancers (HR = 2.50; 95 % CI = 1.30–3.69). Statistical significance was also observed in subgroup meta-analysis. Furthermore, the clinicopathological values of UCA1 were discussed in esophageal cancer, colorectal cancer and pancreatic cancer. Materials and methods A comprehensive retrieval was performed to search studies evaluating the prognostic value of UCA1 in digestive system cancers. Many databases were involved, including PubMed, Web of Science, Embase and Chinese National Knowledge Infrastructure and Wanfang database. Quantitative meta-analysis was performed with standard statistical methods and the prognostic significance of UCA1 in digestive system cancers was qualified. Conclusions Elevated level of UCA1 indicated the poor clinical outcome for patients with digestive system cancers. It may serve as a new biomarker related to prognosis in digestive system cancers. PMID:28380443

  20. The prognostic significance of UCA1 for predicting clinical outcome in patients with digestive system malignancies.

    PubMed

    Liu, Fang-Teng; Dong, Qing; Gao, Hui; Zhu, Zheng-Ming

    2017-06-20

    Urothelial Carcinoma Associated 1 (UCA1) was an originally identified lncRNA in bladder cancer. Previous studies have reported that UCA1 played a significant role in various types of cancer. This study aimed to clarify the prognostic value of UCA1 in digestive system cancers. The meta-analysis of 15 studies were included, comprising 1441 patients with digestive system cancers. The pooled results of 14 studies indicated that high expression of UCA1 was significantly associated with poorer OS in patients with digestive system cancers (HR: 1.89, 95 % CI: 1.52-2.26). In addition, UCA1 could be as an independent prognostic factor for predicting OS of patients (HR: 1.85, 95 % CI: 1.45-2.25). The pooled results of 3 studies indicated a significant association between UCA1 and DFS in patients with digestive system cancers (HR = 2.50; 95 % CI = 1.30-3.69). Statistical significance was also observed in subgroup meta-analysis. Furthermore, the clinicopathological values of UCA1 were discussed in esophageal cancer, colorectal cancer and pancreatic cancer. A comprehensive retrieval was performed to search studies evaluating the prognostic value of UCA1 in digestive system cancers. Many databases were involved, including PubMed, Web of Science, Embase and Chinese National Knowledge Infrastructure and Wanfang database. Quantitative meta-analysis was performed with standard statistical methods and the prognostic significance of UCA1 in digestive system cancers was qualified. Elevated level of UCA1 indicated the poor clinical outcome for patients with digestive system cancers. It may serve as a new biomarker related to prognosis in digestive system cancers.

  1. Digested disorder

    PubMed Central

    DeForte, Shelly; Reddy, Krishna D; Uversky, Vladimir N

    2013-01-01

    The current literature on intrinsically disordered proteins is overwhelming. To keep interested readers up to speed with this literature, we continue a “Digested Disorder” project and represent a series of reader’s digest type articles objectively representing the research papers and reviews on intrinsically disordered proteins. The only 2 criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the period of April, May, and June of 2013. The papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings. PMID:28516028

  2. [Correlation analysis of G870A CCND1 gene polymorphism with digestive system tumors].

    PubMed

    Yang, Shu-Min; Shi, Ya-Lin

    2016-11-20

    To study the correlation of G870A CCND1 gene polymorphism and digestive system tumors. From August 2010 to August 2014, 164 digestive system cancer patients (including 82 patients with gastric cancer and 82 with colorectal cancer) and 82 healthy subjects (control group) were examined with PCR-restriction fragment length polymorphism (PCR-RFLP). The distribution of CCND1 gene G870A frequency in the 3 groups and its association with tumor staging and grading were analyzed. The frequencies of the GG, GA and AA genotypes in G870A CCND1 gene loci in patients with gastric cancer and colorectal cancer differed significantly from those in the control group (P<0.05). G870A CCND1 gene polymorphism was closely associated with an increased risk of digestive system tumors (P<0.05). The GA and AA genotypes were associated with a significantly higher risk of digestive system cancer risk than the GG genotype (P<0.05), and their frequencies were significantly higher in patients with tumors of higher pathological grade and in those in advanced tumor stages (P<0.05). G870A CCND1 gene polymorphism is associated with the risk of digestive system tumors. The allele A is associated with an increased risk of digestive system tumors and correlated with the tumor differentiation and staging of the tumor.

  3. Characterization of the human SNM1A and SNM1B/Apollo DNA repair exonucleases.

    PubMed

    Sengerová, Blanka; Allerston, Charles K; Abu, Mika; Lee, Sook Y; Hartley, Janet; Kiakos, Konstantinos; Schofield, Christopher J; Hartley, John A; Gileadi, Opher; McHugh, Peter J

    2012-07-27

    Human SNM1A and SNM1B/Apollo have both been implicated in the repair of DNA interstrand cross-links (ICLs) by cellular studies, and SNM1B is also required for telomere protection. Here, we describe studies on the biochemical characterization of the SNM1A and SNM1B proteins. The results reveal some fundamental differences in the mechanisms of the two proteins. Both SNM1A and SNM1B digest double-stranded and single-stranded DNA with a 5'-to-3' directionality in a reaction that is stimulated by divalent cations, and both nucleases are inhibited by the zinc chelator o-phenanthroline. We find that SNM1A has greater affinity for single-stranded DNA over double-stranded DNA that is not observed with SNM1B. Although both proteins demonstrate a low level of processivity on low molecular weight DNA oligonucleotide substrates, when presented with high molecular weight DNA, SNM1A alone is rendered much more active, being capable of digesting kilobase-long stretches of DNA. Both proteins can digest past ICLs induced by the non-distorting minor groove cross-linking agent SJG-136, albeit with SNM1A showing a greater capacity to achieve this. This is consistent with the proposal that SNM1A and SNM1B might exhibit some redundancy in ICL repair. Together, our work establishes differences in the substrate selectivities of SNM1A and SNM1B that are likely to be relevant to their in vivo roles and which might be exploited in the development of selective inhibitors.

  4. Multiplexed screening assay for mRNA combining nuclease protection with luminescent array detection.

    PubMed

    Martel, Ralph R; Botros, Ihab W; Rounseville, Matthew P; Hinton, James P; Staples, Robin R; Morales, David A; Farmer, John B; Seligmann, Bruce E

    2002-11-01

    The principles and performance are described for the ArrayPlate mRNA assay, a multiplexed mRNA assay for high-throughput and high-content screening and drug development. THP-1 monocytes grown and subjected to compound treatments in 96-well plates were subjected to a multiplexed nuclease protection assay in situ. The nuclease protection assay destroyed all cell-derived mRNA, but left intact stoichiometric amounts of 16 target-specific oligonucleotide probes. Upon transfer of processed cell lysates to a microplate that contained a 16-element oligonucleotide array at the bottom of each well, the various probe species were separated by immobilization at predefined elements of the array. Quantitative detection of array-bound probes was by enzyme-mediated chemiluminescence. A high-resolution charge-coupled device imager was used for the simultaneous readout of all 1536 array elements in a 96-well plate. For the measurement of 16 genes in samples of 25000 cells, the average standard deviation from well to well within a plate was 8.6% of signal intensity and was 10.8% from plate to plate. Assay response was linear and reproducibility was constant for all detected genes in samples ranging from 1000 to 50000 cells. When THP-1 monocytes were differentiated with phorbol ester and subsequently activated with bacterial lipopolysaccharide that contained different concentrations of dexamethasone, dose-dependent effects of dexamethasone on the mRNA levels of several genes were observed.

  5. Nuclease footprint analyses of the interactions between RNase P ribozyme and a model mRNA substrate.

    PubMed Central

    Trang, P; Hsu, A W; Liu, F

    1999-01-01

    RNase P ribozyme cleaves an RNA helix substrate which resembles the acceptor stem and T-stem structures of its natural tRNA substrate. By linking the ribozyme covalently to a sequence (guide sequence) complementary to a target RNA, the catalytic RNA can be converted into a sequence-specific ribozyme, M1GS RNA. We have previously shown that M1GS RNA can efficiently cleave the mRNA sequence encoding thymidine kinase (TK) of herpes simplex virus 1. In this study, a footprint procedure using different nucleases was carried out to map the regions of a M1GS ribozyme that potentially interact with the TK mRNA substrate. The ribozyme regions that are protected from nuclease degradation in the presence of the TK mRNA substrate include those that interact with the acceptor stem and T-stem, the 3' terminal CCA sequence and the cleavage site of a tRNA substrate. However, some of the protected regions (e.g. P13 and P14) are unique and not among those protected in the presence of a tRNA substrate. Identification of the regions that interact with a mRNA substrate will allow us to study how M1GS RNA recognizes a mRNA substrate and facilitate the development of mRNA-cleaving ribozymes for gene-targeting applications. PMID:10556315

  6. An Intracellular Peptidyl-Prolyl cis/trans Isomerase Is Required for Folding and Activity of the Staphylococcus aureus Secreted Virulence Factor Nuclease.

    PubMed

    Wiemels, Richard E; Cech, Stephanie M; Meyer, Nikki M; Burke, Caleb A; Weiss, Andy; Parks, Anastacia R; Shaw, Lindsey N; Carroll, Ronan K

    2017-01-01

    Staphylococcus aureus is an important human pathogen that relies on a large repertoire of secreted and cell wall-associated proteins for pathogenesis. Consequently, the ability of the organism to cause disease is absolutely dependent on its ability to synthesize and successfully secrete these proteins. In this study, we investigate the role of peptidyl-prolyl cis/trans isomerases (PPIases) on the activity of the S. aureus secreted virulence factor nuclease (Nuc). We identify a staphylococcal cyclophilin-type PPIase (PpiB) that is required for optimal activity of Nuc. Disruption of ppiB results in decreased nuclease activity in culture supernatants; however, the levels of Nuc protein are not altered, suggesting that the decrease in activity results from misfolding of Nuc in the absence of PpiB. We go on to demonstrate that PpiB exhibits PPIase activity in vitro, is localized to the bacterial cytosol, and directly interacts with Nuc in vitro to accelerate the rate of Nuc refolding. Finally, we demonstrate an additional role for PpiB in S. aureus hemolysis and demonstrate that the S. aureus parvulin-type PPIase PrsA also plays a role in the activity of secreted virulence factors. The deletion of prsA leads to a decrease in secreted protease and phospholipase activity, similar to that observed in other Gram-positive pathogens. Together, these results demonstrate, for the first time to our knowledge, that PPIases play an important role in the secretion of virulence factors in S. aureus IMPORTANCE: Staphylococcus aureus is a highly dangerous bacterial pathogen capable of causing a variety of infections throughout the human body. The ability of S. aureus to cause disease is largely due to an extensive repertoire of secreted and cell wall-associated proteins, including adhesins, toxins, exoenzymes, and superantigens. These virulence factors, once produced, are typically transported across the cell membrane by the secretory (Sec) system in a denatured state. Consequently

  7. A meta-analysis of feed digestion in dairy cows. 1. The effects of forage and concentrate factors on total diet digestibility.

    PubMed

    Nousiainen, J; Rinne, M; Huhtanen, P

    2009-10-01

    quadratically improved OMD(p) in cows, with the response being mostly due to improved NDF digestibility. Replacement of starchy concentrates with fibrous by-products slightly decreased OMD(p) but tended to improve NDF digestibility. The true digestibility of cell solubles (OM - NDF) estimated by the Lucas test both from all data and from the data subsets was not significantly different from 1.00, suggesting that responses in OMD(p) of dairy cows are mediated through changes in the concentration and digestibility of NDF.

  8. Nanoplasmonic molecular ruler for nuclease activity and DNA footprinting

    DOEpatents

    Chen, Fanqing Frank; Liu, Gang L; Lee, Luke P

    2013-10-29

    This invention provides a nanoplasmonic molecular ruler, which can perform label-free and real-time monitoring of nucleic acid (e.g., DNA) length changes and perform nucleic acid footprinting. In various embodiments the ruler comprises a nucleic acid attached to a nanoparticle, such that changes in the nucleic acid length are detectable using surface plasmon resonance. The nanoplasmonic ruler provides a fast and convenient platform for mapping nucleic acid-protein interactions, for nuclease activity monitoring, and for other footprinting related methods.

  9. A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer

    DTIC Science & Technology

    2014-04-01

    the Fanconi Anemia Pathway- Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer PRINCIPAL INVESTIGATOR...GRANT NUMBER 4. TITLE AND SUBTITLE A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fanconi anemia is the most prevalent inherited BMF syndromes, caused by mutations in

  10. Digested disorder

    PubMed Central

    Reddy, Krishna D; DeForte, Shelly; Uversky, Vladimir N

    2014-01-01

    The current literature on intrinsically disordered proteins grows fast. To keep interested readers up to speed with this literature, we continue a “Digested Disorder” project and represent a new issue of reader’s digest of the research papers and reviews on intrinsically disordered proteins. The only 2 criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the third quarter of 2013; i.e., during the period of June, July, and September of 2013. Similar to previous issues, the papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings. PMID:28232877

  11. Electroactive chitosan nanoparticles for the detection of single-nucleotide polymorphisms using peptide nucleic acids.

    PubMed

    Kerman, Kagan; Saito, Masato; Tamiya, Eiichi

    2008-08-01

    Here we report an electrochemical biosensor that would allow for simple and rapid analysis of nucleic acids in combination with nuclease activity on nucleic acids and electroactive bionanoparticles. The detection of single-nucleotide polymorphisms (SNPs) using PNA probes takes advantage of the significant structural and physicochemical differences between the full hybrids and SNPs in PNA/DNA and DNA/DNA duplexes. Ferrocene-conjugated chitosan nanoparticles (Chi-Fc) were used as the electroactive indicator of hybridization. Chi-Fc had no affinity towards the neutral PNA probe immobilized on a gold electrode (AuE) surface. When the PNA probe on the electrode surface hybridized with a full-complementary target DNA, Chi-Fc electrostatically attached to the negatively-charged phosphate backbone of DNA on the surface and gave rise to a high electrochemical oxidation signal from ferrocene at approximately 0.30 V. Exposing the surface to a single-stranded DNA specific nuclease, Nuclease S1, was found to be very effective for removing the nonspecifically adsorbed SNP DNA. An SNP in the target DNA to PNA made it susceptible to the enzymatic digestion. After the enzymatic digestion and subsequent exposure to Chi-Fc, the presence of SNPs was determined by monitoring the changes in the electrical current response of Chi-Fc. The method provided a detection limit of 1 fM (S/N = 3) for the target DNA oligonucleotide. Additionally, asymmetric PCR was employed to detect the presence of genetically modified organism (GMO) in standard Roundup Ready soybean samples. PNA-mediated PCR amplification of real DNA samples was performed to detect SNPs related to alcohol dehydrogenase (ALDH). Chitosan nanoparticles are promising biomaterials for various analytical and pharmaceutical applications.

  12. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions.

    PubMed

    Zhang, Yang; Piccard, Sarah; Zhou, Wen

    2015-11-01

    The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Health Problems among Migrant Farmworkers' Children in the U.S. ERIC Digest.

    ERIC Educational Resources Information Center

    Huang, Gary

    Good health directly affects the educational performance of migrant children. However, there is little nationwide, accurate information on the health status of migrant farmworkers, and even less on their children. This digest summarizes recent information on migrant children's health status. Compared to all U.S. children, migrant children have a…

  14. Structural aspects of digestion of medium chain triglycerides studied in real time using sSAXS and Cryo-TEM.

    PubMed

    Phan, Stephanie; Hawley, Adrian; Mulet, Xavier; Waddington, Lynne; Prestidge, Clive A; Boyd, Ben J

    2013-12-01

    The purpose of this study was to investigate the colloidal structures formed on digestion of medium chain triglyceride (MCT) with a specific objective of identifying and characterizing a previously reported vesicular phase, which has been linked to supersaturation and anomalous digestion kinetics, and to evaluate the influence of lipid mass and enzyme inhibition on self assembled structure. MCT was digested in vitro and nanostructure was monitored in real time using synchrotron small angle X-ray scattering (sSAXS), and morphology was studied using cryogenic transmission electron microscopy (cryo-TEM). Formation of the putative vesicular phase formed on digestion of MCT was confirmed and its structural attributes were determined. Vesicle formation was dependent on lipid mass and bile salt concentration. The use of enzyme inhibitor for offline analysis of lipolysis samples did influence structural aspects of the digestion medium when compared to real time evaluation. The formation of a vesicular phase was directly linked to the kinetics of lipid digestion. Vesicle formation is linked to lipid mass, or more specifically the ratio of lipid to bile salts present in the digestion mixture. Inhibition of lipase to halt digestion during sampling for offline analysis must be done with caution as structural aspects were shown to differ for the MCT digests with and without inhibitor present.

  15. Identification of N-(deoxyguanosin-8-yl)-4-azobiphenyl by (32)P-postlabeling analyses of DNA in human uroepithelial cells exposed to proximate metabolites of the environmental carcinogen 4-aminobiphenyl.

    PubMed

    Hatcher, James F; Swaminathan, Santhanam

    2002-01-01

    DNA adducts formed in human uroepithelial cells (HUC) following exposure to N-hydroxy-4-aminobiphenyl (N-OH-ABP), the proximate metabolite of the human bladder carcinogen 4-aminobiphenyl (ABP), were analyzed by the (32)P-postlabeling method. Two adducts detected by (32)P-postlabeling were previously identified as the 3',5'-bisphospho derivatives of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) and N-(deoxyadenosin-8-yl)-4-aminobiphenyl (dA-C8-ABP) (Frederickson S et al. [1992] Carcinogenesis 13: 955-961; Hatcher and Swaminathan [1995b] Carcinogenesis 16: 295-301). In contrast to the dG-C8-ABP adduct, which was 3'-dephosphorylated by nuclease P1, dA-C8-ABP was resistant to nuclease P1, thus providing an enrichment step before postlabeling. Autoradiography of the two-dimensional thin-layer chromatogram of the postlabeled products obtained following nuclease P1 digestion revealed several minor adducts, one of which has been identified in the present study. Postlabeling analyses following nuclease P1 digestion of the products obtained from the reaction of N-acetoxy-4-aminobiphenyl with deoxyguanosine-3'-monophosphate (dGp) demonstrated the presence of this minor adduct. The 3'-monophosphate derivative of the adduct was subsequently chromatographically purified and subjected to spectroscopic analyses. Based on proton NMR and mass spectroscopic analyses of the synthetic product, the chemical structure of the adduct has been identified as N-(deoxyguanosin-N(2)-yl)-4-azobiphenyl (dG-N==N-ABP). (32)P-Postlabeling analysis of the nuclease P1-enriched DNA hydrolysate of HUCs treated with N-OH-ABP or N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP) showed the presence of the dG-N==N-ABP adduct. It was also detected in calf thymus DNA incubated with HUC cytosol and N-OH-ABP in the presence of acetyl-CoA, or incubated with HUC microsomes and N-OH-AABP. These results demonstrate that in the target cells for ABP carcinogenesis in vivo, N-OH-ABP and N-OH-AABP are bioactivated by

  16. Using contaminated plants involved in phytoremediation for anaerobic digestion.

    PubMed

    Cao, Zewei; Wang, Shengxiao; Wang, Ting; Chang, Zhizhou; Shen, Zhenguo; Chen, Yahua

    2015-01-01

    This study investigated the anaerobic digestion capability of five plants and the effects of copper (Cu) and S,S'-ethylenediaminedisuccinic acid (EDDS, a chelator widely used in chelant-assisted phytoremediation) on biogas production to determine a feasible disposal method for plants used in remediation. The results showed that in addition to Phytolacca americana L., plants such as Zea mays L., Brassica napus L., Elsholtzia splendens Nakai ex F. Maekawa, and Oenothera biennis L. performed well in biogas production. Among these, O. biennis required the shortest period to finish anaerobic digestion. Compared to normal plants with low Cu content, the plants used in remediation with increased Cu levels (100 mg kg(-1)) not only promoted anaerobic digestion and required a shorter anaerobic digestion time, but also increased the methane content in biogas. When the Cu content in plants increased to 500, 1000, and 5000 mg kg(-1), the cumulative biogas production decreased by 12.3%, 14.6%, and 41.2%, respectively. Studies also found that EDDS conspicuously restrained biogas production from anaerobic digestion. The results suggest that anaerobic digestion has great potential for the disposal of contaminated plants and may provide a solution for the resource utilization of plants used in remediation.

  17. Use of the heteroduplex mobility assay and cell sorting to select genome sequences of the CCR5 gene in HEK 293T cells edited by transcription activator-like effector nucleases

    PubMed Central

    Nerys-Junior, Arildo; Costa, Lendel C.; Braga-Dias, Luciene P.; Oliveira, Márcia; Rossi, Átila D.; da Cunha, Rodrigo Delvecchio; Gonçalves, Gabriel S.; Tanuri, Amilcar

    2014-01-01

    Engineered nucleases such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) are one of the most promising tools for modifying genomes. These site-specific enzymes cause double-strand breaks that allow gene disruption or gene insertion, thereby facilitating genetic manipulation. The major problem associated with this approach is the labor-intensive procedures required to screen and confirm the cellular modification by nucleases. In this work, we produced a TALEN that targets the human CCR5 gene and developed a heteroduplex mobility assay for HEK 293T cells to select positive colonies for sequencing. This approach provides a useful tool for the quick detection and easy assessment of nuclease activity. PMID:24688299

  18. Use of the heteroduplex mobility assay and cell sorting to select genome sequences of the CCR5 gene in HEK 293T cells edited by transcription activator-like effector nucleases.

    PubMed

    Nerys-Junior, Arildo; Costa, Lendel C; Braga-Dias, Luciene P; Oliveira, Márcia; Rossi, Atila D; da Cunha, Rodrigo Delvecchio; Gonçalves, Gabriel S; Tanuri, Amilcar

    2014-03-01

    Engineered nucleases such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) are one of the most promising tools for modifying genomes. These site-specific enzymes cause double-strand breaks that allow gene disruption or gene insertion, thereby facilitating genetic manipulation. The major problem associated with this approach is the labor-intensive procedures required to screen and confirm the cellular modification by nucleases. In this work, we produced a TALEN that targets the human CCR5 gene and developed a heteroduplex mobility assay for HEK 293T cells to select positive colonies for sequencing. This approach provides a useful tool for the quick detection and easy assessment of nuclease activity.

  19. Biasing genome-editing events toward precise length deletions with an RNA-guided TevCas9 dual nuclease.

    PubMed

    Wolfs, Jason M; Hamilton, Thomas A; Lant, Jeremy T; Laforet, Marcon; Zhang, Jenny; Salemi, Louisa M; Gloor, Gregory B; Schild-Poulter, Caroline; Edgell, David R

    2016-12-27

    The CRISPR/Cas9 nuclease is commonly used to make gene knockouts. The blunt DNA ends generated by cleavage can be efficiently ligated by the classical nonhomologous end-joining repair pathway (c-NHEJ), regenerating the target site. This repair creates a cycle of cleavage, ligation, and target site regeneration that persists until sufficient modification of the DNA break by alternative NHEJ prevents further Cas9 cutting, generating a heterogeneous population of insertions and deletions typical of gene knockouts. Here, we develop a strategy to escape this cycle and bias events toward defined length deletions by creating an RNA-guided dual active site nuclease that generates two noncompatible DNA breaks at a target site, effectively deleting the majority of the target site such that it cannot be regenerated. The TevCas9 nuclease, a fusion of the I-TevI nuclease domain to Cas9, functions robustly in HEK293 cells and generates 33- to 36-bp deletions at frequencies up to 40%. Deep sequencing revealed minimal processing of TevCas9 products, consistent with protection of the DNA ends from exonucleolytic degradation and repair by the c-NHEJ pathway. Directed evolution experiments identified I-TevI variants with broadened targeting range, making TevCas9 an easy-to-use reagent. Our results highlight how the sequence-tolerant cleavage properties of the I-TevI homing endonuclease can be harnessed to enhance Cas9 applications, circumventing the cleavage and ligation cycle and biasing genome-editing events toward defined length deletions.

  20. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process.

    PubMed

    Zhou, Qiying; Jiang, Xia; Li, Xi; Jiang, Wenju

    2016-09-01

    In this study, five kinds of iron ores, limonite, hematite, manganese ore, magnetite and lava rock, were used as the in situ desulfurizers in the anaerobic digestion reactors to investigate their effects on controlling H2S in biogas. The results show that the addition of the five iron ores could significantly control the content of H2S in biogas, with the best performance for limonite. As limonite dosages increase (10-60 g/L), the contents of H2S in biogas were evidently decreased in the digesters with different initial sulfate concentrations (0-1000 mg/L). After the anaerobic digestion, the removed sulfur was mostly deposited on the surface of limonite. A possible mechanism of H2S control in biogas by limonite was proposed preliminarily, including adsorption, FeS precipitation, and Fe (III) oxidation. The results demonstrated that limonite was a promising in situ desulfurizer for controlling H2S in biogas with low cost and high efficiency.

  1. PCR-DGGE Analysis on Microbial Community Structure of Rural Household Biogas Digesters in Qinghai Plateau.

    PubMed

    Han, Rui; Yuan, Yongze; Cao, Qianwen; Li, Quanhui; Chen, Laisheng; Zhu, Derui; Liu, Deli

    2018-05-01

    To investigate contribution of environmental factor(s) to microbial community structure(s) involved in rural household biogas fermentation at Qinghai Plateau, we collected slurry samples from 15 digesters, with low-temperature working conditions (11.1-15.7 °C) and evenly distributed at three counties (Datong, Huangyuan, and Ledu) with cold plateau climate, to perform polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and further sequencing. The bacterial communities in the total 15 digesters were classified into 38 genera with Mangroviflexus (12.1%) as the first dominant, and the archaeal communities into ten genera with Methanogenium (38.5%) as the most dominant. For each county, the digesters with higher biogas production, designated as HP digesters, exclusively had 1.6-3.1 °C higher fermentation temperature and the unique bacterial structure composition related, i.e., unclassified Clostridiales for all the HP digesters and unclassified Marinilabiliaceae and Proteiniclasticum for Ledu HP digesters. Regarding archaeal structure composition, Methanogenium exhibited significantly higher abundances at all the HP digesters and Thermogymnomonas was the unique species only identified at Ledu HP digesters with higher-temperature conditions. Redundancy analysis also confirmed the most important contribution of temperature to the microbial community structures investigated. This report emphasized the correlation between temperature and specific microbial community structure(s) that would benefit biogas production of rural household digesters at Qinghai Plateau.

  2. Inclusion of Digestible Surfactants in Solid SMEDDS Formulation Removes Lag Time and Influences the Formation of Structured Particles During Digestion.

    PubMed

    Vithani, Kapilkumar; Hawley, Adrian; Jannin, Vincent; Pouton, Colin; Boyd, Ben J

    2017-05-01

    Solid self-microemulsifying drug delivery systems (SMEDDS) have received considerable attention in recent times attempting to overcome the drawbacks of liquid SMEDDS. Earlier literature reports on solid SMEDDS have focussed on formulation development; however, the digestibility and propensity for self-assembly of the digested components with endogenous bile salts and phospholipids are unknown. Therefore, as a starting point, previously reported solid SMEDDS containing Gelucire® 44/14 (GEL) and the non-digestible surfactants, Vitamin E TPGS (TPGS) and Lutrol® F 127 (F 127), were prepared, and their dispersion and digestion behaviours were studied using an in vitro lipolysis model, coupled with small-angle X-ray scattering (SAXS) to determine the formed colloidal structures during digestion in real time. GEL alone was digested (89%) and formed a lamellar phase (Lα). When surfactants were added at a 40:60% w/w lipid to surfactants ratio, digestion was inhibited with a significant lag time being evident. However, increasing the fraction of GEL to 50% w/w enabled digestion with reduced lag time. The substitution of the non-digestible surfactants with digestible surfactants, sucrose esters S-1670 (S-1670) and Span® 60 (S-60), eliminated the digestion lag time, and the formation of colloidal structures was more similar to that of GEL alone.

  3. Long noncoding RNA MALAT1 as a potential novel biomarker in digestive system cancers: a meta-analysis.

    PubMed

    Song, Wei; Zhang, Run J; Zou, Shu B

    2016-08-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a newly discovered long non-coding RNA (lncRNA), has been reported to be overexpressed in various cancers. However, the clinical value of MALAT1 in digestive system cancers is unclear. This study was designed to investigate the potential value of MALAT1 as a prognostic biomarker in digestive system cancers. We searched the Medline, Embase and Cochrane Library databases. All studies that explored the correlation between lncRNA MALAT1 expression and survival in digestive system tumors were selected. A quantitative meta-analysis was performed for the correlation between lncRNA MALAT1 expression and survival in digestive system tumors. Five studies were eligible for analysis, which included 547 patients. Meta-analysis showed that high expression of MALAT1 could predict poor overall survival (OS) in digestive system cancers (pooled HR: 1.85, 95% CI: 1.41-2.43, P<0.0001). For disease-free survival (DFS), elevated MALAT1 expression was also a significant predictor with a combined HR of 2.28 (95% CI: 1.42-3.67, P=0.0007). lncRNA MALAT1 may serve as a potential novel prognostic biomarker in digestive system cancers.

  4. Long noncoding RNA MALAT1 as a potential novel biomarker in digestive system cancers: a meta-analysis.

    PubMed

    Song, Wei; Zhang, Run J; Zou, Shu B

    2016-05-17

    MALAT1 (Metastasis-associated lung adenocarcinoma transcript 1), a newly discovered long non-coding RNA (lncRNA), has been reported to be overexpressed in various cancers. However, the clinical value of MALAT1 in digestive system cancers is unclear. This study was designed to investigate the potential value of MALAT1 as a prognostic biomarker in digestive system cancers. We searched the MEDLINE, EMBASE and Cochrane Library databases. All studies that explored the correlation between lncRNA MALAT1 expression and survival in digestive system tumors were selected. A quantitative meta-analysis was performed for the correlation between lncRNA MALAT1 expression and survival in digestive system tumors. Five studies were eligible for analysis, which included 547 patients. Meta-analysis showed that high expression of MALAT1 could predict poor overall survival (OS) in digestive system cancers (pooled HR: 1.85, 95% CI: 1.41-2.43, p < 0.0001). For disease-free survival (DFS), elevated MALAT1 expression was also a significant predictor with a combined HR of 2.28 (95% CI: 1.42-3.67, p = 0.0007). lncRNA MALAT1 may serve as a potential novel prognostic biomarker in digestive system cancers.

  5. Co-Digestion of Sugar Beet Silage Increases Biogas Yield from Fibrous Substrates

    PubMed Central

    Einfalt, Daniel; Kazda, Marian

    2016-01-01

    This study tested the hypothesis that the easily degradable carbohydrates of the sugar beet silage (S) will improve the anaerobic digestion of grass silage (G) more profoundly compared to co-digestion of sugar beet silage with maize silage (M). M : S and G : S mixtures were tested in two continuous laboratory-scale AD experiments at volatile solid ratios of 1 : 0, 6 : 1, 3 : 1, and 1 : 3 at organic loading rates of 1.5 kgVS m−3 day−1. While the sugar beet effects in mixtures with maize silage were negligible, co-digestion with grass silage showed a beneficial performance. There, the specific methane production rate was 0.27 lN kg−1VS h−1at G : S ratio of 6 : 1 compared to G : S 1 : 0 with 0.14 lN kg−1VS h−1. In comparison to G : S 1 : 0, about 44% and 62% higher biogas yields were obtained at G : S 6 : 1 and 3 : 1, respectively. Also, the highest methane concentration was found in G : S at ratio of 1 : 3. Synergistic increase of methane yield was found in co-digestion in both experiments, but higher effect was realized in G : S, independently of the amount of sugar beet silage. The findings of this study emphasize the improvement of AD of grass silage by even low addition of sugar beet silage. PMID:27807538

  6. Co-Digestion of Sugar Beet Silage Increases Biogas Yield from Fibrous Substrates.

    PubMed

    Ahmed, Sharif; Einfalt, Daniel; Kazda, Marian

    2016-01-01

    This study tested the hypothesis that the easily degradable carbohydrates of the sugar beet silage (S) will improve the anaerobic digestion of grass silage (G) more profoundly compared to co-digestion of sugar beet silage with maize silage (M). M : S and G : S mixtures were tested in two continuous laboratory-scale AD experiments at volatile solid ratios of 1 : 0, 6 : 1, 3 : 1, and 1 : 3 at organic loading rates of 1.5 kgVS m -3  day -1 . While the sugar beet effects in mixtures with maize silage were negligible, co-digestion with grass silage showed a beneficial performance. There, the specific methane production rate was 0.27 l N  kg -1 VS h -1 at G : S ratio of 6 : 1 compared to G : S 1 : 0 with 0.14 l N  kg -1 VS h -1 . In comparison to G : S 1 : 0, about 44% and 62% higher biogas yields were obtained at G : S 6 : 1 and 3 : 1, respectively. Also, the highest methane concentration was found in G : S at ratio of 1 : 3. Synergistic increase of methane yield was found in co-digestion in both experiments, but higher effect was realized in G : S, independently of the amount of sugar beet silage. The findings of this study emphasize the improvement of AD of grass silage by even low addition of sugar beet silage.

  7. Zinc-finger nucleases-based genome engineering to generate isogenic human cell lines.

    PubMed

    Dreyer, Anne-Kathrin; Cathomen, Toni

    2012-01-01

    Customized zinc-finger nucleases (ZFNs) have developed into a promising technology to precisely alter mammalian genomes for biomedical research, biotechnology, or human gene therapy. In the context of synthetic biology, the targeted integration of a transgene or reporter cassette into a "neutral site" of the human genome, such as the AAVS1 locus, permits the generation of isogenic human cell lines with two major advantages over standard genetic manipulation techniques: minimal integration site-dependent effects on the transgene and, vice versa, no functional perturbation of the host-cell transcriptome. Here we describe in detail how ZFNs can be employed to target integration of a transgene cassette into the AAVS1 locus and how to characterize the targeted cells by PCR-based genotyping.

  8. Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease

    PubMed Central

    Flowers, G. Parker; Timberlake, Andrew T.; Mclean, Kaitlin C.; Monaghan, James R.; Crews, Craig M.

    2014-01-01

    Among tetrapods, only urodele salamanders, such as the axolotl Ambystoma mexicanum, can completely regenerate limbs as adults. The mystery of why salamanders, but not other animals, possess this ability has for generations captivated scientists seeking to induce this phenomenon in other vertebrates. Although many recent advances in molecular biology have allowed limb regeneration and tissue repair in the axolotl to be investigated in increasing detail, the molecular toolkit for the study of this process has been limited. Here, we report that the CRISPR-Cas9 RNA-guided nuclease system can efficiently create mutations at targeted sites within the axolotl genome. We identify individual animals treated with RNA-guided nucleases that have mutation frequencies close to 100% at targeted sites. We employ this technique to completely functionally ablate EGFP expression in transgenic animals and recapitulate developmental phenotypes produced by loss of the conserved gene brachyury. Thus, this advance allows a reverse genetic approach in the axolotl and will undoubtedly provide invaluable insight into the mechanisms of salamanders' unique regenerative ability. PMID:24764077

  9. Characterization of the Human SNM1A and SNM1B/Apollo DNA Repair Exonucleases*

    PubMed Central

    Sengerová, Blanka; Allerston, Charles K.; Abu, Mika; Lee, Sook Y.; Hartley, Janet; Kiakos, Konstantinos; Schofield, Christopher J.; Hartley, John A.; Gileadi, Opher; McHugh, Peter J.

    2012-01-01

    Human SNM1A and SNM1B/Apollo have both been implicated in the repair of DNA interstrand cross-links (ICLs) by cellular studies, and SNM1B is also required for telomere protection. Here, we describe studies on the biochemical characterization of the SNM1A and SNM1B proteins. The results reveal some fundamental differences in the mechanisms of the two proteins. Both SNM1A and SNM1B digest double-stranded and single-stranded DNA with a 5′-to-3′ directionality in a reaction that is stimulated by divalent cations, and both nucleases are inhibited by the zinc chelator o-phenanthroline. We find that SNM1A has greater affinity for single-stranded DNA over double-stranded DNA that is not observed with SNM1B. Although both proteins demonstrate a low level of processivity on low molecular weight DNA oligonucleotide substrates, when presented with high molecular weight DNA, SNM1A alone is rendered much more active, being capable of digesting kilobase-long stretches of DNA. Both proteins can digest past ICLs induced by the non-distorting minor groove cross-linking agent SJG-136, albeit with SNM1A showing a greater capacity to achieve this. This is consistent with the proposal that SNM1A and SNM1B might exhibit some redundancy in ICL repair. Together, our work establishes differences in the substrate selectivities of SNM1A and SNM1B that are likely to be relevant to their in vivo roles and which might be exploited in the development of selective inhibitors. PMID:22692201

  10. Contribution of Anaerobic Digesters to Emissions Mitigation and Electricity Generation Under U.S. Climate Policy

    PubMed Central

    2011-01-01

    Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria that produce methane, which can be collected and combusted to generate electricity. ADs also reduce odors and pathogens that are common with manure storage and the digested manure can be used as a fertilizer. There are relatively few ADs in the U.S., mainly due to their high capital costs. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model to test the effects of a representative U.S. climate stabilization policy on the adoption of ADs which sell electricity and generate methane mitigation credits. Under such policy, ADs become competitive at producing electricity in 2025, when they receive methane reduction credits and electricity from fossil fuels becomes more expensive. We find that ADs have the potential to generate 5.5% of U.S. electricity. PMID:21761880

  11. Contribution of anaerobic digesters to emissions mitigation and electricity generation under U.S. climate policy.

    PubMed

    Zaks, David P M; Winchester, Niven; Kucharik, Christopher J; Barford, Carol C; Paltsev, Sergey; Reilly, John M

    2011-08-15

    Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria that produce methane, which can be collected and combusted to generate electricity. ADs also reduce odors and pathogens that are common with manure storage and the digested manure can be used as a fertilizer. There are relatively few ADs in the U.S., mainly due to their high capital costs. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model to test the effects of a representative U.S. climate stabilization policy on the adoption of ADs which sell electricity and generate methane mitigation credits. Under such policy, ADs become competitive at producing electricity in 2025, when they receive methane reduction credits and electricity from fossil fuels becomes more expensive. We find that ADs have the potential to generate 5.5% of U.S. electricity.

  12. Anaerobic Digestion Model No. 1 Simulation of High Solids Anaerobic Digestion with Feasibility Study for El Gabal El Asfar Water Resource Recovery Facility.

    PubMed

    Aboulfotoh, Ahmed M

    2018-03-01

      Performance of continuous mesophilic high solids anaerobic digestion (HSAD) was simulated using Anaerobic Digestion Model No. 1 (ADM1), under different conditions (solids concentrations, sludge retention time (SRT), organic loading rate (OLR), and type of sludge). Implementation of ADM1, using the proposed biochemical parameters, proved to be a useful tool for the prediction and control of HSAD as the model predicted the behavior of the tested sets of data with considerable accuracy, especially for SRT more than 13 days. The model was then used to investigate the possibility of changing the existing conventional anaerobic digestion (CAD) units in Gabal El Asfar water resource recovery facility into HSAD, instead of establishing new CAD units, and results show that the system will be feasible. HSAD will produce the same bioenergy combined with a decrease in capital, operational, and maintenance costs.

  13. 1 CFR 6.5 - Indexes, digests, and guides.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ANCILLARIES § 6.5 Indexes, digests, and guides. (a) The Director of the Federal Register may order the..., regulatory documents, and notice materials published by the Office, which will serve users of the Federal Register. Indexes, digests, and similar guides will be published yearly or at other intervals as necessary...

  14. Implementation of the anaerobic digestion model (ADM1) in the PHREEQC chemistry engine.

    PubMed

    Huber, Patrick; Neyret, Christophe; Fourest, Eric

    2017-09-01

    Anaerobic digestion is state-of-the-art technology to treat sludge and effluents from various industries. Modelling and optimisation of digestion operations can be advantageously performed using the anaerobic digestion model (ADM1) from the International Water Association. The ADM1, however, lacks a proper physico-chemical framework, which makes it difficult to consider wastewater of complex ionic composition and supersaturation phenomena. In this work, we present a direct implementation of the ADM1 within the PHREEQC chemistry engine. This makes it possible to handle ionic strength effects and ion-pairing. Thus, multiple mineral precipitation phenomena can be handled while resolving the ADM1. All these features can be accessed with very little programming effort, while retaining the full power and flexibility of PHREEQC. The distributed PHREEQC code can be easily interfaced with process simulation software for future plant-wide simulation of both wastewater and sludge treatment.

  15. Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity

    NASA Astrophysics Data System (ADS)

    Mei, Ran; Narihiro, Takashi; Nobu, Masaru K.; Kuroda, Kyohei; Liu, Wen-Tso

    2016-09-01

    Anaerobic digestion is a common technology to biologically stabilize wasted solids produced in municipal wastewater treatment. Its efficiency is usually evaluated by calculating the reduction in volatile solids, which assumes no biomass growth associated with digestion. To determine whether this assumption is valid and further evaluate digestion efficiency, this study sampled 35 digester sludge from different reactors at multiple time points together with the feed biomass in a full-scale water reclamation plant at Chicago, Illinois. The microbial communities were characterized using Illumina sequencing technology based on 16S rRNA and 16S rRNA gene (rDNA). 74 core microbial populations were identified and represented 58.7% of the entire digester community. Among them, active populations were first identified using the ratio of 16S rRNA and 16S rDNA (rRNA/rDNA) for individual populations, but this approach failed to generate consistent results. Subsequently, a recently proposed mass balance model was applied to calculate the specific growth rate (μ), and this approach successfully identified active microbial populations in digester (positive μ) that could play important roles than those with negative μ. It was further estimated that 82% of microbial populations in the feed sludge were digested in comparison with less than 50% calculated using current equations.

  16. Roles of SLX1–SLX4, MUS81–EME1, and GEN1 in avoiding genome instability and mitotic catastrophe

    PubMed Central

    Sarbajna, Shriparna; Davies, Derek; West, Stephen C.

    2014-01-01

    The resolution of recombination intermediates containing Holliday junctions (HJs) is critical for genome maintenance and proper chromosome segregation. Three pathways for HJ processing exist in human cells and involve the following enzymes/complexes: BLM–TopoIIIα–RMI1–RMI2 (BTR complex), SLX1–SLX4–MUS81–EME1 (SLX–MUS complex), and GEN1. Cycling cells preferentially use the BTR complex for the removal of double HJs in S phase, with SLX–MUS and GEN1 acting at temporally distinct phases of the cell cycle. Cells lacking SLX–MUS and GEN1 exhibit chromosome missegregation, micronucleus formation, and elevated levels of 53BP1-positive G1 nuclear bodies, suggesting that defects in chromosome segregation lead to the transmission of extensive DNA damage to daughter cells. In addition, however, we found that the effects of SLX4, MUS81, and GEN1 depletion extend beyond mitosis, since genome instability is observed throughout all phases of the cell cycle. This is exemplified in the form of impaired replication fork movement and S-phase progression, endogenous checkpoint activation, chromosome segmentation, and multinucleation. In contrast to SLX4, SLX1, the nuclease subunit of the SLX1–SLX4 structure-selective nuclease, plays no role in the replication-related phenotypes associated with SLX4/MUS81 and GEN1 depletion. These observations demonstrate that the SLX1–SLX4 nuclease and the SLX4 scaffold play divergent roles in the maintenance of genome integrity in human cells. PMID:24831703

  17. Gene Editing in Human Lymphoid Cells: Role for Donor DNA, Type of Genomic Nuclease and Cell Selection Method.

    PubMed

    Zotova, Anastasia; Lopatukhina, Elena; Filatov, Alexander; Khaitov, Musa; Mazurov, Dmitriy

    2017-11-02

    Programmable endonucleases introduce DNA breaks at specific sites, which are repaired by non-homologous end joining (NHEJ) or homology recombination (HDR). Genome editing in human lymphoid cells is challenging as these difficult-to-transfect cells may also inefficiently repair DNA by HDR. Here, we estimated efficiencies and dynamics of knockout (KO) and knockin (KI) generation in human T and B cell lines depending on repair template, target loci and types of genomic endonucleases. Using zinc finger nuclease (ZFN), we have engineered Jurkat and CEM cells with the 8.2 kb human immunodeficiency virus type 1 (HIV-1) ∆Env genome integrated at the adeno-associated virus integration site 1 (AAVS1) locus that stably produce virus particles and mediate infection upon transfection with helper vectors. Knockouts generated by ZFN or clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) double nicking techniques were comparably efficient in lymphoid cells. However, unlike polyclonal sorted cells, gene-edited cells selected by cloning exerted tremendous deviations in functionality as estimated by replication of HIV-1 and human T cell leukemia virus type 1 (HTLV-1) in these cells. Notably, the recently reported high-fidelity eCas9 1.1 when combined to the nickase mutation displayed gene-dependent decrease in on-target activity. Thus, the balance between off-target effects and on-target efficiency of nucleases, as well as choice of the optimal method of edited cell selection should be taken into account for proper gene function validation in lymphoid cells.

  18. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; in-bottle acid digestion of whole-water samples

    USGS Publications Warehouse

    Hoffman, G.L.; Fishman, M. J.; Garbarino, J.R.

    1996-01-01

    Water samples for trace-metal determinations routinely have been prepared in open laboratories. For example, the U.S. Geological Survey method I-3485-85 (Extraction Procedure, for Water- Suspended Sediment) is performed in a laboratory hood on a laboratory bench without any special precautions to control airborne contamination. This method tends to be contamination prone for several trace metals primarily because the samples are transferred, acidified, digested, and filtered in an open laboratory environment. To reduce trace-metal contamination of digested water samples, procedures were established that rely on minimizing sample-transfer steps and using a class-100 clean bench during sample filtration. This new procedure involves the following steps: 1. The sample is acidified with HCl directly in the original water-sample bottle. 2. The water-sample bottle with the cap secured is heated in a laboratory oven. 3. The digestate is filtered in a class-100 laminar-flow clean bench. The exact conditions used (that is, oven temperature, time of heating, and filtration methods) for this digestion procedure are described. Comparisons between the previous U.S Geological Survey open-beaker method I-3485-85 and the new in-bottle procedure for synthetic and field-collected water samples are given. When the new procedure is used, blank concentrations for most trace metals determined are reduced significantly.

  19. Evolution of Digestive Enzymes and RNASE1 Provides Insights into Dietary Switch of Cetaceans

    PubMed Central

    Wang, Zhengfei; Xu, Shixia; Du, Kexing; Huang, Fang; Chen, Zhuo; Zhou, Kaiya; Ren, Wenhua; Yang, Guang

    2016-01-01

    Although cetaceans (whales, porpoises, and dolphins) have multi-chambered stomachs, feeding habits of modern cetaceans have dramatically changed from herbivorous to carnivorous. However, the genetic basis underlying this dietary switch remains unexplored. Here, we present the first systematic investigation of 10 digestive enzymes genes (i.e., CYP7A1, CTRC, LIPC, LIPF, PNLIP, PGC, PRSS1, SI, SLC5A1, and TMPRSS15) of representative cetaceans, and the evolutionary trajectory of RNASE1 in cetartiodactylans. Positive selections were detected with proteinases (i.e., CTRC, PRSS1, and TMPRSS15) and lipases (i.e., CYP7A1, LIPF, and PNLIP) suggesting that cetaceans have evolved an enhanced digestion capacity for proteins and lipids, the major nutritional components of their prey (fishes and invertebrates). In addition, it was found that RNASE1 gene duplicated after the cetartiodactylan speciation and two independent gene duplication events took place in Camelidae and Ruminantia. Positive selection was detected with RNASE1 of Camelidae and Bovidae, suggesting enhanced digestive efficiency in the ruminants. Remarkably, even though the ancestors of cetaceans were terrestrial artiodactyls that are herbivorous, modern cetaceans lost the pancreatic RNASE1 copy with digestive function, which is in accordance with the dietary change from herbivorous to carnivorous. In sum, this is the first study that provides new insights into the evolutionary mechanism of dietary switch in cetaceans. PMID:27651393

  20. Cultivation of Scenedesmus dimorphus using anaerobic digestate as a nutrient medium.

    PubMed

    Abu Hajar, Husam A; Riefler, R Guy; Stuart, Ben J

    2017-08-01

    In this study, the microalga Scenedesmus dimorphus was cultivated phototrophically using unsterilized anaerobic digestate as a nutrient medium. A bench-scale experiment was conducted by inoculating the microalga S. dimorphus with 0.05-10% dilutions of the anaerobic digestate supernatant. It was found that 1.25-2.5% dilutions, which is equivalent to 50-100 mg N/L total nitrogen concentrations and 6-12 mg P/L total phosphorus concentrations, provided sufficient nutrients to maximize the growth rate along with achieving high concentrations of algal biomass. The microalgae cultivation was scaled up to 100 L open raceway ponds, where the effect of paddlewheel mixing on the growth was investigated. It was concluded that 0.3 m/s water surface velocity yielded the highest specific growth rate and biomass concentration compared to 0.1 and 0.2 m/s. The microalga S. dimorphus was then cultivated in the raceway ponds using 2.5% diluted anaerobic digestate at 317 and 454 μmol/(m 2  × s) average incident light intensities and 1.25% diluted anaerobic digestate at 234 and 384 μmol/(m 2  × s) average incident light intensities. The maximum biomass concentration was 446 mg/L which was achieved in the 2.5% dilution and 454 μmol/(m 2  × s) light intensity culture. Moreover, nitrogen, phosphorus, and COD removal efficiencies from the nutrient media were 65-72, 63-100, and 78-82%, respectively, whereas ammonia was completely removed from all cultures. For a successful and effective cultivation in open raceway ponds, light intensity has to be increased considerably to overcome the attenuation caused by the algal biomass as well as the suspended solids from the digestate supernatant.

  1. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation

    PubMed Central

    Seper, Andrea; Fengler, Vera H I; Roier, Sandro; Wolinski, Heimo; Kohlwein, Sepp D; Bishop, Anne L; Camilli, Andrew; Reidl, Joachim; Schild, Stefan

    2011-01-01

    Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae. PMID:22032623

  2. Isolation, identification and utilization of thermophilic strains in aerobic digestion of sewage sludge.

    PubMed

    Liu, Shugen; Zhu, Nanwen; Li, Loretta Y; Yuan, Haiping

    2011-11-15

    Two representative thermophilic bacterial strains (T1 and T2) were isolated from a one-stage autothermal thermophilic aerobic digestion pilot-scale reactor. 16S rRNA gene analysis indicated that they were Hydrogenophilaceae and Xanthomonodaceae. These isolated strains were inoculated separately and/or jointly in sewage sludge, to investigate their effects on sludge stabilization under thermophilic aerobic digestion condition. Four digestion conditions were tested for 480 h. Digestion without inoculation and inoculation with strain T2, as well as joint- inoculation with strains T1 and T2, achieved 32.6%, 43.0%, and 38.2% volatile solids (VS) removal, respectively. Removal in a digester inoculated with stain T1 only reached 27.2%. For the first 144 h, the three inoculated digesters all experienced higher VS removal than the digester without inoculations. Both specific thermophilic strains and micro-environment significantly affected the VS removal. DGGE profiles revealed that the isolated strains T1 and T2 can successfully establish in the thermophilic digesters. Other viable bacteria (including anaerobic or facultative microbes) also appeared in the digestion system, enhancing the microbial activity. Copyright © 2011. Published by Elsevier Ltd.

  3. An ameliorative protocol for the quantification of purine 5',8-cyclo-2'-deoxynucleosides in oxidized DNA

    NASA Astrophysics Data System (ADS)

    Terzidis, Michael; Chatgilialoglu, Chryssostomos

    2015-07-01

    5',8-Cyclo-2'-deoxyadenosine (cdA) and 5',8-cyclo-2'-deoxyguanosine (cdG) are lesions resulting from hydroxyl radical (HO•) attack on the 5'H of the nucleoside sugar moiety and exist in both 5'R and 5'S diastereomeric forms. Increased levels of cdA and cdG are linked to Nucleotide Excision Repair mechanism deficiency and mutagenesis. Discrepancies in the damage measurements reported over recent years indicated the weakness of the actual protocols, in particular for ensuring the quantitative release of these lesions from the DNA sample and the appropriate method for their analysis. Herein we report the detailed revision leading to a cost-effective and efficient protocol for the DNA damage measurement, consisting of the nuclease benzonase and nuclease P1 enzymatic combination for DNA digestion followed by liquid chromatography isotope dilution tandem mass spectrometry analysis.

  4. DNA Oxidation Profiles of Copper Phenanthrene Chemical Nucleases

    NASA Astrophysics Data System (ADS)

    Molphy, Zara; Slator, Creina; Chatgilialoglu, Chryssostomos; Kellett, Andrew

    2015-04-01

    The deleterious effects of metal-catalyzed reactive oxygen species (ROS) in biological systems can be seen in a wide variety of pathological conditions including cancer, cardiovascular disease, ageing, and neurodegenerative disorder. On the other hand however, targeted ROS production in the vicinity of nucleic acids - as demonstrated by metal-activated bleomycin - has paved the way for ROS-active chemotherapeutic drug development. Herein we report mechanistic investigations into the oxidative nuclease activity and redox properties of copper(II) developmental therapeutics [Cu(DPQ)(phen)]2+ (Cu-DPQ-Phen), [Cu(DPPZ)(phen)]2+ (Cu-DPPZ-Phen), and [{Cu(phen)2}2(μ-terph)](terph) (Cu-Terph), with results being compared directly to Sigman’s reagent [Cu(phen)2]2+ throughout (phen = 1,10-phenanthroline; DPQ = dipyridoquinoxaline; DPPZ = dipyridophenazine). Oxidative DNA damage was identified at the minor groove through use of surface bound recognition elements of methyl green, netropsin, and [Co(NH3)6]Cl3 that functioned to control complex accessibility at selected regions. ROS-specific scavengers and stabilisers were employed to identify the cleavage process, the results of which infer hydrogen peroxide produced metal-hydroxo or free hydroxyl radicals (•OH) as the predominant species. The extent of DNA damage owing to these radicals was then quantified through 8-oxo-2'-deoxyguanosine (8-oxo-dG) lesion detection under ELISA protocol with the overall trend following Cu-DPQ-Phen > Cu-Terph > Cu-Phen > Cu-DPPZ. Finally, the effects of oxidative damage on DNA replication processes were investigated using the polymerase chain reaction (PCR) where amplification of 120 base pair DNA sequences of varying base content were inhibited - particularly along A-T rich chains - through oxidative damage of the template strands.

  5. GM(1,N) method for the prediction of anaerobic digestion system and sensitivity analysis of influential factors.

    PubMed

    Ren, Jingzheng

    2018-01-01

    Anaerobic digestion process has been recognized as a promising way for waste treatment and energy recovery in a sustainable way. Modelling of anaerobic digestion system is significantly important for effectively and accurately controlling, adjusting, and predicting the system for higher methane yield. The GM(1,N) approach which does not need the mechanism or a large number of samples was employed to model the anaerobic digestion system to predict methane yield. In order to illustrate the proposed model, an illustrative case about anaerobic digestion of municipal solid waste for methane yield was studied, and the results demonstrate that GM(1,N) model can effectively simulate anaerobic digestion system at the cases of poor information with less computational expense. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Knockdown of nuclease activity in the gut enhances RNAi efficiency in the Colorado potato beetle, Leptinotarsa decemlineata, but not in the desert locust, Schistocerca gregaria.

    PubMed

    Spit, Jornt; Philips, Annelies; Wynant, Niels; Santos, Dulce; Plaetinck, Geert; Vanden Broeck, Jozef

    2017-02-01

    The responsiveness towards orally delivered dsRNA and the potency of a subsequent environmental RNA interference (RNAi) response strongly differs between different insect species. While some species are very sensitive to dsRNA delivery through the diet, others are not. The underlying reasons for this may vary, but degradation of dsRNA by nucleases in the gut lumen is believed to play a crucial role. The Colorado potato beetle, Leptinotarsa decemlineata, is a voracious defoliator of potato crops worldwide, and is currently under investigation for novel control methods based on dsRNA treatments. Here we describe the identification and characterization of two nuclease genes exclusively expressed in the gut of this pest species. Removal of nuclease activity in adults increased the sensitivity towards dsRNA and resulted in improved protection of potato plants. A similar strategy in the desert locust, Schistocerca gregaria, for which we show a far more potent nuclease activity in the gut juice, did however not lead to an improvement of the RNAi response. Possible reasons for this are discussed. Taken together, the present data confirm a negative effect of nucleases in the gut on the environmental RNAi response, and further suggest that interfering with this activity is a strategy worth pursuing for improving RNAi efficacy in insect pest control applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Clinical Scale Zinc Finger Nuclease-mediated Gene Editing of PD-1 in Tumor Infiltrating Lymphocytes for the Treatment of Metastatic Melanoma

    PubMed Central

    Beane, Joal D; Lee, Gary; Zheng, Zhili; Mendel, Matthew; Abate-Daga, Daniel; Bharathan, Mini; Black, Mary; Gandhi, Nimisha; Yu, Zhiya; Chandran, Smita; Giedlin, Martin; Ando, Dale; Miller, Jeff; Paschon, David; Guschin, Dmitry; Rebar, Edward J; Reik, Andreas; Holmes, Michael C; Gregory, Philip D; Restifo, Nicholas P; Rosenberg, Steven A; Morgan, Richard A; Feldman, Steven A

    2015-01-01

    Programmed cell death-1 (PD-1) is expressed on activated T cells and represents an attractive target for gene-editing of tumor targeted T cells prior to adoptive cell transfer (ACT). We used zinc finger nucleases (ZFNs) directed against the gene encoding human PD-1 (PDCD-1) to gene-edit melanoma tumor infiltrating lymphocytes (TIL). We show that our clinical scale TIL production process yielded efficient modification of the PD-1 gene locus, with an average modification frequency of 74.8% (n = 3, range 69.9–84.1%) of the alleles in a bulk TIL population, which resulted in a 76% reduction in PD-1 surface-expression. Forty to 48% of PD-1 gene-edited cells had biallelic PD-1 modification. Importantly, the PD-1 gene-edited TIL product showed improved in vitro effector function and a significantly increased polyfunctional cytokine profile (TNFα, GM-CSF, and IFNγ) compared to unmodified TIL in two of the three donors tested. In addition, all donor cells displayed an effector memory phenotype and expanded approximately 500–2,000-fold in vitro. Thus, further study to determine the efficiency and safety of adoptive cell transfer using PD-1 gene-edited TIL for the treatment of metastatic melanoma is warranted. PMID:25939491

  8. Anaerobic co-digestion of sewage sludge and molasses

    NASA Astrophysics Data System (ADS)

    Kalemba, Katarzyna; Barbusiński, Krzysztof

    2017-11-01

    The efficiency of simultaneous digestion of sewage sludge and by-product of refining sugar beets (molasses) was investigated. The study was conducted for 28 days under mesophilic conditions. 0.5%, 1%, 1.5%, 2% and 3% (m/m) of molasses was added to the mixture of sludge. The result of the study showed that addition of molasses had positive effect the biogas production. The biggest biogas yield was achieved in sample with 0.5% of molasses (95.69 mL/g VS). In this sample biogas production increased by 21% in comparison with reference sample (without molasses). The biggest methane content (73%) was also observed in the sample with 0.5% of molasses. For comparison in reference sample was produced biogas with 70% content of methane. The dose over 0.5% of molasses caused inhibition of fermentation process. The minimal degree (38%) of degradation of organic matter was achieved in reference sample (38.53%) and in sample with 0.5% of molasses (39.71%) but in other samples was in the range of 35.61-36.76 % (from 3% to 1%, respectively). Digestion process have adverse effect on dewatering properties of sludge. Before co-digestion capillary suction time was from 31 s to 55 s, and after process increased from 36 s to 556 s (from 0% to 3% of molasses, respectively).

  9. Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases1[W][OA

    PubMed Central

    Curtin, Shaun J.; Zhang, Feng; Sander, Jeffry D.; Haun, William J.; Starker, Colby; Baltes, Nicholas J.; Reyon, Deepak; Dahlborg, Elizabeth J.; Goodwin, Mathew J.; Coffman, Andrew P.; Dobbs, Drena; Joung, J. Keith; Voytas, Daniel F.; Stupar, Robert M.

    2011-01-01

    We performed targeted mutagenesis of a transgene and nine endogenous soybean (Glycine max) genes using zinc-finger nucleases (ZFNs). A suite of ZFNs were engineered by the recently described context-dependent assembly platform—a rapid, open-source method for generating zinc-finger arrays. Specific ZFNs targeting DICER-LIKE (DCL) genes and other genes involved in RNA silencing were cloned into a vector under an estrogen-inducible promoter. A hairy-root transformation system was employed to investigate the efficiency of ZFN mutagenesis at each target locus. Transgenic roots exhibited somatic mutations localized at the ZFN target sites for seven out of nine targeted genes. We next introduced a ZFN into soybean via whole-plant transformation and generated independent mutations in the paralogous genes DCL4a and DCL4b. The dcl4b mutation showed efficient heritable transmission of the ZFN-induced mutation in the subsequent generation. These findings indicate that ZFN-based mutagenesis provides an efficient method for making mutations in duplicate genes that are otherwise difficult to study due to redundancy. We also developed a publicly accessible Web-based tool to identify sites suitable for engineering context-dependent assembly ZFNs in the soybean genome. PMID:21464476

  10. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    PubMed

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production

  11. Mung bean nuclease: mode of action and specificity vs synthetic esters of 3′-nucleotides

    PubMed Central

    Kole, R.; Sierakowska, Halina; Szemplińska, Halina; Shugar, D.

    1974-01-01

    Mung bean nuclease hydrolyzes synthetic esters of 3′-nucleotides to nucleosides and phosphate esters; esters of 2′-nucleotides, and 2′→ 5′ internucleotide linkages, are resistant. Esters of ribonucleotides are cleaved at 100-fold the rate for deoxyribonucleotides, the increased rate being due to presence of the 2′-hydroxyl and not to differences in conformation. Introduction of a 5′-substituent leads to a 3-fold increase in rate. The rates of hydrolysis vary up to 10-fold with the nature of the base, in the order adenine > hypoxanthine > uracil; and up to 6-fold with the nature of the ester radical. This form of cleavage of esters of 3′-nucleotides is also characteristic for nuclease-3′-nucleotidase activities from potato tubers and wheat, suggesting that one type of enzyme is responsible for all these activities. PMID:10793750

  12. Ex vivo Digestion of Milk from Red Chittagong Cattle Focusing Proteolysis and Lipolysis

    PubMed Central

    Islam, Mohammad Ashiqul; Ekeberg, Dag; Rukke, Elling-Olav; Vegarud, Gerd Elisabeth

    2015-01-01

    Ex vivo digestion of proteins and fat in Red Chittagong Cattle milk from Bangladesh was carried out using human gastrointestinal enzymes. This was done to investigate the protein digestion in this bovine breed’s milk with an especial focus on the degradation of the allergenic milk proteins; αs1-casein and β-lactoglobulin and also to record the generation of peptides. Lipolysis of the milk fat and release of fatty acids were also under consideration. After 40 min of gastric digestion, all the αs-caseins were digested completely while β-lactoglobulin remained intact. During 120 min of duodenal digestion β-lactoglobulin was reduced, however, still some intact β-lactoglobulin was observed. The highest number of peptides was identified from β-casein and almost all the peptides from κ-casein and β-lactoglobulin were identified from the gastric and duodenal samples, respectively. No lipolysis was observed in the gastric phase of digestion. After 120 min of duodenal digestion, milk fat showed 48% lipolysis. Medium (C10:0 to C16:0) and long (≥C17:0) chain fatty acids showed 6% to 19% less lipolysis than the short (C6:0 to C8:0) chain fatty acids. Among the unsaturated fatty acids C18:1∑others showed highest lipolysis (81%) which was more than three times of C18:2∑all and all other unsaturated fatty acids showed lipolysis ranging from 32% to 38%. The overall digestion of Bangladeshi Red Cattle milk was more or less similar to the digestion of Nordic bovine milk (Norwegian Red Cattle). PMID:25656195

  13. Amino acid sequences of peptides from a tryptic digest of a urea-soluble protein fraction (U.S.3) from oxidized wool

    PubMed Central

    Corfield, M. C.; Fletcher, J. C.; Robson, A.

    1967-01-01

    1. A tryptic digest of the protein fraction U.S.3 from oxidized wool has been separated into 32 peptide fractions by cation-exchange resin chromatography. 2. Most of these fractions have been resolved into their component peptides by a combination of the techniques of cation-exchange resin chromatography, paper chromatography and paper electrophoresis. 3. The amino acid compositions of 58 of the peptides in the digest present in the largest amounts have been determined. 4. The amino acid sequences of 38 of these have been completely elucidated and those of six others partially derived. 5. These findings indicate that the parent protein in wool from which the protein fraction U.S.3 is derived has a minimum molecular weight of 74000. 6. The structures of wool proteins are discussed in the light of the peptide sequences determined, and, in particular, of those sequences in fraction U.S.3 that could not be elucidated. PMID:16742497

  14. Genome editing with CompoZr custom zinc finger nucleases (ZFNs).

    PubMed

    Hansen, Keith; Coussens, Matthew J; Sago, Jack; Subramanian, Shilpi; Gjoka, Monika; Briner, Dave

    2012-06-14

    Genome editing is a powerful technique that can be used to elucidate gene function and the genetic basis of disease. Traditional gene editing methods such as chemical-based mutagenesis or random integration of DNA sequences confer indiscriminate genetic changes in an overall inefficient manner and require incorporation of undesirable synthetic sequences or use of aberrant culture conditions, potentially confusing biological study. By contrast, transient ZFN expression in a cell can facilitate precise, heritable gene editing in a highly efficient manner without the need for administration of chemicals or integration of synthetic transgenes. Zinc finger nucleases (ZFNs) are enzymes which bind and cut distinct sequences of double-stranded DNA (dsDNA). A functional CompoZr ZFN unit consists of two individual monomeric proteins that bind a DNA "half-site" of approximately 15-18 nucleotides (see Figure 1). When two ZFN monomers "home" to their adjacent target sites the DNA-cleavage domains dimerize and create a double-strand break (DSB) in the DNA. Introduction of ZFN-mediated DSBs in the genome lays a foundation for highly efficient genome editing. Imperfect repair of DSBs in a cell via the non-homologous end-joining (NHEJ) DNA repair pathway can result in small insertions and deletions (indels). Creation of indels within the gene coding sequence of a cell can result in frameshift and subsequent functional knockout of a gene locus at high efficiency. While this protocol describes the use of ZFNs to create a gene knockout, integration of transgenes may also be conducted via homology-directed repair at the ZFN cut site. The CompoZr Custom ZFN Service represents a systematic, comprehensive, and well-characterized approach to targeted gene editing for the scientific community with ZFN technology. Sigma scientists work closely with investigators to 1) perform due diligence analysis including analysis of relevant gene structure, biology, and model system pursuant to the

  15. Biogas stripping of ammonia from fresh digestate from a food waste digester.

    PubMed

    Serna-Maza, A; Heaven, S; Banks, C J

    2015-08-01

    The efficiency of ammonia removal from fresh source-segregated domestic food waste digestate using biogas as a stripping agent was studied in batch experiments at 35, 55 and 70°C, at gas flow rates of 0.125 and 0.250Lbiogasmin(-1)L(-1)digestate with and without pH adjustment. Higher temperatures and alkaline conditions were required for effective ammonia removal, and at 35°C with or without pH adjustment or 55°C with unadjusted pH there was little or no removal. Results were compared to those from earlier studies with digestate that had been stored prior to stripping and showed that ammonia removal from fresh digestate was more difficult, with time constants 1.6-5.7 times higher than those previously reported. This has implications for the design of large-scale systems where continuous stripping of fresh digestate is likely to be the normal operating mode. A mass balance approach showed that thermal-alkaline stripping improved hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex.

    PubMed

    Dzierzbicki, Piotr; Kaniak-Golik, Aneta; Malc, Ewa; Mieczkowski, Piotr; Ciesla, Zygmunt

    2012-12-01

    Oxidative stress is known to enhance the frequency of two major types of alterations in the mitochondrial genome of Saccharomyces cerevisiae: point mutations and large deletions resulting in the generation of respiration-deficient petite rhō mutants. We investigated the effect of antimycin A, a well-known agent inducing oxidative stress, on the stability of mtDNA. We show that antimycin enhances exclusively the generation of respiration-deficient petite mutants and this is accompanied by a significant increase in the level of reactive oxygen species (ROS) and in a marked drop of cellular ATP. Whole mitochondrial genome sequencing revealed that mtDNAs of antimycin-induced petite mutants are deleted for most of the wild-type sequence and usually contain one of the active origins of mtDNA replication: ori1, ori2 ori3 or ori5. We show that the frequency of antimycin-induced rhō mutants is significantly elevated in mutants deleted either for the RAD50 or XRS2 gene, both encoding the components of the MRX complex, which is known to be involved in the repair of double strand breaks (DSBs) in DNA. Furthermore, enhanced frequency of rhō mutants in cultures of antimycin-treated cells lacking Rad50 was further increased by the simultaneous absence of the Ogg1 glycosylase, an important enzyme functioning in mtBER. We demonstrate also that rad50Δ and xrs2Δ deletion mutants display a considerable reduction in the frequency of allelic mitochondrial recombination, suggesting that it is the deficiency in homologous recombination which is responsible for enhanced rearrangements of mtDNA in antimycin-treated cells of these mutants. Finally, we show that the generation of large-scale mtDNA deletions induced by antimycin is markedly decreased in a nuc1Δ mutant lacking the activity of the Nuc1 nuclease, an ortholog of the mammalian mitochondrial nucleases EndoG and ExoG. This result indicates that the nuclease plays an important role in processing of oxidative stress

  17. Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions.

    PubMed

    Capson-Tojo, Gabriel; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Delgenès, Jean-Philippe; Escudié, Renaud

    2017-06-01

    The increasing food waste production calls for developing efficient technologies for its treatment. Anaerobic processes provide an effective waste valorization. The influence of the initial substrate load on the performance of batch dry anaerobic co-digestion reactors treating food waste and cardboard was investigated. The load was varied by modifying the substrate to inoculum ratio (S/X), the total solids content and the co-digestion proportions. The results showed that the S/X was a crucial parameter. Within the tested values (0.25, 1 and 4gVS·gVS -1 ), only the reactors working at 0.25 produced methane. Methanosarcina was the main archaea, indicating its importance for efficient methanogenesis. Acidogenic fermentation was predominant at higher S/X, producing hydrogen and other metabolites. Higher substrate conversions (≤48%) and hydrogen yields (≤62mL·gVS -1 ) were achieved at low loads. This study suggests that different value-added compounds can be produced in dry conditions, with the initial substrate load as easy-to-control operational parameter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Asymmetric binding of histone H1 stabilizes MMTV nucleosomes and the interaction of progesterone receptor with the exposed HRE.

    PubMed

    Vicent, Guillermo P; Meliá, María J; Beato, Miguel

    2002-11-29

    Packaging of mouse mammary tumor virus (MMTV) promoter sequences in nucleosomes modulates access of DNA binding proteins and influences the interaction among DNA bound transcription factors. Here we analyze the binding of histone H1 to MMTV mononucleosomes assembled with recombinant histones and study its influence on nucleosome structure and stability as well as on progesterone receptor (PR) binding to the hormone responsive elements (HREs). The MMTV nucleosomes can be separated into three main populations, two of which exhibited precise translational positioning. Histone H1 bound preferentially to the 5' distal nucleosomal DNA protecting additional 27-28 nt from digestion by micrococcal nuclease. Binding of histone H1 was unaffected by prior crosslinking of protein and DNA in nucleosomes with formaldehyde. Neither the translational nor the rotational nucleosome positioning was altered by histone H1 binding, but the nucleosomes were stabilized as judged by the kinetics of nuclease cleavage. Unexpectedly, binding of recombinant PR to the exposed distal HRE-I in nucleosomes was enhanced in the presence of histone H1, as demonstrated by band shift and footprinting experiments. This enhanced PR affinity may contribute to the reported positive effect of histone H1 on the hormonal activation of MMTV reporter genes.

  19. Genome Editing with Engineered Nucleases in Economically Important Animals and Plants: State of the Art in the Research Pipeline.

    PubMed

    Sovová, Tereza; Kerins, Gerard; Demnerová, Kateřina; Ovesná, Jaroslava

    2017-01-01

    After induced mutagenesis and transgenesis, genome editing is the next step in the development of breeding techniques. Genome editing using site-directed nucleases - including meganucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the CRISPR/Cas9 system - is based on the mechanism of double strand breaks. The nuclease is directed to cleave the DNA at a specific place of the genome which is then repaired by natural repair mechanisms. Changes are introduced during the repair that are either accidental or can be targeted if a DNA template with the desirable sequence is provided. These techniques allow making virtually any change to the genome including specific DNA sequence changes, gene insertion, replacements or deletions with unprecedented precision and specificity while being less laborious and more straightforward compared to traditional breeding techniques or transgenesis. Therefore, the research in this field is developing quickly and, apart from model species, multiple studies have focused on economically important species and agronomically important traits that were the key subjects of this review. In plants, studies have been undertaken on disease resistance, herbicide tolerance, nutrient metabolism and nutritional value. In animals, the studies have mainly focused on disease resistance, meat production and allergenicity of milk. However, none of the promising studies has led to commercialization despite several patent applications. The uncertain legal status of genome-editing methods is one of the reasons for poor commercial development, as it is not clear whether the products would fall under the GMO regulation. We believe this issue should be clarified soon in order to allow promising methods to reach their full potential.

  20. Disabling a Type I-E CRISPR-Cas Nuclease with a Bacteriophage-Encoded Anti-CRISPR Protein.

    PubMed

    Pawluk, April; Shah, Megha; Mejdani, Marios; Calmettes, Charles; Moraes, Trevor F; Davidson, Alan R; Maxwell, Karen L

    2017-12-12

    CRISPR (clustered regularly interspaced short palindromic repeat)-Cas adaptive immune systems are prevalent defense mechanisms in bacteria and archaea. They provide sequence-specific detection and neutralization of foreign nucleic acids such as bacteriophages and plasmids. One mechanism by which phages and other mobile genetic elements are able to overcome the CRISPR-Cas system is through the expression of anti-CRISPR proteins. Over 20 different families of anti-CRISPR proteins have been described, each of which inhibits a particular type of CRISPR-Cas system. In this work, we determined the structure of type I-E anti-CRISPR protein AcrE1 by X-ray crystallography. We show that AcrE1 binds to the CRISPR-associated helicase/nuclease Cas3 and that the C-terminal region of the anti-CRISPR protein is important for its inhibitory activity. We further show that AcrE1 can convert the endogenous type I-E CRISPR system into a programmable transcriptional repressor. IMPORTANCE The CRISPR-Cas immune system provides bacteria with resistance to invasion by potentially harmful viruses, plasmids, and other foreign mobile genetic elements. This study presents the first structural and mechanistic insight into a phage-encoded protein that inactivates the type I-E CRISPR-Cas system in Pseudomonas aeruginosa The interaction of this anti-CRISPR protein with the CRISPR-associated helicase/nuclease proteins Cas3 shuts down the CRISPR-Cas system and protects phages carrying this gene from destruction. This interaction also allows the repurposing of the endogenous type I-E CRISPR system into a programmable transcriptional repressor, providing a new biotechnological tool for genetic studies of bacteria encoding this type I-E CRISPR-Cas system. Copyright © 2017 Pawluk et al.

  1. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster

    PubMed Central

    Simoni, Alekos; Siniscalchi, Carla; Chan, Yuk-Sang; Huen, David S.; Russell, Steven; Windbichler, Nikolai; Crisanti, Andrea

    2014-01-01

    Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline. We show here that SSEs can spread via DNA break-induced homologous recombination, a process known as ‘homing’ similar to that observed for homing endonuclease genes (HEGs), despite their fundamentally different modes of DNA binding and cleavage. We observed that TALEN and ZFN have a reduced capability of secondary homing compared to HEG as their repetitive structure had a negative effect on their genetic stability. The modular architecture of ZFNs and TALENs allows for the rapid design of novel SSEs against specific genomic sequences making them potentially suitable for the genetic engineering of wild-type populations of animals and plants, in applications such as gene replacement or population suppression of pest species. PMID:24803674

  2. Surveyor nuclease detection of mutations and polymorphisms of mtDNA in children.

    PubMed

    Pilch, Jacek; Asman, Marek; Jamroz, Ewa; Kajor, Maciej; Kotrys-Puchalska, Elżbieta; Goss, Małgorzata; Krzak, Maria; Witecka, Joanna; Gmiński, Jan; Sieroń, Aleksander L

    2010-11-01

    Mitochondrial encephalomyopathies are complex disorders with wide range of clinical manifestations. Particularly time-consuming is the identification of mutations in mitochondrial DNA. A group of 20 children with clinical manifestations of mitochondrial encephalomyopathies was selected for molecular studies. The aims were (a) to identify mutations in mtDNA isolated from muscle and (b) to verify detected mutations in DNA isolated from blood, in order to assess the utility of a Surveyor nuclease assay kit for patient screening. The most common changes found were polymorphisms, including a few missense mutations altering the amino acid sequence of mitochondrial proteins. In two boys with MELAS (i.e., mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes), a mutation A→G3243 was detected in the tRNALeu gene of mtDNA isolated from muscle and blood. In one boy, the carrier status of his mother was confirmed, based on molecular analysis of DNA isolated from blood. A method using Surveyor nuclease allows systematic screening for small mutations in mtDNA, using as its source blood of the patients and asymptomatic carriers. The method still requires confirmation studying a larger group. In some patients, the use of this method should precede and might limit indications for traumatic muscle and skin biopsy. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Anaerobic digestion for treatment of stillage from cellulosic bioethanol production.

    PubMed

    Tian, Zhuoli; Mohan, Gayathri Ram; Ingram, Lonnie; Pullammanappallil, Pratap

    2013-09-01

    Thermophilic anaerobic digestion of stillage from a cellulosic ethanol process that uses sugarcane bagasse as feedstock was investigated. A biochemical methane potential (BMP) of 200 ml CH4 at STP (g VS)(-1) was obtained. The whole stillage was separated into two fractions: a fraction retained on 0.5 mm screen called residue and a fraction passing through 0.5 mm screen called filtrate. About 70% of total methane yield of stillage was produced from the filtrate. The filtrate was anaerobically digested in a 15 L semi-continuously fed digester operated for 91 days at HRTs of 21 and 14 days and organic loading rate (OLR) of 1.85 and 2.39 g COD L(-1) d(-1). The methane yield from the stillage from the digester was about 90% of the yield from the BMP assays. The influent soluble COD (sCOD) was reduced from between 35.4 and 38.8 g COD (L(-1)) to between 7.5 and 8 g COD (L(-1)). Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Engineering Digestion: Multiscale Processes of Food Digestion.

    PubMed

    Bornhorst, Gail M; Gouseti, Ourania; Wickham, Martin S J; Bakalis, Serafim

    2016-03-01

    Food digestion is a complex, multiscale process that has recently become of interest to the food industry due to the developing links between food and health or disease. Food digestion can be studied by using either in vitro or in vivo models, each having certain advantages or disadvantages. The recent interest in food digestion has resulted in a large number of studies in this area, yet few have provided an in-depth, quantitative description of digestion processes. To provide a framework to develop these quantitative comparisons, a summary is given here between digestion processes and parallel unit operations in the food and chemical industry. Characterization parameters and phenomena are suggested for each step of digestion. In addition to the quantitative characterization of digestion processes, the multiscale aspect of digestion must also be considered. In both food systems and the gastrointestinal tract, multiple length scales are involved in food breakdown, mixing, absorption. These different length scales influence digestion processes independently as well as through interrelated mechanisms. To facilitate optimized development of functional food products, a multiscale, engineering approach may be taken to describe food digestion processes. A framework for this approach is described in this review, as well as examples that demonstrate the importance of process characterization as well as the multiple, interrelated length scales in the digestion process. © 2016 Institute of Food Technologists®

  5. Psychrophilic anaerobic digestion of guinea pig manure in low-cost tubular digesters at high altitude.

    PubMed

    Garfí, Marianna; Ferrer-Martí, Laia; Villegas, Vidal; Ferrer, Ivet

    2011-05-01

    Guinea pig is one of the most common livestock in rural communities of the Andes. The aim of this research was to study the anaerobic digestion of guinea pig manure in low-cost unheated tubular digesters at high altitude. To this end, the performance of two pilot digesters was monitored during 7 months; and two greenhouse designs were compared. In the dome roof digester the temperature and biogas production were significantly higher than in the shed roof digester. However, the biogas production rate was low (0.04 m(biogas)(3)m(digester)(-3) d(-1)), which is attributed to the low organic loading rate (0.6 kg(VS)m(digester)(-3)d(-1)) and temperature (23°C) of the system, among other factors. In a preliminary fertilization study, the potato yield per hectare was increased by 100% using the effluent as biofertilizer. Improving manure management techniques, increasing the organic loading rate and co digesting other substrates may be considered to enhance the process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Analysis of chromatin structure of rat alpha1-acid glycoprotein gene; changes in DNase I hypersensitive sites after thyroid hormone, glucocorticoid hormone and turpentine oil treatment.

    PubMed Central

    Matsukawa, T; Kawasaki, H; Tanaka, M; Ohba, Y

    1997-01-01

    Transcription of the ratalpha1-acid glycoprotein (AGP) gene is activated by glucocorticoid, thyroid hormone (T3) and cytokines. Following these treatments, the chromatin structure of this gene was analyzed by means of digestion with DNase I or micrococcal nuclease. Four DNase I hypersensitive sites were observed in the 5'-upstream region of the rat AGP gene of liver cells. They were designated HS1, HS2, HS3 and HS4 (3'-->5'). After T3treatment the sensitivity of HS1 and HS2 increased and after dexamethasone (Dex) treatment that of all four sites did so. Three new sites appeared after turpentine oil treatment, while the sensitivities of HS3 and HS4 increased. We conclude that transcriptional activation of the gene by T3and Dex have very similar mechanisms, but that at the inflammation stage they become slightly different. The increase in sensitivity at HS1 and HS2 after T3treatment in vivo was successfully reproduced in a cell-free system by in vitro treatment with T3. HS1, HS2 and HS3 were also sensitive for micrococcal nuclease. PMID:9185575

  7. A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells.

    PubMed

    Tu, Mengjun; Lin, Li; Cheng, Yilu; He, Xiubin; Sun, Huihui; Xie, Haihua; Fu, Junhao; Liu, Changbao; Li, Jin; Chen, Ding; Xi, Haitao; Xue, Dongyu; Liu, Qi; Zhao, Junzhao; Gao, Caixia; Song, Zongming; Qu, Jia; Gu, Feng

    2017-11-02

    Cpf1 nucleases were recently reported to be highly specific and programmable nucleases with efficiencies comparable to those of SpCas9. AsCpf1 and LbCpf1 require a single crRNA and recognize a 5'-TTTN-3' protospacer adjacent motif (PAM) at the 5' end of the protospacer for genome editing. For widespread application in precision site-specific human genome editing, the range of sequences that AsCpf1 and LbCpf1 can recognize is limited due to the size of this PAM. To address this limitation, we sought to identify a novel Cpf1 nuclease with simpler PAM requirements. Specifically, here we sought to test and engineer FnCpf1, one reported Cpf1 nuclease (FnCpf1) only requires 5'-TTN-3' as a PAM but does not exhibit detectable levels of nuclease-induced indels at certain locus in human cells. Surprisingly, we found that FnCpf1 possesses DNA cleavage activity in human cells at multiple loci. We also comprehensively and quantitatively examined various FnCpf1 parameters in human cells, including spacer sequence, direct repeat sequence and the PAM sequence. Our study identifies FnCpf1 as a new member of the Cpf1 family for human genome editing with distinctive characteristics, which shows promise as a genome editing tool with the potential for both research and therapeutic applications. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Functional identification of the non-specific nuclease from white spot syndrome virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Li; Lin Shumei; Yanga Feng

    2005-07-05

    The product encoded by the wsv191 gene from shrimp white spot syndrome virus (WSSV) is homologous with non-specific nucleases (NSN) of other organisms. To functionally identify the protein, the wsv191 gene was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein with 6His-tag at C-terminal. The fusion protein (termed as rWSSV-NSN) was purified using Ni-NTA affinity chromatography under denatured conditions, renatured and characterized by three methods. The results showed that rWSSV-NSN could hydrolyze both DNA and RNA. 5'-RACE result revealed that the transcription initiation site of the wsv191 gene was located at nucleotide residue G of the predictedmore » ATG triplet. Therefore, we concluded that the next ATG should be the genuine translation initiation codon of the wsv191 gene. Western blot analysis revealed that the molecular mass of natural WSSV-NSN was 37 kDa.« less

  9. [Anaerobic digestion of lignocellulosic biomass with animal digestion mechanisms].

    PubMed

    Wu, Hao; Zhang, Pan-Yue; Guo, Jian-Bin; Wu, Yong-Jie

    2013-02-01

    Lignocellulosic material is the most abundant renewable resource in the earth. Herbivores and wood-eating insects are highly effective in the digestion of plant cellulose, while anaerobic digestion process simulating animal alimentary tract still remains inefficient. The digestion mechanisms of herbivores and wood-eating insects and the development of anaerobic digestion processes of lignocellulose were reviewed for better understanding of animal digestion mechanisms and their application in design and operation of the anaerobic digestion reactor. Highly effective digestion of lignocellulosic materials in animal digestive system results from the synergistic effect of various digestive enzymes and a series of physical and biochemical reactions. Microbial fermentation system is strongly supported by powerful pretreatment, such as rumination of ruminants, cellulase catalysis and alkali treatment in digestive tract of wood-eating insects. Oxygen concentration gradient along the digestive tract may stimulate the hydrolytic activity of some microorganisms. In addition, the excellent arrangement of solid retention time, digesta flow and end product discharge enhance the animal digestion of wood cellulose. Although anaerobic digestion processes inoculated with rumen microorganisms based rumen digestion mechanisms were developed to treat lignocellulose, the fermentation was more greatly limited by the environmental conditions in the anaerobic digestion reactors than that in rumen or hindgut. Therefore, the anaerobic digestion processes simulating animal digestion mechanisms can effectively enhance the degradation of wood cellulose and other organic solid wastes.

  10. Determination of gold and silver in geological samples by focused infrared digestion: A re-investigation of aqua regia digestion.

    PubMed

    Wang, Yong; Baker, Laura A; Brindle, Ian D

    2016-02-01

    Focused infrared radiation-based digestions, for the determination of gold and silver, can be achieved in a timeframe as short as 10-15 min, making it an attractive candidate technology for the mining industry, where very large numbers of samples are analyzed on a daily basis. An investigation was carried out into gold and silver dissolution chemistry from geological samples using this novel digestion technique. This study investigated in-depth the issue of low recoveries of gold from aqua regia (AR) digestions, reported by a number of researchers. Conventional AR digestions consistently delivered gold recoveries in a range of 69-80% of the certified values for the four certified reference materials (CRM) employed (CCU-1d, SN26, OREAS 62c, and AMiS 0274), while silver recoveries were satisfactory. By gradually shifting the HCl:HNO3 ratio (v/v) from 3:1 to a reversed 1:3 ratio, recoveries of gold and silver exhibited inverse trends. At a HCl:HNO3 ratio of 1:3, complete recovery of gold was achieved with excellent reproducibility in all CRMs. Meanwhile, silver recoveries plunged significantly at this ratio in samples with higher silver concentrations. Silver values were recovered, however, when the silver was re-solubilized by adding a small volume of concentrated HCl to the cooled reverse aqua regia digests. Recoveries of base metals, such as Fe and Cu, were satisfactory throughout and were much less sensitive to changes in the digestion medium. Using four CRMs and five real-world gold/silver containing samples, the utility of the proposed reverse aqua regia was systematically studied. The uncomplicated nature of the digestion methods reported here, that are fast, effective and inexpensive, may be useful to analysts developing/optimizing their methods for the rapid determination of Au and Ag in a variety of mineral phases, particularly where rapid results are desirable, such as in prospecting and mine development. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. [Construction of the eukaryotic recombinant vector and expression of the outer membrane protein LipL32 gene from Leptospira serovar Lai].

    PubMed

    Huang, Bi; Bao, Lang; Zhong, Qi; Shang, Zheng-ling; Zhang, Hui-dong; Zhang, Ying

    2008-02-01

    To construct the eukaryotic experssion vector of LipL32 gene from Leptospira serovar Lai and express the recombinant plasmid in COS-7 cell. The LipL32 gene was amplified from Leptospira strain 017 genomic DNA by PCR and cloned into pcDNA3.1, through restriction nuclease enzyme digestion. Then the recombinant plasmid was transformed into E.coli DH5alpha. After identified by nuclease digestion, PCR and sequencing analysis, the recombinant vector was transfected into COS-7 cell with lipsome. The expression of the target gene was detected by RT-PCR and Western blot. The eukaryotic experssion vector pcDNA3.1-LipL32 was successfully constructed and stably expressed in COS-7 cell. The eukaryotic recombinant vector of outer membrane protein LipL32 gene from Leptospira serovar Lai can be expressed in mammalian cell, which provides an experimental basis for the application of the Leptospira DNA vaccine.

  12. Combinatorial Regulation of Meiotic Holliday Junction Resolution in C. elegans by HIM-6 (BLM) Helicase, SLX-4, and the SLX-1, MUS-81 and XPF-1 Nucleases

    PubMed Central

    Sonneville, Remi; Jagut, Marlène; Woglar, Alexander; Blow, Julian; Jantsch, Verena; Gartner, Anton

    2013-01-01

    Holliday junctions (HJs) are cruciform DNA structures that are created during recombination events. It is a matter of considerable importance to determine the resolvase(s) that promote resolution of these structures. We previously reported that C. elegans GEN-1 is a symmetrically cleaving HJ resolving enzyme required for recombinational repair, but we could not find an overt role in meiotic recombination. Here we identify C. elegans proteins involved in resolving meiotic HJs. We found no evidence for a redundant meiotic function of GEN-1. In contrast, we discovered two redundant HJ resolution pathways likely coordinated by the SLX-4 scaffold protein and also involving the HIM-6/BLM helicase. SLX-4 associates with the SLX-1, MUS-81 and XPF-1 nucleases and has been implicated in meiotic recombination in C. elegans. We found that C. elegans [mus-81; xpf-1], [slx-1; xpf-1], [mus-81; him-6] and [slx-1; him-6] double mutants showed a similar reduction in survival rates as slx-4. Analysis of meiotic diakinesis chromosomes revealed a distinct phenotype in these double mutants. Instead of wild-type bivalent chromosomes, pairs of “univalents” linked by chromatin bridges occur. These linkages depend on the conserved meiosis-specific transesterase SPO-11 and can be restored by ionizing radiation, suggesting that they represent unresolved meiotic HJs. This suggests the existence of two major resolvase activities, one provided by XPF-1 and HIM-6, the other by SLX-1 and MUS-81. In all double mutants crossover (CO) recombination is reduced but not abolished, indicative of further redundancy in meiotic HJ resolution. Real time imaging revealed extensive chromatin bridges during the first meiotic division that appear to be eventually resolved in meiosis II, suggesting back-up resolution activities acting at or after anaphase I. We also show that in HJ resolution mutants, the restructuring of chromosome arms distal and proximal to the CO still occurs, suggesting that CO

  13. Combinatorial regulation of meiotic holliday junction resolution in C. elegans by HIM-6 (BLM) helicase, SLX-4, and the SLX-1, MUS-81 and XPF-1 nucleases.

    PubMed

    Agostinho, Ana; Meier, Bettina; Sonneville, Remi; Jagut, Marlène; Woglar, Alexander; Blow, Julian; Jantsch, Verena; Gartner, Anton

    2013-01-01

    Holliday junctions (HJs) are cruciform DNA structures that are created during recombination events. It is a matter of considerable importance to determine the resolvase(s) that promote resolution of these structures. We previously reported that C. elegans GEN-1 is a symmetrically cleaving HJ resolving enzyme required for recombinational repair, but we could not find an overt role in meiotic recombination. Here we identify C. elegans proteins involved in resolving meiotic HJs. We found no evidence for a redundant meiotic function of GEN-1. In contrast, we discovered two redundant HJ resolution pathways likely coordinated by the SLX-4 scaffold protein and also involving the HIM-6/BLM helicase. SLX-4 associates with the SLX-1, MUS-81 and XPF-1 nucleases and has been implicated in meiotic recombination in C. elegans. We found that C. elegans [mus-81; xpf-1], [slx-1; xpf-1], [mus-81; him-6] and [slx-1; him-6] double mutants showed a similar reduction in survival rates as slx-4. Analysis of meiotic diakinesis chromosomes revealed a distinct phenotype in these double mutants. Instead of wild-type bivalent chromosomes, pairs of "univalents" linked by chromatin bridges occur. These linkages depend on the conserved meiosis-specific transesterase SPO-11 and can be restored by ionizing radiation, suggesting that they represent unresolved meiotic HJs. This suggests the existence of two major resolvase activities, one provided by XPF-1 and HIM-6, the other by SLX-1 and MUS-81. In all double mutants crossover (CO) recombination is reduced but not abolished, indicative of further redundancy in meiotic HJ resolution. Real time imaging revealed extensive chromatin bridges during the first meiotic division that appear to be eventually resolved in meiosis II, suggesting back-up resolution activities acting at or after anaphase I. We also show that in HJ resolution mutants, the restructuring of chromosome arms distal and proximal to the CO still occurs, suggesting that CO initiation

  14. Activated carbon enhanced anaerobic digestion of food waste - Laboratory-scale and Pilot-scale operation.

    PubMed

    Zhang, Le; Zhang, Jingxin; Loh, Kai-Chee

    2018-05-01

    Effects of activated carbon (AC) supplementation on anaerobic digestion (AD) of food waste were elucidated in lab- and pilot-scales. Lab-scale AD was performed in 1 L and 8 L digesters, while pilot-scale AD was conducted in a 1000 L digester. Based on the optimal dose of 15 g AC per working volume derived from the 1 L digester, for the same AC dosage in the 8 L digester, an improved operation stability coupled with a higher methane yield was achieved even when digesters without AC supplementation failed after 59 days due to accumulation of substantial organic intermediates. At the same time, color removal from the liquid phase of the digestate was dramatically enhanced and the particle size of the digestate solids was increased by 53% through AC supplementation after running for 59 days. Pyrosequencing of 16S rRNA gene showed the abundance of predominant phyla Firmicutes, Elusimicrobia and Proteobacteria selectively enhanced by 1.7-fold, 2.9-fold and 2.1-fold, respectively. Pilot-scale digester without AC gave an average methane yield of 0.466 L⋅(gVS) -1 ⋅d -1 at a composition of 53-61% v/v methane. With AC augmentation, an increase of 41% in methane yield was achieved in the 1000 L digester under optimal organic loading rate (1.6 g VS FW ·L -1 ·d -1 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. In vivo digestion of bovine milk fat globules: effect of processing and interfacial structural changes. II. Upper digestive tract digestion.

    PubMed

    Gallier, Sophie; Zhu, Xiang Q; Rutherfurd, Shane M; Ye, Aiqian; Moughan, Paul J; Singh, Harjinder

    2013-12-01

    The aim of this research was to study the effect of milk processing on the in vivo upper digestive tract digestion of milk fat globules. Fasted rats were serially gavaged over a 5h period with cream from raw, pasteurised, or pasteurised and homogenised milk. Only a few intact dietary proteins and peptides were present in the small intestinal digesta. Significantly (P<0.05) more longer chain (C≥10) fatty acids were present in the digesta of rats gavaged with raw (448 mg g(-1) digesta dry matter (DDM)) and homogenised creams (528 mg g(-1) DDM), as compared to pasteurised and homogenised cream (249 mg g(-1) DDM). Microscopy techniques were used to investigate the structural changes during digestion. Liquid-crystalline lamellar phases surrounding the fat globules, fatty acid soap crystals and lipid-mucin interactions were evident in all small intestinal digesta. Overall, the pasteurised and homogenised cream appeared to be digested to a greater extent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Digestion of Yeasts and Beta-1,3-Glucanases in Mosquito Larvae: Physiological and Biochemical Considerations.

    PubMed

    Souza, Raquel Santos; Diaz-Albiter, Hector Manuel; Dillon, Vivian Maureen; Dillon, Rod J; Genta, Fernando Ariel

    2016-01-01

    Aedes aegypti larvae ingest several kinds of microorganisms. In spite of studies regarding mosquito digestion, little is known about the nutritional utilization of ingested cells by larvae. We investigated the effects of using yeasts as the sole nutrient source for A. aegypti larvae. We also assessed the role of beta-1,3-glucanases in digestion of live yeast cells. Beta-1,3-glucanases are enzymes which hydrolyze the cell wall beta-1,3-glucan polyssacharide. Larvae were fed with cat food (controls), live or autoclaved Saccharomyces cerevisiae cells and larval weight, time for pupation and adult emergence, larval and pupal mortality were measured. The presence of S. cerevisiae cells inside the larval gut was demonstrated by light microscopy. Beta-1,3-glucanase was measured in dissected larval samples. Viability assays were performed with live yeast cells and larval gut homogenates, with or without addition of competing beta-1,3-glucan. A. aegypti larvae fed with yeast cells were heavier at the 4th instar and showed complete development with normal mortality rates. Yeast cells were efficiently ingested by larvae and quickly killed (10% death in 2 h, 100% in 48 h). Larvae showed beta-1,3-glucanase in head, gut and rest of body. Gut beta-1,3-glucanase was not derived from ingested yeast cells. Gut and rest of body activity was not affected by the yeast diet, but head homogenates showed a lower activity in animals fed with autoclaved S. cerevisiae cells. The enzymatic lysis of live S. cerevisiae cells was demonstrated using gut homogenates, and this activity was abolished when excess beta-1,3-glucan was added to assays. These results show that live yeast cells are efficiently ingested and hydrolyzed by A. aegypti larvae, which are able to fully-develop on a diet based exclusively on these organisms. Beta-1,3-glucanase seems to be essential for yeast lytic activity of A. aegypti larvae, which possess significant amounts of these enzyme in all parts investigated.

  17. Modeling microbial diversity in anaerobic digestion through an extended ADM1 model.

    PubMed

    Ramirez, Ivan; Volcke, Eveline I P; Rajinikanth, Rajagopal; Steyer, Jean-Philippe

    2009-06-01

    The anaerobic digestion process comprises a whole network of sequential and parallel reactions, of both biochemical and physicochemical nature. Mathematical models, aiming at understanding and optimization of the anaerobic digestion process, describe these reactions in a structured way, the IWA Anaerobic Digestion Model No. 1 (ADM1) being the most well established example. While these models distinguish between different microorganisms involved in different reactions, to our knowledge they all neglect species diversity between organisms with the same function, i.e. performing the same reaction. Nevertheless, available experimental evidence suggests that the structure and properties of a microbial community may be influenced by process operation and on their turn also determine the reactor functioning. In order to adequately describe these phenomena, mathematical models need to consider the underlying microbial diversity. This is demonstrated in this contribution by extending the ADM1 to describe microbial diversity between organisms of the same functional group. The resulting model has been compared with the traditional ADM1 in describing experimental data of a pilot-scale hybrid Upflow Anaerobic Sludge Filter Bed (UASFB) reactor, as well as in a more detailed simulation study. The presented model is further shown useful in assessing the relationship between reactor performance and microbial community structure in mesophilic CSTRs seeded with slaughterhouse wastewater when facing increasing levels of ammonia.

  18. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases

    PubMed Central

    Merlin, Christine; Beaver, Lauren E.; Taylor, Orley R.; Wolfe, Scot A.; Reppert, Steven M.

    2013-01-01

    The development of reverse-genetic tools in “nonmodel” insect species with distinct biology is critical to establish them as viable model systems. The eastern North American monarch butterfly (Danaus plexippus), whose genome is sequenced, has emerged as a model to study animal clocks, navigational mechanisms, and the genetic basis of long-distance migration. Here, we developed a highly efficient gene-targeting approach in the monarch using zinc-finger nucleases (ZFNs), engineered nucleases that generate mutations at targeted genomic sequences. We focused our ZFN approach on targeting the type 2 vertebrate-like cryptochrome gene of the monarch (designated cry2), which encodes a putative transcriptional repressor of the monarch circadian clockwork. Co-injections of mRNAs encoding ZFNs targeting the second exon of monarch cry2 into “one nucleus” stage embryos led to high-frequency nonhomologous end-joining-mediated, mutagenic lesions in the germline (up to 50%). Heritable ZFN-induced lesions in two independent lines produced truncated, nonfunctional CRY2 proteins, resulting in the in vivo disruption of circadian behavior and the molecular clock mechanism. Our work genetically defines CRY2 as an essential transcriptional repressor of the monarch circadian clock and provides a proof of concept for the use of ZFNs for manipulating genes in the monarch butterfly genome. Importantly, this approach could be used in other lepidopterans and “nonmodel” insects, thus opening new avenues to decipher the molecular underpinnings of a variety of biological processes. PMID:23009861

  19. Modeling the anaerobic digestion of cane-molasses vinasse: extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater.

    PubMed

    Barrera, Ernesto L; Spanjers, Henri; Solon, Kimberly; Amerlinck, Youri; Nopens, Ingmar; Dewulf, Jo

    2015-03-15

    This research presents the modeling of the anaerobic digestion of cane-molasses vinasse, hereby extending the Anaerobic Digestion Model No. 1 with sulfate reduction for a very high strength and sulfate rich wastewater. Based on a sensitivity analysis, four parameters of the original ADM1 and all sulfate reduction parameters were calibrated. Although some deviations were observed between model predictions and experimental values, it was shown that sulfates, total aqueous sulfide, free sulfides, methane, carbon dioxide and sulfide in the gas phase, gas flow, propionic and acetic acids, chemical oxygen demand (COD), and pH were accurately predicted during model validation. The model showed high (±10%) to medium (10%-30%) accuracy predictions with a mean absolute relative error ranging from 1% to 26%, and was able to predict failure of methanogenesis and sulfidogenesis when the sulfate loading rate increased. Therefore, the kinetic parameters and the model structure proposed in this work can be considered as valid for the sulfate reduction process in the anaerobic digestion of cane-molasses vinasse when sulfate and organic loading rates range from 0.36 to 1.57 kg [Formula: see text]  m(-3) d(-1) and from 7.66 to 12 kg COD m(-3) d(-1), respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Economic viability of anaerobic digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellinger, A.

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs ofmore » an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.« less

  1. Effects of inoculum to substrate ratio and co-digestion with bagasse on biogas production of fish waste.

    PubMed

    Xu, Jie; Mustafa, Ahmed M; Sheng, Kuichuan

    2017-10-01

    To overcome the biogas inhibition in anaerobic digestion of fish waste (FW), effects of inoculum to substrate ratio (I/S, based on VS) and co-digestion with bagasse on biogas production of FW were studied in batch reactors. I/S value was from 0.95 to 2.55, bagasse content in co-digestion (based on VS) was 25%, 50% and 75%. The highest biogas yield (433.4 mL/gVS) with 73.34% methane content was obtained at an I/S value of 2.19 in mono-digestion of FW; the biogas production was inhibited and the methane content was below 70% when I/S was below 1.5. Co-digestion of FW and bagasse could improve the stability and biogas potential, also reducing the time required to obtain 70% of the total biogas production, although the total biogas yield and methane content decreased with the increase in bagasse content in co-digestion. Biogas yield of 409.5 mL/gVS was obtained in co-digestion of 75% FW and 25% bagasse; simultaneously 78.46% of the total biogas production was achieved after 10 days of digestion.

  2. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : evaluation of alkaline persulfate digestion as an alternative to Kjeldahl digestion for determination of total and dissolved nitrogen and phosphorus in water

    USGS Publications Warehouse

    Patton, Charles J.; Kryskalla, Jennifer R.

    2003-01-01

    Alkaline persulfate digestion was evaluated and validated as a more sensitive, accurate, and less toxic alternative to Kjeldahl digestion for routine determination of nitrogen and phosphorus in surface- and ground-water samples in a large-scale and geographically diverse study conducted by U.S. Geological Survey (USGS) between October 1, 2001, and September 30, 2002. Data for this study were obtained from about 2,100 surface- and ground-water samples that were analyzed for Kjeldahl nitrogen and Kjeldahl phosphorus in the course of routine operations at the USGS National Water Quality Laboratory (NWQL). These samples were analyzed independently for total nitrogen and total phosphorus using an alkaline persulfate digestion method developed by the NWQL Methods Research and Development Program. About half of these samples were collected during nominally high-flow (April-June) conditions and the other half were collected during nominally low-flow (August-September) conditions. The number of filtered and whole-water samples analyzed from each flow regime was about equal.By operational definition, Kjeldahl nitrogen (ammonium + organic nitrogen) and alkaline persulfate digestion total nitrogen (ammonium + nitrite + nitrate + organic nitrogen) are not equivalent. It was necessary, therefore, to reconcile this operational difference by subtracting nitrate + nitrite concentra-tions from alkaline persulfate dissolved and total nitrogen concentrations prior to graphical and statistical comparisons with dissolved and total Kjeldahl nitrogen concentrations. On the basis of two-population paired t-test statistics, the means of all nitrate-corrected alkaline persulfate nitrogen and Kjeldahl nitrogen concentrations (2,066 paired results) were significantly different from zero at the p = 0.05 level. Statistically, the means of Kjeldahl nitrogen concentrations were greater than those of nitrate-corrected alkaline persulfate nitrogen concentrations. Experimental evidence strongly

  3. Enhancing post aerobic digestion of full-scale anaerobically digested sludge using free nitrous acid pretreatment.

    PubMed

    Wang, Qilin; Zhou, Xu; Peng, Lai; Wang, Dongbo; Xie, Guo-Jun; Yuan, Zhiguo

    2016-05-01

    Post aerobic digestion of anaerobically digested sludge (ADS) has been extensively applied to the wastewater treatment plants to enhance sludge reduction. However, the degradation of ADS in the post aerobic digester itself is still limited. In this work, an innovative free nitrous acid (HNO2 or FNA)-based pretreatment approach is proposed to improve full-scale ADS degradation in post aerobic digester. The post aerobic digestion was conducted by using an activated sludge to aerobically digest ADS for 4 days. Degradations of the FNA-treated (treated at 1.0 and 2.0 mg N/L for 24 h) and untreated ADSs were then determined and compared. The ADS was degraded by 26% and 32%, respectively, in the 4-day post aerobic digestion period while being pretreated at 1.0 and 2.0 mg HNO2-N/L. In comparison, only 20% of the untreated ADS was degraded. Economic analysis demonstrated that the implementation of FNA pretreatment can be economically favourable or not depending on the sludge transport and disposal cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Acid digestion of geological and environmental samples using open-vessel focused microwave digestion.

    PubMed

    Taylor, Vivien F; Toms, Andrew; Longerich, Henry P

    2002-01-01

    The application of open vessel focused microwave acid digestion is described for the preparation of geological and environmental samples for analysis using inductively coupled plasma-mass spectrometry (ICP-MS). The method is compared to conventional closed-vessel high pressure methods which are limited in the use of HF to break down silicates. Open-vessel acid digestion more conveniently enables the use of HF to remove Si from geological and plant samples as volatile SiF4, as well as evaporation-to-dryness and sequential acid addition during the procedure. Rock reference materials (G-2 granite, MRG-1 gabbros, SY-2 syenite, JA-1 andesite, and JB-2 and SRM-688 basalts) and plant reference materials (BCR and IAEA lichens, peach leaves, apple leaves, Durham wheat flour, and pine needles) were digested with results comparable to conventional hotplate digestion. The microwave digestion method gave poor results for granitic samples containing refractory minerals, however fusion was the preferred method of preparation for these samples. Sample preparation time was reduced from several days, using conventional hotplate digestion method, to one hour per sample using our microwave method.

  5. Diversity Digest. Volume 9, Number 1

    ERIC Educational Resources Information Center

    Musil, Caryn McTighe, Ed.; Hovland, Kevin, Ed.

    2005-01-01

    Civic engagement is the focus of this issue of "Diversity Digest." Concrete examples of institutions that have linked diversity and civic engagement in powerful, effective, and educationally transforming ways are presented. What is seen in the field is encouraging. Articles feature new conceptual frameworks for civic learning, curricular…

  6. Anaerobic digestion of macroalgae: methane potentials, pre-treatment, inhibition and co-digestion.

    PubMed

    Nielsen, H B; Heiske, S

    2011-01-01

    In the present study we tested four macroalgae species--harvested in Denmark--for their suitability of bioconversion to methane. In batch experiments (53 degrees C) methane yields varied from 132 ml g volatile solids(-1) (VS) for Gracillaria vermiculophylla, 152 mi gVS(-1) for Ulva lactuca, 166 ml g VS(-1) for Chaetomorpha linum and 340 ml g VS(-1) for Saccharina latissima following 34 days of incubation. With an organic content of 21.1% (1.5-2.8 times higher than the other algae) S. latissima seems very suitable for anaerobic digestion. However, the methane yields of U. lactuca, G. vermiculophylla and C. linum could be increased with 68%, 11% and 17%, respectively, by pretreatment with maceration. U. lactuca is often observed during 'green tides' in Europe and has a high cultivation potential at Nordic conditions. Therefore, U. lactuca was selected for further investigation and co-digested with cattle manure in a lab-scale continuously stirred tank reactor. A 48% increase in methane production rate of the reactor was observed when the concentration of U. lactuca in the feedstock was 40% (VS basis). Increasing the concentration to 50% had no further effect on the methane production, which limits the application of this algae at Danish centralized biogas plant.

  7. Unifying the DNA End-processing Roles of the Artemis Nuclease

    PubMed Central

    Chang, Howard H. Y.; Watanabe, Go; Lieber, Michael R.

    2015-01-01

    Artemis is a member of the metallo-β-lactamase protein family of nucleases. It is essential in vertebrates because, during V(D)J recombination, the RAG complex generates hairpins when it creates the double strand breaks at V, D, and J segments, and Artemis is required to open the hairpins so that they can be joined. Artemis is a diverse endo- and exonuclease, and creating a unified model for its wide range of nuclease properties has been challenging. Here we show that Artemis resects iteratively into blunt DNA ends with an efficiency that reflects the AT-richness of the DNA end. GC-rich ends are not cut by Artemis alone because of a requirement for DNA end breathing (and confirmed using fixed pseudo-Y structures). All DNA ends are cut when both the DNA-dependent protein kinase catalytic subunit and Ku accompany Artemis but not when Ku is omitted. These are the first biochemical data demonstrating a Ku dependence of Artemis action on DNA ends of any configuration. The action of Artemis at blunt DNA ends is slower than at overhangs, consistent with a requirement for a slow DNA end breathing step preceding the cut. The AT sequence dependence, the order of strand cutting, the length of the cuts, and the Ku-dependence of Artemis action at blunt ends can be reconciled with the other nucleolytic properties of both Artemis and Artemis·DNA-PKcs in a model incorporating DNA end breathing of blunt ends to form transient single to double strand boundaries that have structural similarities to hairpins and fixed 5′ and 3′ overhangs. PMID:26276388

  8. Determination of the optimal rate for the microaerobic treatment of several H2S concentrations in biogas from sludge digesters.

    PubMed

    Díaz, I; Lopes, A C; Pérez, S I; Fdz-Polanco, M

    2011-01-01

    The treatment of H2S in the biogas produced during anaerobic digestion has to be carried out to ensure the efficient long-lasting use of its energetic potential. The microaerobic removal of H2S was studied to determine the treatment capacity at low and high H2S concentrations in the biogas (0.33 and 3.38% v/v) and to determine the optimal O2 rate that achieved a concentration of H2S of 150 mg/Nm3 or lower. Research was performed in pilot-plant scale digesters of sewage sludge, with 200 L of working volume, in mesophilic conditions with a hydraulic retention time of 20 d. O2 was supplied at different rates to the headspace of the digester to create the microaerobic conditions. The treatment successfully removed H2S from the biogas with efficacies of 97% for the low concentration and 99% for the highest, in both cases achieving a concentration below 150 mg/Nm3. An optimal O2 rate of 6.4 NLO2/Nm3 of biogas when treating the biogas was found with 0.33% (v/v) of H2S and 118 NLO2/ Nm3 of biogas for the 3.38% (v/v) concentration. This relation may be employed to control the H2S content in the biogas while optimising the O2 supply.

  9. BRCA1 and BRCA2 expression patterns and prognostic significance in digestive system cancers.

    PubMed

    Wang, Gui-Hua; Zhao, Chun-Mei; Huang, Ying; Wang, Wei; Zhang, Shu; Wang, Xudong

    2018-01-01

    The role of BRCA1 and BRCA2 genes is mainly to maintain genome integrity in response to DNA damage through different mechanisms. Deregulation of BRCA1 and BRCA2 is associated with the development of tumor and altered sensitivity to chemotherapeutic agents. In this study, we determined protein expression of BRCA1 and BRCA2 in 4 digestive system cancers (gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer) by immunohistochemistry on tissue microarrays. A total of 1546 samples of 4 types of cancer tissues, their matched adjacent nontumor tissues, and corresponding benign tissues were studied, respectively. Immunohistochemistry expression patterns of the 2 proteins and their correlation with patients' clinical parameters and overall survival were analyzed. The results showed that low expression of cytoplasmic BRCA1 and BRCA2 was commonly associated with advanced tumor-lymph node-metastasis stage, whereas high expression of nuclear BRCA1 was generally correlated with advanced tumor stages in these cancers. High expression of cytoplasmic BRCA1 and BRCA2 had significantly favorable overall survival in digestive system cancers; in contrast, BRCA1 nuclear expression usually predicted poor outcomes. We conclude that BRCA1 and BRCA2 could be used as clinicopathological biomarkers to evaluate the prognosis of digestive system cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Anaerobic co-digestion of livestock and vegetable processing wastes: fibre degradation and digestate stability.

    PubMed

    Molinuevo-Salces, Beatriz; Gómez, Xiomar; Morán, Antonio; García-González, Mari Cruz

    2013-06-01

    Anaerobic digestion of livestock wastes (swine manure (SM) and poultry litter (PL)) and vegetable processing wastes (VPW) mixtures was evaluated in terms of methane yield, volatile solids removal and lignocellulosic material degradation. Batch experiments were performed with 2% VS (volatile solids) to ensure complete conversion of TVFAs (total volatile fatty acids) and to avoid ammonia inhibition. Experimental methane yields obtained for the mixtures resulted in higher values than those obtained from the sum of the methane yields from the individual components. VPW addition to livestock wastes before anaerobic digestion also resulted in improved VS elimination. In SM-VPW co-digestions, CH4 yield increased from 111 to 244 mL CH4 g VS added(-1), and the percentage of VS removed increased from 50% to 86%. For PL-VPW co-digestions, the corresponding values were increased from 158 to 223 mL CH4 g VS added(-1) and from 70% to 92% VS removed. Hemicelluloses and more than 50% of cellulose were degraded during anaerobic digestion. Thermal analyses indicated that the stabilization of the wastes during anaerobic digestion resulted in significantly less energy being released by digestate samples than fresh samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: A new approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michele, Pognani, E-mail: michele.pognani@unimi.it; Giuliana, D’Imporzano, E-mail: giuliana.dimporzano@unimi.it; Gruppo Ricicla - DiSAA, Università degli Studi di Milano, Biomass and Bioenergy Lab., Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, 26900 Lodi

    2015-01-15

    Highlights: • Solid State Anaerobic Digestion (SSAD) of OFMSW can be optimized by irrigation with digestate. • Digestate spreading allows keeping optimal process parameters and high hydrolysis rate. • The 18.4% of CH{sub 4} was produced in the reactor, leaving the 49.7% in the percolate. • Successive CSTR feed with percolate shows a biogas enriched in methane (more than 80%). • The proposed process allow producing the 68% of OFMSW potential CH{sub 4}, getting high quality organic amendment. - Abstract: Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doingmore » so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18–1:0.9 w/w waste/digestate; 21 d of hydraulic retention time – HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium.« less

  12. Myostatin gene mutated mice induced with tale nucleases.

    PubMed

    Zhou, Fangfang; Sun, Ruilin; Chen, Hongyan; Fei, Jian; Lu, Daru

    2015-01-01

    Myostain gene (MSTN) is expressed primarily in skeletal muscle, and negatively regulates skeletal muscle mass; it has been suggested that mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. Therefore, it is important to establish a fast and effective gene editing method. In this report, we established the myostatin mutated-mouse model by microinjection of Transcription Activator-Like Effector Nucleases (TALENs) mRNA within the mouse fertilized oocytes and achieved high rates of mutagenesis of the mouse MSTN in C57BL/6J. Six of 45 born mice carried target mutations and we appointed one as the parental mating with wild mouse to produce the F1 and backcross to produce the F2 generation. All the mutations of the mice were examined quickly and efficiently by high-resolution melting curve analysis (HRMA) and then verified by direct sequencing. We obtained the homozygous of the F2 generation which transmitted the mutant alleles to the progeny with 100% efficiency. Mutant mice exhibited increases in muscle mass comparable to those observed in wild-type mice. Therefore, combining TALEN-mediated gene targeting with HRMA technology is a superior method of constructing genetically modified mice through microinjection in the mouse fertilized oocytes with high efficiency and short time of selection.

  13. Diversity Digest. Volume 8, Number 1

    ERIC Educational Resources Information Center

    Giles, Mark, Ed.

    2004-01-01

    Sponsored by the Pathways to College Network, this issue of "Diversity Digest" highlights some of the research that informs Pathways. Several of the articles identify factors that affect underserved students' ability to attend and succeed at postsecondary institutions. In the first article, "The Right to Learn and the Pathways to College Network"…

  14. Fertilizer and sanitary quality of digestate biofertilizer from the co-digestion of food waste and human excreta.

    PubMed

    Owamah, H I; Dahunsi, S O; Oranusi, U S; Alfa, M I

    2014-04-01

    This research was aimed at assessing the fertilizer quality and public health implications of using digestate biofertilizer from the anaerobic digestion of food wastes and human excreta. Twelve (12) kg of food wastes and 3kg of human excreta were mixed with water in a 1:1 w/v to make 30-l slurry that was fed into the anaerobic digester to ferment for 60days at mesophilic temperature (22-31°C). Though BOD, COD, organic carbon and ash content in the feedstock were reduced after anaerobic digestion by 50.0%, 10.6%, 74.3% and 1.5% respectively, nitrogen, pH and total solids however increased by 12.1%, 42.5% and 12.4% respectively. The C/N ratios of the feedstock and compost are 135:1 and 15.8:1. The residual total coliforms of 2.10×10(8)CFU/100ml in the digestate was above tolerable limits for direct application on farmlands. Microbial analysis of the digestate biofertilizer revealed the presence of Pseudomonas, Klebsiella, Clostridium, Bacillus, Bacteroides, Penicillum, Salmollena, and Aspergillus. Klebsiella, Bacillus, Pseudomonas, Penicillum and Aspergillus can boost the efficiency of the biofertilizer through nitrogen fixation and nutrient solubility in soils but Klebsiella again and Salmollena are potential health risks to end users. Further treatment of the digestate for more efficient destruction of pathogens is advised. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The Cooperative Companion Digest (No. 1-4). Thinking about the Nature and Power of Cooperative Learning.

    ERIC Educational Resources Information Center

    Daniels, Ed; Gatto, Mike

    These digests provide information for educators about the nature of cooperation and how cooperative principles can be used to restructure classrooms, administrative hierarchies, and work relationships of all types. Digest 1 describes the competitive, individual, and cooperative interaction patterns and examines the impact of cooperative learning…

  16. Anaerobic co-digestion of sewage sludge and food waste.

    PubMed

    Prabhu, Meghanath S; Mutnuri, Srikanth

    2016-04-01

    Anaerobic co-digestion of organic matter improves digester operating characteristics and its performance. In the present work, food waste was collected from the institute cafeteria. Two types of sludge (before centrifuge and after centrifuge) were collected from the fluidised bed reactor of the institute treating sewage wastewater. Food waste and sludge were studied for their physico-chemical characteristics, such as pH, chemical oxygen demand, total solids, volatile solids, ammoniacal nitrogen, and total nitrogen. A biomethane potential assay was carried out to find out the optimum mixing ratio of food waste and sludge for anaerobic co-digestion. Results indicated that food waste mixed with sludge in the ratio of 1:2 produced the maximum biogas of 823 ml gVS(-1)(21 days) with an average methane content of 60%. Batch studies were conducted in 5 L lab-glass reactors at a mesophilic temperature. The effect of different substrate loading rates on biogas production was investigated. The mixing ratio of food waste and sludge was 1:2. A loading rate of 1 gVS L d(-1)gave the maximum biogas production of 742 ml g(-1)VS L d(-1)with a methane content of 50%, followed by 2 gVS L d(-1)with biogas of 539 ml g(-1)VS L d(-1) Microbial diversity of the reactor during fed batch studies was investigated by terminal restriction fragment length polymorphism. A pilot-scale co-digestion of food waste and sludge (before centrifuge) indicated the process stability of anaerobic digestion. © The Author(s) 2016.

  17. Prediction of in vivo neutral detergent fiber digestibility and digestion rate of potentially digestible neutral detergent fiber: comparison of models.

    PubMed

    Huhtanen, P; Seppälä, A; Ahvenjärvi, S; Rinne, M

    2008-10-01

    Eleven 1-pool, seven 2-pool, and three 3-pool models were compared in fitting gas production data and predicting in vivo NDF digestibility and effective first-order digestion rate of potentially digestible NDF (pdNDF). Isolated NDF from 15 grass silages harvested at different stages of maturity was incubated in triplicate in rumen fluid-buffer solution for 72 h to estimate the digestion kinetics from cumulative gas production profiles. In vivo digestibility was estimated by the total fecal collection method in sheep fed at a maintenance level of feeding. The concentration of pdNDF was estimated by a 12-d in situ incubation. The parameter values from gas production profiles and pdNDF were used in a 2-compartment rumen model to predict pdNDF digestibility using 50 h of rumen residence time distributed in a ratio of 0.4:0.6 between the non-escapable and escapable pools. The effective first-order digestion rate was computed both from observed in vivo and model-predicted pdNDF digestibility assuming the passage kinetic model described above. There were marked differences between the models in fitting the gas production data. The fit improved with increasing number of pools, suggesting that silage pdNDF is not a homogenous substrate. Generally, the models predicted in vivo NDF digestibility and digestion rate accurately. However, a good fit of gas production data was not necessarily translated into improved predictions of the in vivo data. The models overestimating the asymptotic gas volumes tended to underestimate the in vivo digestibility. Investigating the time-related residuals during the later phases of fermentation is important when the data are used to estimate the first-order digestion rate of pdNDF. Relatively simple models such as the France model or even a single exponential model with discrete lag period satisfied the minimum criteria for a good model. Further, the comparison of feedstuffs on the basis of parameter values is more unequivocal than in the case

  18. Anaerobic co-digestion technology in solid wastes treatment for biomethane generation

    NASA Astrophysics Data System (ADS)

    Al Mamun, Muhammad Rashed; Torii, Shuichi

    2017-05-01

    Anaerobic co-digestion is considered to be an efficient way of disposing solid wastes which can not only reduce environmental burden, but also produce bioenergy. Co-digestion of solid wastes in the absence of bacteria inoculums with variable mixing ratios of three wastes has been experimentally tested for 35 days digestion time to determine the biogas potential. The temperature remained relatively constant at a mesophilic range of 29-36°C throughout the study. An average pH of 7.4 was recorded from all digesters. The average biogas yields obtained from the four digesters (D1, D2, D3 and D4) were 13.31, 15.67, 16.52 and 19.12 L/day, respectively. The cumulative result showed that from co-digestion of D4 43.67%, 22.02% and 15.71% more biogas was produced, respectively, than others. The maximum and average COD reduction was 57% and 31%, respectively, in co-digestion wastes. The biogas comprised average of 61% CH4, 33.5% CO2, 222 ppm H2S, and 4.7% H2O, respectively.

  19. SOVRaD - A Digest of Recent Soviet R and D Articles. Volume 1, Number 7, July 1975

    DTIC Science & Technology

    1975-07-01

    mmm^m* w—P AD-A015 652 SOVRaD - A DIGEST OF RECENT SOVIET R AND D ARTICLES . VOLUME 1, NUMBER 7, JULY 1975 S. Hibben, et al Informatics...a comparison article on the same topic, the author considers the r-f effect on electron density Ne and temperature of the lower ionosphere, for...hi(i;h-frequency measurements). Kiyev, Izd-vo Tekhnika, 1975, 142 p. (LC-VKP) Galushkin, A. I. Sintez mnogosloynykh sistem

  20. Digestibility marker and ileal amino acid digestibility in phytase-supplemented soybean or canola meals for growing pigs.

    PubMed

    Favero, A; Ragland, D; Vieira, S L; Owusu-Asiedu, A; Adeola, O

    2014-12-01

    Two experiments using soybean meal (SBM) or canola meal (CM) were conducted to investigate whether the choice of digestibility marker influenced the apparent ileal digestibility (AID) or standardized ileal digestibility (SID) of N and AA in diets supplemented with phytase. In each experiment, 18 barrows fitted with T-cannulas at the ileocecal junction were assigned to 3 diets consisting of a N-free diet to determine endogenous losses of N and AA, a semipurified diet (SBM in Exp. 1 or CM in Exp. 2), and the semipurified diet supplemented with phytase at 1,000 phytase units/kg. Three digestibility markers including acid-insoluble ash (AIA), chromic oxide (Cr2O3), and titanium dioxide (TiO2) were added to each diet at 3 g/kg. Each diet was fed for 7 d, consisting of a 5-d adjustment and a 2-d collection of ileal digesta. In both studies, basal ileal endogenous losses determined with Cr2O3 as a digestibility marker were lower (P<0.01) than with those determined with AIA or TiO2 digestibility markers. Using SBM as the protein source in Exp. 1, there was no interaction between phytase and digestibility marker on AID or SID of AA. The AID of N and AA in SBM using AIA as a digestibility marker tended to be lower (P<0.1) compared with Cr2O3 or TiO2 digestibility markers. Phytase supplementation increased (P<0.001) the AID of Ca and P. The use of AIA or Cr2O3 digestibility marker tended to be associated with lower (P<0.1) SID values compared with TiO2. Phytase did not affect the SID of N or any AA in SBM except for Met, for which there was an increase (P<0.05) with phytase supplementation. Using CM as the protein source in Exp. 2, there were significant interactions between digestibility marker and phytase. Phytase supplementation had effects (P<0.01) on AID or SID when Cr2O3 or TiO2 was used as the digestibility marker. With Cr2O3 or TiO2 as the digestibility marker in the CM diets, phytase supplementation increased (P<0.05) the SID of N and all AA (except Trp). There was

  1. Digestive Diseases

    MedlinePlus

    ... cells and provide energy. This process is called digestion. Your digestive system is a series of hollow organs joined ... are also involved. They produce juices to help digestion. There are many types of digestive disorders. The ...

  2. MiR-361-5p inhibits colorectal and gastric cancer growth and metastasis by targeting staphylococcal nuclease domain containing-1

    PubMed Central

    Zhang, Yuxin; Zheng, Yasheng; Lin, Chengchun; Wu, Ying; Guan, Guijie; Sha, Ruihua; Zhou, Qingxin; Wang, Dejun; Zhou, Xinglu; Li, Juan; Qiu, Xiaohui

    2015-01-01

    MicroRNAs (miRs) function as key regulators of gene expression and their deregulation is associated with the carcinogenesis of various cancers. In the present study, we investigated the biological role and mechanism of miR-361-5p in colorectal carcinoma (CRC) and gastric cancer (GC). We showed that microRNA-361-5p (miR-361-5p) was down-regulated in CRC and GC in comparison to the controls. Meanwhile, the expression levels of miR-361-5p negatively correlated with lung metastasis and prognosis in clinical CRC patients. Overexpression of miR-361-5p markedly suppressed proliferation, migration and invasion of cancer cells. Additionally, this phenotype could be partially rescued by the ectopic expression of staphylococcal nuclease domain containing-1 (SND1). SND1 was identified as a target of miR-361-5p using bioinformatics analysis and in vitro luciferase reporter assays. In turn, SND1 bound to pre-miR-361-5p and suppressed the expression of miR-361-5p, thus exerting a feedback loop. Most interestingly, in vivo studies showed that restoration of miR-361-5p significantly inhibited tumor growth and especially the lung metastasis in nude mice. Therefore, it could be concluded that miR-361-5p functions as a tumor-suppressive miRNA through directly binding to SND1, highlighting its potential as a novel agent for the treatment of patients with CRC and GC. PMID:25965817

  3. Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes

    PubMed Central

    Zhang, Jun; Zhang, Lei; Geng, Alei; Liu, Fanghua; Zhao, Guoping; Wang, Shengyue; Zhou, Zhihua; Yan, Xing

    2015-01-01

    Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH) genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg). Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future. PMID:26070087

  4. Economic analysis of microaerobic removal of H2S from biogas in full-scale sludge digesters.

    PubMed

    Díaz, I; Ramos, I; Fdz-Polanco, M

    2015-09-01

    The application of microaerobic conditions during sludge digestion has been proven to be an efficient method for H2S removal from biogas. In this study, three microaerobic treatments were considered as an alternative to the technique of biogas desulfurization applied (FeCl3 dosing to the digesters) in a WWTP comprising three full-scale anaerobic reactors treating sewage sludge, depending on the reactant: pure O2 from cryogenic tanks, concentrated O2 from PSA generators, and air. These alternatives were compared in terms of net present value (NPV) with a fourth scenario consisting in the utilization of iron-sponge-bed filter inoculated with thiobacteria. The analysis revealed that the most profitable alternative to FeCl3 addition was the injection of concentrated O2 (0.0019 €/m(3) biogas), and this scenario presented the highest robustness towards variations in the price of FeCl3, electricity, and in the H2S concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate.

    PubMed

    Estevez, Maria M; Sapci, Zehra; Linjordet, Roar; Schnürer, Anna; Morken, John

    2014-04-01

    The effects of recirculating the liquid fraction of the digestate during mesophilic anaerobic co-digestion of steam-exploded Salix and cow manure were investigated in laboratory-scale continuously stirred tank reactors. An average organic loading rate of 2.6 g VS L(-1) d(-1) and a hydraulic retention time (HRT) of 30 days were employed. Co-digestion of Salix and manure gave better methane yields than digestion of manure alone. Also, a 16% increase in the methane yield was achieved when digestate was recirculated and used instead of water to dilute the feedstock (1:1 dilution ratio). The reactor in which the larger fraction of digestate was recirculated (1:3 dilution ratio) gave the highest methane yields. Ammonia and volatile fatty acids did not reach inhibitory levels, and some potentially inhibitory compounds released during steam explosion (i.e., furfural and 5-hydroxy methyl furfural) were only detected at trace levels throughout the entire study period. However, accumulation of solids, which was more pronounced in the recycling reactors, led to decreased methane yields in those systems after three HRTs. Refraining from the use of fresh water to dilute biomass with a high-solids content and obtaining a final digestate with increased dry matter content might offer important economic benefits in full-scale processes. To ensure long-term stability in such an approach, it would be necessary to optimize separation of the fraction of digestate to be recirculated and also perform proper monitoring to avoid accumulation of solids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Polymorphisms of glutathione S-transferase Mu 1, glutathione S-transferase theta 1 and glutathione S-transferase Pi 1 genes in Hodgkin's lymphoma susceptibility and progression.

    PubMed

    Lourenço, Gustavo J; Néri, Iramaia A; Sforni, Vitor C S; Kameo, Rodolfo; Lorand-Metze, Irene; Lima, Carmen S P

    2009-06-01

    We tested in this study whether the polymorphisms of the glutathione S-transferase Mu1 (GSTM1), glutathione S-transferase Theta 1 (GSTT1) and glutathione S-transferase Pi 1 (GSTP1), involved in metabolism of chemical agents, cell proliferation and cell survival, alter the risk for Hodgkin lymphoma (HL). Genomic DNA from 110 consecutive patients with HL and 226 controls was analysed by polymerase chain reaction and restriction digestion for the polymorphism analyses. Similar frequencies of the GSTM1 and GSTT1 genotypes were seen in patients and controls. In contrast, the frequency of the GSTP1 wild genotype (59.1%versus 36.3%, P = 0.004) was higher in patients than in controls. Individuals with the wild genotype had a 2.68 (95%CI: 1.38-5.21)-fold increased risk for the disease than others. An excess of the GSTP1 wild genotype was also observed in patients with tumors of stages III + IV when compared with those with tumors of stages I + II (39.1%versus 20.0%, P = 0.03). These results suggest that the wild allele of the GSTP1 gene is linked to an increased risk and high aggressiveness of the HL in our cases but they should be confirmed by further studies with larger cohorts of patients and controls.

  7. Digester effluent’s agronomic and odor emission potential: A swine case study

    USDA-ARS?s Scientific Manuscript database

    This on-farm study looked at the full-scale treatment effects of anaerobic digestion on the composition of manure effluent from an agronomic and air quality perspective. The goal was to improve our understanding of the role that anaerobic digestion may play in managing manure as a fertilizer and in...

  8. Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems.

    PubMed

    Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D

    2013-03-15

    Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be

  9. Teaching about Judicial Review. ERIC Digest.

    ERIC Educational Resources Information Center

    Patrick, John J.

    Judicial review is a fundamental facet of constitutional government in the United States. Invented during the founding of the United States, judicial review has spread to most constitutional democracies of the world. This digest discusses: (1) the concept of judicial review; (2) the origin of this concept; (3) the uses of this concept in U.S.…

  10. The fate and effect of monensin during anaerobic digestion of dairy manure under mesophilic conditions.

    PubMed

    Arikan, Osman A; Mulbry, Walter; Rice, Clifford; Lansing, Stephanie

    2018-01-01

    There is growing concern about residual antibiotics and feed additives in the manure of treated animals because of the effects of these residues in the environment. Monensin is the most widely used ionophore coccidiostat in the U.S. The objective of this study was to determine the fate and effect of monensin during the anaerobic digestion of dairy manure. Duplicate plug flow field-scale digesters were operated using non-amended dairy manure and dairy manure amended with monensin to 1 and 10 mg/L for 56 days at 30°C at an organic loading rate of 1.4 kg VS/m3-d and 17-day hydraulic retention time. Results showed that monensin was reduced approximately 70% during anaerobic digestion. Methane production from digesters using manure amended with 1 mg/L monensin was comparable to that from digesters operated without added monensin. However, digesters using manure amended with 10 mg/L monensin yielded 75% less methane than digesters using manure without added monensin. These results suggest that anaerobic digestion is an effective treatment for reducing, but not eliminating, monensin in dairy manure. Monensin did not reduce methane production at concentrations expected in dairy manure at recommended dosage rates.

  11. Prognostic and predictive values of PD-L1 expression in patients with digestive system cancer: a meta-analysis.

    PubMed

    Dai, Cong; Wang, Meng; Lu, Jun; Dai, Zhiming; Lin, Shuai; Yang, Pengtao; Tian, Tian; Liu, Xinghan; Min, Weili; Dai, Zhijun

    2017-01-01

    PD-L1 has been reported to be expressed in diverse human malignancies. However, the prognostic value of PD-L1 in digestive system cancers remains inconclusive. Therefore, we conducted this meta-analysis to evaluate the prognostic impact of PD-L1 expression in digestive system cancers. We searched the PubMed, Embase, and the Chinese National Knowledge Infrastructure for publications concerning PD-L1 expression in digestive system cancers. Correlations of PD-L1 expression level with overall survival (OS), disease-free survival (DFS), and recurrence-free survival (RFS) were analyzed. Finally, 32 studies with 7,308 patients were included. Our results show that PD-L1 expression was significantly associated with poorer OS (hazard ratio [HR] =1.44, 95% confidence interval [CI] =1.18-1.76, P <0.001), but not DFS (HR =0.91, 95% CI =0.61-1.37, P =0.657) or RFS (HR =1.27, 95% CI =0.75-2.14, P =0.368). Moreover, in the subgroup analysis, significant associations between PD-L1 expression and OS were found in Asians (HR =1.50, 95% CI =1.19-1.89, P =0.001), gastric cancer (HR =1.43, 95% CI =1.05-1.94, P =0.021), and pancreatic carcinoma (HR =2.64, 95% CI =1.78-3.93, P <0.001). These results suggest that the expression of PD-L1 is associated with worse OS in digestive system cancers, especially in gastric cancer and pancreatic cancer. In addition, PD-L1 may act as a new parameter for predicting poor prognosis and a promising target for anticancer therapy in digestive system cancers.

  12. Digested disorder: Quarterly intrinsic disorder digest (January/February/March, 2013).

    PubMed

    Uversky, Vladimir N

    2013-01-01

    The current literature on intrinsically disordered proteins is blooming. A simple PubMed search for "intrinsically disordered protein OR natively unfolded protein" returns about 1,800 hits (as of June 17, 2013), with many papers published quite recently. To keep interested readers up to speed with this literature, we are starting a "Digested Disorder" project, which will encompass a series of reader's digest type of publications aiming at the objective representation of the research papers and reviews on intrinsically disordered proteins. The only two criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest covers papers published during the period of January, February and March of 2013. The papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings.

  13. Foaming phenomenon in bench-scale anaerobic digesters.

    PubMed

    Siebels, Amanda M; Long, Sharon C

    2013-04-01

    The Madison Metropolitan Sewerage District (The District) in Madison, Wisconsin has been experiencing seasonal foaming in their anaerobic biosolids digesters, which has occurred from mid-November to late June for the past few years. The exact cause(s) of foaming is unknown. Previous research findings are unclear as to whether applications of advanced anaerobic digestion processes reduce the foaming potential of digesters. The object of this study was to investigate how configurations of thermophilic and acid phase-thermophilic anaerobic digestion would affect foaming at the bench-scale level compared to single stage mesophilic digestion for The District. Bench-scale anaerobic digesters were fed with a 4 to 4.5% by dry weight of solids content blend of waste activated sludge (WAS) and primary sludge from The District. Foaming potential was monitored using Alka-Seltzer and aeration foaming tests. The bench-scale acid phase-thermophilic digester had a higher foaming potential than the bench-scale mesophilic digester. These results indicate that higher temperatures increase the foaming potential of the bench-scale anaerobic digesters. The bench-scale acid phase-thermophilic digesters had a greater percent (approximately 5 to 10%) volatile solids destruction and a greater percent (approximately 5 to 10%) total solids destruction when compared to the bench-scale mesophilic digester. Overall, for the full-scale foaming experienced by The District, it appears that adding an acid phase or switching to thermophilic digestion would not alleviate The District's foaming issues.

  14. Comparative Digestive Physiology

    PubMed Central

    Karasov, William H.; Douglas, Angela E.

    2015-01-01

    In vertebrates and invertebrates, morphological and functional features of gastrointestinal (GI) tracts generally reflect food chemistry, such as content of carbohydrates, proteins, fats, and material(s) refractory to rapid digestion (e.g., cellulose). The expression of digestive enzymes and nutrient transporters approximately matches the dietary load of their respective substrates, with relatively modest excess capacity. Mechanisms explaining differences in hydrolase activity between populations and species include gene copy number variations and single-nucleotide polymorphisms. Transcriptional and posttranscriptional adjustments mediate phenotypic changes in the expression of hydrolases and transporters in response to dietary signals. Many species respond to higher food intake by flexibly increasing digestive compartment size. Fermentative processes by symbiotic microorganisms are important for cellulose degradation but are relatively slow, so animals that rely on those processes typically possess special enlarged compartment(s) to maintain a microbiota and other GI structures that slow digesta flow. The taxon richness of the gut microbiota, usually identified by 16S rRNA gene sequencing, is typically an order of magnitude greater in vertebrates than invertebrates, and the interspecific variation in microbial composition is strongly influenced by diet. Many of the nutrient transporters are orthologous across different animal phyla, though functional details may vary (e.g., glucose and amino acid transport with K+ rather than Na+ as a counter ion). Paracellular absorption is important in many birds. Natural toxins are ubiquitous in foods and may influence key features such as digesta transit, enzymatic breakdown, microbial fermentation, and absorption PMID:23720328

  15. Microwave-assisted ultraviolet digestion of petroleum coke for the simultaneous determination of nickel, vanadium and sulfur by ICP-OES.

    PubMed

    Oliveira, Jussiane S S; Picoloto, Rochele S; Bizzi, Cezar A; Mello, Paola A; Barin, Juliano S; Flores, Erico M M

    2015-11-01

    A method for the simultaneous determination of Ni, V and S in petroleum coke by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted ultraviolet digestion (MW-UV) in closed vessels was proposed. Digestion was performed using electrodeless discharge lamps positioned inside quartz vessels and turned on by microwave radiation. The following parameters were evaluated: HNO3 concentration (15 mL of 1, 4, 7, 10 or 14.4 mol L(-1)), volume of H2O2 (30%, 1 or 3 mL), sample mass (100, 250 or 500 mg) and heating time (40 or 60 min) with or without the use of UV lamps. Digestion efficiency was evaluated by the determination of the residual carbon content (RCC) in digests. Using UV lamps lower RCC was obtained and the combination of 4 mol L(-1) HNO3 with 3 mL of H2O2 and 60 min of heating allowed a suitable digestion of up to 500 mg of petroleum coke (RCC< 21%). The agreement with the reference values for Ni, V and S (obtained by digestion of petroleum coke by microwave-induced combustion) and with a certified reference material of petroleum coke was between 96 and 101%. The proposed method was considered as advantageous when compared to American Society for Testing and Materials method because it allowed the simultaneous determination of Ni, V and S with lower limit of detection (0.22, 0.12 and 8.7 µg g(-1) for Ni, V and S, respectively) avoiding the use of concentrated nitric acid and providing digests suitable for routine analysis by ICP-OES. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos

    PubMed Central

    Ochiai, Hiroshi; Sakamoto, Naoaki; Fujita, Kazumasa; Nishikawa, Masatoshi; Suzuki, Ken-ichi; Matsuura, Shinya; Miyamoto, Tatsuo; Sakuma, Tetsushi; Shibata, Tatsuo; Yamamoto, Takashi

    2012-01-01

    To understand complex biological systems, such as the development of multicellular organisms, it is important to characterize the gene expression dynamics. However, there is currently no universal technique for targeted insertion of reporter genes and quantitative imaging in multicellular model systems. Recently, genome editing using zinc-finger nucleases (ZFNs) has been reported in several models. ZFNs consist of a zinc-finger DNA-binding array with the nuclease domain of the restriction enzyme FokI and facilitate targeted transgene insertion. In this study, we successfully inserted a GFP reporter cassette into the HpEts1 gene locus of the sea urchin, Hemicentrotus pulcherrimus. We achieved this insertion by injecting eggs with a pair of ZFNs for HpEts1 with a targeting donor construct that contained ∼1-kb homology arms and a 2A-histone H2B–GFP cassette. We increased the efficiency of the ZFN-mediated targeted transgene insertion by in situ linearization of the targeting donor construct and cointroduction of an mRNA for a dominant-negative form of HpLig4, which encodes the H. pulcherrimus homolog of DNA ligase IV required for error-prone nonhomologous end joining. We measured the fluorescence intensity of GFP at the single-cell level in living embryos during development and found that there was variation in HpEts1 expression among the primary mesenchyme cells. These findings demonstrate the feasibility of ZFN-mediated targeted transgene insertion to enable quantification of the expression levels of endogenous genes during development in living sea urchin embryos. PMID:22711830

  17. Study of bioleaching under different hydraulic retention time for enhancing the dewaterability of digestate.

    PubMed

    Li, Linshuai; Gao, Jingqing; Zhu, Songfeng; Li, Yonghong; Zhang, Ruiqin

    2015-12-01

    Dewatering of kitchen waste digestate is a key problem to solve so as to increase the application of kitchen waste after anaerobic digestion. In this study, the effects of bioleaching under different hydraulic retention time (HRT = 2, 2.5, and 3 days) on dewaterability of kitchen waste digestate were evaluated. A 12-stage plug flow bioreactor with 180 L working volume was used for digestate bioleaching. The bioleached digestate under different HRTs were collected and dewatered by plate-and-frame filter press. The results showed that the moisture contents of digestate cakes were 67.87 % at 2 days of HRT, 58.06 % at 2.5 days of HRT, and 54.45 % at 3 days of HRT, respectively, indicating the longer the HRT, the lower the moisture content of filter cake. Balanced between the cost and practical need, 2.5 days can be used as the HRT in engineering application. Under the condition of HRT of 2.5 days, the pH, specific resistance to filtration (SRF), capillary suction time (CST), and sedimentation rate of digestate changed from the initial values of 8.08, 210.6 s, 23.4 × 10(12) m kg(-1) and 10 % to 3.21, 32.7 s, 2.44 × 10(12) m kg(-1) and 76.8 %, respectively. Based on the observations above, the authors conclude that bioleaching technology is an effective method to enhance digestate dewaterability and reduce the cost of subsequent reutilization.

  18. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  19. The nuclease hSNM1B/Apollo is linked to the Fanconi anemia pathway via its interaction with FANCP/SLX4.

    PubMed

    Salewsky, Bastian; Schmiester, Maren; Schindler, Detlev; Digweed, Martin; Demuth, Ilja

    2012-11-15

    The recessive genetic disorder Fanconi anemia (FA) is clinically characterized by congenital defects, bone marrow failure and an increased incidence of cancer. Cells derived from FA patients exhibit hypersensitivity to DNA interstrand crosslink (ICL)-inducing agents. We have earlier reported a similar cellular phenotype for human cells depleted of hSNM1B/Apollo (siRNA). In fact, hSNM1B/Apollo has a dual role in the DNA damage response and in generation and maintenance of telomeres, the latter function involving interaction with the shelterin protein TRF2. Here we find that ectopically expressed hSNM1B/Apollo co-immunoprecipitates with SLX4, a protein recently identified as a new FA protein, FANCP, and known to interact with several structure-specific nucleases. As shown by immunofluorescence analysis, FANCP/SLX4 depletion (siRNA) resulted in a significant reduction of hSNM1B/Apollo nuclear foci, supporting the functional relevance of this new protein interaction. Interestingly, as an additional consequence of FANCP/SLX4 depletion, we found a reduction of cellular TRF2, in line with its telomere-related function. Finally, analysis of human cells following double knockdown of hSNM1B/Apollo and FANCP/SLX4 indicated that they function epistatically. These findings further substantiate the role of hSNM1B/Apollo in a downstream step of the FA pathway during the repair of DNA ICLs.

  20. TRF2 Recruits RTEL1 to Telomeres in S Phase to Promote T-Loop Unwinding

    PubMed Central

    Sarek, Grzegorz; Vannier, Jean-Baptiste; Panier, Stephanie; Petrini, John H.J.; Boulton, Simon J.

    2015-01-01

    Summary The helicase RTEL1 promotes t-loop unwinding and suppresses telomere fragility to maintain the integrity of vertebrate telomeres. An interaction between RTEL1 and PCNA is important to prevent telomere fragility, but how RTEL1 engages with the telomere to promote t-loop unwinding is unclear. Here, we establish that the shelterin protein TRF2 recruits RTEL1 to telomeres in S phase, which is required to prevent catastrophic t-loop processing by structure-specific nucleases. We show that the TRF2-RTEL1 interaction is mediated by a metal-coordinating C4C4 motif in RTEL1, which is compromised by the Hoyeraal-Hreidarsson syndrome (HHS) mutation, RTEL1R1264H. Conversely, we define a TRF2I124D substitution mutation within the TRFH domain of TRF2, which eliminates RTEL1 binding and phenocopies the RTEL1R1264H mutation, giving rise to aberrant t-loop excision, telomere length heterogeneity, and loss of the telomere as a circle. These results implicate TRF2 in the recruitment of RTEL1 to facilitate t-loop disassembly at telomeres in S phase. PMID:25620558

  1. TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding.

    PubMed

    Sarek, Grzegorz; Vannier, Jean-Baptiste; Panier, Stephanie; Petrini, John H J; Boulton, Simon J

    2015-02-19

    The helicase RTEL1 promotes t-loop unwinding and suppresses telomere fragility to maintain the integrity of vertebrate telomeres. An interaction between RTEL1 and PCNA is important to prevent telomere fragility, but how RTEL1 engages with the telomere to promote t-loop unwinding is unclear. Here, we establish that the shelterin protein TRF2 recruits RTEL1 to telomeres in S phase, which is required to prevent catastrophic t-loop processing by structure-specific nucleases. We show that the TRF2-RTEL1 interaction is mediated by a metal-coordinating C4C4 motif in RTEL1, which is compromised by the Hoyeraal-Hreidarsson syndrome (HHS) mutation, RTEL1(R1264H). Conversely, we define a TRF2(I124D) substitution mutation within the TRFH domain of TRF2, which eliminates RTEL1 binding and phenocopies the RTEL1(R1264H) mutation, giving rise to aberrant t-loop excision, telomere length heterogeneity, and loss of the telomere as a circle. These results implicate TRF2 in the recruitment of RTEL1 to facilitate t-loop disassembly at telomeres in S phase. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Performance and Analysis of Floating dome Anaerobic Digester with Wet and Dry Feedstock

    NASA Astrophysics Data System (ADS)

    Sathish, S.; Parthiban, A.; Venugopal, S.; Jothi Prakash, V. M.

    2017-03-01

    The objective of this study is to evaluate the feasibility of anaerobic digestion to generate biogas yield and it’s performed using wet and dry feed stock. The laboratory experiment is conducted in a floating dome type anaerobic digester with 1m3 capacity. It is made up of fibre material at continues process. The starter cowdung used as an inoculum of the anaerobic digester. Then raw materials feeded as a wet type wheat straw and dry type wheat straw is the ratio of 1:1 waste/water in both the experiments wet and dry wheat straw. In this experiments are fermented at 30ºC to 35ºC temperature is maintained. The daily biogas yield, cumulative biogas yield, pH, CH4, and hydro retention time these parameters is studied and analysed. The maximum daily biogas is 25liters and 42% of methane is achieved in dry wheat straw at 15th day of digestion. The highest gas yield obtained in dry condition compare to wet condition and acid level also decreased in wet digestion.

  3. Sulfur Removal by Adding Iron During the Digestion Process of High-sulfur Bauxite

    NASA Astrophysics Data System (ADS)

    Zhanwei, Liu; Hengwei, Yan; Wenhui, Ma; Keqiang, Xie; Dunyong, Li; Licong, Zheng; Pengfei, Li

    2018-04-01

    This paper proposes a novel approach to sulfur removal by adding iron during the digestion process. Iron can react with high-valence sulfur (S2O3 2-, SO3 2-, SO4 2-) to generate S2- at digestion temperature, and then S2- enter red mud in the form of Na3FeS3 to be removed. As iron dosage increases, high-valence sulfur concentration decreases, but the concentration of S2- increases; sulfur digestion rate decreases while sulfur content in red mud markedly increases; the alumina digestion rate, conversely, remains fairly stable. So sulfur can be removed completely by adding iron in digestion process, which provide a theoretical basis for the effective removal of sulfur in alumina production process.

  4. Discovery of natural mouse serum derived HIV-1 entry inhibitor(s).

    PubMed

    Wei, M; Chen, Y; Xi, J; Ru, S; Ji, M; Zhang, D; Fang, Q; Tang, B

    Among rationally designed human immunodeficiency virus 1 (HIV-1) inhibitors, diverse natural factors have showed as potent anti-HIV activity in human blood. We have discovered that the boiled supernatant of healthy mouse serum could suppress HIV-1 entry, and exhibited reduced inhibitory activity after trypsin digestion. Further analysis demonstrated that only the fraction containing 10-25 K proteins could inhibit HIV-1 mediated cell-cell fusion. These results suggest that the 10-25 K protein(s) is novel natural HIV-1 entry inhibitor(s). Our findings provide important information about novel natural HIV entry inhibitors in mouse serum.

  5. Correlating methane production to microbiota in anaerobic digesters fed synthetic wastewater.

    PubMed

    Venkiteshwaran, K; Milferstedt, K; Hamelin, J; Fujimoto, M; Johnson, M; Zitomer, D H

    2017-03-01

    A quantitative structure activity relationship (QSAR) between relative abundance values and digester methane production rate was developed. For this, 50 triplicate anaerobic digester sets (150 total digesters) were each seeded with different methanogenic biomass samples obtained from full-scale, engineered methanogenic systems. Although all digesters were operated identically for at least 5 solids retention times (SRTs), their quasi steady-state function varied significantly, with average daily methane production rates ranging from 0.09 ± 0.004 to 1 ± 0.05 L-CH 4 /L R -day (L R  = Liter of reactor volume) (average ± standard deviation). Digester microbial community structure was analyzed using more than 4.1 million partial 16S rRNA gene sequences of Archaea and Bacteria. At the genus level, 1300 operational taxonomic units (OTUs) were observed across all digesters, whereas each digester contained 158 ± 27 OTUs. Digester function did not correlate with typical biomass descriptors such as volatile suspended solids (VSS) concentration, microbial richness, diversity or evenness indices. However, methane production rate did correlate notably with relative abundances of one Archaeal and nine Bacterial OTUs. These relative abundances were used as descriptors to develop a multiple linear regression (MLR) QSAR equation to predict methane production rates solely based on microbial community data. The model explained over 66% of the variance in the experimental data set based on 149 anaerobic digesters with a standard error of 0.12 L-CH 4 /L R -day. This study provides a framework to relate engineered process function and microbial community composition which can be further expanded to include different feed stocks and digester operating conditions in order to develop a more robust QSAR model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Dietary fiber and digestive health in children.

    PubMed

    Korczak, Renee; Kamil, Alison; Fleige, Lisa; Donovan, Sharon M; Slavin, Joanne L

    2017-04-01

    Digestive health is an expanding area in nutrition research due to the interest in how food components such as fiber affect gastrointestinal tolerance, stool form, defecation frequency, transit time, and gut microbial composition and metabolic activity. In children, however, digestive health studies that intervene with dietary fiber are limited due to legal and ethical concerns. To better understand if fiber improves digestive health in children, a literature review was conducted to answer the following research question: What are the effect(s) of fiber-containing foods and/or supplements on digestive health outcomes in children? A search of the PubMed database identified a total of 12 studies that fit the inclusion criteria established for this review. Most of the evidence in children shows beneficial effects of partially hydrolyzed guar gum, glucomannan, and bran on digestive health outcomes; however, the existing evidence is not conclusive. Furthermore, limited data exists on the effect of whole-grain sources of dietary fiber, such as oats. Additional well-designed intervention trials are needed to determine whether outcomes of digestive health such as stool form, gastrointestinal tolerance, and stool frequency are improved by increasing the fiber content of children's diets with whole-grain sources. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. The fate and effect of monensin during anaerobic digestion of dairy manure under mesophilic conditions

    PubMed Central

    Mulbry, Walter; Rice, Clifford; Lansing, Stephanie

    2018-01-01

    There is growing concern about residual antibiotics and feed additives in the manure of treated animals because of the effects of these residues in the environment. Monensin is the most widely used ionophore coccidiostat in the U.S. The objective of this study was to determine the fate and effect of monensin during the anaerobic digestion of dairy manure. Duplicate plug flow field-scale digesters were operated using non-amended dairy manure and dairy manure amended with monensin to 1 and 10 mg/L for 56 days at 30°C at an organic loading rate of 1.4 kg VS/m3-d and 17-day hydraulic retention time. Results showed that monensin was reduced approximately 70% during anaerobic digestion. Methane production from digesters using manure amended with 1 mg/L monensin was comparable to that from digesters operated without added monensin. However, digesters using manure amended with 10 mg/L monensin yielded 75% less methane than digesters using manure without added monensin. These results suggest that anaerobic digestion is an effective treatment for reducing, but not eliminating, monensin in dairy manure. Monensin did not reduce methane production at concentrations expected in dairy manure at recommended dosage rates. PMID:29420605

  8. Digestive diseases

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007447.htm Digestive diseases To use the sharing features on this page, please enable JavaScript. Digestive diseases are disorders of the digestive tract, which ...

  9. SPECIES-SPECIFIC DETECTION OF THREE HUMAN-PATHOGENIC MICROSPORIDIAL SPECIES FROM THE GENUS ENCEPHALITOZOON VIA FLUOROGENIC 5' NUCLEASE PCR ASSAYS

    EPA Science Inventory

    This describes fluorogenic 5' nuclease PCR assays suitable for rapid, sensitive, quantitative, high-throughput detection of the human-pathogenic microsporidial species Encephalitozoon hellem, E. cunicli and E. intestinalis. The assays utilize species-specific primer sets and a g...

  10. Prognostic Value of MACC1 in Digestive System Neoplasms: A Systematic Review and Meta-Analysis

    PubMed Central

    Wu, Zhenzhen; Zhou, Rui; Su, Yuqi; Sun, Li; Liao, Yulin; Liao, Wangjun

    2015-01-01

    Metastasis associated in colon cancer 1 (MACC1), a newly identified oncogene, has been associated with poor survival of cancer patients by multiple studies. However, the prognostic value of MACC1 in digestive system neoplasms needs systematic evidence to verify. Therefore, we aimed to provide further evidence on this topic by systematic review and meta-analysis. Literature search was conducted in multiple databases and eligible studies analyzing survival data and MACC1 expression were included for meta-analysis. Hazard ratio (HR) for clinical outcome was chosen as an effect measure of interest. According to our inclusion criteria, 18 studies with a total of 2,948 patients were identified. Pooled HRs indicated that high MACC1 expression significantly correlates with poorer OS in patients with digestive system neoplasms (HR = 1.94; 95% CI: 1.49–2.53) as well as poorer relapse-free survival (HR = 1.94, 95% CI: 1.33–2.82). The results of subgroup studies categorized by methodology, anatomic structure, and cancer subtype for pooled OS were all consistent with the overall pooled HR for OS as well. No publication bias was detected according to test of funnel plot asymmetry and Egger's test. In conclusion, high MACC1 expression may serve as a prognostic biomarker to guide individualized management in clinical practice for digestive system neoplasms. PMID:26090393

  11. Prognostic Value of MACC1 in Digestive System Neoplasms: A Systematic Review and Meta-Analysis.

    PubMed

    Wu, Zhenzhen; Zhou, Rui; Su, Yuqi; Sun, Li; Liao, Yulin; Liao, Wangjun

    2015-01-01

    Metastasis associated in colon cancer 1 (MACC1), a newly identified oncogene, has been associated with poor survival of cancer patients by multiple studies. However, the prognostic value of MACC1 in digestive system neoplasms needs systematic evidence to verify. Therefore, we aimed to provide further evidence on this topic by systematic review and meta-analysis. Literature search was conducted in multiple databases and eligible studies analyzing survival data and MACC1 expression were included for meta-analysis. Hazard ratio (HR) for clinical outcome was chosen as an effect measure of interest. According to our inclusion criteria, 18 studies with a total of 2,948 patients were identified. Pooled HRs indicated that high MACC1 expression significantly correlates with poorer OS in patients with digestive system neoplasms (HR = 1.94; 95% CI: 1.49-2.53) as well as poorer relapse-free survival (HR = 1.94, 95% CI: 1.33-2.82). The results of subgroup studies categorized by methodology, anatomic structure, and cancer subtype for pooled OS were all consistent with the overall pooled HR for OS as well. No publication bias was detected according to test of funnel plot asymmetry and Egger's test. In conclusion, high MACC1 expression may serve as a prognostic biomarker to guide individualized management in clinical practice for digestive system neoplasms.

  12. Inhibition of DNA2 nuclease as a therapeutic strategy targeting replication stress in cancer cells.

    PubMed

    Kumar, S; Peng, X; Daley, J; Yang, L; Shen, J; Nguyen, N; Bae, G; Niu, H; Peng, Y; Hsieh, H-J; Wang, L; Rao, C; Stephan, C C; Sung, P; Ira, G; Peng, G

    2017-04-17

    Replication stress is a characteristic feature of cancer cells, which is resulted from sustained proliferative signaling induced by activation of oncogenes or loss of tumor suppressors. In cancer cells, oncogene-induced replication stress manifests as replication-associated lesions, predominantly double-strand DNA breaks (DSBs). An essential mechanism utilized by cells to repair replication-associated DSBs is homologous recombination (HR). In order to overcome replication stress and survive, cancer cells often require enhanced HR repair capacity. Therefore, the key link between HR repair and cellular tolerance to replication-associated DSBs provides us with a mechanistic rationale for exploiting synthetic lethality between HR repair inhibition and replication stress. DNA2 nuclease is an evolutionarily conserved essential enzyme in replication and HR repair. Here we demonstrate that DNA2 is overexpressed in pancreatic cancers, one of the deadliest and more aggressive forms of human cancers, where mutations in the KRAS are present in 90-95% of cases. In addition, depletion of DNA2 significantly reduces pancreatic cancer cell survival and xenograft tumor growth, suggesting the therapeutic potential of DNA2 inhibition. Finally, we develop a robust high-throughput biochemistry assay to screen for inhibitors of the DNA2 nuclease activity. The top inhibitors were shown to be efficacious against both yeast Dna2 and human DNA2. Treatment of cancer cells with DNA2 inhibitors recapitulates phenotypes observed upon DNA2 depletion, including decreased DNA double strand break end resection and attenuation of HR repair. Similar to genetic ablation of DNA2, chemical inhibition of DNA2 selectively attenuates the growth of various cancer cells with oncogene-induced replication stress. Taken together, our findings open a new avenue to develop a new class of anticancer drugs by targeting druggable nuclease DNA2. We propose DNA2 inhibition as new strategy in cancer therapy by targeting

  13. Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: insight into the two-metal-ion catalytic mechanism

    PubMed Central

    Zhao, Haiyan; Lin, Zihan; Lynn, Anna Y.; Varnado, Brittany; Beutler, John A.; Murelli, Ryan P.; Le Grice, Stuart F. J.; Tang, Liang

    2015-01-01

    Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution. PMID:26450964

  14. Aquaporins in Digestive System.

    PubMed

    Zhu, Shuai; Ran, Jianhua; Yang, Baoxue; Mei, Zhechuan

    2017-01-01

    In this chapter, we mainly discuss the expression and function of aquaporins (AQPs ) expressed in digestive system . AQPs in gastrointestinal tract include four members of aquaporin subfamily: AQP1, AQP4, AQP5 and AQP8, and a member of aquaglyceroporin subfamily: AQP3. In the digestive glands, especially the liver, we discuss three members of aquaporin subfamily: AQP1, AQP5 and AQP8, a member of aquaglyceroporin subfamily: AQP9. AQP3 is involved in the diarrhea and inflammatory bowel disease; AQP5 is relevant to gastric carcinoma cell proliferation and migration; AQP9 plays considerable role in glycerol metabolism , urea transport and hepatocellular carcinoma. Further investigation is necessary for specific locations and functions of AQPs in digestive system.

  15. Enhanced methane production from Taihu Lake blue algae by anaerobic co-digestion with corn straw in continuous feed digesters.

    PubMed

    Zhong, Weizhang; Chi, Lina; Luo, Yijing; Zhang, Zhongzhi; Zhang, Zhenjia; Wu, Wei-Min

    2013-04-01

    Anaerobic digestion of Taihu blue algae was tested in laboratory scale, continuous feed digesters (hydraulic retention time 10 days) at 35°C and various organic loading rates (OLR). The methane production and biomass digestion performed well at OLR below 4.00 gVSL(-1)d(-1) but deteriorated as OLR increased due to the increased ammonia concentration, causing inhibition mainly to acetate and propionate degradation. Supplementing corn straw as co-feedstock significantly improved the digestion performance. The optimal C/N ratio for the co-digestion was 20:1 at OLR of 6.00 gVSL(-1) d(-1). Methane yield of 234 mL CH4 gVS(-1) and methane productivity of 1404 mL CH4 L(-1) d(-1) were achieved with solid removal of 63%. Compared with the algae alone, the methane productivity was increased by 46% with less accumulation of ammonia and fatty acids. The reactor rate-limiting step was acetate and propionate degradation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Nucleic acids through condensation of nucleosides and phosphorous acid in the presence of sulfur

    PubMed Central

    2016-01-01

    Summary Short phosphorothioate oligonucleotides have been prepared by refluxing an equimolar mixture of thymidine and triethylammonium phosphite in toluene in the presence of elemental sulfur. Desulfurization and subsequent digestion of the products by P1 nuclease revealed that nearly 80% of the internucleosidic linkages thus formed were of the canonical 3´,5´-type. PMID:27340459

  17. Digestive oncologist in the gastroenterology training curriculum

    PubMed Central

    Mulder, Chris Jacob Johan; Peeters, Marc; Cats, Annemieke; Dahele, Anna; Droste, Jochim Terhaar sive

    2011-01-01

    Until the late 1980s, gastroenterology (GE) was considered a subspecialty of Internal Medicine. Today, GE also incorporates Hepatology. However, Digestive Oncology training is poorly defined in the Hepatogastroenterology (HGE)-curriculum. Therefore, a Digestive Oncology curriculum should be developed and this document might be a starting point for such a curriculum. HGE-specialists are increasingly resisting the paradigm in which they play only a diagnostic and technical role in the management of digestive tumors. We suggest minimum end-points in the standard HGE-curriculum for oncology, and recommend a focus year in the Netherlands for Digestive Oncology in the HGE-curriculum. To produce well-trained digestive oncologists, an advanced Digestive Oncology training program with specific qualifications in Digestive Oncology (2 years) has been developed. The schedule in Belgium includes a period of at least 6 mo to be spent in a medical oncology department. The goal of these programs remains the production of well-trained digestive oncologists. HGE specialists are part of the multidisciplinary oncological teams, and some have been administering chemotherapy in their countries for years. In this article, we provide a road map for the organization of a proper training in Digestive Oncology. We hope that the World Gastroenterology Organisation and other (inter)national societies will support the necessary certifications for this specific training in the HGE-curriculum. PMID:21556128

  18. Comparison of start-up strategies and process performance during semi-continuous anaerobic digestion of sugarcane filter cake co-digested with bagasse.

    PubMed

    Janke, Leandro; Leite, Athaydes F; Nikolausz, Marcell; Radetski, Claudemir M; Nelles, Michael; Stinner, Walter

    2016-02-01

    The anaerobic digestion of sugarcane filter cake and the option of co-digestion with bagasse were investigated in a semi-continuous feeding regime to assess the main parameters used for large-scale process designing. Moreover, fresh cattle manure was considered as alternative inoculum for the start-up of biogas reactors in cases where digestate from a biogas plant would not be available in remote rural areas. Experiments were carried out in 6 lab-scale semi-continuous stirred-tank reactors at mesophilic conditions (38±1°C) while the main anaerobic digestion process parameters monitored. Fresh cattle manure demonstrated to be appropriate for the start-up process. However, an acclimation period was required due to the high initial volatile fatty acids concentration (8.5gL(-1)). Regardless the mono-digestion of filter cake presented 50% higher biogas yield (480mLgVS(-1)) than co-digestion with bagasse (320mLgVS(-1)) during steady state conditions. A large-scale co-digestion system would produce 58% more biogas (1008m(3)h(-1)) than mono-digestion of filter cake (634m(3)h(-1)) due to its higher biomass availability for biogas conversion. Considering that the biogas production rate was the technical parameter that displayed the most relevant differences between the analyzed substrate options (0.99-1.45m(3)biogasm(3)d(-1)). The decision of which substrate option should be implemented in practice would be mainly driven by the available construction techniques, since economically efficient tanks could compensate the lower biogas production rate of co-digestion option. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. LEM-3 is a midbody-tethered DNA nuclease that resolves chromatin bridges during late mitosis.

    PubMed

    Hong, Ye; Sonneville, Remi; Wang, Bin; Scheidt, Viktor; Meier, Bettina; Woglar, Alexander; Demetriou, Sarah; Labib, Karim; Jantsch, Verena; Gartner, Anton

    2018-02-20

    Faithful chromosome segregation and genome maintenance requires the removal of all DNA bridges that physically link chromosomes before cells divide. Using C. elegans embryos we show that the LEM-3/Ankle1 nuclease defines a previously undescribed genome integrity mechanism by processing DNA bridges right before cells divide. LEM-3 acts at the midbody, the structure where abscission occurs at the end of cytokinesis. LEM-3 localization depends on factors needed for midbody assembly, and LEM-3 accumulation is increased and prolonged when chromatin bridges are trapped at the cleavage plane. LEM-3 locally processes chromatin bridges that arise from incomplete DNA replication, unresolved recombination intermediates, or the perturbance of chromosome structure. Proper LEM-3 midbody localization and function is regulated by AIR-2/Aurora B kinase. Strikingly, LEM-3 acts cooperatively with the BRC-1/BRCA1 homologous recombination factor to promote genome integrity. These findings provide a molecular basis for the suspected role of the LEM-3 orthologue Ankle1 in human breast cancer.

  20. Teaching the Declaration of Independence. ERIC Digest.

    ERIC Educational Resources Information Center

    Patrick, John J.

    The Declaration of Independence is the founding document of the United States. It is part of the social studies core curriculum in U.S. schools. By the time they graduate from high school, students are expected to know the main ideas in the Declaration of Independence and their significance. This digest discusses: (1) the origins of the…

  1. Variability in amino acid digestibility and metabolizable energy of corn studied in cecectomized laying hens1.

    PubMed

    Zuber, T; Rodehutscord, M

    2017-06-01

    To optimize the use of corn grain in diets for laying hens, differences in amino acid (AA) digestibility and metabolizable energy among different corn samples should be considered in feed formulation. The present study investigated the variability of AA digestibility and AMEn concentration of 20 corn samples in cecectomized laying hens. Corn grains were characterized based on their physical properties (thousand seed weight, test weight, grain density, and extract viscoelasticity), chemical composition (proximate nutrients, AA, minerals, and inositol phosphates), gross energy concentration, and in vitro solubility of nitrogen to study any relationship with AA digestibility or AMEn. The animal study comprised 4 Latin squares (6 × 6) distributed between 2 subsequent runs. Cecectomized LSL-Classic hens were individually housed in metabolism cages and fed either a basal diet containing 500 g/kg cornstarch or one of 20 corn diets, each replacing the cornstarch with one corn batch, for 8 days. During the last 4 d, feed intake was recorded and excreta were collected quantitatively. A linear regression approach was used to calculate AA digestibility of the corn. The digestibility of all AA differed significantly between the 20 corn batches, including Lys (digestibility range 64 to 85%), Met (86 to 94%), Thr (72 to 89%), and Trp (21 to 88%). The AMEn of the corn batches ranged between 15.7 and 17.1 MJ/kg DM. However, consistent correlations between AA digestibility or AMEn and the physical and chemical characteristics of the grains were not detected. Equations to predict AA digestibility or AMEn based on the grain's physical and chemical characteristics were calculated by multiple linear regressions. The explanatory power (adjusted R2;) of prediction equations was below 0.6 for the majority of AA and AMEn, and, thus, was not sufficiently precise for practical use. Possible explanations for the variation in AA digestibility and AMEn beyond the determined characteristics

  2. Evolution of hierarchical cytoplasmic inheritance in the plasmodial slime mold Physarum polycephalum.

    PubMed

    Iwanaga, Akiko; Sasaki, Akira

    2004-04-01

    A striking linear dominance relationship for uniparental mitochondrial transmission is known between many mating types of plasmodial slime mold Physarum polycephalum. We herein examine how such hierarchical cytoplasmic inheritance evolves in isogamous organisms with many self-incompatible mating types. We assume that a nuclear locus determines the mating type of gametes and that another nuclear locus controls the digestion of mitochondria DNAs (mtDNAs) of the recipient gamete after fusion. We then examine the coupled genetic dynamics for the evolution of self-incompatible mating types and biased mitochondrial transmission between them. In Physarum, a multiallelic nuclear locus matA controls both the mating type of the gametes and the selective elimination of the mtDNA in the zygotes. We theoretically examine two potential mechanisms that might be responsible for the preferential digestion of mitochondria in the zygote. In the first model, the preferential digestion of mitochondria is assumed to be the outcome of differential expression levels of a suppressor gene carried by each gamete (suppression-power model). In the second model (site-specific nuclease model), the digestion of mtDNAs is assumed to be due to their cleavage by a site-specific nuclease that cuts the mtDNA at unmethylated recognition sites. Also assumed is that the mtDNAs are methylated at the same recognition site prior to the fusion, thereby being protected against the nuclease of the same gamete, and that the suppressor alleles convey information for the recognition sequences of nuclease and methylase. In both models, we found that a linear dominance hierarchy evolves as a consequence of the buildup of a strong linkage disequilibrium between the mating-type locus and the suppressor locus, though it fails to evolve if the recombination rate between the two loci is larger than a threshold. This threshold recombination rate depends on the number of mating types and the degree of fitness reduction in

  3. Anaerobic digestion of selected Italian agricultural and industrial residues (grape seeds and leather dust): combined methane production and digestate characterization.

    PubMed

    Caramiello, C; Lancellotti, I; Righi, F; Tatàno, F; Taurino, R; Barbieri, L

    2013-01-01

    A combined experimental evaluation of methane production (obtained by anaerobic digestion) and detailed digestate characterization (with physical-chemical, thermo-gravimetric and mineralogical approaches) was conducted on two organic substrates, which are specific to Italy (at regional and national levels). One of the substrates was grape seeds, which have an agricultural origin, whereas the other substrate was vegetable-tanned leather dust, which has an industrial origin. Under the assumed experimental conditions of the performed lab-scale test series, the grape seed substrate exhibited a resulting net methane production of 175.0 NmL g volatile solids (VS)(-1); hence, it can be considered as a potential energy source via anaerobic digestion. Conversely, the net methane production obtained from the anaerobic digestion of the vegetable-tanned leather dust substrate was limited to 16.1 NmL gVS(-1). A detailed characterization of the obtained digestates showed that there were both nitrogen-containing compounds and complex organic compounds present in the digestate that was obtained from the mixture of leather dust and inoculum. As a general perspective of this experimental study, the application of diversified characterization analyzes could facilitate (1) a better understanding of the main properties of the obtained digestates to evaluate their potential valorization, and (2) a combination of the digestate characteristics with the corresponding methane productions to comprehensively evaluate the bioconversion process.

  4. Assessing the potential phytotoxicity of digestate from winery wastes.

    PubMed

    Da Ros, Cinzia; Libralato, Giovanni; Ghirardini, Annamaria Volpi; Radaelli, Marta; Cavinato, Cristina

    2018-04-15

    In this study, digestate from winery wastes was investigated focusing on phytotoxicity using macrophytes and evaluating the potential contribution of ammonium and copper. Spreading of digestate on soil could represent a suitable approach to recycle nutrients and organic matter, creating an on site circular economy. In this study, digestate quality was evaluated considering both chemical-physical characteristics and biological toxicity applying germination test. The effluent did not meet the entire amendment quality standard defined by Italian law (Decree 75/2010 germination index > 60% with solution of 30% v/v of digestate), but bio-stimulation was observed at low doses (3.15-6.25% v/v) for S. alba and S. saccharatum. The beneficial concentration agreed with Nitrate Directive dose and suggested that limited addition of digestate could have several positive effects on soil characteristics and on crop growth. Specific test using ammonium and copper solutions showed that these pollutants were not directly correlated to observed phytotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2

    PubMed Central

    White, Rebekah R.; Shan, Siqing; Rusconi, Christopher P.; Shetty, Geetha; Dewhirst, Mark W.; Kontos, Christopher D.; Sullenger, Bruce A.

    2003-01-01

    Angiopoietin-2 (Ang2) appears to be a naturally occurring antagonist of the endothelial receptor tyrosine kinase Tie2, an important regulator of vascular stability. Destabilization of the endothelium by Ang2 is believed to potentiate the actions of proangiogenic growth factors. To investigate the specific role of Ang2 in the adult vasculature, we generated a nuclease-resistant RNA aptamer that binds and inhibits Ang2 but not the related Tie2 agonist, angiopoietin-1. Local delivery of this aptamer but not a partially scrambled mutant aptamer inhibited basic fibroblast growth factor-mediated neovascularization in the rat corneal micropocket angiogenesis assay. These in vivo data directly demonstrate that a specific inhibitor of Ang2 can act as an antiangiogenic agent. PMID:12692304

  6. Long-term thermophilic mono-digestion of rendering wastes and co-digestion with potato pulp.

    PubMed

    Bayr, S; Ojanperä, M; Kaparaju, P; Rintala, J

    2014-10-01

    In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55°C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH4-N and/or free NH3) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m(3)d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm(3)/kg VS(fed). On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500-680 dm(3)/kg VS(fed)). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Diurnal variation in ruminal pH on the digestibility of highly digestible perennial ryegrass during continuous culture fermentation.

    PubMed

    Wales, W J; Kolver, E S; Thorne, P L; Egan, A R

    2004-06-01

    Dairy cows grazing high-digestibility pastures exhibit pronounced diurnal variation in ruminal pH, with pH being below values considered optimal for digestion. Using a dual-flow continuous culture system, the hypothesis that minimizing diurnal variation in pH would improve digestion of pasture when pH was low, but not at a higher pH, was tested. Four treatments were imposed, with pH either allowed to exhibit normal diurnal variation around an average pH of 6.1 or 5.6, or maintained at constant pH. Digesta samples were collected during the last 3 d of each of four, 9-d experimental periods. A constant pH at 5.6 compared with a constant pH of 6.1 reduced the digestibility of organic matter (OM), neutral detergent (NDF), and acid detergent fiber (ADF) by 7, 14, and 21%, respectively. When pH was allowed to vary (averaging 5.6), digestion of OM, NDF, and ADF were reduced by 15,30, and 36%, respectively, compared with pH varying at 6.1. There was little difference in digestion parameters when pH was either constant or varied with an average pH of 6.1. However, when average pH was 5.6, maintaining a constant pH significantly increased digestion of OM, NDF, and ADF by 5, 25, and 24% compared with a pH that exhibited normal diurnal variation. These in vitro results show that gains in digestibility and potential milk production can be made by minimizing diurnal variation in ruminal pH, but only when ruminal pH is low (5.6). However, larger gains in productivity can be achieved by increasing average daily ruminal pH from 5.6 to 6.1.

  8. A Nuclease from Streptococcus mutans Facilitates Biofilm Dispersal and Escape from Killing by Neutrophil Extracellular Traps

    PubMed Central

    Liu, Jia; Sun, Luping; Liu, Wei; Guo, Lihong; Liu, Zhaohui; Wei, Xi; Ling, Junqi

    2017-01-01

    Streptococcus mutans is the primary etiologic agent of dental caries and occasionally infective endocarditis, with the ability to form biofilms and disperse cells into distal sites to exacerbate and spread infection. In this study, we identified a nuclease (DeoC) as a S. mutans biofilm dispersal modulating factor through microarray analysis. In vitro assays revealed a dispersal defect of a deoC deletion mutant, and functional studies with purified protein were indicative of the biofilm dispersal activity of DeoC. Neutrophils are a key host response factor restraining bacterial spreading through the formation of neutrophil extracellular traps (NETs), which consist of a nuclear DNA backbone associated with antimicrobial peptides. Therefore, we hypothesized that the dispersed S. mutans might utilize DeoC to degrade NETs and escape killing by the immune system. It was found that S. mutans induced NET formation upon contact with neutrophils, while the presence of NETs in turn enhanced the deoC expression of S. mutans. Fluorescence microscopy inspection showed that deoC deletion resulted in a decreased NET degradation ability of S. mutans and enhanced susceptibility to neutrophil killing. Data obtained from this study assigned two important roles for DeoC in S. mutans: contributing to the spread of infection through mediating biofilm dispersal, and facilitating the escape of S. mutans from neutrophil killing through NET degradation. PMID:28401067

  9. A Nuclease from Streptococcus mutans Facilitates Biofilm Dispersal and Escape from Killing by Neutrophil Extracellular Traps.

    PubMed

    Liu, Jia; Sun, Luping; Liu, Wei; Guo, Lihong; Liu, Zhaohui; Wei, Xi; Ling, Junqi

    2017-01-01

    Streptococcus mutans is the primary etiologic agent of dental caries and occasionally infective endocarditis, with the ability to form biofilms and disperse cells into distal sites to exacerbate and spread infection. In this study, we identified a nuclease (DeoC) as a S. mutans biofilm dispersal modulating factor through microarray analysis. In vitro assays revealed a dispersal defect of a deoC deletion mutant, and functional studies with purified protein were indicative of the biofilm dispersal activity of DeoC. Neutrophils are a key host response factor restraining bacterial spreading through the formation of neutrophil extracellular traps (NETs), which consist of a nuclear DNA backbone associated with antimicrobial peptides. Therefore, we hypothesized that the dispersed S. mutans might utilize DeoC to degrade NETs and escape killing by the immune system. It was found that S. mutans induced NET formation upon contact with neutrophils, while the presence of NETs in turn enhanced the deoC expression of S. mutans . Fluorescence microscopy inspection showed that deoC deletion resulted in a decreased NET degradation ability of S. mutans and enhanced susceptibility to neutrophil killing. Data obtained from this study assigned two important roles for DeoC in S. mutans : contributing to the spread of infection through mediating biofilm dispersal, and facilitating the escape of S. mutans from neutrophil killing through NET degradation.

  10. Micro-quantity tissue digestion for metal measurements by use of a microwave acid-digestion bomb.

    PubMed

    Nicholson, J R; Savory, M G; Savory, J; Wills, M R

    1989-03-01

    We describe a simple and convenient method for processing small amounts of tissue samples for trace-metal measurements by atomic absorption spectrometry, by use of a modified Parr microwave digestion bomb. Digestion proceeds rapidly (less than or equal to 90 s) in a sealed Teflon-lined vessel that eliminates contamination or loss from volatilization. Small quantities of tissue (5-100 mg dry weight) are digested in high-purity nitric acid, yielding concentrations of analyte that can be measured directly without further sample manipulation. We analyzed National Institute of Standards and Technology bovine liver Standard Reference Material to verify the accuracy of the technique. We assessed the applicability of the technique to analysis for aluminum in bone by comparison with a dry ashing procedure.

  11. Characterisation of protein families in spider digestive fluids and their role in extra-oral digestion.

    PubMed

    Walter, André; Bechsgaard, Jesper; Scavenius, Carsten; Dyrlund, Thomas S; Sanggaard, Kristian W; Enghild, Jan J; Bilde, Trine

    2017-08-10

    Spiders are predaceous arthropods that are capable of subduing and consuming relatively large prey items compared to their own body size. For this purpose, spiders have evolved potent venoms to immobilise prey and digestive fluids that break down nutrients inside the prey's body by means of extra-oral digestion (EOD). Both secretions contain an array of active proteins, and an overlap of some components has been anecdotally reported, but not quantified. We systematically investigated the extent of such protein overlap. As venom injection and EOD succeed each other, we further infer functional explanations, and, by comparing two spider species belonging to different clades, assess its adaptive significance for spider EOD in general. We describe the protein composition of the digestive fluids of the mygalomorph Acanthoscurria geniculata and the araneomorph Stegodyphus mimosarum, in comparison with previously published data on a third spider species. We found a number of similar hydrolases being highly abundant in all three species. Among them, members of the family of astacin-like metalloproteases were particularly abundant. While the importance of these proteases in spider venom and digestive fluid was previously noted, we now highlight their widespread use across different spider taxa. Finally, we found species specific differences in the protein overlap between venom and digestive fluid, with the difference being significantly greater in S. mimosarum compared to A. geniculata. The injection of venom precedes the injection with digestive fluid, and the overlap of proteins between venom and digestive fluid suggests an early involvement in EOD. Species specific differences in the overlap may reflect differences in ecology between our two study species. The protein composition of the digestive fluid of all the three species we compared is highly similar, suggesting that the cocktail of enzymes is highly conserved and adapted to spider EOD.

  12. Relationship between nm23H1 genetic instability and clinical pathological characteristics in Chinese digestive system cancer patients.

    PubMed

    Yang, Yue-Qin; Wu, Liang; Chen, Jin-Xing; Sun, Jian-Zhong; Li, Meng; Li, Dong-Mei; Lu, Hai-Ying; Su, Zhi-Hong; Lin, Xin-Qiu; Li, Ji-Cheng

    2008-09-28

    To study the relationship between nm23H1 gene genetic instability and its clinical pathological characteristics in Chinese digestive system cancer patients. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was used to analyze the microsatellite instability (MSI) and loss of heterozygosity (LOH). Immunohistochemistry was employed to detect the expression of nm23H1. The MSI was higher in TNM stage I + II than in stage III + IV of gastric, colonic and gallbladder carcinomas. The LOH was higher in TNM stage III + IV than in stage I + II of gastric, colonic and hepatocellular carcinomas. Lymphatic metastasis was also observed. The expression of nm23H1 protein was lower in TNM stage III + IV than in stage I + II of these tumors and in patients with lymphatic metastasis.The nm23H1 protein expression was higher in the LOH negative group than in the LOH positive group. MSI and LOH may independently control the biological behaviors of digestive system cancers. MSI could serve as an early biological marker of digestive system cancers. Enhanced expression of nm23H1 protein could efficiently inhibit cancer metastasis and improve its prognosis. LOH mostly appears in late digestive system cancer.

  13. Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion

    PubMed Central

    Pan, Xiaoyan; Bellido, Vincent; Toole, Geraldine A.; Gates, Fred K.; Wickham, Martin S. J.; Shewry, Peter R.; Bakalis, Serafim; Padfield, Philip; Mills, E. N. Clare

    2015-01-01

    Scope Resistance of proteins to gastrointestinal digestion may play a role in determining immune‐mediated adverse reactions to foods. However, digestion studies have largely been restricted to purified proteins and the impact of food processing and food matrices on protein digestibility is poorly understood. Methods and results Digestibility of a total gliadin fraction (TGF), flour (cv Hereward), and bread was assessed using in vitro batch digestion with simulated oral, gastric, and duodenal phases. Protein digestion was monitored by SDS‐PAGE and immunoblotting using monoclonal antibodies specific for celiac‐toxic sequences (QQSF, QPFP) and starch digestion by measuring undigested starch. Whereas the TGF was rapidly digested during the gastric phase the gluten proteins in bread were virtually undigested and digested rapidly during the duodenal phase only if amylase was included. Duodenal starch digestion was also slower in the absence of duodenal proteases. Conclusion The baking process reduces the digestibility of wheat gluten proteins, including those containing sequences active in celiac disease. Starch digestion affects the extent of protein digestion, probably because of gluten‐starch complex formation during baking. Digestion studies using purified protein fractions alone are therefore not predictive of digestion in complex food matrices. PMID:26202208

  14. Starch digestibility: past, present, and future.

    PubMed

    Bello-Perez, Luis A; Flores-Silva, Pamela C; Agama-Acevedo, Edith; Tovar, Juscelino

    2018-02-10

    In the last century, starch present in foods was considered to be completely digested. However, during the 1980s, studies on starch digestion started to show that besides digestible starch, which could be rapidly or slowly hydrolysed, there was a variable fraction that resisted hydrolysis by digestive enzymes. That fraction was named resistant starch (RS) and it encompasses those forms of starch that are not accessible to human digestive enzymes but can be fermented by the colonic microbiota, producing short-chain fatty acids. RS has been classified into five types, depending on the mechanism governing its resistance to enzymatic hydrolysis. Early research on RS was focused on the methods to determine its content in foods and its physiological effects, including fermentability in the large intestine. Later on, due to the interest of the food industry, methods to increase the RS content of isolated starches were developed. Nowadays, the influence of RS on the gut microbiota is a relevant research topic owing to its potential health-related benefits. This review summarizes over 30 years of investigation on starch digestibility, its relationship with human health, the methods to produce RS and its impact on the microbiome. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  15. Producing desulfurized biogas through removal of sulfate in the first-stage of a two-stage anaerobic digestion.

    PubMed

    Yun, Yeo-Myeong; Sung, Shihwu; Shin, Hang-Sik; Han, Jong-In; Kim, Hyun-Woo; Kim, Dong-Hoon

    2017-05-01

    In the present work, a two-stage anaerobic digestion system (TSADS) was newly designed to produce biogas with a greatly reduced H 2 S content. The role of first (sulfidogenic)-stage digester was not only acidogenesis but also sulfidogenesis (sulfate reduction to H 2 S), which would minimize the input of H 2 S-producing source in the followed second (methanogenic)-stage digester. For the coexistence of acidogens and sulfate reducing bacteria (SRB) in the sulfidogenic-stage digester, it was found that pH played a crucial role. The acidogenic activity was not affected within a pH range of 4.5-6.0, while it was important to maintain a pH at 5.5 to achieve a sulfate removal efficiency over 70%. The highest sulfate removal attained was 78% at a hydraulic retention time (HRT) of 5 h at pH 5.5 ± 0.1. The H 2 S content in the biogas produced in the conventional single-stage digester (SSAD), used as a control, reached 1,650 ± 25 ppm v . In contrast, the biogas produced in the methanogenic-stage digester of the developed process had an H 2 S content of 200 ± 15 ppm v . Microbial analysis, done by the next generation sequencing technique, clearly showed the changes in community under different operating conditions. Desulfovibrio bastinii (4.9%) played a key role in sulfate removal in the sulfidogenic-stage of the TSADS owing to its characteristics of a short doubling time and growth in an acidic environment. Biotechnol. Bioeng. 2017;114: 970-979. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Effects of aqueous ammonia treatment on fiber’s surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Tang Pei; Hassan, Osman

    This study was conducted to investigate the effects of aqueous ammonia reflux and soaked treatment on the fiber’s surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF). The surface morphological changes of the fiber after aqueous ammonia treatment was linked to the sugars yield by enzymatic hydrolysis. The effectiveness of 6.25% aqueous ammonia treatment in improving enzymatic digestibility of EFBF was initially studied in reflux system and by soaking. The results showed that soaked treatment was more effective than reflux system. Further study on soaked treatment of EFBF was carried out by increasing the ammonia concentration to 12.50%.more » Soaking in aqueous ammonia was conducted at 30°C and 50°C for 24 hours. The results of enzymatic hydrolysis showed that sugar yield from EFBF soaked in 12.50% aqueous ammonia at 50°C was the highest. Approximately 242.91±15.50 mg/g EFBF of xylose and 320.49±28.31 mg/g EFBF of glucose were produced by the action of enzyme Cellic Ctec 2. Results of scanning electron microscopic showed that aqueous ammonia treatment by soaking had caused a more severe structural distortion on the fiber’s surface and higher removal of silica bodies that embedded on the fiber than those in reflux system. The changes on the fiber’s surface morphology were believed is the contributing factor that improved the enzymatic digestibility of EFBF after aqueous ammonia treatment.« less

  17. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance.

    PubMed

    Dai, Xiaohu; Duan, Nina; Dong, Bin; Dai, Lingling

    2013-02-01

    System stability and performance of high-solids anaerobic co-digestion of dewatered sludge (DS) and food waste (FW) in comparison with mono digestions were investigated. System stability was improved in co-digestion systems with co-substrate acting as a diluting agent to toxic chemicals like ammonia or Na(+). For high-solids digestion of DS, the addition of FW not only improved system stability but also greatly enhanced volumetric biogas production. For high-solids digestion of FW, the addition of DS could reduce Na(+) concentration and help maintain satisfactory stability during the conversion of FW into biogas. System performances of co-digestion systems were mainly determined by the mixing ratios of DS and FW. Biogas production and volatile solids (VSs) reduction in digestion of the co-mixture of DS and FW increased linearly with higher ratios of FW. A kinetic model, which aimed to forecast the performance of co-digestion and to assist reactor design, was developed from long-term semi-continuous experiments. Maximum VS reduction for DS and FW was estimated to be 44.3% and 90.3%, respectively, and first order constant k was found to be 0.17d(-1) and 0.50 d(-1), respectively. Experimental data of co-digestion were in good conformity to the predictions of the model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Disabling a Type I-E CRISPR-Cas Nuclease with a Bacteriophage-Encoded Anti-CRISPR Protein

    PubMed Central

    Shah, Megha; Mejdani, Marios; Calmettes, Charles; Moraes, Trevor F.

    2017-01-01

    ABSTRACT CRISPR (clustered regularly interspaced short palindromic repeat)-Cas adaptive immune systems are prevalent defense mechanisms in bacteria and archaea. They provide sequence-specific detection and neutralization of foreign nucleic acids such as bacteriophages and plasmids. One mechanism by which phages and other mobile genetic elements are able to overcome the CRISPR-Cas system is through the expression of anti-CRISPR proteins. Over 20 different families of anti-CRISPR proteins have been described, each of which inhibits a particular type of CRISPR-Cas system. In this work, we determined the structure of type I-E anti-CRISPR protein AcrE1 by X-ray crystallography. We show that AcrE1 binds to the CRISPR-associated helicase/nuclease Cas3 and that the C-terminal region of the anti-CRISPR protein is important for its inhibitory activity. We further show that AcrE1 can convert the endogenous type I-E CRISPR system into a programmable transcriptional repressor. PMID:29233895

  19. Digest of state alcohol-highway safety related legislation : current as of January 1, 1997

    DOT National Transportation Integrated Search

    1997-01-01

    This Digest reports the status of State laws that are concerned with drunk driving offenses and alcoholic beverage control. Unless otherwise indicated, the status of the laws reported is January 1, 1997.

  20. Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion.

    PubMed

    Smith, Frances; Pan, Xiaoyan; Bellido, Vincent; Toole, Geraldine A; Gates, Fred K; Wickham, Martin S J; Shewry, Peter R; Bakalis, Serafim; Padfield, Philip; Mills, E N Clare

    2015-10-01

    Resistance of proteins to gastrointestinal digestion may play a role in determining immune-mediated adverse reactions to foods. However, digestion studies have largely been restricted to purified proteins and the impact of food processing and food matrices on protein digestibility is poorly understood. Digestibility of a total gliadin fraction (TGF), flour (cv Hereward), and bread was assessed using in vitro batch digestion with simulated oral, gastric, and duodenal phases. Protein digestion was monitored by SDS-PAGE and immunoblotting using monoclonal antibodies specific for celiac-toxic sequences (QQSF, QPFP) and starch digestion by measuring undigested starch. Whereas the TGF was rapidly digested during the gastric phase the gluten proteins in bread were virtually undigested and digested rapidly during the duodenal phase only if amylase was included. Duodenal starch digestion was also slower in the absence of duodenal proteases. The baking process reduces the digestibility of wheat gluten proteins, including those containing sequences active in celiac disease. Starch digestion affects the extent of protein digestion, probably because of gluten-starch complex formation during baking. Digestion studies using purified protein fractions alone are therefore not predictive of digestion in complex food matrices. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Aerobic sludge digestion under low dissolved oxygen concentrations.

    PubMed

    Arunachalam, RaviSankar; Shah, Hemant K; Ju, Lu-Kwang

    2004-01-01

    Low dissolved oxygen (DO) concentrations occur commonly in aerobic digesters treating thickened sludge, with benefits of smaller digester size, much reduced aeration cost, and higher digestion temperature (especially important for plants in colder areas). The effects of low DO concentrations on digestion kinetics were studied using the sludge from municipal wastewater treatment plants in Akron, Ohio, and Los Lunas, New Mexico. The experiments were conducted in both batch digestion and a mixed mode of continuous, fed-batch, and batch operations. The low DO condition was clearly advantageous in eliminating the need for pH control because of the simultaneous occurrence of nitrification and denitrification. However, when compared with fully aerobic (high DO) systems under constant pH control (rare in full-scale plants), low DO concentrations and a higher solids loading had a negative effect on the specific volatile solids (VS) digestion kinetics. Nonetheless, the overall (volumetric) digestion performance depends not only on the specific digestion kinetics, but also the solids concentration, pH, and digester temperature. All of the latter factors favor the low DO digestion of thickened sludge. The significant effect of temperature on low DO digestion was confirmed in the mixed-mode study with the Akron sludge. When compared with the well-known empirical correlation between VS reduction and the product (temperature x solids retention time), the experimental data followed the same trend, but were lower than the correlation predictions. The latter was attributed to the lower digestible VS in the Akron sludge, the slower digestion at low DO concentrations, or both. Through model simulation, the first-order decay constant (kd) was estimated as 0.004 h(-1) in the mixed-mode operations, much lower than those (0.011 to 0.029 h(-1)) obtained in batch digestion. The findings suggested that the interactions among sludges with different treatment ages may have a substantially

  2. Effects of various LED light wavelengths and intensities on microalgae-based simultaneous biogas upgrading and digestate nutrient reduction process.

    PubMed

    Zhao, Yongjun; Wang, Juan; Zhang, Hui; Yan, Cheng; Zhang, Yuejin

    2013-05-01

    Biogas is a well-known, primary renewable energy source, but its utilizations are possible only after upgrading. The microalgae-based bag photo-bioreactor utilized in this research could effectively upgrade biogas and simultaneously reduce the nutrient content in digestate. Red light was determined as the optimal light wavelength for microalgae growth, biogas upgrading, and digestate nutrient reduction. In the range of moderate light intensities (i.e., 800, 1200, 1600, and 2000 μmol m(-2) s(-1)), higher light intensities achieved higher biogas upgrade and larger digestate nutrient reduction. Methane content attained the highest value of 92.74±3.56% (v/v). The highest chemical oxygen demand, total nitrogen, and total phosphorus reduction efficiency of digestate were 85.35±1.04%, 77.98±1.84%, and 73.03±2.14%, respectively. Considering the reduction and economic efficiencies of the carbon dioxide content of biogas and digestate nutrient as well as the biogas upgrading standard, the optimal light intensity range was determined to be from 1200 to 1600 μmol m(-2) s(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency.

    PubMed

    Song, Jun; Yang, Dongshan; Xu, Jie; Zhu, Tianqing; Chen, Y Eugene; Zhang, Jifeng

    2016-01-28

    Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells.

  4. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency

    PubMed Central

    Song, Jun; Yang, Dongshan; Xu, Jie; Zhu, Tianqing; Chen, Y. Eugene; Zhang, Jifeng

    2016-01-01

    Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells. PMID:26817820

  5. Changes in chemical composition and digestibility of three maize stover components digested by white-rot fungi.

    PubMed

    Lynch, J P; O'Kiely, P; Murphy, R; Doyle, E M

    2014-08-01

    Maize stover (total stem and leaves) is not considered a ruminant feed of high nutritive value. Therefore, an improvement in its digestibility may increase the viability of total forage maize production systems in marginal growth regions. The objective of this study was to describe the changes in chemical composition during the storage of contrasting components of maize stover (leaf, upper stem and lower stem) treated with either of two lignin degrading white-rot fungi (WRF; Pleurotus ostreatus, Trametes versicolor). Three components of maize stover (leaf, upper stem and lower stem), harvested at a conventional maturity for silage production, were digested with either of two WRF for one of four digestion durations (1-4 months). Samples taken prior to fungal inoculation were used to benchmark the changes that occurred. The degradation of acid detergent lignin was observed in all sample types digested with P. ostreatus; however, the loss of digestible substrate in all samples inoculated with P. ostreatus was high, and therefore, P. ostreatus-digested samples had a lower dry matter digestibility than samples prior to inoculation. Similarly, T. veriscolor-digested leaf underwent a non-selective degradation of the rumen-digestible components of fibre. The changes in chemical composition of leaf, upper stem and lower stem digested with either P. ostreatus or T. veriscolor were not beneficial to the feed value of the forage, and incurred high DM losses. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  6. Archaeal and Bacterial Community Structure in an Anaerobic Digestion Reactor (Lagoon Type) Used for Biogas Production at a Pig Farm.

    PubMed

    Pampillón-González, Liliana; Ortiz-Cornejo, Nadia L; Luna-Guido, Marco; Dendooven, Luc; Navarro-Noya, Yendi E

    2017-01-01

    Biogas production from animal waste is an economically viable way to reduce environmental pollution and produce valuable products, i.e., methane and a nutrient-rich organic waste product. An anaerobic digestion reactor for biogas production from pig waste was sampled at the entrance, middle (digestion chamber), and exit of a digester, while the bacterial and archaeal community structure was studied by 16S rRNA gene metagenomics. The number of bacterial operational taxonomic units (OTU)-97% was 3-7 times larger than that of archaeal ones. Bacteria and Archaea found in feces of animals (e.g., Clostridiaceae, Lachnospiraceae, Ruminococcaceae, Methanosarcina, Methanolobus, Methanosaeta, and Methanospirillum) dominated the entrance of the digester. The digestion chamber was dominated by anaerobic sugar-fermenting OP9 bacteria and the syntrophic bacteria Candidatus Cloacamonas (Waste Water of Evry 1; WWE1). The methanogens dominant in the digestion chamber were the acetoclastic Methanosaeta and the hydrogenothrophic Methanoculleus and Methanospirillum. Similar bacterial and archaeal groups that dominated in the middle of the digestion chamber were found in the waste that left the digester. Predicted functions associated with degradation of xenobiotic compounds were significantly different between the sampling locations. The microbial community found in an anaerobic digestion reactor loaded with pig manure contained microorganisms with biochemical capacities related to the 4 phases of methane production. © 2017 S. Karger AG, Basel.

  7. Influence of fluid dynamics on anaerobic digestion of food waste for biogas production.

    PubMed

    Wang, Fengping; Zhang, Cunsheng; Huo, Shuhao

    2017-05-01

    To enhance the stability and efficiency of an anaerobic process, the influences of fluid dynamics on the performance of anaerobic digestion and sludge granulation were investigated using computational fluid dynamics (CFD). Four different propeller speeds (20, 60, 100, 140 r/min) were adopted for anaerobic digestion of food waste in a 30 L continuously stirred tank reactor (CSTR). Experimental results indicated that the methane yield increased with increasing the propeller speed within the experimental range. Results from CFD simulation and sludge granulation showed that the optimum propeller speed for anaerobic digestion was 100 r/min. Lower propeller speed (20 r/min) inhibited mass transfer and resulted in the failure of anaerobic digestion, while higher propeller speed (140 r/min) would lead to higher energy loss and system instability. Under this condition, anaerobic digestion could work effectively with higher efficiency of mass transfer which facilitated sludge granulation and biogas production. The corresponding mean liquid velocity and shear strain rate were 0.082 m/s and 10.48 s -1 , respectively. Moreover, compact granular sludge could be formed, with lower energy consumption. CFD was successfully used to study the influence of fluid dynamics on the anaerobic digestion process. The key parameters of the optimum mixing condition for anaerobic digestion of food waste in a 30 L CSTR including liquid velocity and shear strain rate were obtained using CFD, which were of paramount significance for the scale-up of the bioreactor. This study provided a new way for the optimization and scale-up of the anaerobic digestion process in CSTR based on the fluid dynamics analysis.

  8. Tudor staphylococcal nuclease is a structure-specific ribonuclease that degrades RNA at unstructured regions during microRNA decay.

    PubMed

    Li, Chia-Lung; Yang, Wei-Zen; Shi, Zhonghao; Yuan, Hanna S

    2018-05-01

    Tudor staphylococcal nuclease (TSN) is an evolutionarily conserved ribonuclease in eukaryotes that is composed of five staphylococcal nuclease-like domains (SN1-SN5) and a Tudor domain. TSN degrades hyper-edited double-stranded RNA, including primary miRNA precursors containing multiple I•U and U•I pairs, and mature miRNA during miRNA decay. However, how TSN binds and degrades its RNA substrates remains unclear. Here, we show that the C. elegans TSN (cTSN) is a monomeric Ca 2+ -dependent ribonuclease, cleaving RNA chains at the 5'-side of the phosphodiester linkage to produce degraded fragments with 5'-hydroxyl and 3'-phosphate ends. cTSN degrades single-stranded RNA and double-stranded RNA containing mismatched base pairs, but is not restricted to those containing multiple I•U and U•I pairs. cTSN has at least two catalytic active sites located in the SN1 and SN3 domains, since mutations of the putative Ca 2+ -binding residues in these two domains strongly impaired its ribonuclease activity. We further show by small-angle X-ray scattering that rice osTSN has a flexible two-lobed structure with open to closed conformations, indicating that TSN may change its conformation upon RNA binding. We conclude that TSN is a structure-specific ribonuclease targeting not only single-stranded RNA, but also unstructured regions of double-stranded RNA. This study provides the molecular basis for how TSN cooperates with RNA editing to eliminate duplex RNA in cell defense, and how TSN selects and degrades RNA during microRNA decay. © 2018 Li et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. Integration of pyrolysis and anaerobic digestion--use of aqueous liquor from digestate pyrolysis for biogas production.

    PubMed

    Hübner, Tobias; Mumme, Jan

    2015-05-01

    Anaerobic digestion of aqueous pyrolysis liquor derived from pyrolysis of solid digestate was tested in batch mode using an un-adapted inoculum. Three pyrolysis liquors produced at 330°C, 430°C and 530°C in four COD-based concentrations of 3, 6, 12 and 30 g L(-1) were investigated. The three lower concentrations showed considerable biogas production, whereas the 30 g L(-1) dosage caused process inhibition. The highest methane yield of 199.1±18.5 mL g(COD)(-1) (COD removal: 56.9±5.3%) was observed for the 330°C pyrolysis liquor, followed by the 430°C sample with only slightly lower values. The 530°C sample dropped to a yield of 129.3±19.7 mL g(COD)(-1) (COD removal: 36.9±5.6%). Most VOCs contained in the pyrolysis liquor (i.e. furfural, phenol, catechol, guaiacol, and levoglucosan) were reduced below detection limit (cresol by 10-60%). Consequently, integrated pyrolysis and anaerobic digestion in addition to thermochemical conversion of digestate also promises bioconversion of pyrolysis liquors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The effect of 1-week feed restriction on performance, digestibility of nutrients and digestive system development in the growing rabbit.

    PubMed

    Tůmová, E; Volek, Z; Chodová, D; Härtlová, H; Makovický, P; Svobodová, J; Ebeid, T A; Uhlířová, L

    2016-01-01

    A 3 to 4 week feed restriction of about 20% to 25% of the free intake is widely applied in rabbit breeding systems to reduce post-weaning digestive disorders. However, a short intensive feed restriction is described in few studies and can be beneficial for growing rabbits due to a longer re-alimentation period. The aim of this study was to evaluate the effect of ad libitum (AL) and two restriction levels of feeding (50 and 65 g/rabbit per day) applied for 1 week on performance, gastrointestinal morphology and physiological parameters during the restriction and during the re-alimentation period. Rabbits were divided into three experimental groups: AL rabbits were fed AL, R1 rabbits were restricted from 42 to 49 days of age and received 50 g daily (29% of AL) and R2 rabbits were restricted at the same age and were fed 65 g of feed daily (37% of AL). In the 1(st) week after weaning and in the weeks after restriction, all the groups were fed AL. During the restriction period, daily weight gain (DWG) in R1 significantly dropped to 11% (experiment 1) and 5% (experiment 2) compared with rabbits in the AL group, although they were fed 29% of AL, whereas in the R2 group it decreased to 20% (experiment 1) and 10% (experiment 2). In the week following feed restriction, DWG in the restricted groups increased (P<0.001) to 166% and 148% in R1 and to 128% and 145% in R2. Restricted rabbits in both the experiments reached up to 90% to 93% of the final live weight (70 days) of the AL group. Over the entire experimental period, feed restriction significantly decreased feed intake to 85% to 88% of the AL group; however, the feed conversion ratio was lower (P<0.05) only in experiment 1 (-6% in R1 and -4% in R2). Digestibilities of CP and fat were not significantly higher during the restriction period and during the 1(st) week of re-alimentation compared with the AL group. Significant interactions between feeding regime and age revealed the shortest large intestine in the AL group at

  11. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Masahito; Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571; Umeyama, Kazuhiro

    2010-11-05

    Research highlights: {yields} EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. {yields} ZFNs induced targeted mutations in porcine primary cultured cells. {yields} Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor themore » exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.« less

  12. Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment.

    PubMed

    Liew, Lo Niee; Shi, Jian; Li, Yebo

    2011-10-01

    Previous studies have shown that alkali pretreatment prior to anaerobic digestion (AD) can increase the digestibility of lignocellulosic biomass and methane yield. In order to simplify the process and reduce the capital cost, simultaneous alkali treatment and anaerobic digestion was evaluated for methane production from fallen leaves. The highest methane yield of 82 L/kg volatile solids (VS) was obtained at NaOH loading of 3.5% and substrate-to-inoculum (S/I) ratio of 4.1. The greatest enhancement in methane yield was achieved at S/I ratio of 6.2 with NaOH loading of 3.5% which was 24-fold higher than that of the control (without NaOH addition). Reactors at S/I ratio of 8.2 resulted in failure of the AD process. In addition, increasing the total solid (TS) content from 20% to 26% reduced biogas yield by 35% at S/I ratio of 6.2 and NaOH loading of 3.5%. Cellulose and hemicellulose degradation and methane yields are highly related. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Effect of domestication on microorganism diversity and anaerobic digestion of food waste.

    PubMed

    Bi, S J; Hong, X J; Wang, G X; Li, Y; Gao, Y M; Yan, L; Wang, Y J; Wang, W D

    2016-08-19

    To accomplish the rapid start-up and stable operation of biogas digesters, an efficient inoculum is required. To obtain such an inoculum for food waste anaerobic digestion, we domesticated dairy manure anaerobic digestion residue by adding food waste every day. After 36 days, the pH and biogas yield stabilized signifying the completion of domestication. During domestication, the microbial communities in the inocula were investigated by constructing 16S rDNA clone libraries. We evaluated the effect of the domesticated inoculum by testing batch food waste anaerobic digestion with a non-domesticated inoculum as a control. The pH and methane yield of the digestion systems were determined as measurement indices. Domestication changed the composition and proportion of bacteria and archaea in the inocula. Of the bacteria, Clostridia (49.3%), Bacteroidales (19.5%), and Anaerolinaceae (8.1%) species were dominant in the seed sludge; Anaerolinaceae (49.0%), Clostridia (28.4%), and Bacteroidales (9.1%), in domestication sludge. Methanosaeta was the dominant genus in both of the seed (94.3%) and domestication (74.3%) sludge. However, the diversity of methanogenic archaea was higher in the domestication than in seed sludge. Methanoculleus, which was absent from the seed sludge, appeared in the domestication sludge (21.7%). When the domesticated inoculum was used, the digestion system worked stably (organic loading rate: 20 gVS/L; methane yield: 292.2 ± 9.8 mL/gVS; VS = volatile solids), whereas the digestion system inoculated with seed sludge failed to generate biogas. The results indicate that inoculum domestication ensures efficient and stable anaerobic digestion by enriching the methanogenic strains.

  14. Modelling mono-digestion of grass silage in a 2-stage CSTR anaerobic digester using ADM1.

    PubMed

    Thamsiriroj, T; Murphy, J D

    2011-01-01

    This paper examines 174 days of experimental data and modelling of mono-digestion of grass silage in a two stage wet process with recirculation of liquor; the two vessels have an effective volume of 312 L each. The organic loading rate is initiated at 0.5 kg VS m(-3) d(-1) (first 74 days) and subsequently increased to 1 kg VS m(-3) d(-1). The experimental data was used to generate a mathematical model (ADM1) which was calibrated over the first 74 days of operation. Good accuracy with experimental data was found for the subsequent 100 days. Results of the model would suggest starting the process without recirculation and thus building up the solids content of the liquor. As the level of VFA increases, recirculation should be employed to control VFA. Recirculation also controls solids content and pH. Methane production was estimated at 88% of maximum theoretical production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases.

    PubMed

    Citorik, Robert J; Mimee, Mark; Lu, Timothy K

    2014-11-01

    Current antibiotics tend to be broad spectrum, leading to indiscriminate killing of commensal bacteria and accelerated evolution of drug resistance. Here, we use CRISPR-Cas technology to create antimicrobials whose spectrum of activity is chosen by design. RNA-guided nucleases (RGNs) targeting specific DNA sequences are delivered efficiently to microbial populations using bacteriophage or bacteria carrying plasmids transmissible by conjugation. The DNA targets of RGNs can be undesirable genes or polymorphisms, including antibiotic resistance and virulence determinants in carbapenem-resistant Enterobacteriaceae and enterohemorrhagic Escherichia coli. Delivery of RGNs significantly improves survival in a Galleria mellonella infection model. We also show that RGNs enable modulation of complex bacterial populations by selective knockdown of targeted strains based on genetic signatures. RGNs constitute a class of highly discriminatory, customizable antimicrobials that enact selective pressure at the DNA level to reduce the prevalence of undesired genes, minimize off-target effects and enable programmable remodeling of microbiota.

  16. Improved design of anaerobic digesters for household biogas production in indonesia: one cow, one digester, and one hour of cooking per day.

    PubMed

    Usack, Joseph G; Wiratni, Wiratni; Angenent, Largus T

    2014-01-01

    A government-sponsored initiative in Indonesia to design and implement low-cost anaerobic digestion systems resulted in 21 full-scale systems with the aim to satisfy the cooking fuel demands of rural households owning at least one cow. The full-scale design consisted of a 0.3 m diameter PVC pipe, which was operated as a conventional plug-flow system. The system generated enough methane to power a cooking stove for ∼ 1 h. However, eventual clogging from solids accumulation inside the bioreactor proved to be a major drawback. Here, we improved the digester configuration to remedy clogging while maintaining system performance. Controlled experiments were performed using four 9-L laboratory-scale digesters operated at a temperature of 27 ± 1 °C, a volatile solids loading rate of 2.0 g VS · L(-1) · day(-1), and a 21-day hydraulic retention time. Two of the digesters were replicates of the original design (control digesters), while the other two digesters included internal mixing or effluent recycle (experimental digesters). The performance of each digester was compared based on methane yields, VS removal efficiencies, and steady-state solids concentrations during an operating period of 311 days. Statistical analyses revealed that internal mixing and effluent recycling resulted in reduced solids accumulation compared to the controls without diminishing methane yields or solids removal efficiencies.

  17. Improved Design of Anaerobic Digesters for Household Biogas Production in Indonesia: One Cow, One Digester, and One Hour of Cooking per Day

    PubMed Central

    Usack, Joseph G.; Wiratni, Wiratni; Angenent, Largus T.

    2014-01-01

    A government-sponsored initiative in Indonesia to design and implement low-cost anaerobic digestion systems resulted in 21 full-scale systems with the aim to satisfy the cooking fuel demands of rural households owning at least one cow. The full-scale design consisted of a 0.3 m diameter PVC pipe, which was operated as a conventional plug-flow system. The system generated enough methane to power a cooking stove for ∼1 h. However, eventual clogging from solids accumulation inside the bioreactor proved to be a major drawback. Here, we improved the digester configuration to remedy clogging while maintaining system performance. Controlled experiments were performed using four 9-L laboratory-scale digesters operated at a temperature of 27 ± 1°C, a volatile solids loading rate of 2.0 g VS·L−1 ·day−1, and a 21-day hydraulic retention time. Two of the digesters were replicates of the original design (control digesters), while the other two digesters included internal mixing or effluent recycle (experimental digesters). The performance of each digester was compared based on methane yields, VS removal efficiencies, and steady-state solids concentrations during an operating period of 311 days. Statistical analyses revealed that internal mixing and effluent recycling resulted in reduced solids accumulation compared to the controls without diminishing methane yields or solids removal efficiencies. PMID:24715809

  18. Implementing Livestock Anaerobic Digestion Projects

    EPA Pesticide Factsheets

    Page provides information to help make an informed decision about installing an anaerobic digester. Is it a good match for a farm’s organic waste, project financing, development guidelines and permit requirements?

  19. Soybean hull and enzyme inclusion effects on diet digestibility and growth performance in beef steers consuming corn-based diets.

    PubMed

    Russell, J R; Sexten, W J; Kerley, M S

    2016-06-01

    A beef feedlot study was conducted to determine the effects of increasing soybean hull (SH) inclusion and enzyme addition on diet digestibility and animal performance. The hypothesis was SH inclusion and enzyme addition would increase fiber digestibility with no negative effect on animal performance. Eight treatments (TRT) were arranged in a 4 × 2 factorial using four diets and two enzyme (ENZ) inclusion rates. The diets were composed primarily of whole shell corn (WSC) with 0%, 7%, 14%, or 28% SH replacing corn. The ENZ was a commercial proprietary mix of , and (Cattlemace, R&D Life Sciences, Menomonie, WI) included in the diets at 0% (S0, S7, S14, S28) or 0.045% DM basis (S0e, S7e, S14e, S28e). Eighty steers (287 ± 31 kg, SD) were stratified by weight and blocked into pens with 1 heavy and 1 light pen per TRT (2 pen/TRT, 5 steers/pen). Steers were fed for 70 d with titanium dioxide included in the diets for the final 15 d. Fecal samples were collected on d 70 to determine diet digestibility. Diets were balanced for AA and RDP requirement based on available ME. Individual DMI was measured using a GrowSafe system. Diet, ENZ, and diet × ENZ effects were analyzed using the MIXED procedure of SAS. Initial BW was applied as a covariate for final BW (FBW), and DMI was included as a covariate for all digestibility measures. The diet × ENZ interaction had no effect on FBW, ADG, DMI, or any digestibility measure ( ≥ 0.11). Steers fed ENZ tended to have greater FBW ( = 0.09) and had numerically greater ADG than steers not fed ENZ. Diet influenced DMI ( < 0.01), as steers fed S7 diets had the greatest DMI ( ≤ 0.3), steers fed S0 diets had the least DMI ( ≤ 0.002), and DMI of steers fed S14 and S28 diets did not differ ( = 0.5). There was a diet × ENZ interaction for G:F ( = 0.02) in which S0, S0e, S14e, and S28e did not differ ( ≥ 0.3) and were greatest ( ≤ 0.05). There was no effect of diet or ENZ on DM, OM, or CP digestibility ( ≥ 0.2). Diet had an effect

  20. Modeling of the Human Alveolar Rhabdomyosarcoma Pax3-Foxo1 Chromosome Translocation in Mouse Myoblasts Using CRISPR-Cas9 Nuclease

    PubMed Central

    Lagutina, Irina V.; Valentine, Virginia; Picchione, Fabrizio; Harwood, Frank; Valentine, Marcus B.; Villarejo-Balcells, Barbara; Carvajal, Jaime J.; Grosveld, Gerard C.

    2015-01-01

    Many recurrent chromosome translocations in cancer result in the generation of fusion genes that are directly implicated in the tumorigenic process. Precise modeling of the effects of cancer fusion genes in mice has been inaccurate, as constructs of fusion genes often completely or partially lack the correct regulatory sequences. The reciprocal t(2;13)(q36.1;q14.1) in human alveolar rhabdomyosarcoma (A-RMS) creates a pathognomonic PAX3-FOXO1 fusion gene. In vivo mimicking of this translocation in mice is complicated by the fact that Pax3 and Foxo1 are in opposite orientation on their respective chromosomes, precluding formation of a functional Pax3-Foxo1 fusion via a simple translocation. To circumvent this problem, we irreversibly inverted the orientation of a 4.9 Mb syntenic fragment on chromosome 3, encompassing Foxo1, by using Cre-mediated recombination of two pairs of unrelated oppositely oriented LoxP sites situated at the borders of the syntenic region. We tested if spatial proximity of the Pax3 and Foxo1 loci in myoblasts of mice homozygous for the inversion facilitated Pax3-Foxo1 fusion gene formation upon induction of targeted CRISPR-Cas9 nuclease-induced DNA double strand breaks in Pax3 and Foxo1. Fluorescent in situ hybridization indicated that fore limb myoblasts show a higher frequency of Pax3/Foxo1 co-localization than hind limb myoblasts. Indeed, more fusion genes were generated in fore limb myoblasts via a reciprocal t(1;3), which expressed correctly spliced Pax3-Foxo1 mRNA encoding Pax3-Foxo1 fusion protein. We conclude that locus proximity facilitates chromosome translocation upon induction of DNA double strand breaks. Given that the Pax3-Foxo1 fusion gene will contain all the regulatory sequences necessary for precise regulation of its expression, we propose that CRISPR-Cas9 provides a novel means to faithfully model human diseases caused by chromosome translocation in mice. PMID:25659124

  1. Standards for the High School Psychology Course. ERIC Digest.

    ERIC Educational Resources Information Center

    Morganett, L. Lee

    The latest contribution to the content standards boom that began in the 1990s comes from the American Psychological Association (APA), which recently published "National Standards for the Teaching of High School Psychology." This Digest discusses: (1) the origin and purposes of the project to develop standards for high school psychology…

  2. Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning.

    PubMed

    Gutiérrez, Gabriel; Millán-Zambrano, Gonzalo; Medina, Daniel A; Jordán-Pla, Antonio; Pérez-Ortín, José E; Peñate, Xenia; Chávez, Sebastián

    2017-12-07

    TFIIS stimulates RNA cleavage by RNA polymerase II and promotes the resolution of backtracking events. TFIIS acts in the chromatin context, but its contribution to the chromatin landscape has not yet been investigated. Co-transcriptional chromatin alterations include subtle changes in nucleosome positioning, like those expected to be elicited by TFIIS, which are elusive to detect. The most popular method to map nucleosomes involves intensive chromatin digestion by micrococcal nuclease (MNase). Maps based on these exhaustively digested samples miss any MNase-sensitive nucleosomes caused by transcription. In contrast, partial digestion approaches preserve such nucleosomes, but introduce noise due to MNase sequence preferences. A systematic way of correcting this bias for massively parallel sequencing experiments is still missing. To investigate the contribution of TFIIS to the chromatin landscape, we developed a refined nucleosome-mapping method in Saccharomyces cerevisiae. Based on partial MNase digestion and a sequence-bias correction derived from naked DNA cleavage, the refined method efficiently mapped nucleosomes in promoter regions rich in MNase-sensitive structures. The naked DNA correction was also important for mapping gene body nucleosomes, particularly in those genes whose core promoters contain a canonical TATA element. With this improved method, we analyzed the global nucleosomal changes caused by lack of TFIIS. We detected a general increase in nucleosomal fuzziness and more restricted changes in nucleosome occupancy, which concentrated in some gene categories. The TATA-containing genes were preferentially associated with decreased occupancy in gene bodies, whereas the TATA-like genes did so with increased fuzziness. The detected chromatin alterations correlated with functional defects in nascent transcription, as revealed by genomic run-on experiments. The combination of partial MNase digestion and naked DNA correction of the sequence bias is a precise

  3. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T; Huang, S; Zhao, XF

    Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs tomore » target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.« less

  4. Expression of PD-1 and PD-L1 in poorly differentiated neuroendocrine carcinomas of the digestive system: a potential target for anti-PD-1/PD-L1 therapy.

    PubMed

    Roberts, Jordan A; Gonzalez, Raul S; Das, Satya; Berlin, Jordan; Shi, Chanjuan

    2017-12-01

    Poorly differentiated neuroendocrine carcinoma of the digestive system has a dismal prognosis with limited treatment options. This study aimed to investigate expression of the PD-1/PD-L1 pathway in these tumors. Thirty-seven patients with a poorly differentiated neuroendocrine carcinoma of the digestive system were identified. Their electronic medical records, pathology reports, and pathology slides were reviewed for demographics, clinical history, and pathologic features. Tumor sections were immunohistochemically labeled for PD-1 and PD-L1, and expression of PD-1 and PD-L1 on tumor and tumor-associated immune cells was analyzed and compared between small cell and large cell neuroendocrine carcinomas. The mean age of patients was 61 years old with 18 men and 19 women. The colorectum (n=20) was the most common primary site; other primary sites included the pancreaticobiliary system, esophagus, stomach, duodenum, and ampulla. Expression of PD-1 was detected on tumor cells (n=6, 16%) as well as on tumor-associated immune cells (n=23, 63%). The 6 cases with PD-1 expression on tumor cells also had the expression on immune cells. Expression of PD-L1 was visualized on tumor cells in 5 cases (14%) and on tumor-associated immune cells in 10 cases (27%). There was no difference in PD-1 and PD-L1 expression between small cell and large cell neuroendocrine carcinomas. In conclusion, PD-1/PD-L1 expression is a frequent occurrence in poorly differentiated neuroendocrine carcinomas of the digestive system. Checkpoint blockade targeting the PD-1/PD-L1 pathway may have a potential role in treating patients with this disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Lipid Membrane Encapsulation of a 3D DNA Nano Octahedron.

    PubMed

    Perrault, Steven D; Shih, William M

    2017-01-01

    Structural DNA nanotechnology methods such as DNA origami allow for the synthesis of highly precise nanometer-scale materials (Rothemund, Nature 440:297-302, 2006; Douglas et al., Nature 459:414-418, 2009). These offer compelling advantages for biomedical applications. Such materials can suffer from structural instability in biological environments due to denaturation and nuclease digestion (Hahn et al., ACS Nano 2014; Perrault and Shih, ACS Nano 8:5132-5140, 2014). Encapsulation of DNA nanostructures in a lipid membrane compartmentalizes them from their environment and prevents denaturation and nuclease digestion (Perrault and Shih, ACS Nano 8:5132-5140, 2014). Here, we describe the encapsulation of a 50 nm DNA nanostructure having the geometry of a wireframe octahedron in a phospholipid membrane containing poly-(ethylene glycol), resulting in biocompatible DNA nanostructures.

  6. Digestive kinetics determines bioavailability of pollutants. Final report, 1 July 1993--30 September 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, L.M.

    1998-09-30

    The bioavailability of sedimentary contaminants to animals in harbor sediments was addressed by studying the mechanisms by which animals solubilize contaminants during feeding and digestion. Digestive physiology work on many different animal species revealed patterns of enzymes, surfactants and dissolved organic matter that correlate with feeding mode, phyletic position, and diet. Incubation of digestive fluids to dissolve contaminants from polluted sediments was developed to provide numerical estimates of bioavailability, and showed that much higher fractions of total contaminant loading are available than predicted by currently established, aqueous equilibrium approaches. The kinetics of reactions are slow enough that variations in feedingmore » rates will influence overall bioavailability. Experimental manipulations showed mechanisms of bioavailability. Dissolved amino acids, in the form of enzyme proteins and hydrolyzed food, are responsible for solubilization of metals such as copper. At high levels, copper can inactivate digestive enzymes. Metals in sedimentary sulfide minerals were largely impervious to digestive fluid attack. Surfactants are responsible for most solubilization of polycyclic aromatic hydrocarbons (PAH), though other agents also appear to play a role. Bioavailability of both metals and PAH can be limited by saturating the digestive agents responsible for their dissolution.« less

  7. Adenylyl cyclases in the digestive system

    PubMed Central

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2015-01-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca2+ and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. PMID:24521753

  8. Enzymatic and Structural Characterization of the Major Endopeptidase in the Venus Flytrap Digestion Fluid*

    PubMed Central

    Risør, Michael W.; Thomsen, Line R.; Sanggaard, Kristian W.; Nielsen, Tania A.; Thøgersen, Ida B.; Lukassen, Marie V.; Rossen, Litten; Garcia-Ferrer, Irene; Guevara, Tibisay; Scavenius, Carsten; Meinjohanns, Ernst; Gomis-Rüth, F. Xavier; Enghild, Jan J.

    2016-01-01

    Carnivorous plants primarily use aspartic proteases during digestion of captured prey. In contrast, the major endopeptidases in the digestive fluid of the Venus flytrap (Dionaea muscipula) are cysteine proteases (dionain-1 to -4). Here, we present the crystal structure of mature dionain-1 in covalent complex with inhibitor E-64 at 1.5 Å resolution. The enzyme exhibits an overall protein fold reminiscent of other plant cysteine proteases. The inactive glycosylated pro-form undergoes autoprocessing and self-activation, optimally at the physiologically relevant pH value of 3.6, at which the protective effect of the pro-domain is lost. The mature enzyme was able to efficiently degrade a Drosophila fly protein extract at pH 4 showing high activity against the abundant Lys- and Arg-rich protein, myosin. The substrate specificity of dionain-1 was largely similar to that of papain with a preference for hydrophobic and aliphatic residues in subsite S2 and for positively charged residues in S1. A tentative structure of the pro-domain was obtained by homology modeling and suggested that a pro-peptide Lys residue intrudes into the S2 pocket, which is more spacious than in papain. This study provides the first analysis of a cysteine protease from the digestive fluid of a carnivorous plant and confirms the close relationship between carnivorous action and plant defense mechanisms. PMID:26627834

  9. Learning about the Human Genome. Part 1: Challenge to Science Educators. ERIC Digest.

    ERIC Educational Resources Information Center

    Haury, David L.

    This digest explains how to inform high school students and their parents about the human genome project (HGP) and how the information from this milestone finding will affect future biological and medical research and challenge science educators. The sections include: (1) "The Emerging Legacy of the HGP"; (2) "Transforming How…

  10. Environmental diseases of the digestive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, E.; Farber, J.L.

    1990-03-01

    Environmental factors are important mediators of many diseases of the digestive system, defined as the alimentary tract and the accessory organs of digestion, the liver and pancreas. In this review, we principally focus on the action of chemical agents which are classified as (1) naturally occurring compounds, (2) occupational hazards, (3) therapeutic drugs, and (4) constituents of substances of abuse. In addition, the putative role of dietary habits in the pathogenesis of malignant diseases of the digestive system is discussed.54 references.

  11. The functional-morphological adaptive strategy of digestive organs of decapodiform cephalopods

    PubMed Central

    OMURA, Ayano; ENDO, Hideki

    2015-01-01

    The digestive organs in decapodiform cephalopod species morphologically vary by individual lifestyle. We examined the following six species of adult decapodiformes cephalopods representing different habitats: Todarodes pacificus, Loligo bleekeri, Loligo edulis, Watasenia scintillans (pelagic), Sepia lycidas and Euprymna morsei (benthic). L. bleekeri and L. edulis possess a bursiform cecal sac connected to the cecum. Pelagic species have a single digestive gland smaller than in benthic species. T. pacificus has an oval digestive gland larger than that of L. bleekeri and L. edulis, which possess withered-looking and smaller digestive glands. In contrast, the digestive glands in benthic species are paired. S. lycidas and E. morsei have well-developed and larger digestive glands than those of the pelagic species. Well-developed digestive duct appendages are found in benthic species. In qualification of the mass of digestive organs, pelagic species have smaller stomachs, digestive glands and digestive ducts’ appendages than benthic species. Because pelagic species need to swim, they may possess smaller stomachs and larger cecums for more rapid digestion. A smaller digestive gland may have the advantage of reducing the body weight in pelagic species for rapid swimming. In contrast, since benthic species require a longer time for digestion than pelagic species, they compact more food in their stomachs and absorb nutrients via more organs, such as the digestive grand and digestive duct appendages, in addition to cecum. PMID:26369293

  12. The functional-morphological adaptive strategy of digestive organs of decapodiform cephalopods.

    PubMed

    Omura, Ayano; Endo, Hideki

    2016-01-01

    The digestive organs in decapodiform cephalopod species morphologically vary by individual lifestyle. We examined the following six species of adult decapodiformes cephalopods representing different habitats: Todarodes pacificus, Loligo bleekeri, Loligo edulis, Watasenia scintillans (pelagic), Sepia lycidas and Euprymna morsei (benthic). L. bleekeri and L. edulis possess a bursiform cecal sac connected to the cecum. Pelagic species have a single digestive gland smaller than in benthic species. T. pacificus has an oval digestive gland larger than that of L. bleekeri and L. edulis, which possess withered-looking and smaller digestive glands. In contrast, the digestive glands in benthic species are paired. S. lycidas and E. morsei have well-developed and larger digestive glands than those of the pelagic species. Well-developed digestive duct appendages are found in benthic species. In qualification of the mass of digestive organs, pelagic species have smaller stomachs, digestive glands and digestive ducts' appendages than benthic species. Because pelagic species need to swim, they may possess smaller stomachs and larger cecums for more rapid digestion. A smaller digestive gland may have the advantage of reducing the body weight in pelagic species for rapid swimming. In contrast, since benthic species require a longer time for digestion than pelagic species, they compact more food in their stomachs and absorb nutrients via more organs, such as the digestive grand and digestive duct appendages, in addition to cecum.

  13. Purification of Marek's disease virus DNA for 454 pyrosequencing using micrococcal nuclease digestion and polyethylene glycol precipitation

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV-1) is a cell-associated alphaherpesvirus that induces rapid-onset T-cell lymphomas in poultry. The genomes of 6 strains have been sequenced using both Sanger didoxy sequencing and 454 Life Science pyrosequencing. These genomes largely represent cell culture adapted strains...

  14. Heterotrophic denitrification plays an important role in N₂O production from nitritation reactors treating anaerobic sludge digestion liquor.

    PubMed

    Wang, Qilin; Jiang, Guangming; Ye, Liu; Pijuan, Maite; Yuan, Zhiguo

    2014-10-01

    Nitrous oxide (N2O) emissions from nitritation reactors receiving real anaerobic sludge digestion liquor have been reported to be substantially higher than those from reactors receiving synthetic digestion liquor. This study aims to identify the causes for the difference, and to develop strategies to reduce N2O emissions from reactors treating real digestion liquor. Two sequencing batch reactors (SBRs) performing nitritation, fed with real (SBR-R) and synthetic (SBR-S) digestion liquors, respectively, were employed. The N2O emission factors for SBR-R and SBR-S were determined to be 3.12% and 0.80% of the NH4(+)-N oxidized, respectively. Heterotrophic denitrification supported by the organic carbon present in the real digestion liquor was found to be the key contributor to the higher N2O emission from SBR-R. Heterotrophic nitrite reduction likely stopped at N2O (rather than N2), with a hypothesised cause being free nitrous acid inhibition. This implies that all nitrite reduced by heterotrophic bacteria was converted to and emitted as N2O. Increasing dissolved oxygen (DO) concentration from 0.5 to 1.0 mg/L, or above, decreased aerobic N2O production from 2.0% to 0.5% in SBR-R, whereas aerobic N2O production in SBR-S remained almost unchanged (at approximately 0.5%). We hypothesised that DO at 1 mg/L or above suppressed heterotrophic nitrite reduction thus reduced aerobic heterotrophic N2O production. We recommend that DO in a nitritation system receiving anaerobic sludge digestion liquor should be maintained at approximately 1 mg/L to minimise N2O emission. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Uptake of 2S albumin allergens, Ber e 1 and Ses i 1, across human intestinal epithelial Caco-2 cell monolayers.

    PubMed

    Moreno, F Javier; Rubio, Luis A; Olano, Agustín; Clemente, Alfonso

    2006-11-01

    We have investigated the absorption rates of two purified major allergen 2S albumins, Ber e 1 from Brazil nuts (Bertholletia excelsa Humb. & Bonpl.) and Ses i 1 from white sesame seeds (Sesamum indicum L.), across human intestinal epithelial Caco-2 cell monolayers following gastrointestinal digestion in vitro. The transport from apical to basolateral side in cell monolayers was evaluated by RP-HPLC-UV and indirect competitive ELISA methods, being confirmed by western-blotting analysis. Significant amounts (approximately 15-25 nmol micromol(-1) initial amount/h) of intact Ber e 1 and Ses i 1 were found in the basolateral side. The absorption rates of both plant allergens through the cell monolayer were shown to be constant during the whole incubation period (4 h at 37 degrees C), verifying that the permeability of the membrane was not altered by the allergen digests. Our findings revealed that both purified 2S albumin allergens may be able to survive in immunologically reactive forms to the simulated harsh conditions of the gastrointestinal tract to be transported across the Caco-2 cell monolayers, so that they would be able to sensitize the mucosal immune system and/or elicit an allergic response.

  16. The digestive system of the stony coral Stylophora pistillata.

    PubMed

    Raz-Bahat, M; Douek, J; Moiseeva, E; Peters, E C; Rinkevich, B

    2017-05-01

    Because hermatypic species use symbiotic algal photosynthesis, most of the literature in this field focuses on this autotrophic mode and very little research has studied the morphology of the coral's digestive system or the digestion process of particulate food. Using histology and histochemestry, our research reveals that Stylophora pistillata's digestive system is concentrated at the corals' peristome, actinopharynx and mesenterial filaments (MF). We used in-situ hybridization (ISH) of the RNA transcript of the gene that codes for the S. pistillata digestive enzyme, chymotrypsinogen, to shed light on the functionality of the digestive system. Both the histochemistry and the ISH pointed to the MF being specialized digestive organs, equipped with large numbers of acidophilic and basophilic granular gland cells, as well as acidophilic non-granular gland cells, some of which produce chymotrypsinogen. We identified two types of MF: short, trilobed MF and unilobed, long and convoluted MF. Each S. pistillata polyp harbors two long convoluted MF and 10 short MF. While the short MF have neither secreting nor stinging cells, each of the convoluted MF display gradual cytological changes along their longitudinal axis, alternating between stinging and secreting cells and three distinctive types of secretory cells. These observations indicate the important digestive role of the long convoluted MF. They also indicate the existence of novel feeding compartments in the gastric cavity of the polyp, primarily in the nutritionally active peristome, in the actinopharynx and in three regions of the MF that differ from each other in their cellular components, general morphology and chymotrypsinogen excretion.

  17. [In vitro study of joint intervention of E-cad and Bmi-1 mediated by transcription activator-like effector nuclease in nasopharyngeal carcinoma].

    PubMed

    Luo, Tingting; Yan, Aifen; Liu, Lian; Jiang, Hong; Feng, Cuilan; Liu, Guannan; Liu, Fang; Tang, Dongsheng; Zhou, Tianhong

    2018-03-28

    To explore the effect of intervention of E-cadherin (E-cad) and B-lymphoma Moloney murine leukemia virus insertion region-1 (Bmi-1) mediated by transcription activator-like effector nuclease (TALEN) on the biological behaviors of nasopharyngeal carcinoma cells.
 Methods: Multi-locus gene targeting vectors pUC-DS1-CMV-E-cad-2A-Neo-DS2 and pUC-DS1-Bmi-1 shRNA-Zeo-DS2 were constructed, and the E-cad and Bmi-1 targeting vectors were transferred with TALEN plasmids to CNE-2 cells individually or simultaneously. The integration of target genes were detected by PCR, the expressions of E-cad and Bmi-1 were detected by Western blot. The changes of cell proliferation were detected by cell counting kit-8 (CCK-8) assay. The cell cycle and apoptosis were detected by flow cytometry. The cell migration and invasion were detected by Transwell assay.
 Results: The E-cad and Bmi-1 shRNA expression elements were successfully integrated into the genome of CNE-2 cells, the protein expression level of E-cad was up-regulated, and the protein expression level of Bmi-1 was down-regulated. The intervention of E-cad and Bmi-1 didn't affect the proliferation, cell cycle and apoptosis of CNE-2 cells, but it significantly inhibited the migration and invasion ability of CNE-2 cells. Furthermore, the intervention of E-cad and Bmi-1 together significantly inhibited the migration ability of nasopharyngeal carcinoma cells compared with the intervention of E-cad or Bmi-1 alone (all P<0.01).
 Conclusion: The joint intervention of E-cad and Bmi-1 mediated by TALEN can effectively inhibit the migration and invasion of nasopharyngeal carcinoma cells in vitro, which may lay the preliminary experimental basis for gene therapy of human cancer.

  18. Autonomic regulation of the heart during digestion and aerobic swimming in the European sea bass (Dicentrarchus labrax).

    PubMed

    Iversen, Nina K; Dupont-Prinet, Aurélie; Findorf, Inge; McKenzie, David J; Wang, Tobias

    2010-08-01

    The autonomic regulation of the heart was studied in European sea bass (Dicentrarchus labrax) during digestion and aerobic exercise by measuring cardiac output (Q), heart rate (f(H)), stroke volume (V(s)) and oxygen consumption (MO(2)) before and after pharmacological blockade by intraperitoneal injections of atropine and propranolol. The significant rise in MO(2) (134+/-14 to 174+/-14 mg kg(-)(1)h(-)(1)) 6h after feeding (3% body mass) caused a significant tachycardia (47.7+/-10.9 to 72.6+/-7.2 beats min(-)(1)), but only a small elevation of Q. MO(2) of fasting fish increased progressively with swimming speed (0.7-2.1BLs(-)(1)) causing a significant tachycardia (43+/-6 to 61+/-4 mL min(-)(1)kg(-)(1)) and increased Q but V(s) did not change. Inactive fish were characterized by a high vagal tone (98.3+/-21.7%), and the tachycardia during digestion and exercise was exclusively due to a reduction of vagal tone, while the adrenergic tone remained low during all conditions. Intrinsic f(H), revealed after double autonomic blockade, was not affected by digestion (71+/-4 and 70+/-6 min(-)(1), respectively), indicating that non-adrenergic, non-cholinergic (NANC) factors do not contribute to the tachycardia during digestion in sea bass. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  19. Recovering biomethane and nutrients from anaerobic digestion of water hyacinth (Eichhornia crassipes) and its co-digestion with fruit and vegetable waste.

    PubMed

    Hernández-Shek, M A; Cadavid-Rodríguez, L S; Bolaños, I V; Agudelo-Henao, A C

    2016-01-01

    The potential to recover bioenergy from anaerobic digestion of water hyacinth (WH) and from its co-digestion with fruit and vegetable waste (FVW) was investigated. Initially, biogas and methane production were studied using the biochemical methane potential (BMP) test at 2 g volatile solids (VS) L(-1) of substrate concentration, both in the digestion of WH alone and in its co-digestion with FVW (WH-FVW ratio of 70:30). Subsequently, the biogas production was optimized in terms of total solids (TS) concentration, testing 4 and 6% of TS. The BMP test showed a biogas yield of 0.114 m(3) biogas kg(-1) VSadded for WH alone. On the other hand, the biogas potential from the WH-FVW co-digestion was 0.141 m(3) biogas kg(-1) VSadded, showing an increase of 23% compared to that of WH alone. Maximum biogas production of 0.230 m(3) biogas kg(-1) VSadded was obtained at 4% of TS in the co-digestion of WH-FVW. Using semi-continuously stirred tank reactors, 1.3 m(3) biogas yield kg(-1) VSadded was produced using an organic loading rate of 2 kg VS m(-3) d(-1) and hydraulic retention time of 15 days. It was also found that a WH-FVW ratio of 80:20 improved the process in terms of pH stability. Additionally, it was found that nitrogen can be recovered in the liquid effluent with a potential for use as a liquid fertilizer.

  20. Angiotensin I-converting enzyme-inhibitory activity of the Norwegian autochthonous cheeses Gamalost and Norvegia after in vitro human gastrointestinal digestion.

    PubMed

    Qureshi, T M; Vegarud, G E; Abrahamsen, R K; Skeie, S

    2013-02-01

    The angiotensin I-converting enzyme (ACE) inhibitory activity of Gamalost cheese, its pH 4.6-soluble fraction, and Norvegia cheese was monitored before and after digestion with human gastric and duodenal juices. Both Gamalost and Norvegia cheeses showed an increased ACE-inhibitory activity during gastrointestinal digestion. However, only Norvegia showed pronounced increased activity after duodenal digestion. More peptides were detected in digested Gamalost compared with digested Norvegia. Most of the peptides in Gamalost were derived from β-casein (CN), some originated from α(s1)-CN, and only a very few originated from α(s2)-CN and κ-CN. In general, the number of peptides increased during gastrointestinal digestion, whereas some peptides were further degraded and disappeared; however, surprisingly, a few peptides remained stable. The aromatic amino acids, such as Tyr, Phe, and Trp; the positively charged amino acids (Arg and Lys); and Leu increased after simulated gastrointestinal digestion of Gamalost and Norvegia. After in vitro gastrointestinal digestion, both Gamalost and Norvegia showed high ACE-inhibitory activity, which may contribute in lowering of mild hypertension. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Application of halophilic nuclease H of Micrococcus varians subsp. halophilus to commercial production of flavoring agent 5'-GMP.

    PubMed Central

    Kamekura, M; Hamakawa, T; Onishi, H

    1982-01-01

    RNA was degraded at 60 degrees C for 24 h by halophilic nuclease H in supernatants from broth cultures of Micrococcus varians subsp. halophilus containing 12% NaCl. Since contaminating 5'-nucleotidase exhibited almost no activity under these conditions, the 5'-GMP formed could be recovered from the reaction mixture, and the yield was 805 mg from 5 g of RNA. PMID:6184020

  2. Digestion proteomics: tracking lactoferrin truncation and peptide release during simulated gastric digestion.

    PubMed

    Grosvenor, Anita J; Haigh, Brendan J; Dyer, Jolon M

    2014-11-01

    The extent to which nutritional and functional benefit is derived from proteins in food is related to its breakdown and digestion in the body after consumption. Further, detailed information about food protein truncation during digestion is critical to understanding and optimising the availability of bioactives, in controlling and limiting allergen release, and in minimising or monitoring the effects of processing and food preparation. However, tracking the complex array of products formed during the digestion of proteins is not easily accomplished using classical proteomics. We here present and develop a novel proteomic approach using isobaric labelling to mapping and tracking protein truncation and peptide release during simulated gastric digestion, using bovine lactoferrin as a model food protein. The relative abundance of related peptides was tracked throughout a digestion time course, and the effect of pasteurisation on peptide release assessed. The new approach to food digestion proteomics developed here therefore appears to be highly suitable not only for tracking the truncation and relative abundance of released peptides during gastric digestion, but also for determining the effects of protein modification on digestibility and potential bioavailability.

  3. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template.

    PubMed

    Sather, Blythe D; Romano Ibarra, Guillermo S; Sommer, Karen; Curinga, Gabrielle; Hale, Malika; Khan, Iram F; Singh, Swati; Song, Yumei; Gwiazda, Kamila; Sahni, Jaya; Jarjour, Jordan; Astrakhan, Alexander; Wagner, Thor A; Scharenberg, Andrew M; Rawlings, David J

    2015-09-30

    Genetic mutations or engineered nucleases that disrupt the HIV co-receptor CCR5 block HIV infection of CD4(+) T cells. These findings have motivated the engineering of CCR5-specific nucleases for application as HIV therapies. The efficacy of this approach relies on efficient biallelic disruption of CCR5, and the ability to efficiently target sequences that confer HIV resistance to the CCR5 locus has the potential to further improve clinical outcomes. We used RNA-based nuclease expression paired with adeno-associated virus (AAV)-mediated delivery of a CCR5-targeting donor template to achieve highly efficient targeted recombination in primary human T cells. This method consistently achieved 8 to 60% rates of homology-directed recombination into the CCR5 locus in T cells, with over 80% of cells modified with an MND-GFP expression cassette exhibiting biallelic modification. MND-GFP-modified T cells maintained a diverse repertoire and engrafted in immune-deficient mice as efficiently as unmodified cells. Using this method, we integrated sequences coding chimeric antigen receptors (CARs) into the CCR5 locus, and the resulting targeted CAR T cells exhibited antitumor or anti-HIV activity. Alternatively, we introduced the C46 HIV fusion inhibitor, generating T cell populations with high rates of biallelic CCR5 disruption paired with potential protection from HIV with CXCR4 co-receptor tropism. Finally, this protocol was applied to adult human mobilized CD34(+) cells, resulting in 15 to 20% homologous gene targeting. Our results demonstrate that high-efficiency targeted integration is feasible in primary human hematopoietic cells and highlight the potential of gene editing to engineer T cell products with myriad functional properties. Copyright © 2015, American Association for the Advancement of Science.

  4. Synergistic co-digestion of solid-organic-waste and municipal-sewage-sludge: 1 plus 1 equals more than 2 in terms of biogas production and solids reduction.

    PubMed

    Aichinger, Peter; Wadhawan, Tanush; Kuprian, Martin; Higgins, Matthew; Ebner, Christian; Fimml, Christian; Murthy, Sudhir; Wett, Bernhard

    2015-12-15

    Making good use of existing water infrastructure by adding organic wastes to anaerobic digesters improves the energy balance of a wastewater treatment plant (WWTP) substantially. This paper explores co-digestion load limits targeting a good trade-off for boosting methane production, and limiting process-drawbacks on nitrogen-return loads, cake-production, solids-viscosity and polymer demand. Bio-methane potential tests using whey as a model co-substrate showed diversification and intensification of the anaerobic digestion process resulting in a synergistical enhancement in sewage sludge methanization. Full-scale case-studies demonstrate organic co-substrate addition of up to 94% of the organic sludge load resulted in tripling of the biogas production. At organic co-substrate addition of up to 25% no significant increase in cake production and only a minor increase in ammonia release of ca. 20% have been observed. Similar impacts were measured at a high-solids digester pilot with up-stream thermal hydrolyses where the organic loading rate was increased by 25% using co-substrate. Dynamic simulations were used to validate the synergistic impact of co-substrate addition on sludge methanization, and an increase in hydrolysis rate from 1.5 d(-1) to 2.5 d(-1) was identified for simulating measured gas production rate. This study demonstrates co-digestion for maximizing synergy as a step towards energy efficiency and ultimately towards carbon neutrality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. [Role of HMGB1 in Inflammatory-mediated Injury Caused by Digestive System Diseases and Its Repair].

    PubMed

    Wang, Fucai; Xie, Yong

    2015-08-01

    High mobility group box 1 protein (HMGB1), a damage-associated molecular pattern, exists ubiquitously in the cells of mammals. It contributes to maintaining the structure of nucleosome and modulating transcription of gene in nuclei. Extracellular HMGB1 plays two-way roles in promoting inflammatory and tissue repair. Released actively as well as passively following cytokine stimulation during cell death, HMGB1 may act as a late inflammatory factor and an endogenous damage-associated molecular pattern recognized by its receptors. And it may mediate the occurrence, development and outcome of the inflammatory injury of digestive system diseases, such as gastric mucosal injury, inflammatory bowel-disease, liver injury, pancreatitis, and so on. This review mainly concerns the research progresses of HMGB1 in the inflammatory injury of digestive system diseases. At the same time, HMGB1 itself, or as a therapeutic target, can promote tissue repair.

  6. Inactivation of selected bacterial pathogens in dairy cattle manure by mesophilic anaerobic digestion (balloon type digester).

    PubMed

    Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

    2014-07-14

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%-99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days.

  7. Boosting methane generation by co-digestion of sludge with fruit and vegetable waste: Internal environment of digester and methanogenic pathway.

    PubMed

    Di Maria, Francesco; Barratta, Martino

    2015-09-01

    The effects of anaerobic co-digestion of waste-mixed sludge with fruit and vegetable waste (FVW) on the methane generation of a mesophilic digester was investigated. Organic loading rates (OLR) were 1.46kgVS/m(3)day, 2.1kgVS/m(3)day and 2.8kgVS/m(3)day. Increase in the OLR due to FVW co-digestion caused modification of the internal environment of the digester, mainly in terms of N-NH4 (mg/L). Corresponding microbial populations were investigated by metagenomic high-throughput sequencing. Maximum specific bio-methane generation of 435 NLCH4 per kgVS feed was achieved for an OLR of 2.1kgVS/m(3)day, which corresponded to a biomethane generation per kgVS removed of about 1700 NLCH4. In these conditions the methanogenic pathway was dominated by aceticlastic Methanosaeta and hydrogenotrophic/aceticlastic Methanoscarcinae. Ammonia concentration in the digester resulted a key parameter for enhancing syntrophic acetate oxidation, enabling a balanced aceticlastic and hydrogenotrophic/aceticlastic methanogenic pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Zinc finger nuclease technology: advances and obstacles in modelling and treating genetic disorders.

    PubMed

    Jabalameli, Hamid Reza; Zahednasab, Hamid; Karimi-Moghaddam, Amin; Jabalameli, Mohammad Reza

    2015-03-01

    Zinc finger nucleases (ZFNs) are engineered restriction enzymes designed to target specific DNA sequences within the genome. Assembly of zinc finger DNA-binding domain to a DNA-cleavage domain enables the enzyme machinery to target unique locus in the genome and invoke endogenous DNA repair mechanisms. This machinery offers a versatile approach in allele editing and gene therapy. Here we discuss the architecture of ZFNs and strategies for generating targeted modifications within the genome. We review advances in gene therapy and modelling of the disease using these enzymes and finally, discuss the practical obstacles in using this technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Biomethanation of Sewage Sludge with Food Waste Leachate Via Co-Digestion.

    PubMed

    Shin, Jingyeong; Kim, Young Beom; Jeon, Jong Hun; Choi, Sangki; Park, In Kyu; Kim, Young Mo

    2017-08-28

    Anaerobic mono- and co-digestion of sewage sludge and food waste leachate (FWL) were performed by assessing methane production and characterizing microbial communities. Anaerobic digestion (AD) of waste activated sludge (WAS) alone produced the lowest methane (281 ml CH 4 ), but an approximately 80% increase in methane production was achieved via co-digestion of WAS and FWL (506 ml CH 4 ). There were less differences in the diversity of bacterial communities in anaerobic digesters, while archaeal (ARC) and bacterial (BAC) amounts reflected AD performance. Compared with the total ARC and BAC amounts in the mono-digestion of WAS, the ARC and BAC amounts increased two and three times, respectively, during co-digestion of FWL and WAS. In characterized archaeal communities, the dominant ratio of hydrogenotrophic methanogens in the mono-digestion of WAS approached nearly a 1:1 ratio of the two acetoclastic and hydrogenotrophic methanogens in the co-digestion of FWL and WAS. The ARC/BAC ratio in the digesters varied in the range of 5.9% to 9.1%, indicating a positive correlation with the methane production of AD.

  10. LRH-1 and PTF1-L coregulate an exocrine pancreas-specific transcriptional network for digestive function.

    PubMed

    Holmstrom, Sam R; Deering, Tye; Swift, Galvin H; Poelwijk, Frank J; Mangelsdorf, David J; Kliewer, Steven A; MacDonald, Raymond J

    2011-08-15

    We have determined the cistrome and transcriptome for the nuclear receptor liver receptor homolog-1 (LRH-1) in exocrine pancreas. Chromatin immunoprecipitation (ChIP)-seq and RNA-seq analyses reveal that LRH-1 directly induces expression of genes encoding digestive enzymes and secretory and mitochondrial proteins. LRH-1 cooperates with the pancreas transcription factor 1-L complex (PTF1-L) in regulating exocrine pancreas-specific gene expression. Elimination of LRH-1 in adult mice reduced the concentration of several lipases and proteases in pancreatic fluid and impaired pancreatic fluid secretion in response to cholecystokinin. Thus, LRH-1 is a key regulator of the exocrine pancreas-specific transcriptional network required for the production and secretion of pancreatic fluid.

  11. Caseinophosphopeptides released after tryptic hydrolysis versus simulated gastrointestinal digestion of a casein-derived by-product.

    PubMed

    Cruz-Huerta, E; García-Nebot, M J; Miralles, B; Recio, I; Amigo, L

    2015-02-01

    The production of caseinophosphopeptides from a casein-derived by-product generated during the manufacture of a functional ingredient based on antihypertensive peptides was attempted. The casein by-product was submitted to tryptic hydrolysis for 30, 60 and 120min and further precipitated with calcium chloride and ethanol at pH 4.0, 6.0 and 8.0. Identification and semi quantification of the derived products by tandem mass spectrometry revealed some qualitative and quantitative changes in the released caseinophosphopeptides over time at the different precipitation pHs. The by-product was also subjected to simulated gastrointestinal digestion. Comparison of the resulting peptides showed large sequence homology in the phosphopeptides released by tryptic hydrolysis and simulated gastrointestinal digestion. Some regions, specifically αS1-CN 43-59, αS1-CN 60-74, β-CN 1-25 and β-CN 30-50 showed resistance to both tryptic hydrolysis and simulated digestion. The results of the present study suggest that this casein-derived by-product can be used as a source of CPPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Digestive kinetics determines bioavailability of pollutants. Final report, 1 June 1993--30 September 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jumars, P.A.; Mayer, L.M.

    1999-04-19

    The authors assayed digestive capabilities of marine deposit feeders (animals that eat sediments) by using fluorescently tagged substrates and contact-angle measurements of surfactancy. Polychaetes on average showed higher enzyme activities and surfactancy than echinoderms. They found that surfactants produced by deposit feeders substantially enhance their abilities to solubilize hydrophobic pollutants such as polycyclic aromatic hydrocarbons (PAHs). Amounts solubilized were consistent with incorporation into micelles of the surfactant. Kinetics of PAH uptake could be explained by passive diffusion. The authors also found that the digestive strategies of deposit feeders often produce concentrations of proteins (digestive enzymes plus products of protein digestion)more » that are sufficient to solubilize metals. Histidine residues in these proteins were found to be critical for copper binding.« less

  13. Adenylyl cyclases in the digestive system.

    PubMed

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2014-06-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca(2+) and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Digestive Physiological Characteristics of the Gobiidae

    PubMed Central

    Hur, Sang-Woo; Kim, Shin-Kwon; Kim, Dae-Jung; Lee, Bae-Ik; Park, Su-Jin; Hwang, Hyung-Gyu; Jun, Je-Cheon; Myeong, Jeong-In; Lee, Chi-Hoon; Lee, Young-Don

    2016-01-01

    In this study, we investigated the characteristics of CCK-producing cells and mucus-secreting goblet cells with respect to stomach fish and stomachless fish of the Gobiidae in order to provide a basis for understanding the digestive physiology. Hairychin goby (Sagamia geneionema), which is stomachless fish, the numbers of mucus-secreting goblet cells is highest in the posterior intestine portion (P<0.05), while CCK-producing cells are scattered throughout the intestine. Gluttonous goby (Chasmichthys gulosus), which is stomach fish, mucus-secreting goblet cells are most abundant in the mid intestine portion (P<0.05), whereas CCK-producing cells are observed only in the anterior and mid intestine portion. Trident goby (Tridentiger obscurus) which is stomach fish, mucus-secreting goblet cells were most abundant in the mid intestine portion (P<0.05). CCK-producing cells are found in the anterior and mid intestine portion. Giurine goby, Rhinogobius giurinus which is also stomach fish, the largest number of mucus-secreting goblet cells showed in anterior intestine portion except for esophagus (P<0.05). CCK-producing cells are present only in the anterior and mid intestine portion. In S. geneionema, digestive action occurs in the posterior intestine portion to protect and functions to activate digestion. In contrast, in C. gulosus, T. obscurus and R. giurinus, their digestive action occurs in the anterior and mid intestine portion to protect and functions to activate digestion. Further studies of the modes of food ingestion by these fish, the contents of their digestive tracts, and the staining characteristics of the goblet cells need to be carried out. PMID:27796002

  15. Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient.

    PubMed

    Kataki, Sampriti; Hazarika, Samarendra; Baruah, D C

    2017-01-01

    Alternative fertilizer resources have drawn attention in recent times in order to cope up with ever increasing demand for fertilizer. By-products of bioenergy system are considered favourable as organic fertilizer due to their ability to recycle plant nutrients. Present study evaluates fertilizer suitability of by-products of two bioenergy systems viz. 3 types of anaerobic digestion by-products (digestate) from local surplus biomass such as cowdung, Ipomoea carnea:cowdung (60:40) and ricestraw:green gram stover:cowdung (30:30:40) and one gasification by-product (biochar) from rice husk. Digestates were assessed considering 4 different application options of each viz. whole, solid, liquid and ash from solid digestates. Digestate characteristics (organic matter, macronutrients, micronutrients and heavy metal content) were found to be a function of feedstock and processing (solid liquid separation and ashing). Ipomoea carnea based digestates in all application options showed comparatively higher N, P, K, NH 4 + -N, Ca, Mg, S and micro nutrient content than other digestates. Separation concentrated plant nutrients and organic matter in solid digestates, making these suitable both as organic amendments and fertilizer. Separated liquid digestate shared larger fraction of ammonium nitrogen (61-91% of total content), indicating their suitability as readily available N source. However, fertilizer application of liquid digestate may not match crop requirements due to lower total nutrient concentration. Higher electrical conductivity of the liquid digestates (3.4-9.3mScm -1 ) than solid digestates (1.5-2mScm -1 ) may impart phyto-toxic effect upon fertilization due to salinity. In case of by-products with unstable organic fraction i.e. whole and solid digestates of rice straw:green gram stover:cowdung digestates (Humification index 0.7), further processing (stabilization, composting) may be required to maximize their fertilizer benefit. Heavy metal contents of the by

  16. Biogas by semi-continuous anaerobic digestion of food waste.

    PubMed

    Zhang, Cunsheng; Su, Haijia; Wang, Zhenbin; Tan, Tianwei; Qin, Peiyong

    2015-04-01

    The semi-continuous anaerobic digestion of food waste was investigated in 1-L and 20-L continuously stirred tank reactors (CSTRs), to identify the optimum operation condition and the methane production of the semi-continuous anaerobic process. Results from a 1-L digester indicated that the optimum organic loading rate (OLR) for semi-continuous digestion is 8 g VS/L/day. The corresponding methane yield and chemical oxygen demand (COD) reduction were 385 mL/g VS and 80.2 %, respectively. Anaerobic digestion was inhibited at high OLRs (12 and 16 g VS/L/day), due to volatile fatty acid (VFA) accumulation. Results from a 20-L digester indicated that a higher methane yield of 423 mL/g VS was obtained at this larger scale. The analysis showed that the methane production at the optimum OLR fitted well with the determined kinetics equation. An obvious decrease on the methane content was observed at the initial of digestion. The increased metabolization of microbes and the activity decrease of methanogen caused by VFA accumulation explained the lower methane content at the initial of digestion.

  17. DNA targeting specificity of RNA-guided Cas9 nucleases.

    PubMed

    Hsu, Patrick D; Scott, David A; Weinstein, Joshua A; Ran, F Ann; Konermann, Silvana; Agarwala, Vineeta; Li, Yinqing; Fine, Eli J; Wu, Xuebing; Shalem, Ophir; Cradick, Thomas J; Marraffini, Luciano A; Bao, Gang; Zhang, Feng

    2013-09-01

    The Streptococcus pyogenes Cas9 (SpCas9) nuclease can be efficiently targeted to genomic loci by means of single-guide RNAs (sgRNAs) to enable genome editing. Here, we characterize SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects. Our study evaluates >700 guide RNA variants and SpCas9-induced indel mutation levels at >100 predicted genomic off-target loci in 293T and 293FT cells. We find that SpCas9 tolerates mismatches between guide RNA and target DNA at different positions in a sequence-dependent manner, sensitive to the number, position and distribution of mismatches. We also show that SpCas9-mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification. To facilitate mammalian genome engineering applications, we provide a web-based software tool to guide the selection and validation of target sequences as well as off-target analyses.

  18. Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding.

    PubMed

    Podevin, Nancy; Davies, Howard V; Hartung, Frank; Nogué, Fabien; Casacuberta, Josep M

    2013-06-01

    Conventional plant breeding exploits existing genetic variability and introduces new variability by mutagenesis. This has proven highly successful in securing food supplies for an ever-growing human population. The use of genetically modified plants is a complementary approach but all plant breeding techniques have limitations. Here, we discuss how the recent evolution of targeted mutagenesis and DNA insertion techniques based on tailor-made site-directed nucleases (SDNs) provides opportunities to overcome such limitations. Plant breeding companies are exploiting SDNs to develop a new generation of crops with new and improved traits. Nevertheless, some technical limitations as well as significant uncertainties on the regulatory status of SDNs may challenge their use for commercial plant breeding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Anaerobic digestion and co-digestion of slaughterhouse waste (SHW): influence of heat and pressure pre-treatment in biogas yield.

    PubMed

    Cuetos, M J; Gómez, X; Otero, M; Morán, A

    2010-10-01

    Mesophilic anaerobic digestion (34+/-1 degrees C) of pre-treated (for 20 min at 133 degrees C, >3 bar) slaughterhouse waste and its co-digestion with the organic fraction of municipal solid waste (OFMSW) have been assessed. Semi-continuously-fed digesters worked with a hydraulic retention time (HRT) of 36 d and organic loading rates (OLR) of 1.2 and 2.6 kg VS(feed)/m(3)d for digestion and co-digestion, respectively, with a previous acclimatization period in all cases. It was not possible to carry out an efficient treatment of hygienized waste, even less so when OFMSW was added as co-substrate. These digesters presented volatile fatty acids (VFA), long chain fatty acids (LCFA) and fats accumulation, leading to instability and inhibition of the degradation process. The aim of applying a heat and pressure pre-treatment to promote splitting of complex lipids and nitrogen-rich waste into simpler and more biodegradable constituents and to enhance biogas production was not successful. These results indicate that the temperature and the high pressure of the pre-treatment applied favoured the formation of compounds that are refractory to anaerobic digestion. The pre-treated slaughterhouse wastes and the final products of these systems were analyzed by FTIR and TGA. These tools verified the existence of complex nitrogen-containing polymers in the final effluents, confirming the formation of refractory compounds during pre-treatment. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Consequences of dysthyroidism on the digestive tract and viscera

    PubMed Central

    Daher, Ronald; Yazbeck, Thierry; Jaoude, Joe Bou; Abboud, Bassam

    2009-01-01

    Thyroid hormones define basal metabolism throughout the body, particularly in the intestine and viscera. Gastrointestinal manifestations of dysthyroidism are numerous and involve all portions of the tract. Thyroid hormone action on motility has been widely studied, but more complex pathophysiologic mechanisms have been indicated by some studies although these are not fully understood. Both thyroid hormone excess and deficiency can have similar digestive manifestations, such as diarrhea, although the mechanism is different in each situation. The liver is the most affected organ in both hypo- and hyperthyroidism. Specific digestive diseases may be associated with autoimmune thyroid processes, such as Hashimoto’s thyroiditis and Grave’s disease. Among them, celiac sprue and primary biliary cirrhosis are the most frequent although a clear common mechanism has never been proven. Overall, thyroid-related digestive manifestations were described decades ago but studies are still needed in order to confirm old concepts or elucidate undiscovered mechanisms. All practitioners must be aware of digestive symptoms due to dysthyroidism in order to avoid misdiagnosis of rare but potentially lethal situations. PMID:19533804

  1. Anaerobic Digestion and its Applications

    EPA Science Inventory

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  2. Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2014-01-01

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. PMID:25026086

  3. PRMT1 methylates the single Argonaute of Toxoplasma gondii and is important for the recruitment of Tudor nuclease for target RNA cleavage by antisense guide RNA

    PubMed Central

    Musiyenko, Alla; Majumdar, Tanmay; Andrews, Joel; Adams, Brian; Barik, Sailen

    2013-01-01

    Summary Argonaute (Ago) plays a central role in RNA interference in metazoans, but its status in lower organisms remains ill-defined. We report on the Ago complex of the unicellular protozoan, Toxoplasma gondii (Tg), an obligatory pathogen of mammalian hosts. The PIWI-like domain of TgAgo lacked the canonical DDE/H catalytic triad, explaining its weak target RNA cleavage activity. However, TgAgo associated with a stronger RNA slicer, a Tudor staphylococcal nuclease (TSN), and with a protein Arg methyl transferase, PRMT1. Mutational analysis suggested that the N-terminal RGG-repeat domain of TgAgo was methylated by PRMT1, correlating with the recruitment of TSN. The slicer activity of TgAgo was Mg2+-dependent and required perfect complementarity between the guide RNA and the target. In contrast, the TSN activity was Ca2+-dependent and required an imperfectly paired guide RNA. Ago knockout parasites showed essentially normal growth, but in contrast, the PRMT1 knockouts grew abnormally. Chemical inhibition of Arg-methylation also had an anti-parasitic effect. These results suggest that the parasitic PRMT1 plays multiple roles, and its loss affects the recruitment of a more potent second slicer to the parasitic RNA silencing complex, the exact mechanism of which remains to be determined. PMID:22309152

  4. La fibroscopie digestive haute chez 2795 patients au centre hospitalier universitaire-campus de Lomé: les particularités selon le sexe

    PubMed Central

    Lawson-Ananissoh, Laté Mawuli; Bouglouga, Oumboma; Bagny, Aklesso; Kaaga, Laconi; Redah, Datouda

    2014-01-01

    Introduction Notre étude consistera à rapporter les indications et les lésions objectivées à la fibroscopie digestive haute et relever les particularités selon le sexe. Méthodes Étude rétrospective, descriptive sur des résultats de compte-rendu de la fibroscopie digestive haute menée en unité d'endoscopie digestive du service d'hépato-gastro-entérologie du CHU Campus de Lomé du 15 Mai 2009 au 31 Décembre 2013. Résultats La fibroscopie digestive haute a été réalisée chez 2795 patients dont 1188 hommes et 1607 femmes. L’âge moyen était de 40,65 ans (Extrêmes: 5 et 93 ans). La fibroscopie digestive haute était normale chez les femmes que chez les hommes avec une différence statistiquement significative (p = 0,000). Les principales indications étaient: les épigastralgies chez les femmes (p = 0,000); les hémorragies digestives hautes (p = 0,000) et l'hypertension portale (p = 0,000) chez les hommes; 3485 lésions pathologiques ont été observées. La pathologie inflammatoire prédominait (56,3%), la pathologie ulcéreuse (13,89%), la pathologie tumorale (2,01%). Les varices et la candidose œsophagiennes étaient significativement notées chez les hommes. Les ulcérations gastriques (p = 0,000), le reflux biliaire duodéno-gastrique (p = 0,017) étaient plus retrouvés chez les femmes et la gastropathie hypertensive beaucoup plus chez les hommes (p = 0,000). Que les lésions duodénales soient inflammatoires ou ulcéreuses associées ou non à une sténose bulbaire, elles étaient plus fréquentes chez les hommes. Conclusion De manière générale, il y avait une prédominance des lésions inflammatoires chez les femmes, les lésions tumorales et ulcéreuses chez les hommes PMID:25852805

  5. Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bach, Christian; Sherman, William; Pallis, Jani

    Zinc finger nucleases (ZFNs) are associated with cell death and apoptosis by binding at countless undesired locations. This cytotoxicity is associated with the binding ability of engineered zinc finger domains to bind dissimilar DNA sequences with high affinity. In general, binding preferences of transcription factors are associated with significant degenerated diversity and complexity which convolutes the design and engineering of precise DNA binding domains. Evolutionary success of natural zinc finger proteins, however, evinces that nature created specific evolutionary traits and strategies, such as modularity and rank-specific recognition to cope with binding complexity that are critical for creating clinical viable toolsmore » to precisely modify the human genome. Our findings indicate preservation of general modularity and significant alteration of the rank-specific binding preferences of the three-finger binding domain of transcription factor SP1 when exchanging amino acids in the 2nd finger.« less

  6. Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases

    DOE PAGES

    Bach, Christian; Sherman, William; Pallis, Jani; ...

    2014-01-01

    Zinc finger nucleases (ZFNs) are associated with cell death and apoptosis by binding at countless undesired locations. This cytotoxicity is associated with the binding ability of engineered zinc finger domains to bind dissimilar DNA sequences with high affinity. In general, binding preferences of transcription factors are associated with significant degenerated diversity and complexity which convolutes the design and engineering of precise DNA binding domains. Evolutionary success of natural zinc finger proteins, however, evinces that nature created specific evolutionary traits and strategies, such as modularity and rank-specific recognition to cope with binding complexity that are critical for creating clinical viable toolsmore » to precisely modify the human genome. Our findings indicate preservation of general modularity and significant alteration of the rank-specific binding preferences of the three-finger binding domain of transcription factor SP1 when exchanging amino acids in the 2nd finger.« less

  7. Cow, sheep and llama manure at psychrophilic anaerobic co-digestion with low cost tubular digesters in cold climate and high altitude.

    PubMed

    Martí-Herrero, J; Alvarez, R; Cespedes, R; Rojas, M R; Conde, V; Aliaga, L; Balboa, M; Danov, S

    2015-04-01

    The aim of this research is to evaluate the co-digestion of cow and llama manure combined with sheep manure, in psychrophilic conditions and real field low cost tubular digesters adapted to cold climate. Four digesters were monitored in cold climate conditions; one fed with cow manure, a second one with llama manure, the third one with co-digestion of cow-sheep manure and the fourth one was fed with llama-sheep manure. The slurry had a mean temperature of 16.6 °C, the organic load rate was 0.44 kgvs m(-3) d(-1) and the hydraulic retention time was 80 days. After one hundred days biogas production was stable, as was the methane content and the pH of the effluent. The co-digestion of cow-sheep manure results in a biogas production increase of 100% compared to the mono-digestion of cow manure, while co-digestion of llama-sheep manure results in a decrease of 50% in biogas production with respect to mono-digestion of llama manure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure.

    PubMed

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-22

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  9. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  10. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tambone, Fulvia, E-mail: fulvia.tambone@unimi.it; Terruzzi, Laura; Scaglia, Barbara

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops andmore » agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO{sub 2} kg V S{sup −1} h{sup −1}. Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS {sup 13}C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)« less

  11. Digestibility of Glyoxal-Glycated β-Casein and β-Lactoglobulin and Distribution of Peptide-Bound Advanced Glycation End Products in Gastrointestinal Digests.

    PubMed

    Zhao, Di; Li, Lin; Le, Thao T; Larsen, Lotte Bach; Su, Guoying; Liang, Yi; Li, Bing

    2017-07-19

    This work reports the influence of glyoxal (GO)-derived glycation on the gastrointestinal enzymatic hydrolysis of β-lactoglobulin and β-casein. Reduced digestibility of glycated proteins was found in both gastric and intestinal stage. Distribution of Maillard reaction products in digests with different molecular weight ranges was investigated subsequently. The colorless and brown MRPs largely presented in the digests smaller than 20 kDa. However, the resistance of fluorescent advanced glycation end products (AGEs) to enzymatic hydrolysis gradually increased during glycation, rendering fluorescent AGEs largely present in the digests larger than 20 kDa. No free N (ε)-carboxymethyllysine (CML) was detected in digests. The relative amount of CML in digests larger than 1 kDa was higher than that of Lys, demonstrating the hindrance of CML to enzymatic hydrolysis. This study highlights the resistance of GO-derived AGEs to digestive proteases via blockage of tryptic cleavage sites or steric hindrance, which is a barrier to the absorption of dietary AGEs.

  12. Anaerobic digestion of glycerol and co-digestion of glycerol and pig manure.

    PubMed

    Nuchdang, Sasikarn; Phalakornkule, Chantaraporn

    2012-06-30

    The potential of glycerol obtained from transesterification of waste cooking oil as a main carbon source for biogas production was investigated. The glycerol was highly contaminated with oils and fats and was pretreated with sulfuric acid. Using a carbon source of glucose as a control, we compared biogas production from the acid-treated glycerol in a synthetic medium and the acid-treated glycerol mixed with pig manure. The anaerobic digestion of acid-treated glycerol with supplement in a synthetic medium was found to be satisfactory at organic loading rates (OLR) between 1.3, 1.6 and 2.6 g chemical oxygen demand (COD) L(-1) d(-1). The maximum methane yield of 0.32 L at Standard temperature and pressure (STP) g(-1) COD removal was achieved at an OLR of 1.6 g COD L(-1) d(-1) and the methane content was 54% on an average. At a higher organic loading rate of 5.4 g COD L(-1) d(-1), the propionic acid to acetic acid ratio was higher than the critical threshold limit for metabolic imbalance. Anaerobic digestion of acid-treated glycerol with pig manure was also investigated at the COD ratio of 80:20 (glycerol:pig manure). The anaerobic digestion of acid-treated glycerol with pig manure was found to be satisfactory at organic loading rates between 1.3, 1.7, 2.9 and 5.0 g COD L(-1) d(-1) in terms of COD reduction (>80%) and methane content of (62% on an average). However, the biogas production rate was found to significantly decrease at the highest load. The maximum methane yield of 0.24 L STP g(-1) COD removal was achieved at an OLR of 1.3 g COD L(-1) d(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Synthetic CRISPR RNA-Cas9-guided genome editing in human cells.

    PubMed

    Rahdar, Meghdad; McMahon, Moira A; Prakash, Thazha P; Swayze, Eric E; Bennett, C Frank; Cleveland, Don W

    2015-12-22

    Genome editing with the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nuclease system is a powerful technology for manipulating genomes, including introduction of gene disruptions or corrections. Here we develop a chemically modified, 29-nucleotide synthetic CRISPR RNA (scrRNA), which in combination with unmodified transactivating crRNA (tracrRNA) is shown to functionally replace the natural guide RNA in the CRISPR-Cas9 nuclease system and to mediate efficient genome editing in human cells. Incorporation of rational chemical modifications known to protect against nuclease digestion and stabilize RNA-RNA interactions in the tracrRNA hybridization region of CRISPR RNA (crRNA) yields a scrRNA with enhanced activity compared with the unmodified crRNA and comparable gene disruption activity to the previously published single guide RNA. Taken together, these findings provide a platform for therapeutic applications, especially for nervous system disease, using successive application of cell-permeable, synthetic CRISPR RNAs to activate and then silence Cas9 nuclease activity.

  14. Amino acid sequences of peptides from a chymotryptic digest of a urea-soluble protein fraction (U.S.3) from oxidized wool

    PubMed Central

    Corfield, M. C.; Fletcher, J. C.

    1969-01-01

    1. A chymotryptic digest of the protein fraction U.S.3. from oxidized wool was separated into 51 peptide fractions by chromatography on a column of cation-exchange resin. 2. The less acidic fractions were separated into their component peptides by a combination of cation-exchange-resin chromatography, paper chromatography and paper electrophoresis. 3. The amino acid sequences of 34 of these peptides were elucidated, and those of 14 others partially determined. 4. Overlaps between the tryptic and chymotryptic peptides from fraction U.S.3 have enabled ten extended amino acid sequences to be deduced, the longest containing 20 amino acid residues. 5. The relevance of the results to the structures of the helical and non-helical regions of wool is discussed. PMID:5395876

  15. Recurrence of fecal coliforms and Salmonella species in biosolids following thermophilic anaerobic digestion.

    PubMed

    Iranpour, Reza; Cox, Huub H J

    2006-09-01

    The U.S. Environmental Protection Agency (U.S. EPA) Part 503 Biosolids Rule requires the fecal coliform (indicator) or Salmonella species (pathogen) density requirements for Class A biosolids to be met at the last point of plant control (truck-loading facility and/or farm for land application). The three Southern Californian wastewater treatment plants in this study produced biosolids by thermophilic anaerobic digestion and all met the Class A limits for both fecal coliforms and Salmonella sp. in the digester outflow biosolids. At two plants, however, a recurrence of fecal coliforms was observed in postdigestion biosolids, which caused exceedance of the Class A limit for fecal coliforms at the truck-loading facility and farm for land application. Comparison of observations at the three plants and further laboratory tests indicated that the recurrence of fecal coliforms can possibly be related to the following combination of factors: (1) incomplete destruction of fecal coliforms during thermophilic anaerobic digestion, (2) contamination of Class A biosolids with fecal coliforms from external sources during postdigestion, (3) a large drop of the postdigestion biosolids temperature to below the maximum for fecal coliform growth, (4) an unknown effect of biosolids dewatering in centrifuges. At Hyperion Treatment Plant (City of Los Angeles, California), fecal coliform recurrence could be prevented by the following: (1) complete conversion to thermophilic operation to exclude contamination by mesophilically digested biosolids and (2) insulation and electrical heat-tracing of postdigestion train for maintaining a high biosolids temperature in postdigestion.

  16. The Role of Vitamin D Stimulation of Mullerian Inhibiting Substance (MIS) in Prostate Cancer Therapy

    DTIC Science & Technology

    2008-12-01

    calcitriol for 6 hr and cross -linked by addition of 1% formaldehyde. Chromatin was prepared and digested with micrococcal nuclease for 12 min at 37...immunoprecipitates eluted with ChIP elution buffer. The cross -links were reversed by incubation at 65°C for 30 min. Proteinase K was added and incubated at 65°C...coactivator interaction and causes hereditary 1,25-dihydroxyvitamin D-resistant rickets without alopecia. Mol Endocrinol 16:2538-2546 26. Dresser DW

  17. [Effect of NaOH-treatment on dry-thermophilic anaerobic digestion of Spartina alterniflora].

    PubMed

    Chen, Guang-Yin; Zheng, Zheng; Chang, Zhi-Zhou; Ye, Xiao-Mei; Luo, Yan

    2011-07-01

    In order to improve the biotransformation rate of lignocellulosic materials, sodium hydroxide (NaOH) was widely used to pretreat lignocellulosic materials. Effect of NaOH-treatment on dry-thermophilic anaerobic digestion of Spartina alternflora was studied by batch model under the temperature of 55 degrees C +/- 1 degrees C, at the initial total solid loading (TSL) of 20%. The results indicated that biogas production was inhibited by NaOH-treatment and improved by NaOH-treatment with water washed. The cumulative biogas yield of control (CK), NaOH-treated and NaOH-treated with water washed (NaOH + water) were 268.35 mL/g, 205.76 mL/g and 299.97 mL/g, respectively. The methane content of CK and NaOH + water treatments kept stable while fluctuation of NaOH-treated treatment during anaerobic digestion process was observed. Compared with CK and NaOH + water treatments, methane content of NaOH-treated treatment was improved by 5.30%. The content of hemi-cellulose and cellulose of S. alternifora decreased while content of lignin of S. alterniflora increased after 51-day anaerobic digestion. The crystallinity of cellulose of S. alterniflora increased after NaOH-treatment which was consistent to the result of FTIR. The lignocellulosic structure was destroyed and the biodegradability of S. alterniflora was increased by NaOH pretreatment. However, the amount of Na+ was taken into the anaerobic system, besides the high Na+ content in the plant itself which inhibited the anaerobic microorganisms. Therefore, NaOH-treatment is considered to be unsuitable for the anaerobic digestion of S. alterniflora.

  18. Biomass production, anaerobic digestion, and nutrient recycling of small benthic or floating seaweeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryther, J.H.

    1982-02-01

    A number of experiments have been carried out supporting the development of a seaweed-based ocean energy farm. Beginning in 1976, forty-two species of seaweed indigenous to the coastal waters of Central Florida were screened for high biomass yields in intensive culture. Gracilaria tikvahiae achieved the highest annual yield of 34.8 g dry wt/m/sup 2/ day. Yield has been found to vary inversely with seawater exchange rate, apparently because of carbon dioxide limitation at low exchange rates. Gracilaria was anaerobically digested in 120 liter and 2 liter reactors. Gas yields in the large digesters averaged 0.4 1/g volatile solids (.24 1more » CH/sub 4//gv.s.) with a bioconversion efficiency of 48%. Studies of the suitability of digester residue as a nutrient source for growing Gracilaria have been conducted. Nitrogen recycling efficiency from harvested plant through liquid digestion residue to harvested plant approached 75%. Studies of nutrient uptake and storage by Gracilaria, Ascophyllum, and Sargassum showed that nutrient starved plants are capable of rapidly assimilating and storing inorganic nutrients which may be used later for growth when no nutrients are present in the medium. A shallow water seaweed farm was proposed which would produce methane from harvested seaweed and use digester residues as a concentrated source of nutrients for periodic fertilizations.« less

  19. Simultaneous inclusion of sorghum and cottonseed meal or millet in broiler diets: effects on performance and nutrient digestibility.

    PubMed

    Batonon-Alavo, D I; Bastianelli, D; Lescoat, P; Weber, G M; Umar Faruk, M

    2016-07-01

    Two experiments were conducted to investigate the use of sorghum, cottonseed meal and millet in broiler diets and their interaction when they are used simultaneously. In Experiment 1, a corn-soybean meal control diet was compared with eight experimental treatments based on low tannin sorghum (S30, S45 and S60), cottonseed meal (CM15, CM40) or both ingredients included in the same diet (S30/CM40, S45/CM25 and S60CM15). Results showed that BW gain was not affected by the inclusion of sorghum or cottonseed meal. However, feed intake tended to be affected by the cereal type with the highest values with sorghum-based diets. Feed conversion ratio increased (P<0.001) with sorghum-based diets compared with the control diet, whereas a combination of cottonseed meal and sorghum in the same diet did not affect the feed conversion ratio. Significant differences (P<0.001) were observed in apparent ileal digestibility (%) of protein and energy with the cottonseed meal and sorghum/cottonseed meal-based diets having lower protein and energy digestibility compared with corn-based diets. In Experiment 2, a control diet was compared with six diets in which corn was substituted at 60%, 80% or 100% by either sorghum or millet and other three diets with simultaneous inclusion of these two ingredients (S30/M30, S40/M40, S50/M50). Single or combined inclusion of sorghum and millet resulted in similar feed intake and growth performance as the control diet. Apparent ileal digestibility of protein and energy was higher with millet-based diets (P<0.001). Total tract digestibility of protein in sorghum and millet-based diets tended to decrease linearly with the increasing level of substitution. Sorghum-based diets resulted in lower total tract digestibility of fat compared with millet and sorghum/millet-based diets (P<0.001). Higher total tract digestibility of starch were obtained with the control diet and millet-based diets compared with the sorghum-based treatments. Results of the two

  20. Rapid screening for nuclear genes mutations in isolated respiratory chain complex I defects.

    PubMed

    Pagniez-Mammeri, Hélène; Lombes, Anne; Brivet, Michèle; Ogier-de Baulny, Hélène; Landrieu, Pierre; Legrand, Alain; Slama, Abdelhamid

    2009-04-01

    Complex I or reduced nicotinamide adenine dinucleotide (NADH): ubiquinone oxydoreductase deficiency is the most common cause of respiratory chain defects. Molecular bases of complex I deficiencies are rarely identified because of the dual genetic origin of this multi-enzymatic complex (nuclear DNA and mitochondrial DNA) and the lack of phenotype-genotype correlation. We used a rapid method to screen patients with isolated complex I deficiencies for nuclear genes mutations by Surveyor nuclease digestion of cDNAs. Eight complex I nuclear genes, among the most frequently mutated (NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFV1 and NDUFV2), were studied in 22 cDNA fragments spanning their coding sequences in 8 patients with a biochemically proved complex I deficiency. Single nucleotide polymorphisms and missense mutations were detected in 18.7% of the cDNA fragments by Surveyor nuclease treatment. Molecular defects were detected in 3 patients. Surveyor nuclease screening is a reliable method for genotyping nuclear complex I deficiencies, easy to interpret, and limits the number of sequence reactions. Its use will enhance the possibility of prenatal diagnosis and help us for a better understanding of complex I molecular defects.

  1. Digested disorder: Quarterly intrinsic disorder digest (April-May-June, 2013).

    PubMed

    DeForte, Shelly; Reddy, Krishna D; Uversky, Vladimir N

    2013-01-01

    The current literature on intrinsically disordered proteins is overwhelming. To keep interested readers up to speed with this literature, we continue a "Digested Disorder" project and represent a series of reader's digest type articles objectively representing the research papers and reviews on intrinsically disordered proteins. The only 2 criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the period of April, May, and June of 2013. The papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings.

  2. Impact of a multicarbohydrase containing α-galactosidase and xylanase on ileal digestible energy, crude protein digestibility, and ileal amino acid digestibility in broiler chickens.

    PubMed

    Jasek, A; Latham, R E; Mañón, A; Llamas-Moya, S; Adhikari, R; Poureslami, R; Lee, J T

    2018-06-08

    Exogenous enzymatic supplementation of poultry feeds, including α-galactosidase and xylanase, has been shown to increase metabolically available energy, although little information has been published on the impact on amino acid digestibility. An experiment was conducted to investigate a multicarbohydrase containing α-galactosidase and xylanase on amino acid digestibility, ileal digestible energy (IDE), and CP in male broiler chicks. The experiment was a 2 × 2 (diet × enzyme) factorial arrangement with 15 replicates of 8 male broilers per replicate raised for 21 d in a battery setting. The 2 dietary treatments included a positive control (PC) and a negative control (NC) diet formulated to contain 2.5% less calculated AME and digestible amino acids. Each of these diets was fed with and without enzyme. Broilers were fed a starter diet from 0-14 d (crumble) and a grower from 14-21 d (pellet). Birds were sampled on day 21 to determine ileal amino acid digestibility, IDE, and CP digestibility. Titanium dioxide (TiO2) was used as an indigestible marker for the determination of digestibility coefficients. Total ileal amino acid digestibility was increased (P = 0.008) by 3.80% with the inclusion of enzyme. Methionine and lysine digestibility was improved (P < 0.05) with the inclusion of enzyme by 3.37% and 2.61%, respectively. Enzyme inclusion increased (P = 0.001) cysteine digestibility by 9.3%. Diet-influenced ileal amino acid digestibility with tryptophan, threonine, isoleucine, and valine digestibility being increased (P < 0.05) in the PC when compared to the NC. IDE was decreased (P = 0.037) in broilers fed the NC diet by 100 kcal/kg feed when compared to broilers fed the PC diet. Enzyme inclusion increased (P = 0.047) IDE value by 90 kcal/kg. Crude protein digestibility was not influenced by diet; however, similar improvements in CP digestibility with enzyme inclusion were observed as with energy. These data support the benefits of a multicarbohydrase containing

  3. Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment.

    PubMed

    Xu, Jie; Zhao, Yongjun; Zhao, Guohua; Zhang, Hui

    2015-08-01

    An integrated approach that combined freshwater microalgae Scenedesmus obliquus (FACHB-31) cultivation with piggery anaerobic digestate liquid treatment was investigated in this study. The characteristics of algal growth, biogas production, and nutrient removal were examined using photobioreactor bags (PBRbs) to cultivate S. obliquus (FACHB-31) in digestate with various digestate dilutions (the concentration levels of 3200, 2200, 1600, 1200, 800, and 400 mg L(-1) chemical oxygen demand (COD)) during 7-day period. The effects of the level of pollutants on nutrient removal efficiency and CO2 removal process were investigated to select the optimum system for effectively upgrade biogas and simultaneously reduce the nutrient content in digestate. The treatment performance displayed that average removal rates of COD, total nitrogen (TN), total phosphorous (TP), and CO2 were 61.58-75.29, 58.39-74.63, 70.09-88.79, and 54.26-73.81 %, respectively. All the strains grew well under any the dilution treatments. With increased initial nutrient concentration to a certain range, the CO4 content (v/v) of raw biogas increased. Differences in the biogas enrichment of S. obliquus (FACHB-31) in all treatments mainly resulted from variations in biomass productivity and CO2 uptake. Notably, the diluted digestate sample of 1600 mg L(-1) COD provided an optimal nutrient concentration for S. obliquus (FACHB-31) cultivation, where the advantageous nutrient and CO2 removals, as well as the highest productivities of biomass and biogas upgrading, were revealed. Results showed that microalgal biomass production offered real opportunities to address issues such as CO2 sequestration, wastewater treatment, and biogas production.

  4. alpha-DNA II. Synthesis of unnatural alpha-anomeric oligodeoxyribonucleotides containing the four usual bases and study of their substrate activities for nucleases.

    PubMed Central

    Morvan, F; Rayner, B; Imbach, J L; Thenet, S; Bertrand, J R; Paoletti, J; Malvy, C; Paoletti, C

    1987-01-01

    This paper describes for the first time the synthesis of alpha-oligonucleotides containing the four usual bases. Two unnatural hexadeoxyribonucleotides: alpha-[d(CpApTpGpCpG)] and alpha-[d(CpGpCpApTpG)], consisting only of alpha-anomeric nucleotide units, were obtained by an improved phosphotriester method, in solution. Starting material was the four base-protected alpha-deoxyribonucleosides 3a-d. Pyrimidine alpha-deoxynucleosides 3a and 3b were prepared by self-anomerization reactions followed by selective deprotection of sugar hydroxyles, while the two purine alpha-deoxynucleosides 3c and 3d were prepared by glycosylation reactions. In the case of guanine alpha-nucleoside derivative a supplementary base-protecting group: N,N-diphenylcarbamoyl was introduced on O6-position in order to avoid side-reactions during oligonucleotide assembling. The hexadeoxynucleotide alpha-[d(CpApTpGpCpG)] was tested as substrate of selected endo- and exonucleases. In conditions where the natural corresponding beta-hexamer was completely degradated by nuclease S1 and calf spleen phosphodiesterase, the alpha-oligonucleotide remained almost intact. PMID:3575096

  5. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron.

    PubMed

    Feng, Yinghong; Zhang, Yaobin; Quan, Xie; Chen, Suo

    2014-04-01

    Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. [Current concepts of digestion and absorption of carbohydrates].

    PubMed

    Luz, S dos S; de Campos, P L; Ribeiro, S M; Tirapegui, J

    1997-01-01

    The aim of this paper is to review recent aspects of digestion and absorption of carbohydrates that are the main source of energy in human diets. Recent researches have found that starch is not largely hydrolysed and absorbed in the small bowel but one part of it is resistant to digestion. Several food factors may be responsible for digestion and absorption velocity and totality of carbohydrates. Therefore, carbohydrate classification must be based not only on molecular size to express the real carbohydrates utilization as an energy source by humans. In agreement with molecular size of carbohydrate, its classification can be: a) monosaccharides; b) disaccharides; c) oligosaccharides; d) polysaccharides. In agreement with carbohydrate digestibility or availability, its classification can be: a) digestible carbohydrates; b) undigestable carbohydrates (NSP). Carbohydrate digestibility can be altered by several factors like: Intrinsic factors: a) physical structure; b) molecular physical distribution; c) physical state of food; d) food antinutrients. Extrinsics factors: a) chewing; b) transit time of food; c) amount of starch present; d) diet antinutrients. Under influence of this factors, process of digestion happen by enzymatic activity a long the gastrointestinal tract. Salivary and pancreatic amylase; glycosidases of the duodenal enterocyte brush border (lactase, sacarase and maltase), whose activity happen by close interaction of digestive breakdown with transport. The summarized pathways of the absorptive process: 1. movement from the bulk phase of the lumenal or mucosal fluid to enterocyte surface; 2. movement across the brush border membrane through specific transporters: a) SGLT1; b) GLUT 5; c) passive diffusion. 3. movement across the basolateral membrane by the GLUT 2.

  7. The effect of fermented cocoa pod (Theobroma cacao) husk supplemented with mineral on in vitro digestibility, rumen bacteria population and rumen liquid characteristics

    NASA Astrophysics Data System (ADS)

    Nurhaita; Definiati, N.; Santoso, U.; Akbar, S. A.; Henuk, Y. L.

    2018-02-01

    This study aimed to determine the effect of mineral supplementation, such as S, P and Zn on the nutrients digestibility of fermented cocoa pod husk, the population of rumen bacteria and rumen liquid characteristics in vitro. The study used a randomized block design with 5 treatments and 4 replicates. The treatments tested were: T0 = without minerals; T1 = 0.2% S mineral; T2 = 0.27% P mineral; T3 = S and P; and T4 = S, P and Zn at 50 ppm. Parameters measured were: (1) digestibility of dry matter and organic matter; (2) rumen bacterial and cellulolytic bacterial populations; (3) characteristics of rumen liquid in vitro. The results of the study showed that mineral supplementation significantly (P <0.05) improved dry matter and organic matter digestibility. Mineral supplementation had no effect on the total population of rumen bacteria and cellulolytic rumen bacterial populations. The characteristics of rumen liquid such pH, VFA and NH3 were in optimal condition. In conclusion supplementation of S, P and Zn simultaneously gave the best results to improve the digestibility of dry matter and organic matter and to maintain rumen liquid characteristics under optimal conditions for growth and microbial activity

  8. Influence of peanut matrix on stability of allergens in gastric-simulated digesta: 2S albumins are main contributors to the IgE reactivity of short digestion-resistant peptides.

    PubMed

    Prodic, I; Stanic-Vucinic, D; Apostolovic, D; Mihailovic, J; Radibratovic, M; Radosavljevic, J; Burazer, L; Milcic, M; Smiljanic, K; van Hage, M; Cirkovic Velickovic, T

    2018-06-01

    Most food allergens sensitizing via the gastrointestinal tract are stable proteins that are resistant to pepsin digestion, in particular major peanut allergens, Ara h 2 and Ara h 6. Survival of their large fragments is essential for sensitizing capacity. However, the immunoreactive proteins/peptides to which the immune system of the gastrointestinal tract is exposed during digestion of peanut proteins are unknown. Particularly, the IgE reactivity of short digestion-resistant peptides (SDRPs; <10 kDa) released by gastric digestion under standardized and physiologically relevant in vitro conditions has not been investigated. The aim of this study was to investigate and identify digestion products of major peanut allergens and in particular to examine IgE reactivity of SDRPs released by pepsin digestion of whole peanut grains. Two-dimensional gel-based proteomics and shotgun peptidomics, immunoblotting with allergen-specific antibodies from peanut-sensitized patients, enzyme-linked immunosorbent inhibition assay and ImmunoCAP tests, including far ultraviolet-circular dichroism spectroscopy were used to identify and characterize peanut digesta. Ara h 2 and Ara h 6 remained mostly intact, and SDRPs from Ara h 2 were more potent in inhibiting IgE binding than Ara h 1 and Ara 3. Ara h 1 and Ara h 3 exhibited sequential digestion into a series of digestion-resistant peptides with preserved allergenic capacity. A high number of identified SDRPs from Ara h 1, Ara h 2 and Ara h 3 were part of short continuous epitope sequences and possessed substantial allergenic potential. Peanut grain digestion by oral and gastric phase enzymes generates mixture of products, where the major peanut allergens remain intact and their digested peptides have preserved allergenic capacity highlighting their important roles in allergic reactions to peanut. © 2018 John Wiley & Sons Ltd.

  9. Enhancement of methane production from co-digestion of chicken manure with agricultural wastes.

    PubMed

    Abouelenien, Fatma; Namba, Yuzaburo; Kosseva, Maria R; Nishio, Naomichi; Nakashimada, Yutaka

    2014-05-01

    The potential for methane production from semi-solid chicken manure (CM) and mixture of agricultural wastes (AWS) in a co-digestion process has been experimentally evaluated at thermophilic and mesophilic temperatures. To the best of author(')s knowledge, it is the first time that CM is co-digested with mixture of AWS consisting of coconut waste, cassava waste, and coffee grounds. Two types of anaerobic digestion processes (AD process) were used, process 1 (P1) using fresh CM (FCM) and process 2 (P2) using treated CM (TCM), ammonia stripped CM, were conducted. Methane production in P1 was increased by 93% and 50% compared to control (no AWS added) with maximum methane production of 502 and 506 mL g(-1)VS obtained at 55°C and 35°C, respectively. Additionally, 42% increase in methane production was observed with maximum volume of 695 mL g(-1)VS comparing P2 test with P2 control under 55°C. Ammonia accumulation was reduced by 39% and 32% in P1 and P2 tests. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. [Anaerobic digestion of animal manure contaminated by tetracyclines].

    PubMed

    Tong, Zi-Lin; Liu, Yuan-Lu; Hu, Zhen-Hu; Yuan, Shou-Jun

    2012-03-01

    Anaerobic digestion of pig manure spiked with tetracycline (TC) and chlortetracycline (CTC) and the degradation of the two antibiotics during the anaerobic digestion at 35 degrees C were investigated. The results indicate that propionate was the main volatile fatty acid produced during the anaerobic digestion followed by acetate. Compared with the CTC addition, TC + CTC addition showed obvious inhibitory effect on the hydrolysis and acidification of easily digestible organic components of pig manure. The cumulative methane production of TC, CTC, TC + CTC and CK2 during anaerobic digestion was 386.4 mL, 406.0 mL, 412.1 mL and 464.6 mL, respectively. Degradation of TC and CTC followed the first-order kinetic equation. The half-life of TC and CTC was 14-18 days and 10 days, respectively. After the treatment of 45-day anaerobic digestion, the degradation efficiency of TC was 88.6%-91.6% with 97.7%-98.2% of CTC. Therefore, anaerobic digestion shows the benefit on the management of animal manures contaminated by tetracyclines.

  11. Mechanised flow system for on-line microwave digestion of food samples with off-line catalytic spectrophotometric determination of cobalt at ng l-1 levels.

    PubMed

    Pereira-Filho, E R; Arruda, M A

    1999-12-01

    A mechanised system for on-line slurry food sample digestion was developed and an off-line cobalt determination was performed. The stabilised slurry sample was introduced into an air carrier stream until reaching the digestion coils located inside a household microwave oven. Software written in Visual Basic 3.0 was developed to permit the transport of the slurry samples and the programming of the microwave oven and also the control of the mineralization valve. The proposed system was optimized for determination of cobalt in certified samples such as mussels, bovine liver and fish and also uncertified fish samples. The digestion parameters were established as 3 mol l-1 HNO3 for mussels, 3 mol l-1 HNO3 plus 0.16% v/v H2O2 for bovine liver and 12 mol l-1 HNO3 for fish employing maximum power for 5 min of microwave actuation. In the subsequent spectrophotometric method for the catalytic determination of cobalt, the Tiron and hydrogen peroxide concentrations were 1.8 x 10(-3) and 3.0 x 10(-4) mol l-1, respectively, and the sample residence time was 300 s as determined by an optimisation process. The proposed method features a linear range from 10 to 200 ng l-1 Co (r > 0.996) with detection and quantification limits of 1.7 and 5.5 ng l-1 Co, respectively. The precision, expressed as RSD, was 2.4% (n = 12) for repeatability and 5.2% (n = 10) for reproducibility and the accuracy of the proposed method was assessed by using certified samples and an alternative technique (ETAAS).

  12. Thermophilic anaerobic co-digestion of garbage, screened swine and dairy cattle manure.

    PubMed

    Liu, Kai; Tang, Yue-Qin; Matsui, Toru; Morimura, Shigeru; Wu, Xiao-Lei; Kida, Kenji

    2009-01-01

    Methane fermentation characteristics of garbage, swine manure (SM), dairy cattle manure (DCM) and mixtures of these wastes were studied. SM and DCM showed much lower volatile total solid (VTS) digestion efficiencies and methane yield than those of garbage. VTS digestion efficiency of SM was significantly increased when it was co-digested with garbage (Garbage: SM=1:1). Co-digestion of garbage, SM and DCM with respect to the relative quantity of each waste discharged in the Kikuchi (1: 16: 27) and Aso (1: 19: 12) areas indicated that co-digestion with garbage would improve the digestion characteristic of SM and DCM as far as the ratio of DCM in the wastes was maintained below a certain level. When the mixed waste (Garbage: SM: DCM=1:19:12) was treated using a thermophilic UAF reactor, methanogens responsible for the methane production were Methanoculleus and Methanosarcina species. Bacterial species in the phylum Firmicutes were dominant bacteria responsible for the digestion of these wastes. As the percentage of garbage in the mixed wastes used in this study was low (2-3%) and the digestion efficiency of DCM was obviously improved, the co-digestion of SM and DCM with limited garbage was a prospective method to treat the livestock waste effectively and was an attractive alternative technology for the construction of a sustainable environment and society in stock raising area.

  13. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification.

    PubMed

    Li, Lixin; Piatek, Marek J; Atef, Ahmed; Piatek, Agnieszka; Wibowo, Anjar; Fang, Xiaoyun; Sabir, J S M; Zhu, Jian-Kang; Mahfouz, Magdy M

    2012-03-01

    Transcription activator-like effectors (TALEs) can be used as DNA-targeting modules by engineering their repeat domains to dictate user-selected sequence specificity. TALEs have been shown to function as site-specific transcriptional activators in a variety of cell types and organisms. TALE nucleases (TALENs), generated by fusing the FokI cleavage domain to TALE, have been used to create genomic double-strand breaks. The identity of the TALE repeat variable di-residues, their number, and their order dictate the DNA sequence specificity. Because TALE repeats are nearly identical, their assembly by cloning or even by synthesis is challenging and time consuming. Here, we report the development and use of a rapid and straightforward approach for the construction of designer TALE (dTALE) activators and nucleases with user-selected DNA target specificity. Using our plasmid set of 100 repeat modules, researchers can assemble repeat domains for any 14-nucleotide target sequence in one sequential restriction-ligation cloning step and in only 24 h. We generated several custom dTALEs and dTALENs with new target sequence specificities and validated their function by transient expression in tobacco leaves and in vitro DNA cleavage assays, respectively. Moreover, we developed a web tool, called idTALE, to facilitate the design of dTALENs and the identification of their genomic targets and potential off-targets in the genomes of several model species. Our dTALE repeat assembly approach along with the web tool idTALE will expedite genome-engineering applications in a variety of cell types and organisms including plants.

  14. [Occupational digestive diseases in chemical industry workers of West Siberia].

    PubMed

    Pomytkina, T E; Pershin, A N

    2010-01-01

    The high incidence of chronic digestive diseases is recorded in chemical industry workers exposed to the isolated action of noxious substances. The aim of the investigation was to make a hygienic assessment of the risk for occupational digestive diseases in chemical industry workers exposed to a combination of noxious drugs. The working conditions and the prevalence of digestive diseases were studied in 4120 workers engaged in chemical and auxiliary processes. Under the isolated action of noxious substances, the workers had an average of 35% increase in the incidence of digestive diseases than unexposed ones (p < 0.05). Under the combined action of hazardous substances, the incidence of digestive diseases was 1.7-fold greater (p < 0.05) than in the unexposed subjects and 1.2-fold greater in those under isolated action. The odd ratio and relative risk for digestive diseases in the workers exposed to a combination of noxious substances were 4.0-11.1 and 3.5-10.7 times higher, respectively (p < 0.05) than in the unexposed subjects.

  15. [Construction of eukaryotic recombinant vector and expression in COS7 cell of LipL32-HlyX fusion gene from Leptospira serovar Lai].

    PubMed

    Huang, Bi; Bao, Lang; Zhong, Qi; Zhang, Huidong; Zhang, Ying

    2009-04-01

    This study was conducted to construct eukaryotic recombinant vector of LipL32-HlyX fusion gene from Leptospira serovar Lai and express it in mammalian cell. Both of LipL32 gene and HlyX gene were amplified from Leptospira strain O17 genomic DNA by PCR. Then with the two genes as template, LipL32-HlyX fusion gene was obtained by SOE PCR (gene splicing by overlap extension PCR). The fusion gene was then cloned into pcDNA3.1 by restriction nuclease digestion. Having been transformed into E. coli DH5alpha, the recombiant plasmid was identified by restriction nuclease digestion, PCR analysis and sequencing. The recombinant plasmid was then transfected into COS7 cell whose expression was detected by RT-PCR and Western blotting analysis. RT-PCR amplified a fragment about 2000 bp and Western blotting analysis found a specific band about 75 KD which was consistent with the expected fusion protein size. In conclusion, the successful construction of eukaryotic recombinant vector containing LipL32-HlyX fusion gene and the effective expression in mammalian have laid a foundation for the application of Leptospira DNA vaccine.

  16. Digested disorder: Quarterly intrinsic disorder digest (July-August-September, 2013).

    PubMed

    Reddy, Krishna D; DeForte, Shelly; Uversky, Vladimir N

    2014-01-01

    The current literature on intrinsically disordered proteins grows fast. To keep interested readers up to speed with this literature, we continue a "Digested Disorder" project and represent a new issue of reader's digest of the research papers and reviews on intrinsically disordered proteins. The only 2 criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the third quarter of 2013; i.e., during the period of June, July, and September of 2013. Similar to previous issues, the papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings.

  17. Innate Immune Dysfunctions in Aged Mice Facilitate the Systemic Dissemination of Methicillin-Resistant S. aureus

    PubMed Central

    Tseng, Ching Wen; Kyme, Pierre A.; Arruda, Andrea; Ramanujan, V. Krishnan; Tawackoli, Wafa; Liu, George Y.

    2012-01-01

    Elderly humans show increased susceptibility to invasive staphylococcal disease after skin and soft tissue infection. However, it is not understood how host immunity changes with aging, and how that predisposes to invasive disease. In a model of severe skin infection, we showed that aged mice (16- to 20-month-old) exhibit dramatic bacterial dissemination compared with young adult mice (2-month-old). Bacterial dissemination was associated with significant reductions of CXCL1 (KC), polymorphonuclear cells (PMNs), and extracellular DNA traps (NETs) at the infection site. PMNs and primary skin fibroblasts isolated from aged mice showed decreased secretion of CXCL2 (MIP-2) and KC in response to MRSA, and in vitro analyses of mitochondrial functions revealed that the mitochondrial electron transport chain complex I plays a significant role in induction of chemokines in the cells isolated from young but not old mice. Additionally, PMNs isolated from aged mice have reduced ability to form NETs and to kill MRSA. Expression of nuclease by S. aureus led to increased bacterial systemic dissemination in young but not old mice, suggesting that defective NETs formation in elderly mice permitted nuclease and non-nuclease expressing S. aureus to disseminate equally well. Overall, these findings suggest that gross impairment of both skin barrier function and innate immunity contributes to the propensity for MRSA to disseminate in aged mice. Furthermore, the study indicates that contribution of bacterial factors to pathogenicity may vary with host age. PMID:22844481

  18. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    PubMed Central

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-01-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure. PMID:27444518

  19. Inhibition of aac(6′)-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria

    PubMed Central

    Soler Bistué, Alfonso J. C.; Martín, Fernando A.; Vozza, Nicolás; Ha, Hongphuc; Joaquín, Jonathan C.; Zorreguieta, Angeles; Tolmasky, Marcelo E.

    2009-01-01

    Inhibition of bacterial gene expression by RNase P-directed cleavage is a promising strategy for the development of antibiotics and pharmacological agents that prevent expression of antibiotic resistance. The rise in multiresistant bacteria harboring AAC(6′)-Ib has seriously limited the effectiveness of amikacin and other aminoglycosides. We have recently shown that recombinant plasmids coding for external guide sequences (EGS), short antisense oligoribonucleotides (ORN) that elicit RNase P-mediated cleavage of a target mRNA, induce inhibition of expression of aac(6′)-Ib and concomitantly induce a significant decrease in the levels of resistance to amikacin. However, since ORN are rapidly degraded by nucleases, development of a viable RNase P-based antisense technology requires the design of nuclease-resistant RNA analog EGSs. We have assayed a variety of ORN analogs of which selected LNA/DNA co-oligomers elicited RNase P-mediated cleavage of mRNA in vitro. Although we found an ideal configuration of LNA/DNA residues, there seems not to be a correlation between number of LNA substitutions and level of activity. Exogenous administration of as low as 50 nM of an LNA/DNA co-oligomer to the hyperpermeable E. coli AS19 harboring the aac(6′)-Ib inhibited growth in the presence of amikacin. Our experiments strongly suggest an RNase P-mediated mechanism in the observed antisense effect. PMID:19666539

  20. The effects of food components on the digestion of DNA by pepsin.

    PubMed

    Zhang, Yanfang; Wang, Xingyu; Pan, Xiaoming; Liu, Yu; Wang, Hanqing; Dong, Ping; Liang, Xingguo

    2016-11-01

    Recently, our study found that naked nucleic acids (NAs) can be digested by pepsin. To better understand the fate of dietary DNA in the digestive tract, in this study we investigated the effects of several food compositions on its digestion. The results showed that protein inhibited the digestion of DNA when the protein:DNA ratio was higher than 80:1 (m/m). DNA found in nucleoprotein (NA), which more closely resembles the state of DNA in food, was as efficiently digested as naked DNA. When the carbohydrate:DNA ratio was 50:1-140:1 (m/m), mono-, di- and polysaccharides did not inhibit DNA digestion. NaCl exhibited an inhibitory effect at 300 mM, whereas divalent cations (Ca(2+ )and Mg(2+)) exerted a much stronger inhibitory effect even at 50 mM. The polycation compounds (e.g. chitosan and spermine) showed a significant inhibitory effect at N/P (NH3(+)/PO4(-)) = 10:1. The close relationship between food composition and DNA digestion suggests that dietary habits and food complexes are important for understanding the in vivo fate of the ingested DNA in the digestive tract.

  1. Commercialism in Schools. ERIC Digest.

    ERIC Educational Resources Information Center

    Larson, Kirstin

    Businesses are increasingly making inroads into the classroom, particularly in underfunded schools. The dramatic rise in commercial activities in schools has sparked intense public debate, triggering a U.S. General Accounting Office (GAO) report and various regulatory attempts at district, state, and federal levels. This digest offers an overview…

  2. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties.

    PubMed

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-01

    The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO2 kg V S(-1)h(-1). Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS (13)C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Biogas from mesophilic anaerobic digestion of cow dung using gelatin as additive

    NASA Astrophysics Data System (ADS)

    Salam, Bodius; Rahman, Md Mizanur; Sikder, Md Asif R.; Islam, Majedul

    2017-06-01

    A research work was conducted to investigate the enhanced production ability of biogas from mesophilic anaerobic digestions of cow dung (CD) using gelatin as additive. Five laboratory scale digesters were constructed to digest cow dung, where one set up was used for digestion of cow dung without additive and the other set up were used for digestion with additive. Gelatin additive was added in the slurry of amount 0.29, 0,57, 0.85 and 1.14% (wt.). The digesters were made of glass conical flask of 1-liter capacity each. Cow dung was used 335 gm and water was used 365 gm in each experiment. In the slurry, total solid content was maintained 8% (wt.) for all the observations. The digesters were fed on batch basis. The digesters were operated at ambient temperatures of 26 - 35°C. The total gas yield was obtained about 14.4 L/kg CD for digestion without additive and about 65% more biogas for digestion with 0.29% gelatin additive. The retention time for digestion without additive was 38 days and with additive retention time varied between 24 and 52 days.

  4. Plasmonic Thermal Decomposition/Digestion of Proteins: A Rapid On-Surface Protein Digestion Technique for Mass Spectrometry Imaging.

    PubMed

    Zhou, Rong; Basile, Franco

    2017-09-05

    A method based on plasmon surface resonance absorption and heating was developed to perform a rapid on-surface protein thermal decomposition and digestion suitable for imaging mass spectrometry (MS) and/or profiling. This photothermal process or plasmonic thermal decomposition/digestion (plasmonic-TDD) method incorporates a continuous wave (CW) laser excitation and gold nanoparticles (Au-NPs) to induce known thermal decomposition reactions that cleave peptides and proteins specifically at the C-terminus of aspartic acid and at the N-terminus of cysteine. These thermal decomposition reactions are induced by heating a solid protein sample to temperatures between 200 and 270 °C for a short period of time (10-50 s per 200 μm segment) and are reagentless and solventless, and thus are devoid of sample product delocalization. In the plasmonic-TDD setup the sample is coated with Au-NPs and irradiated with 532 nm laser radiation to induce thermoplasmonic heating and bring about site-specific thermal decomposition on solid peptide/protein samples. In this manner the Au-NPs act as nanoheaters that result in a highly localized thermal decomposition and digestion of the protein sample that is independent of the absorption properties of the protein, making the method universally applicable to all types of proteinaceous samples (e.g., tissues or protein arrays). Several experimental variables were optimized to maximize product yield, and they include heating time, laser intensity, size of Au-NPs, and surface coverage of Au-NPs. Using optimized parameters, proof-of-principle experiments confirmed the ability of the plasmonic-TDD method to induce both C-cleavage and D-cleavage on several peptide standards and the protein lysozyme by detecting their thermal decomposition products with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The high spatial specificity of the plasmonic-TDD method was demonstrated by using a mask to digest designated sections of

  5. Anaerobic digestion and digestate use: accounting of greenhouse gases and global warming contribution.

    PubMed

    Møller, Jacob; Boldrin, Alessio; Christensen, Thomas H

    2009-11-01

    Anaerobic digestion (AD) of source-separated municipal solid waste (MSW) and use of the digestate is presented from a global warming (GW) point of view by providing ranges of greenhouse gas (GHG) emissions that are useful for calculation of global warming factors (GWFs), i.e. the contribution to GW measured in CO(2)-equivalents per tonne of wet waste. The GHG accounting was done by distinguishing between direct contributions at the AD facility and indirect upstream or downstream contributions. GHG accounting for a generic AD facility with either biogas utilization at the facility or upgrading of the gas for vehicle fuel resulted in a GWF from -375 (a saving) to 111 (a load) kg CO(2)-eq. tonne(-1) wet waste. In both cases the digestate was used for fertilizer substitution. This large range was a result of the variation found for a number of key parameters: energy substitution by biogas, N(2)O-emission from digestate in soil, fugitive emission of CH( 4), unburned CH(4), carbon bound in soil and fertilizer substitution. GWF for a specific type of AD facility was in the range -95 to -4 kg CO(2)-eq. tonne(-1) wet waste. The ranges of uncertainty, especially of fugitive losses of CH(4) and carbon sequestration highly influenced the result. In comparison with the few published GWFs for AD, the range of our data was much larger demonstrating the need to use a consistent and robust approach to GHG accounting and simultaneously accept that some key parameters are highly uncertain.

  6. Digestive Physiology of Octopus maya and O. mimus: Temporality of Digestion and Assimilation Processes

    PubMed Central

    Gallardo, Pedro; Olivares, Alberto; Martínez-Yáñez, Rosario; Caamal-Monsreal, Claudia; Domingues, Pedro M.; Mascaró, Maite; Sánchez, Ariadna; Pascual, Cristina; Rosas, Carlos

    2017-01-01

    Digestive physiology is one of the bottlenecks of octopus aquaculture. Although, there are successful experimentally formulated feeds, knowledge of the digestive physiology of cephalopods is fragmented, and focused mainly on Octopus vulgaris. Considering that the digestive physiology could vary in tropical and sub-tropical species through temperature modulations of the digestive dynamics and nutritional requirements of different organisms, the present review was focused on the digestive physiology timing of Octopus maya and Octopus mimus, two promising aquaculture species living in tropical (22–30°C) and sub-tropical (15–24°C) ecosystems, respectively. We provide a detailed description of how soluble and complex nutrients are digested, absorbed, and assimilated in these species, describing the digestive process and providing insight into how the environment can modulate the digestion and final use of nutrients for these and presumably other octopus species. To date, research on these octopus species has demonstrated that soluble protein and other nutrients flow through the digestive tract to the digestive gland in a similar manner in both species. However, differences in the use of nutrients were noted: in O. mimus, lipids were mobilized faster than protein, while in O. maya, the inverse process was observed, suggesting that lipid mobilization in species that live in relatively colder environments occurs differently to those in tropical ecosystems. Those differences are related to the particular adaptations of animals to their habitat, and indicate that this knowledge is important when formulating feed for octopus species. PMID:28620313

  7. [Anaerobic co-digestion of corn stalk and vermicompost].

    PubMed

    Chen, Guang-yin; Zheng, Zheng; Zou, Xing-xing; Fang, Cai-xia; Luo, Yan

    2010-02-01

    The characteristics of corn stalk digested alone at different total solid (TS) loading rates and co-digestion of various proportions of corn stalk and vermicompost were investigated by batch model at 35 degrees C +/- 1 degrees C. The organic loading rates (OLRs) studied were in the range of 1.2%-6.0% TS and increasing proportions of vermicompost from 20% to 80% TS. A maximum methane yield of corn stalk digested alone was 217.60 mL/g obtained at the TS loading rate of 4.8%. However, when the TS loading rate was 6.0%, the anaerobic system was acidified and the lowest pH value was 5.10 obtained on day 4 and the biogas productivity decreased. Furthermore, co-digestion of vermicompost and corn stalk in varying proportions were investigated at constant of 6.0% TS. Co-digestion with vermicompost improved the biodegradability of corn stalk and the methane yield was improved by 4.42%-58.61%, and led to higher pH values, higher volatile fatty acids (VFAs) concentration and lower alkalinity content compared with corn stalk digested alone. The maximum biogas yield and methane yield of 410.30 mL/g and 259. 35 mL/g were obtained for 40% vermicompost and 60% corn stalk respectively. Compared with corn stalk digested alone, co-digested with vermicompost didn' t affect methane content and the fermentation type, but promoted the destruction of crystalline of cellulose and the highest destruction rate was 29.36% for 40% vermicompost and 60% corn stalk. Therefore, adding vermicompost was beneficial for the decomposition and increasing the biotransformation rate of corn stalk.

  8. In vitro digestion of purified β-casein variants A(1), A(2), B, and I: effects on antioxidant and angiotensin-converting enzyme inhibitory capacity.

    PubMed

    Petrat-Melin, B; Andersen, P; Rasmussen, J T; Poulsen, N A; Larsen, L B; Young, J F

    2015-01-01

    Genetic polymorphisms of bovine milk proteins affect the protein profile of the milk and, hence, certain technological properties, such as casein (CN) number and cheese yield. However, reports show that such polymorphisms may also affect the health-related properties of milk. Therefore, to gain insight into their digestion pattern and bioactive potential, β-CN was purified from bovine milk originating from cows homozygous for the variants A(1), A(2), B, and I by a combination of cold storage, ultracentrifugation, and acid precipitation. The purity of the isolated β-CN was determined by HPLC, variants were verified by mass spectrometry, and molar extinction coefficients at λ=280nm were determined. β-Casein from each of the variants was subjected to in vitro digestion using pepsin and pancreatic enzymes. Antioxidant and angiotensin-converting enzyme (ACE) inhibitory capacities of the hydrolysates were assessed at 3 stages of digestion and related to that of the undigested samples. Neither molar extinction coefficients nor overall digestibility varied significantly between these 4 variants; however, clear differences in digestion pattern were indicated by gel electrophoresis. In particular, after 60min of pepsin followed by 5min of pancreatic enzyme digestion, one ≈4kDa peptide with the N-terminal sequence (106)H-K-E-M-P-F-P-K- was absent from β-CN variant B. This is likely a result of the (122)Ser to (122)Arg substitution in variant B introducing a novel trypsin cleavage site, leading to the changed digestion pattern. All investigated β-CN variants exhibited a significant increase in antioxidant capacity upon digestion, as measured by the Trolox-equivalent antioxidant capacity assay. After 60min of pepsin + 120min of pancreatic enzyme digestion, the accumulated increase in antioxidant capacity was ≈1.7-fold for the 4 β-CN variants. The ACE inhibitory capacity was also significantly increased by digestion, with the B variant reaching the highest inhibitory

  9. Stabilization of waste-activated sludge through the anoxic-aerobic digestion process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, S.; Fujita, M.; Terai, K.

    1982-08-01

    During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludgemore » continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q /SUB r/ /Q /SUB s/ ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q /SUB r/ /Q /SUB s/ ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.« less

  10. Stabilization of waste-activated sludge through the anoxic-aerobic digestion process.

    PubMed

    Hashimoto, S; Fujita, M; Terai, K

    1982-08-01

    During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludge continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q(r)/Q(s) ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q(r)/Q(s) ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.

  11. Anaerobic co-digestion of cyanide containing cassava pulp with pig manure.

    PubMed

    Glanpracha, Naraporn; Annachhatre, Ajit P

    2016-08-01

    Anaerobic co-digestion of cyanide-containing cassava pulp with pig manure was evaluated using laboratory scale mesophilic digester. The digester was operated in a semi-continuous mode with the mixed feedstock having C/N ratio of 35:1. Digester startup was accomplished in 60days with loading of 0.5-1kgVS/m(3)d. Subsequently, the loading to digester was increased step-wise from 2 to 9kgVS/m(3)d. Digester performance was stable at loading between 2 and 6kgVS/m(3)d with an average volatile solid removal and methane yield of 82% and 0.38m(3)/kgVSadded, respectively. However, beyond loading of 7kgVS/m(3)d, solubilization of particulate matter did not take place efficiently. Cyanide present in cassava pulp was successfully degraded indicating that anaerobic sludge in the digester was well acclimatized to cyanide. The results show that cassava pulp can be successfully digested anaerobically with pig manure as co-substrate without any inhibitory effect of cyanide present in the cassava pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Gaseous nitrogen and bacterial responses to raw and digested dairy manure applications in incubated soil.

    PubMed

    Saunders, Olivia E; Fortuna, Ann-Marie; Harrison, Joe H; Cogger, Craig G; Whitefield, Elizabeth; Green, Tonia

    2012-11-06

    A study was conducted under laboratory conditions to compare rates of nitrous oxide (N(2)O) and ammonia (NH(3)) emissions when soil was amended with anaerobically digested dairy manure slurry containing <30% food byproducts, raw dairy manure slurry, or urea. Slurries were applied via surface and subsurface methods. A second objective was to correlate genes regulating nitrification and denitrification with rates of N(2)O production, slurry treatment, and application method. Ammonia volatilization from incubated soil ranged from 140 g kg(-1) of total N applied in digested slurry to 230 g kg(-1) in urea. Subsurface application of raw dairy manure slurry decreased ammonia volatilization compared with surface application. Anaerobic digestion increased N(2)O production. Cumulative N(2)O loss averaged 27 g kg(-1) of total N applied for digested slurry, compared with 5 g kg(-1) for raw dairy slurry. Genes of interest included a 16S rRNA gene selective for β-subgroup proteobacterial ammonia-oxidizers, amoA, narG, and nosZ quantified with quantitative polymerase chain reaction (qPCR) and real-time polymerase chain reaction (RT-PCR). Application of anaerobically digested slurry increased nitrifier and denitrifier gene copies that correlated with N(2)O production. Expression of all genes measured via mRNA levels was affected by N applications to soil. This study provides new information linking genetic markers in denitrifier and nitrifier populations to N(2)O production.

  13. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY - AUTOTHERMAL THERMOPHILIC AEROBIC DIGESTION OF MUNICIPAL WASTEWATER SLUDGE

    EPA Science Inventory

    This document describes a promising technology — autothermal thermophilic aerobic digestion — for meeting the current and proposed U.S. federal requirements for pathogen controJ and land application of municipal wastewater sludge. Autothermal thermophilic aerobic digestion, or AT...

  14. Cor a 14, the allergenic 2S albumin from hazelnut, is highly thermostable and resistant to gastrointestinal digestion

    PubMed Central

    Pfeifer, Sabine; Bublin, Merima; Dubiela, Pawel; Hummel, Karin; Wortmann, Judith; Hofer, Gerhard; Keller, Walter; Radauer, Christian

    2015-01-01

    Scope Allergens from nuts frequently induce severe allergic reactions in sensitive individuals. The aim of this study was to elucidate the physicochemical characteristics of natural Cor a 14, the 2S albumin from hazelnut. Methods and results Cor a 14 was purified from raw hazelnuts using a combination of precipitation and chromatographic techniques. The protein was analyzed using gel electrophoresis, MS, and far‐UV circular dichroism (CD) analyses. The immunoglobulin E (IgE) binding of native, heat‐treated, and in vitro digested Cor a 14 was studied. We identified two different Cor a 14 isoforms and showed microclipping at the C‐terminus. CD spectra at room temperature showed the typical characteristics of 2S albumins, and temperatures of more than 80°C were required to start unfolding of Cor a 14 demonstrating its high stability to heat treatment. In vitro digestion experiments revealed that Cor a 14 is resistant to proteolytic degradation. Native and heat‐treated protein was recognized by sera from hazelnut allergic patients. However, denaturation of the allergen led to significantly reduced IgE binding. Conclusion We identified two different isoforms of Cor a 14 displaying high stability under heating and gastric and duodenal conditions. Data from IgE‐binding experiments revealed the existence of both, linear and conformational epitopes. PMID:26178695

  15. La Disciplina Positiva (Positive Discipline). ERIC Digest.

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Elementary and Early Childhood Education, Urbana, IL.

    This ERIC Digest suggests methods and language that can be used in handling difficult, but common, situations involving young children. The digest explains 12 methods of disciplining children that promote children's self-worth. These methods are: (1) showing children that the reasons for their actions are understood; (2) stating reasons; (3)…

  16. Immunohistochemical localization of hepatopancreatic phospholipase A2 in Hexaplex Trunculus digestive cells

    PubMed Central

    2011-01-01

    Background Mammalian sPLA2-IB localization cell are well characterized. In contrast, much less is known about aquatic primitive ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes and the mode of digestion of lipid food. Results The marine snail digestive phospholipase A2 (mSDPLA2) has been previously purified from snail hepatopancreas. The specific polyclonal antibodies were prepared and used for immunohistochimical and immunofluorescence analysis in order to determine the cellular location of mSDPLA2. Our results showed essentially that mSDPLA2 was detected inside in specific vesicles tentatively named (mSDPLA2+) granules of the digestive cells. No immunolabelling was observed in secretory zymogene-like cells. This immunocytolocalization indicates that lipid digestion in the snail might occur in specific granules inside the digestive cells. Conclusion The cellular location of mSDPLA2 suggests that intracellular phospholipids digestion, like other food components digestion of snail diet, occurs in these digestive cells. The hepatopancreas of H. trunculus has been pointed out as the main region for digestion, absorption and storage of lipids. PMID:21631952

  17. Immunohistochemical localization of hepatopancreatic phospholipase A2 in Hexaplex trunculus digestive cells.

    PubMed

    Zarai, Zied; Boulais, Nicholas; Karray, Aida; Misery, Laurent; Bezzine, Sofiane; Rebai, Tarek; Gargouri, Youssef; Mejdoub, Hafedh

    2011-06-01

    Mammalian sPLA2-IB localization cell are well characterized. In contrast, much less is known about aquatic primitive ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes and the mode of digestion of lipid food. The marine snail digestive phospholipase A2 (mSDPLA2) has been previously purified from snail hepatopancreas. The specific polyclonal antibodies were prepared and used for immunohistochimical and immunofluorescence analysis in order to determine the cellular location of mSDPLA2. Our results showed essentially that mSDPLA2 was detected inside in specific vesicles tentatively named (mSDPLA2+) granules of the digestive cells. No immunolabelling was observed in secretory zymogene-like cells. This immunocytolocalization indicates that lipid digestion in the snail might occur in specific granules inside the digestive cells. The cellular location of mSDPLA2 suggests that intracellular phospholipids digestion, like other food components digestion of snail diet, occurs in these digestive cells. The hepatopancreas of H. trunculus has been pointed out as the main region for digestion, absorption and storage of lipids.

  18. The hOGG1 Ser326Cys polymorphism contributes to digestive system cancer susceptibility: evidence from 48 case-control studies.

    PubMed

    Wang, Yang; Gao, Xujie; Wei, Feng; Zhang, Xinwei; Yu, Jinpu; Zhao, Hua; Sun, Qian; Yan, Fan; Yan, Cihui; Li, Hui; Ren, Xiubao

    2015-02-01

    The Ser326Cys polymorphism in the human 8-oxogunaine DNA glycosylase (hOGG1) gene had been implicated in cancer susceptibility. Studies investigating the associations between the Ser326Cys polymorphism and digestion cancer susceptibility showed conflicting results. Therefore, a meta-analysis was performed to derive a more precise estimation of the relationship. We conducted a meta-analysis of 48 studies that included 12,073 cancer cases and 19,557 case-free controls. We assessed the strength of the association using odds ratios (ORs) with 95% confidence intervals (CIs). In our analysis, the hOGG1 Ser326Cys polymorphism was significantly associated with the risk of digestive system cancers (Cys/Cys vs. Ser/Ser: OR = 1.17, 95% CI = 1.00-1.35, P < 0.001; Cys/Cys vs. Cys/Ser + Ser/Ser: OR = 1.14, 95% CI = 1.00-1.29, P < 0.001). In subgroup analyses by cancer types, we found that the hOGG1 Ser326Cys polymorphism may increase hepatocellular cancer and colorectal cancer risks, but decrease the risk of oral cancer. These findings supported that hOGG1 Ser326Cys polymorphism may contribute to the susceptibility of digestive cancers.

  19. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nkemka, Valentine Nkongndem; Marchbank, Douglas H.; Hao, Xiying, E-mail: xiying.hao@agr.gc.ca

    Highlights: • Anaerobic digestion and nutrient mineralization of paunch in a CSTR. • Low CH{sub 4} yield and high CH{sub 4} productivity was obtained at an OLR of 2.8 g VS L{sup −1} day{sup −1.} • Post-digestion of the digestate resulted in a CH{sub 4} yield of 0.067 L g{sup −1} VS. • Post-digestion is recommended for further digestate stabilization. - Abstract: A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8 g VS L{sup −1} day{supmore » −1} with a 30-day hydraulic retention time (HRT), a CH{sub 4} yield of 0.213 L g{sup −1} VS and CH{sub 4} production rate of 0.600 L L{sup −1} day{sup −1} were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30 days at 40 °C recovered 0.067 L g{sup −1} VS as CH{sub 4}, which was 21% of the batch CH{sub 4} potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K{sup +}, Ca{sup 2+} and Mg{sup 2+} were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system.« less

  20. Supervision: Exploring the Effective Components. ERIC/CASS Counseling Digest Series.

    ERIC Educational Resources Information Center

    Borders, L. DiAnne, Ed.

    This document contains a collection of ERIC Digests on supervision, a topic of critical professional importance for counselors. Following an introductory article by the guest editor, L. DiAnne Borders, "Supervision: Exploring the Effective Components," 19 digests address a different facet of supervision. The 19 digests are: (1)…

  1. Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production.

    PubMed

    Haider, Muhammad Rizwan; Zeshan; Yousaf, Sohail; Malik, Riffat Naseem; Visvanathan, Chettiyappan

    2015-08-01

    Aim of this study was to find out suitable mixing ratio of food waste and rice husk for their co-digestion in order to overcome VFA accumulation in digestion of food waste alone. Four mixing ratios of food waste and rice husk with C/N ratios of 20, 25, 30 and 35 were subjected to a lab scale anaerobic batch experiment under mesophilic conditions. Highest specific biogas yield of 584L/kgVS was obtained from feedstock with C/N ratio of 20. Biogas yield decreased with decrease in food waste proportion. Further, fresh cow dung was used as inoculum to investigate optimum S/I ratio with the selected feedstock. In experiment 2, feedstock with C/N ratio 20 was subjected to anaerobic digestion at five S/I ratios of 0.25, 0.5, 1.0, 1.5 and 2.0. Specific biogas yield of 557L/kgVS was obtained at S/I ratio of 0.25. However, VFA accumulation occurred at higher S/I ratios due to higher organic loadings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Precaecal phosphorus digestibility of inorganic phosphate sources in male broilers

    PubMed Central

    Bikker, P.; Spek, J. W.; Van Emous, R. A.; Van Krimpen, M. M.

    2016-01-01

    Abstract The aim of this study, comprising two experiments, was (1) to determine in Experiment 1 the relationship of incremental dietary P (phosphorus) content on precaecal digestible P in male broilers and (2) to determine in Experiment 2 the precaecal P digestibility of various inorganic P sources at marginal levels of P supply.In Experiment 1, a total of 260 male Ross 308 broilers were divided into groups of 10 birds per pen resulting in 8 replicates for treatment 1 and 6 replicates for treatments 2–4. Experimental diets were formulated to contain 4 incremental concentrations of digestible P by means of increasing concentrations of monocalcium phosphate (MCP). In the second experiment, 480-d-old male Ross 308 broilers were divided in groups of 12 birds per pen resulting in 16 replicates for the basal diet and 6 replicates for each test diet. A total of 4 inorganic P sources, MCP, monodicalcium phosphate (MDCP), dicalcium phosphate (DCP) and defluorinated phosphate (DFP) were added to the basal diet to determine the precaecal P digestibility. Three of the 4 inorganic P sources (MCP, MDCP and DCP) represented a mix of batches from different producers. At the end of both experiments, the chyme of the posterior part of the small intestine was collected. Digestibility of P and Ca was determined using titanium dioxide as indigestible marker.In Experiment 1, a reduction in precaecal digestibility of P was observed above an estimated precaecal digestible dietary P concentration of 4.8 g/kg.The precaecal P digestibility of the tested inorganic P sources in Experiment 2 was 78.3% for MCP, 59.0% for DCP, 70.7% for MDCP and 31.5% for DFP. PMID:27635437

  3. Scenedesmus dimorphus (Turpin) Kützing growth with digestate from biogas plant in outdoor bag photobioreactors.

    PubMed

    Barbato, F; Venditti, A; Bianco, A; Guarcini, L; Bottari, E; Festa, M R; Cogliani, E; Pignatelli, V

    2016-01-01

    Digestate coming from an Anaerobic Digestion unit in a Biogas Plant, feeded on cow manure and vegetable waste from markets, has been used. About 8-35 L polyethylene transparent bags have been employed as cultivation container, outdoor. Different aliquots of digestate, alone or mixed with commercial liquid fertiliser, were employed to cultivate in batch Scenedesus dimorphus, a freshwater green microalga, in the ENEA facilities of Casaccia Research Center, near Rome, Italy. The cultivation period was June-July 2013. The average daily yields of dry microalgae biomass varied from 20 mg/L/d to 60 mg/L/d, mean 38.2 mg/L/d. Final dry biomass concentration varied from 0.18 to 1.29 g/L, mean 0.55 g/L. S. dimorphus proved to be very efficient in removing N and P from the culture medium. Another fact emerged from these trials is that S. dimorphus inner composition resulted to be variable in response to the tested different culture conditions.

  4. Prognostic Value of NME1 (NM23-H1) in Patients with Digestive System Neoplasms: A Systematic Review and Meta-Analysis.

    PubMed

    Han, Wei; Shi, Chun-Tao; Cao, Fei-Yun; Cao, Fang; Chen, Min-Bin; Lu, Rong-Zhu; Wang, Hua-Bing; Yu, Min; He, Da-Wei; Wang, Qing-Hua; Wang, Jie-Feng; Xu, Xuan-Xuan; Ding, Hou-Zhong

    2016-01-01

    There is a heated debate on whether the prognostic value of NME1 is favorable or unfavorable. Thus, we carried out a meta-analysis to evaluate the relationship between NME1 expression and the prognosis of patients with digestive system neoplasms. We searched PubMed, EMBASE and Web of Science for relevant articles. The pooled odd ratios (ORs) and corresponding 95%CI were calculated to evaluate the prognostic value of NME1 expression in patients with digestive system neoplasms, and the association between NME1 expression and clinicopathological factors. We also performed subgroup analyses to find out the source of heterogeneity. 2904 patients were pooled from 28 available studies in total. Neither the incorporative OR combined by 17 studies with overall survival (OR = 0.65, 95%CI:0.41-1.03, P = 0.07) nor the pooled OR with disease-free survival (OR = 0.75, 95%CI:0.17-3.36, P = 0.71) in statistics showed any significance. Although we couldn't find any significance in TNM stage (OR = 0.78, 95%CI:0.44-1.36, P = 0.38), elevated NME1 expression was related to well tumor differentiation (OR = 0.59, 95%CI:0.47-0.73, P<0.00001), negative N status (OR = 0.54, 95%CI:0.36-0.82, P = 0.003) and Dukes' stage (OR = 0.43, 95%CI:0.24-0.77, P = 0.004). And in the subgroup analyses, we only find the "years" which might be the source of heterogeneity of overall survival in gastric cancer. The results showed that statistically significant association was found between NME1 expression and the tumor differentiation, N status and Dukes' stage of patients with digestive system cancers, while no significance was found in overall survival, disease-free survival and TNM stage. More and further researches should be conducted to reveal the prognostic value of NME1.

  5. Prognostic Value of NME1 (NM23-H1) in Patients with Digestive System Neoplasms: A Systematic Review and Meta-Analysis

    PubMed Central

    Cao, Fei-yun; Cao, Fang; Chen, Min-bin; Lu, Rong-zhu; Wang, Hua-bing; Yu, Min; He, Da-wei; Wang, Qing-hua; Wang, Jie-feng; Xu, Xuan-xuan; Ding, Hou-zhong

    2016-01-01

    Objective There is a heated debate on whether the prognostic value of NME1 is favorable or unfavorable. Thus, we carried out a meta-analysis to evaluate the relationship between NME1 expression and the prognosis of patients with digestive system neoplasms. Methods We searched PubMed, EMBASE and Web of Science for relevant articles. The pooled odd ratios (ORs) and corresponding 95%CI were calculated to evaluate the prognostic value of NME1 expression in patients with digestive system neoplasms, and the association between NME1 expression and clinicopathological factors. We also performed subgroup analyses to find out the source of heterogeneity. Results 2904 patients were pooled from 28 available studies in total. Neither the incorporative OR combined by 17 studies with overall survival (OR = 0.65, 95%CI:0.41–1.03, P = 0.07) nor the pooled OR with disease-free survival (OR = 0.75, 95%CI:0.17–3.36, P = 0.71) in statistics showed any significance. Although we couldn’t find any significance in TNM stage (OR = 0.78, 95%CI:0.44–1.36, P = 0.38), elevated NME1 expression was related to well tumor differentiation (OR = 0.59, 95%CI:0.47–0.73, P<0.00001), negative N status (OR = 0.54, 95%CI:0.36–0.82, P = 0.003) and Dukes’ stage (OR = 0.43, 95%CI:0.24–0.77, P = 0.004). And in the subgroup analyses, we only find the “years” which might be the source of heterogeneity of overall survival in gastric cancer. Conclusions The results showed that statistically significant association was found between NME1 expression and the tumor differentiation, N status and Dukes’ stage of patients with digestive system cancers, while no significance was found in overall survival, disease-free survival and TNM stage. More and further researches should be conducted to reveal the prognostic value of NME1. PMID:27518571

  6. Sequential ethanol fermentation and anaerobic digestion increases bioenergy yields from duckweed.

    PubMed

    Calicioglu, O; Brennan, R A

    2018-06-01

    The potential for improving bioenergy yields from duckweed, a fast-growing, simple, floating aquatic plant, was evaluated by subjecting the dried biomass directly to anaerobic digestion, or sequentially to ethanol fermentation and then anaerobic digestion, after evaporating ethanol from the fermentation broth. Bioethanol yields of 0.41 ± 0.03 g/g and 0.50 ± 0.01 g/g (glucose) were achieved for duckweed harvested from the Penn State Living-Filter (Lemna obscura) and Eco-Machine™ (Lemna minor/japonica and Wolffia columbiana), respectively. The highest biomethane yield, 390 ± 0.1 ml CH 4 /g volatile solids added, was achieved in a reactor containing fermented duckweed from the Living-Filter at a substrate-to-inoculum (S/I) ratio (i.e., duckweed to microorganism ratio) of 1.0. This value was 51.2% higher than the biomethane yield of a replicate reactor with raw (non-fermented) duckweed. The combined bioethanol-biomethane process yielded 70.4% more bioenergy from duckweed, than if anaerobic digestion had been run alone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China.

    PubMed

    Lin, Jia; Zuo, Jiane; Gan, Lili; Li, Peng; Liu, Fenglin; Wang, Kaijun; Chen, Lei; Gan, Hainan

    2011-01-01

    The biochemical methane potentials for typical fruit and vegetable waste (FVW) and food waste (FW) from a northern China city were investigated, which were 0.30, 0.56 m3 CH4/kgVS (volatile solids) with biodegradabilities of 59.3% and 83.6%, respectively. Individual anaerobic digestion testes of FVW and FW we re conducted at the organic loading rate (OLR) of 3 k g VS/(m3.day) using a lab-scale continuous stirred-tank reactor at 350C. FVW could b e digested stably with the biogas production rate of 2.17 m3/(m3 .day)and methane production yield of 0.42 m3 CH4/kg VS. However, anaerobic digestion process for FW was failed due to acids accumulation. The effects of FVW: FW ratio on co-digestion stability and performance were further investigated at the same OLR. At FVW and FW mixing ratios of 2:1 and 1:1, the performance and operation of the digester were maintained stable, with no accumulation of volatile fatty acids (VFA) and ammonia. Changing the feed to a higher FW content in a ratio of FVW to FW 1:2, resulted in an increase inVFAs concentration to 1100-1200 mg/L, and the methanogenesis was slightly inhibited. At the optimum mixture ratio 1:1 for co-digestion of FVW with FW, the methane production yield was 0.49 m3 CH4/kg VS, and the volatile solids and soluble chemical oxygen demand (sCOD) removal efficiencies were 74.9% and 96.1%, respectively.

  8. Anaerobic co-digestion of dairy manure and potato waste

    NASA Astrophysics Data System (ADS)

    Yadanaparthi, Sai Krishna Reddy

    Dairy and potato are two important agricultural commodities in Idaho. Both the dairy and potato processing industries produce a huge amount of waste which could cause environmental pollution. To minimize the impact of potential pollution associated with dairy manure (DM) and potato waste (PW), anaerobic co-digestion has been considered as one of the best treatment process. The purpose of this research is to evaluate the anaerobic co-digestion of dairy manure and potato waste in terms of process stability, biogas generation, construction and operating costs, and potential revenue. For this purpose, I conducted 1) a literature review, 2) a lab study on anaerobic co-digestion of dairy manure and potato waste at three different temperature ranges (ambient (20-25°C), mesophilic (35-37°C) and thermophilic (55-57°C) with five mixing ratios (DM:PW-100:0, 90:10, 80:20, 60:40, 40:60), and 3) a financial analysis for anaerobic digesters based on assumed different capital costs and the results from the lab co-digestion study. The literature review indicates that several types of organic waste were co-digested with DM. Dairy manure is a suitable base matter for the co-digestion process in terms of digestion process stability and methane (CH4) production (Chapter 2). The lab tests showed that co-digestion of DM with PW was better than digestion of DM alone in terms of biogas and CH4 productions (Chapter 3). The financial analysis reveals DM and PW can be used as substrate for full size anaerobic digesters to generate positive cash flow within a ten year time period. Based on this research, the following conclusions and recommendations were made: ▸ The ratio of DM:PW-80:20 is recommended at thermophilic temperatures and the ratio of DM:PW-90:10 was recommended at mesophilic temperatures for optimum biogas and CH4 productions. ▸ In cases of anaerobic digesters operated with electricity generation equipment (generators), low cost plug flow digesters (capital cost of 600/cow

  9. Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion.

    PubMed

    Lin, Qiang; He, Guihua; Rui, Junpeng; Fang, Xiaoyu; Tao, Yong; Li, Jiabao; Li, Xiangzhen

    2016-06-03

    Temperature is an important factor determining the performance and stability of the anaerobic digestion process. However, the microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion systems remain further elusive. To address this issue, we investigated the changes in composition, diversity and activities of microbial communities under temperature gradient from 25 to 55 °C using 16S rRNA gene amplicon sequencing approach based on genomic DNA (refer to as "16S rDNA") and total RNA (refer to as "16S rRNA"). Microbial community structure and activities changed dramatically along the temperature gradient, which corresponded to the variations in digestion performance (e.g., daily CH4 production, total biogas production and volatile fatty acids concentration). The ratios of 16S rRNA to 16S rDNA of microbial taxa, as an indicator of the potentially relative activities in situ, and whole activities of microbial community assessed by the similarity between microbial community based on 16S rDNA and rRNA, varied strongly along the temperature gradient, reflecting different metabolic activities. The daily CH4 production increased with temperature from 25 to 50 °C and declined at 55 °C. Among all the examined microbial properties, the whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities showed highest correlations to the performance. The whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities were sensitive indicators for the performance of anaerobic digestion systems under temperature gradient, while beta-diversity could predict functional differences. Microorganism-regulated mechanisms of temperature effects on anaerobic digestion performance were likely realized through increasing alpha-diversity of both microbial communities and potentially relative activities to supply

  10. Effects of boiling and in vitro gastrointestinal digestion on the antioxidant activity of Sonchus oleraceus leaves.

    PubMed

    Mawalagedera, S M M R; Ou, Zong-Quan; McDowell, Arlene; Gould, Kevin S

    2016-03-01

    Leaves of Sonchus oleraceus L. are especially rich in phenolic compounds and have potent extractable antioxidants. However, it is not known how their antioxidant activity changes after cooking and gastrointestinal digestion. We recorded the profile of phenolics and their associated antioxidant activity in both raw and boiled S. oleraceus leaf extracts after in vitro gastric and intestinal digestion, and quantified their antioxidant potentials using Caco-2 and HepG2 cells. Boiling significantly diminished the oxygen radical absorbance capacity (ORAC) and concentrations of ascorbate and chicoric acid in the soluble fractions. In contrast, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and concentrations of caftaric and chlorogenic acids were unaffected. Phenolics in the soluble fraction were absorbed into cultured human cells and exerted antioxidant activity. Only chlorogenic acid content remained stable during gastrointestinal digestion. S. oleraceus appears to be an excellent dietary source of phenolic antioxidants.

  11. Sulfuric acid/hydrogen peroxide digestion and colorimetric a collaborative study.

    PubMed

    Christians, D K; Aspelund, T G; Brayton, S V; Roberts, L L

    1991-01-01

    Seven laboratories participated in a collaborative study of a method for determination of phosphorus in meat and meat products. Samples are digested in sulfuric acid and hydrogen peroxide; digestion is complete in approximately 10 min. Phosphorus is determined by colorimetric analysis of a dilute aliquot of the sample digest. The collaborators analyzed 3 sets of blind duplicate samples from each of 6 classes of meat (U.S. Department of Agriculture classifications): smoked ham, water-added ham, canned ham, pork sausage, cooked sausage, and hamburger. The calibration curve was linear over the range of standard solutions prepared (phosphorus levels from 0.05 to 1.00%); levels in the collaborative study samples ranged from 0.10 to 0.30%. Standard deviations for repeatability (sr) and reproducibility (SR) ranged from 0.004 to 0.012 and 0.007 to 0.014, respectively. Corresponding relative standard deviations (RSDr and RSDR, respectively) ranged from 1.70 to 7.28% and 3.50 to 9.87%. Six laboratories analyzed samples by both the proposed method and AOAC method 24.016 (14th Ed.). One laboratory reported results by the proposed method only. Statistical evaluations indicated no significant difference between the 2 methods. The method has been adopted official first action by AOAC.

  12. China's Vocational Universities. ERIC Digest.

    ERIC Educational Resources Information Center

    Ding, Anning

    This ERIC Digest describes the development and characteristics of vocational universities (VUs) in China. In response to the demand for increased numbers of trained technical workers in the 1980's, VUs developed and the higher vocational education system in China was reformed. Currently, 101 vocational universities are in existence in China. These…

  13. Evaluation of the pepsin digestibility assay for predicting amino acid digestibility of meat and bone meals.

    PubMed

    Davis, T M; Parsons, C M; Utterback, P L; Kirstein, D

    2015-05-01

    Sixteen meat and bone meal (MBM) samples were obtained and selected from various company plants to provide a wide range in pepsin nitrogen digestibility values. Pepsin digestibility was determined using either 0.02 or 0.002% pepsin. Amino acid (AA) digestibility of the 16 MBM samples was then determined using a precision-fed cecectomized rooster assay. The 0.02% pepsin digestibility values were numerically higher than the 0.002% pepsin values. The values varied from 77 to 93% for 0.02% pepsin and from 67 to 91% for 0.002% pepsin. The rooster AA digestibility results showed a wide range of values among MBM samples mostly due to the 4 samples having lowest and highest AA digestibility. A precision-fed broiler chick ileal AA digestibility assay confirmed that there were large differences in AA digestibility among the MBM samples having the lowest and highest rooster digestibility values. Correlation analyses between pepsin and AA digestibility values showed that the correlation values (r) were highly significant (P < 0.0001) for all AA when all 16 MBM samples were included in the analysis. However, when the MBM samples with the 2 lowest and the 2 highest rooster digestibility values were not included in the correlation analyses, the correlation coefficient values (r) were generally very low and not significant (P > 0.05). The results indicated that the pepsin nitrogen digestibility assay is only useful for detecting large differences in AA digestibility among MBM. There also was no advantage for using 0.02 versus 0.002% pepsin. © 2015 Poultry Science Association Inc.

  14. MCCE analysis of the pKas of introduced buried acids and bases in staphylococcal nuclease.

    PubMed

    Gunner, M R; Zhu, Xuyu; Klein, Max C

    2011-12-01

    The pK(a)s of 96 acids and bases introduced into buried sites in the staphylococcal nuclease protein (SNase) were calculated using the multiconformation continuum electrostatics (MCCE) program and the results compared with experimental values. The pK(a)s are obtained by Monte Carlo sampling of coupled side chain protonation and position as a function of pH. The dependence of the results on the protein dielectric constant (ε(prot)) in the continuum electrostatics analysis and on the Lennard-Jones non-electrostatics parameters was evaluated. The pK(a)s of the introduced residues have a clear dependence on ε(prot,) whereas native ionizable residues do not. The native residues have electrostatic interactions with other residues in the protein favoring ionization, which are larger than the desolvation penalty favoring the neutral state. Increasing ε(prot) scales both terms, which for these residues leads to small changes in pK(a). The introduced residues have a larger desolvation penalty and negligible interactions with residues in the protein. For these residues, changing ε(prot) has a large influence on the calculated pK(a). An ε(prot) of 8-10 and a Lennard-Jones scaling of 0.25 is best here. The X-ray crystal structures of the mutated proteins are found to provide somewhat better results than calculations carried out on mutations made in silico. Initial relaxation of the in silico mutations by Gromacs and extensive side chain rotamer sampling within MCCE can significantly improve the match with experiment. Copyright © 2011 Wiley-Liss, Inc.

  15. Emissions of carbon dioxide and methane from fields fertilized with digestate from an agricultural biogas plant

    NASA Astrophysics Data System (ADS)

    Czubaszek, Robert; Wysocka-Czubaszek, Agnieszka

    2018-01-01

    Digestate from biogas plants can play important role in agriculture by providing nutrients, improving soil structure and reducing the use of mineral fertilizers. Still, less is known about greenhouse gas emissions from soil during and after digestate application. The aim of the study was to estimate the emissions of carbon dioxide (CO2) and methane (CH4) from a field which was fertilized with digestate. The gas fluxes were measured with the eddy covariance system. Each day, the eddy covariance system was installed in various places of the field, depending on the dominant wind direction, so that each time the results were obtained from an area where the digestate was distributed. The results showed the relatively low impact of the studied gases emissions on total greenhouse gas emissions from agriculture. Maximum values of the CO2 and CH4 fluxes, 79.62 and 3.049 µmol s-1 m-2, respectively, were observed during digestate spreading on the surface of the field. On the same day, the digestate was mixed with the topsoil layer using a disc harrow. This resulted in increased CO2 emissions the following day. Intense mineralization of digestate, observed after fertilization may not give the expected effects in terms of protection and enrichment of soil organic matter.

  16. Excretion into feces of asialo GM1 in the murine digestive tract and Lactobacillus johnsonii exhibiting binding ability toward asialo GM1. A possible role of epithelial glycolipids in the discharge of intestinal bacteria.

    PubMed

    Iwamori, Masao; Iwamori, Yuriko; Adachi, Shigeki; Nomura, Taisei

    2011-01-01

    In the digestive tract of mice (HR-1, 5 months old, ♀), asialo GM1 (GA1) exhibiting receptor activity toward several intestinal bacteria was preferentially expressed in the small intestine. Also, less than 10% of GA1 in the small intestine was converted into fucosylated and sulfated derivatives, but it was completely converted to fucosyl GA1 (FGA1) in the stomach, cecum and colon. Among the lipid components in these tissues, glycolipids other than Forssman antigen and cholesterol sulfate (CS) were present in the digestive tract contents. However, sulfated GA1, sulfatide and fucosyl GM1 in the gastro-intestinal contents were not present in the cecal and colonic contents, in which the major glycolipids were ceramide monohexoside (CMH), GA1 and FGA1. The total amount of GA1 in the whole contents was 20% of that in the tissues. Thus, glycolipids were stable during the process of digestion, and excreted from the body together with cholesterol and CS. On the other hand, Lactobacillus johnsonii (LJ), whose receptor is GA1, was detected in the cecal and colonic contents on sequential analysis of 16S-ribosomal RNA and TLC-immunostaining of antigenic glycolipids with anti-LJ antiserum. LJ was found to comprise 20% of the total bacteria cultured in the lactobacillus medium under aerobic conditions, and to be present in the cecal and colonic contents, 9.8 × 10(7) cells versus 37 μg GA1 and 1.4 × 10(8) cells versus 49 μg GA1, respectively. Thus, GA1 in the contents might facilitate the discharge of intestinal bacteria by becoming attached them to prevent their irregular diffusion.

  17. Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template.

    PubMed

    Ran, Yidong; Patron, Nicola; Kay, Pippa; Wong, Debbie; Buchanan, Margaret; Cao, Ying-Ying; Sawbridge, Tim; Davies, John P; Mason, John; Webb, Steven R; Spangenberg, German; Ainley, William M; Walsh, Terence A; Hayden, Matthew J

    2018-05-07

    Sequence-specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site-specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)-mediated, nonhomologous end-joining (NHEJ)-directed editing of a native gene in allohexaploid bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS-inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss-of-function gene knockout. The latter results demonstrate a broadly applicable approach to introduce targeted modifications into native genes for nonselectable traits. All ZFN-mediated changes were faithfully transmitted to the next generation. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. VALIDATION FOR THE PERMANGANATE DIGESTION OF REILLEX HPQ ANION RESIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyser, E.

    2009-09-23

    The flowsheet for the digestion of Reillex{trademark} HPQ was validated both under the traditional alkaline conditions and under strongly acidic conditions. Due to difficulty in performing a pH adjustment in the large tank where this flowsheet must be performed, the recommended digestion conditions were changed from pH 8-10 to 8 M HNO{sub 3}. Thus, no pH adjustment of the solution is required prior to performing the permanganate addition and digestion and the need to sample the digestion tank to confirm appropriate pH range for digestion may be avoided. Neutralization of the acidic digestion solution will be performed after completion ofmore » the resin digestion cycle. The amount of permanganate required for this type of resin (Reillex{trademark} HPQ) was increased from 1 kg/L resin to 4 kg/L resin to reduce the amount of residual resin solids to a minimal amount (<5%). The length of digestion time at 70 C remains unchanged at 15 hours. These parameters are not optimized but are expected to be adequate for the conditions. The flowsheet generates a significant amount of fine manganese dioxide (MnO{sub 2}) solids (1.71 kg/L resin) and involves the generation of a significant liquid volume due to the low solubility of permanganate. However, since only two batches of resin (40 L each) are expected to be digested, the total waste generated is limited.« less

  19. Influence of steam explosion pretreatment on the anaerobic digestion of vinegar residue.

    PubMed

    Feng, Jiayu; Zhang, Jiyu; Zhang, Jiafu; He, Yanfeng; Zhang, Ruihong; Liu, Guangqing; Chen, Chang

    2016-07-01

    Vinegar residue is the by-product in the vinegar production process. The large amount of vinegar residue has caused a serious environmental problem owing to its acidity and corrosiveness. Anaerobic digestion is an effective way to convert agricultural waste into bioenergy, and a previous study showed that vinegar residue could be treated by anaerobic digestion but still had room to improve digestion efficiency. In this study, steam explosion at pressure of 0.8, 1.2, and 1.5 MPa and residence time of 5, 10, 15, and 20 min were used to pretreat vinegar residue to improve methane production, respectively. Scanning electron microscopy and X-ray diffraction analyses were applied to validate structural changes of vinegar residue after steam explosion. Results showed that steam explosion pretreatment could destroy the structure of lignocellulose by removing the hemicellulose and lignin, and improve the methane yield effectively. Steam explosion-treated vinegar residue at 0.8 MPa for 5 min produced the highest methane yield of 153.58 mL gVS (-1), which was 27.65% (significant, α < 0.05) more than untreated vinegar residue (120.31 mL gVS (-1)). The analyses of pH, total ammonia-nitrogen, total alkalinity, and volatile fatty acids showed that steam explosion did not influence the stability of anaerobic digestion. This study suggested that steam explosion pretreatment on vinegar residue might be a promising approach and it is worth further study to improve the efficiency of vinegar residue waste utilisation. © The Author(s) 2016.

  20. Bacillus coagulans GBI-30, 6086 increases plant protein digestion in a dynamic, computer-controlled in vitro model of the small intestine (TIM-1).

    PubMed

    Keller, D; Van Dinter, R; Cash, H; Farmer, S; Venema, K

    2017-05-30

    The aim of this study was to assess the potential of the probiotic Bacillus coagulans GBI-30, 6086 [GanedenBC 30 ] (BC30) to aid in protein digestion of alimentary plant proteins. To test this, three plant proteins, from pea, soy and rice, were digested in a validated in vitro model of the stomach and small intestine (TIM-1) in the absence and in the presence of BC30. Samples were taken from the TIM-1 fractions that mimic uptake of amino acids by the host and analysed for α-amino nitrogen (AAN) and total nitrogen (TN). Both were increased by BC30 for all three plant proteins sources. The ratio of TN/AAN indicated that for pea protein digestion was increased by BC30, but the degree of polymerisation of the liberated small peptides and free amino acids was not changed. For soy and rice, however, BC30 showed a 2-fold reduction in the TN/AAN ratio, indicating that the liberated digestion products formed during digestion in the presence of BC30 were shorter peptides and more free amino acids, than those liberated in the absence of BC30. As BC30 increased protein digestion and uptake in the upper gastrointestinal (GI) tract, it consequently also reduced the amount of protein that would be delivered to the colon, which could there be fermented into toxic metabolites by the gut microbiota. Thus, the enhanced protein digestion by BC30 showed a dual benefit: enhanced amino acid bioavailability from plant proteins in the upper GI tract, and a healthier environment in the colon.

  1. Extended light exposure increases stem digestibility and biomass production of switchgrass

    PubMed Central

    Zhao, Chunqiao; Hou, Xincun; Zhu, Yi; Yue, Yuesen; Wu, Juying

    2017-01-01

    Switchgrass is a photoperiod-sensitive energy grass suitable for growing in the marginal lands of China. We explored the effects of extended photoperiods of low-irradiance light (7 μmol·m-2·s-1, no effective photosynthesis) on the growth, the biomass dry weight, the biomass allocation, and, especially, the stem digestibility and cell wall characteristics of switchgrass. Two extended photoperiods (i.e., 18 and 24 h) were applied over Alamo. Extended light exposure (18 and 24 h) resulted in delayed heading and higher dry weights of vegetative organs (by 32.87 and 35.94%, respectively) at the expense of reducing the amount of sexual organs (by 40.05 and 50.87%, respectively). Compared to the control group (i.e., natural photoperiod), the yield of hexoses (% dry matter) in the stems after a direct enzymatic hydrolysis (DEH) treatment significantly increased (by 44.02 and 46.10%) for those groups irradiated during 18 and 24 h, respectively. Moreover, the yield of hexoses obtained via enzymatic hydrolysis increased after both basic (1% NaOH) and acid (1% H2SO4) pretreatments for the groups irradiated during 18 and 24 h. Additionally, low-irradiance light extension (LILE) significantly increased the content of non-structural carbohydrates (NSCs) while notably reducing the lignin content and the syringyl to guaiacyl (S/G) ratio. These structural changes were in part responsible for the observed improved stem digestibility. Remarkably, LILE significantly decreased the cellulose crystallinity index (CrI) of switchgrass by significantly increasing both the arabinose substitution degree in xylan and the content of ammonium oxalate-extractable uronic acids, both favoring cellulose digestibility. Despite this LILE technology is not applied to the cultivation of switchgrass on a large scale yet, we believe that the present work is important in that it reveals important relationships between extended day length irradiations and biomass production and quality. Additionally, this

  2. Extended light exposure increases stem digestibility and biomass production of switchgrass.

    PubMed

    Zhao, Chunqiao; Fan, Xifeng; Hou, Xincun; Zhu, Yi; Yue, Yuesen; Wu, Juying

    2017-01-01

    Switchgrass is a photoperiod-sensitive energy grass suitable for growing in the marginal lands of China. We explored the effects of extended photoperiods of low-irradiance light (7 μmol·m-2·s-1, no effective photosynthesis) on the growth, the biomass dry weight, the biomass allocation, and, especially, the stem digestibility and cell wall characteristics of switchgrass. Two extended photoperiods (i.e., 18 and 24 h) were applied over Alamo. Extended light exposure (18 and 24 h) resulted in delayed heading and higher dry weights of vegetative organs (by 32.87 and 35.94%, respectively) at the expense of reducing the amount of sexual organs (by 40.05 and 50.87%, respectively). Compared to the control group (i.e., natural photoperiod), the yield of hexoses (% dry matter) in the stems after a direct enzymatic hydrolysis (DEH) treatment significantly increased (by 44.02 and 46.10%) for those groups irradiated during 18 and 24 h, respectively. Moreover, the yield of hexoses obtained via enzymatic hydrolysis increased after both basic (1% NaOH) and acid (1% H2SO4) pretreatments for the groups irradiated during 18 and 24 h. Additionally, low-irradiance light extension (LILE) significantly increased the content of non-structural carbohydrates (NSCs) while notably reducing the lignin content and the syringyl to guaiacyl (S/G) ratio. These structural changes were in part responsible for the observed improved stem digestibility. Remarkably, LILE significantly decreased the cellulose crystallinity index (CrI) of switchgrass by significantly increasing both the arabinose substitution degree in xylan and the content of ammonium oxalate-extractable uronic acids, both favoring cellulose digestibility. Despite this LILE technology is not applied to the cultivation of switchgrass on a large scale yet, we believe that the present work is important in that it reveals important relationships between extended day length irradiations and biomass production and quality. Additionally, this

  3. Structural analyses of EBER1 and EBER2 ribonucleoprotein particles present in Epstein-Barr virus-infected cells.

    PubMed Central

    Glickman, J N; Howe, J G; Steitz, J A

    1988-01-01

    The ribonucleoprotein (RNP) particles containing the Epstein-Barr virus-associated small RNAs EBER1 and EBER2 were analyzed to determine their RNA secondary structures and sites of RNA-protein interaction. The secondary structures were probed with nucleases and by chemical modification with single-strand-specific reagents, and the sites of modification or cleavage were mapped by primer extension. These data were used to develop secondary structures for the two RNAs, and likely sites of close RNA-protein contact were identified by comparing modification patterns for naked RNA and RNA in RNP particles. In addition, sites of interaction between each Epstein-Barr virus-encoded RNA (EBER) and the La antigen were identified by analyzing RNA fragments resistant to digestion by RNase A or T1 after immunoprecipitation by an anti-La serum sample from a lupus patient. Our results confirm earlier findings that the La protein binds to the 3' terminus of each molecule. Possible functions for the EBER RNPs are discussed. Images PMID:2828685

  4. Sexism Springs Eternal--in the Reader's Digest.

    ERIC Educational Resources Information Center

    Zimbardo, Philip G.; Meadow, Wendy

    This document reports on an empirical investigation of anti-women humor appearing in the Reader's Digest over three decades, revealing the operation of an unconscious sexist ideology. A systematic analysis was made of 1,069 jokes appearing in two featured columns of the Reader's Digest for the two-year periods 1947-48, 1957-58, and 1967-68.…

  5. Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: Comparison of system performances and identification of microbial guilds.

    PubMed

    Di Maria, Francesco; Barratta, Martino; Bianconi, Francesco; Placidi, Pisana; Passeri, Daniele

    2017-01-01

    Solid anaerobic digestion batch (SADB) with liquid digestate recirculation and wet anaerobic digestion of organic waste were experimentally investigated. SADB was operated at an organic loading rate (OLR) of 4.55kgVS/m 3 day, generating about 252NL CH 4 /kgVS, whereas the wet digester was operated at an OLR of 0.9kgVS/m 3 day, generating about 320NL CH 4 /kgVS. The initial total volatile fatty acids concentrations for SADB and wet digestion were about 12,500mg/L and 4500mg/L, respectively. There were higher concentrations of ammonium and COD for the SADB compared to the wet one. The genomic analysis performed by high throughput sequencing returned a number of sequences for each sample ranging from 110,619 to 373,307. More than 93% were assigned to the Bacteria domain. Seven and nine major phyla were sequenced for the SADB and wet digestion, respectively, with Bacteroidetes, Firmicutes and Proteobacteria being the dominant phyla in both digesters. Taxonomic profiles suggested a methanogenic pathway characterized by a relevant syntrophic acetate-oxidizing metabolism mainly in the liquid digestate of the SADB. This result also confirms the benefits of liquid digestate recirculation for improving the efficiency of AD performed with high solids (>30%w/w) content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion.

    PubMed

    Fagbohungbe, Michael O; Herbert, Ben M J; Hurst, Lois; Ibeto, Cynthia N; Li, Hong; Usmani, Shams Q; Semple, Kirk T

    2017-03-01

    Biochar, like most other adsorbents, is a carbonaceous material, which is formed from the combustion of plant materials, in low-zero oxygen conditions and results in a material, which has the capacity to sorb chemicals onto its surfaces. Currently, research is being carried out to investigate the relevance of biochar in improving the soil ecosystem, digestate quality and most recently the anaerobic digestion process. Anaerobic digestion (AD) of organic substrates provides both a sustainable source of energy and a digestate with the potential to enhance plant growth and soil health. In order to ensure that these benefits are realised, the anaerobic digestion system must be optimized for process stability and high nutrient retention capacity in the digestate produced. Substrate-induced inhibition is a major issue, which can disrupt the stable functioning of the AD system reducing microbial breakdown of the organic waste and formation of methane, which in turn reduces energy output. Likewise, the spreading of digestate on land can often result in nutrient loss, surface runoff and leaching. This review will examine substrate inhibition and their impact on anaerobic digestion, nutrient leaching and their environmental implications, the properties and functionality of biochar material in counteracting these challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Teaching Foreign Policy in the Post-Cold War Era. ERIC Digest.

    ERIC Educational Resources Information Center

    Graseck, Susan

    This ERIC Digest discusses issues relating to teaching about U.S. foreign policy in the changing international environment following the end of the Cold War era and the disintegration of the Soviet Union. The document treats: (1) the need and rationale for teaching and learning about current foreign policy issues; (2) main themes in foreign policy…

  8. Low cost digester monitoring under realistic conditions: Rural use of biogas and digestate quality.

    PubMed

    Castro, L; Escalante, H; Jaimes-Estévez, J; Díaz, L J; Vecino, K; Rojas, G; Mantilla, L

    2017-09-01

    The purpose of this work was to assess the behaviour of anaerobic digestion of cattle manure in a rural digester under realistic conditions, and estimate the quality and properties of the digestate. The data obtained during monitoring indicated that the digester operation was stable without risk of inhibition. It produced an average of 0.85Nm 3 biogas/d at 65.6% methane, providing an energy savings of 76%. In addition, the digestate contained high nutrient concentrations, which is an important feature of fertilizers. However, this method requires post-treatment due to the presence of pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Actinidin enhances protein digestion in the small intestine as assessed using an in vitro digestion model.

    PubMed

    Kaur, Lovedeep; Rutherfurd, Shane M; Moughan, Paul J; Drummond, Lynley; Boland, Mike J

    2010-04-28

    This paper describes an in vitro study that tests the proposition that actinidin from green kiwifruit influences the digestion of proteins in the small intestine. Different food proteins, from sources including soy, meat, milk, and cereals, were incubated in the presence or absence of green kiwifruit extract (containing actinidin) using a two-stage in vitro digestion system consisting of an incubation with pepsin at stomach pH (simulating gastric digestion) and then with added pancreatin at small intestinal pH, simulating upper tract digestion in humans. The digests from the small intestinal stage (following the gastric digestion phase) were subjected to gel electrophoresis (SDS-PAGE) to assess loss of intact protein and development of large peptides during the in vitro simulated digestion. Kiwifruit extract influenced the digestion patterns of all of the proteins to various extents. For some proteins, actinidin had little impact on digestion. However, for other proteins, the presence of kiwifruit extract resulted in a substantially greater loss of intact protein and different peptide patterns from those seen after digestion with pepsin and pancreatin alone. In particular, enhanced digestion of whey protein isolate, zein, gluten, and gliadin was observed. In addition, reverse-phase HPLC (RP-HPLC) analysis showed that a 2.5 h incubation of sodium caseinate with kiwifruit extract alone resulted in approximately 45% loss of intact protein.

  10. Digestion and digestive-transport surfaces in cestodes and their fish hosts.

    PubMed

    Izvekova, G I; Kuperman, B I; Kuz'mina, V V

    1997-12-01

    The structural and functional organization of digestive-transport surfaces in some lower cestodes and their fish hosts was studied. It has been shown that the ultrastructure of cestode microtriches and fish enterocyte microvilli being the basis of membrane-linked digestion is quite similar. These organelles increase the digestive-transport surfaces both in helminths and fishes. However, the hydrolytic enzyme activity in helminths is usually 2-4 times lower than that of the fishes. Desorption (adsorption) characteristics of various hydrolases in helminths and fishes are also different. In helminths the easily desorbed fraction of each enzyme is always more abundant than in fishes. In contrast, the intensity of transport processes in helminths is higher when compared with fishes. The adaptation of digestive-transport surfaces and enzyme systems to feeding conditions is discussed.

  11. Standardized Ileal Amino Acid Digestibility of Commonly Used Feed Ingredients in Growing Broilers

    PubMed Central

    Ullah, Zafar; Ahmed, Gulraiz; Nisa, Mehr un; Sarwar, Muhammad

    2016-01-01

    This experiment was conducted to determine standardized ileal amino acid digestibility (SIAAD) of commonly used feed ingredients in poultry diets in Pakistan. These feed ingredients included corn, rice broken (RB), rice polishings (RP), wheat bran (WB), sunflower meal (SFM), cottonseed meal (CSM), guar meal (GM), soybean meal (SBM) from India and Argentine and fish meal (FM). The SIAAD of each ingredient was determined in triplicate using 21-days-old broilers. Day-old male broiler chicks (Hubbard× Hubbard) were reared on corn-SBM based diet from 1 to 13 days and thereafter birds were fed experimental diets from day 14 to 21. Each diet was fed to 36 birds kept in six replicate cages, each cage had six birds. In cereals, the SIAAD of corn’s amino acid (AA) (90.1%) was similar (p>0.05) to RB (89.0%). Isoleucine (97.8%) and lysine (96.9%) were highly digestible AA in corn and RB, respectively. Among cereal-by products, WB’s SIAAD (76.9%) was same (p>0.05) as RP (71.9%). Arginine from WB (82.5%) and RP (83.2%) was highly digestible. However, threonine in WB (72.7%) and leucine in RP (69.6%) were the lowest digestible AAs. In plant protein meals, AAs from Argentine-SBM (85.1%) and Indian-SBM (83.4%) had higher (p<0.5) SIAAD than other protein meals. However, SIAAD of SFM (77.1%) and CSM (71.7%) was intermediate while GM (60.3%) exhibited the lowest (p<0.05) SIAAD among all ingredients. Arginine from GM (76.9%), CSM (85.8%), SBM-India (89.5%) and SBM-Argentine (91.5%) was highly digestible from indispensable AAs. In SFM, methionine (91.4%) SIAAD was the greatest. The average SIAAD of FM was 77.6%. Alanine from FM had the highest (84.0%) but cysteine (62.8%) had the lowest SIAAD. In conclusion, cereals i.e. corn and RB had higher (p<0.05) SIAAD of the cereals by-products. The SIAAD of RP and WB was same (p>0.05). The SBM from plant protein meals had higher (p<0.05) SIAAD than other studied feed ingredients. However, the GM had the lowest (p<0.05) SIAAD among protein

  12. [Tale nucleases--new tool for genome editing].

    PubMed

    Glazkova, D V; Shipulin, G A

    2014-01-01

    The ability to introduce targeted changes in the genome of living cells or entire organisms enables researchers to meet the challenges of basic life sciences, biotechnology and medicine. Knockdown of target genes in the zygotes gives the opportunity to investigate the functions of these genes in different organisms. Replacement of single nucleotide in the DNA sequence allows to correct mutations in genes and thus to cure hereditary diseases. Adding transgene to specific genomic.loci can be used in biotechnology for generation of organisms with certain properties or cell lines for biopharmaceutical production. Such manipulations of gene sequences in their natural chromosomal context became possible after the emergence of the technology called "genome editing". This technology is based on the induction of a double-strand break in a specific genomic target DNA using endonucleases that recognize the unique sequences in the genome and on subsequent recovery of DNA integrity through the use of cellular repair mechanisms. A necessary tool for the genome editing is a custom-designed endonuclease which is able to recognize selected sequences. The emergence of a new type of programmable endonucleases, which were constructed on the basis of bacterial proteins--TAL-effectors (Transcription activators like effector), has become an important stage in the development of technology and promoted wide spread of the genome editing. This article reviews the history of the discovery of TAL effectors and creation of TALE nucleases, and describes their advantages over zinc finger endonucleases that appeared earlier. A large section is devoted to description of genetic modifications that can be performed using the genome editing.

  13. Comparison of gastrointestinal transit times between chickens from D+ and D- genetic lines selected for divergent digestion efficiency.

    PubMed

    Rougière, N; Carré, B

    2010-11-01

    D+ (high digestion efficiency) and D- (low digestion efficiency) genetic chicken lines selected for divergent digestion efficiency were compared in this experiment. Gizzard functions were tested in terms of digesta mean retention time and reactions to high dilution of a corn diet with 15% coarse sunflower hulls. The corn standard (S) and high fibre (F) experimental diets were given from 9 days of age to chickens from both lines. Besides the measurements of growth efficiencies (9 to 20 days), digestibilities (20 to 23 days) and gut anatomy (0, 9, 29, 42 and 63 days), two digestive transit studies were performed at 9 and 29 days of age. For the transit studies, the S and F diets were labelled with 0.5% TiO2 and 1% Cr-mordanted sunflower hulls. These diets were fed ad libitum during 3 days, and then the birds were euthanized. The digestive contents were analysed for the determination of marker concentrations and mean retention times (MRTs) in digestive compartments (crop + oesophagus, proventriculus + gizzard, duodenum + jejunum, ileum, rectum + cloaca and caeca) were determined. D+ birds were confirmed as better digesters than D- birds during the growth period, in association with larger gizzard and pancreas, and lighter small intestine in D+ than in D-birds. The MRT in the proventriculus-gizzard system, higher in D+ than in D- birds, was a major factor associated with differences between D+ and D- birds regarding digestion efficiencies and gut anatomy. Diet dilution with fibres reduced differences in digestion efficiencies and proventriculus-gizzard MRT between lines. Differences in gut anatomy between lines tended to disappear after 8 weeks of age. In conclusion, this study showed that MRT in the proventriculus-gizzard system was a major factor associated with genotype differences between the D+ and D- genetic chicken lines selected for divergent digestion efficiency, with longer MRT found in D+ than in D- birds.

  14. A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells

    PubMed Central

    Tu, Mengjun; Lin, Li; Cheng, Yilu; He, Xiubin; Sun, Huihui; Xie, Haihua; Fu, Junhao; Liu, Changbao; Li, Jin; Chen, Ding; Xi, Haitao; Xue, Dongyu; Liu, Qi; Zhao, Junzhao; Gao, Caixia; Song, Zongming; Qu, Jia

    2017-01-01

    Abstract Cpf1 nucleases were recently reported to be highly specific and programmable nucleases with efficiencies comparable to those of SpCas9. AsCpf1 and LbCpf1 require a single crRNA and recognize a 5′-TTTN-3′ protospacer adjacent motif (PAM) at the 5′ end of the protospacer for genome editing. For widespread application in precision site-specific human genome editing, the range of sequences that AsCpf1 and LbCpf1 can recognize is limited due to the size of this PAM. To address this limitation, we sought to identify a novel Cpf1 nuclease with simpler PAM requirements. Specifically, here we sought to test and engineer FnCpf1, one reported Cpf1 nuclease (FnCpf1) only requires 5′-TTN-3′ as a PAM but does not exhibit detectable levels of nuclease-induced indels at certain locus in human cells. Surprisingly, we found that FnCpf1 possesses DNA cleavage activity in human cells at multiple loci. We also comprehensively and quantitatively examined various FnCpf1 parameters in human cells, including spacer sequence, direct repeat sequence and the PAM sequence. Our study identifies FnCpf1 as a new member of the Cpf1 family for human genome editing with distinctive characteristics, which shows promise as a genome editing tool with the potential for both research and therapeutic applications. PMID:28977650

  15. The modification of siRNA with 3' cholesterol to increase nuclease protection and suppression of native mRNA by select siRNA polyplexes.

    PubMed

    Ambardekar, Vishakha V; Han, Huai-Yun; Varney, Michelle L; Vinogradov, Serguei V; Singh, Rakesh K; Vetro, Joseph A

    2011-02-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3' cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Lactose (mal)digestion evaluated by the 13C-lactose digestion test.

    PubMed

    Vonk, R J; Lin, Y; Koetse, H A; Huang, C; Zeng, G; Elzinga, H; Antoine, J; Stellaard, F

    2000-02-01

    The prevalence of genetically determined lactase nonpersistence is based on the results of the lactose H2 breath test. This test, however, is an indirect test, which might lead to misinterpretation. We determined lactase activity in healthy Chinese and Dutch students using a novel 13C-lactose digestion test. The cut-off value of this test was established in a Chinese population with a homogenous genetic background of lactase nonpersistence and was compared with the results obtained in a Caucasian population. Twenty-five grams of a 13C-lactose solution was consumed by 12 known H2-positive and 5 H2-negative Chinese students and 48 Dutch students and, subsequently, 13C-glucose concentration in plasma and H2 excretion in breath were measured. A similar 13C-glucose response curve was found in all Chinese students. The mean response curve in the Dutch students was more pronounced (P < 0.01). The 1 h (peak) plasma 13C-glucose concentration was the best discriminator between lactose digesting and maldigesting subjects. The cut-off level of 2 mmol L-1 13C-glucose in plasma was defined in the H2-positive Chinese students group. Based on the 13C-glucose response the prevalence of lactose maldigestion in the Dutch subjects was 25%; based on the lactose H2 breath test 17%. Using the 13C-lactose digestion test the results demonstrate a higher prevalence of lactose maldigestion in a Caucasian population than indicated by the results of the H2 breath test. A moderate increase in the plasma 13C-glucose concentration after consumption of 13C-lactose in the young adult Chinese subjects indicates a residual lactase activity in that age group, even when a positive H2 breath test result is obtained. These results indicate that the 13C-glucose concentration in plasma more accurately reflects the small intestinal lactose digestion capacity than the lactose H2 breath test.

  17. Flux analysis of the human proximal colon using anaerobic digestion model 1.

    PubMed

    Motelica-Wagenaar, Anne Marieke; Nauta, Arjen; van den Heuvel, Ellen G H M; Kleerebezem, Robbert

    2014-08-01

    The colon can be regarded as an anaerobic digestive compartment within the gastro intestinal tract (GIT). An in silico model simulating the fluxes in the human proximal colon was developed on basis of the anaerobic digestion model 1 (ADM1), which is traditionally used to model waste conversion to biogas. Model calibration was conducted using data from in vitro fermentation of the proximal colon (TIM-2), and, amongst others, supplemented with the bio kinetics of prebiotic galactooligosaccharides (GOS) fermentation. The impact of water and solutes absorption by the host was also included. Hydrolysis constants of carbohydrates and proteins were estimated based on total short chain fatty acids (SCFA) and ammonia production in vitro. Model validation was established using an independent dataset of a different in vitro model: an in vitro three-stage continuous culture system. The in silico model was shown to provide quantitative insight in the microbial community structure in terms of functional groups, and the substrate and product fluxes between these groups as well as the host, as a function of the substrate composition, pH and the solids residence time (SRT). The model confirms the experimental observation that methanogens are washed out at low pH or low SRT-values. The in silico model is proposed as useful tool in the design of experimental setups for in vitro experiments by giving insight in fermentation processes in the proximal human colon. Copyright © 2014. Published by Elsevier Ltd.

  18. Glucan-rich diet is digested and taken up by the carnivorous sundew (Drosera rotundifolia L.): implication for a novel role of plant β-1,3-glucanases.

    PubMed

    Michalko, Jaroslav; Socha, Peter; Mészáros, Patrik; Blehová, Alžbeta; Libantová, Jana; Moravčíková, Jana; Matušíková, Ildikó

    2013-10-01

    Carnivory in plants evolved as an adaptation strategy to nutrient-poor environments. Thanks to specialized traps, carnivorous plants can gain nutrients from various heterotrophic sources such as small insects. Digestion in traps requires a coordinated action of several hydrolytic enzymes that break down complex substances into simple absorbable nutrients. Among these, several pathogenesis-related proteins including β-1,3-glucanases have previously been identified in digestive fluid of some carnivorous species. Here we show that a single acidic endo-β-1,3-glucanase of ~50 kDa is present in the digestive fluid of the flypaper-trapped sundew (Drosera rotundifolia L.). The enzyme is inducible with a complex plant β-glucan laminarin from which it releases simple saccharides when supplied to leaves as a substrate. Moreover, thin-layer chromatography of digestive exudates showed that the simplest degradation products (especially glucose) are taken up by the leaves. These results for the first time point on involvement of β-1,3-glucanases in digestion of carnivorous plants and demonstrate the uptake of saccharide-based compounds by traps. Such a strategy could enable the plant to utilize other types of nutritional sources e.g., pollen grains, fungal spores or detritus from environment. Possible multiple roles of β-1,3-glucanases in the digestive fluid of carnivorous sundew are also discussed.

  19. Solid State Fermentation of a Raw Starch Digesting Alkaline Alpha-Amylase from Bacillus licheniformis RT7PE1 and Its Characteristics.

    PubMed

    Tabassum, Romana; Khaliq, Shazia; Rajoka, Muhammad Ibrahim; Agblevor, Foster

    2014-01-01

    The thermodynamic and kinetic properties of solids state raw starch digesting alpha amylase from newly isolated Bacillus licheniformis RT7PE1 strain were studied. The kinetic values Q p , Y p/s , Y p/X , and q p were proved to be best with 15% wheat bran. The molecular weight of purified enzyme was 112 kDa. The apparent K m and V max values for starch were 3.4 mg mL(-1) and 19.5 IU mg(-1) protein, respectively. The optimum temperature and pH for α -amylase were 55°C, 9.8. The half-life of enzyme at 95°C was 17h. The activation and denaturation activation energies were 45.2 and 41.2 kJ mol(-1), respectively. Both enthalpies (ΔH (∗)) and entropies of activation (ΔS (∗)) for denaturation of α -amylase were lower than those reported for other thermostable α -amylases.

  20. Solid State Fermentation of a Raw Starch Digesting Alkaline Alpha-Amylase from Bacillus licheniformis RT7PE1 and Its Characteristics

    PubMed Central

    Tabassum, Romana; Khaliq, Shazia; Rajoka, Muhammad Ibrahim; Agblevor, Foster

    2014-01-01

    The thermodynamic and kinetic properties of solids state raw starch digesting alpha amylase from newly isolated Bacillus licheniformis RT7PE1 strain were studied. The kinetic values Q p, Y p/s, Y p/X, and q p were proved to be best with 15% wheat bran. The molecular weight of purified enzyme was 112 kDa. The apparent K m and V max values for starch were 3.4 mg mL−1 and 19.5 IU mg−1 protein, respectively. The optimum temperature and pH for α-amylase were 55°C, 9.8. The half-life of enzyme at 95°C was 17h. The activation and denaturation activation energies were 45.2 and 41.2 kJ mol−1, respectively. Both enthalpies (ΔH ∗) and entropies of activation (ΔS ∗) for denaturation of α-amylase were lower than those reported for other thermostable α-amylases. PMID:24587909