Sample records for s1 truss segment

  1. S1 Truss Segment

    NASA Image and Video Library

    2009-03-18

    S119-E-006616 (18 March 2009) --- The International Space Station’s starboard truss is featured in this image photographed by a STS-119 crewmember while Space Shuttle Discovery is docked with the station.

  2. STS-112 S1 Truss Payload arrives at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy airplane, with the International Space Station's (ISS) S1 truss aboard, rolls to a stop at KSC's Shuttle Landing Facility. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the I SS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communicatio ns systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique 'fold-away' nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an elec tric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be transferred to the Operations and Checkout Building

  3. Newly Installed S-1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. This is a view of the newly installed S1 Truss as photographed during the mission's first scheduled EVA. The Station's Canadarm2 is in the foreground. Visible are astronauts Piers J. Sellers (lower left) and David A. Wolf (upper right), both STS-112 mission specialists.

  4. International Space Station (ISS) S1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Shown here is the International Space Station (ISS) S1 Truss in preparation for installation in the payload bay of the Space Shuttle Atlantis at NASA's Kennedy Space Center )KSC)in Florida. The truss launched October 7, 2002 on the STS-112 mission and will be attached during three spacewalks. Constructed primarily of aluminum, it measures 45 feet long, 15 feet wide, 10 feet tall, and weighs over 27,000 pounds. It is one of nine similar truss segments that, combined, will serve as the Station's main backbone, measuring 356 feet from end to end upon completion. Manufactured by the Boeing Company in Huntington Beach, California, the truss was flown to the Marshall Space Flight Center, in Huntsville, Alabama where brackets, cable trays, fluid tubing, and other secondary components and outfitting items were added. In Huntsville, it was screened for manufacturing flaws, including pressure and leak checking tubing, and electrical checks for cabling, before being shipped to KSC for final hardware installation and testing. The Space Station's labs, living modules, solar arrays, heat radiators, and other main components will be attached to the truss.

  5. STS-113 Mission Specialists review data on the P1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialists John Herrington (left) and Michael Lopez-Alegria (right) look over the P1 Integrated Truss Structure, the primary payload for the mission. The P1 truss will be attached to the central truss segment, S0 Truss, during spacewalks. The payload also includes the Crew and Equipment Translation Aid (CETA) Cart B that can be used by spacewalkers to move along the truss with equipment. STS-113 is scheduled to launch Oct. 6, 2002

  6. STS-113 Mission Specialists review data on the P1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialists John Herrington (left) and Michael Lopez-Alegria (right) look over the P1 Integrated Truss Structure, the primary payload for the mission. The P1 truss will be attached to the central truss segment, S0 Truss, during spacewalks. The payload also includes the Crew and Equipment Translation Aid (CETA) Cart B that can be used by spacewalkers to move along the truss with equipment. STS-113 is scheduled to launch Oct. 6, 2002.

  7. EVA 2 - Tani on S1 truss.

    NASA Image and Video Library

    2007-10-28

    S120-E-007003 (28 Oct. 2007) --- Astronaut Daniel Tani, Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station. During the 6-hour, 33-minute spacewalk Tani and astronaut Scott Parazynski (out of frame), STS-120 mission specialist, worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of "shavings" he found under the joint's multi-layer insulation covers. Also the spacewalkers outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later.

  8. EVA 2 - Tani on S1 truss

    NASA Image and Video Library

    2007-10-28

    S120-E-007119 (28 Oct. 2007) --- Astronaut Daniel Tani, Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station. During the 6-hour, 33-minute spacewalk Tani and astronaut Scott Parazynski (out of frame), STS-120 mission specialist, worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of "shavings" he found under the joint's multi-layer insulation covers. Also the spacewalkers outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later.

  9. STS-113 Mission Specialists review data on the P1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialists Michael Lopez-Alegria (left) and John Herrington (center) review data on the P1 Integrated Truss Structure with a technician in the Space Station Processing Facility. During the mission, the P1 truss will be attached to the central truss segment, S0 Truss, during spacewalks. The payload also includes the Crew and Equipment Translation Aid (CETA) Cart B that can be used by spacewalkers to move along the truss with equipment. STS-113 is scheduled to launch Oct. 6, 2002.

  10. STS-119 Extravehicular Activity (EVA) 1 S6 Truss Umbilical Mate OPS

    NASA Image and Video Library

    2009-03-19

    S119-E-006674 (19 March 2009) --- Astronaut Steve Swanson (center), STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  11. In the O&C Building, the P3 truss, an ISS segment, is revealed inside its shipping container

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Operations and Checkout Building, cranes lift the top of the shipping container containing the port-side P3 truss, a segment of the International Space Station (ISS). The truss is scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. The second port truss segment, P3 will be attached to the first port truss segment (P1).

  12. STS-113 Mission Specialist Michael Lopez-Alegria looks over the P1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist Michael Lopez-Alegria looks over the P1 Integrated Truss Structure, the primary payload for the mission. The P1 truss will be attached to the central truss segment, S0 Truss, during spacewalks. The payload also includes the Crew and Equipment Translation Aid (CETA) Cart B that can be used by spacewalkers to move along the truss with equipment. STS-113 is scheduled to launch Oct. 6, 2002.

  13. STS-119 Extravehicular Activity (EVA) 1 S6 Truss Umbilical Mate OPS

    NASA Image and Video Library

    2009-03-19

    S119-E-006675 (19 March 2009) --- Astronaut Steve Swanson (center right), STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  14. STS-119 Extravehicular Activity (EVA) 1 S6 Truss Umbilical Mate OPS

    NASA Image and Video Library

    2009-03-19

    S119-E-006673 (19 March 2009) --- Astronauts Steve Swanson (center) and Richard Arnold (partially obscured above Swanson), both STS-119 mission specialists, participate in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and Arnold connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  15. Installation of the S1 Truss to the International Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronauts Piers J. Sellers (left ) and David A. Wolf work on the newly installed Starboard One (S1) truss to the International Space Station (ISS) during the STS-112 mission. The primary payloads of this mission, ISS Assembly Mission 9A, were the Integrated Truss Assembly S1 (S One), the starboard side thermal radiator truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  16. The S1 Truss Prior to Installation on the International Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Being attached to the Canadarm2 on the International Space Station (ISS), the Remote Manipulator System arm built by the Canadian Space Agency, the Integrated Truss Assembly (S1) Truss is suspended over the Space Shuttle Orbiter Atlantis' cargo bay. Astronauts Sandra H. Magnus, STS-112 mission specialist, and Peggy A. Whitson, Expedition Five flight engineer, used the Canadarm2 from inside the Destiny laboratory on the ISS to lift the S1 truss out of the orbiter's cargo bay and move it into position prior to its installation on the ISS. The primary payloads of this mission, ISS Assembly Mission 9A, were the Integrated Truss Assembly S1 (S One), the starboard side thermal radiator truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  17. KENNEDY SPACE CENTER, FLA. - In a brief ceremony in the Space Station Processing Facility, Chuck Hardison (left), Boeing senior truss manager, turns over the “key” for the starboard truss segment S3/S4 to Scott Gahring, ISS Vehicle Office manager (acting), Johnson Space Center. The trusses are scheduled to be delivered to the International Space Station on mission STS-117.

    NASA Image and Video Library

    2004-02-12

    KENNEDY SPACE CENTER, FLA. - In a brief ceremony in the Space Station Processing Facility, Chuck Hardison (left), Boeing senior truss manager, turns over the “key” for the starboard truss segment S3/S4 to Scott Gahring, ISS Vehicle Office manager (acting), Johnson Space Center. The trusses are scheduled to be delivered to the International Space Station on mission STS-117.

  18. KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper talks to workers in the Space Station Processing Facility. She and other crew members are at KSC for hardware familiarization. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper talks to workers in the Space Station Processing Facility. She and other crew members are at KSC for hardware familiarization. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  19. STS-110 S0 Truss Removed From Cargo Bay

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Backdropped against the blackness of space and the Earth's horizon, the S0 (S-zero) truss is removed from Atlantis' cargo bay and onto the Destiny laboratory of the International Space Station (ISS) by Astronauts Ellen Ochoa, STS-110 mission specialist, and Daniel W. Bursch, Expedition Four flight engineer, using the ISS' Canadarm2. Space Shuttle Orbiter Atlantis, STS-110 mission, prepared the International Space Station (ISS) for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000-pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first use of the Station's robotic arm to maneuver spacewalkers around the Station and it was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  20. P1 Truss and JEM Pressurized Module (JPM)

    NASA Image and Video Library

    2009-03-23

    S119-E-007519 (23 March 2009) --- Astronaut Richard Arnold (lower left on port truss), STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Joseph Acaba (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks. The Japanese Kibo laboratory is visible at right, and the station’s Canadarm2 is at left. The blackness of space and Earth’s horizon provide the backdrop for the scene.

  1. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-92 astronaut team study the the Zenith-1 (Z-1) Truss during the Crew Equipment Interface Test. The Z-1 Truss was officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. The truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS- 92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998.

  2. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. At his side is Tip Talone, NASA director of International Space Station and Payload Processing at KSC. Talone and Col. Duffy received a symbolic key for the truss from John Elbon, Boeing director of ISS ground operations. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS- 92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998.

  3. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. Pictured are The Boeing Co. processing team and STS-92 astronauts. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build- ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998.

  4. STS-119 EVA 3 GAT S1 Truss Flex Hose Rotary Coupler (FHRC) P-Clamp Release

    NASA Image and Video Library

    2009-03-23

    S119-E-007110 (23 March 2009) --- Astronaut Joseph Acaba, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Acaba and Richard Arnold (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  5. STS-119 EVA 3 GAT S1 Truss Flex Hose Rotary Coupler (FHRC) P-Clamp Release

    NASA Image and Video Library

    2009-03-23

    S119-E-007119 (23 March 2009) --- Astronaut Joseph Acaba, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Acaba and Richard Arnold (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  6. P-1 truss arrival at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The P-1 truss, a component of the International Space Station, arrives inside the RLV hangar, located near the Shuttle Landing Facility at KSC. Approaching bad weather caused the detour as a precaution. The truss will eventually be transferred to the Operations and Checkout Building for processing. The P-1 truss, scheduled to fly in spring of 2002, is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by- 15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P-1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  7. A crane is lowered toward the S0 truss to transfer it to a workstand in the

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Operations and Checkout Bldg. (O&C), workers (at left) watch over the maneuvering of the overhead crane toward the S0 truss segment below it. The S0 truss will undergo processing in the O&C during which the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes will be installed. Four Global Positioning System antennas are already installed. A 44- by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, 'Destiny,' which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108.

  8. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A wide-angle view of the floor of the Space Station Processing Facility. The floor is filled with racks and hardware for processing and testing the various components of the International Space Station (ISS). At center left is the Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. It is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998. The large module in the upper right hand corner of the floor is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch).

  9. P-1 truss arrival at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers oversee the placement of the P-1 truss, a component of the International Space Station, onto a flatbed truck that will move it to the Operations and Checkout Building for processing. The P-1 truss, scheduled to fly in spring of 2002, is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by-15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P- 1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  10. Acaba on S1 Truss during STS-119 Extravehicular Activity (EVA) 3

    NASA Image and Video Library

    2009-03-23

    ISS018-E-042538 (23 March 2009) --- Astronaut Joseph Acaba, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Acaba and Richard Arnold (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  11. Arnold on S1 Truss during STS-119 Extravehicular Activity (EVA) 3

    NASA Image and Video Library

    2009-03-23

    ISS018-E-042546 (23 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Joseph Acaba (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  12. P-1 truss arrival at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The P-1 truss, a component of the International Space Station, is moved from the Shuttle Landing Facility toward the newly constructed RLV hangar (viewed here from inside the hangar) as precaution against bad weather approaching the Center (background). The truss will eventually be transferred to the Operations and Checkout Building for processing. In the background is the Super Guppy transport that brought it to KSC. The P-1 truss, scheduled to fly in spring of 2002, is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by-15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P- 1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  13. STS-112 crew in front of S0 Truss Structure

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the STS-112 crew stands under the S0 Integrated Truss Structure, waiting to be transported to the launch pad for mission STS-110. From left are Mission Specialist David Wolf, Pilot Pam ela Melroy; Commander Jeffrey Ashby; and Mission Specialist Piers Sellers. Mission STS-112 will be ferrying the S1 ITS to the International Space Station on its scheduled Aug. 15 flight. The S1 truss will be attached to the S0 truss

  14. The P4 truss is moved to a workstand in the SSPF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Suspended by an overhead crane in the Space Station Processing Facility, the International Space Station's P4 truss moves toward a workstand. Below and behind it on the floor is the Multi- Purpose Logistics Module Raffaello, another segment of the Space Station. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

  15. The P4 truss is moved to a workstand in the SSPF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After its move across the Space Station Processing Facility, the International Space Station's P4 truss rests in its workstand. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

  16. The P4 truss is moved to a workstand in the SSPF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, workers get ready to lower the International Space Station's P4 truss onto a workstand. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

  17. A crane moves toward the S0 truss to transfer it to a workstand in the O&C Bldg.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Operations and Checkout Bldg. (O&C), an overhead crane is centered over the S0 truss segment before lowering. The crane will move it to a workstand in the O&C where it will undergo processing. In the foreground is the protective cover just removed. During the processing, the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes will be installed. Four Global Positioning System antennas are already installed. A 44- by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, 'Destiny,' which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108.

  18. P-1 truss moved to O&C Building

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Cranes place the P-1 truss, a component of the International Space Station, on a transport vehicle that will move it to the Operations and Checkout Building for processing. The truss had been temporarily stored in the RLV hangar in the background as a precaution against approaching bad weather. The P-1 truss, scheduled to fly in spring of 2002, is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by- 15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P-1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  19. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 during its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000-pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  20. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000- pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 mission following its undocking from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  1. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 during its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  2. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 upon its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  3. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 mission following its undocking from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  4. P-1 truss moves into O&C Building

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The P-1 truss, a component of the International Space Station, sits inside the Operations and Checkout Building where it will undergo processing. The truss, scheduled to fly in spring of 2002, is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by-15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P-1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  5. The P4 truss is moved to a workstand in the SSPF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, workers oversee the removal of the P4 truss from the truck that transported it from Tulsa, Okla. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field on the International Space Station, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

  6. The P-1 truss in the O&C

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Part of the P-1 truss is seen as it rests in a workstand in the Operations and Checkout Building. Scheduled to fly in spring of 2002, the P-1 is part of a total 10-truss, girder-like structure that will ultimately extend the length of a football field. Astronauts will attach the 14- by 15-foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P-1 will house the thermal radiator rotating joint (TRRJ) that will rotate the International Space Station's radiators away from the sun to increase their maximum cooling efficiency.

  7. S3/S4 Integrated Truss being moved into the Space Shuttle Payloa

    NASA Image and Video Library

    2007-02-07

    In the Space Station Processing Facility, an overhead crane moves the S3/S4 integrated truss to a payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.

  8. S3/S4 Integrated Truss being moved into the Space Shuttle Payloa

    NASA Image and Video Library

    2007-02-07

    In the Space Station Processing Facility, an overhead crane settles the S3/S4 integrated truss into the payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.

  9. S3/S4 Integrated Truss being moved into the Space Shuttle Payloa

    NASA Image and Video Library

    2007-02-07

    In the Space Station Processing Facility, an overhead crane lowers the S3/S4 integrated truss into the open bay of the payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.

  10. S3/S4 Integrated Truss being moved into the Space Shuttle Payloa

    NASA Image and Video Library

    2007-02-07

    In the Space Station Processing Facility, an overhead crane lowers the S3/S4 integrated truss toward the open doors of the payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.

  11. S3/S4 Integrated Truss being moved into the Space Shuttle Payloa

    NASA Image and Video Library

    2007-02-07

    In the Space Station Processing Facility, workers attach an overhead crane to the S3/S4 integrated truss in order to move it to the payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.

  12. STS-117 S3 and S4 Trusses in the Space Shuttle Atlantis Cargo Bay

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This nadir view of the STS-117 mission Space Shuttle Atlantis, taken by the Expedition 15 crew aboard the International Space Station (ISS), occurred just before the two spacecraft linked up in Earth orbit. Berthed in the cargo bay are the 17.8 ton second and third (S3 and S4) truss segments ready for installment. STS-117 mission objectives included the addition of S3 and S4 with Photovoltaic Radiator (PVR), the deployment of the third set of solar arrays, and the retraction of the P4 starboard solar array wing and one radiator.

  13. P-1 truss moved to work stand in O&C Building

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Operations and Checkout Building, an overhead crane lifts the top of the canister containing the P-1 truss, a component of the International Space Station. The truss, scheduled to fly in spring of 2002, is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by- 15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P-1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  14. Experimental characterization of deployable trusses and joints

    NASA Technical Reports Server (NTRS)

    Ikegami, R.; Church, S. M.; Keinholz, D. A.; Fowler, B. L.

    1987-01-01

    The structural dynamic properties of trusses are strongly affected by the characteristics of joints connecting the individual beam elements. Joints are particularly significant in that they are often the source of nonlinearities and energy dissipation. While the joints themselves may be physically simple, direct measurement is often necessary to obtain a mathematical description suitable for inclusion in a system model. Force state mapping is a flexible, practical test method for obtaining such a description, particularly when significant nonlinear effects are present. It involves measurement of the relationship, nonlinear or linear, between force transmitted through a joint and the relative displacement and velocity across it. An apparatus and procedure for force state mapping are described. Results are presented from tests of joints used in a lightweight, composite, deployable truss built by the Boeing Aerospace Company. The results from the joint tests are used to develop a model of a full 4-bay truss segment. The truss segment was statically and dynamically tested. The results of the truss tests are presented and compared with the analytical predictions from the model.

  15. Laser Truss Sensor for Segmented Telescope Phasing

    NASA Technical Reports Server (NTRS)

    Liu, Duncan T.; Lay, Oliver P.; Azizi, Alireza; Erlig, Herman; Dorsky, Leonard I.; Asbury, Cheryl G.; Zhao, Feng

    2011-01-01

    A paper describes the laser truss sensor (LTS) for detecting piston motion between two adjacent telescope segment edges. LTS is formed by two point-to-point laser metrology gauges in a crossed geometry. A high-resolution (<30 nm) LTS can be implemented with existing laser metrology gauges. The distance change between the reference plane and the target plane is measured as a function of the phase change between the reference and target beams. To ease the bandwidth requirements for phase detection electronics (or phase meter), homodyne or heterodyne detection techniques have been used. The phase of the target beam also changes with the refractive index of air, which changes with the air pressure, temperature, and humidity. This error can be minimized by enclosing the metrology beams in baffles. For longer-term (weeks) tracking at the micron level accuracy, the same gauge can be operated in the absolute metrology mode with an accuracy of microns; to implement absolute metrology, two laser frequencies will be used on the same gauge. Absolute metrology using heterodyne laser gauges is a demonstrated technology. Complexity of laser source fiber distribution can be optimized using the range-gated metrology (RGM) approach.

  16. P-1 truss moved to work stand in O&C Building

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The P-1 truss (top of photo), a component of the International Space Station, nears its work stand in the Operations and Checkout Building where it will undergo processing. Scheduled to fly in spring of 2002, the P-1 is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by- 15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P-1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  17. P-1 truss moved to work stand in O&C Building

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The P-1 truss, a component of the International Space Station, is lowered into a work stand in the Operations and Checkout Building where it will undergo processing. Scheduled to fly in spring of 2002, the P-1 is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by-15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P-1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  18. STS-110 payload S0 Truss is moved to payload canister in O&C

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, an overhead crane carries the Integrated Truss Structure S0 from its workstand toward the payload canister. The S0 truss will be transported to the launch pad for mission STS-110. Part of the payload, the S0 truss will become the backbone of the orbiting International Space Station (ISS), at the center of the 10-truss, girderlike structure that will ultimately extend the length of a football field on the ISS. The S0 truss will be attached to the U.S. Lab, 'Destiny,' on the 11-day mission. Launch is scheduled for April 4.

  19. STS-110 payload S0 Truss is moved to payload canister in O&C

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, an overhead crane carries the Integrated Truss Structure S0 to the payload canister which will transport it to the launch pad for mission STS-110. Seen below the truss is the Multi-Purpose Logistics Module Donatello, currently not in use. The S0 truss will be part of the payload on Space Shuttle Atlantis. The S0 truss will be attached to the U.S. Lab, 'Destiny,' on the 11-day mission, becoming the backbone of the orbiting International Space Station (ISS). Launch is scheduled for April 4.

  20. STS-110 payload S0 Truss is moved to payload canister in O&C

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the Integrated Truss Structure S0 is ready to be moved to the payload canister for transport to the launch pad for mission STS-110. Part of the payload, the S0 truss will become the backbone of the orbiting International Space Station (ISS), at the center of the 10-truss, girderlike structure that will ultimately extend the length of a football field on the ISS. The S0 truss will be attached to the U.S. Lab, 'Destiny,' on the 11-day mission. Launch is scheduled for April 4.

  1. Radiator on S0 truss after remote deployment

    NASA Image and Video Library

    2002-10-14

    STS112-E-05563 (14 October 2002) --- View of one of the radiators on the newly installed Starboard One (S1) Truss which was remotely deployed to verify the connections established on the first spacewalk for the STS-112 mission. Its extended length was 75 feet with each of the eight panels being 11 feet wide. The cooling systems will not formally be activated until next year.

  2. STS-110 payload S0 Truss is moved to payload canister in O&C

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Workers in the Operations and Checkout Building watch as the Integrated Truss Structure S0 is lowered into the payload canister. The S0 truss will soon be on its way to the launch pad for mission STS-110. Part of the payload on Space Shuttle Atlantis, the S0 truss will be attached to the U.S. Lab, 'Destiny,' on the 11-day mission, becoming the backbone of the orbiting International Space Station (ISS). Launch is scheduled for April 4.

  3. Graphite composite truss welding and cap section forming subsystems. Volume 2: Program results

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The technology required to develop a beam builder which automatically fabricates long, continuous, lightweight, triangular truss members in space from graphite/thermoplastics composite materials is described. Objectives are: (1) continue the development of forming and welding methods for graphite/thermoplastic (GR/TP) composite material; (2) continue GR/TP materials technology development; and (3) fabricate and structurally test a lightweight truss segment.

  4. View of Port Truss Segments during Expedition 18/STS-126

    NASA Image and Video Library

    2008-11-26

    S126-E-010852 (26 Nov. 2008) --- From inside Endeavour, one of the STS-126 astronauts recorded this view of part of one of the International Space Station trusses and part of a solar panel, backdropped against a blue and white Earth on the eve of Thanksgiving. The ISS and Endeavour crewmembers, after spending almost two weeks together in space, will go separate ways in a couple of days when the two spacecraft undock.

  5. Structural Analysis and Testing of an Erectable Truss for Precision Segmented Reflector Application

    NASA Technical Reports Server (NTRS)

    Collins, Timothy J.; Fichter, W. B.; Adams, Richard R.; Javeed, Mehzad

    1995-01-01

    This paper describes analysis and test results obtained at Langley Research Center (LaRC) on a doubly curved testbed support truss for precision reflector applications. Descriptions of test procedures and experimental results that expand upon previous investigations are presented. A brief description of the truss is given, and finite-element-analysis models are described. Static-load and vibration test procedures are discussed, and experimental results are shown to be repeatable and in generally good agreement with linear finite-element predictions. Truss structural performance (as determined by static deflection and vibration testing) is shown to be predictable and very close to linear. Vibration test results presented herein confirm that an anomalous mode observed during initial testing was due to the flexibility of the truss support system. Photogrammetric surveys with two 131-in. reference scales show that the root-mean-square (rms) truss-surface accuracy is about 0.0025 in. Photogrammetric measurements also indicate that the truss coefficient of thermal expansion (CTE) is in good agreement with that predicted by analysis. A detailed description of the photogrammetric procedures is included as an appendix.

  6. STS-112 M.S. Yurchikhin suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During suitup for launch, STS-112 Mission Specialist Fyodor Yurchikhin shows he is ready for his first Shuttle flight. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B.

  7. The Z1 truss is moved to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, photographers focus on the Integrated Truss Structure Z1, an element of the International Space Station, suspended by a crane overhead. The truss is being moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  8. Optimal actuator placement in adaptive precision trusses

    NASA Technical Reports Server (NTRS)

    Baycan, C. M.; Utku, S.; Das, S. K.; Wada, B. K.

    1992-01-01

    Actuator placement in adaptive truss structures is to cater to two needs: displacement control of precision points and preloading the elements to overcome joint slackness. Due to technological and financial considerations, the number of actuators available is much less than the degrees of freedom of precision points to be controlled and the degree of redundancy of the structure. An approach for optimal actuator location is outlined. Test cases to demonstrate the effectiveness of the scheme are applied to the Precision Segmented Reflector Truss.

  9. Graphite composite truss welding and cap section forming subsystems. Volume 1: Executive summary. [large space structures

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A rolltrusion process was developed for forming of a hybrid, single-ply woven graphite and glass fiber cloth, impregnated with a polysulfone resin and coated with TI02 pigmented P-1700 resin into strips for the on-orbit fabrication of triangular truss segments. Ultrasonic welding in vacuum showed no identifiable effects on weld strength or resin flow characteristics. An existing bench model cap roll forming machine was modified and used to roll form caps for the prototype test truss and for column test specimens in order to test local buckling and torsional instability characteristics.

  10. The Z1 truss is moved to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, workers watch as the Integrated Truss Structure Z1, an element of the International Space Station, is moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  11. The Z1 truss is moved to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, the Integrated Truss Structure Z1, an element of the International Space Station, is moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  12. The Z1 truss is moved to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, the Integrated Truss Structure Z1, an element of the International Space Station, is lifted for moving to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  13. STS-110 payload S0 Truss is moved to payload canister in O&C

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The Integrated Truss Structure S0 arrives at the payload canister in the Operations and Checkout Building for transfer to the launch pad for mission STS-110. Part of the payload on Space Shuttle Atlantis, the S0 truss will be attached to the U.S. Lab, 'Destiny,' on the 11-day mission, becoming the backbone of the orbiting International Space Station (ISS). Launch is scheduled for April 4.

  14. The Z1 truss is transported to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, the payload canister with the Integrated Truss Structure Z1 inside arrives at the spot under the Rotating Service Structure where the canister can be lifted to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. Discovery is at right, sitting atop the Mobile Launcher Platform. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  15. The Z1 truss is transported to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, workers attach umbilical hoses onto the payload canister with the Integrated Truss Structure Z1 inside. The hoses will maintain the environmentally controlled environment while the canister is lifted up the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  16. 2nd EVA - Tani on P6 Truss

    NASA Image and Video Library

    2007-10-28

    S120-E-007038 (28 Oct. 2007) --- Astronaut Daniel Tani (top center), Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station. During the 6-hour, 33-minute spacewalk Tani and astronaut Scott Parazynski (out of frame), STS-120 mission specialist, worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of "shavings" he found under the joint's multi-layer insulation covers. Also the spacewalkers outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later. The moon is visible at lower center.

  17. EVA 3 - P6 truss and arrays

    NASA Image and Video Library

    2007-10-30

    S120-E-007426 (30 Oct. 2007) --- Astronaut Scott Parazynski, STS-120 mission specialist, participates in the third scheduled session of extravehicular activity (EVA) as construction continues on the International Space Station. During the 7-hour, 8-minute spacewalk Parazynski and astronaut Doug Wheelock (out of frame), mission specialist, installed the P6 truss segment with its set of solar arrays to its permanent home, installed a spare main bus switching unit on a stowage platform, and performed a few get-ahead tasks. Also, Parazynski inspected the port Solar Alpha Rotary Joint (SARJ) to gather comparison data for the starboard rotary joint.

  18. EVA 3 - P6 truss and arrays

    NASA Image and Video Library

    2007-10-30

    S120-E-007424 (30 Oct. 2007) --- Astronaut Scott Parazynski, STS-120 mission specialist, participates in the third scheduled session of extravehicular activity (EVA) as construction continues on the International Space Station. During the 7-hour, 8-minute spacewalk Parazynski and astronaut Doug Wheelock (out of frame), mission specialist, installed the P6 truss segment with its set of solar arrays to its permanent home, installed a spare main bus switching unit on a stowage platform, and performed a few get-ahead tasks. Also, Parazynski inspected the port Solar Alpha Rotary Joint (SARJ) to gather comparison data for the starboard rotary joint.

  19. Structural characterization of a first-generation articulated-truss joint for space crane application

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Wu, K. Chauncey; Riutort, Kevin T.; Laufer, Joseph B.; Phelps, James E.

    1992-01-01

    A first-generation space crane articulated-truss joint was statically and dynamically characterized in a configuration that approximated an operational environment. The articulated-truss joint was integrated into a test-bed for structural characterization. Static characterization was performed by applying known loads and measuring the corresponding deflections to obtain load-deflection curves. Dynamic characterization was performed using modal testing to experimentally determine the first six mode shapes, frequencies, and modal damping values. Static and dynamic characteristics were also determined for a reference truss that served as a characterization baseline. Load-deflection curves and experimental frequency response functions are presented for the reference truss and the articulated-truss joint mounted in the test-bed. The static and dynamic experimental results are compared with analytical predictions obtained from finite element analyses. Load-deflection response is also presented for one of the linear actuators used in the articulated-truss joint. Finally, an assessment is presented for the predictability of the truss hardware used in the reference truss and articulated-truss joint based upon hardware stiffness properties that were previously obtained during the Precision Segmented Reflector (PSR) Technology Development Program.

  20. Design, analysis, and testing of the Phase 1 CSI Evolutionary Model erectable truss

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Davis, D. A.; Kintis, D. H.; Brillhart, R. D.; Atkins, E. M.

    1992-01-01

    This report addressed the design, analysis, and testing of the erectable truss structure for the Phase 1 CSI Evolutionary Model (CEM) testbed. The Phase 1 CEM testbed is the second testbed to form part of an ongoing program of focused research at NASA/LaRC in the development of Controls-Structures Integration (CSI) technology. The Phase 1 CEM contains the same overall geometry, weight, and sensor locations as the Phase 0 CEM, but is based in an integrated controller and structure design, whereby both structure and controller design variables are sized simultaneously. The Phase 1 CEM design features seven truss sections composed of struts with tailored mass and stiffness properties. A common erectable joint is used and the strut stiffness is tailored by varying the cross-sectional area. To characterize the structure, static tests were conducted on individual struts and 10-bay truss assemblies. Dynamic tests were conducted on 10-bay truss assemblies as well as the fully-assembled CEM truss. The results indicate that the static and dynamic properties of the structure are predictable, well-characterized, and within the performance requirements established during the Phase 1 CEM integrated controller/structure design analysis.

  1. The Z1 truss is placed in stand to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, the Integrated Truss Structure Z1 rests in the workstand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  2. The Z1 truss is lowered to stand to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, an overhead crane lowers the Integrated Truss Structure Z1 onto a workstand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  3. Sellers translates along the S1 Truss during EVA3 on STS-121 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-07-12

    S121-E-07413 (12 July 2006) --- Astronaut Piers J. Sellers, STS-121 mission specialist, translates along a truss on the International Space Station during the mission's third and final session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the station. A blue and white Earth and the blackness of space form the backdrop for the image.

  4. 25. "CAST IRON HOWE TRUSS CARRYING PENNA STATE HIGHWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. "CAST IRON HOWE TRUSS - CARRYING PENNA STATE HIGHWAY ROUTE #83 OVER READING CO. TRACKS - SOUTH OF READING, PENNA, Dwg. #6 - Sht. #1", dated November 20, 1956, shows partial side elevation of bridge truss, beginning at end post - Reading-Halls Station Bridge, U.S. Route 220, spanning railroad near Halls Station, Muncy, Lycoming County, PA

  5. The Z1 truss is lifted up the RSS on Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With its umbilical hoses stretched out, the payload canister (left) with the Integrated Truss Structure Z1 inside nears the top of the passage to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  6. The Z1 truss is moved into the Payload Changeout Room

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Payload Changeout Room (PCR), workers check the controls on movement of the Integrated Truss Structure Z1 behind them into the PCR from the payload canister. Once sealed inside the PCR, workers will get ready to move the Z1 into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  7. TRUSS, a Novel Tumor Necrosis Factor Receptor 1 Scaffolding Protein That Mediates Activation of the Transcription Factor NF-κB

    PubMed Central

    Soond, Surinder M.; Terry, Jennifer L.; Colbert, Jeff D.; Riches, David W. H.

    2003-01-01

    We describe the cloning and characterization of tumor necrosis factor receptor (TNF-R)-associated ubiquitous scaffolding and signaling protein (TRUSS), a novel TNF-R1-interacting protein of 90.7 kDa. TRUSS mRNA was ubiquitously expressed in mouse tissues but was enriched in heart, liver, and testis. Coimmunoprecipitation experiments showed that TRUSS was constitutively associated with unligated TNF-R1 and that the complex was relatively insensitive to stimulation with TNF-α. Deletion mutagenesis of TNF-R1 indicated that TRUSS interacts with both the membrane-proximal region and the death domain of TNF-R1. In addition, the N-terminal region of TRUSS (residues 1 to 440) contains sequences that permit association with the cytoplasmic domain of TNF-R1. Transient overexpression of TRUSS activated NF-κB and increased NF-κB activation in response to ligation of TNF-R1. In contrast, a COOH-terminal-deletion mutant of TRUSS (TRUSS1-723) was found to inhibit NF-κB activation by TNF-α. Coprecipitation and coimmunoprecipitation assays revealed that TRUSS can interact with TRADD, TRAF2, and components of the IKK complex. These findings suggest that TRUSS may serve as a scaffolding protein that interacts with TNF-R1 signaling proteins and may link TNF-R1 to the activation of IKK. PMID:14585990

  8. Design and Verification of Space Station EVA-Operated Truss Attachment System

    NASA Technical Reports Server (NTRS)

    Katell, Gabriel

    2001-01-01

    This paper describes the design and verification of a system used to attach two segments of the International Space Station (ISS). This system was first used in space to mate the P6 and Z1 trusses together in December 2000, through a combination of robotic and extravehicular tasks. Features that provided capture, coarse alignment, and fine alignment during the berthing process are described. Attachment of this high value hardware was critical to the ISS's sequential assembly, necessitating the inclusion of backup design and operational features. Astronauts checked for the proper performance of the alignment and bolting features during on-orbit operations. During berthing, the system accommodates truss-to-truss relative displacements that are caused by manufacturing tolerances and on-orbit thermal gradients. After bolt installation, the truss interface becomes statically determinate with respect to in-plane shear loads and isolates attach bolts from bending moments. The approach used to estimate relative displacements and the means of accommodating them is explained. Confidence in system performance was achieved through a cost-effective collection of tests and analyses, including thermal, structural, vibration, misalignment, contact dynamics, underwater simulation, and full-scale functional testing. Design considerations that have potential application to other mechanisms include accommodating variations of friction coefficients in the on-orbit joints, wrench torque tolerances, joint preload, moving element clearances at temperature extremes, and bolt-nut torque reaction.

  9. The Z1 truss is transported to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Before dawn, the payload canister (left) with the Integrated Truss Structure Z1 moves slowly up the crawlerway ramp on Launch Pad 39A toward Space Shuttle Discovery in the background. The canister will be lifted up the Rotating Service Structure to the Payload Changeout Room where the Z1 will be removed and transferred to Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  10. The Z1 truss begins its ride up the RSS on Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With the onset of dawn, the payload canister (left) with the Integrated Truss Structure Z1 inside begins its journey up the side of the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  11. The Z1 truss begins its ride up the RSS on Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    As the sky grows lighter, , the payload canister (left) with the Integrated Truss Structure Z1 inside is slowly lifted up the side of the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  12. The Z1 truss is transported to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, the payload canister at left draws closer to the Rotating Service Structure where it will be lifted to the Payload Changeout Room. There its cargo, the Integrated Truss Structure Z1, will be removed and later transferred to Space Shuttle Discovery's payload bay. Discovery is at right, sitting atop the Mobile Launcher Platform. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  13. Perrin near the S0 (S-zero) Truss during STS-111 UF-2 EVA 2

    NASA Image and Video Library

    2002-06-12

    STS111-E-5241 (11 June 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist, photographed near the S0 (S-Zero) Truss on the International Space Station (ISS), participates in the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. During the 5-hour spacewalk, Perrin and Chang-Diaz completed installation of the Mobile Remote Servicer Base System (MBS) on the station’s railcar, the Mobile Transporter. Perrin represents CNES, the French Space Agency.

  14. 14 CFR 23.369 - Rear lift truss.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rear lift truss. 23.369 Section 23.369 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... lift truss. (a) If a rear lift truss is used, it must be designed to withstand conditions of reversed...

  15. 14 CFR 23.369 - Rear lift truss.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rear lift truss. 23.369 Section 23.369 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... lift truss. (a) If a rear lift truss is used, it must be designed to withstand conditions of reversed...

  16. Self-Deploying Trusses Containing Shape-Memory Polymers

    NASA Technical Reports Server (NTRS)

    Schueler, Robert M.

    2008-01-01

    Composite truss structures are being developed that can be compacted for stowage and later deploy themselves to full size and shape. In the target applications, these smart structures will precisely self-deploy and support a large, lightweight space-based antenna. Self-deploying trusses offer a simple, light, and affordable alternative to articulated mechanisms or inflatable structures. The trusses may also be useful in such terrestrial applications as variable-geometry aircraft components or shelters that can be compacted, transported, and deployed quickly in hostile environments. The truss technology uses high-performance shape-memory-polymer (SMP) thermoset resin reinforced with fibers to form a helical composite structure. At normal operating temperatures, the truss material has the structural properties of a conventional composite. This enables truss designs with required torsion, bending, and compression stiffness. However, when heated to its designed glass transition temperature (Tg), the SMP matrix acquires the flexibility of an elastomer. In this state, the truss can be compressed telescopically to a configuration encompassing a fraction of its original volume. When cooled below Tg, the SMP reverts to a rigid state and holds the truss in the stowed configuration without external constraint. Heating the materials above Tg activates truss deployment as the composite material releases strain energy, driving the truss to its original memorized configuration without the need for further actuation. Laboratory prototype trusses have demonstrated repeatable self-deployment cycles following linear compaction exceeding an 11:1 ratio (see figure).

  17. The Z1 truss is ready to be moved into Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Payload Changeout Room (PCR), a worker makes sure the Integrated Truss Structure Z1 is ready to be moved into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  18. 48. REMOVAL OF FIRST TRUSS. The first truss removed here ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. REMOVAL OF FIRST TRUSS. The first truss removed here rests on ground plates and awaits the similar placement of all the trusses for temporary storage. In the foreground are cut out sections of roofing also removed by crane. Note the 1873-74 standing seam sheet metal roof above the 1851 shingling. The roof pole gutters were in part made up of bench back rails. - Twelfth Street Meeting House, 20 South Twelfth Street, Philadelphia, Philadelphia County, PA

  19. 5. Roof Truss Above Service Area, Roof Truss Above Ward, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Roof Truss Above Service Area, Roof Truss Above Ward, Roof Framing Axonometric - National Home for Disabled Volunteer Soldiers - Battle Mountain Sanitarium, Ward 4, 500 North Fifth Street, Hot Springs, Fall River County, SD

  20. STS-113 Astronauts Work on Port One (P1) Truss on International Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 16th American assembly flight and 112th overall American flight to the International Space Station (ISS) launched on November 23, 2002 from Kennedy's launch pad 39A aboard the Space Shuttle Orbiter Endeavor STS-113. Mission objectives included the delivery of the Expedition Six Crew to the ISS, the return of Expedition Five crew back to Earth, and the installation and activation of the Port 1 Integrated Truss Assembly (P1). The first major component installed on the left side of the Station, the P1 truss provides an additional three External Thermal Control System radiators. Weighing in at 27,506 pounds, the P1 truss is 45 feet (13.7 meters) long, 15 feet (4.6 meters) wide, and 13 feet (4 meters) high. Three space walks, aided by the use of the Robotic Manipulator Systems of both the Shuttle and the Station, were performed in the installation of P1. In this photograph, astronauts Michael E. Lopez-Alegria (above) and John B. Herrington (below) work on the newly installed P1 truss during the mission's second scheduled session of extravehicular activity. The space walk lasted 6 hours, 10 minutes. The end effector of the Canadarm2 or Space Station Remote Manipulator System (SSRMS) and Earth's horizon are visible in the bottom of frame.

  1. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Commander Jeffrey Ashby checks out the windshield on Atlantis, the designated orbiter for the mission. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  2. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Pilot Pamela Melroy checks out the windshield on Atlantis, the designated orbiter for the mission. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  3. 1. Title Sheet; Door Profiles; Roof Truss, Protestant Chapel; Mess ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Title Sheet; Door Profiles; Roof Truss, Protestant Chapel; Mess Hall/Corridor Window Jamb; Circular Stair Newel Post and Balustrade - National Home for Disabled Volunteer Soldiers - Battle Mountain Sanitarium, Mess Hall, 500 North Fifth Street, Hot Springs, Fall River County, SD

  4. Efficient development and processing of thermal math models of very large space truss structures

    NASA Technical Reports Server (NTRS)

    Warren, Andrew H.; Arelt, Joseph E.; Lalicata, Anthony L.

    1993-01-01

    As the spacecraft moves along the orbit, the truss members are subjected to direct and reflected solar, albedo and planetary infra-red (IR) heating rates, as well as IR heating and shadowing from other spacecraft components. This is a transient process with continuously changing heating loads and the shadowing effects. The resulting nonuniform temperature distribution may cause nonuniform thermal expansion, deflection and stress in the truss elements, truss warping and thermal distortions. There are three challenges in the thermal-structural analysis of the large truss structures. The first is the development of the thermal and structural math models, the second - model processing, and the third - the data transfer between the models. All three tasks require considerable time and computer resources to be done because of a very large number of components involved. To address these challenges a series of techniques of automated thermal math modeling and efficient processing of very large space truss structures were developed. In the process the finite element and finite difference methods are interfaced. A very substantial reduction of the quantity of computations was achieved while assuring a desired accuracy of the results. The techniques are illustrated on the thermal analysis of a segment of the Space Station main truss.

  5. solveTruss v1.0: Static, global buckling and frequency analysis of 2D and 3D trusses with Mathematica

    NASA Astrophysics Data System (ADS)

    Ozbasaran, Hakan

    Trusses have an important place amongst engineering structures due to many advantages such as high structural efficiency, fast assembly and easy maintenance. Iterative truss design procedures, which require analysis of a large number of candidate structural systems such as size, shape and topology optimization with stochastic methods, mostly lead the engineer to establish a link between the development platform and external structural analysis software. By increasing number of structural analyses, this (probably slow-response) link may climb to the top of the list of performance issues. This paper introduces a software for static, global member buckling and frequency analysis of 2D and 3D trusses to overcome this problem for Mathematica users.

  6. TRUSS exacerbates NAFLD development by promoting IκBα degradation.

    PubMed

    Yu, Chang-Jiang; Wang, Qiu-Shi; Wu, Ming-Ming; Song, Bin-Lin; Liang, Chen; Lou, Jie; Tang, Liang-Liang; Yu, Xiao-Di; Niu, Na; Yang, Xu; Zhang, Bao-Long; Qu, Yao; Liu, Yang; Dong, Zhi-Chao; Zhang, Zhi-Ren

    2018-04-27

    There is no effective treatment method for non-alcoholic fatty liver disease (NAFLD), the most common liver disease. The exact mechanism underlying the pathogenesis of NAFLD remains to be elucidated. Here, we report that tumor necrosis factor receptor-associated ubiquitous scaffolding and signaling protein (TRUSS) acts as a positive regulator of NAFLD and in a variety of metabolic disorders. TRUSS expression was respectively increased in the human liver specimens with NAFLD or non-alcoholic steatohepatitis (NASH), and in the livers of high-fat diet (HFD)-induced and genetically obese (ob/ob) mice. Conditional knockout of TRUSS in hepatocytes significantly ameliorated hepatic steatosis, insulin resistance (IR), glucose intolerance, and inflammatory responses in mice after HFD challenge or in spontaneous obese mice with normal chow (NC) feeding. All these HFD-induced pathological phenotypes were exacerbated in mice overexpressing TRUSS in hepatocytes. We show that TRUSS physically interacts with IκBα and promotes the ubiquitination and degradation of IκBα, which leading to aberrant activation of NF-κB. Overexpressing IκBα S32A/S36A , a phosphorylation-resistant mutant of IκBα, in the hepatocyte-specific TRUSS overexpressing mice almost abolished HFD-induced NAFLD and metabolic disorders. Hepatocyte TRUSS promotes pathological stimuli-induced NAFLD and metabolic disorders, via activation of NF-κB by promoting ubiquitination and degradation of IκBα. Our findings may provide a novel strategy for prevention and treatment of NAFLD by targeting TRUSS. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  7. 63. DETAIL OF TRAVELING CRANE TRUSS FROM NORTHEAST. TRUSS IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. DETAIL OF TRAVELING CRANE TRUSS FROM NORTHEAST. TRUSS IS IN FRONT OF CRUSHED OXIDIZED ORE BIN. THE BARREN SOLUTION TANK IS JUST VISIBLE IN RIGHT BACKGROUND. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  8. P5 Truss installation

    NASA Image and Video Library

    2006-12-12

    S116-E-05764 (11 Dec. 2006) --- The International Space Station's Canadarm2 moves toward the station's new P5 truss section for a hand-off from Space Shuttle Discovery's Remote Manipulator System (RMS) robotic arm.

  9. P5 Truss installation

    NASA Image and Video Library

    2006-12-12

    S116-E-05765 (11 Dec. 2006) --- The International Space Station's Canadarm2 moves toward the station's new P5 truss section for a hand-off from Space Shuttle Discovery's Remote Manipulator System (RMS) robotic arm.

  10. Actuator placement in prestressed adaptive trusses for vibration control

    NASA Technical Reports Server (NTRS)

    Jalihal, P.; Utku, Senol; Wada, Ben K.

    1993-01-01

    This paper describes the optimal location selection of actuators for vibration control in prestressed adaptive trusses. Since prestressed adaptive trusses are statically indeterminate, the actuators to be used for vibration control purposes must work against (1) existing static axial prestressing forces, (2) static axial forces caused by the actuation, and (3) dynamic axial forces caused by the motion of the mass. In statically determinate adaptive trusses (1) and (2) are non - existing. The actuator placement problem in statically indeterminate trusses is therefore governed by the actuation energy and the actuator strength requirements. Assuming output feedback type control of selected vibration modes in autonomous systems, a procedure is given for the placement of vibration controlling actuators in prestressed adaptive trusses.

  11. Nonlinear modeling of truss-plate joints

    Treesearch

    Leslie H. Groom; Anton Polensek

    1992-01-01

    A theoretical model is developed for predicting mechanisms of load transfer between a wood member and a metal die-punched truss plate. The model, which treats a truss-plate tooth as a beam on an inelastic foundation of wood and applies Runae-Kutta numerical analysis to solve the governing differentia1 equations, predicts the load-disp1acement trace and ultimate load of...

  12. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Mission Specialist Fyodor Yurchikhin looks at Atlantis, the designated orbiter for the mission. Yurchikhin is with the Russian Space Agency. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  13. Multi-Criterion Preliminary Design of a Tetrahedral Truss Platform

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    1995-01-01

    An efficient method is presented for multi-criterion preliminary design and demonstrated for a tetrahedral truss platform. The present method requires minimal analysis effort and permits rapid estimation of optimized truss behavior for preliminary design. A 14-m-diameter, 3-ring truss platform represents a candidate reflector support structure for space-based science spacecraft. The truss members are divided into 9 groups by truss ring and position. Design variables are the cross-sectional area of all members in a group, and are either 1, 3 or 5 times the minimum member area. Non-structural mass represents the node and joint hardware used to assemble the truss structure. Taguchi methods are used to efficiently identify key points in the set of Pareto-optimal truss designs. Key points identified using Taguchi methods are the maximum frequency, minimum mass, and maximum frequency-to-mass ratio truss designs. Low-order polynomial curve fits through these points are used to approximate the behavior of the full set of Pareto-optimal designs. The resulting Pareto-optimal design curve is used to predict frequency and mass for optimized trusses. Performance improvements are plotted in frequency-mass (criterion) space and compared to results for uniform trusses. Application of constraints to frequency and mass and sensitivity to constraint variation are demonstrated.

  14. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Accompanied by a technician, STS-112 Pilot Pamela Melroy (left) and Mission Specialist David Wolf (right) look at the payload and equipment in the bay of Atlantis during a Crew Equipment Interface Test at KSC. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002 .

  15. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - During a Crew Equipment Interface Test, STS-112 Pilot Pamela Melroy (left) and Mission Specialist David Wolf (right) look at equipment pointed out by a technician in the payload bay of Atlantis. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002 .

  16. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Mission Specialist Piers Sellers (foreground) points to an engine line on Atlantis, the designated orbiter for the mission, while Commander Jeffrey Ashby (behind) looks on. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  17. Deployment of the P4 Truss SAW during Expedition 13 / STS-115 Joint Operations

    NASA Image and Video Library

    2006-09-15

    S115-E-06184 (14 Sept. 2006) --- Space Shuttle Atlantis astronauts spread a second set of wings for the International Space Station today. The new solar arrays were fully extended at 7:44 a.m. (CDT). The new arrays span a total of 240 feet and have a width of 38 feet. They are attached to the station's newest component, the P3/P4 integrated truss segment. The installation of the P3/P4, which occurred Sept. 12 and the deployment of the arrays set the stage for future expansion of the station.

  18. Deployment of the P4 Truss SAW during Expedition 13 / STS-115 Joint Operations

    NASA Image and Video Library

    2006-09-15

    S115-E-06186 (14 Sept. 2006) --- Space Shuttle Atlantis astronauts spread a second set of wings for the International Space Station today. The new solar arrays were fully extended at 7:44 a.m. (CDT). The new arrays span a total of 240 feet and have a width of 38 feet. They are attached to the station's newest component, the P3/P4 integrated truss segment. The installation of the P3/P4, which occurred Sept. 12 and the deployment of the arrays set the stage for future expansion of the station.

  19. P4 Truss FWD SAW during Expedition 13 and STS-115 EVA Joint Operations

    NASA Image and Video Library

    2006-09-14

    S115-E-05999 (14 Sept. 2006) --- Space Shuttle Atlantis astronauts spread a second set of wings for the International Space Station today. The new solar arrays were fully extended at 7:44 a.m CDT. The new arrays span a total of 240 feet and have a width of 38 feet. They are attached to the station's newest component, the P3/P4 integrated truss segment. The installation of the P3/P4, which occurred Tuesday, and the deployment of the arrays set the stage for future expansion of the station.

  20. Characterization of the L4-L5-S1 motion segment using the stepwise reduction method.

    PubMed

    Jaramillo, Héctor Enrique; Puttlitz, Christian M; McGilvray, Kirk; García, José J

    2016-05-03

    The two aims of this study were to generate data for a more accurate calibration of finite element models including the L5-S1 segment, and to find mechanical differences between the L4-L5 and L5-S1 segments. Then, the range of motion (ROM) and facet forces for the L4-S1 segment were measured using the stepwise reduction method. This consists of sequentially testing and reducing each segment in nine stages by cutting the ligaments, facet capsules, and removing the nucleus. Five L4-S1 human segments (median: 65 years, range: 53-84 years, SD=11.0 years) were loaded under a maximum pure moment of 8Nm. The ROM was measured using stereo-photogrammetry via tracking of three markers and the facet contact forces (CF) were measured using a Tekscan system. The ROM for the L4-L5 segment and all stages showed good agreement with published data. The major differences in ROM between the L4-L5 and L5-S1 segments were found for lateral bending and all stages, for which the L4-L5 ROM was about 1.5-3 times higher than that of the L5-S1 segment, consistent with L5-S1 facet CF about 1.3 to 4 times higher than those measured for the L4-L5 segment. For the other movements and few stages, the L4-L5 ROM was significantly lower that of the L5-S1 segment. ROM and CF provide important baseline data for more accurate calibration of FE models and to understand the role that their structures play in lower lumbar spine mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Structural Truss Elements and Forces

    ERIC Educational Resources Information Center

    Troyer, Steve; Griffis, Kurt; Shackelford, Ray

    2005-01-01

    In the field of construction, most structures are supported by several groups of truss systems working together synergistically. A "truss" is a group of centered and balanced elements combined to carry a common load (Warner, 2003). Trusses provide strength against loads and forces within a structure. Though a complex field of study, structural…

  2. Concepts and analysis for precision segmented reflector and feed support structures

    NASA Technical Reports Server (NTRS)

    Miller, Richard K.; Thomson, Mark W.; Hedgepeth, John M.

    1990-01-01

    Several issues surrounding the design of a large (20-meter diameter) Precision Segmented Reflector are investigated. The concerns include development of a reflector support truss geometry that will permit deployment into the required doubly-curved shape without significant member strains. For deployable and erectable reflector support trusses, the reduction of structural redundancy was analyzed to achieve reduced weight and complexity for the designs. The stiffness and accuracy of such reduced member trusses, however, were found to be affected to a degree that is unexpected. The Precision Segmented Reflector designs were developed with performance requirements that represent the Reflector application. A novel deployable sunshade concept was developed, and a detailed parametric study of various feed support structural concepts was performed. The results of the detailed study reveal what may be the most desirable feed support structure geometry for Precision Segmented Reflector/Large Deployable Reflector applications.

  3. The Z1 truss is prepped in the PCR for transfer to Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Payload Changeout Room (PCR), workers prepare to move the Integrated Truss Structure Z1 out of the payload canister. Once inside the PCR, workers will get ready to move the Z1 into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  4. KSC-99pp1191

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- A KSC transporter moves the Guppy cargo carrier encasing the S1 truss into the Operations and Checkout Building. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the International Space Station is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001

  5. SpRoUTS (Space Robot Universal Truss System): Reversible Robotic Assembly of Deployable Truss Structures of Reconfigurable Length

    NASA Technical Reports Server (NTRS)

    Jenett, Benjamin; Cellucci, Daniel; Cheung, Kenneth

    2015-01-01

    Automatic deployment of structures has been a focus of much academic and industrial work on infrastructure applications and robotics in general. This paper presents a robotic truss assembler designed for space applications - the Space Robot Universal Truss System (SpRoUTS) - that reversibly assembles a truss from a feedstock of hinged andflat-packed components, by folding the sides of each component up and locking onto the assembled structure. We describe the design and implementation of the robot and show that the assembled truss compares favorably with prior truss deployment systems.

  6. Chapter 6:Engineered trusses from undervalued hardwoods

    Treesearch

    Robert J. Ross; Brian K. Brashaw

    2005-01-01

    A significant volume of softwood lumber is used in engineered truss assemblies. Metal plate connected (MPC) trusses are commonly used in residential construction for both roof and floor applications. Currently, there are no truss manufacturers producing MPC trusses with hardwood lumber, primarily as a consequence of a lack of technical data on the performance of...

  7. Chang-Diaz holds PDGF for installation on the ISS P6 truss during STS-111 UF-2 EVA 1

    NASA Image and Video Library

    2002-06-09

    STS111-E-5034 (8 June 2002) --- Astronaut Franklin R. Chang-Diaz works with a grapple fixture during extravehicular activity (EVA) to perform work on the International Space Station (ISS). The first spacewalk of the STS-111 mission began with the installation of a Power and Data Grapple Fixture (PDGF) for the station's robotic arm on the complex's P6 truss. The PDGF will allow the robotic arm to grip the P6 truss for future station assembly operations. Astronauts Chang-Diaz and Philippe Perrin (with French Space Agency, CNES) went on to install the new fixture about halfway up the P6 truss, the vertical structure that currently supports the station's set of large U.S. solar arrays.

  8. KSC-02pd1507

    NASA Image and Video Library

    2002-10-10

    KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39A, technicians in the Payload Changout Room supervise the opening of the payload canister doors for transfer of the P1 truss. The P1 truss is the primary payload for Mission STS-113 to the International Space Station. It is the first port truss segment which will be attached to the Station’s central truss segment, S0. Once delivered, the P1 truss will remain stowed until flight 12A.1. The mission will also deliver the Expedition 6 crew to the Station and return Expedition 5 to Earth. Space Shuttle Endeavour is scheduled to launch no earlier than Nov. 10 on the 11-day mission.

  9. STS-110 Astronaut Morin Totes S0 Keel Pins During EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hovering in space some 240 miles above the blue and white Earth, STS-110 astronaut M.E. Morin participates in his first ever and second of four scheduled space walks for the STS-110 mission. He is seen toting one of the S0 (S-Zero) keel pins which were removed from their functional position on the truss and attached on the truss' exterior for long term stowage. The 43-foot-long, 27,000 pound S0 truss was the first of 9 segments that will make up the International Space Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. The mission completed the installations and preparations of the S0 truss and the Mobile Transporter within four space walks. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission was launched April 8, 2002 and returned to Earth April 19, 2002.

  10. The integration of a mesh reflector to a 15-foot box truss structure. Task 3: Box truss analysis and technology development

    NASA Technical Reports Server (NTRS)

    Bachtell, E. E.; Thiemet, W. F.; Morosow, G.

    1987-01-01

    To demonstrate the design and integration of a reflective mesh surface to a deployable truss structure, a mesh reflector was installed on a 15 foot box truss cube. The specific features demonstrated include: (1) sewing seams in reflective mesh; (2) mesh stretching to desired preload; (3) installation of surface tie cords; (4) installation of reflective surface on truss; (5) setting of reflective surface; (6) verification of surface shape/accuracy; (7) storage and deployment; (8) repeatability of reflector surface; and (9) comparison of surface with predicted shape using analytical methods developed under a previous task.

  11. Section NN, showing steel roof trusses, mezzanine iron railing, first ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Section NN, showing steel roof trusses, mezzanine iron railing, first floor doors, etc. San Bernardino Valley Union Junior College, Library Building. Also includes steel truss roof plan and a small stress diagram of the truss. Howard E. Jones, Architect, San Bernardino, California. Sheet 8, job no. 315. Scales 1/2 inch to the foot (section), and 1/8 and 1/16 inch to the foot. No date given on sheet (probably March or April, 1927). - San Bernardino Valley College, Library, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  12. Deployment of the P4 Truss FWD SAW during Expedition 13 and STS-115 EVA Joint Operations

    NASA Image and Video Library

    2006-09-14

    S115-E-05996 (14 Sept. 2006) --- Space Shuttle Atlantis astronauts spread a second set of wings for the International Space Station today. The new solar arrays were fully extended at 7:44 a.m. (CDT). The new arrays span a total of 240 feet and have a width of 38 feet. They are attached to the station's newest component, the P3/P4 integrated truss segment. The installation of the P3/P4, which occurred Tuesday and the deployment of the arrays set the stage for future expansion of the station.

  13. Deployable geodesic truss structure

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr. (Inventor); Rhodes, Marvin D. (Inventor); Simonton, J. Wayne (Inventor)

    1987-01-01

    A deployable geodesic truss structure which can be deployed from a stowed state to an erected state is described. The truss structure includes a series of bays, each bay having sets of battens connected by longitudinal cross members which give the bay its axial and torsional stiffness. The cross members are hinged at their mid point by a joint so that the cross members are foldable for deployment or collapsing. The bays are deployed and stabilized by actuator means connected between the mid point joints of the cross members. Hinged longerons may be provided to also connect the sets of battens and to collapse for stowing with the rest of the truss structure.

  14. Analytical and Photogrammetric Characterization of a Planar Tetrahedral Truss

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Adams, Richard R.; Rhodes, Marvin D.

    1990-01-01

    Future space science missions are likely to require near-optical quality reflectors which are supported by a stiff truss structure. This support truss should conform closely with its intended shape to minimize its contribution to the overall surface error of the reflector. The current investigation was conducted to evaluate the planar surface accuracy of a regular tetrahedral truss structure by comparing the results of predicted and measured node locations. The truss is a 2-ring hexagonal structure composed of 102 equal-length truss members. Each truss member is nominally 2 meters in length between node centers and is comprised of a graphite/epoxy tube with aluminum nodes and joints. The axial stiffness and the length variation of the truss components were determined experimentally and incorporated into a static finite element analysis of the truss. From this analysis, the root mean square (RMS) surface error of the truss was predicted to be 0.11 mm (0004 in). Photogrammetry tests were performed on the assembled truss to measure the normal displacements of the upper surface nodes and to determine if the truss would maintain its intended shape when subjected to repeated assembly. Considering the variation in the truss component lengths, the measures rms error of 0.14 mm (0.006 in) in the assembled truss is relatively small. The test results also indicate that a repeatable truss surface is achievable. Several potential sources of error were identified and discussed.

  15. Structural performance of space station trusses with missing members

    NASA Technical Reports Server (NTRS)

    Dorsey, J. T.

    1986-01-01

    Structural performance of orthogonal tetrahedral and Warren-type full truss beams and platforms are compared. In addition, degradation of truss structural performance is determined for beams, platforms and a space station when individual struts are removed from the trusses. The truss beam, space station, and truss platform analytical models used in the studies are described. Stiffness degradation of the trusses due to single strut failures is determined using flexible body vibration modes. Ease of strut replacement is assessed by removing a strut and examining the truss deflection at the resulting gap due to applied forces. Finally, the reduction in truss beam strength due to a missing longeron is determined for a space station transverse boom model.

  16. STS-117 Media Showcase

    NASA Image and Video Library

    2007-02-06

    In the Space Station Processing Facility, the S3/S4 integrated truss segment is on display for the media. The starboard 3/4 truss segment will launch aboard Space Shuttle Atlantis on mission STS-117, targeted for March 15. The element will be added to the 11-segment integrated truss structure, the station's backbone. The integrated truss structure eventually will span more than 300 feet. The S3/S4 truss has two large solar arrays and will provide one-fourth of the total power generation for the completed station.

  17. Development and performance of Hobby-Eberly Telescope 11-m segmented mirror

    NASA Astrophysics Data System (ADS)

    Krabbendam, Victor L.; Sebring, Thomas A.; Ray, Frank B.; Fowler, James R.

    1998-08-01

    The Hobby Eberly Telescope features a unique eleven-meter spherical primary mirror consisting of a single steel truss populated with 91 Zerodur(superscript TM) mirror segments. The 1 meter hexagonal segments are fabricated to 0.033 micron RMS spherical surfaces with matched radii to 0.5 mm. Silver coatings are applied to meet reflectance criteria for wavelengths from 0.35 to 2.5 micron. To support the primary spectroscopic uses of the telescope the mirror must provide a 0.52 arc sec FWHM point spread function. Mirror segments are co-aligned to within 0.0625 ar sec and held to 25 microns of piston envelope using a segment positioning system that consists of 273 actuators (3 per mirror), a distributed population of controllers, and custom developed software. A common path polarization shearing interferometer was developed to provide alignment sensing of the entire array from the primary mirror's center of curvature. Performance of the array is being tested with an emphasis on alignment stability. Distributed temperature measurements throughout the truss are correlated to pointing variances of the individual mirror segments over extended periods of time. Results are very encouraging and indicate that this mirror system approach will prove to be a cost-effective solution for large optical collecting apertures.

  18. Easy Attachment Of Panels To A Truss

    NASA Technical Reports Server (NTRS)

    Thomson, Mark; Gralewski, Mark

    1992-01-01

    Conceptual antenna dish, solar collector, or similar structure consists of hexagonal panels supported by truss erected in field. Truss built in increments to maintain access to panel-attachment nodes. Each panel brought toward truss at angle and attached to two nodes. Panel rotated into attachment at third node.

  19. STS-113 Mission Specialists during TCDT in SSPF

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. --STS-113 Mission Specialists John Herrington (left) and Michael Lopez-Alegria (center) look over equipment involved in their mission during Crew Equipment Interface Test activities in the Space Station Processing Facility. Part of the payload on mission STS-113 is the first port truss segment, P1 Truss, to be attached to the central truss segment, S0, on the International Space Station. Once delivered, the P1 truss will remain stowed until flight 12A.1. Launch date for STS-113 is under review.

  20. The development of optimal lightweight truss-core sandwich panels

    NASA Astrophysics Data System (ADS)

    Langhorst, Benjamin Robert

    Sandwich structures effectively provide lightweight stiffness and strength by sandwiching a low-density core between stiff face sheets. The performance of lightweight truss-core sandwich panels is enhanced through the design of novel truss arrangements and the development of methods by which the panels may be optimized. An introduction to sandwich panels is presented along with an overview of previous research of truss-core sandwich panels. Three alternative truss arrangements are developed and their corresponding advantages, disadvantages, and optimization routines are discussed. Finally, performance is investigated by theoretical and numerical methods, and it is shown that the relative structural efficiency of alternative truss cores varies with panel weight and load-carrying capacity. Discrete truss core sandwich panels can be designed to serve bending applications more efficiently than traditional pyramidal truss arrangements at low panel weights and load capacities. Additionally, discrete-truss cores permit the design of heterogeneous cores, which feature unit cells that vary in geometry throughout the panel according to the internal loads present at each unit cell's location. A discrete-truss core panel may be selectively strengthened to more efficiently support bending loads. Future research is proposed and additional areas for lightweight sandwich panel development are explained.

  1. 24 CFR 3280.402 - Test procedures for roof trusses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... procedures are required for new truss designs in all three wind zones and for existing truss designs used in... design loads, and actual support points, and does not restrain horizontal movement. When tested singly or in groups of two or more trusses, trusses shall be mounted on supports and positioned as intended to...

  2. Vibration characteristics of a deployable controllable-geometry truss boom

    NASA Technical Reports Server (NTRS)

    Dorsey, J. T.

    1983-01-01

    An analytical study was made to evaluate changes in the fundamental frequency of a two dimensional cantilevered truss boom at various stages of deployment. The truss could be axially deployed or retracted and undergo a variety of controlled geometry changes by shortening or lengthening the telescoping diagonal members in each bay. Both untapered and tapered versions of the truss boom were modeled and analyzed by using the finite element method. Large reductions in fundamental frequency occurred for both the untapered and tapered trusses when they were uniformly retracted or maneuvered laterally from their fully deployed position. These frequency reductions can be minimized, however, if truss geometries are selected which maintain cantilever root stiffness during truss maneuvers.

  3. Elevation of deck truss span over creek, looking NW along ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation of deck truss span over creek, looking NW along U.S. route 322. - Pennsylvania Railroad, Brandywine Valley Viaduct, Spanning Brandywine Creek & U.S. Route 322, Downingtown, Chester County, PA

  4. Truss beam having convex-curved rods, shear web panels, and self-aligning adapters

    NASA Technical Reports Server (NTRS)

    Fernandez, Ian M. (Inventor)

    2013-01-01

    A truss beam comprised of a plurality of joined convex-curved rods with self-aligning adapters (SAA) adhesively attached at each end of the truss beam is disclosed. Shear web panels are attached to adjacent pairs of rods, providing buckling resistance for the truss beam. The rods are disposed adjacent to each other, centered around a common longitudinal axis, and oriented so that adjacent rod ends converge to at least one virtual convergence point on the common longitudinal axis, with the rods' curvature designed to increase prevent buckling for the truss beam. Each SAA has longitudinal bores that provide self-aligning of the rods in the SAA, the self-aligning feature enabling creation of strong adhesive bonds between each SAA and the rods. In certain embodiments of the present invention, pultruded unidirectional carbon fiber rods are coupled with carbon fiber shear web panels and metal SAA(s), resulting in a lightweight, low-cost but strong truss beam that is highly resistant to buckling.

  5. Deployable-erectable trade study for space station truss structures

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Wright, A. S., Jr.; Bush, H. G.; Watson, J. J.; Dean, E. B.; Twigg, L. T.; Rhodes, M. D.; Cooper, P. A.; Dorsey, J. T.; Lake, M. S.

    1985-01-01

    The results of a trade study on truss structures for constructing the space station are presented. Although this study was conducted for the reference gravity gradient space station, the results are generally applicable to other configurations. The four truss approaches for constructing the space station considered in this paper were the 9 foot single fold deployable, the 15 foot erectable, the 10 foot double fold tetrahedral, and the 15 foot PACTRUSS. The primary rational for considering a 9 foot single-fold deployable truss (9 foot is the largest uncollapsed cross-section that will fit in the Shuttle cargo bay) is that of ease of initial on-orbit construction and preintegration of utility lines and subsystems. The primary rational for considering the 15 foot erectable truss is that the truss bay size will accommodate Shuttle size payloads and growth of the initial station in any dimension is a simple extension of the initial construction process. The primary rational for considering the double-fold 10 foot tetrahedral truss is that a relatively large amount of truss structure can be deployed from a single Shuttle flight to provide a large number of nodal attachments which present a pegboard for attaching a wide variety of payloads. The 15 foot double-fold PACTRUSS was developed to incorporate the best features of the erectable truss and the tetrahedral truss.

  6. KSC-99pp1183

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the newly arrived S1 truss, a segment of the International Space Station (ISS), is offloaded from NASA's Super Guppy aircraft. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is being transferred to the Operations and Checkout Building

  7. STS-112 crew during TCDT activities with M-113 carrier

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, Fla. - STS-112 Commander Jeffrey Ashby drives the M-113 armored personnel carrier during Terminal Countdown Demonstration Test activities. At the far left is Mission Specialist Sandra Magnus. The TCDT also includes a simulated launch countdown. The mission aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment. The S1 will be attached to the central truss segment, S0, during the 11-day mission.

  8. Hoop/column and tetrahedral truss electromagnetic tests

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1987-01-01

    The distortion of antennas was measured with a metric camera system at discrete target locations on the surface. Given are surface distortion for hoop column reflector antennas, for tetrahedral truss reflector antennas, and distortion contours for the tetrahedral truss reflector. Radiation patterns at 2.27-GHz, 4.26-GHz, 7.73-GHz and 11.6-GHz are given for the hoop column antenna. Also given are radiation patterns at 4.26-GHz and 7.73-GHz for the tetrahedral truss antenna.

  9. 25. 'HANGAR SHEDS TRUSSES DETAILS; ARCHITECTURAL PLANS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. 'HANGAR SHEDS - TRUSSES - DETAILS; ARCHITECTURAL PLANS - PLANT AREA; MODIFICATION CENTER NO. 1, DAGGETT, CALIFORNIA.' Sections and details of trusses, ironwork, and joints, as modified to show ridge joint detail. As built. This blueline also shows the fire suppression system, added in orange pencil for 'Project 13: Bldgs. T-30, T-50, T-70, T-90' at a later, unspecified date. Contract no. W509 Eng. 2743; File no. 555/84, revision B, dated August 24, 1942. No sheet number. - Barstow-Daggett Airport, Hangar Shed No. 4, 39500 National Trails Highway, Daggett, San Bernardino County, CA

  10. Advanced bridge safety initiative: phase 2, task 1 - rivet testing of rivets taken from Maine truss bridge.

    DOT National Transportation Integrated Search

    2016-03-01

    The Maine Department of Transportation (MaineDOT) has removed 25 rivets from an existing, older truss bridge. : Many such truss bridges have low rating factors as determined using Federal Highway Administration (FHWA) : and the American Association o...

  11. Mir 21 cosmonauts assemble a truss during EVA

    NASA Image and Video Library

    1996-10-01

    NM21-382-024 (For Release October 1996) --- Cosmonaut Yuriy I. Onufriyenko was photographed by astronaut and cosmonaut guest researcher Shannon W. Lucid as the Mir-21 commander performed a scheduled Extravehicular Activity (EVA) at a truss assembly in the early days of Lucid’s extended stay aboard Russia’s Mir Space Station.

  12. Arnold on P3 Truss for P3 Nadir UCCAS Deployment during STS-119 Extravehicular Activity (EVA) 3

    NASA Image and Video Library

    2009-03-23

    ISS018-E-042523 (23 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's third scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 27-minute spacewalk, Arnold and Joseph Acaba (out of frame), mission specialist, helped robotic arm operators relocate the Crew Equipment Translation Aid (CETA) cart from the Port 1 to Starboard 1 truss segment, installed a new coupler on the CETA cart, lubricated snares on the "B" end of the space station's robotic arm and performed a few "get ahead" tasks.

  13. Effects of local vibrations on the dynamics of space truss structures

    NASA Technical Reports Server (NTRS)

    Warnaar, Dirk B.; Mcgowan, Paul E.

    1987-01-01

    The paper discusses the influence of local member vibrations on the dynamics of repetitive space truss structures. Several focus problems wherein local member vibration modes are in the frequency range of the global truss modes are discussed. Special attention is given to defining methods that can be used to identify the global modes of a truss structure amidst many local modes. Significant interactions between the motions of local member vibrations and the global behavior are shown to occur in truss structures when: (1) the natural frequencies of the individual members for clamped-clamped boundary conditions are in the vicinity of the global truss frequency; and (2) the total mass of the individual members represents a large portion of the mass of the whole structure. The analysis is carried out with a structural analysis code which uses exact member theory. The modeling detail required using conventional finite element codes to adequately represent such a class of problems is examined. The paper concludes with some practical considerations for the design and dynamic testing of structures which might exhibit such behavior.

  14. STS-97 P6 truss moves to a payload transport canister

    NASA Technical Reports Server (NTRS)

    2000-01-01

    As it travels across the Space Station Processing Facility, the P6 integrated truss segment passes over the two Italian-built Multi-Purpose Logistics Modules, Leonardo (right) and Raffaello (behind Leonardo). The P6 is being moved to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour'''s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station'''s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST.

  15. KSC-99pp1184

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the S1 truss, a segment of the International Space Station, is moved away from the Super Guppy that brought it to KSC from Marshall Space Flight Center. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is being transferred to the Operations and Checkout Building

  16. A loading study of older highway bridges in Virginia. Pt. 1, Steel truss bridge in Allegheny County.

    DOT National Transportation Integrated Search

    1976-01-01

    A comprehensive field test was conducted on a highway truss bridge in Allegheny County, Virginia, in July 1974. All typical truss members as well as structural members of the bridge floor system were instrumented and unit strains measured when the st...

  17. Solar panel truss mounting systems and methods

    DOEpatents

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  18. Solar panel truss mounting systems and methods

    DOEpatents

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2016-06-28

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  19. Solar panel truss mounting systems and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the basemore » rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.« less

  20. KSC-99pp1181

    NASA Image and Video Library

    1999-10-06

    KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy airplane, with the International Space Station's (ISS) S1 truss aboard, rolls to a stop at KSC's Shuttle Landing Facility. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be transferred to the Operations and Checkout Building

  1. KSC-99pp1180

    NASA Image and Video Library

    1999-10-06

    KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy airplane, with the International Space Station's (ISS) S1 truss aboard, arrives at KSC's Shuttle Landing Facility from Marshall Space Flight Center. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be moved to the Operations and Checkout Building

  2. KSC-99pp1182

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- At KSC's Shuttle Landing Facility, NASA's Super Guppy opens to reveal its cargo, the International Space Station's (ISS) S1 truss. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be transferred to the Operations and Checkout Building

  3. KSC-99pp1185

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, workers attach cranes to the S1 truss, a segment of the International Space Station, to lift the truss to a payload transporter for its transfer to the Operations and Checkout Building. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The truss arrived at KSC aboard NASA's Super Guppy, with a 25-foot diameter fuselage designed to handle oversized loads. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight

  4. DETAIL ELEVATION SHOWING THE ROOF TRUSSES, PURLINS, AND SKYLIGHT. NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL ELEVATION SHOWING THE ROOF TRUSSES, PURLINS, AND SKYLIGHT. NOTE THE DOORS TO THE WEIGHTLIFTING ROOM. VIEW FACING SOUTHEAST - U.S. Naval Base, Pearl Harbor, Gymnasium Building, North Waterfront & Pierce Street near Berth S-13, Pearl City, Honolulu County, HI

  5. STS-112 crew during TCDT activities with M-113 carrier

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, Fla. - STS-112 Pilot Pamela Melroy is ready for her practice run driving the M-113 armored personnel carrier. Melroy and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment. The S1 will be attached to the central truss segment, S0, during the 11-day mission.

  6. STS-112 crew during TCDT activities with M-113 carrier

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, Fla. - STS-112 Mission Specialist David Wolf is ready for his practice run driving the M-113 armored personnel carrier. Wolf and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment. The S1 will be attached to the central truss segment, S0, during the 11-day mission.

  7. STS-112 crew during TCDT activities with M-113 carrier

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, Fla. - STS-112 Mission Specialist Piers Sellers is ready for his practice run driving the M-113 armored personnel carrier. Sellers and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment. The S1 will be attached to the central truss segment, S0, during the 11-day mission.

  8. STS-112 crew during TCDT activities with M-113 carrier

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, Fla. - STS-112 Mission Specialist Sandra Magnus takes her turn driving the M-113 armored personnel carrier. Space Shuttle Atlantis is in the background. Magnus and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment. The S1 will be attached to the central truss segment, S0, during the 11-day mission.

  9. STS-112 crew during TCDT activities with M-113 carrier

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Commander Jeffrey Ashby is ready for his practice run driving the M-113 armored personnel carrier. Ashby and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities, which include emergency egress training and driving the M-113. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment. The S1 will be attached to the central truss segment, S0, during the 11-day mission.

  10. STS-112 crew during TCDT activities with M-113 carrier

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, Fla. - STS-112 Mission Specialist Sandra Magnus is ready for her practice run driving the M-113 armored personnel carrier. Magnus and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment. The S1 will be attached to the central truss segment, S0, during the 11-day mission.

  11. KSC-02pd1314

    NASA Image and Video Library

    2002-09-16

    KENNEDY SPACE CENTER, Fla. - STS-112 Mission Specialist David Wolf is ready for his practice run driving the M-113 armored personnel carrier. Wolf and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment. The S1 will be attached to the central truss segment, S0, during the 11-day mission.

  12. View of deck truss span over creek and adjacent trestle, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of deck truss span over creek and adjacent trestle, looking due south. - Pennsylvania Railroad, Brandywine Valley Viaduct, Spanning Brandywine Creek & U.S. Route 322, Downingtown, Chester County, PA

  13. Effect of moisture cycling on truss-plate joint behavior

    Treesearch

    Leslie H. Groom

    1994-01-01

    The structural performance of wood trusses, which are now commonplace in light-frame construction, is dictated in part by the mechanical properties of the truss-plate joints. However, little information exists quantifying the effect of environmental conditions on truss-plate joint properties. The main objective of this paper was to quantify the effect of moisture...

  14. Preliminary design of a large tetrahedral truss/hexagonal heatshield panel aerobrake

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Mikulas, Martin M., Jr.

    1989-01-01

    An aerobrake structural concept is introduced which consists of two primary components: (1) a lightweight erectable tetrahedral support truss; and (2) sandwich hexagonal heatshield panels which, when attached to the truss, form a continuous impermeable aerobraking surface. Generic finite element models and a general analysis procedure to design tetrahedral truss/hexagonal heatshield panel aerobrakes is developed, and values of the aerobrake design parameters which minimize mass and packaging volume for a 120-foot-diameter aerobrake are determined. Sensitivity of the aerobrake design to variations in design parameters is also assessed. The results show that a 120-foot-diameter aerobrake is viable using the concept presented (i.e., the aerobrake mass is less than or equal to 15 percent of the payload spacecraft mass). Minimizing the aerobrake mass (by increasing the number of rings in the support truss) however, leads to aerobrakes with the highest part count.

  15. A soft actuation system for segmented reflector articulation and isolation

    NASA Technical Reports Server (NTRS)

    Agronin, Michael L.; Jandura, Louise

    1990-01-01

    Segmented reflectors have been proposed for space based applications such as optical communication and large diameter telescopes. An actuation system for mirrors in a space based segmented mirror array was developed as part of NASA's Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), provides 3 degrees of freedom mirror articulation, gives isolation from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM was built and is described.

  16. STS-110 M.S. Smith suits up for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Steven Smith relaxes during suit fit, which is part of Terminal Countdown Demonstration Test activities. The TCDT is held at KSC prior to each Space Shuttle flight to provide flight crews an opportunity to participate in simulated launch countdown activities. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  17. Heavily loaded joints for assembling aerobrake support trusses

    NASA Technical Reports Server (NTRS)

    Bandel, Hannskarl; Olsson, Nils; Levintov, Boris

    1990-01-01

    The major emphasis was to develop erectable joints for large aerobrake support trusses. The truss joints must be able to withstand the large forces experienced by the truss during the aero-pass, as well as be easily assembled and disassembled on orbit by astronauts or robots. Other important design considerations include; strength, stiffness, and allowable error in strut length. Six mechanical joint designs, as well as a seventh joint design, where a high strength epoxy is injected to make the connection rigid, are presented.

  18. STS-119 Extravehicular Activity (EVA) 1 Translate and Ingress

    NASA Image and Video Library

    2009-03-19

    S119-E-006688 (19 March 2009) --- Astronaut Steve Swanson, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  19. STS-112 insignia

    NASA Image and Video Library

    2002-03-01

    STS112-S-001 (March 2002) --- The STS-112 emblem symbolizes the ninth assembly mission (9A) to the International Space Station (ISS), a flight which is designed to deliver the Starboard 1 (S1) truss segment. The 30,000 pound truss segment will be lifted to orbit in the payload bay of the space shuttle Atlantis and installed using the ISS robotic arm. Three spacewalks will then be carried out to complete connections between the truss and ISS. Future missions will extend the truss structure to a span of over 350 feet so that it can support the solar arrays and radiators which provide the electrical power and cooling for ISS. The STS-112 emblem depicts ISS from the viewpoint of a departing shuttle, with the installed S1 truss segment outlined in red. A gold trail represents a portion of the shuttle rendezvous trajectory. Where the trajectory meets ISS, a nine-pointed star represents the combined on-orbit team of six shuttle and three ISS crew members who together will complete the S1 truss installation. The trajectory continues beyond the ISS, ending in a six-pointed star representing the Atlantis and the STS-112 crew. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  20. Analysis of truss, beam, frame, and membrane components. [composite structures

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.; Robinson, E. Y.

    1975-01-01

    Truss components are considered, taking into account composite truss structures, truss analysis, column members, and truss joints. Beam components are discussed, giving attention to composite beams, laminated beams, and sandwich beams. Composite frame components and composite membrane components are examined. A description is given of examples of flat membrane components and examples of curved membrane elements. It is pointed out that composite structural design and analysis is a highly interactive, iterative procedure which does not lend itself readily to characterization by design or analysis function only.-

  1. 21. 80 foot pony truss view is from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. 80 foot pony truss - view is from the deck, looking down to the junction of the two pony trusses, showing the top of the lower chord pin connection on top of the replacement pier. Also shown is some deck surface and an electrical conduit. This is typical of the junction of all the pony trusses. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  2. STS-112 crew during TCDT activities with M-113 carrier

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, Fla. - STS-112 Mission Specialist Fyodor Yurchikhin, with the Russian Space Agency, Ashby is ready for his practice run driving the M-113 armored personnel carrier. Yurchikhin and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment. The S1 will be attached to the central truss segment, S0, during the 11-day mission.

  3. View of central lift span truss web of Tensaw River ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of central lift span truss web of Tensaw River Bridge, showing support girders for life house, looking east - Tensaw River Lift Bridge, Spanning Tensaw River at U.S. Highway 90, Mobile, Mobile County, AL

  4. Development of the segment alignment maintenance system (SAMS) for the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Booth, John A.; Adams, Mark T.; Ames, Gregory H.; Fowler, James R.; Montgomery, Edward E.; Rakoczy, John M.

    2000-07-01

    A sensing and control system for maintaining optical alignment of ninety-one 1-meter mirror segments forming the Hobby-Eberly Telescope (HET) primary mirror array is now under development. The Segment Alignment Maintenance System (SAMS) is designed to sense relative shear motion between each segment edge pair and calculated individual segment tip, tilt, and piston position errors. Error information is sent to the HET primary mirror control system, which corrects the physical position of each segment as often as once per minute. Development of SAMS is required to meet optical images quality specifications for the telescope. Segment misalignment over time is though to be due to thermal inhomogeneity within the steel mirror support truss. Challenging problems of sensor resolution, dynamic range, mechanical mounting, calibration, stability, robust algorithm development, and system integration must be overcome to achieve a successful operational solution.

  5. VIEW OF THE ROOF TRUSSES OF THE MEN'S LOCKER ROOM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE ROOF TRUSSES OF THE MEN'S LOCKER ROOM. NOTE THE WIDENED BAND OF VENTILATION SECREENING TO THE OUTSIDE AT THE EAVES (LEFT). VIEW FACING NORTHEAST - U.S. Naval Base, Pearl Harbor, Gymnasium Building, North Waterfront & Pierce Street near Berth S-13, Pearl City, Honolulu County, HI

  6. 13. VIEW OF DECK TRUSS FROM BELOW. BRIGHT SUN IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF DECK TRUSS FROM BELOW. BRIGHT SUN IS PROJECTING SHADOWS FROM AUTO TRAFFIC ONTO WESTERN PIER. - Northampton Street Bridge, Spanning Delaware River at Northampton Street (U.S. Route 22 Alternate), Easton, Northampton County, PA

  7. Analysis of Truss Frames by Method of the Stiffness Matrix

    DTIC Science & Technology

    1990-12-01

    of the web members of the truss. There also are variations in the truss frame given by the geometric shape of the frame, also referred to in some...at the elastic center, 0 (Figure .3.2), are: R AX = Wix - Hot RBX W2x -Ho, RAY =WIY + Vo, (1) RBy WLy - Vo, MAB =- Mo + CH. + aVo + CMA, MBA =M - CH...o Co Ce Substituting the results of Equation (7) into Equations (1), x c D x RAY = Wix + + -- (eA - GO - D (8)C x C x C cx x cx AY a D RAY

  8. Box truss analysis and technology development. Task 1: Mesh analysis and control

    NASA Technical Reports Server (NTRS)

    Bachtell, E. E.; Bettadapur, S. S.; Coyner, J. V.

    1985-01-01

    An analytical tool was developed to model, analyze and predict RF performance of box truss antennas with reflective mesh surfaces. The analysis system is unique in that it integrates custom written programs for cord tied mesh surfaces, thereby drastically reducing the cost of analysis. The analysis system is capable of determining the RF performance of antennas under any type of manufacturing or operating environment by integrating together the various disciplines of design, finite element analysis, surface best fit analysis and RF analysis. The Integrated Mesh Analysis System consists of six separate programs: The Mesh Tie System Model Generator, The Loadcase Generator, The Model Optimizer, The Model Solver, The Surface Topography Solver and The RF Performance Solver. Additionally, a study using the mesh analysis system was performed to determine the effect of on orbit calibration, i.e., surface adjustment, on a typical box truss antenna.

  9. Vibration control in statically indeterminate adaptive truss structures

    NASA Technical Reports Server (NTRS)

    Baycan, C. M.; Utku, Senol; Wada, Ben K.

    1993-01-01

    In this work vibration control of statically indeterminate adaptive truss structures is investigated. Here, the actuators (i.e., length adjusting devices) that are used for vibration control, work against the axial forces caused by the inertial forces. In statically determinate adaptive trusses no axial force is induced by the actuation. The control problem in statically indeterminate trusses may be dominated by the actuation-induced axial element forces. The creation of actuation-induced axial forces puts the system to a higher energy state, thus aggravates the controls. It is shown that by the usage of sufficient number of slave actuators in addition to the actual control actuators, the actuation-induced axial element forces can be nullified, and the control problem of the statically indeterminate adaptive truss problem is reduced to that of a statically determinate one. It is also shown that the usage of slave actuators saves a great amount of control energy and provides robustness for the controls.

  10. View of Mastracchio and Williams on EVA 1 during STS-118/Expedition 15 Joint Operations

    NASA Image and Video Library

    2007-08-11

    S118-E-06281 (11 Aug. 2007) --- Astronauts Rick Mastracchio (left) and Canadian Space Agency's Dave Williams, both STS-118 mission specialists, participate in the mission's first planned session of extravehicular activity (EVA), as construction continues on the International Space Station. During the 6-hour, 17-minute spacewalk Mastracchio and Williams attached the Starboard 5 (S5) segment of the station's truss, retracted the forward heat-rejecting radiator from the station's Port 6 (P6) truss, and performed several get-ahead tasks.

  11. KSC-02pp0487

    NASA Image and Video Library

    2002-03-01

    JOHNSON SPACE CENTER, HOUSTON, TEXAS - STS-112 CREW INSIGNIA --- The STS-112 emblem symbolizes the ninth assembly mission (9A) to the International Space Station (ISS), a flight which is designed to deliver the Starboard 1 (S1) truss segment. The 30,000 pound truss segment will be lifted to orbit in the payload bay of the Space Shuttle Atlantis and installed using the ISS robotic arm. Three space walks will then be carried out to complete connections between the truss and ISS. Future missions will extend the truss structure to a span of over 350 feet so that it can support the solar arrays and radiators which provide the electrical power and cooling for ISS. The STS-112 emblem depicts ISS from the viewpoint of a departing shuttle, with the installed S1 truss segment outlined in red. A gold trail represents a portion of the Shuttle rendezvous trajectory. Where the trajectory meets ISS, a nine-pointed star represents the combined on-orbit team of six shuttle and three ISS crew members who together will complete the S1 truss installation. The trajectory continues beyond the ISS, ending in a six-pointed star representing the Atlantis and the STS-112 crew. The NASA insignia design for Shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced

  12. View of West end of central lift span truss web ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of West end of central lift span truss web of Tensaw River Bridge, showing web brace of lift girder superstructure, looking west - Tensaw River Lift Bridge, Spanning Tensaw River at U.S. Highway 90, Mobile, Mobile County, AL

  13. Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks

    NASA Astrophysics Data System (ADS)

    Taylor, Shannon L.; Jakus, Adam E.; Koube, Katie D.; Ibeh, Amaka J.; Geisendorfer, Nicholas R.; Shah, Ramille N.; Dunand, David C.

    2018-02-01

    The development of in situ fabrication methods for the infrastructure required to support human life on the Moon is necessary due to the prohibitive cost of transporting large quantities of materials from the Earth. Cellular structures, consisting of a regular network (truss) of micro-struts with ∼500 μm diameters, suitable for bricks, blocks, panels, and other load-bearing structural elements for habitats and other infrastructure are created by direct-extrusion 3D-printing of liquid inks containing JSC-1A lunar regolith simulant powders, followed by sintering. The effects of sintering time, temperature, and atmosphere (air or hydrogen) on the microstructures, mechanical properties, and magnetic properties of the sintered lunar regolith micro-trusses are investigated. The air-sintered micro-trusses have higher relative densities, linear shrinkages, and peak compressive strengths, due to the improved sintering of the struts within the micro-trusses achieved by a liquid or glassy phase. Whereas the hydrogen-sintered micro-trusses show no liquid-phase sintering or glassy phase, they contain metallic iron 0.1-2 μm particles from the reduction of ilmenite, which allows them to be lifted with magnets.

  14. Numerical form-finding method for large mesh reflectors with elastic rim trusses

    NASA Astrophysics Data System (ADS)

    Yang, Dongwu; Zhang, Yiqun; Li, Peng; Du, Jingli

    2018-06-01

    Traditional methods for designing a mesh reflector usually treat the rim truss as rigid. Due to large aperture, light weight and high accuracy requirements on spaceborne reflectors, the rim truss deformation is indeed not negligible. In order to design a cable net with asymmetric boundaries for the front and rear nets, a cable-net form-finding method is firstly introduced. Then, the form-finding method is embedded into an iterative approach for designing a mesh reflector considering the elasticity of the supporting rim truss. By iterations on form-findings of the cable-net based on the updated boundary conditions due to the rim truss deformation, a mesh reflector with a fairly uniform tension distribution in its equilibrium state could be finally designed. Applications on offset mesh reflectors with both circular and elliptical rim trusses are illustrated. The numerical results show the effectiveness of the proposed approach and that a circular rim truss is more stable than an elliptical rim truss.

  15. STS-119 Extravehicular Activity (EVA) 1 Arnold in EMU

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041089 (19 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Arnold and astronaut Steve Swanson (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  16. International Space Station Configuration After P6 Truss Installation

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Photographed from the Space Shuttle Discovery upon its separation from the orbital outpost, the International Space Station (ISS) is shown sporting its new additions. A fly-around gave the crew a look at their handiwork, a new P5 spacer truss segment and a fully retracted P6 solar array wing. Earlier, the STS-116 and Expedition 14 crews concluded eight days of cooperative work onboard the shuttle and station where they accomplished the installation of the newest piece of the station and completely rewired the power grid over the course of four space walks. The station is currently the size of a typical three-bedroom house, with a surface area large enough to cover four basketball courts. The image reflects the latest configuration of the ISS as of December 19, 2006.

  17. 75 FR 34064 - Manufactured Home Construction and Safety Standards, Test Procedures for Roof Trusses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... dead load, or to 1.75 times the uplift load, minus the dead load in the upright position. [See Figure... 1/32-inch. Dead load must be applied to the top and bottom chord, and live load must be applied to... procedure. (i) Dead load. Measure and record initial elevation of the truss or trusses in the test position...

  18. An approximation method for configuration optimization of trusses

    NASA Technical Reports Server (NTRS)

    Hansen, Scott R.; Vanderplaats, Garret N.

    1988-01-01

    Two- and three-dimensional elastic trusses are designed for minimum weight by varying the areas of the members and the location of the joints. Constraints on member stresses and Euler buckling are imposed and multiple static loading conditions are considered. The method presented here utilizes an approximate structural analysis based on first order Taylor series expansions of the member forces. A numerical optimizer minimizes the weight of the truss using information from the approximate structural analysis. Comparisons with results from other methods are made. It is shown that the method of forming an approximate structural analysis based on linearized member forces leads to a highly efficient method of truss configuration optimization.

  19. STS-112 crew during TCDT activities with M-113 carrier

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, Fla. - The STS-112 crew poses for a photo on the back of the M-113 armored personnel carrier they practiced driving as part of Terminal Countdown Demonstration Test activities. From left are Mission Specialist David Wolf, Pilot Pamela Melroy, Mission Specialist Sandra Magnus, Commander Jeffrey Ashby, and Mission Specialists Piers Sellers and Fyodor Yurchikhin, who is with the Russian Space Agency. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment. The S1 will be attached to the central truss segment, S0, during the 11-day mission.

  20. STS-110 M.S. Morin in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Waiting his turn at driving the M-113 armored personnel carrier is STS-110 Mission Specialist Lee Morin. The driving is part of Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  1. STS-110 M.S. Smith driving M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Steven Smith waits his turn at driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. TCDT includes emergency egress training and a simulated launch countdown, and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  2. Mir 21 cosmonauts assemble a truss during EVA

    NASA Image and Video Library

    1996-10-01

    NM21-382-010 (For Release October 1996) --- Mir 21 commander Yury I. Onufrienko (left), wearing a red stripe on his Russian Orlan spacesuit, and Mir 21 flight engineer Yury V. Usachev (blue stripe on Orlan)traverse an existing truss on the Kvant module with a folded truss in tow.

  3. KSC-99pp1186

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- Escort vehicles prepare to leave the Shuttle Landing Facility with the S1 truss (at right) on its trek to the Operations and Checkout Building. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The truss arrived at KSC aboard NASA's Super Guppy, seen in the background. The aircraft is uniquely built with a 25-foot diameter fuselage designed to handle oversized loads and a "fold-away" nose that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight

  4. 23. 100 foot through truss looking west from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. 100 foot through truss - looking west from the downstream side, view of a single through truss showing its general arrangement on extended column piers. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  5. 33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...

  6. 33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...

  7. 33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...

  8. 33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...

  9. 33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...

  10. Analysis of Geometric Conception of the Historical Truss Church of All Saints in Vlčovice

    NASA Astrophysics Data System (ADS)

    Augustinková, Lucie; Krušinský, Peter; Korenková, Renáta; Holešová, Michaela

    2017-10-01

    Church of All Saints in Vlčovice was built likely in the second half of the XIV century and was consecrated in 1597 by catholic bishop Stanislav Pavlovsky from Olomouc. The vault and nave of the church was built in Baroque. The truss of the church was dendrochronological dating to 1767/68. Some elements of structure were dendrochronological dating to 1586 when it was constructed primary truss structure. Today’s appearance of the church is given by historicist modifications from the last quarter of the 19th century. Analysed truss has a rafter-collar tie structure with collar beams, pedestal struts. The roof structure has archaic form and we can include the structure into the earlier period by typology. These trusses were commonly used in this region and the wider cultural sphere at that time.

  11. Triage evaluation of gusset plates in steel truss bridges.

    DOT National Transportation Integrated Search

    2010-12-01

    Following research into the collapse of the I-35W steel truss bridge in Minneapolis, Minnesota, FHWA released recommendations for load rating the gusset plates of steel truss bridges. The recommendations include evaluation of several limit states, on...

  12. A design procedure for a tension-wire stiffened truss-column

    NASA Technical Reports Server (NTRS)

    Greene, W. H.

    1980-01-01

    A deployable, tension wire stiffened, truss column configuration was considered for space structure applications. An analytical procedure, developed for design of the truss column and exercised in numerical studies, was based on equivalent beam stiffness coefficients in the classical analysis for an initially imperfect beam column. Failure constraints were formulated to be used in a combined weight/strength and nonlinear mathematical programming automated design procedure to determine the minimum mass column for a particular combination of design load and length. Numerical studies gave the mass characteristics of the truss column for broad ranges of load and length. Comparisons of the truss column with a baseline tubular column used a special structural efficiency parameter for this class of columns.

  13. Control of flexible beams using a free-free active truss

    NASA Technical Reports Server (NTRS)

    Clark, W. W.; Kimiavi, B.; Robertshaw, H. H.

    1989-01-01

    An analytical and experimental study involving controlling flexible beams using a free-free active truss is presented. This work extends previous work in controlling flexible continua with active trusses which were configured with fixed-free boundary conditions. The following describes the Lagrangian approach used to derive the equations of motion for the active truss and the beams attached to it. A partial-state feedback control law is derived for this system based on a full-state feedback Linear Quadratic Regulator method. The analytical model is examined via numerical simulations and the results are compared to a similar experimental apparatus described herein. The results show that control of a flexible continua is possible with a free-free active truss.

  14. STS-119 Extravehicular Activity (EVA) 1 Swanson waves to camera

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041084 (19 March 2009) --- Astronaut Steve Swanson, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  15. Space fabrication: Graphite composite truss welding and cap forming subsystems

    NASA Technical Reports Server (NTRS)

    Jenkins, L. M.; Browning, D. L.

    1980-01-01

    An automated beam builder for the fabrication of space structures is described. The beam builder forms a triangular truss 1.3 meters on a side. Flat strips of preconsolidated graphite fiber fabric in a polysulfone matrix are coiled in a storage canister. Heaters raise the material to forming temperature then the structural cap section is formed by a series of rollers. After cooling, cross members and diagonal tension cords are ultrasonically welded in place to complete the truss. The stability of fabricated structures and composite materials is also examined.

  16. Structural stiffness, strength and dynamic characteristics of large tetrahedral space truss structures

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Bush, H. G.; Card, M. F.

    1977-01-01

    Physical characteristics of large skeletal frameworks for space applications are investigated by analyzing one concept: the tetrahedral truss, which is idealized as a sandwich plate with isotropic faces. Appropriate analytical relations are presented in terms of the truss column element properties which for calculations were taken as slender graphite/epoxy tubes. Column loads, resulting from gravity gradient control and orbital transfer, are found to be small for the class structure investigated. Fundamental frequencies of large truss structures are shown to be an order of magnitude lower than large earth based structures. Permissible loads are shown to result in small lateral deflections of the truss due to low-strain at Euler buckling of the slender graphite/epoxy truss column elements. Lateral thermal deflections are found to be a fraction of the truss depth using graphite/epoxy columns.

  17. Hybrid deployable support truss designs for LDR

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J.

    1988-01-01

    Concepts for a 20-meter diameter Large Deployable Reflector (LDR) deployable truss backup structure, and analytical predictions of its structural characteristics are discussed. The concept shown is referred to as the SIXPAC; It is a combination of the PACTRUSS concept and a single-fold beam, which would make up the desired backup structure. One advantage of retaining the PACTRUSS concept is its packaging density and its capability for synchronous deployment. Various 2-meter hexagonal panel arrangements are possible for this Hybrid PACTRUSS structure depending on the panel-to-structure attachment strategies used. Static analyses of the SIXPAC using various assumptions for truss designs and panel masses of 10 kg sq meters were performed to predict the tip displacement of the structure when supported at the center. The tip displacement ranged from 0.20 to 0.44 mm without the panel mass, and from 0.9 to 3.9 mm with the panel mass (in a 1-g field). The data indicate that the structure can be adequately ground tested to validate its required performance in space, assuming the required performance in space is approximately 100 microns. The static displacement at the tip of the structure when subjected to an angular acceleration of 0.001 rad/sec squared were estimated to range from 0.8 to 7.5 microns, depending on the type of truss elements.

  18. Vibration control by limiting the maximum axial forces in space trusses

    NASA Technical Reports Server (NTRS)

    Chawla, Vikas; Utku, Senol; Wada, Ben K.

    1993-01-01

    Proposed here is a method of vibration control based on limiting the maximum axial forces in the active members of an adaptive truss. The actuators simulate elastic rigid-plastic behavior and consume the vibrational energy as work. The method is applicable to both statically determinate as well as indeterminate truss structures. However, for energy efficient control of statistically indeterminate trusses extra actuators may be provided on the redundant bars. An energy formulation relating the various control parameters is derived to get an estimate of the control time. Since the simulation of elastic rigid-plastic behavior requires a piecewise linear control law, a general analytical solution is not possible. Numerical simulation by step-by-step integration is performed to simulate the control of an example truss structure. The problems of application to statically indeterminate trusses and optimal actuator placement are identified for future work.

  19. STS-113 Mission Specialist Lopez-Alegris arrives for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist Michael Lopez-Alegria arrives at KSC for Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months. The STS-113 launch is scheduled for Nov. 10, 2002.

  20. Development of Bonded Joint Technology for a Rigidizable-Inflatable Deployable Truss

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III

    2006-01-01

    Microwave and Synthetic Aperture Radar antenna systems have been developed as instrument systems using truss structures as their primary support and deployment mechanism for over a decade. NASA Langley Research Center has been investigating fabrication, modular assembly, and deployment methods of lightweight rigidizable/inflatable linear truss structures during that time for large spacecraft systems. The primary goal of the research at Langley Research Center is to advance these existing state-of-the-art joining and deployment concepts to achieve prototype system performance in a relevant space environment. During 2005, the development, fabrication, and testing of a 6.7 meter multi-bay, deployable linear truss was conducted at Langley Research Center to demonstrate functional and precision metrics of a rigidizable/inflatable truss structure. The present paper is intended to summarize aspects of bonded joint technology developed for the 6.7 meter deployable linear truss structure while providing a brief overview of the entire truss fabrication, assembly, and deployment methodology. A description of the basic joint design, surface preparation investigations, and experimental joint testing of component joint test articles will be described. Specifically, the performance of two room temperature adhesives were investigated to obtain qualitative data related to tube folding testing and quantitative data related to tensile shear strength testing. It was determined from the testing that a polyurethane-based adhesive best met the rigidizable/inflatable truss project requirements.

  1. 35. SECOND FLOOR WEST ROOM LOOKING NORTH. The two trusses ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SECOND FLOOR WEST ROOM LOOKING NORTH. The two trusses above this room date from 1812. They differ from the 1755 salvaged trusses in that they are made of pine rather than poplar, their numbering system differs, and they do not have pockets for joists. These two trusses were added to extend the plan of the building when it was re-erected in 1812. - Twelfth Street Meeting House, 20 South Twelfth Street, Philadelphia, Philadelphia County, PA

  2. Structural Performance of a Hybrid FRP-Aluminum Modular Triangular Truss System Subjected to Various Loading Conditions

    PubMed Central

    Zhang, Dongdong; Huang, Yaxin; Zhao, Qilin; Li, Fei; Gao, Yifeng

    2014-01-01

    A novel hybrid FRP-aluminum truss system has been employed in a two-rut modular bridge superstructure composed of twin inverted triangular trusses. The actual flexural behavior of a one-rut truss has been previously investigated under the on-axis loading test; however, the structural performance of the one-rut truss subjected to an off-axis load is still not fully understood. In this paper, a geometrical linear finite element model is introduced and validated by the on-axis loading test; the structural performance of the one-rut truss subjected to off-axis load was numerically obtained; the dissimilarities of the structural performance between the two different loading cases are investigated in detail. The results indicated that (1) the structural behavior of the off-axis load differs from that of the on-axis load, and the off-axis load is the critical loading condition controlling the structural performance of the triangular truss; (2) under the off-axis load, the FRP trussed members and connectors bear certain out-of-plane bending moments and are subjected to a complicated stress state; and (3) the stress state of these members does not match that of the initial design, and optimization for the redesign of these members is needed, especially for the pretightened teeth connectors. PMID:25254254

  3. Optimization of NTP System Truss to Reduce Radiation Shield Mass

    NASA Technical Reports Server (NTRS)

    Scharber, Luke L.; Kharofa, Adam; Caffrey, Jarvis A.

    2016-01-01

    The benefits of nuclear thermal propulsion are numerous and relevant to the current NASA mission goals involving but not limited to the crewed missions to mars and the moon. They do however also present new and unique challenges to the design and logistics of launching/operating spacecraft. One of these challenges, relevant to this discussion, is the significant mass of the shielding which is required to ensure an acceptable radiation environment for the spacecraft and crew. Efforts to reduce shielding mass are difficult to accomplish from material and geometric design points of the shield itself, however by increasing the distance between the nuclear engines and the main body of the spacecraft the required mass of the shielding is lessened considerably. The mass can be reduced significantly per unit length, though any additional mass added by the structure to create this distance serves to offset those savings, thus the design of a lightweight structure is ideal. The challenges of designing the truss are bounded by several limiting factors including; the loading conditions, the capabilities of the launch vehicle, and achieving the ideal truss length when factoring for the overall mass reduced. Determining the overall set of mass values for a truss of varying length is difficult since to maintain an optimally designed truss the geometry of the truss or its members must change. Thus the relation between truss mass and length for these loading scenarios is not linear, and instead has relation determined by the truss design. In order to establish a mass versus length trend for various truss designs to compare with the mass saved from the shield versus length, optimization software was used to find optimal geometric properties that still met the design requirements at established lengths. By solving for optimal designs at various lengths, mass trends could be determined. The initial design findings show a clear benefit to extending the engines as far from the main

  4. STS-119 Extravehicular Activity (EVA) 1 Swanson in Extravehicular Mobility Unit (EMU)

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041093 (19 March 2009) --- Astronaut Steve Swanson, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  5. STS-119 Extravehicular Activity (EVA) 1 Swanson in Extravehicular Mobility Unit (EMU)

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041098 (19 March 2009) --- Astronaut Steve Swanson, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  6. KSC-98pc1660

    NASA Image and Video Library

    1998-11-06

    Workers in the Space Station Processing Facility watch the Passive Common Berthing Mechanism (PCBM) lifted high to move it over to the Z1 integrated truss structure at right. It will be mated to the Z1 truss, a component of the International Space Station (ISS). The Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999

  7. STS-110 M.S. Ross in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Jerry Ross waits his turn at driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. In the background, right, is Mission Specialist Lee Morin. TCDT includes emergency egress training and a simulated launch countdown, and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  8. STS-110 M.S. Ochoa in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Ellen Ochoa waits her turn at driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. In the background, right, is Pilot Stephen Frick. TCDT includes emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  9. STS-110 M.S. Smith, Ross, and Walheim in Atlantis during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- (Left to right) STS-110 Mission Specialists Steven Smith, Jerry Ross and Rex Walheim settle into their seats aboard Space Shuttle Atlantis prior to a simulated launch countdown. The simulation is part of Terminal Countdown Demonstration Test activities. TCDT also includes emergency egress training and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  10. STS-110 M.S. Smith and Ross in slidewire basket during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialists Steven L. Smith (left) and Jerry L. Ross (right) get ready to climb out of the slidewire basket, part of emergency egress equipment on the launch pad.. The crew is taking part in Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown, held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  11. 5. DETAIL VIEW OF TWO PANEL POINTS OF TRUSS, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL VIEW OF TWO PANEL POINTS OF TRUSS, SHOWING OVAL, TUBULAR UPPER CHORD MEMBER, VERTICALS, DIAGONALS, AND LOWER CHORD. - White Bowstring Arch Truss Bridge, Spanning Yellow Creek at Cemetery Drive (Riverside Drive), Poland, Mahoning County, OH

  12. 52. LOOKING NORTHWEST FROM BETWEEN TRUSSES B AND C OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. LOOKING NORTHWEST FROM BETWEEN TRUSSES B AND C OF THEATER ATTIC. NOTE CURVE OF ELLIPTICAL CEILING BELOW, AIR SUPPLY DUCTS, AND LATERAL BRACING ADDED BETWEEN TRUSSES. - Auditorium Building, 430 South Michigan Avenue, Chicago, Cook County, IL

  13. 9. DETAIL OF PRATT DECK TRUSS, AND NORTH PORTAL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF PRATT DECK TRUSS, AND NORTH PORTAL OF PENNSYLVANIA PETIT TRUSS WITH CONCRETE SUPPORTING PIER, LOOKING SOUTHWEST - James Bethel Gresham Memorial Bridge, Spanning Green Pond River at Kentucky Route 81, Calhoun, McLean County, KY

  14. Nonlinear damage identification of breathing cracks in Truss system

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; DeSmidt, Hans

    2014-03-01

    The breathing cracks in truss system are detected by Frequency Response Function (FRF) based damage identification method. This method utilizes damage-induced changes of frequency response functions to estimate the severity and location of structural damage. This approach enables the possibility of arbitrary interrogation frequency and multiple inputs/outputs which greatly enrich the dataset for damage identification. The dynamical model of truss system is built using the finite element method and the crack model is based on fracture mechanics. Since the crack is driven by tensional and compressive forces of truss member, only one damage parameter is needed to represent the stiffness reduction of each truss member. Assuming that the crack constantly breathes with the exciting frequency, the linear damage detection algorithm is developed in frequency/time domain using Least Square and Newton Raphson methods. Then, the dynamic response of the truss system with breathing cracks is simulated in the time domain and meanwhile the crack breathing status for each member is determined by the feedback from real-time displacements of member's nodes. Harmonic Fourier Coefficients (HFCs) of dynamical response are computed by processing the data through convolution and moving average filters. Finally, the results show the effectiveness of linear damage detection algorithm in identifying the nonlinear breathing cracks using different combinations of HFCs and sensors.

  15. STS-112 crew walks out of O&C building before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-112 crew wave to spectators as they exit the Operations and Checkout Building for their ride to Launch Pad 39B and the launch scheduled 3:46 p.m. EDT. Leading the way are Pilot Pamela Melroy and Commander Jeffrey Ashby. In the second row are Mission Specialists David Wolf (left) and Sandra Magnus. Behind them are Mission Specialists Fyodor Yurchikhin and Piers Sellers. Sellers, Magnus and Yurchikhin are making their first Shuttle flights. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station.

  16. STS-112 Crew exit O&C building before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-112 crew eagerly exit the Operations and Checkout Building for their ride to Launch Pad 39B and the launch scheduled 3:46 p.m. EDT. Leading the way are Pilot Pamela Melroy and Commander Jeffrey Ashby. In the second row are Mission Specialists David Wolf (left) and Sandra Magnus. Behind them are Mission Specialists Fyodor Yurchikhin and Piers Sellers. Sellers, Magnus and Yurchikhin are making their first Shuttle flights. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. [Photo courtesy of Scott Andrews

  17. 24 CFR 3280.402 - Test procedure for roof trusses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... trusses that are supported at the ends and support design loads. Where roof trusses act as support for... shall be spaced at the design spacing and shall be mounted on solid support accurately positioned to give the required clear span distance (L) as specified in the design. The top and bottom chords shall...

  18. Connecticut permanent long-term bridge monitoring network, volume 5 : wireless monitoring of the hung span in a large truss bridge - I-95 NB over the Thames River in New London (bridge #3819).

    DOT National Transportation Integrated Search

    2014-08-01

    This report describes the instrumentation and data acquisition for the center hung segment in the largest : truss bridge in Connecticut, located on the interstate system. The monitoring system was developed as a : joint effort between researchers at ...

  19. Segmented strings in AdS 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callebaut, Nele; Gubser, Steven S.; Samberg, Andreas

    We study segmented strings in flat space and in AdS 3. In flat space, these well known classical motions describe strings which at any instant of time are piecewise linear. In AdS 3, the worldsheet is composed of faces each of which is a region bounded by null geodesics in an AdS 2 subspace of AdS 3. The time evolution can be described by specifying the null geodesic motion of kinks in the string at which two segments are joined. The outcome of collisions of kinks on the worldsheet can be worked out essentially using considerations of causality. We studymore » several examples of closed segmented strings in AdS 3 and find an unexpected quasi-periodic behavior. Here, we also work out a WKB analysis of quantum states of yo-yo strings in AdS 5 and find a logarithmic term reminiscent of the logarithmic twist of string states on the leading Regge trajectory.« less

  20. Segmented strings in AdS 3

    DOE PAGES

    Callebaut, Nele; Gubser, Steven S.; Samberg, Andreas; ...

    2015-11-17

    We study segmented strings in flat space and in AdS 3. In flat space, these well known classical motions describe strings which at any instant of time are piecewise linear. In AdS 3, the worldsheet is composed of faces each of which is a region bounded by null geodesics in an AdS 2 subspace of AdS 3. The time evolution can be described by specifying the null geodesic motion of kinks in the string at which two segments are joined. The outcome of collisions of kinks on the worldsheet can be worked out essentially using considerations of causality. We studymore » several examples of closed segmented strings in AdS 3 and find an unexpected quasi-periodic behavior. Here, we also work out a WKB analysis of quantum states of yo-yo strings in AdS 5 and find a logarithmic term reminiscent of the logarithmic twist of string states on the leading Regge trajectory.« less

  1. KSC-02pd1379

    NASA Image and Video Library

    2002-09-29

    KENNEDY SPACE CENTER, FLA. -- STS-112 Mission Specialist Sandra Magnus is happy to return to KSC to prepare for launch. She will be making her first Shuttle flight. STS-112, aboard Space Shuttle Atlantis, is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. The 11-day mission includes three spacewalks. Launch is scheduled for Oct. 2 between 2 and 6 p.m.

  2. Dynamic testing of a two-dimensional box truss beam

    NASA Technical Reports Server (NTRS)

    White, Charles W.

    1987-01-01

    Testing to determine the effects of joint freeplay and pretensioning of diagonal members on the dynamic characteristics of a two-dimensional box truss beam was conducted. The test article was ten bays of planar truss suspended by long wires at each joint. Each bay measured 2 meters per side. Pins of varying size were used to simulate various joint freeplay conditions. Single-point random excitation was the primary method of test. The rational fraction polynomial method was used to extract modal characteristics from test data. A finite element model of the test article was generated from which modal characteristics were predicted. These were compared with those obtained from tests. With the exception of the fundamental mode, correlation of theoretical and experimental results was poor, caused by the resonant coupling of local truss member bending modes with global truss beam modes. This coupling introduced many modes in the frequency range of interest whose frequencies were sensitive to joint boundary conditions. It was concluded that local/global coupling must be avoided in the frequency range where accurate modal characteristics are required.

  3. 11. DETAIL SHOWING ROLLING ENGINE DECK AND NORTHEAST TRUSS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL SHOWING ROLLING ENGINE DECK AND NORTHEAST TRUSS OF SUPERSTRUCTURE. Looking northeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  4. 24 CFR 3280.402 - Test procedure for roof trusses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Nondestructive test procedure—(1) Dead load plus live load. (i) Noting figure A-1, measure and record initial... the truss equal to the full dead load of roof and ceiling. Measure and record deflections. (iii) Maintaining the dead load, add live load in approximate 1/4 design live load increments. Measure the...

  5. 24 CFR 3280.402 - Test procedure for roof trusses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Nondestructive test procedure—(1) Dead load plus live load. (i) Noting figure A-1, measure and record initial... the truss equal to the full dead load of roof and ceiling. Measure and record deflections. (iii) Maintaining the dead load, add live load in approximate 1/4 design live load increments. Measure the...

  6. 9. OBLIQUE VIEW, PARTIAL WEST SPAN, FROM SOUTHWEST, SHOWING TRUSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. OBLIQUE VIEW, PARTIAL WEST SPAN, FROM SOUTHWEST, SHOWING TRUSS PANELS AND SOLID CONFIGURATION OF TRUSS MEMBERS, INCLUDING POLYGONAL TOP CHORD, VERTICAL AND DIAGONAL MEMBERS, AND CROSS-STRUTS - Glendale Road Bridge, Spanning Deep Creek Lake on Glendale Road, McHenry, Garrett County, MD

  7. DETAIL OF "FEET" OF MAIN TRUSS NORTH END. NOTE PLATES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF "FEET" OF MAIN TRUSS NORTH END. NOTE PLATES ON WHICH FEET REST ALLOWING EXPANSION OF TRUSS AS IT EXPANDS AND SHRINKS UNDER THE SUN - Missouri & North Arkansas Railroad Bridge, Spanning Middle Fork Little Red River, Shirley, Van Buren County, AR

  8. Constraint factor in optimization of truss structures via flower pollination algorithm

    NASA Astrophysics Data System (ADS)

    Bekdaş, Gebrail; Nigdeli, Sinan Melih; Sayin, Baris

    2017-07-01

    The aim of the paper is to investigate the optimum design of truss structures by considering different stress and displacement constraints. For that reason, the flower pollination algorithm based methodology was applied for sizing optimization of space truss structures. Flower pollination algorithm is a metaheuristic algorithm inspired by the pollination process of flowering plants. By the imitation of cross-pollination and self-pollination processes, the randomly generation of sizes of truss members are done in two ways and these two types of optimization are controlled with a switch probability. In the study, a 72 bar space truss structure was optimized by using five different cases of the constraint limits. According to the results, a linear relationship between the optimum structure weight and constraint limits was observed.

  9. KSC-98pc1658

    NASA Image and Video Library

    1998-11-06

    Workers in the Space Station Processing Facility look at the Passive Common Berthing Mechanism (PCBM) that will be attached to the Z1 integrated truss structure, a component of the International Space Station (ISS). The Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999

  10. 11. 100 foot through truss north east bearing abutment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. 100 foot through truss - north east bearing abutment of the second through truss, showing that the bearing point is to the backmost position of the concrete pier. This bearing point is on a concrete extension of the original bearing point now covered by rock and soil. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  11. KSC-02pd1285

    NASA Image and Video Library

    2002-09-05

    KENNEDY SPACE CENTER, FLA. -- After lifting to vertical, the orbiter Atlantis is moved toward the solid rocket booster and external tank below, on top of the Mobile Launcher Platform, for mating before rollout to the launch pad for mission STS-112. Launch is scheduled no earlier than Oct. 2 for the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  12. KSC-02pd1286

    NASA Image and Video Library

    2002-09-05

    KENNEDY SPACE CENTER, FLA. - Suspended from an overhead crane, the orbiter Atlantis is lowered toward the solid rocket booster and external tank below, on top of the Mobile Launcher Platform, for mating before rollout to the launch pad for mission STS-112. Launch is scheduled no earlier than Oct. 2 for the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  13. Truss systems and shape optimization

    NASA Astrophysics Data System (ADS)

    Pricop, Mihai Victor; Bunea, Marian; Nedelcu, Roxana

    2017-07-01

    Structure optimization is an important topic because of its benefits and wide applicability range, from civil engineering to aerospace and automotive industries, contributing to a more green industry and life. Truss finite elements are still in use in many research/industrial codesfor their simple stiffness matrixand are naturally matching the requirements for cellular materials especially considering various 3D printing technologies. Optimality Criteria combined with Solid Isotropic Material with Penalization is the optimization method of choice, particularized for truss systems. Global locked structures areobtainedusinglocally locked lattice local organization, corresponding to structured or unstructured meshes. Post processing is important for downstream application of the method, to make a faster link to the CAD systems. To export the optimal structure in CATIA, a CATScript file is automatically generated. Results, findings and conclusions are given for two and three-dimensional cases.

  14. The analysis and large-angle control of a flexible beam using an adaptive truss

    NASA Technical Reports Server (NTRS)

    Warrington, Thomas J.; Clark, William W.; Robertshaw, Harry H.; Horner, C. Garnett

    1991-01-01

    This preliminary study of an adaptive truss slewing problem investigates the static positioning of an adaptive truss at slewed orientations and the dynamic vibrations of an attached flexible beam. A nonlinear model of an adaptive truss and flexible beam is derived. Linear control laws are developed and simulated for various truss configurations. Results show the linear control laws developed at a slewed configuration perform best at that configuration.

  15. Application of the ADAMS program to deployable space truss structures

    NASA Technical Reports Server (NTRS)

    Calleson, R. E.

    1985-01-01

    The need for a computer program to perform kinematic and dynamic analyses of large truss structures while deploying from a packaged configuration in space led to the evaluation of several existing programs. ADAMS (automatic dynamic analysis of mechanical systems), a generalized program from performing the dynamic simulation of mechanical systems undergoing large displacements, is applied to two concepts of deployable space antenna units. One concept is a one cube folding unit of Martin Marietta's Box Truss Antenna and the other is a tetrahedral truss unit of a Tetrahedral Truss Antenna. Adequate evaluation of dynamic forces during member latch-up into the deployed configuration is not yet available from the present version of ADAMS since it is limited to the assembly of rigid bodies. Included is a method for estimating the maximum bending stress in a surface member at latch-up. Results include member displacement and velocity responses during extension and an example of member bending stresses at latch-up.

  16. KSC-98pc1659

    NASA Image and Video Library

    1998-11-06

    Workers in the Space Station Processing Facility watch as cables and a crane lift the Passive Common Berthing Mechanism (PCBM) before mating it to the Z1 integrated truss structure, a component of the International Space Station (ISS). The Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999

  17. STS-119 Extravehicular Activity (EVA) 1 Arnold in Extravehicular Mobility Unit (EMU)

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041104 (19 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Arnold and astronaut Steve Swanson (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays. The blackness of space and Earth?s horizon provide the backdrop for the scene.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-19

    Back dropped by the colorful Earth, the International Space Station (ISS) boasts its newest configuration upon the departure of Space Shuttle Endeavor and STS-118 mission. Days earlier, construction resumed on the ISS as STS-118 mission specialists and the Expedition 15 crew completed installation of the Starboard 5 (S-5) truss segment, removed a faulty Control Moment Gyroscope (CMG-3), installed a new CMG into the Z1 truss, relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) to Port 1 (P1) truss, installed a new transponder on P1, retrieved the P6 transponder, and delivered roughly 5,000 pounds of supplies.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-19

    Back dropped by the blue Earth, the International Space Station (ISS) boasts its newest configuration upon the departure of Space Shuttle Endeavor and STS-118 mission. Days earlier, construction resumed on the ISS as STS-118 mission specialists and the Expedition 15 crew completed installation of the Starboard 5 (S-5) truss segment, removed a faulty Control Moment Gyroscope (CMG-3), installed a new CMG into the Z1 truss, relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) to Port 1 (P1) truss, installed a new transponder on P1, retrieved the P6 transponder, and delivered roughly 5,000 pounds of equipment and supplies.

  20. Detail of tension bars at end posts western truss. Shows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of tension bars at end posts western truss. Shows adjustable bars at top of structure; diagonal and vertical members on truss are not adjustable. Looking north from civilian land. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  1. 3. Photographic copy of roof truss construction details for Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photographic copy of roof truss construction details for Building 4505, Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. A(9-10), Military Construction: Materiel Command Flight Test Base, Muroc, California, Hangar and Auxiliary Buildings: Hangar Type P-A, Detail of Trusses T-2, T-3, T-4, T-5 & T6, Sheet No. 9, March 1944. A similar drawing for truss T-l is included in project field notes. Reproduced from the holdings of the National Archives, Pacific Southwest Region - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA

  2. Adaptive Control of Truss Structures for Gossamer Spacecraft

    NASA Technical Reports Server (NTRS)

    Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.

    2007-01-01

    Neural network-based adaptive control is considered for active control of a highly flexible truss structure which may be used to support solar sail membranes. The objective is to suppress unwanted vibrations in SAFE (Solar Array Flight Experiment) boom, a test-bed located at NASA. Compared to previous tests that restrained truss structures in planar motion, full three dimensional motions are tested. Experimental results illustrate the potential of adaptive control in compensating for nonlinear actuation and modeling error, and in rejecting external disturbances.

  3. KSC-98pc1661

    NASA Image and Video Library

    1998-11-06

    Still suspended by a crane and cables in the Space Station Processing Facility, yet hidden by the top of the Z1 integrated truss structure, the Passive Common Berthing Mechanism (PCBM) is lowered onto the truss for attachment. Workers at the top of a workstand guide it into place. A component of the International Space Station (ISS), the Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999

  4. STS-112 crew arrives at KSC's SLF for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Mission Specialist Fyodor Yurchikhin, who is with the Russian Space Agency, shows his happiness at returning to KSC to prepare for launch. He will be making his first Shuttle flight. STS-112, aboard Space Shuttle Atlantis, is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. The 11-day mission includes three spacewalks. Launch is scheduled for Oct. 2 betw een 2 and 6 p.m.

  5. External Survey from Windows in Mini-Research Modules and Pirs Docking Compartment

    NASA Image and Video Library

    2013-04-03

    Survey view of a portion of the Zarya Functional Cargo Block (FGB) taken through a window in the Russian segment of the ISS during Expedition 35. Portions of the S0 and Z1 Truss segments are also in view.

  6. 10. 100 foot through truss north west bearing abutment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. 100 foot through truss - north west bearing abutment of the second through truss, showing the diagonal sway bracing to its alternate pier. This bearing point is on a concrete extension of the original bearing point now covered by rock and soil. Note that the bearing point is to the backmost position on the concrete pier. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  7. Structural analysis of three space crane articulated-truss joint concepts

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Sutter, Thomas R.

    1992-01-01

    Three space crane articulated truss joint concepts are studied to evaluate their static structural performance over a range of geometric design parameters. Emphasis is placed on maintaining the four longeron reference truss performance across the joint while allowing large angle articulation. A maximum positive articulation angle and the actuator length ratio required to reach the angle are computed for each concept as the design parameters are varied. Configurations with a maximum articulation angle less than 120 degrees or actuators requiring a length ratio over two are not considered. Tip rotation and lateral deflection of a truss beam with an articulated truss joint at the midspan are used to select a point design for each concept. Deflections for one point design are up to 40 percent higher than for the other two designs. Dynamic performance of the three point design is computed as a function of joint articulation angle. The two lowest frequencies of each point design are relatively insensitive to large variations in joint articulation angle. One point design has a higher maximum tip velocity for the emergency stop than the other designs.

  8. TRUSS DETAILS. United Engineering Company Ltd., Alameda Shipyard. Includes crane ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRUSS DETAILS. United Engineering Company Ltd., Alameda Shipyard. Includes crane girder section. No architect noted. Drawn by Penney. Plan no. 2-N-7. March 10, 1942, no revisions. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76, item no. 22A. Approved for construction October 9, 1943. blueprint - United Engineering Company Shipyard, Warehouse, 2900 Main Street, Alameda, Alameda County, CA

  9. Experimental tests and numerical analyses of steel truss bridge gusset connections.

    DOT National Transportation Integrated Search

    2012-11-01

    Gusset plates connect individual steel truss bridge members together at a node. In 10% of the 200,000 steel bridges in US in 2008, failure of a : single truss or connection could lead to collapse. Regular inspection and load rating are essential for ...

  10. Study on light weight design of truss structures of spacecrafts

    NASA Astrophysics Data System (ADS)

    Zeng, Fuming; Yang, Jianzhong; Wang, Jian

    2015-08-01

    Truss structure is usually adopted as the main structure form for spacecrafts due to its high efficiency in supporting concentrated loads. Light-weight design is now becoming the primary concern during conceptual design of spacecrafts. Implementation of light-weight design on truss structure always goes through three processes: topology optimization, size optimization and composites optimization. During each optimization process, appropriate algorithm such as the traditional optimality criterion method, mathematical programming method and the intelligent algorithms which simulate the growth and evolution processes in nature will be selected. According to the practical processes and algorithms, combined with engineering practice and commercial software, summary is made for the implementation of light-weight design on truss structure for spacecrafts.

  11. KSC-04pd1478

    NASA Image and Video Library

    2004-07-15

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Tracy Caldwell (left) assists a technician check out the Pump Flow Control Subsystem (PFCS) before it is installed on the upper deck of the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.

  12. KSC-04pd1480

    NASA Image and Video Library

    2004-07-15

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Tracy Caldwell (second from left) assists technicians position the Pump Flow Control Subsystem (PFCS) over the upper deck of the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.

  13. KSC-04pd1479

    NASA Image and Video Library

    2004-07-15

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a technician steadies the Pump Flow Control Subsystem (PFCS) as it is lifted and moved toward the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.

  14. KSC-04pd1481

    NASA Image and Video Library

    2004-07-15

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Tracy Caldwell (second from left) assists technicians lower the Pump Flow Control Subsystem (PFCS) into position onto the upper deck of the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.

  15. KSC-04pd1482

    NASA Image and Video Library

    2004-07-15

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Tracy Caldwell (left) assists technicians install the Pump Flow Control Subsystem (PFCS) onto the upper deck of the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.

  16. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008964 (11 April 2010) --- NASA astronauts Rick Mastracchio (left) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  17. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008710 (11 April 2010) --- NASA astronauts Rick Mastracchio (left) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  18. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008953 (11 April 2010) --- NASA astronauts Rick Mastracchio (left) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  19. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008708 (11 April 2010) --- NASA astronaut Rick Mastracchio (left) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  20. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008700 (11 April 2010) --- NASA astronaut Rick Mastracchio (bottom) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  1. PaR Tensile Truss for Nuclear Decontamination and Decommissioning - 12467

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebler, Gary R.

    2012-07-01

    Remote robotics and manipulators are commonly used in nuclear decontamination and decommissioning (D and D) processes. D and D robots are often deployed using rigid telescoping masts in order to apply and counteract side loads. However, for very long vertical reaches (15 meters or longer) and high lift capacities, a telescopic is usually not practical due to the large cross section and weight required to make the mast stiff and resist seismic forces. For those long vertical travel applications, PaR Systems has recently developed the Tensile Truss, a rigid, hoist-driven 'structure' that employs six independent wire rope hoists to achievemore » long vertical reaches. Like a mast, the Tensile Truss is typically attached to a bridge-mounted trolley and is used as a platform for robotic manipulators and other remotely operated tools. For suspended, rigid deployment of D and D tools with very long vertical reaches, the Tensile Truss can be a better alternative than a telescoping mast. Masts have length limitations that can make them impractical or unworkable as lengths increase. The Tensile Truss also has the added benefits of increased safety, ease of decontamination, superior stiffness and ability to withstand excessive side loading. A Tensile Truss system is currently being considered for D and D operations and spent fuel recovery at the Fukushima Daiichi Nuclear Power Plant in Japan. This system will deploy interchangeable tools such as underwater hydraulic manipulators, hydraulic shears and crushers, grippers and fuel grapples. (authors)« less

  2. STS-110 M.S. Ross and Smith in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- With STS-110 Mission Specialists Jerry Ross (far left) and Steven Smith (third from left) on board, Commander Michael Bloomfield scatters dust as he practices driving the M-113 armored personnel carrier. The driving is part of Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  3. KSC-98pc1662

    NASA Image and Video Library

    1998-11-06

    Workers in the Space Station Processing Facility look at the Passive Common Berthing Mechanism (PCBM) that will be attached to the Z1 integrated truss structure, a component of the International Space Station (ISS). The truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999

  4. The design and development of a two-dimensional adaptive truss structure

    NASA Technical Reports Server (NTRS)

    Kuwao, Fumihiro; Motohashi, Shoichi; Yoshihara, Makoto; Takahara, Kenichi; Natori, Michihiro

    1987-01-01

    The functional model of a two dimensional adaptive truss structure which can purposefully change its geometrical configuration is introduced. The details of design and fabrication such as kinematic analysis, dynamic characteristics analysis and some test results are presented for the demonstration of this two dimensional truss concept.

  5. Results of EVA/mobile transporter space station truss assembly tests

    NASA Technical Reports Server (NTRS)

    Watson, Judith J.; Heard, Walter L., Jr.; Bush, Harold G.; Lake, M. S.; Jensen, J. K.; Wallsom, R. E.; Phelps, J. E.

    1988-01-01

    Underwater neutral buoyance tests were conducted to evaluate the use of a Mobile Transporter concept in conjunction with EVA astronauts to construct the Space Station Freedom truss structure. A three-bay orthogonal tetrahedral truss configuration with a 15 foot square cross section was repeatedly assembled by a single pair of pressure suited test subjects working from the Mobile Transporter astronaut positioning devices (mobile foot restraints). The average unit assembly time (which included integrated installation of utility trays) was 27.6 s/strut, or 6 min/bay. The results of these tests indicate that EVA assembly of space station size structures can be significantly enhanced when using a Mobile Transporter equipped with astronaut positioning devices. Rapid assembly time can be expected and are dependent primarily on the rate of translation permissible for on-orbit operations. The concept used to demonstate integrated installation of utility trays requires minimal EVA handling and consequentially, as the results show, has little impact on overall assembly time.

  6. STS-110 M.S. Ochoa in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Ellen Ochoa practices driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. Accompanying her are fellow crew members Mission Specialist Rex Walheim (far left) and Pilot Stephen Frink (second from left). In front is the trainer. TCDT includes emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  7. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008704 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  8. STS-112 Crew walkout of O&C building for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-112 crew heads for the Astrovan and a ride to the launch pad for a simulated countdown. From left are Mission Specialists Fyodor Yurchikhin (RSA), David Wolf and Piers Sellers; Pilot Pamela Melroy; Mission Specialist Sandra Magnus; and Commander Jeffrey Ashby. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts.

  9. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Donald Pettit stands ready for a practice drive in an M-113 armored personnel carrier during emergency egress training at the pad, one of the Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  10. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During emergency egress training at the pad, Expedition 6 crew member Donald Pettit stands inside an M-113 armored personnel carrier before his practice drive. The training is part of Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  11. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 Commander Ken Bowersox stands ready for a practice drive in an M-113 armored personnel carrier during emergency egress training at the pad, one of the Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  12. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Commander James Wetherbee gets ready to drive an M-113 armored personnel carrier, part of emergency egress training during Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  13. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Commander James Wetherbee practices driving an M-113 armored personnel carrier, part of emergency egress training during Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  14. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Nikolai Budarin stands ready for a practice drive in an M-113 armored personnel carrier during emergency egress training at the pad, one of the Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  15. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Pilot Paul Lockhart stands inside an M-113 armored personnel carrier he is about to drive, part of emergency egress training during Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  16. KSC-02pd1555

    NASA Image and Video Library

    2002-10-16

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Nikolai Budarin stands ready for a practice drive in an M-113 armored personnel carrier during emergency egress training at the pad, one of the Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  17. KSC-03PD-2132

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper talks to workers in the Space Station Processing Facility. She and other crew members are at KSC for hardware familiarization. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  18. KSC-02pd1913

    NASA Image and Video Library

    2002-12-11

    KENNEDY SPACE CENTER, FLA. -- KSC technicians supervise the offloading of the Integrated Equipment Assembly (IEA), one of two major components of the Starboard 6 (S6) truss segment for the International Space Station (ISS), onto a cargo transporter following its arrival at the Shuttle Landing Facility. The IEA will be joined to its companion piece, the Long Spacer, before launch early in 2004. The S6 truss segment will be the 11th and final piece of the Station's Integrated Truss Structure and will support the fourth and final set of solar arrays, batteries, and electronics.

  19. KSC-02pd1914

    NASA Image and Video Library

    2002-12-11

    KENNEDY SPACE CENTER, FLA. -- KSC technicians supervise the transfer of the Integrated Equipment Assembly (IEA), one of two major components of the Starboard 6 (S6) truss segment for the International Space Station (ISS), onto a cargo transporter following its arrival at the Shuttle Landing Facility. The IEA will be joined to its companion piece, the Long Spacer, before launch early in 2004. The S6 truss segment will be the 11th and final piece of the Station's Integrated Truss Structure and will support the fourth and final set of solar arrays, batteries, and electronics.

  20. Calculation of load-bearing capacity of prestressed reinforced concrete trusses by the finite element method

    NASA Astrophysics Data System (ADS)

    Agapov, Vladimir; Golovanov, Roman; Aidemirov, Kurban

    2017-10-01

    The technique of calculation of prestressed reinforced concrete trusses with taking into account geometrical and physical nonlinearity is considered. As a tool for solving the problem, the finite element method has been chosen. Basic design equations and methods for their solution are given. It is assumed that there are both a prestressed and nonprestressed reinforcement in the bars of the trusses. The prestress is modeled by setting the temperature effect on the reinforcement. The ways of taking into account the physical and geometrical nonlinearity for bars of reinforced concrete trusses are considered. An example of the analysis of a flat truss is given and the behavior of the truss on various stages of its loading up to destruction is analyzed. A program for the analysis of flat and spatial concrete trusses taking into account the nonlinear deformation is developed. The program is adapted to the computational complex PRINS. As a part of this complex it is available to a wide range of engineering, scientific and technical workers

  1. Design, fabrication, and test of a graphite/epoxy metering truss. [as applied to the LST

    NASA Technical Reports Server (NTRS)

    Oken, S.; Skoumal, D. E.

    1975-01-01

    A graphite/epoxy metering truss as applied to the large space telescope was investigated. A full-scale truss was designed, fabricated and tested. Tests included static limit loadings, a modal survey and thermal-vacuum distortion evaluation. The most critical requirement was the demonstration of the dimensional stability provided by the graphite/epoxy truss concept. Crucial to the attainment of this objective was the ability to make very sophisticated thermal growth measurements which was provided by a seven beam laser interferometer. The design of the basic truss elements were tuned to provide the high degree of dimensional stability and stiffness required by the truss. The struts and spider assembly were fabricated with Fiberite's AS/934 and HMS/934 broadgoods. The rings utilized T300 graphite fabricate with the same materials. The predicted performance of the truss was developed using the NASTRAN program. These results showed conformance with the critical stiffness and thermal distortion requirements and correlated well with the test results.

  2. Structural performance of light-frame roof assemblies. I, Truss assemblies designed for high variability and wood failure

    Treesearch

    R.W. Wolfe; Monica McCarthy

    1989-01-01

    The first report of a three-part series that covers results of a full-scale roof assemblies research program. The focus of this report is the structural performance of truss assemblies comprising trusses with abnormally high stiffness variability and critical joint strength. Results discussed include properties of truss members and connections. individual truss...

  3. IntellEditS: intelligent learning-based editor of segmentations.

    PubMed

    Harrison, Adam P; Birkbeck, Neil; Sofka, Michal

    2013-01-01

    Automatic segmentation techniques, despite demonstrating excellent overall accuracy, can often produce inaccuracies in local regions. As a result, correcting segmentations remains an important task that is often laborious, especially when done manually for 3D datasets. This work presents a powerful tool called Intelligent Learning-Based Editor of Segmentations (IntellEditS) that minimizes user effort and further improves segmentation accuracy. The tool partners interactive learning with an energy-minimization approach to editing. Based on interactive user input, a discriminative classifier is trained and applied to the edited 3D region to produce soft voxel labeling. The labels are integrated into a novel energy functional along with the existing segmentation and image data. Unlike the state of the art, IntellEditS is designed to correct segmentation results represented not only as masks but also as meshes. In addition, IntellEditS accepts intuitive boundary-based user interactions. The versatility and performance of IntellEditS are demonstrated on both MRI and CT datasets consisting of varied anatomical structures and resolutions.

  4. Space truss zero gravity dynamics

    NASA Technical Reports Server (NTRS)

    Swanson, Andy

    1989-01-01

    The Structural Dynamics Branch of the Air Force Flight Dynamics Laboratory in cooperation with the Reduced Gravity Office of the NASA Lyndon B. Johnson Space Center (JSC) plans to perform zero-gravity dynamic tests of a 12-meter truss structure. This presentation describes the program and presents all results obtained to date.

  5. STS-97 P6 truss payload canister is lifted into payload changeout room

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure that supports payload delivery at the pad and subsequent vertical installation in the orbiter payload bay. Attached to the canister are the red umbilical lines that maintain the controlled environment inside. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station'''s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST.

  6. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Thomas, F. P.

    1992-01-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  7. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Astrophysics Data System (ADS)

    Rule, W. K.; Thomas, F. P.

    1992-10-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  8. KSC-03PD-0187

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- During Crew Equipment Interface Test activities in the Space Station Processing Facility, STS-115 Mission Specialists Heidemarie Stefanyshyn-Piper and Joseph Tanner look at equipment. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array set 2A and 4A. Launch on Space Shuttle Endeavour is scheduled for May 23, 2003.

  9. Rearrangements of mycoreovirus 1 S1, S2 and S3 induced by the multifunctional protein p29 encoded by the prototypic hypovirus Cryphonectria hypovirus 1 strain EP713.

    PubMed

    Tanaka, Toru; Sun, Liying; Tsutani, Kouhei; Suzuki, Nobuhiro

    2011-08-01

    Mycoreovirus 1 (MyRV1), a member of the family Reoviridae possessing a genome consisting of 11 dsRNA segments (S1-S11), infects the chestnut blight fungus and reduces its virulence (hypovirulence). Studies have previously demonstrated reproducible induction of intragenic rearrangements of MyRV1 S6 (S6L: almost full-length duplication) and S10 (S10ss: internal deletion of three-quarters of the ORF), mediated by the multifunctional protein p29 encoded by the prototype hypovirus, Cryphonectria hypovirus 1 (CHV1) strain EP713, of the family Hypoviridae with ssRNA genomes. The current study showed that CHV1 p29 also induced rearrangements of the three largest MyRV1 segments, S1, S2 and S3, which encode structural proteins. These rearranged segments involved in-frame extensions of almost two-thirds of the ORFs (S1L, S2L and S3L, respectively), which is rare for a reovirus rearrangement. MyRV1 variants carrying S1L, S2L or S3L always contained S10ss (MyRV1/S1L+S10ss2, MyRV1/S2L+S10ss2 or MyRV1/S3L+S10ss2). Levels of mRNAs for the rearranged and co-existing unaltered genome segments in fungal colonies infected with each of the MyRV1 variants appeared to be comparable to those for the corresponding normal segments in wild-type MyRV1-infected colonies, suggesting that the rearranged segments were fully competent for packaging and transcription. Protein products of the rearranged segments were detectable in fungal colonies infected with S2L MyRV1/S2L+S10ss2 and S3L MyRV1/S3L+S10ss2, whilst S1L-encoded protein remained undetectable. S1L, S2L and S3L were associated with enhancement of the aerial hyphae growth rate. This study has provided additional examples of MyRV1 intragenic rearrangements induced by p29, and suggests that normal S1, S2 and S3 are required for the symptoms caused by MyRV1.

  10. Piezoelectric devices for vibration suppression: Modeling and application to a truss structure

    NASA Technical Reports Server (NTRS)

    Won, Chin C.; Sparks, Dean W., Jr.; Belvin, W. Keith; Sulla, Jeff L.

    1993-01-01

    For a space structure assembled from truss members, an effective way to control the structure may be to replace the regular truss elements by active members. The active members play the role of load carrying elements as well as actuators. A piezo strut, made of a stack of piezoceramics, may be an ideal active member to be integrated into a truss space structure. An electrically driven piezo strut generates a pair of forces, and is considered as a two-point actuator in contrast to a one-point actuator such as a thruster or a shaker. To achieve good structural vibration control, sensing signals compatible to the control actuators are desirable. A strain gage or a piezo film with proper signal conditioning to measure member strain or strain rate, respectively, are ideal control sensors for use with a piezo actuator. The Phase 0 CSI Evolutionary Model (CEM) at NASA Langley Research Center used cold air thrusters as actuators to control both rigid body motions and flexible body vibrations. For the Phase 1 and 2 CEM, it is proposed to use piezo struts to control the flexible modes and thrusters to control the rigid body modes. A tenbay truss structure with active piezo struts is built to study the modeling, controller designs, and experimental issues. In this paper, the tenbay structure with piezo active members is modelled using an energy method approach. Decentralized and centralized control schemes are designed and implemented, and preliminary analytical and experimental results are presented.

  11. 10. DETAILS OF STEEL FLUME, TYPICAL BENTS AND TRUSSES. EXHIBIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAILS OF STEEL FLUME, TYPICAL BENTS AND TRUSSES. EXHIBIT L, SANTA ANA RIVER NO. 1 PROJECT, APR. 30, 1945. SCE drawing no. 523196 (sheet no. 6; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, Flumes & Tunnels below Sandbox, Redlands, San Bernardino County, CA

  12. NiTi-Nb micro-trusses fabricated via extrusion-based 3D-printing of powders and transient-liquid-phase sintering.

    PubMed

    Taylor, Shannon L; Ibeh, Amaka J; Jakus, Adam E; Shah, Ramille N; Dunand, David C

    2018-06-15

    We present a novel additive manufacturing method for NiTi-Nb micro-trusses combining (i) extrusion-based 3D-printing of liquid inks containing NiTi and Nb powders, solvents, and a polymer binder into micro-trusses with 0/90° ABAB layers of parallel, ∼600 µm struts spaced 1 mm apart and (ii) subsequent heat-treatment to remove the binder and solvents, and then bond the NiTi powders using liquid phase sintering via the formation of a transient NiTi-Nb eutectic phase. We investigate the effects of Nb concentration (0, 1.5, 3.1, 6.7 at.% Nb) on the porosity, microstructure, and phase transformations of the printed NiTi-Nb micro-trusses. Micro-trusses with the highest Nb content exhibit long channels (from 3D-printing) and struts with smaller interconnected porosity (from partial sintering), resulting in overall porosities of ∼75% and low compressive stiffnesses of 1-1.6 GPa, similar to those of trabecular bone and in agreement with analytical and finite element modeling predictions. Diffusion of Nb into the NiTi particles from the bond regions results in a Ni-rich composition as the Nb replaces Ti atoms, leading to decreased martensite/austenite transformation temperatures. Adult human mesenchymal stem cells seeded on these micro-trusses showed excellent viability, proliferation, and extracellular matrix deposition over 14 days in culture. Near-equiatomic NiTi micro-trusses are attractive for biomedical applications such as stents, actuators, and bone implants because of their combination of biocompatibility, low compressive stiffness, high surface area, and shape-memory or superelasticity. Extrusion-based 3D-printing of NiTi powder-based inks into micro-trusses is feasible, but the subsequent sintering of the powders into dense struts is unachievable due to low diffusivity, large particle size, and low packing density of the NiTi powders. We present a solution, whereby Nb powders are added to the NiTi inks, thus forming during sintering a eutectic Ni

  13. STS-131 EVA 2 S1 ATA Relocation OPS

    NASA Image and Video Library

    2010-04-11

    S131-E-008878 (11 April 2010) --- NASA astronauts Rick Mastracchio (left) and Clayton Anderson, both STS-131 mission specialists, participate in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and Anderson unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station?s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process. The thin line of Earth's atmosphere appears in frame center.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2007-06-11

    STS-117 astronauts and mission specialists Jim Reilly (center frame), and John “Danny” Olivas (bottom center), participated in the first Extra Vehicular Activity (EVA) as construction resumed on the International Space Station (ISS). Among other tasks, the two connected power, data, and cooling cables between trusses 1 (S1) and 3 (S3), released the launch restraints from and deployed the four solar array blanket boxes on S4, and released the cinches and winches holding the photovoltaic radiator on S4. The primary mission objective was the installment of the second and third starboard truss segments (S3 and S4).

  15. KSC-04pd1476

    NASA Image and Video Library

    2004-07-15

    KENNEDY SPACE CENTER, FLA. - Unpacking of the Pump Flow Control Subsystem (PFCS) begins in the Space Station Processing Facility. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.

  16. Minimum mass design of large-scale space trusses subjected to thermal gradients

    NASA Technical Reports Server (NTRS)

    Williams, R. Brett; Agnes, Gregory S.

    2006-01-01

    Lightweight, deployable trusses are commonly used to support space-borne instruments including RF reflectors, radar panels, and telescope optics. While in orbit, these support structures are subjected to thermal gradients that vary with altitude, location in orbit, and self-shadowing. Since these instruments have tight dimensional-stability requirements, their truss members are often covered with multi-layer insulation (MLI) blankets to minimize thermal distortions. This paper develops a radiation heat transfer model to predict the thermal gradient experienced by a triangular truss supporting a long, linear radar panel in Medium Earth Orbit (MEO). The influence of self-shadowing effects of the radar panel are included in the analysis, and the influence of both MLI thickness and outer covers/coatings on the magnitude of the thermal gradient are formed into a simple, two-dimensional analysis. This thermal model is then used to size and estimate the structural mass of a triangular truss that meets a given set of structural requirements.

  17. Analysis and testing of a soft actuation system for segmented reflector articulation and isolation

    NASA Technical Reports Server (NTRS)

    Jandura, Louise; Agronin, Michael L.

    1991-01-01

    Segmented reflectors have been proposed for space-based applications such as optical communication and large-diameter telescopes. An actuation system for mirrors in a space-based segmented mirror array has been developed as part of the National Aeronautics and Space Administration-sponsored Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), articulates a mirror panel in 3 degrees of freedom in the submicron regime, isolates the panel from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM has been built and is described. Three-axis modeling, analysis, and testing of the breadboard is discussed.

  18. Truss Assembly and Welding by Intelligent Precision Jigging Robots

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2014-01-01

    This paper describes an Intelligent Precision Jigging Robot (IPJR) prototype that enables the precise alignment and welding of titanium space telescope optical benches. The IPJR, equipped with micron accuracy sensors and actuators, worked in tandem with a lower precision remote controlled manipulator. The combined system assembled and welded a 2 m truss from stock titanium components. The calibration of the IPJR, and the difference between the predicted and the truss dimensions as-built, identified additional sources of error that should be addressed in the next generation of IPJRs in 2D and 3D.

  19. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist John Herrington stands inside an M-113 armored personnel carrier that he is about to drive as part of emergency egress training during Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  20. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Donald Pettit concentrates on driving an M-113 armored personnel carrier during emergency egress training at the pad. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  1. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Nikolai Budarin takes his turn driving an M-113 armored personnel carrier during emergency egress training at the pad. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  2. Onsite Fabrication of Trusses and Structures

    NASA Technical Reports Server (NTRS)

    Bodle, J. G.; Browning, D. L.; Fisher, J. G.; Hujsak, E. J.; Kleidon, E. H.; Siden, L. E.; Tremblay, G. A.

    1982-01-01

    Tribeam truss that is strong and light made at site where used. Reinforced plastic members are fabricated by beam-making machine and assembled by assembly and welding machines. Although proposed for space-platform assembly, concept may be useful in terrestrial applications in remote or inaccessible places.

  3. Investigation of the Dayton IR 75 sign truss failure of 9/11/06.

    DOT National Transportation Integrated Search

    2007-03-01

    Based upon a combination of in-situ field monitoring of traffic-induced bridge : vibrations at the location of the failed sign support truss, finite element simulation of the : expected dynamic response of the original truss in such an environment, t...

  4. Wave propagation in equivalent continuums representing truss lattice materials

    DOE PAGES

    Messner, Mark C.; Barham, Matthew I.; Kumar, Mukul; ...

    2015-07-29

    Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures from lattice materials, but the design of such structures will require accurate, efficient simulation methods. Equivalent continuum models have several advantages over discrete truss models of stretch dominated lattices, including computational efficiency and ease of model construction. However, the development an equivalent model suitable for representing the dynamic response of a periodic truss in the small deformation regime is complicated by microinertial effects. This study derives a dynamic equivalent continuum model for periodic trussmore » structures suitable for representing long-wavelength wave propagation and verifies it against the full Bloch wave theory and detailed finite element simulations. The model must incorporate microinertial effects to accurately reproduce long wavelength characteristics of the response such as anisotropic elastic soundspeeds. Finally, the formulation presented here also improves upon previous work by preserving equilibrium at truss joints for simple lattices and by improving numerical stability by eliminating vertices in the effective yield surface.« less

  5. The Researches on Damage Detection Method for Truss Structures

    NASA Astrophysics Data System (ADS)

    Wang, Meng Hong; Cao, Xiao Nan

    2018-06-01

    This paper presents an effective method to detect damage in truss structures. Numerical simulation and experimental analysis were carried out on a damaged truss structure under instantaneous excitation. The ideal excitation point and appropriate hammering method were determined to extract time domain signals under two working conditions. The frequency response function and principal component analysis were used for data processing, and the angle between the frequency response function vectors was selected as a damage index to ascertain the location of a damaged bar in the truss structure. In the numerical simulation, the time domain signal of all nodes was extracted to determine the location of the damaged bar. In the experimental analysis, the time domain signal of a portion of the nodes was extracted on the basis of an optimal sensor placement method based on the node strain energy coefficient. The results of the numerical simulation and experimental analysis showed that the damage detection method based on the frequency response function and principal component analysis could locate the damaged bar accurately.

  6. KSC-03PD-0186

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Joseph Tanner (center) works a piece of equipment during Crew Equipment Interface Test activities in the Space Station Processing Facility. On the right is Mission Specialist Heidemarie Stefanyshyn-Piper. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array set 2A and 4A. Launch on Space Shuttle Endeavour is scheduled for May 23, 2003.

  7. Discrete size optimization of steel trusses using a refined big bang-big crunch algorithm

    NASA Astrophysics Data System (ADS)

    Hasançebi, O.; Kazemzadeh Azad, S.

    2014-01-01

    This article presents a methodology that provides a method for design optimization of steel truss structures based on a refined big bang-big crunch (BB-BC) algorithm. It is shown that a standard formulation of the BB-BC algorithm occasionally falls short of producing acceptable solutions to problems from discrete size optimum design of steel trusses. A reformulation of the algorithm is proposed and implemented for design optimization of various discrete truss structures according to American Institute of Steel Construction Allowable Stress Design (AISC-ASD) specifications. Furthermore, the performance of the proposed BB-BC algorithm is compared to its standard version as well as other well-known metaheuristic techniques. The numerical results confirm the efficiency of the proposed algorithm in practical design optimization of truss structures.

  8. Survey of metal truss bridges in Virginia.

    DOT National Transportation Integrated Search

    1997-01-01

    Bridges are among the cultural resources that must be considered for historical significance under the Historic Preservation Act of 1966. The Virginia Transportation Research Council conducted a pioneering study of Virginia's pre-1932 metal truss bri...

  9. KSC-01pp1573

    NASA Image and Video Library

    2001-08-01

    JOHNSON SPACE CENTER, HOUSTON, TEXAS. -- STS-110 INSIGNIA: The STS-110 mission begins the third and final phase of construction for the International Space Station (ISS) by delivering and installing the S0 truss segment that will be carried into orbit in the payload bay of Space Shuttle Atlantis. The Station's robotic arm will remove the S0 segment from the Shuttle's payload bay and place it on top of the United States Laboratory. During several spacewalks, S0 will be mechanically attached to ISS, and then multiple cables will be connected allowing electrical power and communications to flow between S0 and ISS. The STS-110 crew patch is patterned after the cross-section of the S0 truss, and encases the launch of the Shuttle Atlantis and a silhouette of the ISS as it will look following mission completion. The successfully installed S0 segment is highlighted in gold. The S0 truss will serve as the cornerstone for the remaining ISS truss segments, which together will span a distance greater than the length of a football field. This truss holds the Station's massive solar arrays, providing electrical power for the modules of all the International Partners, and enables the ISS to reach its full potential as a world-class research facility. The NASA insignia design for Space Shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved onlly in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced

  10. Development of a verification program for deployable truss advanced technology

    NASA Technical Reports Server (NTRS)

    Dyer, Jack E.

    1988-01-01

    Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.

  11. Structural design and static analysis of a double-ring deployable truss for mesh antennas

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Guan, Fuling; Chen, Jianjun; Zheng, Yao

    2012-12-01

    This paper addresses the structural design, the deployment control design, the static analysis and the model testing of a new double-ring deployable truss that is intended for large mesh antennas. This deployable truss is a multi-DOF (degree-of-freedom), over-constrained mechanism. Two kinds of deployable basic elements were introduced, as well as a process to synthesise the structure of the deployable truss. The geometric equations were formulated to determine the length of each strut, including the effects of the joint size. A DOF evaluation showed that the mechanism requires two active cables and requires deployment control. An open-loop control system was designed to control the rotational velocities of two motors. The structural stiffness of the truss was assessed by static analysis that considered the effects of the constraint condition and the pre-stress of the passive cables. A 4.2-metre demonstration model of an antenna was designed and fabricated. The geometry and the deployment behaviour of the double-ring truss were validated by the experiments using this model.

  12. A Teaching Model for Truss Structures

    ERIC Educational Resources Information Center

    Bigoni, Davide; Dal Corso, Francesco; Misseroni, Diego; Tommasini, Mirko

    2012-01-01

    A classroom demonstration model has been designed, machined and successfully tested in different learning environments to facilitate understanding of the mechanics of truss structures, in which struts are subject to purely axial load and deformation. Gaining confidence with these structures is crucial for the development of lattice models, which…

  13. Clearance Analysis of CTC2 (on ELC4) to S-TRRJ HRS Radiator Rotation Envelope

    NASA Technical Reports Server (NTRS)

    Liddle, Donn

    2014-01-01

    ) as defined by nine preexisting Space Vision System (SVS) targets affixed to the forward/zenith side of the S1 and S3 truss segments. The location of the outboard edge of the S-TRRJ radiator would also be measured when positioned at the angle of closest approach to CTC2 (gamma = 35.0 degrees). This data would allow the Digital Pre-Assembly Group to predict how the ELC4 would sit on the UCCAS and how that would translate into the clearance between CTC2 and the S-TRRJ radiators. Phase II: After the ELC4 was delivered and installed into the UCCAS, the position of the CTC2 mounting plate on the inboard face of ELC4, would be measured in the ISSACS coordinate system relative to the SVS control points used in Phase I. Although CTC2 would not yet be mounted on ELC4, the working envelope of CTC2 could be mathematically added to the measured position of ELC4 to produce a best estimate for CTC2's mounted location. Comparing CTC2's best estimated location to the S-TRRJ radiator (measured in Phase I); relative to the ISSACS coordinate system, would provide a direct measurement of the expected clearance. Due to the impending delivery of ELC4 (scheduled for January 2011), planning for the Phase I clearance analysis began immediately. Using the Dynamic Onboard Ubiquitous Graphics (DOUG) program, ISAG designed a way to acquire images of the SVS control points on truss segments S1 and S3, the aft facing edge of the S-TRRJ Heat Rejection Subsystem (HRS) radiator, and the three UCCAS latch mechanisms mounted on the zenith face of the S3 truss using the Space Station Remote Manipulator System (SSRMS). To minimize the number of SSRMS movements, the Special Purpose Dexterous Manipulator (SPDM) would be attached to the SSRMS. This would make it possible to park the SPDM in one position and acquire multiple images by changing the viewing orientation of the SPDM body cameras using the pan/tilt units on which they are mounted. Using this implementation concept, ISAG identified four SSRMS

  14. KSC-02PD0336

    NASA Image and Video Library

    2002-03-19

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, the Integrated Truss Structure S0 is ready for transport to the launch pad on mission STS-110. Scheduled for launch April 4, the 11-day mission will feature Space Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet

  15. KSC-04pd1477

    NASA Image and Video Library

    2004-07-15

    KENNEDY SPACE CENTER, FLA. - Technicians attach a crane to the Pump Flow Control Subsystem (PFCS) in the Space Station Processing Facility. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.

  16. Verification Test of Automated Robotic Assembly of Space Truss Structures

    NASA Technical Reports Server (NTRS)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Cuong C.

    1995-01-01

    A multidisciplinary program has been conducted at the Langley Research Center to develop operational procedures for supervised autonomous assembly of truss structures suitable for large-aperture antennas. The hardware and operations required to assemble a 102-member tetrahedral truss and attach 12 hexagonal panels were developed and evaluated. A brute-force automation approach was used to develop baseline assembly hardware and software techniques. However, as the system matured and operations were proven, upgrades were incorporated and assessed against the baseline test results. These upgrades included the use of distributed microprocessors to control dedicated end-effector operations, machine vision guidance for strut installation, and the use of an expert system-based executive-control program. This paper summarizes the developmental phases of the program, the results of several assembly tests, and a series of proposed enhancements. No problems that would preclude automated in-space assembly or truss structures have been encountered. The test system was developed at a breadboard level and continued development at an enhanced level is warranted.

  17. High cycle fatigue crack modeling and analysis for deck truss flooring connection details : appendices.

    DOT National Transportation Integrated Search

    1997-07-01

    The appendix belongs to "High cycle fatigue crack modeling and analysis for deck truss flooring connection details : final report". : The Oregon Department of Transportation is responsible for many steel deck truss bridges containing connection detai...

  18. Assembling Precise Truss Structures With Minimal Stresses

    NASA Technical Reports Server (NTRS)

    Sword, Lee F.

    1996-01-01

    Improved method of assembling precise truss structures involves use of simple devices. Tapered pins that fit in tapered holes indicate deviations from prescribed lengths. Method both helps to ensure precision of finished structures and minimizes residual stresses within structures.

  19. Tests of an alternate mobile transporter and extravehicular activity assembly procedure for the Space Station Freedom truss

    NASA Technical Reports Server (NTRS)

    Heard, Walter L., Jr.; Watson, Judith J.; Lake, Mark S.; Bush, Harold G.; Jensen, J. Kermit; Wallsom, Richard E.; Phelps, James E.

    1992-01-01

    Results are presented from a ground test program of an alternate mobile transporter (MT) concept and extravehicular activity (EVA) assembly procedure for the Space Station Freedom (SSF) truss keel. A three-bay orthogonal tetrahedral truss beam consisting of 44 2-in-diameter struts and 16 nodes was assembled repeatedly in neutral buoyancy by pairs of pressure-suited test subjects working from astronaut positioning devices (APD's) on the MT. The truss bays were cubic with edges 15 ft long. All the truss joint hardware was found to be EVA compatible. The average unit assembly time for a single pair of experienced test subjects was 27.6 sec/strut, which is about half the time derived from other SSF truss assembly tests. A concept for integration of utility trays during truss assembly is introduced and demonstrated in the assembly tests. The concept, which requires minimal EVA handling of the trays, is shown to have little impact on overall assembly time. The results of these tests indicate that by using an MT equipped with APD's, rapid EVA assembly of a space station-size truss structure can be expected.

  20. KSC-99pd0684

    NASA Image and Video Library

    1999-06-12

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Bldg. (O&C), an overhead crane moves the S0 truss segment toward a workstand. The S0 truss will undergo processing in the O&C during which the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes will be installed. Four Global Positioning System antennas are already installed. A 44by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, "Destiny," which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108

  1. KSC-99pp0684

    NASA Image and Video Library

    1999-06-12

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Bldg. (O&C), an overhead crane moves the S0 truss segment toward a workstand. The S0 truss will undergo processing in the O&C during which the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers and a pair of rate gyroscopes will be installed. Four Global Positioning System antennas are already installed. A 44- by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, "Destiny," which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108

  2. Wing spar stress charts and wing truss proportions

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1926-01-01

    In order to simplify the calculation of beams continuous over three supports, a series of charts have been calculated giving the bending moments at all the critical points and the reactions at all supports for such members. Using these charts as a basis, calculations of equivalent bending moments, representing the total stresses acting in two bay-wing trusses of proportions varying over a wide range, have been determined, both with and without allowance for column effect. This leads finally to the determination of the best proportions for any particular truss or the best strut locations in any particular airplane. The ideal proportions are found to vary with the thickness of the wing section used, the aspect ratio, and the ratio of gap to chord.

  3. P6 Truss aft radiator seen during EVA

    NASA Image and Video Library

    2007-02-04

    ISS014-E-13293 (4 Feb. 2007) --- The partially retracted aft radiator of the P6 truss of the International Space Station is featured in this image photographed during the second of three sessions of extravehicular activity (EVA) in nine days by astronauts Michael E. Lopez-Alegria (out of frame), Expedition 14 commander and NASA space station science officer; and Sunita L. Williams (out of frame), flight engineer. The Zvezda Service Module and the Zarya module are visible at left. During the spacewalk, Williams and Lopez-Alegria reconfigured the second of two cooling loops for the Destiny laboratory module, secured the aft radiator of the P6 truss after retraction and prepared the obsolete Early Ammonia Servicer (EAS) for removal this summer.

  4. P6 Truss aft radiator seen during EVA

    NASA Image and Video Library

    2007-02-04

    ISS014-E-13296 (4 Feb. 2007) --- The partially retracted aft radiator of the P6 truss of the International Space Station is featured in this image photographed during the second of three sessions of extravehicular activity (EVA) in nine days by astronauts Michael E. Lopez-Alegria (out of frame), Expedition 14 commander and NASA space station science officer; and Sunita L. Williams (out of frame), flight engineer. The Zvezda Service Module and the Zarya module are visible at left. During the spacewalk, Williams and Lopez-Alegria reconfigured the second of two cooling loops for the Destiny laboratory module, secured the aft radiator of the P6 truss after retraction and prepared the obsolete Early Ammonia Servicer (EAS) for removal this summer.

  5. Loading mode dependent effective properties of octet-truss lattice structures using 3D-printing

    NASA Astrophysics Data System (ADS)

    Challapalli, Adithya

    Cellular materials, often called lattice materials, are increasingly receiving attention for their ultralight structures with high specific strength, excellent impact absorption, acoustic insulation, heat dissipation media and compact heat exchangers. In alignment with emerging additive manufacturing (AM) technology, realization of the structural applications of the lattice materials appears to be becoming faster. Considering the direction dependent material properties of the products with AM, by directionally dependent printing resolution, effective moduli of lattice structures appear to be directionally dependent. In this paper, a constitutive model of a lattice structure, which is an octet-truss with a base material having an orthotropic material property considering AM is developed. In a case study, polyjet based 3D printing material having an orthotropic property with a 9% difference in the principal direction provides difference in the axial and shear moduli in the octet-truss by 2.3 and 4.6%. Experimental validation for the effective properties of a 3D printed octet-truss is done for uniaxial tension and compression test. The theoretical value based on the micro-buckling of truss member are used to estimate the failure strength. Modulus value appears a little overestimate compared with the experiment. Finite element (FE) simulations for uniaxial compression and tension of octettruss lattice materials are conducted. New effective properties for the octet-truss lattice structure are developed considering the observed behavior of the octet-truss structure under macroscopic compression and tension trough simulations.

  6. STS-112 Crew walkout of O&C building for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-112 crew strides out of the Checkout and Operations Building on their way to the launch pad and a simulated countdown. On the left, front to back, are Pilot Pamela Melroy and Mission Specialists David Wolf and Fyodor Yurchikhin (RSA). On the right, front to back, are Commander Jeffrey Ashby and Mission Specialists Sandra Magnus and Piers Sellers. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts.

  7. STS-112 crew group photo in white room during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-112 crew pauses for a photo in the White Room during Terminal Countdown Demonstration Test activities. From left, clockwise, are Mission Specialists Piers Sellers and Sandra Magnus, Pilot Pamela Melroy, Commander Jeffrey Ashby and Mission Specialists Fyodor Yurchikhin and David Wolf. Ashby is holding the mission insignia. Yurchikhin is with the Russian Space Agency. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts.

  8. STS-112 crew group photo in white room during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-112 crew pauses for a photo in the White Room during Terminal Countdown Demonstration Test activities. Kneeling in front are Mission Specialists Piers Sellers and David Wolf; standing, left to right, are Mission Specialist Sandra Magnus, Pilot Pamela Melroy, Commander Jeffrey Ashby and Mission Specialist Fyodor Yurchikhin. (with the Russian Space Agency). Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts.

  9. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist John Herrington is at the wheel of an M-113 armored personnel carrier during emergency egress training at the pad. He is accompanied by (left) Mission Specialist Michael Lopez-Alegria and Commander James Wetherbee. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  10. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-113 crew pause for a photo after test drives in the M-113 armored personnel carrier behind them. From left are Mission Specialist Michael Lopez-Alegria, Pilot Paul Lockhart, Commander James Wetherbee and Mission Specialist John Herrington. Driving the M-113 is part of emergency egress training at the pad, one of the Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  11. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist Michael Lopez-Alegria concentrates on driving an M-113 armored personnel carrier during emergency egress training at the pad. He is accompanied by (far left) Mission Specialist John Herrington and Commander James Wetherbee. Behind Lopez-Alegria is Pilot Paul Lockhart. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  12. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The Expedition 6 crew pauses for a photo after emergency egress training at the pad, which included driving the M-113 armored personnel carrier behind them. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  13. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Pilot Paul Lockhart test drives an M-113 armored personnel carrier, part of emergency egress training during Terminal Countdown Demonstration Test activities. He is accompanied by several other crew members, seen at left, Mission Specialist Michael Lopez-Alegria and Commander James Wetherbee. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  14. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist Michael Lopez-Alegria is ready to begin a test drive behind the wheel of an M-113 armored personnel carrier during emergency egress training at the pad. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  15. KSC-02pd1552

    NASA Image and Video Library

    2002-10-16

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist Michael Lopez-Alegria is ready to begin a test drive behind the wheel of an M-113 armored personnel carrier during emergency egress training at the pad. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  16. KSC-02pd1554

    NASA Image and Video Library

    2002-10-16

    KENNEDY SPACE CENTER, FLA. -- The STS-113 crew pause for a photo after test drives in the M-113 armored personnel carrier behind them. From left are Mission Specialist Michael Lopez-Alegria, Pilot Paul Lockhart, Commander James Wetherbee and Mission Specialist John Herrington. Driving the M-113 is part of emergency egress training at the pad, one of the Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  17. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 mission specialist Lee M.E. Morin carries an affixed 35 mm camera to record work which is being performed on the International Space Station (ISS). Working with astronaut Jerry L. Ross (out of frame), the duo completed the structural attachment of the S0 (s-zero) truss, mating two large tripod legs of the 13 1/2 ton structure to the station's main laboratory during a 7-hour, 30-minute space walk. The STS-110 mission prepared the Station for future space walks by installing and outfitting the 43-foot-long S0 truss and preparing the Mobile Transporter. The S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  18. KSC-99pd0679

    NASA Image and Video Library

    1999-06-12

    KENNEDY SPACE CENTER, FLA. -- The S0 truss segment is moved into the Operations and Checkout Bldg. (O&C) for processing. The truss arrived at the SLF aboard a "Super Guppy" aircraft from Boeing in Huntington, Calif. During processing in the O&C, the S0 truss will have installed the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes. Four Global Positioning System antennas are already installed. A 44by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, "Destiny," which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108

  19. The control of flexible structure vibrations using a cantilevered adaptive truss

    NASA Technical Reports Server (NTRS)

    Wynn, Robert H., Jr.; Robertshaw, Harry H.

    1991-01-01

    Analytical and experimental procedures and design tools are presented for the control of flexible structure vibrations using a cantilevered adaptive truss. Simulated and experimental data are examined for three types of structures: a slender beam, a single curved beam, and two curved beams. The adaptive truss is shown to produce a 6,000-percent increase in damping, demonstrating its potential in vibration control. Good agreement is obtained between the simulated and experimental data, thus validating the modeling methods.

  20. Hypervelocity impact testing of L-band truss cable meteoroid shielding on Skylab

    NASA Technical Reports Server (NTRS)

    Jex, D. W.

    1973-01-01

    A series of tests was performed to determine the protection provided by the L-band truss cable meteoroid shielding installed on Skylab space station at space environment temperatures of minus 180 F. The damage sustained when three test specimens were impacted by spherical projectiles at hypersonic speed was investigated. It is concluded that the L-band truss cable meteoroid shielding provides adequate protection at the indicated temperature.

  1. Shear properties evaluation of a truss core of sandwich beams

    NASA Astrophysics Data System (ADS)

    Wesolowski, M.; Ludewicz, J.; Domski, J.; Zakrzewski, M.

    2017-10-01

    The open-cell cores of sandwich structures are locally bonded to the face layers by means of adhesive resin. The sandwich structures composed of different parent materials such as carbon fibre composites (laminated face layers) and metallic core (aluminium truss core) brings the need to closely analyse their adhesive connections which strength is dominated by the shear stress. The presented work considers sandwich beams subjected to the static tests in the 3-point bending with the purpose of estimation of shear properties of the truss core. The main concern is dedicated to the out-of plane shear modulus and ultimate shear stress of the aluminium truss core. The loading of the beam is provided by a static machine. For the all beams the force - deflection history is extracted by means of non-contact optical deflection measurement using PONTOS system. The mode of failure is identified for each beam with the corresponding applied force. A flexural rigidity of the sandwich beams is also discussed based on force - displacement plots.

  2. Multi-level optimization of a beam-like space truss utilizing a continuum model

    NASA Technical Reports Server (NTRS)

    Yates, K.; Gurdal, Z.; Thangjitham, S.

    1992-01-01

    A continuous beam model is developed for approximate analysis of a large, slender, beam-like truss. The model is incorporated in a multi-level optimization scheme for the weight minimization of such trusses. This scheme is tested against traditional optimization procedures for savings in computational cost. Results from both optimization methods are presented for comparison.

  3. Adjustable-Torque Truss-Joint Mechanism

    NASA Technical Reports Server (NTRS)

    Bush, Harold G.; Wallsom, Richard E.

    1993-01-01

    Threaded pin tightened or loosened; tedious trial-and-error procedure shortened. Mechanism joining strut and node in truss structure preloaded to desired stress to ensure tight, compressive fit preventing motion of strut during loading or vibration. Preload stress on stack of Belleville spring washers adjusted by tightening or loosening threaded Belleville-washer-alignment pin. Pin turned, by use of allen wrench, to adjust compression preload on Belleville washers and adjusts joint-operating torque.

  4. Truss topology optimization with simultaneous analysis and design

    NASA Technical Reports Server (NTRS)

    Sankaranarayanan, S.; Haftka, Raphael T.; Kapania, Rakesh K.

    1992-01-01

    Strategies for topology optimization of trusses for minimum weight subject to stress and displacement constraints by Simultaneous Analysis and Design (SAND) are considered. The ground structure approach is used. A penalty function formulation of SAND is compared with an augmented Lagrangian formulation. The efficiency of SAND in handling combinations of general constraints is tested. A strategy for obtaining an optimal topology by minimizing the compliance of the truss is compared with a direct weight minimization solution to satisfy stress and displacement constraints. It is shown that for some problems, starting from the ground structure and using SAND is better than starting from a minimum compliance topology design and optimizing only the cross sections for minimum weight under stress and displacement constraints. A member elimination strategy to save CPU time is discussed.

  5. The precision segmented reflectors: Moderate mission figure control subsystem

    NASA Technical Reports Server (NTRS)

    Sevaston, G.; Redding, D.; Lau, K.; Breckenridge, W.; Levine, B.; Nerheim, N.; Sirlin, S.; Kadogawa, H.

    1991-01-01

    A system concept for a space based segmented reflector telescope figure control subsystem is described. The concept employs a two phase architecture in which figure initialization and figure maintenance are independent functions. Figure initialization is accomplished by image sharpening using natural reference targets. Figure maintenance is performed by monitoring the relative positions and alignments of the telescope components using an optical truss. Actuation is achieved using precision positioners. Computer simulation results of figure initialization by pairwise segment coalignment/cophasing and simulated annealing are presented along with figure maintenance results using a wavefront error regulation algorithm. Both functions are shown to perform at acceptable levels for the class of submillimeter telescopes that are serving as the focus of this technology development effort. Component breadboard work as well as plans for a system testbed are discussed.

  6. Investigation of Prefabricated Steel-Truss Bridge Deck System

    DOT National Transportation Integrated Search

    2017-11-01

    Steel truss bridges are an efficient and aesthetic option for highway crossings. Their relatively light weight compared with plate girder systems make them a desirable alternative for both material savings and constructability. A prototype of a welde...

  7. Application of truss analysis for the quantification of changes in fish condition

    USGS Publications Warehouse

    Fitzgerald, Dean G.; Nanson, Jeffrey W.; Todd, Thomas N.; Davis, Bruce M.

    2002-01-01

    Conservation of skeletal structure and unique body ratios in fishes facilitated the development of truss analysis as a taxonomic tool to separate physically-similar species. The methodology is predicated on the measurement of across-body distances from a sequential series of connected polygons. Changes in body shape or condition among members of the same species can be quantified with the same technique, and we conducted a feeding experiment using yellow perch (Perca flavescens) to examine the utility of this approach. Ration size was used as a surrogate for fish condition, with fish receiving either a high (3.0% body wt/d) or a low ration (0.5%). Sequentially over our 11-week experiment, replicate ration groups of fish were removed and photographed while control fish were repeatedly weighed and measured. Standard indices of condition (total lipids, weight-length ratios, Fulton's condition) were compared to truss measurements determined from digitized pictures of fish. Condition indices showed similarity between rations while truss measures from the caudal region were important for quantifying changing body shape. These findings identify truss analysis as having use beyond traditional applications. It can potentially be used as a cheap, accurate, and precise descriptor of fish condition in the lab as shown here, and we hypothesize that it would be applicable in field studies.

  8. Dynamic behaviors of historical wrought iron truss bridges: a field testing case study

    NASA Astrophysics Data System (ADS)

    Dai, Kaoshan; Wang, Ying; Hedric, Andrew; Huang, Zhenhua

    2016-04-01

    The U.S. transportation infrastructure has many wrought iron truss bridges that are more than a century old and still remain in use. Understanding the structural properties and identifying the health conditions of these historical bridges are essential to deciding the maintenance or rebuild plan of the bridges. This research involved an on-site full-scale system identification test case study on the historical Old Alton Bridge (a wrought iron truss bridge built in 1884 in Denton, Texas) using a wireless sensor network. The study results demonstrate a practical and convenient experimental system identification method for historical bridge structures. The method includes the basic steps of the in-situ experiment and in-house data analysis. Various excitation methods are studied for field testing, including ambient vibration by wind load, forced vibration by human jumping load, and forced vibration by human pulling load. Structural responses of the bridge under these different excitation approaches were analyzed and compared with numerical analysis results.

  9. Developments in damage assessment by Marie Skłodowska-Curie TRUSS ITN project

    NASA Astrophysics Data System (ADS)

    González, A.

    2017-05-01

    The growth of cities, the impacts of climate change and the massive cost of providing new infrastructure provide the impetus for TRUSS (Training in Reducing Uncertainty in Structural Safety), a €3.7 million Marie Skłodowska-Curie Action Innovative Training Network project funded by EU’s Horizon 2020 programme, which aims to maximize the potential of infrastructure that already exists (http://trussitn.eu). For that purpose, TRUSS brings together an international, inter-sectoral and multidisciplinary collaboration between five academic and eleven industry institutions from five European countries. The project covers rail and road infrastructure, buildings and energy and marine infrastructure. This paper reports progress in fields such as advanced sensor-based structural health monitoring solutions - unmanned aerial vehicles, optical backscatter reflectometry, monitoring sensors mounted on vehicles, … - and innovative algorithms for structural designs and short- and long-term assessments of buildings, bridges, pavements, ships, ship unloaders, nuclear components and wind turbine towers that will support infrastructure operators and owners in managing their assets.

  10. KSC-99pp0681

    NASA Image and Video Library

    1999-06-12

    KENNEDY SPACE CENTER, FLA. -- Inside the Operations and Checkout Bldg. (O&C), an overhead crane removes the cover from the S0 truss segment beneath it. The S0 truss will undergo processing in the O&C during which the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes will be installed. Four Global Positioning System antennas are already installed. A 44by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, "Destiny," which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108

  11. KSC-99pp0683

    NASA Image and Video Library

    1999-06-12

    KENNEDY SPACE CENTER, FLA. -- Inside the Operations and Checkout Bldg. (O&C), workers (at left) watch over the maneuvering of the overhead crane toward the S0 truss segment below it. The S0 truss will undergo processing in the O&C during which the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes will be installed. Four Global Positioning System antennas are already installed. A 44by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, "Destiny," which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108

  12. A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs.

    PubMed

    Jaramillo, Hector E; Gómez, Lessby; García, Jose J

    2015-01-01

    With the aim to study disc degeneration and the risk of injury during occupational activities, a new finite element (FE) model of the L4-L5-S1 segment of the human spine was developed based on the anthropometry of a typical Colombian worker. Beginning with medical images, the programs CATIA and SOLIDWORKS were used to generate and assemble the vertebrae and create the soft structures of the segment. The software ABAQUS was used to run the analyses, which included a detailed model calibration using the experimental step-wise reduction data for the L4-L5 component, while the L5-S1 segment was calibrated in the intact condition. The range of motion curves, the intradiscal pressure and the lateral bulging under pure moments were considered for the calibration. As opposed to other FE models that include the L5-S1 disc, the model developed in this study considered the regional variations and anisotropy of the annulus as well as a realistic description of the nucleus geometry, which allowed an improved representation of experimental data during the validation process. Hence, the model can be used to analyze the stress and strain distributions in the L4-L5 and L5-S1 discs of workers performing activities such as lifting and carrying tasks.

  13. Investigation of the Dayton IR 75 sign truss failure of 9/11/06 : executive summary.

    DOT National Transportation Integrated Search

    2007-03-01

    Based upon a combination of in-situ field monitoring of traffic-induced bridge vibrations at the location of the failed sign support truss, finite element simulation of the expected dynamic response of the original truss in such an environment, the l...

  14. 32. LOWER CHORD / FLOOR STRUCTURE DETAIL OF THROUGH TRUSS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. LOWER CHORD / FLOOR STRUCTURE DETAIL OF THROUGH TRUSS. VIEW TO NORTH. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  15. 31. LOWER CHORD / FLOOR STRUCTURE DETAIL OF THROUGH TRUSS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. LOWER CHORD / FLOOR STRUCTURE DETAIL OF THROUGH TRUSS. VIEW TO NORTH. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  16. Mir 21 cosmonauts assemble a truss during EVA

    NASA Image and Video Library

    1996-10-01

    NM21-382-019 (For Release October 1996) --- Darkened view of cosmonaut Yury I. Onufrienko, Mir 21 commander, wearing a red stripe on his Russian Orlan spacesuit, traversing the the Sofora Truss, with the Strehla transfer aid beside it.

  17. KSC-04pd0207

    NASA Image and Video Library

    2004-02-12

    KENNEDY SPACE CENTER, FLA. - Surrounded by workers in the Space Station Processing Facility, Chuck Hardison (left), Boeing senior truss manager, presents the “key” for the starboard truss segment S3/S4 to Scott Gahring (center), ISS Vehicle Office manager (acting), Johnson Space Center. The trusses are scheduled to be delivered to the International Space Station on mission STS-117. Holding the tip of the key at right is astronaut Patrick Forrester, who is a mission specialist on the flight.

  18. KSC-04PD-0207

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Surrounded by workers in the Space Station Processing Facility, Chuck Hardison (left), Boeing senior truss manager, presents the key for the starboard truss segment S3/S4 to Scott Gahring (center), ISS Vehicle Office manager (acting), Johnson Space Center. The trusses are scheduled to be delivered to the International Space Station on mission STS-117. Holding the tip of the key at right is astronaut Patrick Forrester, who is a mission specialist on the flight.

  19. Monitoring vibrations on the Jefferson City Truss Bridge.

    DOT National Transportation Integrated Search

    2016-05-25

    The objective of the research was to determine the frequency and cause of resonant vibrations of truss verticals on bridge A4497 : over the Missouri River in Jefferson City, MO. Instrumentation to monitor the vibrations of four verticals was installe...

  20. Probabilistic structural analysis of a truss typical for space station

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.

    1990-01-01

    A three-bay, space, cantilever truss is probabilistically evaluated using the computer code NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) to identify and quantify the uncertainties and respective sensitivities associated with corresponding uncertainties in the primitive variables (structural, material, and loads parameters) that defines the truss. The distribution of each of these primitive variables is described in terms of one of several available distributions such as the Weibull, exponential, normal, log-normal, etc. The cumulative distribution function (CDF's) for the response functions considered and sensitivities associated with the primitive variables for given response are investigated. These sensitivities help in determining the dominating primitive variables for that response.

  1. Deployable M-braced truss structure

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr. (Inventor); Rhodes, M. D. (Inventor)

    1986-01-01

    A deployable M-braced truss structure, efficiently packaged into a compact stowed position and expandable to an operative position at the use site is described. The M-braced configuration effectively separates tension compression and shear in the structure and permits efficient structural design. Both diagonals and longerons telescope from an M-braced base unit and deploy either pneumatically, mechanically by springs or cables, or by powered reciprocating mechanisms. Upon full deployment, the diagonals and longerons lock into place with a simple latch mechanism.

  2. Strains in trussed spine interbody fusion implants are modulated by load and design.

    PubMed

    Caffrey, Jason P; Alonso, Eloy; Masuda, Koichi; Hunt, Jessee P; Carmody, Cameron N; Ganey, Timothy M; Sah, Robert L

    2018-04-01

    Titanium cages with 3-D printed trussed open-space architectures may provide an opportunity to deliver targeted mechanical behavior in spine interbody fusion devices. The ability to control mechanical strain, at levels known to stimulate an osteogenic response, to the fusion site could lead to development of optimized therapeutic implants that improve clinical outcomes. In this study, cages of varying design (1.00 mm or 0.75 mm diameter struts) were mechanically characterized and compared for multiple compressive load magnitudes in order to determine what impact certain design variables had on localized strain. Each cage was instrumented with small fiducial sphere markers (88 total) at each strut vertex of the truss structure, which comprised of 260 individual struts. Cages were subjected to a 50 N control, 1000 N, or 2000 N compressive load between contoured loading platens in a simulated vertebral fusion condition, during which the cages were imaged using high-resolution micro-CT. The cage was analyzed as a mechanical truss structure, with each strut defined as the connection of two vertex fiducials. The deformation and strain of each strut was determined from 50 N control to 1000 N or 2000 N load by tracking the change in distance between each fiducial marker. As in a truss system, the number of struts in tension (positive strain) and compression (negative strain) were roughly equal, with increased loads resulting in a widened distribution (SD) compared with that at 50 N tare load indicating increased strain magnitudes. Strain distribution increased from 1000 N (+156 ± 415 με) to 2000 N (+180 ± 605 με) in 1.00 mm cages, which was similar to 0.75 mm cages (+132 ± 622 με) at 1000 N load. Strain amplitudes increased 42%, from 346με at 1000 N to 492με at 2000 N, for 1.00 mm cages. At 1000 N, strain amplitude in 0.75 mm cages (481με) was higher by 39% than that in 1.00 mm cages. These amplitudes

  3. Increased plasma cathepsin S and trombospondin-1 in patients with acute ST segment elevation myocardial infarction.

    PubMed

    Befekadu, Rahel; Christiansen, Kjeld; Larsson, Anders; Grenegård, Magnus

    2018-04-03

    The role of cathepsins in the pathological progression of atherosclerotic lesions in ischemic heart disease have been defined in detail more than numerous times. This investigation examined the platelet-specific biomarker trombospondin-1 (TSP-1) and platelet function ex vivo, and compared this with cathepsin S (Cat-S; a biomarker unrelated to platelet activation but also associated this with increased mortality risk) in patients with ST segment elevation myocardial infarction (STEMI). The STEMI patients were divided into two groups depending on the degree of coronary vessel occlusion: those with closed (n = 90) and open culprit vessel (n = 40). Cat-S and TSP-1 were analyzed before, 1-3 days after and 3 months after percutanous coronary intervention (PCI). During acute STEMI, plasma TSP-1 was significantly elevated in patients with closed culprit lesions, but rapidly declined after PCI. In fact, TSP-1 after PCI was significantly lower inpatient samples compared to healthy individuals. In comparison, plasma Cat-S was significantly elevated both before and after PCI. In patients with closed culprit lesions, Cat-S was significantly higher compared to patients with open culprit lesions 3 months after PCI. Although troponin-I were higher (p < 0.01) in patients with closed culprit lesion, there was no correlation with Cat-S and TSP-1. Cat-S but not TSP-1 may be a useful risk biomarker in relation to the severity of STEMI. However, the causality of Cat-S as a predictor for long-term mortality in STEMI remains to be ascertained in future studies.

  4. Optical truss and retroreflector modeling for picometer laser metrology

    NASA Astrophysics Data System (ADS)

    Hines, Braden E.

    1993-09-01

    Space-based astrometric interferometer concepts typically have a requirement for the measurement of the internal dimensions of the instrument to accuracies in the picometer range. While this level of resolution has already been achieved for certain special types of laser gauges, techniques for picometer-level accuracy need to be developed to enable all the various kinds of laser gauges needed for space-based interferometers. Systematic errors due to retroreflector imperfections become important as soon as the retroreflector is allowed to either translate in position or articulate in angle away from its nominal zero-point. Also, when combining several laser interferometers to form a three-dimensional laser gauge (a laser optical truss), systematic errors due to imperfect knowledge of the truss geometry are important as the retroreflector translates away from its nominal zero-point. In order to assess the astrometric performance of a proposed instrument, it is necessary to determine how the effects of an imperfect laser metrology system impact the astrometric accuracy. This paper show the development of an error propagation model from errors in the 1-D metrology measurements through the impact on the overall astrometric accuracy for OSI. Simulations are then presented based on this development which were used to define a multiplier which determines the 1-D metrology accuracy required to produce a given amount of fringe position error.

  5. Research on the Mechanical Properties of a Glass Fiber Reinforced Polymer-Steel Combined Truss Structure

    PubMed Central

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status. PMID:25247203

  6. Research on the mechanical properties of a glass fiber reinforced polymer-steel combined truss structure.

    PubMed

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status.

  7. Error Modeling of Multi-baseline Optical Truss. Part II; Application to SIM Metrology Truss Field Dependent Error

    NASA Technical Reports Server (NTRS)

    Zhang, Liwei Dennis; Milman, Mark; Korechoff, Robert

    2004-01-01

    The current design of the Space Interferometry Mission (SIM) employs a 19 laser-metrology-beam system (also called L19 external metrology truss) to monitor changes of distances between the fiducials of the flight system's multiple baselines. The function of the external metrology truss is to aid in the determination of the time-variations of the interferometer baseline. The largest contributor to truss error occurs in SIM wide-angle observations when the articulation of the siderostat mirrors (in order to gather starlight from different sky coordinates) brings to light systematic errors due to offsets at levels of instrument components (which include comer cube retro-reflectors, etc.). This error is labeled external metrology wide-angle field-dependent error. Physics-based model of field-dependent error at single metrology gauge level is developed and linearly propagated to errors in interferometer delay. In this manner delay error sensitivity to various error parameters or their combination can be studied using eigenvalue/eigenvector analysis. Also validation of physics-based field-dependent model on SIM testbed lends support to the present approach. As a first example, dihedral error model is developed for the comer cubes (CC) attached to the siderostat mirrors. Then the delay errors due to this effect can be characterized using the eigenvectors of composite CC dihedral error. The essence of the linear error model is contained in an error-mapping matrix. A corresponding Zernike component matrix approach is developed in parallel, first for convenience of describing the RMS of errors across the field-of-regard (FOR), and second for convenience of combining with additional models. Average and worst case residual errors are computed when various orders of field-dependent terms are removed from the delay error. Results of the residual errors are important in arriving at external metrology system component requirements. Double CCs with ideally co-incident vertices

  8. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Astrophysics Data System (ADS)

    Rule, William K.

    1992-12-01

    In the future, some spacecraft will be so large that they must be assembled on-orbit. These spacecraft will be used for such tasks as manned missions to Mars or used as orbiting platforms for monitoring the Earth or observing the universe. Some large spacecraft will probably consist of planar truss structures to which will be attached special purpose, self-contained modules. The modules will most likely be taken to orbit fully outfitted and ready for use in heavy-lift launch vehicles. The truss members will also similarly be taken to orbit, but most unassembled. The truss structures will need to be assembled robotically because of the high costs and risks of extra-vehicular activities. Some missions will involve very large loads. To date, very few structures of any kind have been constructed in space. Two relatively simple trusses were assembled in the Space Shuttle bay in late 1985. Here the development of a design of a welded joint for on-orbit, robotic truss assembly is described. Mechanical joints for this application have been considered previously. Welded joints have the advantage of allowing the truss members to carry fluids for active cooling or other purposes. In addition, welded joints can be made more efficient structurally than mechanical joints. Also, welded joints require little maintenance (will not shake loose), and have no slop which would cause the structure to shudder under load reversal. The disadvantages of welded joints are that a more sophisticated assembly robot is required, weld flaws may be difficult to detect on-orbit, the welding process is hazardous, and welding introduces contamination to the environment. In addition, welded joints provide less structural damping than do mechanical joints. Welding on-orbit was first investigated aboard a Soyuz-6 mission in 1969 and then during a Skylab electron beam welding experiment in 1973. A hand held electron beam welding apparatus is currently being prepared for use on the MIR space station

  9. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  10. 12. October 1972. INTERIOR VIEW OF ROOF TRUSS SYSTEM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. October 1972. INTERIOR VIEW OF ROOF TRUSS SYSTEM. - Atlantic & Great Western Railroad, Meadville Repair Shops, Blacksmith Shop, East bank of French Creek, 800 feet South of Spring Street, Meadville, Crawford County, PA

  11. 78 FR 4060 - Manufactured Home Construction and Safety Standards, Test Procedures for Roof Trusses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... of the truss or trusses in the test position at no load. Apply to the top and bottom chords of the... increments until dead load plus the live load is reached. Measure and record the deflections no sooner than... conditions are met: (A) The maximum deflection between no load and dead load must be L/ 480 or less for...

  12. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels.

    PubMed

    Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel; Gomora, Juan Carlos

    2018-01-01

    Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.

  13. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels

    PubMed Central

    Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel

    2018-01-01

    Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30–40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers. PMID:29474447

  14. Mir 21 cosmonauts assemble a truss during EVA

    NASA Image and Video Library

    1996-10-01

    NM21-382-008 (For Release October 1996) --- Cosmonaut Yury I. Onufrienko, Mir 21 commander, wearing a red stripe on his Russian Orlan spacesuit, and Mir 21 flight engineer Yuri V. Usachev (blue stripe on Orlan) work to install the truss on the module.

  15. STS-112 crew group photo at launch pad during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration Test activities, the STS-112 crew poses for a group photo near the launch pad where Space Shuttle Atlantis waits for launch. Standing left to right are Mission Specialist Piers Sellers, Commander Jeffrey Ashby, Mission Specialist David Wolf, Pilot Pamela Melroy, and Mission Specialists Sandra Magnus and Fyodor Yurchikhin, who is with the Russian Space Agency. The TCDT includes emergency egress training and a simulated launch countdown. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts.

  16. STS-112 crew takes a group photo at the 215-foot level

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The STS-112 crew gathers for a group photo on the 215-foot level of the Fixed Service Structure. From left are Mission Specialists Fyodor Yurchikhin, Piers Sellers and David Wolf; Pilot Pamela Melroy; Commander Jeffrey Ashby; and Mission Specialist Sandra Magnus. Behind them at left is seen one of the white solid rocket boosters and the orange external tank on Space Shuttle Atlantis. Mission STS-112 is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. The 11-day mission is expected to conclude with a landing at KSC Oct. 13.

  17. An analytical study of a six degree-of-freedom active truss for use in vibration control

    NASA Technical Reports Server (NTRS)

    Wynn, Robert H., Jr.; Robertshaw, Harry H.; Horner, C. Garnett

    1990-01-01

    An analytical study of the vibration control capabilities of three configurations of an active truss is presented. The truss studied is composed of two bays of an octahedral-octahedral configuration. The three configurations of the active truss studies are: all six battens activated (6 DOF), the top three battens activated (3 DOF), and the bottom three battens activated (3 DOF). The closed-loop vibration control response of these three configurations are studied with respect to: vibration attenuation, energy utilized, and the effects of motor drive amplifier saturation non-linearities.

  18. KSC-03PD-2142

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-120 Mission Specialists Michael Foreman (third from right) and STS-115 Mission Specialists Joseph Tanner (second from right) and Heidemarie Stefanyshyn-Piper (right) look over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. STS-115 will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. STS-120 will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  19. Stability analysis of truss type highway sign support structures

    DOT National Transportation Integrated Search

    2000-12-01

    The design of truss type sign support structures is based on the guidelines provided by American Association of State Highway and Transportation Officials Standard Specifications for Highway Signs, Luminaires and Traffic Signals and the American Inst...

  20. The perforating branches of the P1 segment of the posterior cerebral artery.

    PubMed

    Kaya, Ahmet Hilmi; Dagcinar, Adnan; Ulu, Mustafa Onur; Topal, Arif; Bayri, Yasar; Ulus, Aykan; Kopuz, Cem; Sam, Bulent

    2010-01-01

    The perforating branches of the P1 segment of the posterior cerebral artery are vulnerable to injury. Because of their close proximity to the basilar artery, the vulnerability occurs especially during surgical interventions for vascular pathologies such as basilar apex aneurysms. Therefore, extensive knowledge of the microsurgical anatomy of this area is mandatory to prevent poor post-operative outcomes. We microscopically examined 28 P1 segments obtained from 14 adult fresh cadaver brains (6 silicone injected, 8 freshly examined). The P1 segments ranged between 2.8mm and 12.2mm (mean 6.8mm) in length with a mean outer diameter of 1.85 mm (range 0.8-4.5mm). All 94 thalamoperforating branches identified in 27 P1 segments (mean 3.35 branches per segment) arose from the postero-superior aspect of P1 and were the most proximally originating branch in nearly all specimens (96.4%). In addition in 28 P1s, 12 short circumflex arteries (42.8%; mean 0.42 branches per segment), 16 long circumflex arteries (57.1%; mean 0.57 branches per segment) and 10 medial posterior choroidal arteries (35.7%; mean 0.35 branches per segment) were identified and all originated from the posterior or postero-inferior surface of the P1 segment. When the P1 segment had more than one type of branch, it was the short circumflex arteries that were always more proximal in origin than the others. The medial posterior choroidal arteries were always more distal in origin. All three branches were not observed together in any of the P1 segments. The findings in this, and future, anatomical studies may help to reduce the post-surgical morbidity and mortality rates after surgery for posterior circulation aneurysms. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  1. Robot-friendly connector. [space truss structures

    NASA Technical Reports Server (NTRS)

    Parma, George F. (Inventor); Vandeberghe, Mark H. (Inventor); Ruiz, Steve C. (Inventor)

    1993-01-01

    Robot friendly connectors, which, in one aspect, are truss joints with two parts, a receptacle and a joint, are presented. The joints have a head which is loosely inserted into the receptacle and is then tightened and aligned. In one aspect, the head is a rounded hammerhead which initially is enclosed in the receptacle with sloppy fit provided by the shape, size, and configuration of surfaces on the head and on the receptacle.

  2. 52. PHOTOCOPY OF DRAWING AMMONIA LEACHING PLANT ROOF TRUSS DETAILS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. PHOTOCOPY OF DRAWING AMMONIA LEACHING PLANT ROOF TRUSS DETAILS, SACKING SHED-FLOTATION UNIT - Kennecott Copper Corporation, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  3. 51. PHOTOCOPY OF DRAWING, AMMONIA LEACHING PLANT ROOF TRUSS DETAILS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. PHOTOCOPY OF DRAWING, AMMONIA LEACHING PLANT ROOF TRUSS DETAILS, SACKING SHED-FLOTATION UNIT - Kennecott Copper Corporation, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  4. A mobile work station concept for mechanically aided astronaut assembly of large space trusses

    NASA Technical Reports Server (NTRS)

    Heard, W. L., Jr.; Bush, H. G.; Wallson, R. E.; Jensen, J. K.

    1983-01-01

    This report presents results of a series of truss assembly tests conducted to evaluate a mobile work station concept intended to mechanically assist astronaut manual assembly of erectable space trusses. The tests involved assembly of a tetrahedral truss beam by a pair of test subjects with and without pressure (space) suits, both in Earth gravity and in simulated zero gravity (neutral buoyancy in water). The beam was assembled from 38 identical graphite-epoxy nestable struts, 5.4 m in length with aluminum quick-attachment structural joints. Struts and joints were designed to closely simulate flight hardware. The assembled beam was approximately 16.5 m long and 4.5 m on each of the four sides of its diamond-shaped cross section. The results show that average in-space assembly rates of approximately 38 seconds per strut can be expected for struts of comparable size. This result is virtually independent of the overall size of the structure being assembled. The mobile work station concept would improve astronaut efficiency for on-orbit manual assembly of truss structures, and also this assembly-line method is highly competitive with other construction methods being considered for large space structures.

  5. The Expansion Segments of 28S Ribosomal RNA Extensively Match Human Messenger RNAs

    PubMed Central

    Parker, Michael S.; Balasubramaniam, Ambikaipakan; Sallee, Floyd R.; Parker, Steven L.

    2018-01-01

    Eukaryote ribosomal RNAs (rRNAs) have expanded in the course of phylogeny by addition of nucleotides in specific insertion areas, the expansion segments. These number about 40 in the larger (25–28S) rRNA (up to 2,400 nucleotides), and about 12 in the smaller (18S) rRNA (<700 nucleotides). Expansion of the larger rRNA shows a clear phylogenetic increase, with a dramatic rise in mammals and especially in hominids. Substantial portions of expansion segments in this RNA are not bound to ribosomal proteins, and may engage extraneous interactants, including messenger RNAs (mRNAs). Studies on the ribosome-mRNA interaction have focused on proteins of the smaller ribosomal subunit, with some examination of 18S rRNA. However, the expansion segments of human 28S rRNA show much higher density and numbers of mRNA matches than those of 18S rRNA, and also a higher density and match numbers than its own core parts. We have studied that with frequent and potentially stable matches containing 7–15 nucleotides. The expansion segments of 28S rRNA average more than 50 matches per mRNA even assuming only 5% of their sequence as available for such interaction. Large expansion segments 7, 15, and 27 of 28S rRNA also have copious long (≥10-nucleotide) matches to most human mRNAs, with frequencies much higher than in other 28S rRNA parts. Expansion segments 7 and 27 and especially segment 15 of 28S rRNA show large size increase in mammals compared to other metazoans, which could reflect a gain of function related to interaction with non-ribosomal partners. The 28S rRNA expansion segment 15 shows very high increments in size, guanosine, and cytidine nucleotide content and mRNA matching in mammals, and especially in hominids. With these segments (but not with other 28S rRNA or any 18S rRNA expansion segments) the density and number of matches are much higher in 5′-terminal than in 3′-terminal untranslated mRNA regions, which may relate to mRNA mobilization via 5′ termini. Matches

  6. 19. DETAIL OF FIRST FLOOR WAREHOUSE, SHOWING ROOF TRUSS. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. DETAIL OF FIRST FLOOR WAREHOUSE, SHOWING ROOF TRUSS. VIEW TO EAST. - Commercial & Industrial Buildings, International Harvester Company Showroom, Office & Warehouse, 10 South Main Street, Dubuque, Dubuque County, IA

  7. Aeroelasticity of Axially Loaded Aerodynamic Structures for Truss-Braced Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents an aeroelastic finite-element formulation for axially loaded aerodynamic structures. The presence of axial loading causes the bending and torsional sitffnesses to change. For aircraft with axially loaded structures such as the truss-braced wing aircraft, the aeroelastic behaviors of such structures are nonlinear and depend on the aerodynamic loading exerted on these structures. Under axial strain, a tensile force is created which can influence the stiffness of the overall aircraft structure. This tension stiffening is a geometric nonlinear effect that needs to be captured in aeroelastic analyses to better understand the behaviors of these types of aircraft structures. A frequency analysis of a rotating blade structure is performed to demonstrate the analytical method. A flutter analysis of a truss-braced wing aircraft is performed to analyze the effect of geometric nonlinear effect of tension stiffening on the flutter speed. The results show that the geometric nonlinear tension stiffening effect can have a significant impact on the flutter speed prediction. In general, increased wing loading results in an increase in the flutter speed. The study illustrates the importance of accounting for the geometric nonlinear tension stiffening effect in analyzing the truss-braced wing aircraft.

  8. 6. Main span (parker through truss, detail of floor system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Main span (parker through truss, detail of floor system and bottom lateral bracing; looking northwest. - Bridge 4666, Minnesota Trunk Highway 19 spanning Minnesota River, North Redwood, Redwood County, MN

  9. 14. VIEW NORTHEAST OF UNDERSIDE OF PENNSYLVANIA PETIT TRUSS, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW NORTHEAST OF UNDERSIDE OF PENNSYLVANIA PETIT TRUSS, SHOWING SLEEPERS, TRANSVERSE BEAMS, AND CONCRETE PIERS - New River Bridge, Spanning New River at State Route 623, Pembroke, Giles County, VA

  10. 9. Detail of truss work on southwesternmost span, looking northnortheast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail of truss work on southwesternmost span, looking north-northeast - Bridge No. 4800, Spanning Minnesota River on Trunk Highway 4 between Brown & Nicollet Counties, Sleepy Eye, Brown County, MN

  11. 13. TOP OF STATIC TEST TOWER VIEW OF STEEL TRUSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. TOP OF STATIC TEST TOWER VIEW OF STEEL TRUSS STRUCTURE AND OVERHEAD CRANE. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  12. 15. SOUTH WEB AND WEST PORTAL OF MIDDLE THROUGH TRUSS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. SOUTH WEB AND WEST PORTAL OF MIDDLE THROUGH TRUSS. VIEW TO NORTHEAST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  13. Hinge specification for a square-faceted tetrahedral truss

    NASA Technical Reports Server (NTRS)

    Adams, L. R.

    1984-01-01

    A square-faceted tetrahedral truss is geometrically analyzed. Expressions are developed for single degree of freedom hinges which allow packaging of the structure into a configuration in which all members are parallel and closely packed in a square pattern. Deployment is sequential, thus providing control over the structure during deployment.

  14. P6 truss and radiator panels

    NASA Image and Video Library

    2005-07-28

    STS114-E-5283 (28 July 2005) --- This frame and STS114-E-5282 actually can be conjoined and rotated 90 degrees to make a single frame, providing an "astronaut's eye view" from Discovery's aft cabin looking toward the recently docked International Space Station. This frame shows the end of the P6 truss and a radiator panel. The two cropped cylinder-shaped objects are actually the base for the large solar array panels (out of frame).

  15. Evaluation of Gusset Plate Safety in Steel Truss Bridges

    DOT National Transportation Integrated Search

    2011-10-01

    Failure of the I-35 truss bridge in Minneapolis has been attributed to failure of a gusset plate, necessitating : evaluation of gusset plate safety on bridges across the county. FHWA Publication IF-09-014 provides state : DOTs with important guidance...

  16. 4. Main span (parker through truss), south end, detail of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Main span (parker through truss), south end, detail of web members and sway bracing; looking west. - Bridge 4666, Minnesota Trunk Highway 19 spanning Minnesota River, North Redwood, Redwood County, MN

  17. 11. Detail view of interior, showing heavy timber Howe truss ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Detail view of interior, showing heavy timber Howe truss configuration and steel beam retrofit - Drift Creek Bridge, Spanning Drift Creek on Drift Creek County Road, Lincoln City, Lincoln County, OR

  18. 10. Detail view of interior, showing heavy timber Howe truss ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Detail view of interior, showing heavy timber Howe truss configuration and steel beam retrofitting - Drift Creek Bridge, Spanning Drift Creek on Drift Creek County Road, Lincoln City, Lincoln County, OR

  19. 6. VIEW OF BRIDGE, LOOKING DIRECTLY EAST THROUGH TRUSS FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF BRIDGE, LOOKING DIRECTLY EAST THROUGH TRUSS FROM SHOULDER OF ROAD - Shenandoah River Bridge, Spanning North fork of Shenandoah River on Virginia State Route 767, Quicksburg, Shenandoah County, VA

  20. 10. Detail of truss located on top the northeast pier, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Detail of truss located on top the northeast pier, looking southwest. - Bridge No. 4800, Spanning Minnesota River on Trunk Highway 4 between Brown & Nicollet Counties, Sleepy Eye, Brown County, MN

  1. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission Specialists Jerry L. Ross and Lee M.E. Morin work in tandem on the fourth scheduled EVA session for the STS-110 mission aboard the Space Shuttle Orbiter Atlantis. Ross is anchored on the mobile foot restraint on the International Space Station's (ISS) Canadarm2, while Morin works inside the S0 (S-zero) truss. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting a 43-foot-long S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  2. 17. INTERIOR VIEW OF WEST TRUSS, SHOWING RAILING, SUSPENSION CABLE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTERIOR VIEW OF WEST TRUSS, SHOWING RAILING, SUSPENSION CABLE, CONNECTION BOLTS AND 'U'-COUPLINGS, LOOKING SOUTHWEST - San Rafael Bridge, Spanning San Rafael River near Buckhorn Wash, Castle Dale, Emery County, UT

  3. 14. View to southwest. View through truss along centerline from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View to southwest. View through truss along centerline from below deck. (65mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  4. Center pivot, showing substantial beams that support the trusses. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Center pivot, showing substantial beams that support the trusses. Looking north from civilian land. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  5. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-01

    The STS-110 mission began the third and final phase of construction for the International Space Station (ISS) by delivering and installing the Starboard side S0 (S-zero) truss segment that was carried into orbit in the payload bay of the Space Shuttle Atlantis. The STS-110 crew patch is patterned after the cross section of the S0 truss, and encases the launch of the Shuttle Atlantis and a silhouette of the ISS as it will look following mission completion. The successfully installed S0 segment is highlighted in gold. The three prominent flames blasting from the shuttle emphasizes the first shuttle flight to use three Block II Main Engines.

  6. 15. Stress Sheet, Truss number 2, span number 6, Superior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Stress Sheet, Truss number 2, span number 6, Superior Avenue viaduct. Drawing courtesy Engineering Dept., City of Cleveland. - Superior Avenue Viaduct, Cleveland East & West side, Cuyahoga Valley Vicinity, Cleveland, Cuyahoga County, OH

  7. Interior detail of trusses and high windows in north wing; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior detail of trusses and high windows in north wing; camera facing southwest. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA

  8. Wireless Laser Range Finder System for Vertical Displacement Monitoring of Mega-Trusses during Construction

    PubMed Central

    Park, Hyo Seon; Son, Sewook; Choi, Se Woon; Kim, Yousok

    2013-01-01

    As buildings become increasingly complex, construction monitoring using various sensors is urgently needed for both more systematic and accurate safety management and high-quality productivity in construction. In this study, a monitoring system that is composed of a laser displacement sensor (LDS) and a wireless sensor node was proposed and applied to an irregular building under construction. The subject building consists of large cross-sectional members, such as mega-columns, mega-trusses, and edge truss, which secured the large spaces. The mega-trusses and edge truss that support this large space are of the cantilever type. The vertical displacement occurring at the free end of these members was directly measured using an LDS. To validate the accuracy and reliability of the deflection data measured from the LDS, a total station was also employed as a sensor for comparison with the LDS. In addition, the numerical simulation result was compared with the deflection obtained from the LDS and total station. Based on these investigations, the proposed wireless displacement monitoring system was able to improve the construction quality by monitoring the real-time behavior of the structure, and the applicability of the proposed system to buildings under construction for the evaluation of structural safety was confirmed. PMID:23648650

  9. U.S. Congressmen from Florida Tom Feeney and Dave Weldon at the STS-113 launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - U.S. Congressmen from Florida Tom Feeney (left) and Dave Weldon wait in the VIP viewing site for the STS-113 launch. The launch will carry the Expedition 6 crew to the Station and return the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is now scheduled for Nov. 23 at 7:50 p.m. EST.

  10. 25. VIEW OF EARTHQUAKEDAMAGED TRUSS MEMBER AT #070, SUPPORTED BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW OF EARTHQUAKE-DAMAGED TRUSS MEMBER AT #070, SUPPORTED BY TEMPORARY BRACING, LOOKING NORTHEAST TO SOUTHWEST - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA

  11. 13. VIEW OF SUBSTRUCTURE CONNECTIONS WITH TRUSS MEMBERS, SUSPENSION CABLES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF SUBSTRUCTURE CONNECTIONS WITH TRUSS MEMBERS, SUSPENSION CABLES AND 'I'-BEAMS, NORTHEAST SIDE OF BRIDGE, LOOKING WEST - San Rafael Bridge, Spanning San Rafael River near Buckhorn Wash, Castle Dale, Emery County, UT

  12. 32. VIEW FROM CATWALK SHOWING ROOF TRUSSES, OVERHEAD CRANE, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VIEW FROM CATWALK SHOWING ROOF TRUSSES, OVERHEAD CRANE, AND MISCELLANEOUS STOCK AND PATTERNS-LOOKING SOUTHWEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  13. Detail of metal caisson and decking system on pony truss ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of metal caisson and decking system on pony truss span. From navy land. Looking southeast. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  14. 6. BUILDER'S PLATE ON WEST TRUSS: 'MOSELEY IRON BUILDING WORKS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. BUILDER'S PLATE ON WEST TRUSS: 'MOSELEY IRON BUILDING WORKS, BOSTON 1888, PATENTED 1881 TO T.W.E. MOSELEY' - Upper Pacific Mills Bridge, Moved to Merrimack College, North Andover, MA, Lawrence, Essex County, MA

  15. 7. October 1972. INTERIOR VIEW, SHOWING THE ROOF TRUSS SYSTEM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. October 1972. INTERIOR VIEW, SHOWING THE ROOF TRUSS SYSTEM. - Atlantic & Great Western Railroad, Meadville Repair Shops, Blacksmith Shop, East bank of French Creek, 800 feet South of Spring Street, Meadville, Crawford County, PA

  16. Weight optimization of plane truss using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Neeraja, D.; Kamireddy, Thejesh; Santosh Kumar, Potnuru; Simha Reddy, Vijay

    2017-11-01

    Optimization of structure on basis of weight has many practical benefits in every engineering field. The efficiency is proportionally related to its weight and hence weight optimization gains prime importance. Considering the field of civil engineering, weight optimized structural elements are economical and easier to transport to the site. In this study, genetic optimization algorithm for weight optimization of steel truss considering its shape, size and topology aspects has been developed in MATLAB. Material strength and Buckling stability have been adopted from IS 800-2007 code of construction steel. The constraints considered in the present study are fabrication, basic nodes, displacements, and compatibility. Genetic programming is a natural selection search technique intended to combine good solutions to a problem from many generations to improve the results. All solutions are generated randomly and represented individually by a binary string with similarities of natural chromosomes, and hence it is termed as genetic programming. The outcome of the study is a MATLAB program, which can optimise a steel truss and display the optimised topology along with element shapes, deflections, and stress results.

  17. View of deck of pony truss approach span. Deck system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of deck of pony truss approach span. Deck system has failed at northwest corner. Looking south. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  18. 8. Approach spans (two warren pony trusses), west side, detail ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Approach spans (two warren pony trusses), west side, detail of lower chords and pier no. 2 (west pier); looking south. - Bridge 4666, Minnesota Trunk Highway 19 spanning Minnesota River, North Redwood, Redwood County, MN

  19. 7. CLOSER OBLIQUE VIEW OF WEST TRUSS AND WEST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. CLOSER OBLIQUE VIEW OF WEST TRUSS AND WEST SIDE OF SOUTH ABUTMENT; VIEW TO NORTHEAST. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD

  20. 8. Detail of north truss, showing connection with large round ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail of north truss, showing connection with large round nuts (correspond in location to hex nuts in MA-97-7) - North Chester Village Bridge, Spanning Westfield River on Smith Road, Chester, Hampden County, MA

  1. 7. Detail of south truss, showing connection with large hex ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail of south truss, showing connection with large hex nuts (correspond in location to round nuts in MA-97-8) - North Chester Village Bridge, Spanning Westfield River on Smith Road, Chester, Hampden County, MA

  2. 28. Rear lot of the Adelman Block. The collapsed truss ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Rear lot of the Adelman Block. The collapsed truss roof (ca. 1932) originally sheltered an automobile sales garage - Lockport Historic District, Bounded by Eighth, Hamilton & Eleventh Streets & Illinois & Michigan Canal, Lockport, Will County, IL

  3. 17. Truss suspended column, industrial loft building, looking at southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Truss suspended column, industrial loft building, looking at southeast corner. Note open floor plan as a result of the floor beams being suspended from above. - Dry Dock Engine Works, 1801 Atwater Street, Detroit, MI

  4. View of one half of movable span, showing truss and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of one half of movable span, showing truss and tension bars, from navy land looking southwest. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  5. STS-110 Astronaut Jerry Ross Performs Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. In this photograph, Astronaut Jerry L. Ross, mission specialist, anchored on the end of the Canadarm2, moves near the newly installed S0 truss. Astronaut Lee M. E. Morin, mission specialist, (out of frame), worked in tandem with Ross during this fourth and final scheduled session of EVA for the STS-110 mission. The final major task of the space walk was the installation of a beam, the Airlock Spur, between the Quest Airlock and the S0. The spur will be used by space walkers in the future as a path from the airlock to the truss.

  6. U.S. Army Custom Segmentation System

    DTIC Science & Technology

    2007-06-01

    segmentation is individual or intergroup differences in response to marketing - mix variables. Presumptions about segments: •different demands in a...product or service category, •respond differently to changes in the marketing mix Criteria for segments: •The segments must exist in the environment

  7. Interior, building 1205, view to west showing roof truss system, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, building 1205, view to west showing roof truss system, 90 mm lens plus electronic flash fill lighting. - Travis Air Force Base, Readiness Maintenance Hangar, W Street, Air Defense Command Readiness Area, Fairfield, Solano County, CA

  8. 31. DETAIL VIEW OF MOVABLE SPAN, UPPER TRUSS GUSSET PLATE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. DETAIL VIEW OF MOVABLE SPAN, UPPER TRUSS GUSSET PLATE, CONNECTION OF VERTICAL AND HORIZONTAL MEMBERS AT BRIDGE TENDER'S MOUSE (taken in December 1983) - Sharptown Bridge, Spanning Nanticoke River, State Route 313, Sharptown, Wicomico County, MD

  9. Thoracoscopic stapler-based "bidirectional" segmentectomy for posterior basal segment (S10) and its variants.

    PubMed

    Sato, Masaaki; Murayama, Tomonori; Nakajima, Jun

    2018-04-01

    Thoracoscopic segmentectomy for the posterior basal segment (S10) and its variant (e.g., S9+10 and S10b+c combined subsegmentectomy) is one of the most challenging anatomical segmentectomies. Stapler-based segmentectomy is attractive to simplify the operation and to prevent post-operative air leakage. However, this approach makes thoracoscopic S10 segmentectomy even more tricky. The challenges are caused mostly from the following three reasons: first, similar to other basal segments, "three-dimensional" stapling is needed to fold a cuboidal segment; second, the belonging pulmonary artery is not directly facing the interlobar fissure or the hilum, making identification of target artery difficult; third, the anatomy of S10 and adjacent segments such as superior (S6) and medial basal (S7) is variable. To overcome these challenges, this article summarizes the "bidirectional approach" that allows for solid confirmation of anatomy while avoiding separation of S6 and the basal segment. To assist this approach under limited thoracoscopic view, we also show stapling techniques to fold the cuboidal segment with the aid of "standing stiches". Attention should also be paid to the anatomy of adjacent segments particularly that of S7, which tends to be congested after stapling. The use of virtual-assisted lung mapping (VAL-MAP) is also recommended to demark resection lines because it flexibly allows for complex procedures such as combined subsegmentectomy such as S10b+c, extended segmentectomy such as S10+S9b, and non-anatomically extended segmentectomy.

  10. Comparison of structural performance of one- and two-bay rotary joints for truss applications

    NASA Technical Reports Server (NTRS)

    Vail, J. Douglas; Lake, Mark S.

    1991-01-01

    The structural performance of one- and two-bay large-diameter discrete-bearing rotary joints was addressed for application to truss-beam structures such as the Space Station Freedom. Finite element analyses are performed to determine values for rotary joint parameters that give the same bending vibration frequency as the parent truss beam. The structural masses and maximum internal loads of these joints are compared to determine their relative structural efficiency. Results indicate that no significant difference exists in the masse of one- and two-bay rotary joints. This conclusion is reinforced with closed-form calculations of rotary joint structural efficiency in extension. Also, transition truss-member loads are higher in the one-bay rotary joint. However, because of the increased buckling strength of these members, the external load-carrying capability of the one-bay concept is higher than that of the two-bay concept.

  11. Study of a trussed girder composed of a reinforced plastic.

    DOT National Transportation Integrated Search

    1974-01-01

    The structural behavior of a series of laboratory test specimens was investigated to determine the ultimate strength, the deformation characteristics, and the mode of failure of a trussed girder composed of glass fiber reinforced polyester resin. Com...

  12. 31. DETAILMETAL ROOF TRUSS OF THE NORTH WING OF BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. DETAIL--METAL ROOF TRUSS OF THE NORTH WING OF BUILDING 36 LOOKING WEST TO THE WALL PARTITIONING BUILDING 36 AND BUILDING 33. - Navy Yard, Ordnance Building, Intersection of Paulding & Kennon Streets, Washington, District of Columbia, DC

  13. 258. Dennis Hill, Photographer April 1998 VIEW OF CANTILEVER TRUSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    258. Dennis Hill, Photographer April 1998 VIEW OF CANTILEVER TRUSS ANCHOR ARM AT PIERS E- AND E-2, SOUTH SIDE, FACING NORTH. - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  14. KSC-08pd2049

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center, workers prepare to move the final solar array wing for the International Space Station for installation on the S6 truss element. Scheduled to launch on the STS-119 mission, space shuttle Discovery will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Launch is targeted for Feb. 12, 2009. Photo credit: NASA/Troy Cryder

  15. KSC-08pd2048

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center, workers prepare to install the final solar array wing for the International Space Station onto the S6 truss element. Scheduled to launch on the STS-119 mission, space shuttle Discovery will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Launch is targeted for Feb. 12, 2009. Photo credit: NASA/Troy Cryder

  16. 11. OBLIQUE VIEW OF EAST TRUSS AND EAST SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. OBLIQUE VIEW OF EAST TRUSS AND EAST SIDE OF SOUTH ABUTMENT, SEEN FROM SOUTH BANK OF WINTER'S RUN. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD

  17. 3. DETAIL OF TRUSS PANELS AND INCLINED PORTAL MEMBER AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL OF TRUSS PANELS AND INCLINED PORTAL MEMBER AT THE SOUTHEAST ENTRANCE TO THE BRIDGE, LOOKING WEST. - Chicago, Madison & Northern Railroad, Sanitary & Ship Canal Bridge, Spanning Sanitary & Ship Canal, east of Kedzie Avenue, Chicago, Cook County, IL

  18. STS-110 Atlantis Launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Space Shuttle Orbiter Atlantis STS-110, embarking on its 25th flight, lifts off from launch pad 39B at Kennedy Space Center at 3:44 p.m. CDT April 8, 2002. The STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting a 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines.

  19. STS-110 Atlantis Launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Space Shuttle Orbiter Atlantis STS-110, embarking on its 25th flight, lifts off from launch pad 39B at Kennedy Space Center at 3:44 p.m. CDT April 8, 2002. The STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting a 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines.

  20. STS-110 Crew Photographs Soyuz and Atlantis Docked to International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Docked to the International Space Station (ISS), a Soyuz vehicle (foreground) and the Space Shuttle Atlantis were photographed by a crew member in the Pirs docking compartment on the orbital outpost. Atlantis launched on April 8, 2002, carrying the the STS-110 mission which prepared the ISS for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's scapulas were based out of the Station's Quest Airlock.

  1. KSC-07pd1423

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- STS-117 Mission Specialist Patrick Forrester completes his suitup for launch of Space Shuttle Atlantis at 7:38 p.m. EDT from Launch Pad 39A. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Kim Shiflett

  2. Space Station truss structures and construction considerations

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Croomes, S. D.; Schneider, W.; Bush, H. G.; Nagy, K.; Pelischek, T.; Lake, M. S.; Wesselski, C.

    1985-01-01

    Although a specific configuration has not been selected for the Space Station, a gravity gradient stabilized station as a basis upon which to compare various structural and construction concepts is considered. The Space Station primary truss support structure is described in detail. Three approaches (see sketch A) which are believed to be representative of the major techniques for constructing large structures in space are also described in detail so that salient differences can be highlighted.

  3. KSC-02pd1293

    NASA Image and Video Library

    2002-09-10

    KENNEDY SPACE CENTER, FLA. -- After an early morning rollout, Space Shuttle Atlantis sits on the launch pad. Visible near the tail are the tail service masts that support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals. After being stacked with its solid rocket boosters and external tank, Atlantis began its rollout to Launch Pad 39B at 2:27 a.m. EDT in preparation for launch to the International Space Station. The Shuttle arrived at the Pad and was hard down at 9:38 a.m. Launch is scheduled no earlier than Oct. 2 for mission STS-112, the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  4. View of movable span and point truss (to right), from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of movable span and point truss (to right), from navy land, looking west, showing bridge in context of navigational channel. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  5. Single-step collision-free trajectory planning of biped climbing robots in spatial trusses.

    PubMed

    Zhu, Haifei; Guan, Yisheng; Chen, Shengjun; Su, Manjia; Zhang, Hong

    For a biped climbing robot with dual grippers to climb poles, trusses or trees, feasible collision-free climbing motion is inevitable and essential. In this paper, we utilize the sampling-based algorithm, Bi-RRT, to plan single-step collision-free motion for biped climbing robots in spatial trusses. To deal with the orientation limit of a 5-DoF biped climbing robot, a new state representation along with corresponding operations including sampling, metric calculation and interpolation is presented. A simple but effective model of a biped climbing robot in trusses is proposed, through which the motion planning of one climbing cycle is transformed to that of a manipulator. In addition, the pre- and post-processes are introduced to expedite the convergence of the Bi-RRT algorithm and to ensure the safe motion of the climbing robot near poles as well. The piecewise linear paths are smoothed by utilizing cubic B-spline curve fitting. The effectiveness and efficiency of the presented Bi-RRT algorithm for climbing motion planning are verified by simulations.

  6. Artificial intelligence approach to planning the robotic assembly of large tetrahedral truss structures

    NASA Technical Reports Server (NTRS)

    Homemdemello, Luiz S.

    1992-01-01

    An assembly planner for tetrahedral truss structures is presented. To overcome the difficulties due to the large number of parts, the planner exploits the simplicity and uniformity of the shapes of the parts and the regularity of their interconnection. The planning automation is based on the computational formalism known as production system. The global data base consists of a hexagonal grid representation of the truss structure. This representation captures the regularity of tetrahedral truss structures and their multiple hierarchies. It maps into quadratic grids and can be implemented in a computer by using a two-dimensional array data structure. By maintaining the multiple hierarchies explicitly in the model, the choice of a particular hierarchy is only made when needed, thus allowing a more informed decision. Furthermore, testing the preconditions of the production rules is simple because the patterned way in which the struts are interconnected is incorporated into the topology of the hexagonal grid. A directed graph representation of assembly sequences allows the use of both graph search and backtracking control strategies.

  7. KSC-99pd0682

    NASA Image and Video Library

    1999-06-12

    KENNEDY SPACE CENTER, FLA. -- Inside the Operations and Checkout Bldg. (O&C), an overhead crane is centered over the S0 truss segment before lowering. The crane will move it to a workstand in the O&C where it will undergo processing. In the foreground is the protective cover just removed. During the processing, the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes will be installed. Four Global Positioning System antennas are already installed. A 44by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, "Destiny," which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108

  8. 8. DETAIL OF NORTH END OF EAST TRUSS, SHOWING END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL OF NORTH END OF EAST TRUSS, SHOWING END POST, TOP AND LOWER CHORDS, AND DIAGONAL EYE BARS, SEEN FROM NORTHEAST. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD

  9. Best management practices for storage of historic metal truss bridges.

    DOT National Transportation Integrated Search

    2014-07-01

    As part of a 2002 agreement with the FHWA, GDOT has committed to consider storing metal truss : bridges of historic value in lieu of demolition, until a recipient could be located. This research addresses the most : effective processes for storage of...

  10. Detail of old rain shed (Building No. 43) showing truss ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of old rain shed (Building No. 43) showing truss type B at wall post. New aluminum roofing seen in comparison with older galvanized steel siding. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  11. Aromatic–aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process

    PubMed Central

    Garneau, Line; Klein, Hélène; Lavoie, Marie-France; Brochiero, Emmanuelle; Parent, Lucie

    2014-01-01

    The Ca2+-activated potassium channel KCa3.1 is emerging as a therapeutic target for a large variety of health disorders. One distinguishing feature of KCa3.1 is that the channel open probability at saturating Ca2+ concentrations (Pomax) is low, typically 0.1–0.2 for KCa3.1 wild type. This observation argues for the binding of Ca2+ to the calmodulin (CaM)–KCa3.1 complex, promoting the formation of a preopen closed-state configuration leading to channel opening. We have previously shown that the KCa3.1 active gate is most likely located at the level of the selectivity filter. As Ca2+-dependent gating of KCa3.1 originates from the binding of Ca2+ to CaM in the C terminus, the hypothesis of a gate located at the level of the selectivity filter requires that the conformational change initiated in the C terminus be transmitted to the S5 and S6 transmembrane helices, with a resulting effect on the channel pore helix directly connected to the selectivity filter. A study was thus undertaken to determine to what extent the interactions between the channel pore helix with the S5 and S6 transmembrane segments contribute to KCa3.1 gating. Molecular dynamics simulations first revealed that the largest contact area between the pore helix and the S5 plus S6 transmembrane helices involves residue F248 at the C-terminal end of the pore helix. Unitary current recordings next confirmed that modulating aromatic–aromatic interactions between F248 and W216 of the S5 transmembrane helical segment and/or perturbing the interactions between F248 and residues in S6 surrounding the glycine hinge G274 cause important changes in Pomax. This work thus provides the first evidence for a key contribution of the pore helix in setting Pomax by stabilizing the channel closed configuration through aromatic–aromatic interactions involving F248 of the pore helix. We propose that the interface pore helix/S5 constitutes a promising site for designing KCa3.1 potentiators. PMID:24470490

  12. STS-112 M.S. Magnus suits up before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Mission Specialist Sandra Magnus finishes suiting up before launch. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B.

  13. 26. Detail of south granite pier revealing riveted truss ends ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Detail of south granite pier revealing riveted truss ends and iron footing plates on top of granite cap stones. View north - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  14. International Space Station (ISS)

    NASA Image and Video Library

    2000-07-01

    The 45-foot, port-side (P1) truss segment flight article for the International Space Station is being transported to the Redstone Airfield, Marshall Space Flight Center. The truss will be loaded aboard NASA's Super Guppy cargo plane for shipment to the Kennedy Space Center.

  15. KSC-03PD-2141

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper (left) gets ready to check out the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  16. 9. Detail of pin truss and floor board system, from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail of pin truss and floor board system, from Minnesota end of the bridge, looking at the bridge's southwest side - Enloe Bridge No. 90021, Spanning Red River of North between Minnesota & North Dakota on County State Aid Highway 28, Wolverton, Wilkin County, MN

  17. 22. Detail of interior corner showing truss system, dock no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Detail of interior corner showing truss system, dock no. 492. View to south. - Offutt Air Force Base, Looking Glass Airborne Command Post, Nose Docks, On either side of Hangar Access Apron at Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  18. View of pony truss approach span, showing metal caissons and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of pony truss approach span, showing metal caissons and deck system, including metal floor beams and timber stringers. The same decking system was used on movable span. Looking north from civilian land. - Naval Supply Annex Stockton, Rough & Ready Island, Stockton, San Joaquin County, CA

  19. 20. Detail of sandstone pier under north line of trusses ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail of sandstone pier under north line of trusses showing granite pier cap (darker stone) which supports the vertical strut. View to east. - Selby Avenue Bridge, Spanning Short Line Railways track at Selby Avenue between Hamline & Snelling Avenues, Saint Paul, Ramsey County, MN

  20. Combined structures-controls optimization of lattice trusses

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1991-01-01

    The role that distributed parameter model can play in CSI is demonstrated, in particular in combined structures controls optimization problems of importance in preliminary design. Closed form solutions can be obtained for performance criteria such as rms attitude error, making possible analytical solutions of the optimization problem. This is in contrast to the need for numerical computer solution involving the inversion of large matrices in traditional finite element model (FEM) use. Another advantage of the analytic solution is that it can provide much needed insight into phenomena that can otherwise be obscured or difficult to discern from numerical computer results. As a compromise in level of complexity between a toy lab model and a real space structure, the lattice truss used in the EPS (Earth Pointing Satellite) was chosen. The optimization problem chosen is a generic one: of minimizing the structure mass subject to a specified stability margin and to a specified upper bond on the rms attitude error, using a co-located controller and sensors. Standard FEM treating each bar as a truss element is used, while the continuum model is anisotropic Timoshenko beam model. Performance criteria are derived for each model, except that for the distributed parameter model, explicit closed form solutions was obtained. Numerical results obtained by the two model show complete agreement.

  1. Alignment Jigs For Bonding End Fittings To Truss Members

    NASA Technical Reports Server (NTRS)

    Sword, Lee F.

    1996-01-01

    Set of alignment jigs hold fittings during adhesive bonding of fittings to ends of truss members. For each member, jigs hold two end fittings collinear while member allowed to move slightly, within dimensional tolerances, during injection and curing of adhesive. Once adhesive cured, fittings remain collinear even though member not necessarily perfectly straight between them.

  2. Thoracoscopic stapler-based “bidirectional” segmentectomy for posterior basal segment (S10) and its variants

    PubMed Central

    Murayama, Tomonori; Nakajima, Jun

    2018-01-01

    Thoracoscopic segmentectomy for the posterior basal segment (S10) and its variant (e.g., S9+10 and S10b+c combined subsegmentectomy) is one of the most challenging anatomical segmentectomies. Stapler-based segmentectomy is attractive to simplify the operation and to prevent post-operative air leakage. However, this approach makes thoracoscopic S10 segmentectomy even more tricky. The challenges are caused mostly from the following three reasons: first, similar to other basal segments, “three-dimensional” stapling is needed to fold a cuboidal segment; second, the belonging pulmonary artery is not directly facing the interlobar fissure or the hilum, making identification of target artery difficult; third, the anatomy of S10 and adjacent segments such as superior (S6) and medial basal (S7) is variable. To overcome these challenges, this article summarizes the “bidirectional approach” that allows for solid confirmation of anatomy while avoiding separation of S6 and the basal segment. To assist this approach under limited thoracoscopic view, we also show stapling techniques to fold the cuboidal segment with the aid of “standing stiches”. Attention should also be paid to the anatomy of adjacent segments particularly that of S7, which tends to be congested after stapling. The use of virtual-assisted lung mapping (VAL-MAP) is also recommended to demark resection lines because it flexibly allows for complex procedures such as combined subsegmentectomy such as S10b+c, extended segmentectomy such as S10+S9b, and non-anatomically extended segmentectomy. PMID:29785292

  3. KSC-07pd1427

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- Trailing smoke and fire, Space Shuttle Atlantis roars into the sky past the U.S. flag on its journey to the International Space Station on mission STS-117. Liftoff was on-time at 7:38:04 p.m. EDT . The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Ken Thornsley

  4. Component mode synthesis and large deflection vibrations of complex structures. [beams and trusses

    NASA Technical Reports Server (NTRS)

    Mei, C.

    1984-01-01

    The accuracy of the NASTRAN modal synthesis analysis was assessed by comparing it with full structure NASTRAN and nine other modal synthesis results using a nine-bay truss. A NASTRAN component mode transient response analysis was also performed on the free-free truss structure. A finite element method was developed for nonlinear vibration of beam structures subjected to harmonic excitation. Longitudinal deformation and inertia are both included in the formula. Tables show the finite element free vibration results with and without considering the effects of longitudinal deformation and inertia as well as the frequency ratios for a simply supported and a clamped beam subjected to a uniform harmonic force.

  5. Control of a flexible planar truss using proof mass actuators

    NASA Technical Reports Server (NTRS)

    Minas, Constantinos; Garcia, Ephrahim; Inman, Daniel J.

    1989-01-01

    A flexible structure was modeled and actively controlled by using a single space realizable linear proof mass actuator. The NASA/UVA/UB actuator was attached to a flexible planar truss structure at an optimal location and it was considered as both passive and active device. The placement of the actuator was specified by examining the eigenvalues of the modified model that included the actuator dynamics, and the frequency response functions of the modified system. The electronic stiffness of the actuator was specified, such that the proof mass actuator system was tuned to the fourth structural mode of the truss by using traditional vibration absorber design. The active control law was limited to velocity feedback by integrating of the signals of two accelerometers attached to the structure. The two lower modes of the closed-loop structure were placed further in the LHS of the complex plane. The theoretically predicted passive and active control law was experimentally verified.

  6. KSC-07pd1422

    NASA Image and Video Library

    2007-06-08

    KENNEDY SPACE CENTER, FLA. -- STS-117 Mission Specialist James Reilly is helped with his helmet as he completes suitup for launch of Space Shuttle Atlantis at 7:38 p.m. EDT from Launch Pad 39A. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Kim Shiflett

  7. Expedition 5 Crew Interviews: Peggy Whitson

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 5 Flight Engineer Peggy Whitson is seen during a prelaunch interview. She gives details on the mission's goals and significance, her role in the mission, what her responsibilities will be, what the crew activities will be like (docking and undocking of two Progress unpiloted supply vehicles, normal space station maintenance tasks, conducting science experiments, installing the CETA (Crew and Equipment Translation) cart, and supporting the installation of the International Truss Structure S1 segment), the day-to-day life on an extended stay mission, the experiments she will be conducting on board, and what the S1 truss will mean to the International Space Station (ISS). Whitson ends with her thoughts on the short-term and long-term future of the ISS.

  8. Low Vertical Clearance Truss Bridges : Risk Assessment and Retrofit Mitigation Study

    DOT National Transportation Integrated Search

    2017-11-10

    The Washington State Department of Transportation (WSDOT) has over 60 steel truss bridges in its inventory with vertical clearances less than the minimum 16-6 required for new bridges. This study evaluates the risks of oversized vehicle impacts...

  9. Adaptive Multi-Layer LMS Controller Design and Application to Active Vibration Suppression on a Truss and Proposed Impact Analysis Technique

    NASA Technical Reports Server (NTRS)

    Barney, Timothy A.; Shin, Y. S.; Agrawal, B. N.

    2001-01-01

    This research develops an adaptive controller that actively suppresses a single frequency disturbance source at a remote position and tests the system on the NPS Space Truss. The experimental results are then compared to those predicted by an ANSYS finite element model. The NPS space truss is a 3.7-meter long truss that simulates a space-borne appendage with sensitive equipment mounted at its extremities. One of two installed piezoelectric actuators and an Adaptive Multi-Layer LMS control law were used to effectively eliminate an axial component of the vibrations induced by a linear proof mass actuator mounted at one end of the truss. Experimental and analytical results both demonstrate reductions to the level of system noise. Vibration reductions in excess of 50dB were obtained through experimentation and over 100dB using ANSYS, demonstrating the ability to model this system with a finite element model. This report also proposes a method to use distributed quartz accelerometers to evaluate the location, direction, and energy of impacts on the NPS space truss using the dSPACE data acquisition and processing system to capture the structural response and compare it to known reference Signals.

  10. STS-112 M.S. Wolf suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Mission Specialist David Wolf suits up for launch, just hours away. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B. .

  11. STS-112 M.S. Sellers suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - During suitup for launch, STS-112 Mission Specialist Piers Sellers smiles in anticipation of his first Shuttle flight. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B.

  12. Destiny's Earth Observation Window

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  13. Lift span trusses; plans, sections and elevations, 1941, drawn by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lift span trusses; plans, sections and elevations, 1941, drawn by Waddell and Hardesty, New York, New York. Drawing in collection of Caretaker Site Office, Philadelphia Naval Business Center, Philadelphia, Pennsylvania. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Lift Bridge, Mouth of Reserve Basin, League Island, Philadelphia, Philadelphia County, PA

  14. Static stability of a three-dimensional space truss. M.S. Thesis - Case Western Reserve Univ., 1994

    NASA Technical Reports Server (NTRS)

    Shaker, John F.

    1995-01-01

    In order to deploy large flexible space structures it is necessary to develop support systems that are strong and lightweight. The most recent example of this aerospace design need is vividly evident in the space station solar array assembly. In order to accommodate both weight limitations and strength performance criteria, ABLE Engineering has developed the Folding Articulating Square Truss (FASTMast) support structure. The FASTMast is a space truss/mechanism hybrid that can provide system support while adhering to stringent packaging demands. However, due to its slender nature and anticipated loading, stability characterization is a critical part of the design process. Furthermore, the dire consequences surely to result from a catastrophic instability quickly provide the motivation for careful examination of this problem. The fundamental components of the space station solar array system are the (1) solar array blanket system, (2) FASTMast support structure, and (3) mast canister assembly. The FASTMast once fully deployed from the canister will provide support to the solar array blankets. A unique feature of this structure is that the system responds linearly within a certain range of operating loads and nonlinearly when that range is exceeded. The source of nonlinear behavior in this case is due to a changing stiffness state resulting from an inability of diagonal members to resist applied loads. The principal objective of this study was to establish the failure modes involving instability of the FASTMast structure. Also of great interest during this effort was to establish a reliable analytical approach capable of effectively predicting critical values at which the mast becomes unstable. Due to the dual nature of structural response inherent to this problem, both linear and nonlinear analyses are required to characterize the mast in terms of stability. The approach employed herein is one that can be considered systematic in nature. The analysis begins with one

  15. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission astronaut Rex J. Walheim, accompanied by astronaut Steven L. Smith (out of frame) translates along the Destiny laboratory on the International Space Station (ISS) during the third scheduled EVA session. The duo released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm. The STS-110 mission prepared the ISS for future space walks by installing and outfitting the S0 (S-Zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  16. View of pony truss approach span, showing metal caissons and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of pony truss approach span, showing metal caissons and deck system, including metal floor beams and timber stringers. The same decking system was used on movable span. Looking north from civilian land. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  17. HNF1β Is Essential for Nephron Segmentation during Nephrogenesis

    PubMed Central

    Naylor, Richard W.; Przepiorski, Aneta; Ren, Qun; Yu, Jing

    2012-01-01

    Nephrons comprise a blood filter and an epithelial tubule that is subdivided into proximal and distal segments, but what directs this patterning during kidney organogenesis is not well understood. Using zebrafish, we found that the HNF1β paralogues hnf1ba and hnf1bb, which encode homeodomain transcription factors, are essential for normal segmentation of nephrons. Embryos deficient in hnf1ba and hnf1bb did not express proximal and distal segment markers, yet still developed an epithelial tubule. Initiating hnf1ba/b expression required Pax2a and Pax8, but hnf1ba/b-deficient embryos did not exhibit the expected downregulation of pax2a and pax8 at later stages of development, suggesting complex regulatory loops involving these molecules. Embryos deficient in hnf1ba/b also did not express the irx3b transcription factor, which is responsible for differentiation of the first distal tubule segment. Reciprocally, embryos deficient in irx3b exhibited downregulation of hnf1ba/b transcripts in the distal early segment, suggesting a segment-specific regulatory circuit. Deficiency of hnf1ba/b also led to ectopic expansion of podocytes into the proximal tubule domain. Epistasis experiments showed that the formation of podocytes required wt1a, which encodes the Wilms’ tumor suppressor-1 transcription factor, and rbpj, which encodes a mediator of canonical Notch signaling, downstream or parallel to hnf1ba/b. Taken together, these results suggest that Hnf1β factors are essential for normal segmentation of nephrons during kidney organogenesis. PMID:23160512

  18. HNF1β is essential for nephron segmentation during nephrogenesis.

    PubMed

    Naylor, Richard W; Przepiorski, Aneta; Ren, Qun; Yu, Jing; Davidson, Alan J

    2013-01-01

    Nephrons comprise a blood filter and an epithelial tubule that is subdivided into proximal and distal segments, but what directs this patterning during kidney organogenesis is not well understood. Using zebrafish, we found that the HNF1β paralogues hnf1ba and hnf1bb, which encode homeodomain transcription factors, are essential for normal segmentation of nephrons. Embryos deficient in hnf1ba and hnf1bb did not express proximal and distal segment markers, yet still developed an epithelial tubule. Initiating hnf1ba/b expression required Pax2a and Pax8, but hnf1ba/b-deficient embryos did not exhibit the expected downregulation of pax2a and pax8 at later stages of development, suggesting complex regulatory loops involving these molecules. Embryos deficient in hnf1ba/b also did not express the irx3b transcription factor, which is responsible for differentiation of the first distal tubule segment. Reciprocally, embryos deficient in irx3b exhibited downregulation of hnf1ba/b transcripts in the distal early segment, suggesting a segment-specific regulatory circuit. Deficiency of hnf1ba/b also led to ectopic expansion of podocytes into the proximal tubule domain. Epistasis experiments showed that the formation of podocytes required wt1a, which encodes the Wilms' tumor suppressor-1 transcription factor, and rbpj, which encodes a mediator of canonical Notch signaling, downstream or parallel to hnf1ba/b. Taken together, these results suggest that Hnf1β factors are essential for normal segmentation of nephrons during kidney organogenesis.

  19. Developing an Accurate CFD Based Gust Model for the Truss Braced Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2013-01-01

    The increased flexibility of long endurance aircraft having high aspect ratio wings necessitates attention to gust response and perhaps the incorporation of gust load alleviation. The design of civil transport aircraft with a strut or truss-braced high aspect ratio wing furthermore requires gust response analysis in the transonic cruise range. This requirement motivates the use of high fidelity nonlinear computational fluid dynamics (CFD) for gust response analysis. This paper presents the development of a CFD based gust model for the truss braced wing aircraft. A sharp-edged gust provides the gust system identification. The result of the system identification is several thousand time steps of instantaneous pressure coefficients over the entire vehicle. This data is filtered and downsampled to provide the snapshot data set from which a reduced order model is developed. A stochastic singular value decomposition algorithm is used to obtain a proper orthogonal decomposition (POD). The POD model is combined with a convolution integral to predict the time varying pressure coefficient distribution due to a novel gust profile. Finally the unsteady surface pressure response of the truss braced wing vehicle to a one-minus-cosine gust, simulated using the reduced order model, is compared with the full CFD.

  20. Quick-Connect/Disconnect Joint For Truss Structures

    NASA Technical Reports Server (NTRS)

    Sprague, Benny B.

    1991-01-01

    Simple connector used for temporary structures and pipes. Truss connector joins and aligns structural members. Consists of two sections, one flanged and other with mating internal groove. When flanged half inserted in groove, moves lever of trigger mechanism upward. Cone then shoots into grooved half. Attached without tools in less than 2 seconds and taken apart just as quickly and easily. Developed for assembling structures in outer space, also useful for temporary terrestrial structures like scaffolds and portable bleachers. With modifications, used to join sections of pipelines carrying liquids or gases.