Sample records for s1p receptor type

  1. Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P1 ) and receptor-5 (S1P5 ) agonist with autoimmune disease-modifying activity.

    PubMed

    Scott, F L; Clemons, B; Brooks, J; Brahmachary, E; Powell, R; Dedman, H; Desale, H G; Timony, G A; Martinborough, E; Rosen, H; Roberts, E; Boehm, M F; Peach, R J

    2016-06-01

    Sphingosine1-phosphate (S1P) receptors mediate multiple events including lymphocyte trafficking, cardiac function, and endothelial barrier integrity. Stimulation of S1P1 receptors sequesters lymphocyte subsets in peripheral lymphoid organs, preventing their trafficking to inflamed tissue sites, modulating immunity. Targeting S1P receptors for treating autoimmune disease has been established in clinical studies with the non-selective S1P modulator, FTY720 (fingolimod, Gilenya™). The purpose of this study was to assess RPC1063 for its therapeutic utility in autoimmune diseases. The specificity and potency of RPC1063 (ozanimod) was evaluated for all five S1P receptors, and its effect on cell surface S1P1 receptor expression, was characterized in vitro. The oral pharmacokinetic (PK) parameters and pharmacodynamic effects were established in rodents, and its activity in three models of autoimmune disease (experimental autoimmune encephalitis, 2,4,6-trinitrobenzenesulfonic acid colitis and CD4(+) CD45RB(hi) T cell adoptive transfer colitis) was assessed. RPC1063 was specific for S1P1 and S1P5 receptors, induced S1P1 receptor internalization and induced a reversible reduction in circulating B and CCR7(+) T lymphocytes in vivo. RPC1063 showed high oral bioavailability and volume of distribution, and a circulatory half-life that supports once daily dosing. Oral RPC1063 reduced inflammation and disease parameters in all three autoimmune disease models. S1P receptor selectivity, favourable PK properties and efficacy in three distinct disease models supports the clinical development of RPC1063 for the treatment of relapsing multiple sclerosis and inflammatory bowel disease, differentiates RPC1063 from other S1P receptor agonists, and could result in improved safety outcomes in the clinic. © 2016 The British Pharmacological Society.

  2. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors.

    PubMed

    Wiltshire, Rachael; Nelson, Vicky; Kho, Dan Ting; Angel, Catherine E; O'Carroll, Simon J; Graham, E Scott

    2016-01-27

    Herein we show that S1P rapidly and acutely reduces the focal adhesion strength and barrier tightness of brain endothelial cells. xCELLigence biosensor technology was used to measure focal adhesion, which was reduced by S1P acutely and this response was mediated through both S1P1 and S1P2 receptors. S1P increased secretion of several pro-inflammatory mediators from brain endothelial cells. However, the magnitude of this response was small in comparison to that mediated by TNFα or IL-1β. Furthermore, S1P did not significantly increase cell-surface expression of any key cell adhesion molecules involved in leukocyte recruitment, included ICAM-1 and VCAM-1. Finally, we reveal that S1P acutely and dynamically regulates microvascular endothelial barrier tightness in a manner consistent with regulated rapid opening followed by closing and strengthening of the barrier. We hypothesise that the role of the S1P receptors in this process is not to cause barrier dysfunction, but is related to controlled opening of the endothelial junctions. This was revealed using real-time measurement of barrier integrity using ECIS ZΘ TEER technology and endothelial viability using xCELLigence technology. Finally, we show that these responses do not occur simply though the pharmacology of a single S1P receptor but involves coordinated action of S1P1 and S1P2 receptors.

  3. Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-{kappa}B ligand (RANKL) expression in rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeshita, Harunori; Kitano, Masayasu, E-mail: mkitano6@hyo-med.ac.jp; Iwasaki, Tsuyoshi

    Highlights: Black-Right-Pointing-Pointer MH7A cells and CD4{sup +} T cells expressed S1P1 and RANKL. Black-Right-Pointing-Pointer S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells. Black-Right-Pointing-Pointer The effect of S1P in MH7A cells was inhibited by specific Gi/Go inhibitors. -- Abstract: Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-{kappa}B ligand (RANKL) in RA synoviocytes and CD4{sup +} T cells. We demonstrated MH7Amore » cells, a human RA synovial cell line, and CD4{sup +} T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-{alpha} in MH7A cells and CD4{sup +} T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4{sup +} T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.« less

  4. Sphingosine 1-phosphate (S1P) suppresses the collagen-induced activation of human platelets via S1P4 receptor.

    PubMed

    Onuma, Takashi; Tanabe, Kumiko; Kito, Yuko; Tsujimoto, Masanori; Uematsu, Kodai; Enomoto, Yukiko; Matsushima-Nishiwaki, Rie; Doi, Tomoaki; Nagase, Kiyoshi; Akamatsu, Shigeru; Tokuda, Haruhiko; Ogura, Shinji; Iwama, Toru; Kozawa, Osamu; Iida, Hiroki

    2017-08-01

    Sphingosine 1-phosphate (S1P) is as an extracellular factor that acts as a potent lipid mediator by binding to specific receptors, S1P receptors (S1PRs). However, the precise role of S1P in human platelets that express S1PRs has not yet been fully clarified. We previously reported that heat shock protein 27 (HSP27) is released from human platelets accompanied by its phosphorylation stimulated by collagen. In the present study, we investigated the effect of S1P on the collagen-induced platelet activation. S1P pretreatment markedly attenuated the collagen-induced aggregation. Co-stimulation with S1P and collagen suppressed collagen-induced platelet activation, but the effect was weaker than that of S1P-pretreatment. The collagen-stimulated secretion of platelet-derived growth factor (PDGF)-AB and the soluble CD40 ligand (sCD40L) release were significantly reduced by S1P. In addition, S1P suppressed the collagen-induced release of HSP27 as well as the phosphorylation of HSP27. S1P significantly suppressed the collagen-induced phosphorylation of p38 mitogen-activated protein kinase. S1P increased the levels of GTP-bound Gαi and GTP-bound Gα13 coupled to S1PPR1 and/or S1PR4. CYM50260, a selective S1PR4 agonist, but not SEW2871, a selective S1PR1 agonist, suppressed the collagen-stimulated platelet aggregation, PDGF-AB secretion and sCD40L release. In addition, CYM50260 reduced the release of phosphorylated-HSP27 by collagen as well as the phosphorylation of HSP27. The selective S1PR4 antagonist CYM50358, which failed to affect collagen-induced HSP27 phosphorylation, reversed the S1P-induced attenuation of HSP27 phosphorylation by collagen. These results strongly suggest that S1P inhibits the collagen-induced human platelet activation through S1PR4 but not S1PR1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Ligand-binding pocket shape differences between S1P1 and S1P3 determine efficiency of chemical probe identification by uHTS

    PubMed Central

    Schürer, Stephan C.; Brown, Steven J.; Cabrera, Pedro Gonzales; Schaeffer, Marie-Therese; Chapman, Jacqueline; Jo, Euijung; Chase, Peter; Spicer, Tim; Hodder, Peter; Rosen, Hugh

    2008-01-01

    We have studied the Sphingosine 1-phosphate (S1P) receptor system to better understand why certain molecular targets within a closely related family are much more tractable when identifying compelling chemical leads. Five medically important G protein-coupled receptors for S1P regulate heart rate, coronary artery caliber, endothelial barrier integrity, and lymphocyte trafficking. Selective S1P receptor agonist probes would be of great utility to study receptor subtype-specific function. Through systematic screening of the same libraries, we identified novel selective agonists chemotypes for each of the S1P1 and S1P3 receptors. uHTS for S1P1 was more effective than for S1P3, with many selective, low nanomolar hits of proven mechanism emerging for. Receptor structure modeling and ligand docking reveal differences between the receptor binding pockets, which are the basis for sub-type selectivity. Novel selective agonists interact primarily in the hydrophobic pocket of the receptor in the absence of head-group interactions. Chemistry-space and shape-based analysis of the screening libraries in combination with the binding models explain the observed differential hit rates and enhanced efficiency for lead discovery for S1P1 vs. S1P3 in this closely related receptor family. PMID:18590333

  6. Discovery of Tetrahydropyrazolopyridine as Sphingosine 1-Phosphate Receptor 3 (S1P3)-Sparing S1P1 Agonists Active at Low Oral Doses.

    PubMed

    Demont, Emmanuel H; Bailey, James M; Bit, Rino A; Brown, Jack A; Campbell, Colin A; Deeks, Nigel; Dowell, Simon J; Eldred, Colin; Gaskin, Pam; Gray, James R J; Haynes, Andrea; Hirst, David J; Holmes, Duncan S; Kumar, Umesh; Morse, Mary A; Osborne, Greg J; Renaux, Jessica F; Seal, Gail A L; Smethurst, Chris A; Taylor, Simon; Watson, Robert; Willis, Robert; Witherington, Jason

    2016-02-11

    FTY720 is the first oral small molecule approved for the treatment of people suffering from relapsing-remitting multiple sclerosis. It is a potent agonist of the S1P1 receptor, but its lack of selectivity against the S1P3 receptor has been linked to most of the cardiovascular side effects observed in the clinic. These findings have triggered intensive efforts toward the identification of a second generation of S1P3-sparing S1P1 agonists. We have recently disclosed a series of orally active tetrahydroisoquinoline (THIQ) compounds matching these criteria. In this paper we describe how we defined and implemented a strategy aiming at the discovery of selective structurally distinct follow-up agonists. This effort culminated with the identification of a series of orally active tetrahydropyrazolopyridines.

  7. S1P1 receptor inhibits kidney epithelial mesenchymal transition triggered by ischemia/reperfusion injury via the PI3K/Akt pathway.

    PubMed

    Wang, Weina; Wang, Aimei; Luo, Guochang; Ma, Fengqiao; Wei, Xiaoming; Bi, Yongyi

    2018-06-13

    Ischemia/reperfusion (I/R) is a major cause of acute kidney injury (AKI), along with delayed graft function, which can trigger chronic kidney injury by stimulating epithelial to mesenchymal transition (EMT) in the kidney canaliculus. Sphingosine 1-phosphate receptor 1 (S1P1) is a G protein-coupled receptor that is indispensable for vessel homeostasis. This study aimed to investigate the influence of S1P1 on the mechanisms underlying I/R-induced EMT in the kidney using in vivo and in vitro models. Wild-type (WT) and S1P1-overexpressing kidney canaliculus cells were subject to hypoxic conditions followed by reoxygenation in the presence or absence of FTY720-P, a potent S1P1 agonist. In vivo, bilateral arteria renalis in wild-type mice and mice with silenced S1P1 were clamped for 30 min to obtain I/R models. We found that hypoxia/reoxygenation (H/R) significantly enhanced the expressions of EMT biomarkers and down-regulated S1P1 expression in wild-type canaliculus cells. In contrast, FTY720-P treatment or overexpression of S1P1 significantly suppressed EMT in wild-type canaliculus cells. Furthermore, after 48-72 h, a significant upregulation of EMT biomarker expression was triggered by I/R in mice with silenced S1P1, while the expressions of these markers did not change in wild-type mice. A kt activity was increased with H/R-induced EMT, suggesting that the protective influence of FTY720-P was due to its inhibition of PI3K/Akt. Therefore, the results of this study provide evidence that down-regulation of S1P1 expression is essential for the generation and progression of EMT triggered by I/R. S1P1 exhibits a prominent inhibitory effect on kidney I/R-induced EMT in the kidney by affecting the PI3K/Akt pathway.

  8. Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P{sub 2} on cell migration and invasiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Nicholas; Van Brocklyn, James R.

    2007-05-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of five G-protein-coupled receptors, termed S1P{sub 1-5}. S1P stimulates growth and invasiveness of glioma cells, and high expression levels of the enzyme that forms S1P, sphingosine kinase-1, correlate with short survival of glioma patients. In this study we examined the mechanism of S1P stimulation of glioma cell proliferation and invasion by either overexpressing or knocking down, by RNA interference, S1P receptor expression in glioma cell lines. S1P{sub 1}, S1P{sub 2} and S1P{sub 3} all contribute positively to S1P-stimulated glioma cell proliferation, with S1P{sub 1} being the major contributor. Stimulationmore » of glioma cell proliferation by these receptors correlated with activation of ERK MAP kinase. S1P{sub 5} blocks glioma cell proliferation, and inhibits ERK activation. S1P{sub 1} and S1P{sub 3} enhance glioma cell migration and invasion. S1P{sub 2} inhibits migration through Rho activation, Rho kinase signaling and stress fiber formation, but unexpectedly, enhances glioma cell invasiveness by stimulating cell adhesion. S1P{sub 2} also potently enhances expression of the matricellular protein CCN1/Cyr61, which has been implicated in tumor cell adhesion, and invasion as well as tumor angiogenesis. A neutralizing antibody to CCN1 blocked S1P{sub 2}-stimulated glioma invasion. Thus, while S1P{sub 2} decreases glioma cell motility, it may enhance invasion through induction of proteins that modulate glioma cell interaction with the extracellular matrix.« less

  9. Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration.

    PubMed

    Müller, Jan; von Bernstorff, Wolfram; Heidecke, Claus-Dieter; Schulze, Tobias

    2017-01-01

    Introduction . Macrophages are key players in complex biological processes. In response to environmental signals, macrophages undergo polarization towards a proinflammatory (M1) or anti-inflammatory (M2) phenotype. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid that acts via 5 G-protein coupled receptors (S1P 1-5 ) in order to influence a broad spectrum of biological processes. This study assesses S1P receptor expression on macrophages before and after M1 and M2 polarization and performs a comparative analysis of S1P signalling in the two activational states of macrophages. Methods . Bone marrow derived macrophages (BMDM) from C57 BL/6 mice were cultured under either M1- or M2-polarizing conditions. S1P-receptor expression was determined by quantitative RT-PCR. Influence of S1P on macrophage activation, migration, phagocytosis, and cytokine secretion was assessed in vitro. Results . All 5 S1P receptor subclasses were expressed in macrophages. Culture under both M1- and M2-polarizing conditions led to significant downregulation of S1P 1 . In contrast, M1-polarized macrophages significantly downregulated S1P 4 . The expression of the remaining three S1P receptors did not change. S1P increased expression of iNOS under M2-polarizing conditions. Furthermore, S1P induced chemotaxis in M1 macrophages and changed cytokine production in M2 macrophages. Phagocytosis was not affected by S1P-signalling. Discussion . The expression of different specific S1P receptor profiles may provide a possibility to selectively influence M1- or M2-polarized macrophages.

  10. Bitopic Sphingosine 1-Phosphate Receptor 3 (S1P3) Antagonist Rescue from Complete Heart Block: Pharmacological and Genetic Evidence for Direct S1P3 Regulation of Mouse Cardiac Conduction.

    PubMed

    Sanna, M Germana; Vincent, Kevin P; Repetto, Emanuela; Nguyen, Nhan; Brown, Steven J; Abgaryan, Lusine; Riley, Sean W; Leaf, Nora B; Cahalan, Stuart M; Kiosses, William B; Kohno, Yasushi; Brown, Joan Heller; McCulloch, Andrew D; Rosen, Hugh; Gonzalez-Cabrera, Pedro J

    2016-01-01

    The molecular pharmacology of the G protein-coupled receptors for sphingosine 1-phosphate (S1P) provides important insight into established and new therapeutic targets. A new, potent bitopic S1P3 antagonist, SPM-354, with in vivo activity, has been used, together with S1P3-knockin and S1P3-knockout mice to define the spatial and functional properties of S1P3 in regulating cardiac conduction. We show that S1P3 is a key direct regulator of cardiac rhythm both in vivo and in isolated perfused hearts. 2-Amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol in vivo and S1P in isolated hearts induced a spectrum of cardiac effects, ranging from sinus bradycardia to complete heart block, as measured by a surface electrocardiogram in anesthetized mice and in volume-conducted Langendorff preparations. The agonist effects on complete heart block are absent in S1P3-knockout mice and are reversed in wild-type mice with SPM-354, as characterized and described here. Homologous knockin of S1P3-mCherry is fully functional pharmacologically and is strongly expressed by immunohistochemistry confocal microscopy in Hyperpolarization Activated Cyclic Nucleotide Gated Potassium Channel 4 (HCN4)-positive atrioventricular node and His-Purkinje fibers, with relative less expression in the HCN4-positive sinoatrial node. In Langendorff studies, at constant pressure, SPM-354 restored sinus rhythm in S1P-induced complete heart block and fully reversed S1P-mediated bradycardia. S1P3 distribution and function in the mouse ventricular cardiac conduction system suggest a direct mechanism for heart block risk that should be further studied in humans. A richer understanding of receptor and ligand usage in the pacemaker cells of the cardiac system is likely to be useful in understanding ventricular conduction in health, disease, and pharmacology. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Sphingosine 1-Phosphate (S1P) Receptors 1 and 2 Coordinately Induce Mesenchymal Cell Migration through S1P Activation of Complementary Kinase Pathways*

    PubMed Central

    Quint, Patrick; Ruan, Ming; Pederson, Larry; Kassem, Moustapha; Westendorf, Jennifer J.; Khosla, Sundeep; Oursler, Merry Jo

    2013-01-01

    Normal bone turnover requires tight coupling of bone resorption and bone formation to preserve bone quantity and structure. With aging and during several pathological conditions, this coupling breaks down, leading to either net bone loss or excess bone formation. To preserve or restore normal bone metabolism, it is crucial to determine the mechanisms by which osteoclasts and osteoblast precursors interact and contribute to coupling. We showed that osteoclasts produce the chemokine sphingosine 1-phosphate (S1P), which stimulates osteoblast migration. Thus, osteoclast-derived S1P may recruit osteoblasts to sites of bone resorption as an initial step in replacing lost bone. In this study we investigated the mechanisms by which S1P stimulates mesenchymal (skeletal) cell chemotaxis. S1P treatment of mesenchymal (skeletal) cells activated RhoA GTPase, but this small G protein did not contribute to migration. Rather, two S1P receptors, S1PR1 and S1PR2, coordinately promoted migration through activation of the JAK/STAT3 and FAK/PI3K/AKT signaling pathways, respectively. These data demonstrate that the chemokine S1P couples bone formation to bone resorption through activation of kinase signaling pathways. PMID:23300082

  12. Sphingosine-1-Phosphate and the S1P3 Receptor Initiate Neuronal Retraction via RhoA/ROCK Associated with CRMP2 Phosphorylation.

    PubMed

    Quarta, Serena; Camprubí-Robles, Maria; Schweigreiter, Rüdiger; Matusica, Dusan; Haberberger, Rainer V; Proia, Richard L; Bandtlow, Christine E; Ferrer-Montiel, Antonio; Kress, Michaela

    2017-01-01

    The bioactive lipid sphingosine-1-phosphate (S1P) is an important regulator in the nervous system. Here, we explored the role of S1P and its receptors in vitro and in preclinical models of peripheral nerve regeneration. Adult sensory neurons and motor neuron-like cells were exposed to S1P in an in vitro assay, and virtually all neurons responded with a rapid retraction of neurites and growth cone collapse which were associated with RhoA and ROCK activation. The S1P 1 receptor agonist SEW2871 neither activated RhoA or neurite retraction, nor was S1P-induced neurite retraction mitigated in S1P 1 -deficient neurons. Depletion of S1P 3 receptors however resulted in a dramatic inhibition of S1P-induced neurite retraction and was on the contrary associated with a significant elongation of neuronal processes in response to S1P. Opposing responses to S1P could be observed in the same neuron population, where S1P could activate S1P 1 receptors to stimulate elongation or S1P 3 receptors and retraction. S1P was, for the first time in sensory neurons, linked to the phosphorylation of collapsin response-mediated protein-2 (CRMP2), which was inhibited by ROCK inhibition. The improved sensory recovery after crush injury further supported the relevance of a critical role for S1P and receptors in fine-tuning axonal outgrowth in peripheral neurons.

  13. Sphingosine-1-Phosphate and the S1P3 Receptor Initiate Neuronal Retraction via RhoA/ROCK Associated with CRMP2 Phosphorylation

    PubMed Central

    Quarta, Serena; Camprubí-Robles, Maria; Schweigreiter, Rüdiger; Matusica, Dusan; Haberberger, Rainer V.; Proia, Richard L.; Bandtlow, Christine E.; Ferrer-Montiel, Antonio; Kress, Michaela

    2017-01-01

    The bioactive lipid sphingosine-1-phosphate (S1P) is an important regulator in the nervous system. Here, we explored the role of S1P and its receptors in vitro and in preclinical models of peripheral nerve regeneration. Adult sensory neurons and motor neuron-like cells were exposed to S1P in an in vitro assay, and virtually all neurons responded with a rapid retraction of neurites and growth cone collapse which were associated with RhoA and ROCK activation. The S1P1 receptor agonist SEW2871 neither activated RhoA or neurite retraction, nor was S1P-induced neurite retraction mitigated in S1P1-deficient neurons. Depletion of S1P3 receptors however resulted in a dramatic inhibition of S1P-induced neurite retraction and was on the contrary associated with a significant elongation of neuronal processes in response to S1P. Opposing responses to S1P could be observed in the same neuron population, where S1P could activate S1P1 receptors to stimulate elongation or S1P3 receptors and retraction. S1P was, for the first time in sensory neurons, linked to the phosphorylation of collapsin response-mediated protein-2 (CRMP2), which was inhibited by ROCK inhibition. The improved sensory recovery after crush injury further supported the relevance of a critical role for S1P and receptors in fine-tuning axonal outgrowth in peripheral neurons. PMID:29066950

  14. Enhanced Chemokine Receptor Recycling and Impaired S1P1 Expression Promote Leukemic Cell Infiltration of Lymph Nodes in Chronic Lymphocytic Leukemia.

    PubMed

    Patrussi, Laura; Capitani, Nagaja; Martini, Veronica; Pizzi, Marco; Trimarco, Valentina; Frezzato, Federica; Marino, Filippo; Semenzato, Gianpietro; Trentin, Livio; Baldari, Cosima T

    2015-10-01

    Lymphocyte trafficking is orchestrated by chemokine and sphingosine 1-phosphate (S1P) receptors that enable homing and egress from secondary lymphoid organs (SLO). These receptors undergo rapid internalization and plasma membrane recycling to calibrate cellular responses to local chemoattractants. Circulating chronic lymphocytic leukemia (CLL) cells display an abnormal increase in the surface levels of the homing receptors CCR7 and CXCR4 concomitant with low S1P receptor 1 (S1P1) expression. In this study, we investigated the role of receptor recycling on CXCR4/CCR7 surface levels in CLL cells and addressed the impact of quantitative alterations of these receptors and S1P1 on the ability of leukemic cells to accumulate in SLOs. We show that recycling accounts, to a major extent, for the high levels of surface CXCR4/CCR7 on CLL cells. In addition, increased expression of these receptors, together with S1P1 deficiency, is detectable not only in circulating leukemic cells, but also in SLOs of CLL patients with lymphoadenopathy. We further provide evidence that ibrutinib, a Btk inhibitor that promotes mobilization of leukemic cells from SLOs, normalizes the imbalance between CXCR4/CCR7 and S1P1. Taken together, our results highlight the relevance of chemokine and S1P receptor recycling in CLL pathogenesis and clinical outcome. ©2015 American Association for Cancer Research.

  15. Ozanimod (RPC1063) is a potent sphingosine‐1‐phosphate receptor‐1 (S1P1) and receptor‐5 (S1P5) agonist with autoimmune disease‐modifying activity

    PubMed Central

    Clemons, B; Brooks, J; Brahmachary, E; Powell, R; Dedman, H; Desale, H G; Timony, G A; Martinborough, E; Rosen, H; Roberts, E; Boehm, M F; Peach, R J

    2016-01-01

    Background and Purpose Sphingosine1‐phosphate (S1P) receptors mediate multiple events including lymphocyte trafficking, cardiac function, and endothelial barrier integrity. Stimulation of S1P1 receptors sequesters lymphocyte subsets in peripheral lymphoid organs, preventing their trafficking to inflamed tissue sites, modulating immunity. Targeting S1P receptors for treating autoimmune disease has been established in clinical studies with the non‐selective S1P modulator, FTY720 (fingolimod, Gilenya™). The purpose of this study was to assess RPC1063 for its therapeutic utility in autoimmune diseases. Experimental Approach The specificity and potency of RPC1063 (ozanimod) was evaluated for all five S1P receptors, and its effect on cell surface S1P1 receptor expression, was characterized in vitro. The oral pharmacokinetic (PK) parameters and pharmacodynamic effects were established in rodents, and its activity in three models of autoimmune disease (experimental autoimmune encephalitis, 2,4,6‐trinitrobenzenesulfonic acid colitis and CD4+CD45RBhi T cell adoptive transfer colitis) was assessed. Key Results RPC1063 was specific for S1P1 and S1P5 receptors, induced S1P1 receptor internalization and induced a reversible reduction in circulating B and CCR7+ T lymphocytes in vivo. RPC1063 showed high oral bioavailability and volume of distribution, and a circulatory half‐life that supports once daily dosing. Oral RPC1063 reduced inflammation and disease parameters in all three autoimmune disease models. Conclusions and Implications S1P receptor selectivity, favourable PK properties and efficacy in three distinct disease models supports the clinical development of RPC1063 for the treatment of relapsing multiple sclerosis and inflammatory bowel disease, differentiates RPC1063 from other S1P receptor agonists, and could result in improved safety outcomes in the clinic. PMID:26990079

  16. Autoantibodies against β1 receptor and AT1 receptor in type 2 diabetes patients with left ventricular dilatation.

    PubMed

    Zhao, Linshuang; Xu, Chunyan; Xu, Jinling

    2014-01-01

    To explore the relationship between the autoantibodies against the β1 and AT1 receptors and left ventricular dilatation in patients with type 2 diabetes (T2DM). The autoantibodies against the β1 and angiotensin II type 1 (AT1) receptors of T2DM patients with and without hypertension were screened by ELISA. Multiple logistic regression was used to analyze the risk factors for left ventricular dilatation. The reversing effect of left ventricular dilatation was evaluated after receptor blocker treatment. The positive rates of autoantibodies against the β1 and AT1 receptors (43.0 and 44.1%, respectively) in T2DM patients with hypertension were significantly higher than those in normotensive patients (16.0 and 10.4%, respectively; all p < 0.01). Furthermore, among T2DM patients with hypertension, the positive rates (61.4 and 64.9%, respectively) in patients with left ventricular dilatation were remarkably higher than those with normal left ventricular dimensions (34.4 and 36.1%, respectively; all p < 0.01). The presence of β1 receptor antibody and AT1 receptor antibody were risk factors for left ventricular dilatation (p < 0.05). The curative effect of metoprolol tartrate and valsartan in reversing left ventricular hypertrophy in the group positive for autoantibodies was much better than in the negative group. The findings show that autoantibodies against the β1 and AT1 receptors may play a role in predicting left ventricular dilatation in T2DM patients in combination with hypertension. Metoprolol tartrate and valsartan are effective and safe in the treatment of these patients. © 2014 S. Karger AG, Basel.

  17. Sphingosine-1-Phosphate (S1P) Lyase Inhibition Causes Increased Cardiac S1P Levels and Bradycardia in Rats.

    PubMed

    Harris, Christopher M; Mittelstadt, Scott; Banfor, Patricia; Bousquet, Peter; Duignan, David B; Gintant, Gary; Hart, Michelle; Kim, Youngjae; Segreti, Jason

    2016-10-01

    Inhibition of the sphingosine-1-phosphate (S1P)-catabolizing enzyme S1P lyase (S1PL) elevates the native ligand of S1P receptors and provides an alternative mechanism for immune suppression to synthetic S1P receptor agonists. S1PL inhibition is reported to preferentially elevate S1P in lymphoid organs. Tissue selectivity could potentially differentiate S1PL inhibitors from S1P receptor agonists, the use of which also results in bradycardia, atrioventricular block, and hypertension. But it is unknown if S1PL inhibition would also modulate cardiac S1P levels or cardiovascular function. The S1PL inhibitor 6-[(2R)-4-(4-benzyl-7-chlorophthalazin-1-yl)-2-methylpiperazin-1-yl]pyridine-3-carbonitrile was used to determine the relationship in rats between drug concentration, S1P levels in select tissues, and circulating lymphocytes. Repeated oral doses of the S1PL inhibitor fully depleted circulating lymphocytes after 3 to 4 days of treatment in rats. Full lymphopenia corresponded to increased levels of S1P of 100- to 1000-fold in lymph nodes, 3-fold in blood (but with no change in plasma), and 9-fold in cardiac tissue. Repeated oral dosing of the S1PL inhibitor in telemeterized, conscious rats resulted in significant bradycardia within 48 hours of drug treatment, comparable in magnitude to the bradycardia induced by 3 mg/kg fingolimod. These results suggest that S1PL inhibition modulates cardiac function and does not provide immune suppression with an improved cardiovascular safety profile over fingolimod in rats. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Hypothalamic S1P/S1PR1 axis controls energy homeostasis.

    PubMed

    Silva, Vagner R R; Micheletti, Thayana O; Pimentel, Gustavo D; Katashima, Carlos K; Lenhare, Luciene; Morari, Joseane; Mendes, Maria Carolina S; Razolli, Daniela S; Rocha, Guilherme Z; de Souza, Claudio T; Ryu, Dongryeol; Prada, Patrícia O; Velloso, Lício A; Carvalheira, José B C; Pauli, José Rodrigo; Cintra, Dennys E; Ropelle, Eduardo R

    2014-09-25

    Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.

  19. High expression of sphingosine kinase 1 and S1P receptors in chemotherapy-resistant prostate cancer PC3 cells and their camptothecin-induced up-regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akao, Yukihiro; Banno, Yoshiko; Nakagawa, Yoshihito

    2006-04-21

    Although most of pharmacological therapies for cancer utilize the apoptotic machinery of the cells, the available anti-cancer drugs are limited due to the ability of prostate cancer cells to escape from the anti-cancer drug-induced apoptosis. A human prostate cancer cell line PC3 is resistant to camptothecin (CPT). To elucidate the mechanism of this resistance, we have examined the involvement of sphingosine kinase (SPHK) and sphingosine 1-phosphate (S1P) receptor in CPT-resistant PC3 and -sensitive LNCaP cells. PC3 cells exhibited higher activity accompanied with higher expression levels of protein and mRNA of SPHK1, and also elevated expression of S1P receptors, S1P{sub 1}more » and S1P{sub 3}, as compared with those of LNCaP cells. The knockdown of SPHK1 by small interfering RNA and inhibition of S1P receptor signaling by pertussis toxin in PC3 cells induced significant inhibition of cell growth, suggesting implication of SPHK1 and S1P receptors in cell proliferation in PC3 cells. Furthermore, the treatment of PC3 cells with CPT was found to induce up-regulation of the SPHK1/S1P signaling by induction of both SPHK1 enzyme and S1P{sub 1}/S1P{sub 3} receptors. These findings strongly suggest that high expression and up-regulation of SPHK1 and S1P receptors protect PC3 cells from the apoptosis induced by CPT.« less

  20. S1P and the birth of platelets

    PubMed Central

    Galvani, Sylvain; Rafii, Shahin; Nachman, Ralph

    2012-01-01

    Recent work has highlighted the multitude of biological functions of sphingosine 1-phosphate (S1P), which include roles in hematopoietic cell trafficking, organization of immune organs, vascular development, and neuroinflammation. Indeed, a functional antagonist of S1P1 receptor, FTY720/Gilenya, has entered the clinic as a novel therapeutic for multiple sclerosis. In this issue of the JEM, Zhang et al. highlight yet another function of this lipid mediator: thrombopoiesis. The S1P1 receptor is required for the growth of proplatelet strings in the bloodstream and the shedding of platelets into the circulation. Notably, the sharp gradient of S1P between blood and the interstitial fluids seems to be essential to ensure the production of platelets, and S1P appears to cooperate with the CXCL12–CXCR4 axis. Pharmacologic modulation of the S1P1 receptor altered circulating platelet numbers acutely, suggesting a potential therapeutic strategy for controlling thrombocytopenic states. However, the S1P4 receptor may also regulate thrombopoiesis during stress-induced accelerated platelet production. This work reveals a novel physiological action of the S1P/S1P1 duet that could potentially be harnessed for clinical translation. PMID:23166370

  1. Correlation between VEGFR-2 receptor kinase domain-containing receptor (KDR) mRNA and angiotensin II receptor type 1 (AT1-R) mRNA in endometrial cancer.

    PubMed

    Piastowska-Ciesielska, Agnieszka W; Płuciennik, Elżbieta; Wójcik-Krowiranda, Katarzyna; Bieńkiewicz, Andrzej; Nowakowska, Magdalena; Pospiech, Karolina; Bednarek, Andrzej K; Domińska, Kamila; Ochędalski, Tomasz

    2013-02-01

    Angiogenesis, a multistep process that results in new blood vessel formation from preexisting vasculature is essential for both the growth of solid tumour and for metastasis. Stimulation of vascular endothelial growth factor receptor (VEGFR), a transmembrane glycoprotein, results in mitogenesis. Within this family of receptors, VEGFR 2/kinase-insert-domain containing receptor appears to be principally upregulated during tumorigenesis. The aim of this study was to determine the expression of VEGFR-2/kinase-insert-domain containing receptor (KDR) and its correlation with angiotensin receptor type 1 (AT1-R) and clinical factors in endometrial carcinoma. The expression of KDR and AT1-R was studied in endometrial carcinoma and normal endometrium by Real-time RT-PCR and Western blot analysis in 136 samples. The expression profile was correlated with the clinicopathological characteristics of endometrial adenocarcinoma. We noted a significant correlation between the expression of KDR and AT1-R in tumour grade G1, G2 and G3 (R(s)=0.50; p=0.002, R(s)=0.69; p=0.0001, R(s)=0.52; p=0.005, respectively). In stage I and stage II carcinoma, a significant correlation was also found between the expression of KDR and AT1-R (R(s)=0.70, p=0.0001, R(s)=0.67; p=0.001, respectively). Moreover significant correlation was observed between both KDR and AT1-R in tissue with different myometrial invasion (R(s)=0.54, p=0.0001, R(s)=0.68; p=0.0001; respectively for tumours with invasion into the inner half and invasion into the outer half). Basing on received correlation between AT1-R and KDR expression and previous results we speculate that angiotensin through AT1-R modulates KDR expression and thus have influence on local VEGF level. However, further studies are required to clarify the biological interaction between KDR, AT1-R and other hormonal regulators in endometrial carcinoma. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Sphingosine 1-Phosphate (S1P) Signaling in Glioblastoma Multiforme—A Systematic Review

    PubMed Central

    Mahajan-Thakur, Shailaja; Bien-Möller, Sandra; Marx, Sascha; Schroeder, Henry

    2017-01-01

    The multifunctional sphingosine-1-phosphate (S1P) is a lipid signaling molecule and central regulator in the development of several cancer types. In recent years, intriguing information has become available regarding the role of S1P in the progression of Glioblastoma multiforme (GBM), the most aggressive and common brain tumor in adults. S1P modulates numerous cellular processes in GBM, such as oncogenesis, proliferation and survival, invasion, migration, metastasis and stem cell behavior. These processes are regulated via a family of five G-protein-coupled S1P receptors (S1PR1-5) and may involve mainly unknown intracellular targets. Distinct expression patterns and multiple intracellular signaling pathways of each S1PR subtype enable S1P to exert its pleiotropic cellular actions. Several studies have demonstrated alterations in S1P levels, the involvement of S1PRs and S1P metabolizing enzymes in GBM pathophysiology. While the tumorigenic actions of S1P involve the activation of several kinases and transcription factors, the specific G-protein (Gi, Gq, and G12/13)-coupled signaling pathways and downstream mediated effects in GBM remain to be elucidated in detail. This review summarizes the recent findings concerning the role of S1P and its receptors in GBM. We further highlight the current insights into the signaling pathways considered fundamental for regulating the cellular processes in GMB and ultimately patient prognosis. PMID:29149079

  3. HDL activation of endothelial sphingosine-1-phosphate receptor-1 (S1P1) promotes regeneration and suppresses fibrosis in the liver.

    PubMed

    Ding, Bi-Sen; Liu, Catherine H; Sun, Yue; Chen, Yutian; Swendeman, Steven L; Jung, Bongnam; Chavez, Deebly; Cao, Zhongwei; Christoffersen, Christina; Nielsen, Lars Bo; Schwab, Susan R; Rafii, Shahin; Hla, Timothy

    2016-12-22

    Regeneration of hepatic sinusoidal vasculature is essential for non-fibrotic liver regrowth and restoration of its metabolic capacity. However, little is known about how this specialized vascular niche is regenerated. Here we show that activation of endothelial sphingosine-1-phosphate receptor-1 (S1P 1 ) by its natural ligand bound to HDL (HDL-S1P) induces liver regeneration and curtails fibrosis. In mice lacking HDL-S1P, liver regeneration after partial hepatectomy was impeded and associated with aberrant vascular remodeling, thrombosis and peri-sinusoidal fibrosis. Notably, this "maladaptive repair" phenotype was recapitulated in mice that lack S1P 1 in the endothelium. Reciprocally, enhanced plasma levels of HDL-S1P or administration of SEW2871, a pharmacological agonist specific for S1P 1 enhanced regeneration of metabolically functional vasculature and alleviated fibrosis in mouse chronic injury and cholestasis models. This study shows that natural and pharmacological ligands modulate endothelial S1P 1 to stimulate liver regeneration and inhibit fibrosis, suggesting that activation of this pathway may be a novel therapeutic strategy for liver fibrosis.

  4. The T-cell receptor beta chain CDR3 region of BV8S1/BJ1S5 transcripts in type 1 diabetes.

    PubMed

    Naserke, H E; Durinovic-Bellò, I; Seidel, D; Ziegler, A G

    1996-01-01

    We recently described the T-cell receptor (TCR) beta chain CDR3 motif S-SDRLG-NQPQH (BV8S1-BJ1S5) in an islet-specific T-cell clone (K2.12) from a type 1 diabetic patient (AS). A similar motif (RLGNQ) was also reported in a T-cell clone of non-obese diabetic (NOD) mice by others. In order to determine the frequency of our motif in selected and unselected T-cell populations, we cloned and sequenced the CDR3 region of BV8S1-BJ1S5 transcripts. These transcripts were derived from unstimulated peripheral blood T lymphocytes from two type 1 diabetic patients (AS and FS) and their non-diabetic sibling (WS), as well as from an islet-specific T-cell line of one of the patients. In addition, we compared the structure and composition of the CDR3 region in BV8S1-BJ1S5 transcripts from peripheral blood T cells between the patients and their non-diabetic sibling (>50 sequences each). We found that 30% of the islet-specific T-cell line cDNA clones expressed the entire sequence-motif, whereas it was absent in the clones of unstimulated peripheral blood T cells from both patients and their non-diabetic sibling. The average length of the CDR3 region was shorter in the patients (mean AS 9.9, FS 9.9, versus WS 10.7, p = 0.0037) and the number of inserted nucleotides in N nucleotide addition at the DJ-junction lower (mean AS 3.5, FS 3. 2, versus WS 5.2, P = <10(-4)) as compared with their non-diabetic sibling. Moreover, the pattern of amino acid usage in the CDR3 region was dissimilar at positions 5 and 6, where polar amino acids predominated in both diabetic siblings. In contrast, basic amino acids are preferentially used at position 5 in the clones of the non-diabetic sibling. These data provide information on the general structure of the TCR(BV8S1-BJ1S5) CDR3 region in type 1 diabetes and may indicate differences in the amino and nucleic acid composition of the TCR beta chain CDR3 region between two type 1 diabetic patients and their non-diabetic sibling.

  5. Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor.

    PubMed

    Ecke, Denise; Hanck, Theodor; Tulapurkar, Mohan E; Schäfer, Rainer; Kassack, Matthias; Stricker, Rolf; Reiser, Georg

    2008-01-01

    Nucleotides signal through purinergic receptors such as the P2 receptors, which are subdivided into the ionotropic P2X receptors and the metabotropic P2Y receptors. The diversity of functions within the purinergic receptor family is required for the tissue-specificity of nucleotide signalling. In the present study, hetero-oligomerization between two metabotropic P2Y receptor subtypes is established. These receptors, P2Y1 and P2Y11, were found to associate together when co-expressed in HEK293 cells. This association was detected by co-pull-down, immunoprecipitation and FRET (fluorescence resonance energy transfer) experiments. We found a striking functional consequence of the interaction between the P2Y11 receptor and the P2Y1 receptor where this interaction promotes agonist-induced internalization of the P2Y11 receptor. This is remarkable because the P2Y11 receptor by itself is not able to undergo endocytosis. Co-internalization of these receptors was also seen in 1321N1 astrocytoma cells co-expressing both P2Y11 and P2Y1 receptors, upon stimulation with ATP or the P2Y1 receptor-specific agonist 2-MeS-ADP. 1321N1 astrocytoma cells do not express endogenous P2Y receptors. Moreover, in HEK293 cells, the P2Y11 receptor was found to functionally associate with endogenous P2Y1 receptors. Treatment of HEK293 cells with siRNA (small interfering RNA) directed against the P2Y1 receptor diminished the agonist-induced endocytosis of the heterologously expressed GFP-P2Y11 receptor. Pharmacological characteristics of the P2Y11 receptor expressed in HEK293 cells were determined by recording Ca2+ responses after nucleotide stimulation. This analysis revealed a ligand specificity which was different from the agonist profile established in cells expressing the P2Y11 receptor as the only metabotropic nucleotide receptor. Thus the hetero-oligomerization of the P2Y1 and P2Y11 receptors allows novel functions of the P2Y11 receptor in response to extracellular nucleotides.

  6. Differential Muscle Hypertrophy Is Associated with Satellite Cell Numbers and Akt Pathway Activation Following Activin Type IIB Receptor Inhibition in Mtm1 p.R69C Mice

    PubMed Central

    Lawlor, Michael W.; Viola, Marissa G.; Meng, Hui; Edelstein, Rachel V.; Liu, Fujun; Yan, Ke; Luna, Elizabeth J.; Lerch-Gaggl, Alexandra; Hoffmann, Raymond G.; Pierson, Christopher R.; Buj-Bello, Anna; Lachey, Jennifer L.; Pearsall, Scott; Yang, Lin; Hillard, Cecilia J.; Beggs, Alan H.

    2015-01-01

    X-linked myotubular myopathy is a congenital myopathy caused by deficiency of myotubularin. Patients often present with severe perinatal weakness, requiring mechanical ventilation to prevent death from respiratory failure. We recently reported that an activin receptor type IIB inhibitor produced hypertrophy of type 2b myofibers and modest increases of strength and life span in the severely myopathic Mtm1δ4 mouse model of X-linked myotubular myopathy. We have now performed a similar study in the less severely symptomatic Mtm1 p.R69C mouse in hopes of finding greater treatment efficacy. Activin receptor type IIB inhibitor treatment of Mtm1 p.R69C animals produced behavioral and histological evidence of hypertrophy in gastrocnemius muscles but not in quadriceps or triceps. The ability of the muscles to respond to activin receptor type IIB inhibitor treatment correlated with treatment-induced increases in satellite cell number and several muscle-specific abnormalities of hypertrophic signaling. Treatment-responsive Mtm1 p.R69C gastrocnemius muscles displayed lower levels of phosphorylated ribosomal protein S6 and higher levels of phosphorylated eukaryotic elongation factor 2 kinase than were observed in Mtm1 p.R69C quadriceps muscle or in muscles from wild-type littermates. Hypertrophy in the Mtm1 p.R69C gastrocnemius muscle was associated with increased levels of phosphorylated ribosomal protein S6. Our findings indicate that muscle-, fiber type-, and mutation-specific factors affect the response to hypertrophic therapies that will be important to assess in future therapeutic trials. PMID:24726641

  7. Upregulation of S1P1 and Rac1 receptors in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Zimmer, Julia; Takahashi, Toshiaki; Duess, Johannes W; Hofmann, Alejandro D; Puri, Prem

    2016-02-01

    Sphingolipids play a crucial role in pulmonary development. The sphingosine kinase 1 (SphK1) modulates the synthesis of sphingolipid sphingosine-1-phosphate (S1P). S1P regulates cell proliferation and angiogenesis via different receptors, S1P1, S1P2 and S1P3, which all influence the expression of Ras-related C3 botulinum toxin substrate 1 (Rac1). We designed this study to test the hypothesis that the S1P/Rac1 pathway is altered in the nitrofen-induced CDH model. Pregnant rats received nitrofen or vehicle on D9. On D21, fetuses were killed and divided into nitrofen and control group (n = 12). QRT-PCR, western blotting and confocal-immunofluorescence microscopy were performed to reveal pulmonary gene and protein expression levels of SphK1, S1P1, S1P2, S1P3 and Rac1. Pulmonary gene expression of S1P1 and Rac1 was significantly increased in the CDH group compared to controls, whereas S1P2 and S1P3 expression was decreased. These results were confirmed by western blotting and confocal microscopy. SphK1 expression was not found to be altered. The increased expression of S1P1 and Rac1 in the pulmonary vasculature of nitrofen-induced CDH lungs suggests that S1P1 and Rac1 are important mediators of PH in this model.

  8. Stable knock-down of the sphingosine 1-phosphate receptor S1P1 influences multiple functions of human endothelial cells.

    PubMed

    Krump-Konvalinkova, Vera; Yasuda, Satoshi; Rubic, Tina; Makarova, Natalia; Mages, Jörg; Erl, Wolfgang; Vosseler, Claudia; Kirkpatrick, C James; Tigyi, Gabor; Siess, Wolfgang

    2005-03-01

    Sphingosine 1-phosphate (S1P) is a bioactive phospholipid acting both as a ligand for the G protein-coupled receptors S1P1-5 and as a second messenger. Because S1P1 knockout is lethal in the transgenic mouse, an alternative approach to study the function of S1P1 in endothelial cells is needed. All human endothelial cells analyzed expressed abundant S1P1 transcripts. We permanently silenced (by RNA interference) the expression of S1P1 in the human endothelial cell lines AS-M.5 and ISO-HAS.1. The S1P1 knock-down cells manifested a distinct morphology and showed neither actin ruffles in response to S1P nor an angiogenic reaction. In addition, these cells were more sensitive to oxidant stress-mediated injury. New S1P1-dependent gene targets were identified in human endothelial cells. S1P1 silencing decreased the expression of platelet-endothelial cell adhesion molecule-1 and VE-cadherin and abolished the induction of E-selectin after cell stimulation with lipopolysaccharide or tumor necrosis factor-alpha. Microarray analysis revealed downregulation of further endothelial specific transcripts after S1P1 silencing. Long-term silencing of S1P1 enabled us for the first time to demonstrate the involvement of S1P1 in key functions of endothelial cells and to identify new S1P1-dependent gene targets.

  9. HDL activation of endothelial sphingosine-1-phosphate receptor-1 (S1P1) promotes regeneration and suppresses fibrosis in the liver

    PubMed Central

    Sun, Yue; Chen, Yutian; Swendeman, Steven L.; Jung, Bongnam; Chavez, Deebly; Cao, Zhongwei; Christoffersen, Christina; Nielsen, Lars Bo; Schwab, Susan R.; Rafii, Shahin; Hla, Timothy

    2016-01-01

    Regeneration of hepatic sinusoidal vasculature is essential for non-fibrotic liver regrowth and restoration of its metabolic capacity. However, little is known about how this specialized vascular niche is regenerated. Here we show that activation of endothelial sphingosine-1-phosphate receptor-1 (S1P1) by its natural ligand bound to HDL (HDL-S1P) induces liver regeneration and curtails fibrosis. In mice lacking HDL-S1P, liver regeneration after partial hepatectomy was impeded and associated with aberrant vascular remodeling, thrombosis and peri-sinusoidal fibrosis. Notably, this “maladaptive repair” phenotype was recapitulated in mice that lack S1P1 in the endothelium. Reciprocally, enhanced plasma levels of HDL-S1P or administration of SEW2871, a pharmacological agonist specific for S1P1 enhanced regeneration of metabolically functional vasculature and alleviated fibrosis in mouse chronic injury and cholestasis models. This study shows that natural and pharmacological ligands modulate endothelial S1P1 to stimulate liver regeneration and inhibit fibrosis, suggesting that activation of this pathway may be a novel therapeutic strategy for liver fibrosis. PMID:28018969

  10. Differential muscle hypertrophy is associated with satellite cell numbers and Akt pathway activation following activin type IIB receptor inhibition in Mtm1 p.R69C mice.

    PubMed

    Lawlor, Michael W; Viola, Marissa G; Meng, Hui; Edelstein, Rachel V; Liu, Fujun; Yan, Ke; Luna, Elizabeth J; Lerch-Gaggl, Alexandra; Hoffmann, Raymond G; Pierson, Christopher R; Buj-Bello, Anna; Lachey, Jennifer L; Pearsall, Scott; Yang, Lin; Hillard, Cecilia J; Beggs, Alan H

    2014-06-01

    X-linked myotubular myopathy is a congenital myopathy caused by deficiency of myotubularin. Patients often present with severe perinatal weakness, requiring mechanical ventilation to prevent death from respiratory failure. We recently reported that an activin receptor type IIB inhibitor produced hypertrophy of type 2b myofibers and modest increases of strength and life span in the severely myopathic Mtm1δ4 mouse model of X-linked myotubular myopathy. We have now performed a similar study in the less severely symptomatic Mtm1 p.R69C mouse in hopes of finding greater treatment efficacy. Activin receptor type IIB inhibitor treatment of Mtm1 p.R69C animals produced behavioral and histological evidence of hypertrophy in gastrocnemius muscles but not in quadriceps or triceps. The ability of the muscles to respond to activin receptor type IIB inhibitor treatment correlated with treatment-induced increases in satellite cell number and several muscle-specific abnormalities of hypertrophic signaling. Treatment-responsive Mtm1 p.R69C gastrocnemius muscles displayed lower levels of phosphorylated ribosomal protein S6 and higher levels of phosphorylated eukaryotic elongation factor 2 kinase than were observed in Mtm1 p.R69C quadriceps muscle or in muscles from wild-type littermates. Hypertrophy in the Mtm1 p.R69C gastrocnemius muscle was associated with increased levels of phosphorylated ribosomal protein S6. Our findings indicate that muscle-, fiber type-, and mutation-specific factors affect the response to hypertrophic therapies that will be important to assess in future therapeutic trials. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. The promotion of mandibular defect healing by the targeting of S1P receptors and the recruitment of alternatively activated macrophages

    PubMed Central

    Das, Anusuya; Segar, Claire E; Hughley, Brian B; Bowers, Daniel T; Botchwey, Edward A

    2013-01-01

    Endogenous signals originating at the site of injury are involved in the paracrine recruitment, proliferation, and differentiation of circulating progenitor and diverse inflammatory cell types. Here, we investigate a strategy to exploit endogenous cell recruitment mechanisms to regenerate injured bone by local targeting and activation of sphingosine-1-phosphate (S1P) receptors. A mandibular defect model was selected for evaluating regeneration of bone following trauma or congenital disease. The particular challenges of mandibular reconstruction are inherent in the complex anatomy and function of the bone given that the area is highly vascularized and in close proximity to muscle. Nanofibers composed of poly(DL-lactide-co-glycolide) (PLAGA) and polycaprolactone (PCL) were used to delivery FTY720, a targeted agonist of S1P receptors 1 and 3. In vitro culture of bone progenitor cells on drug loaded constructs significantly enhanced SDF1α mediated chemotaxis of bone marrow mononuclear cells. In vivo results show that local delivery of FTY720 from composite nanofibers enhanced blood vessel ingrowth and increased recruitment of M2 alternatively activated macrophages, leading to significant osseous tissue ingrowth into critical sized defects after 12 weeks of treatment. These results demonstrate that local activation of S1P receptors is a regenerative cue resulting in recruitment of wound healing or anti-inflammatory macrophages and bone healing. Use of such small molecule therapy can provide an alternative to biological factors for the clinical treatment of critical size craniofacial defects. PMID:24064148

  12. Association of Sphingosine-1-phosphate (S1P)/S1P Receptor-1 Pathway with Cell Proliferation and Survival in Canine Hemangiosarcoma.

    PubMed

    Rodriguez, A M; Graef, A J; LeVine, D N; Cohen, I R; Modiano, J F; Kim, J-H

    2015-01-01

    Sphingosine-1-phosphate (S1P) is a key biolipid signaling molecule that regulates cell growth and survival, but it has not been studied in tumors from dogs. S1P/S1P1 signaling will contribute to the progression of hemangiosarcoma (HSA). Thirteen spontaneous HSA tissues, 9 HSA cell lines, 8 nonmalignant tissues, including 6 splenic hematomas and 2 livers with vacuolar degeneration, and 1 endothelial cell line derived from a dog with splenic hematoma were used. This was a retrospective case series and in vitro study. Samples were obtained as part of medically necessary diagnostic procedures. Microarray, qRT-PCR, immunohistochemistry, and immunoblotting were performed to examine S1P1 expression. S1P concentrations were measured by high-performance liquid chromatography/mass spectrometry. S1P signaling was evaluated by intracellular Ca(2+) mobilization; proliferation and survival were evaluated using the MTS assay and Annexin V staining. Canine HSA cells expressed higher levels of S1P1 mRNA than nonmalignant endothelial cells. S1P1 protein was present in HSA tissues and cell lines. HSA cells appeared to produce low levels of S1P, but they selectively consumed S1P from the culture media. Exogenous S1P induced an increase in intracellular calcium as well as increased proliferation and viability of HSA cells. Prolonged treatment with FTY720, an inhibitor of S1P1 , decreased S1P1 protein expression and induced apoptosis of HSA cells. S1P/S1P1 signaling pathway functions to maintain HSA cell viability and proliferation. The data suggest that S1P1 or the S1P pathway in general could be targets for therapeutic intervention for dogs with HSA. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  13. Local not systemic modulation of dendritic cell S1P receptors in lung blunts virus-specific immune responses to influenza

    PubMed Central

    Marsolais, David; Hahm, Bumsuk; Edelmann, Kurt H.; Walsh, Kevin B.; Guerrero, Miguel; Hatta, Yasuko; Kawaoka, Yoshihiro; Roberts, Edward; Oldstone, Michael B. A.; Rosen, Hugh

    2008-01-01

    The mechanism by which locally delivered sphingosine analogs regulate host response to localized viral infection has never been addressed. In this report, we show that intra-tracheal (i.t.) delivery of chiral sphingosine analog AAL-R or its phosphate ester inhibits the T cell response to influenza-virus infection. In contrast, neither intra-peritoneal (i.p.) delivery of AAL-R nor i.t. instillation of the non-phosphorylable stereoisomer AAL-S suppressed virus-specific T cell response, indicating that in vivo phosphorylation of AAL-R and S1P receptor modulation in lungs are essential for immunomodulation. I.t. delivery of water soluble S1P1 receptor agonist at doses sufficient to induce systemic lymphopenia did not inhibit virus-specific T cell response indicating that S1P1 is not involved in the immunosuppressive activities of AAL-R and that immunosuppression acts independently of naïve lymphocyte recirculation. Accumulation of dendritic cells (DCs) in draining lymph nodes was inhibited by i.t. but not i.p. delivery of AAL-R. Direct modulation of DCs is demonstrated by the impaired ability of virus-infected bone-marrow derived DCs treated in vitro with AAL-R to trigger in vivo T cell response after adoptive transfer to the airways. Thus, our results suggest that locally delivered sphingosine analogs induce immunosuppression by modulating S1P receptors other than S1P1 or S1P2 on dendritic cells in the lungs after influenza virus infection. PMID:18577684

  14. Sphingosine-1-phosphate receptor-1 (S1P1) is expressed by lymphocytes, dendritic cells, and endothelium and modulated during inflammatory bowel disease.

    PubMed

    Karuppuchamy, T; Behrens, E-H; González-Cabrera, P; Sarkisyan, G; Gima, L; Boyer, J D; Bamias, G; Jedlicka, P; Veny, M; Clark, D; Peach, R; Scott, F; Rosen, H; Rivera-Nieves, J

    2017-01-01

    The sphingosine-1-phosphate receptor-1 (S1P 1 ) agonist ozanimod ameliorates ulcerative colitis, yet its mechanism of action is unknown. Here, we examine the cell subsets that express S1P 1 in intestine using S1P 1 -eGFP mice, the regulation of S1P 1 expression in lymphocytes after administration of dextran sulfate sodium (DSS), after colitis induced by transfer of CD4 + CD45RB hi cells, and by crossing a mouse with TNF-driven ileitis with S1P 1 -eGFP mice. We then assayed the expression of enzymes that regulate intestinal S1P levels, and the effect of FTY720 on lymphocyte behavior and S1P 1 expression. We found that not only T and B cells express S1P 1 , but also dendritic (DC) and endothelial cells. Furthermore, chronic but not acute inflammatory signals increased S1P 1 expression, while the enzymes that control tissue S1P levels in mice and humans with inflammatory bowel disease (IBD) were uniformly dysregulated, favoring synthesis over degradation. Finally, we observed that FTY720 reduced T-cell velocity and induced S1P 1 degradation and retention of Naïve but not effector T cells. Our data demonstrate that chronic inflammation modulates S1P 1 expression and tissue S1P levels and suggests that the anti-inflammatory properties of S1PR agonists might not be solely due to their lymphopenic effects, but also due to potential effects on DC migration and vascular barrier function.

  15. Sphingosine-1-phosphate receptor-1 (S1P1) is expressed by lymphocytes, dendritic cells, and endothelium and modulated during inflammatory bowel disease

    PubMed Central

    Karuppuchamy, Thangaraj; Behrens, En-hui; González-Cabrera, Pedro; Sarkisyan, Gor; Gima, Lauren; Boyer, Joshua D.; Bamias, Giorgos; Jedlicka, Paul; Veny, Marisol; Clark, David; Peach, Robert; Scott, Fiona; Rosen, Hugh; Rivera-Nieves, Jesús

    2016-01-01

    The sphingosine-1-phosphate receptor-1 (S1P1) agonist ozanimod ameliorates ulcerative colitis, yet its mechanism of action is unknown. Here we examine the cell subsets that express S1P1 in intestine using S1P1-eGFP mice, the regulation of S1P1 expression in lymphocytes after administration of DSS, after colitis induced by transfer of CD4+CD45RBhi cells and by crossing a mouse with TNF-driven ileitis with S1P1-eGFP mice. We then assayed the expression of enzymes that regulate intestinal S1P levels, and the effect of FTY720 on lymphocyte behavior and S1P1 expression. We found that not only T and B cells express S1P1, but also dendritic (DC) and endothelial cells. Furthermore, chronic but not acute inflammatory signals increased S1P1 expression, while the enzymes that control tissue S1P levels in mice and humans with IBD were uniformly dysregulated, favoring synthesis over degradation. Finally, we observed that FTY720 reduced T cell velocity and induced S1P1 degradation and retention of naïve but not effector T cells. Our data demonstrate that chronic inflammation modulates S1P1 expression and tissue S1P levels and suggests that the anti-inflammatory properties of S1PR agonists might not be solely due to their lymphopenic effects, but also due to potential effects on DC migration and vascular barrier function. PMID:27049060

  16. The promotion of mandibular defect healing by the targeting of S1P receptors and the recruitment of alternatively activated macrophages.

    PubMed

    Das, Anusuya; Segar, Claire E; Hughley, Brian B; Bowers, Daniel T; Botchwey, Edward A

    2013-12-01

    Endogenous signals originating at the site of injury are involved in the paracrine recruitment, proliferation, and differentiation of circulating progenitor and diverse inflammatory cell types. Here, we investigate a strategy to exploit endogenous cell recruitment mechanisms to regenerate injured bone by local targeting and activation of sphingosine-1-phosphate (S1P) receptors. A mandibular defect model was selected for evaluating regeneration of bone following trauma or congenital disease. The particular challenges of mandibular reconstruction are inherent in the complex anatomy and function of the bone given that the area is highly vascularized and in close proximity to muscle. Nanofibers composed of poly(DL-lactide-co-glycolide) (PLAGA) and polycaprolactone (PCL) were used to delivery FTY720, a targeted agonist of S1P receptors 1 and 3. In vitro culture of bone progenitor cells on drug-loaded constructs significantly enhanced SDF1α mediated chemotaxis of bone marrow mononuclear cells. In vivo results show that local delivery of FTY720 from composite nanofibers enhanced blood vessel ingrowth and increased recruitment of M2 alternatively activated macrophages, leading to significant osseous tissue ingrowth into critical sized defects after 12 weeks of treatment. These results demonstrate that local activation of S1P receptors is a regenerative cue resulting in recruitment of wound healing or anti-inflammatory macrophages and bone healing. Use of such small molecule therapy can provide an alternative to biological factors for the clinical treatment of critical size craniofacial defects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Expression of Angiotensin II Types 1 and 2 Receptors in Endometriotic Lesions.

    PubMed

    Nakao, Takehiro; Chishima, Fumihisa; Sugitani, Masahiko; Tsujimura, Ryusuke; Hayashi, Chuyu; Yamamoto, Tatsuo

    2017-01-01

    The aim of this study was to evaluate the gene and protein expression of angiotensin type (AT) 1, AT2 receptors in endometriotic lesions and its relation to prostaglandin (PG) synthases. Endometriosis samples were obtained from 32 patients with endometriotic cysts. Endometrial tissues were obtained during operations for benign gynecological conditions. The expression of the AT1 and AT2 receptor mRNA and that of PG-endoperoxide synthase 2 and microsomal PGE2 synthase-1 (mPGES-1) was examined by quantitative RT-PCR. Immunohistochemical staining was performed for these receptors. AT1 and AT2 receptor proteins were mostly located in endometrial glandular epithelium and some stromal cells. Immunoreactivity of the receptor proteins was observed in both the eutopic endometrium and endometriotic lesions. The AT1/AT2 ratio in endometriotic cysts (median 7.29, range 1.88-187.60) was significantly increased compared with that in the eutopic endometrium in the proliferative-phase in controls (median 1.01, range 0.37-2.09, p < 0.001). There was a relationship between the AT1 mRNA expression and that of mPGES-1 mRNA in the endometriotic cysts (r = 0.394089, p < 0.05). There was a significant relationship between the mRNA expression of the AT2 receptor and that of mPGES-1 in eutopic endometrium of non-endometriotic control (r = 0.610714, p < 0.05). Renin-angiotensin system may play an important role in the pathophysiology of endometriosis. © 2016 S. Karger AG, Basel.

  18. pS2 and PAI-1 in ovarian cancer: correlation to pathohistological parameters.

    PubMed

    Speiser, P; Mayerhofer, K; Kucera, E; Roch, G; Mittelböck, M; Gitsch, G; Zeillinger, R

    1997-01-01

    The estrogen regulated pS2 protein and the Plasminogen Activator Inhibitor type 1 (PAI-1) have been reported as important tumor parameters both in breast and in ovarian cancer. We analysed the cytosolic concentrations of pS2 in 111 ovarian carcinoma and the cytosolic concentrations of PAI-1 in 104 ovarian cancers by RIA and ELISA. Using a cut-off level of 2 ng/mg protein we found 27% pS2+ tumors. We observed 42% PAI-1+ tumors using a out-off level of 1 ng/mg. We found a statistically significant decline in the pS2 status corresponding with an increase in the PAI-1 status from well to poor differentiation grade. The highest levels of pS2 and the lowest levels of PAI-1 were measured in borderline carcinoma. Significantly higher concentrations of pS2 were measured in mucinous over serous carcinoma. We found no significant correlation between PAI-1 and histologic subtypes, or between pS2 or PAI-1 and estrogen receptor status, progesterone receptor status, age and tumor stage. To conclude, we found pS2 and PAI-1 concentrations to be correlated with the grade of differentiation. A correlation between protein status and histologic subtypes could be observed for pS2 but not for PAI-1.

  19. Discovery of a Selective S1P1 Receptor Agonist Efficacious at Low Oral Dose and Devoid of Effects on Heart Rate.

    PubMed

    Demont, Emmanuel H; Andrews, Benjamin I; Bit, Rino A; Campbell, Colin A; Cooke, Jason W B; Deeks, Nigel; Desai, Sapna; Dowell, Simon J; Gaskin, Pam; Gray, James R J; Haynes, Andrea; Holmes, Duncan S; Kumar, Umesh; Morse, Mary A; Osborne, Greg J; Panchal, Terry; Patel, Bela; Perboni, Alcide; Taylor, Simon; Watson, Robert; Witherington, Jason; Willis, Robert

    2011-06-09

    Gilenya (fingolimod, FTY720) was recently approved by the U.S. FDA for the treatment of patients with remitting relapsing multiple sclerosis (RRMS). It is a potent agonist of four of the five sphingosine 1-phosphate (S1P) G-protein-coupled receptors (S1P1 and S1P3-5). It has been postulated that fingolimod's efficacy is due to S1P1 agonism, while its cardiovascular side effects (transient bradycardia and hypertension) are due to S1P3 agonism. We have discovered a series of selective S1P1 agonists, which includes 3-[6-(5-{3-cyano-4-[(1-methylethyl)oxy]phenyl}-1,2,4-oxadiazol-3-yl)-5-methyl-3,4-dihydro-2(1H)-isoquinolinyl]propanoate, 20, a potent, S1P3-sparing, orally active S1P1 agonist. Compound 20 is as efficacious as fingolimod in a collagen-induced arthritis model and shows excellent pharmacokinetic properties preclinically. Importantly, the selectivity of 20 against S1P3 is responsible for an absence of cardiovascular signal in telemetered rats, even at high dose levels.

  20. Discovery of a Selective S1P1 Receptor Agonist Efficacious at Low Oral Dose and Devoid of Effects on Heart Rate

    PubMed Central

    2011-01-01

    Gilenya (fingolimod, FTY720) was recently approved by the U.S. FDA for the treatment of patients with remitting relapsing multiple sclerosis (RRMS). It is a potent agonist of four of the five sphingosine 1-phosphate (S1P) G-protein-coupled receptors (S1P1 and S1P3−5). It has been postulated that fingolimod's efficacy is due to S1P1 agonism, while its cardiovascular side effects (transient bradycardia and hypertension) are due to S1P3 agonism. We have discovered a series of selective S1P1 agonists, which includes 3-[6-(5-{3-cyano-4-[(1-methylethyl)oxy]phenyl}-1,2,4-oxadiazol-3-yl)-5-methyl-3,4-dihydro-2(1H)-isoquinolinyl]propanoate, 20, a potent, S1P3-sparing, orally active S1P1 agonist. Compound 20 is as efficacious as fingolimod in a collagen-induced arthritis model and shows excellent pharmacokinetic properties preclinically. Importantly, the selectivity of 20 against S1P3 is responsible for an absence of cardiovascular signal in telemetered rats, even at high dose levels. PMID:24900328

  1. Angiotensin II type 1 and type 2 receptor-induced cell signaling.

    PubMed

    Akazawa, Hiroshi; Yano, Masamichi; Yabumoto, Chizuru; Kudo-Sakamoto, Yoko; Komuro, Issei

    2013-01-01

    The octapeptide angiotensin II (Ang II) plays a homeostatic role in the regulation of blood pressure and water and electrolyte balance, and also contributes to the progression of cardiovascular remodeling. Ang II activates Ang II type 1 (AT1) receptor and type 2 (AT2) receptor, both of which belong to the seven-transmembrane, G protein-coupled receptor family. Most of the actions of Ang II such as promotion of cellular prolifaration, hypertrophy, and fibrosis are mediated by AT1 receptor. However, in some pathological situations, AT2 receptor shows an increase in tissue expression and functions to antagonize the actions induced by AT1 receptor. Recent studies have advanced our understanding of the molecular mechanisms underlying receptor activation and signal transduction of AT1 and AT2 receptor in the cardiovascular system.

  2. Substance P and central respiratory activity: a comparative in vitro study in NK1 receptor knockout and wild-type mice.

    PubMed

    Ptak, K; Hunt, S P; Monteau, R

    2000-07-01

    Neurokinin-1 receptors (NK1) are present within the respiratory medullary network and in the phrenic nucleus, which controls the diaphragm. We compared the efficacy of substance P (SP) at inducing changes in respiratory frequency or the amplitude of the respiratory motor output between NK1 knockout (NK1-/-) and wild-type mice, using the in vitro brainstem-spinal cord preparation. The in vitro respiratory frequency, as well as the variability of the rhythm and the amplitude of the motor output were similar in both lines. In wild-type mice, application of exogenous SP induced either an increase in respiratory frequency (superfusion of the medulla) or an increase of the inspiratory motor output, as defined by the integral of C4 cervical ventral root activity (superfusion of the spinal cord). These two effects were not apparent in NK1-/- mice. In conclusion, NK1 receptors mediate the respiratory responses to SP but the lack of NK1 receptors in newborn NK1-/- mice does not change the respiratory activity.

  3. Parainfluenza virus type 3 induced alterations in tachykinin NK1 receptors, substance P levels and respiratory functions in guinea pig airways.

    PubMed

    Kudlacz, E M; Shatzer, S A; Farrell, A M; Baugh, L E

    1994-08-03

    We have investigated the effects of parainfluenza virus type 3 (PI-3) on sensory neuropeptide levels, tachykinin receptors and their functions in guinea pig airways during the course of respiratory viral infection. PI-3 infected guinea pigs were hyperresponsive to methacholine and substance P aerosols as determined by earlier onset of dyspnea in these animals as compared with control on post-inoculation day (PID) 7 but not 19. In addition, plasma protein extravasation produced in response to the tachykinin was increased in infected airways during the first week post inoculation. Infected guinea pig trachea did not respond any differently to methacholine when smooth muscle contraction and [3H]inositol phosphate accumulation were measured although the magnitude of substance P effects using in vitro tests was significantly greater than control on post-inoculation day 7 but not 19. Trachea from PI-3 infected animals were characterized by reductions in substance P-like immunoreactivity, tachykinin NK1 receptor number and agonist affinity during the first post-inoculation week. Substance P levels or tachykinin NK1 receptor numbers or affinity were not altered in trachea of guinea pigs 4 days after treatment with lipopolysaccharide. These data suggest substance P release occurs during critical periods of respiratory viral infection which are temporally correlated with airway hyperresponsiveness. Despite apparent down-regulation of tachykinin NK1 receptors, substance P-mediated functions remained enhanced suggesting some alterations in post-receptor mechanisms.

  4. Temperature-dependent thermal and thermoelectric properties of n -type and p -type S c1 -xM gxN

    NASA Astrophysics Data System (ADS)

    Saha, Bivas; Perez-Taborda, Jaime Andres; Bahk, Je-Hyeong; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Sands, Timothy D.

    2018-02-01

    Scandium Nitride (ScN) is an emerging rocksalt semiconductor with octahedral coordination and an indirect bandgap. ScN has attracted significant attention in recent years for its potential thermoelectric applications, as a component material in epitaxial metal/semiconductor superlattices, and as a substrate for defect-free GaN growth. Sputter-deposited ScN thin films are highly degenerate n -type semiconductors and exhibit a large thermoelectric power factor of ˜3.5 ×10-3W /m -K2 at 600-800 K. Since practical thermoelectric devices require both n- and p-type materials with high thermoelectric figures-of-merit, development and demonstration of highly efficient p-type ScN is extremely important. Recently, the authors have demonstrated p-type S c1 -xM gxN thin film alloys with low M gxNy mole-fractions within the ScN matrix. In this article, we demonstrate temperature dependent thermal and thermoelectric transport properties, including large thermoelectric power factors in both n- and p-type S c1 -xM gxN thin film alloys at high temperatures (up to 850 K). Employing a combination of temperature-dependent Seebeck coefficient, electrical conductivity, and thermal conductivity measurements, as well as detailed Boltzmann transport-based modeling analyses of the transport properties, we demonstrate that p-type S c1 -xM gxN thin film alloys exhibit a maximum thermoelectric power factor of ˜0.8 ×10-3W /m -K2 at 850 K. The thermoelectric properties are tunable by adjusting the M gxNy mole-fraction inside the ScN matrix, thereby shifting the Fermi energy in the alloy films from inside the conduction band in case of undoped n -type ScN to inside the valence band in highly hole-doped p -type S c1 -xM gxN thin film alloys. The thermal conductivities of both the n- and p-type films were found to be undesirably large for thermoelectric applications. Thus, future work should address strategies to reduce the thermal conductivity of S c1 -xM gxN thin-film alloys, without affecting

  5. The mechanisms behind decreased internalization of angiotensin II type 1 receptor.

    PubMed

    Bian, Jingwei; Zhang, Suli; Yi, Ming; Yue, Mingming; Liu, Huirong

    2018-04-01

    The internalization of angiotensin II type 1 receptor (AT 1 R) plays an important role in maintaining cardiovascular homeostasis. Decreased receptor internalization is closely related to cardiovascular diseases induced by the abnormal activation of AT 1 R, such as hypertension. However, the mechanism behind reduced AT 1 R internalization is not fully understood. This review focuses on four parts of the receptor internalization process (the combination of agonists and receptors, receptor phosphorylation, endocytosis, and recycling) and summarizes the possible mechanisms by which AT 1 R internalization is reduced based on these four parts of the process. (1) The agonist has a large molecular weight or a stronger ability to hydrolyze phosphatidylinositol 4,5-bisphosphate (PtdIns (4,5) P 2 ), which can increase the consumption of PtdIns (4,5) P 2 . (2) AT 1 R phosphorylation is weakened because of an abnormal function of phosphorylated kinase or changes in phospho-barcoding and GPCR-β-arrestin complex conformation. (3) The abnormal formation of vesicles or AT 1 R heterodimers with fewer endocytic receptors results in less AT 1 R endocytosis. (4) The enhanced activity and upregulated expression of small GTP-binding protein 4 (Rab4) and 11 (Rab11), which regulate receptor recycling, and phosphatidylinositol 3-kinase increase AT 1 R recycling. In addition, lower expression of AT 1 R-associated protein (ATRAP) or higher expression of AT 1 R-associated protein 1 (ARAP1) can reduce receptor internalization. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Meconium increases type 1 angiotensin II receptor expression and alveolar cell death.

    PubMed

    Rosenfeld, Charles R; Zagariya, Alexander M; Liu, Xiao-Tie; Willis, Brigham C; Fluharty, Steven; Vidyasagar, Dharmapuri

    2008-03-01

    The pulmonary renin-angiotensin system (RAS) contributes to inflammation and epithelial apoptosis in meconium aspiration. It is unclear if both angiotensin II receptors (ATR) contribute, where they are expressed and if meconium modifies subtype expression. We examined ATR subtypes in 2 wk rabbit pup lungs before and after meconium exposure and with and without captopril pretreatment or type 1 receptor (AT1R) inhibition with losartan, determining expression and cellular localization with immunoblots, RT-PCR and immunohistochemistry, respectively. Responses of cultured rat alveolar type II pneumocytes were also examined. Type 2 ATR were undetected in newborn lung before and after meconium instillation. AT1R were expressed in pulmonary vascular and bronchial smooth muscle and alveolar and bronchial epithelium. Meconium increased total lung AT1R protein approximately 3-fold (p = 0.006), mRNA 29% (p = 0.006) and immunostaining in bronchial and alveolar epithelium and smooth muscle, which were unaffected by captopril and losartan. Meconium also increased AT1R expression >3-fold in cultured type II pneumocytes and caused concentration-dependent cell death inhibited by losartan. Meconium increases AT1R expression in newborn rabbit lung and cultured type II pneumocytes and induces AT1R-mediated cell death. The pulmonary RAS contributes to the pathogenesis of meconium aspiration through increased receptor expression.

  7. Late-stage optimization of a tercyclic class of S1P3-sparing, S1P1 receptor agonists.

    PubMed

    Horan, Joshua C; Kuzmich, Daniel; Liu, Pingrong; DiSalvo, Darren; Lord, John; Mao, Can; Hopkins, Tamara D; Yu, Hui; Harcken, Christian; Betageri, Raj; Hill-Drzewi, Melissa; Patenaude, Lori; Patel, Monica; Fletcher, Kimberly; Terenzzio, Donna; Linehan, Brian; Xia, Heather; Patel, Mita; Studwell, Debbie; Miller, Craig; Hickey, Eugene; Levin, Jeremy I; Smith, Dustin; Kemper, Raymond A; Modis, Louise K; Bannen, Lynne C; Chan, Diva S; Mac, Morrison B; Ng, Stephanie; Wang, Yong; Xu, Wei; Lemieux, René M

    2016-01-15

    Poor solubility and cationic amphiphilic drug-likeness were liabilities identified for a lead series of S1P3-sparing, S1P1 agonists originally developed from a high-throughput screening campaign. This work describes the subsequent optimization of these leads by balancing potency, selectivity, solubility and overall molecular charge. Focused SAR studies revealed favorable structural modifications that, when combined, produced compounds with overall balanced profiles. The low brain exposure observed in rat suggests that these compounds would be best suited for the potential treatment of peripheral autoimmune disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Determination of the exact molecular requirements for type 1 angiotensin receptor epidermal growth factor receptor transactivation and cardiomyocyte hypertrophy.

    PubMed

    Smith, Nicola J; Chan, Hsiu-Wen; Qian, Hongwei; Bourne, Allison M; Hannan, Katherine M; Warner, Fiona J; Ritchie, Rebecca H; Pearson, Richard B; Hannan, Ross D; Thomas, Walter G

    2011-05-01

    Major interest surrounds how angiotensin II triggers cardiac hypertrophy via epidermal growth factor receptor transactivation. G protein-mediated transduction, angiotensin type 1 receptor phosphorylation at tyrosine 319, and β-arrestin-dependent scaffolding have been suggested, yet the mechanism remains controversial. We examined these pathways in the most reductionist model of cardiomyocyte growth, neonatal ventricular cardiomyocytes. Analysis with [(32)P]-labeled cardiomyocytes, wild-type and [Y319A] angiotensin type 1 receptor immunoprecipitation and phosphorimaging, phosphopeptide analysis, and antiphosphotyrosine blotting provided no evidence for tyrosine phosphorylation at Y319 or indeed of the receptor, and mutation of Y319 (to A/F) did not prevent either epidermal growth factor receptor transactivation in COS-7 cells or cardiomyocyte hypertrophy. Instead, we demonstrate that transactivation and cardiomyocyte hypertrophy are completely abrogated by loss of G-protein coupling, whereas a constitutively active angiotensin type 1 receptor mutant was sufficient to trigger transactivation and growth in the absence of ligand. These results were supported by the failure of the β-arrestin-biased ligand SII angiotensin II to transactivate epidermal growth factor receptor or promote hypertrophy, whereas a β-arrestin-uncoupled receptor retained these properties. We also found angiotensin II-mediated cardiomyocyte hypertrophy to be attenuated by a disintegrin and metalloprotease inhibition. Thus, G-protein coupling, and not Y319 phosphorylation or β-arrestin scaffolding, is required for epidermal growth factor receptor transactivation and cardiomyocyte hypertrophy via the angiotensin type 1 receptor.

  9. PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana

    PubMed Central

    Balfanz, Sabine

    2017-01-01

    The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP]i) whereas type 2 tyramine receptors can mediate Ca2+ signals or both Ca2+ signals and effects on [cAMP]i. Here; we report that the American cockroach (Periplaneta americana) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP]i. Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine. PMID:29084141

  10. PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana.

    PubMed

    Blenau, Wolfgang; Balfanz, Sabine; Baumann, Arnd

    2017-10-30

    The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP] i ) whereas type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . Here; we report that the American cockroach ( Periplaneta americana ) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP] i . Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana ; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine.

  11. Spatial association of prolyl oligopeptidase, inositol 1,4,5-triphosphate type 1 receptor, substance P and its neurokinin-1 receptor in the rat brain: an immunohistochemical colocalization study.

    PubMed

    Myöhänen, T T; Venäläinen, J I; Garcia-Horsman, J A; Männistö, P T

    2008-06-02

    Prolyl oligopeptidase (POP) is a serine endopeptidase which hydrolyzes proline-containing peptides shorter than 30 amino acids. It has been suggested that POP is associated with cognitive functions, possibly via the cleavage of neuropeptides such as substance P (SP). Recently, several studies have also linked POP to the inositol 1,4,5-triphosphate (IP(3)) signaling. However, the neuroanatomical interactions between these substances are not known. We used double-labeled immunofluorescence to determine the POP colocalization with SP, SP receptor (neurokinin-1 receptor, NK-1R) and IP(3) type 1 receptor (IP(3)R1) in the rat brain. Furthermore, since striatal and cortical GABAergic neurons are involved in SP neurotransmission, we studied the coexpression of POP, SP and GABA by triple-labeled immunofluorescence. POP was moderately present in IP(3)R1-containing cells in cortex; the colocalization was particularly high in the thalamus, hippocampal CA1 field and cerebellar Purkinje cells. Colocalization of POP with SP and NK1-receptor was infrequent throughout the brain, though some POP and SP coexpression was observed in cerebellar Purkinje cells. We also found that POP partially colocalized with SP-containing GABAergic neurons in striatum and cortex. Our findings support the view that POP is at least spatially associated with the IP(3)-signaling in the thalamus, hippocampus and cerebellar Purkinje cells. This might point to a role for POP in the regulation of long-term potentiation and/or depression. Moreover, the low degree of colocalization of POP, SP and its NK-1R suggests that a transport system is needed either for POP or SP to make hydrolysis possible and that POP may act both intra- and extracellularly.

  12. Functionalized Congeners of P2Y1 Receptor Antagonists:

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Castro, Sonia; Maruoka, Hiroshi; Hong, Kunlun

    2010-01-01

    The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of anmore » intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM

  13. Arrestin Scaffolds NHERF1 to the P2Y12 Receptor to Regulate Receptor Internalization*

    PubMed Central

    Nisar, Shaista P.; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J.; Kelly, Eamonn; Mundell, Stuart J.

    2012-01-01

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y12 receptor (P2Y12R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y12R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y12R internalization. In vitro and prior to agonist stimulation P2Y12R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization. PMID:22610101

  14. Arrestin scaffolds NHERF1 to the P2Y12 receptor to regulate receptor internalization.

    PubMed

    Nisar, Shaista P; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J; Kelly, Eamonn; Mundell, Stuart J

    2012-07-13

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization.

  15. Activation of Neurotensin Receptor Type 1 Attenuates Locomotor Activity

    PubMed Central

    Vadnie, Chelsea A.; Hinton, David J.; Choi, Sun; Choi, YuBin; Ruby, Christina L.; Oliveros, Alfredo; Prieto, Miguel L.; Park, Jun Hyun; Choi, Doo-Sup

    2014-01-01

    Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders. PMID:24929110

  16. Phenotypic regulation of the sphingosine 1-phosphate receptor miles apart by G protein-coupled receptor kinase 2.

    PubMed

    Burczyk, Martina; Burkhalter, Martin D; Blätte, Tamara; Matysik, Sabrina; Caron, Marc G; Barak, Lawrence S; Philipp, Melanie

    2015-01-27

    The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1 phosphate receptor 2 (S1p2) produces a mutation, miles apart m(93) (mil(m93)), that not only disrupts signaling but also impairs heart field migration. We hypothesized that constitutive S1p2 desensitization is the underlying cause of this strong zebrafish developmental defect. We observed in cell assays that the wild-type S1p2 receptor is at the cell surface whereas in distinct contrast the S1p2 R150H receptor is found in intracellular vesicles, blocking G protein but not arrestin signaling activity. Surface S1p2 R150H expression could be restored by inhibition of G protein-coupled receptor kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued cardia bifida. The ability of reduced GRK2 activity to reverse a developmental phenotype associated with constitutive desensitization supports efforts to genetically or pharmacologically target this kinase in diseases involving biased GPCR signaling.

  17. Phenotypic Regulation of the Sphingosine 1-Phosphate Receptor Miles Apart by G Protein-Coupled Receptor Kinase 2

    PubMed Central

    2016-01-01

    The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1 phosphate receptor 2 (S1p2) produces a mutation, miles apart m93 (milm93), that not only disrupts signaling but also impairs heart field migration. We hypothesized that constitutive S1p2 desensitization is the underlying cause of this strong zebrafish developmental defect. We observed in cell assays that the wild-type S1p2 receptor is at the cell surface whereas in distinct contrast the S1p2 R150H receptor is found in intracellular vesicles, blocking G protein but not arrestin signaling activity. Surface S1p2 R150H expression could be restored by inhibition of G protein-coupled receptor kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued cardia bifida. The ability of reduced GRK2 activity to reverse a developmental phenotype associated with constitutive desensitization supports efforts to genetically or pharmacologically target this kinase in diseases involving biased GPCR signaling. PMID:25555130

  18. Reduced soluble receptor for advanced glycation end-products (sRAGE) scavenger capacity precedes pre-eclampsia in Type 1 diabetes

    PubMed Central

    Yu, Y; Hanssen, KF; Kalyanaraman, V; Chirindel, A; Jenkins, AJ; Nankervis, AJ; Torjesen, PA; Scholz, H; Henriksen, T; Lorentzen, B; Garg, SK; Menard, MK; Hammad, SM; Scardo, JA; Stanley, JR; Wu, M; Basu, A; Aston, CE; Lyons, TJ

    2014-01-01

    Objective Increased advanced glycation end-products (AGEs) and their soluble receptors (sRAGE) have been implicated in the pathogenesis of pre-eclampsia (PE). However, this association has not been elucidated in pregnancies complicated by diabetes. We aimed to investigate the serum levels of these factors in pregnant women with Type 1 diabetes mellitus (T1DM), a condition associated with a four-fold increase in PE. Design Prospective study in women with T1DM at 12.2 ± 1.9, 21.6 ± 1.5 and 31.5 ± 1.7 weeks of gestation [mean ± standard deviation (SD); no overlap] before PE onset. Setting Antenatal clinics. Population Pregnant women with T1DM (n = 118; 26 developed PE) and healthy nondiabetic pregnant controls (n = 21). Methods Maternal serum levels of sRAGE (total circulating pool), Nε-(carboxymethyl)lysine (CML), hydroimidazolone (methylglyoxal-modified proteins) and total AGEs were measured by immunoassays. Main outcome measures Serum sRAGE and AGEs in pregnant women with T1DM who subsequently developed PE (DM PE+) versus those who remained normotensive (DM PE–). Results In DM PE+ versus DM PE–, sRAGE was significantly lower in the first and second trimesters, prior to the clinical manifestation of PE (P < 0.05). Further, reflecting the net sRAGE scavenger capacity, sRAGE : hydroimidazolone was significantly lower in the second trimester (P < 0.05) and sRAGE : AGE and sRAGE : CML tended to be lower in the first trimester (P < 0.1) in women with T1DM who subsequently developed PE versus those who did not. These conclusions persisted after adjusting for prandial status, glycated haemoglobin (HbA1c), duration of diabetes, parity and mean arterial pressure as covariates. Conclusions In the early stages of pregnancy, lower circulating sRAGE levels, and the ratio of sRAGE to AGEs, may be associated with the subsequent development of PE in women with T1DM. PMID:22900949

  19. S1P1 inhibits sprouting angiogenesis during vascular development.

    PubMed

    Ben Shoham, Adi; Malkinson, Guy; Krief, Sharon; Shwartz, Yulia; Ely, Yona; Ferrara, Napoleone; Yaniv, Karina; Zelzer, Elazar

    2012-10-01

    Coordination between the vascular system and forming organs is essential for proper embryonic development. The vasculature expands by sprouting angiogenesis, during which tip cells form filopodia that incorporate into capillary loops. Although several molecules, such as vascular endothelial growth factor A (Vegfa), are known to induce sprouting, the mechanism that terminates this process to ensure neovessel stability is still unknown. Sphingosine-1-phosphate receptor 1 (S1P(1)) has been shown to mediate interaction between endothelial and mural cells during vascular maturation. In vitro studies have identified S1P(1) as a pro-angiogenic factor. Here, we show that S1P(1) acts as an endothelial cell (EC)-autonomous negative regulator of sprouting angiogenesis during vascular development. Severe aberrations in vessel size and excessive sprouting found in limbs of S1P(1)-null mouse embryos before vessel maturation imply a previously unknown, mural cell-independent role for S1P(1) as an anti-angiogenic factor. A similar phenotype observed when S1P(1) expression was blocked specifically in ECs indicates that the effect of S1P(1) on sprouting is EC-autonomous. Comparable vascular abnormalities in S1p(1) knockdown zebrafish embryos suggest cross-species evolutionary conservation of this mechanism. Finally, genetic interaction between S1P(1) and Vegfa suggests that these factors interplay to regulate vascular development, as Vegfa promotes sprouting whereas S1P(1) inhibits it to prevent excessive sprouting and fusion of neovessels. More broadly, because S1P, the ligand of S1P(1), is blood-borne, our findings suggest a new mode of regulation of angiogenesis, whereby blood flow closes a negative feedback loop that inhibits sprouting angiogenesis once the vascular bed is established and functional.

  20. Activation of neurotensin receptor type 1 attenuates locomotor activity.

    PubMed

    Vadnie, Chelsea A; Hinton, David J; Choi, Sun; Choi, YuBin; Ruby, Christina L; Oliveros, Alfredo; Prieto, Miguel L; Park, Jun Hyun; Choi, Doo-Sup

    2014-10-01

    Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF-81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Platelet and Erythrocyte Sources of S1P Are Redundant for Vascular Development and Homeostasis, but Both Rendered Essential After Plasma S1P Depletion in Anaphylactic Shock.

    PubMed

    Gazit, Salomé L; Mariko, Boubacar; Thérond, Patrice; Decouture, Benoit; Xiong, Yuquan; Couty, Ludovic; Bonnin, Philippe; Baudrie, Véronique; Le Gall, Sylvain M; Dizier, Blandine; Zoghdani, Nesrine; Ransinan, Jessica; Hamilton, Justin R; Gaussem, Pascale; Tharaux, Pierre-Louis; Chun, Jerold; Coughlin, Shaun R; Bachelot-Loza, Christilla; Hla, Timothy; Ho-Tin-Noé, Benoit; Camerer, Eric

    2016-09-30

    Sphingosine-1-phosphate (S1P) signaling is essential for vascular development and postnatal vascular homeostasis. The relative importance of S1P sources sustaining these processes remains unclear. To address the level of redundancy in bioactive S1P provision to the developing and mature vasculature. S1P production was selectively impaired in mouse platelets, erythrocytes, endothelium, or smooth muscle cells by targeted deletion of genes encoding sphingosine kinases -1 and -2. S1P deficiency impaired aggregation and spreading of washed platelets and profoundly reduced their capacity to promote endothelial barrier function ex vivo. However, and in contrast to recent reports, neither platelets nor any other source of S1P was essential for vascular development, vascular integrity, or hemostasis/thrombosis. Yet rapid and profound depletion of plasma S1P during systemic anaphylaxis rendered both platelet- and erythrocyte-derived S1P essential for survival, with a contribution from blood endothelium observed only in the absence of circulating sources. Recovery was sensitive to aspirin in mice with but not without platelet S1P, suggesting that platelet activation and stimulus-response coupling is needed. S1P deficiency aggravated vasoplegia in this model, arguing a vital role for S1P in maintaining vascular resistance during recovery from circulatory shock. Accordingly, the S1P2 receptor mediated most of the survival benefit of S1P, whereas the endothelial S1P1 receptor was dispensable for survival despite its importance for maintaining vascular integrity. Although source redundancy normally secures essential S1P signaling in developing and mature blood vessels, profound depletion of plasma S1P renders both erythrocyte and platelet S1P pools necessary for recovery and high basal plasma S1P levels protective during anaphylactic shock. © 2016 American Heart Association, Inc.

  2. Regulation of P2Y1 receptor traffic by sorting Nexin 1 is retromer independent.

    PubMed

    Nisar, Shaista; Kelly, Eamonn; Cullen, Pete J; Mundell, Stuart J

    2010-04-01

    The activity and traffic of G-protein coupled receptors (GPCRs) is tightly controlled. Recent work from our laboratory has shown that P2Y(1) and P2Y(12) responsiveness is rapidly and reversibly modulated in human platelets and that the underlying mechanism requires receptor trafficking as an essential part of this process. However, little is known about the molecular mechanisms underlying P2Y receptor traffic. Sorting nexin 1 (SNX1) has been shown to regulate the endosomal sorting of cell surface receptors either to lysosomes where they are downregulated or back to the cell surface. These functions may in part be due to interactions of SNX1 with the mammalian retromer complex. In this study, we investigated the role of SNX1 in P2Y receptor trafficking. We show that P2Y(1) receptors recycle via a slow recycling pathway that is regulated by SNX1, whereas P2Y(12) receptors return to the cell surface via a rapid route that is SNX1 independent. SNX1 inhibition caused a dramatic increase in the rate of P2Y(1) receptor recycling, whereas inhibition of Vps26 and Vps35 known to be present in retromer had no effect, indicating that SNX1 regulation of P2Y(1) receptor recycling is retromer independent. In addition, inhibition of SNX4, 6 and 17 proteins did not affect P2Y(1) receptor recycling. SNX1 has also been implicated in GPCR degradation; however, we provide evidence that P2Y receptor degradation is SNX1 independent. These data describe a novel function of SNX1 in the regulation of P2Y(1) receptor recycling and suggest that SNX1 plays multiple roles in endocytic trafficking of GPCRs.

  3. Dehydroepiandrosterone Potentiates Native Ionotropic ATP Receptors Containing the P2X2 Subunit in Rat Sensory Neurones

    PubMed Central

    De Roo, Mathias; Rodeau, Jean-Luc; Schlichter, Rémy

    2003-01-01

    We have studied the modulatory effect of dehydroepiandrosterone (DHEA), the most abundant neurosteroid produced by glial cells and neurones, on membrane currents induced by the activation of ionotropic ATP (P2X) receptors in neonatal rat dorsal root ganglion neurones. ATP (1 μm) induced three types of currents/responses termed F (fast and transient), S (slowly desensitizing) and M (mixed, sum of F- and S-type responses). DHEA (10 nm to 100 μm) concentration-dependently increased the amplitude of plateau-like currents of S- and M-type responses evoked by submaximal (1 μm) but not saturating (100 μm or 1 mM) concentrations of ATP. αβ-Methylene ATP (αβme-ATP, 5 μm) also evoked F-, S- and M-type responses, the plateau phases of which were potentiated by lowering external pH (6.3) and by ivermectin (IVM, 3 μm), indicating the presence heteromeric P2X2-containing receptors and possibly of functional native P2X4/6 receptors. There was a strict correlation between the potentiating effects of low pH and DHEA on αβme-ATP responses but not between that of IVM and DHEA, suggesting that DHEA selectively modulated P2X2-containing receptors. DHEA also potentiated putative homomeric P2X2 receptor responses recorded in the continuous presence of 1 μm 2′-(or 3′)-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate (TNP-ATP). Our results constitute the first demonstration of a fast potentiation of P2X receptors by a neurosteroid and suggest that DHEA could be an endogenous modulator of P2X2-containing receptors thereby contributing to the facilitation of the detection and/or the transmission of nociceptive messages, particularly under conditions of inflammatory pain where the P2X receptor signalling pathway appears to be upregulated. PMID:12844512

  4. [Upregulation of P2X3 receptors in dorsal root ganglion of TRPV1 knockout female mice].

    PubMed

    Fang, Xiao; Shi, Xiao-Han; Huang, Li-Bin; Rong, Wei-Fang; Ma, Bei

    2014-08-25

    The study was aimed to investigate the changes in mechanical pain threshold in the condition of chronic inflammatory pain after transient receptor potential vanilloid 1 (TRPV1) gene was knockout. Hind-paw intraplantar injection of complete freund's adjuvant (CFA, 20 μL) produced peripheral inflammation in wild-type and TRPV1 knockout female mice. The mechanical pain thresholds were measured during the 8 days after injection and pre-injection by using Von-Frey hair. Nine days after injection, mice were killed and the differences of expression of c-Fos and P2X3 receptor in the dorsal root ganglia (DRG) and spinal cord dorsal horn were examined by Western blotting between the two groups. Compared with that in wild-type mice, the mechanical pain threshold was increased significantly in TRPV1 knockout mice (P < 0.05); 3 days after CFA injection, the baseline mechanical pain threshold in the TRPV1 knockout mice group was significantly higher than that in the wild-type mice group (P < 0.05); The result of Western blotting showed that the expression of c-Fos protein both in DRG and spinal cord dorsal horn of TRPV1 knockout mice group was decreased significantly compared with that in wild-type mice group (P < 0.01, P < 0.05), while the expression of P2X3 receptor in DRG of TRPV1 knockout mice group was increased significantly compared with that in wild-type mice group (P < 0.05). Our findings indicate that TRPV1 may influence the peripheral mechanical pain threshold by mediating the expression of c-Fos protein both in DRG and spinal cord dorsal horn and changing the expression of P2X3 receptor in DRG.

  5. Cannabinoid CB1 receptor facilitation of substance P release in the rat spinal cord, measured as neurokinin 1 receptor internalization

    PubMed Central

    Zhang, Guohua; Chen, Wenling; Lao, Lijun; Marvizón, Juan Carlos G.

    2010-01-01

    The contribution of CB1 receptors in the spinal cord to cannabinoid analgesia is still unclear. The objective of this study was to investigate the effect of CB1 receptors on substance P release from primary afferent terminals in the spinal cord. Substance P release was measured as NK1 receptor internalization in lamina I neurons. It was induced in spinal cord slices by dorsal root stimulation and in live rats by a noxious stimulus. In spinal cord slices, the CB1 receptor antagonists AM251, AM281 and rimonabant partially but potently inhibited NK1 receptor internalization induced by electrical stimulation of the dorsal root. This was due to an inhibition of substance P release and not of NK1 receptor internalization itself, because AM251 and AM281 did not inhibit NK1 receptor internalization induced by exogenous substance P. The CB1 receptor agonist ACEA increased NK1 receptor internalization evoked by dorsal root stimulation. The effects of AM251 and ACEA cancelled each other. In vivo, AM251 injected intrathecally decreased NK1 receptor internalization in spinal segments L5 and L6 induced by noxious hind paw clamp. Intrathecal AM251 also produced analgesia to radiant heat stimulation of the paw. The inhibition by AM251 of NK1 receptor internalization was reversed by antagonists of μ-opioid and GABAB receptors. This indicates that CB1 receptors facilitate substance P release by inhibiting the release of GABA and opioids next to primary afferent terminals, producing disinhibition. This results in a pronociceptive effect of CB1 receptors in the spinal cord. PMID:20074214

  6. BmpR1A is a major type 1 BMP receptor for BMP-Smad signaling during skull development.

    PubMed

    Pan, Haichun; Zhang, Honghao; Abraham, Ponnu; Komatsu, Yoshihiro; Lyons, Karen; Kaartinen, Vesa; Mishina, Yuji

    2017-09-01

    Craniosynostosis is caused by premature fusion of one or more sutures in an infant skull, resulting in abnormal facial features. The molecular and cellular mechanisms by which genetic mutations cause craniosynostosis are incompletely characterized, and many of the causative genes for diverse types of syndromic craniosynostosis have not yet been identified. We previously demonstrated that augmentation of BMP signaling mediated by a constitutively active BMP type IA receptor (ca-BmpR1A) in neural crest cells (ca1A hereafter) causes craniosynostosis and superimposition of heterozygous null mutation of Bmpr1a rescues premature suture fusion (ca1A;1aH hereafter). In this study, we superimposed heterozygous null mutations of the other two BMP type I receptors, Bmpr1b and Acvr1 (ca1A;1bH and ca1A;AcH respectively hereafter) to further dissect involvement of BMP-Smad signaling. Unlike caA1;1aH, ca1A;1bH and ca1A;AcH did not restore the craniosynostosis phenotypes. In our in vivo study, Smad-dependent BMP signaling was decreased to normal levels in mut;1aH mice. However, BMP receptor-regulated Smads (R-Smads; pSmad1/5/9 hereafter) levels were comparable between ca1A, ca1A;1bH and ca1A;AcH mice, and elevated compared to control mice. Bmpr1a, Bmpr1b and Acvr1 null cells were used to examine potential mechanisms underlying the differences in ability of heterozygosity for Bmpr1a vs. Bmpr1b or Acvr1 to rescue the mut phenotype. pSmad1/5/9 level was undetectable in Bmpr1a homozygous null cells while pSmad1/5/9 levels did not decrease in Bmpr1b or Acvr1 homozygous null cells. Taken together, our study indicates that different levels of expression and subsequent activation of Smad signaling differentially contribute each BMP type I receptor to BMP-Smad signaling and craniofacial development. These results also suggest differential involvement of each type 1 receptor in pathogenesis of syndromic craniosynostoses. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Serotonin type-1D receptor stimulation of A-type K(+) channel decreases membrane excitability through the protein kinase A- and B-Raf-dependent p38 MAPK pathways in mouse trigeminal ganglion neurons.

    PubMed

    Zhao, Xianyang; Zhang, Yuan; Qin, Wenjuan; Cao, Junping; Zhang, Yi; Ni, Jianqiang; Sun, Yangang; Jiang, Xinghong; Tao, Jin

    2016-08-01

    Although recent studies have implicated serotonin 5-HT1B/D receptors in the nociceptive sensitivity of primary afferent neurons, the underlying molecular and cellular mechanisms remain unclear. In this study, we identified a novel functional role of the 5-HT1D receptor subtype in regulating A-type potassium (K(+)) currents (IA) as well as membrane excitability in small trigeminal ganglion (TG) neurons. We found that the selective activation of 5-HT1D, rather than 5-HT1B, receptors reversibly increased IA, while the sustained delayed rectifier K(+) current was unaffected. The 5-HT1D-mediated IA increase was associated with a depolarizing shift in the voltage dependence of inactivation. Blocking G-protein signaling with pertussis toxin or by intracellular application of a selective antibody raised against Gαo or Gβ abolished the 5-HT1D effect on IA. Inhibition of protein kinase A (PKA), but not of phosphatidylinositol 3-kinase or protein kinase C, abolished the 5-HT1D-mediated IA increase. Analysis of phospho-p38 (p-p38) revealed that activation of 5-HT1D, but not 5-HT1B, receptors significantly activated p38, while p-ERK and p-JNK were unaffected. The p38 MAPK inhibitor SB203580, but not its inactive analogue SB202474, and inhibition of B-Raf blocked the 5-HT1D-mediated IA response. Functionally, we observed a significantly decreased action potential firing rate induced by the 5-HT1D receptors; pretreatment with 4-aminopyridine abolished this effect. Taken together, these results suggest that the activation of 5-HT1D receptors selectively enhanced IA via the Gβγ of the Go-protein, PKA, and the sequential B-Raf-dependent p38 MAPK signaling cascade. This 5-HT1D receptor effect may contribute to neuronal hypoexcitability in small TG neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Subtype specific internalization of P2Y1 and P2Y2 receptors induced by novel adenosine 5′-O-(1-boranotriphosphate) derivatives

    PubMed Central

    Tulapurkar, M E; Laubinger, W; Nahum, V; Fischer, B; Reiser, G

    2004-01-01

    P2Y-nucleotide receptors represent important targets for drug development. The lack of stable and receptor specific agonists, however, has prevented successful therapeutic applications. A novel series of P-boronated ATP derivatives (ATP-α-B) were synthesized by substitution of a nonbridging O at Pα with a BH3 group. This introduces a chiral center, thus resulting in diastereoisomers. In addition, at C2 of the adenine ring a further substitution was made (Cl- or methylthio-). The pairs of diastereoisomers were denoted here as A and B isomers. Here, we tested the receptor subtype specificity of these analogs on HEK 293 cells stably expressing rat P2Y1 and rat P2Y2 receptors, respectively, both attached to the fluorescent marker protein GFP (rP2Y1-GFP, rP2Y2-GFP). We investigated agonist-induced receptor endocytosis, [Ca2+]i rise and arachidonic acid (AA) release. Agonist-induced endocytosis of rP2Y1-GFP was more pronounced for the A isomers than the corresponding B counterparts for all ATP-α-B analogs. Both 2-MeS-substituted diastereoisomers induced a greater degree of agonist-induced receptor endocytosis as compared to the 2-Cl-substituted derivatives. Endocytosis results are in accordance with the potency to induce Ca2+ release by these compounds in HEK 293 cells stably transfected with rP2Y1. In case of rP2Y2-GFP, the borano-nucleotides were very weak agonists in comparison to UTP and ATP in terms of Ca2+ release, AA release and in inducing receptor endocytosis. The different ATP-α-B derivatives and also the diastereoisomers were equally ineffective. Thus, the new agonists may be considered as potent and highly specific agonist drug candidates for P2Y1 receptors. The difference in activity of the ATP analogs at P2Y receptors could be used as a tool to investigate structural differences between P2Y receptor subtypes. PMID:15197109

  9. Pharmacological inhibition of myostatin/TGF-β receptor/pSmad3 signaling rescues muscle regenerative responses in mouse model of type 1 diabetes.

    PubMed

    Jeong, Jaemin; Conboy, Michael J; Conboy, Irina M

    2013-08-01

    To study the influence of acute experimental diabetes on the regenerative potential of muscle stem (satellite) cells in mice. Male C57BL/6 young mice were injected with a single dose of streptozotocin (STZ, 180 mg/kg, ip) to induce diabetes. The diabetic mice were treated with insulin (0.75 U/kg, ip), follistatin (12 μg/kg, im) or Alk5 inhibitor (5 μmol/L per kg, sc) once a day. On the first day when high glucose levels were found, cardiotoxin (CTX) was focally injected into tibialis anterior and gastronemius muscles of the mice. The muscles were harvested 3 d and 5 d after CTX injection, and myofibers and satellite cells were isolated. Quantitative ex-vivo and in-vivo assays of myogenic potential were used to evaluate the muscle regenerative responses. The satellite cells from the diabetic mice 3 d after CTX injection fail to activate, and the repair of muscle deteriorates, resembling that observed in old control mice. Furthermore, the satellite cells have excessive levels of myostatin, TGF-β receptor 1, pSmad3 and the cell cycle inhibitor p15, while the level of TGF-β1 remain unchanged. Treatment of the diabetic mice with insulin rescued muscle regenerative responses, and restored the expression levels of myostatin, TGF-β receptor 1, pSmad3, and p15 to those similar of healthy controls. Treatment of the diabetic mice with the myostatin antagonist follistatin, or with the Alk5 inhibitor of TGF-β receptor 1 (which did not diminish the blood glucose levels) rescued muscle regenerative responses and attenuated the myostatin/TGFβ receptor/pSmad3 signaling. The muscle regenerative responses are incapacitated and repair of the tissue fails within hours after the initiation of hyperglycemia in a mouse model of type 1 diabetes, but stem cell function is rescued by insulin, as well as follistatin or an Alk5 inhibitor that blocks TGF-β receptor signaling.

  10. Distortion of maternal-fetal angiotensin II type 1 receptor allele transmission in pre-eclampsia.

    PubMed Central

    Morgan, L; Crawshaw, S; Baker, P N; Brookfield, J F; Broughton Pipkin, F; Kalsheker, N

    1998-01-01

    OBJECTIVE: To investigate the fetal angiotensin II type 1 receptor genotype in pre-eclampsia. DESIGN: Case-control study. POPULATION: Forty-one maternal-fetal pairs from pre-eclamptic pregnancies and 80 maternal-fetal pairs from normotensive pregnancies. METHODS: Maternal and fetal DNA was genotyped at three diallelic polymorphisms, at nucleotides 573, 1062, and 1166, in the coding exon of the angiotensin II type 1 receptor gene, and at a dinucleotide repeat polymorphism in its 3' flanking region. RESULTS: Allele and genotype frequencies at the four polymorphic regions investigated did not differ between pre-eclamptic and normotensive groups, in either fetal or maternal samples. Mothers heterozygous for the dinucleotide repeat allele designated A4 transmitted this allele to the fetus in 15 of 18 informative pre-eclamptic pregnancies and in eight of 26 normotensive pregnancies. This was greater than the expected probability in pre-eclamptic pregnancies (p=0.04) and less than expected in normotensive pregnancies (p<0.005). The 573T variant, which is in partial linkage disequilibrium with the A4 allele, showed a similar distortion of maternal-fetal transmission. CONCLUSION: Angiotensin II type 1 receptor gene expression in the fetus may contribute to the aetiology of pre-eclampsia. It is unclear whether susceptibility is conferred by the fetal genotype acting alone, or by allele sharing by mother and fetus. Possible mechanisms for the effect of the angiotensin II type 1 receptor gene are suggested by the association of the 573T variant with low levels of surface receptor expression on platelets. If receptor expression is similarly genetically determined in the placenta, responsiveness to angiotensin II may be affected, with the potential to influence placentation or placental prostaglandin secretion. PMID:9719367

  11. Cex1p facilitates Rna1p-mediated dissociation of the Los1p-tRNA-Gsp1p-GTP export complex.

    PubMed

    McGuire, Andrew T; Mangroo, Dev

    2012-02-01

    Nuclear tRNA export plays an essential role in key cellular processes such as regulation of protein synthesis, cell cycle progression, response to nutrient availability and DNA damage and development. Like other nuclear export processes, assembly of the nuclear tRNA export complex in the nucleus is dependent on Ran-GTP/Gsp1p-GTP, and dissociation of the export receptor-tRNA-Ran-GTP/Gsp1p-GTP complex in the cytoplasm requires RanBP1/Yrb1p and RanGAP/Rna1p to activate the GTPase activity of Ran-GTP/Gsp1p-GTP. The Saccharomyces cerevisiae Cex1p and Human Scyl1 have also been proposed to participate in unloading of the tRNA export receptors at the cytoplasmic face of the nuclear pore complex (NPC). Here, we provide evidence suggesting that Cex1p is required for activation of the GTPase activity of Gsp1p and dissociation of the receptor-tRNA-Gsp1p export complex in S. cerevisiae. The data suggest that Cex1p recruits Rna1p from the cytoplasm to the NPC and facilitates Rna1p activation of the GTPase activity of Gsp1p by enabling Rna1p to gain access to Gsp1p-GTP bound to the export receptor tRNA complex. It is possible that this tRNA unloading mechanism is conserved in evolutionarily diverse organisms and that other Gsp1p-GTP-dependent export processes use a pathway-specific component to recruit Rna1p to the NPC. © 2011 John Wiley & Sons A/S.

  12. Identification of Human P2X1 Receptor-interacting Proteins Reveals a Role of the Cytoskeleton in Receptor Regulation*

    PubMed Central

    Lalo, Ulyana; Roberts, Jonathan A.; Evans, Richard J.

    2011-01-01

    P2X1 receptors are ATP-gated ion channels expressed by smooth muscle and blood cells. Carboxyl-terminally His-FLAG-tagged human P2X1 receptors were stably expressed in HEK293 cells and co-purified with cytoskeletal proteins including actin. Disruption of the actin cytoskeleton with cytochalasin D inhibited P2X1 receptor currents with no effect on the time course of the response or surface expression of the receptor. Stabilization of the cytoskeleton with jasplakinolide had no effect on P2X1 receptor currents but decreased receptor mobility. P2X2 receptor currents were unaffected by cytochalasin, and P2X1/2 receptor chimeras were used to identify the molecular basis of actin sensitivity. These studies showed that the intracellular amino terminus accounts for the inhibitory effects of cytoskeletal disruption similar to that shown for lipid raft/cholesterol sensitivity. Stabilization of the cytoskeleton with jasplakinolide abolished the inhibitory effects of cholesterol depletion on P2X1 receptor currents, suggesting that lipid rafts may regulate the receptor through stabilization of the cytoskeleton. These studies show that the cytoskeleton plays an important role in P2X1 receptor regulation. PMID:21757694

  13. Localization of angiotensin-II type 1(AT1) receptors on buffalo spermatozoa: AT1 receptor activation during capacitation triggers rise in cyclic AMP and calcium.

    PubMed

    Vedantam, Sivaram; Rani, Rita; Garg, Monica; Atreja, Suresh K

    2014-01-01

    The purpose of this study was to determine the role of Ang-II in buffalo spermatozoa; localize angiotensin type 1 (AT1) receptors on the sperm surface and understand the signaling mechanisms involved therein. Immunoblotting and immunocytochemistry using polyclonal Rabbit anti-AT1 (N-10) IgG were performed to confirm the presence of AT1 receptors. Intracellular levels of cyclic adenosine monophosphate (cAMP) were determined by non-radioactive enzyme immunoassay, while that of Calcium [Ca(2+)] were estimated by fluorimetry using Fura2AM dye. The results obtained showed that AT1 receptors were found on the post-acrosomal region, neck and tail regions. Immunoblotting revealed a single protein band with molecular weight of 40 kDa. Ang-II treated cells produced significantly higher level of cAMP compared to untreated cells (22.66 ± 2.4 vs. 10.8 ± 0.98 pmol/10(8) cells, p < 0.01). The mean levels of Ca(2+) were also higher in Ang-II treated cells compared to control (117.4 ± 6.1 vs. 61.15 ± 4.2 nmol/10(8) cells; p < 0.01). The stimulatory effect of Ang-II in both the cases was significantly inhibited in the presence of Losartan (AT1 antagonist; p < 0.05) indicating the involvement of AT1 receptors. Further, presence of neomycin (protein kinase C inhibitor) inhibited significantly the Ang-II mediated rise in Ca(2+) indicating the involvement of PKC pathway. These findings confirm the presence of AT1 receptors in buffalo spermatozoa and that Ang-II mediates its actions via the activation of these receptors. Ang-II stimulates the rise in intracellular levels of cAMP and Ca(2+) during capacitation.

  14. Autoradiography of P2x ATP receptors in the rat brain.

    PubMed Central

    Balcar, V. J.; Li, Y.; Killinger, S.; Bennett, M. R.

    1995-01-01

    1. Binding of a P2x receptor specific radioligand, [3H]-alpha,beta-methylene adenosine triphosphate ([3H]-alpha,beta-MeATP) to sections of rat brain was reversible and association/dissociation parameters indicated that it consisted of two saturable components. Non-specific binding was very low (< 7% at 10 nM ligand concentration). 2. The binding was completely inhibited by suramin (IC50 approximately 14-26 microM) but none of the ligands specific for P2y receptors such as 2-methylthio-adenosine triphosphate (2-methyl-S-ATP) and 2-chloro-adenosine triphosphate (2-C1-ATP) nor 2-methylthio-adenosine diphosphate (2-methyl-S-ADP) a ligand for the P2 receptor on blood platelets ('P2T' type) produced strong inhibitions except for P1,P4-di(adenosine-5')tetraphosphate (Ap4A). 3. Inhibitors of Na+,K(+)-dependent adenosine triphosphatase (ATPase) ouabain, P1-ligand adenosine and an inhibitor of transport of, respectively, adenosine and cyclic nucleotides, dilazep, had no effect. 4. The highest density of P2x binding sites was found to be in the cerebellar cortex but the binding sites were present in all major brain regions, especially in areas known to receive strong excitatory innervation. Images Figure 2 PMID:7670731

  15. Identification and Characterization of Novel Variations in Platelet G-Protein Coupled Receptor (GPCR) Genes in Patients Historically Diagnosed with Type 1 von Willebrand Disease.

    PubMed

    Stockley, Jacqueline; Nisar, Shaista P; Leo, Vincenzo C; Sabi, Essa; Cunningham, Margaret R; Eikenboom, Jeroen C; Lethagen, Stefan; Schneppenheim, Reinhard; Goodeve, Anne C; Watson, Steve P; Mundell, Stuart J; Daly, Martina E

    2015-01-01

    The clinical expression of type 1 von Willebrand disease may be modified by co-inheritance of other mild bleeding diatheses. We previously showed that mutations in the platelet P2Y12 ADP receptor gene (P2RY12) could contribute to the bleeding phenotype in patients with type 1 von Willebrand disease. Here we investigated whether variations in platelet G protein-coupled receptor genes other than P2RY12 also contributed to the bleeding phenotype. Platelet G protein-coupled receptor genes P2RY1, F2R, F2RL3, TBXA2R and PTGIR were sequenced in 146 index cases with type 1 von Willebrand disease and the potential effects of identified single nucleotide variations were assessed using in silico methods and heterologous expression analysis. Seven heterozygous single nucleotide variations were identified in 8 index cases. Two single nucleotide variations were detected in F2R; a novel c.-67G>C transversion which reduced F2R transcriptional activity and a rare c.1063C>T transition predicting a p.L355F substitution which did not interfere with PAR1 expression or signalling. Two synonymous single nucleotide variations were identified in F2RL3 (c.402C>G, p.A134 =; c.1029 G>C p.V343 =), both of which introduced less commonly used codons and were predicted to be deleterious, though neither of them affected PAR4 receptor expression. A third single nucleotide variation in F2RL3 (c.65 C>A; p.T22N) was co-inherited with a synonymous single nucleotide variation in TBXA2R (c.6680 C>T, p.S218 =). Expression and signalling of the p.T22N PAR4 variant was similar to wild-type, while the TBXA2R variation introduced a cryptic splice site that was predicted to cause premature termination of protein translation. The enrichment of single nucleotide variations in G protein-coupled receptor genes among type 1 von Willebrand disease patients supports the view of type 1 von Willebrand disease as a polygenic disorder.

  16. Impact of type 2 diabetes on the plasma levels of vascular endothelial growth factor and its soluble receptors type 1 and type 2 in patients with peripheral arterial disease.

    PubMed

    Wieczór, Radosław; Gadomska, Grażyna; Ruszkowska-Ciastek, Barbara; Stankowska, Katarzyna; Budzyński, Jacek; Fabisiak, Jacek; Suppan, Karol; Pulkowski, Grzegorz; Rość, Danuta

    2015-11-01

    Type 2 diabetes coexistent with lower extremity artery disease (peripheral arterial disease (PAD)) can be observed in numerous patients. The mechanism compensating for ischemia and contributing to healing is angiogenesis-the process of forming new blood vessels. The purpose of this study was to assess the likely impact of type 2 diabetes on the plasma levels of proangiogenic factor (vascular endothelial growth factor A (VEGF-A)) and angiogenesis inhibitors (soluble VEGF receptors type 1 and type 2 (sVEGFR-1 and sVEGFR-2)) in patients with PAD. Among 46 patients with PAD under pharmacological therapy (non-invasive), we identified, based on medical history, a subgroup with coexistent type 2 diabetes (PAD-DM2+, n=15) and without diabetes (PAD-DM2-, n=31). The control group consisted of 30 healthy subjects. Plasma levels of VEGF-A, sVEGFR-1, and sVEGFR-2 were measured using the enzyme-linked immunosorbent assay (ELISA) method. The subgroups of PAD-DM2+ and PAD-DM2- revealed significantly higher concentrations of VEGF-A (P=0.000 007 and P=0.000 000 1, respectively) and significantly lower sVEGFR-2 levels (P=0.02 and P=0.000 01, respectively), when compared with the control group. Patients with PAD and coexistent diabetes tended to have a lower level of VEGF-A and higher levels of sVEGFR-1 and sVEGFR-2 comparable with non-diabetic patients. The coexistence of type 2 diabetes and PAD is demonstrated by a tendency to a lower plasma level of proangiogenic factor (VEGF-A) and higher levels of angiogenesis inhibitors (sVEGFR-1 and sVEGFR-2) at the same time. Regardless of the coexistence of type 2 diabetes, hypoxia appears to be a crucial factor stimulating the processes of angiogenesis in PAD patients comparable with healthy individuals, whereas hyperglycemia may have a negative impact on angiogenesis in lower limbs.

  17. Effect of P2X7 Receptor Knockout on AQP-5 Expression of Type I Alveolar Epithelial Cells

    PubMed Central

    Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin

    2014-01-01

    P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004

  18. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta.

    PubMed

    Yan, Zhen Cheng; Liu, Dao Yan; Zhang, Li Li; Shen, Chen Yi; Ma, Qun Li; Cao, Ting Bing; Wang, Li Juan; Nie, Hai; Zidek, Walter; Tepel, Martin; Zhu, Zhi Ming

    2007-03-09

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p<0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p<0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-delta. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-delta. Furthermore, selective silencing of PPAR-delta by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00+/-0.06 (n=3) to 1.91+/-0.06 (n=3; p<0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-delta significantly reduced CB1 expression to 0.39+/-0.03 (n=3; p<0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-delta. Both CB1 and PPAR-delta are intimately involved in therapeutic interventions against a most important cardiovascular risk factor.

  19. β-arrestins negatively control human adrenomedullin type 1-receptor internalization.

    PubMed

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Sekiguchi, Toshio; Danfeng, Jiang; Murakami, Manabu; Hattori, Yuichi; Kato, Johji

    2017-05-27

    Adrenomedullin (AM) is a potent hypotensive peptide that exerts a powerful variety of protective effects against multiorgan damage through the AM type 1 receptor (AM 1 receptor), which consists of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 2 (RAMP2). Two β-arrestin (β-arr) isoforms, β-arr-1 and β-arr-2, play a central role in the agonist-induced internalization of many receptors for receptor resensitization. Notably, β-arr-biased agonists are now being tested in phase II clinical trials, targeting acute pain and acute heart failure. Here, we examined the effects of β-arr-1 and β-arr-2 on human AM 1 receptor internalization. We constructed a V5-tagged chimera in which the cytoplasmic C-terminal tail (C-tail) of CLR was replaced with that of the β 2 -adrenergic receptor (β 2 -AR), and it was transiently transfected into HEK-293 cells that stably expressed RAMP2. The cell-surface expression and internalization of the wild-type or chimeric receptor were quantified by flow cytometric analysis. The [ 125 I]AM binding and the AM-induced cAMP production of these receptors were also determined. Surprisingly, the coexpression of β-arr-1 or -2 resulted in significant decreases in AM 1 receptor internalization without affecting AM binding and signaling prior to receptor internalization. Dominant-negative (DN) β-arr-1 or -2 also significantly decreased AM-induced AM 1 receptor internalization. In contrast, the AM-induced internalization of the chimeric AM 1 receptor was markedly augmented by the cotransfection of β-arr-1 or -2 and significantly reduced by the coexpression of DN-β-arr-1 or -2. These results were consistent with those seen for β 2 -AR. Thus, both β-arrs negatively control AM 1 receptor internalization, which depends on the C-tail of CLR. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Discovery of a brain-penetrant S1P₃-sparing direct agonist of the S1P₁ and S1P₅ receptors efficacious at low oral dose.

    PubMed

    Demont, Emmanuel H; Arpino, Sandra; Bit, Rino A; Campbell, Colin A; Deeks, Nigel; Desai, Sapna; Dowell, Simon J; Gaskin, Pam; Gray, James R J; Harrison, Lee A; Haynes, Andrea; Heightman, Tom D; Holmes, Duncan S; Humphreys, Philip G; Kumar, Umesh; Morse, Mary A; Osborne, Greg J; Panchal, Terry; Philpott, Karen L; Taylor, Simon; Watson, Robert; Willis, Robert; Witherington, Jason

    2011-10-13

    2-Amino-2-(4-octylphenethyl)propane-1,3-diol 1 (fingolimod, FTY720) has been recently marketed in the United States for the treatment of patients with remitting relapsing multiple sclerosis (RRMS). Its efficacy has been primarily linked to the agonism on T cells of S1P(1), one of the five sphingosine 1-phosphate (S1P) G-protein-coupled receptors, while its cardiovascular side effects have been associated with activity at S1P(3). Emerging data suggest that the ability of this molecule to cross the blood-brain barrier and to interact with both S1P(1) and S1P(5) in the central nervous system (CNS) may contribute to its efficacy in treating patients with RRMS. We have recently disclosed the structure of an advanced, first generation S1P(3)-sparing S1P(1) agonist, a zwitterion with limited CNS exposure. In this Article, we highlight our strategy toward the identification of CNS-penetrant S1P(3)-sparing S1P(1) and S1P(5) agonists resulting in the discovery of 5-(3-{2-[2-hydroxy-1-(hydroxymethyl)ethyl]-5-methyl-1,2,3,4-tetrahydro-6-isoquinolinyl}-1,2,4-oxadiazol-5-yl)-2-[(1-methylethyl)oxy]benzonitrile 15. Its exceptional in vivo potency and good pharmacokinetic properties translate into a very low predicted therapeutic dose in human (<1 mg p.o. once daily).

  1. Sphingosine 1-Phosphate Receptor Modulators and Drug Discovery

    PubMed Central

    Park, Soo-Jin; Im, Dong-Soon

    2017-01-01

    Initial discovery on sphingosine 1-phosphate (S1P) as an intracellular second messenger was faced unexpectedly with roles of S1P as a first messenger, which subsequently resulted in cloning of its G protein-coupled receptors, S1P1–5. The molecular identification of S1P receptors opened up a new avenue for pathophysiological research on this lipid mediator. Cellular and molecular in vitro studies and in vivo studies on gene deficient mice have elucidated cellular signaling pathways and the pathophysiological meanings of S1P receptors. Another unexpected finding that fingolimod (FTY720) modulates S1P receptors accelerated drug discovery in this field. Fingolimod was approved as a first-in-class, orally active drug for relapsing multiple sclerosis in 2010, and its applications in other disease conditions are currently under clinical trials. In addition, more selective S1P receptor modulators with better pharmacokinetic profiles and fewer side effects are under development. Some of them are being clinically tested in the contexts of multiple sclerosis and other autoimmune and inflammatory disorders, such as, psoriasis, Crohn’s disease, ulcerative colitis, polymyositis, dermatomyositis, liver failure, renal failure, acute stroke, and transplant rejection. In this review, the authors discuss the state of the art regarding the status of drug discovery efforts targeting S1P receptors and place emphasis on potential clinical applications. PMID:28035084

  2. Identification and characterization of a novel P2Y 12 variant in a patient diagnosed with type 1 von Willebrand disease in the European MCMDM-1VWD study.

    PubMed

    Daly, Martina E; Dawood, Ban B; Lester, William A; Peake, Ian R; Rodeghiero, Francesco; Goodeve, Anne C; Makris, Michael; Wilde, Jonathan T; Mumford, Andrew D; Watson, Stephen P; Mundell, Stuart J

    2009-04-23

    We investigated whether defects in the P2Y(12) ADP receptor gene (P2RY12) contribute to the bleeding tendency in 92 index cases enrolled in the European MCMDM-1VWD study. A heterozygous mutation, predicting a lysine to glutamate (K174E) substitution in P2Y(12), was identified in one case with mild type 1 von Willebrand disease (VWD) and a VWF defect. Platelets from the index case and relatives carrying the K174E defect changed shape in response to ADP, but showed reduced and reversible aggregation in response to 10 muM ADP, unlike the maximal, sustained aggregation observed in controls. The reduced response was associated with an approximate 50% reduction in binding of [(3)H]2MeS-ADP to P2Y(12), whereas binding to the P2Y(1) receptor was normal. A hemagglutinin-tagged K174E P2Y(12) variant showed surface expression in CHO cells, markedly reduced binding to [(3)H]2MeS-ADP, and minimal ADP-mediated inhibition of forskolin-induced adenylyl cyclase activity. Our results provide further evidence for locus heterogeneity in type 1 VWD.

  3. Human glutathione S-transferase P1-1 functions as an estrogen receptor α signaling modulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiyuan; An, Byoung Ha; Kim, Min Jung

    2014-09-26

    Highlights: • GSTP induces the classical ERα signaling event. • The functional GSTP is a prerequisite for GSTP-induced ERα transcription activity. • The expression of RIP140, a transcription cofactor, was inhibited by GSTP protein. • We propose the novel non-enzymatic role of GSTP. - Abstract: Estrogen receptor α (ERα) plays a crucial role in estrogen-mediated signaling pathways and exerts its action as a nuclear transcription factor. Binding of the ligand-activated ERα to the estrogen response element (ERE) is a central part of ERα-associated signal transduction pathways and its aberrant modulation is associated with many disease conditions. Human glutathione S-transferase P1-1more » (GSTP) functions as an enzyme in conjugation reactions in drug metabolism and as a regulator of kinase signaling pathways. It is overexpressed in tumors following chemotherapy and has been associated with a poor prognosis in breast cancer. In this study, a novel regulatory function of GSTP has been proposed in which GSTP modulates ERE-mediated ERα signaling events. Ectopic expression of GSTP was able to induce the ERα and ERE-mediated transcriptional activities in ERα-positive but GSTP-negative MCF7 human breast cancer cells. This inductive effect of GSTP on the ERE-transcription activity was diminished when the cells express a mutated form of the enzyme or are treated with a GSTP-specific chemical inhibitor. It was found that GSTP inhibited the expression of the receptor interacting protein 140 (RIP140), a negative regulator of ERα transcription, at both mRNA and protein levels. Our study suggests a novel non-enzymatic role of GSTP which plays a significant role in regulating the classical ERα signaling pathways via modification of transcription cofactors such as RIP140.« less

  4. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M1, M2, and M4 receptor knockout mice.

    PubMed

    Joseph, Lauren; Thomsen, Morgane

    2017-06-30

    Muscarinic M 1 /M 4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (S D ) effects, but the receptor subtypes mediating those effects are not known. A better understanding of the complex cocaine/muscarinic interactions is needed to evaluate and develop potential muscarinic-based medications. Here, knockout mice lacking M 1 , M 2 , or M 4 receptors (M 1 -/- , M 2 -/- , M 4 -/- ), as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline. Muscarinic receptor antagonists with no subtype selectivity (scopolamine), or preferential affinity at the M 1 , M 2 , or M 4 subtype (telenzepine, trihexyphenidyl; methoctramine, AQ-RA 741; tropicamide) were tested alone and in combination with cocaine. In intact animals, antagonists with high affinity at M 1 /M 4 receptors partially substituted for cocaine and increased the S D effect of cocaine, while M 2 -preferring antagonists did not substitute, and reduced the S D effect of cocaine. The cocaine-like effects of scopolamine were absent in M 1 -/- mice. The cocaine S D attenuating effects of methoctramine were absent in M 2 -/- mice and almost absent in M 1 -/- mice. The findings indicate that the cocaine-like S D effects of muscarinic antagonists are primarily mediated through M 1 receptors, with a minor contribution of M 4 receptors. The data also support our previous findings that stimulation of M 1 receptors and M 4 receptors can each attenuate the S D effect of cocaine, and show that this can also be achieved by blocking M 2 autoreceptors, likely via increased acetylcholine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa.

    PubMed

    de Chial, Magaly; Ghysels, Bart; Beatson, Scott A; Geoffroy, Valérie; Meyer, Jean Marie; Pattery, Theresa; Baysse, Christine; Chablain, Patrice; Parsons, Yasmin N; Winstanley, Craig; Cordwell, Stuart J; Cornelis, Pierre

    2003-04-01

    Pseudomonas aeruginosa produces, under conditions of iron limitation, a high-affinity siderophore, pyoverdine (PVD), which is recognized at the level of the outer membrane by a specific TonB-dependent receptor, FpvA. So far, for P. aeruginosa, three different PVDs, differing in their peptide chain, have been described (types I-III), but only the FpvA receptor for type I is known. Two PVD-producing P. aeruginosa strains, one type II and one type III, were mutagenized by a mini-TnphoA3 transposon. In each case, one mutant unable to grow in the presence of the strong iron chelator ethylenediaminedihydroxyphenylacetic acid (EDDHA) and the cognate PVD was selected. The first mutant, which had an insertion in the pvdE gene, upstream of fpvA, was unable to take up type II PVD and showed resistance to pyocin S3, which is known to use type II FpvA as receptor. The second mutant was unable to take up type III PVD and had the transposon insertion in fpvA. Cosmid libraries of the respective type II and type III PVD wild-type strains were constructed and screened for clones restoring the capacity to grow in the presence of PVD. From the respective complementing genomic fragments, type II and type III fpvA sequences were determined. When in trans, type II and type III fpvA restored PVD production, uptake, growth in the presence of EDDHA and, in the case of type II fpvA, pyocin S3 sensitivity. Complementation of fpvA mutants obtained by allelic exchange was achieved by the presence of cognate fpvA in trans. All three receptors posses an N-terminal extension of about 70 amino acids, similar to FecA of Escherichia coli, but only FpvAI has a TAT export sequence at its N-terminal end.

  6. The Mechanism of Functional Up-Regulation of P2X3 Receptors of Trigeminal Sensory Neurons in a Genetic Mouse Model of Familial Hemiplegic Migraine Type 1 (FHM-1)

    PubMed Central

    Hullugundi, Swathi K.; Ferrari, Michel D.; van den Maagdenberg, Arn M. J. M.; Nistri, Andrea

    2013-01-01

    A knock-in (KI) mouse model of FHM-1 expressing the R192Q missense mutation of the Cacna1a gene coding for the α1 subunit of CaV2.1 channels shows, at the level of the trigeminal ganglion, selective functional up-regulation of ATP -gated P2X3 receptors of sensory neurons that convey nociceptive signals to the brainstem. Why P2X3 receptors are constitutively more responsive, however, remains unclear as their membrane expression and TRPV1 nociceptor activity are the same as in wildtype (WT) neurons. Using primary cultures of WT or KI trigeminal ganglia, we investigated whether soluble compounds that may contribute to initiating (or maintaining) migraine attacks, such as TNFα, CGRP, and BDNF, might be responsible for increasing P2X3 receptor responses. Exogenous application of TNFα potentiated P2X3 receptor-mediated currents of WT but not of KI neurons, most of which expressed both the P2X3 receptor and the TNFα receptor TNFR2. However, sustained TNFα neutralization failed to change WT or KI P2X3 receptor currents. This suggests that endogenous TNFα does not regulate P2X3 receptor responses. Nonetheless, on cultures made from both genotypes, exogenous TNFα enhanced TRPV1 receptor-mediated currents expressed by a few neurons, suggesting transient amplification of TRPV1 nociceptor responses. CGRP increased P2X3 receptor currents only in WT cultures, although prolonged CGRP receptor antagonism or BDNF neutralization reduced KI currents to WT levels. Our data suggest that, in KI trigeminal ganglion cultures, constitutive up-regulation of P2X3 receptors probably is already maximal and is apparently contributed by basal CGRP and BDNF levels, thereby rendering these neurons more responsive to extracellular ATP. PMID:23577145

  7. In search of selective P2 receptor ligands: interaction of dihydropyridine derivatives at recombinant rat P2X(2) receptors.

    PubMed

    Jacobson, K A; Kim, Y C; King, B F

    2000-07-03

    1,4-Dihydropyridines are regarded as privileged structures for drug design, i.e. they tend to bind to a wide variety of receptor sites. We have shown that upon appropriate manipulation of the substituent groups on a 1,4-dihydropyridine template, high affinity and selectivity for the A(3) subtype of adenosine receptors ('P1 receptors') may be attained. In the present study we have begun to extend this approach to P2 receptors which are activated by ATP and other nucleotides. Nicardipine, a representative dihydropyridine, used otherwise as an L-type calcium channel blocker, was shown to be an antagonist at recombinant rat P2X(2) (IC(50)=25 microM) and P2X(4) (IC(50) approximately 220 microM) receptors expressed in Xenopus oocytes. Thus, this class of compounds represents a suitable lead for enhancement of affinity through chemical synthesis. In an attempt to modify the 1,4-dihydropyridine structure with a predicted P2 receptor recognition moiety, we have replaced one of the ester groups with a negatively charged phosphonate group. Several 4-phenyl-5-phosphonato-1,4-dihydropyridine derivatives, MRS 2154 (2, 6-dimethyl), MRS 2155 (6-methyl-2-phenyl), and MRS 2156 (2-methyl-6-phenyl), were synthesized through three component condensation reactions. These derivatives were not pure antagonists of the effects of ATP at P2X(2) receptors, rather were either inactive (MRS 2156) or potentiated the effects of ATP in a concentration-dependent manner (MRS 2154 in the 0.3-10 microM range and MRS 2155 at >1 microM). Antagonism of the effects of ATP at P2X(2) receptor superimposed on the potentiation was also observed at >10 microM (MRS 2154) or 0.3-1 microM (MRS 2155). Thus, while a conventional dihydropyridine, nicardipine, was found to antagonize rat P2X(2) receptors ninefold more potently than P2X(4) receptors, the effects of novel, anionic 5-phosphonate analogues at the receptor were more complex.

  8. Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade.

    PubMed

    Tsukuda, Kana; Mogi, Masaki; Iwanami, Jun; Kanno, Harumi; Nakaoka, Hirotomo; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Higaki, Akinori; Yamauchi, Toshifumi; Min, Li-Juan; Horiuchi, Masatsugu

    2016-01-01

    Browning of white adipose tissue (WAT) has been highlighted as a new possible therapeutic target for obesity, diabetes and lipid metabolic disorders, because WAT browning could increase energy expenditure and reduce adiposity. The new clusters of adipocytes that emerge with WAT browning have been named 'beige' or 'brite' adipocytes. Recent reports have indicated that the renin-angiotensin system (RAS) plays a role in various aspects of adipose tissue physiology and dysfunction. The biological effects of angiotensin II, a major component of RAS, are mediated by two receptor subtypes, angiotensin II type 1 receptor (AT1R) and type 2 receptor (AT2R). However, the functional roles of angiotensin II receptor subtypes in WAT browning have not been defined. Therefore, we examined whether deletion of angiotensin II receptor subtypes (AT1aR and AT2R) may affect white-to-beige fat conversion in vivo. AT1a receptor knockout (AT1aKO) mice exhibited increased appearance of multilocular lipid droplets and upregulation of thermogenic gene expression in inguinal white adipose tissue (iWAT) compared to wild-type (WT) mice. AT2 receptor-deleted mice did not show miniaturization of lipid droplets or alteration of thermogenic gene expression levels in iWAT. An in vitro experiment using adipose tissue-derived stem cells showed that deletion of the AT1a receptor resulted in suppression of adipocyte differentiation, with reduction in expression of thermogenic genes. These results indicate that deletion of the AT1a receptor might have some effects on the process of browning of WAT and that blockade of the AT1 receptor could be a therapeutic target for the treatment of metabolic disorders.

  9. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects.

    PubMed

    Salomone, Salvatore; Waeber, Christian

    2011-01-01

    Receptors for sphingosine-1-phosphate (S1P) have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444), used extensively as specific S1P(2) and S1P(3) receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P(2) receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca(2+) concentration via P(2) receptor or α(1A)-adrenoceptor stimulation and α(1A)-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P(3)-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P(1/3) receptor antagonist, VPC23019, does not inhibit S1P(3)-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  10. Identification of 6H1 as a P2Y purinoceptor: P2Y5.

    PubMed

    Webb, T E; Kaplan, M G; Barnard, E A

    1996-02-06

    We have determined the identity of the orphan G-protein coupled receptor cDNA, 6H1, present in activated chicken T cells, as a subtype of P2Y purinoceptor. This identification is based on first on the degree of sequence identity shared with recently cloned members of the P2Y receptor family and second on the pharmacological profile. Upon transient expression in COS-7 cells the 6H1 receptor bound the radiolabel [35S]dATP alpha S specifically and with high affinity (Kd, 10 nM). This specific binding could be competitively displaced by a range of ligands active at P2 purinoceptors, with ATP being the most active (K (i)), 116 nM). Such competition studies have established the following rank order of activity: ATP ADP 2-methylthioATP alpha, beta-methylene ATP, UTP, thus confirming 6H1 as a member of the growing family of P2Y purinoceptors. As the fifth receptor of this type to be identified we suggest that it be named P2Y5.

  11. Sphingosine 1-phosphate receptor modulators in multiple sclerosis.

    PubMed

    Subei, Adnan M; Cohen, Jeffrey A

    2015-07-01

    Sphingosine 1-phosphate (S1P) receptor modulators possess a unique mechanism of action as disease-modifying therapy for multiple sclerosis (MS). Subtype 1 S1P receptors are expressed on the surfaces of lymphocytes and are important in regulating egression from lymph nodes. The S1P receptor modulators indirectly antagonize the receptor's function and sequester lymphocytes in lymph nodes. Fingolimod was the first S1P agent approved in the USA in 2010 for relapsing MS after two phase III trials (FREEDOMS and TRANSFORMS) demonstrated potent efficacy, and good safety and tolerability. Post-marketing experience, as well as a third phase III trial (FREEDOMS II), also showed favorable results. More selective S1P receptor agents-ponesimod (ACT128800), siponimod (BAF312), ozanimod (RPC1063), ceralifimod (ONO-4641), GSK2018682, and MT-1303-are still in relatively early stages of development, but phase I and II trials showed promising efficacy and safety. However, these observations have yet to be reproduced in phase III clinical trials.

  12. Adenosine-A1 Receptor Agonist Induced Hyperalgesic Priming Type II

    PubMed Central

    Araldi, Dioneia; Ferrari, Luiz F.; Levine, Jon D.

    2016-01-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate salt) induces a model of the transition to chronic pain that we have termed Type II hyperalgesic priming. Similar to Type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, Type II hyperalgesic priming differs from Type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N6-Cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced Type II hyperalgesic priming. In this study we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced Type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the Type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor. PMID:26588695

  13. P-Type Transparent Cu-Alloyed ZnS Deposited at Room Temperature

    DOE PAGES

    Woods-Robinson, Rachel; Cooper, Jason K.; Xu, Xiaojie; ...

    2016-03-16

    All transparent conducting materials (TCMs) of technological practicality are n-type; the inferior conductivity of p-type TCMs has limited their adoption. Additionally, many relatively high-performing p-type TCMs require synthesis temperatures > 400 °C. Here, room-temperature pulsed laser deposition of copper-alloyed zinc sulfide (Cu x Zn 1- x S) thin films (0 ≤ x ≤ 0.75) is reported. For 0.09 ≤ x ≤ 0.35, Cu x Zn 1- x S has high p-type conductivity, up to 42 S cm -1 at x = 0.30, with an optical band gap tunable from ≈3.0–3.3 eV and transparency, averaged over the visible, of 50%–71% formore » 200–250 nm thick films. In this range, synchrotron X-ray and electron diffraction reveal a nanocrystalline ZnS structure. Secondary crystalline Cu y S phases are not observed, and at higher Cu concentrations, x > 0.45, films are amorphous and poorly conducting. Furthermore, within the TCM regime, the conductivity is temperature independent, indicating degenerate hole conduction. A decrease in lattice parameter with Cu content suggests that the hole conduction is due to substitutional incorporation of Cu onto Zn sites. This hole-conducting phase is embedded in a less conducting amorphous Cu y S, which dominates at higher Cu concentrations. Finally, the combination of high hole conductivity and optical transparency for the peak conductivity Cu x Zn 1- x S films is among the best reported to date for a room temperature deposited p-type TCM.« less

  14. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage.

    PubMed

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos

    2015-05-01

    The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise.

  15. Discovery of novel S1P2 antagonists. Part 1: discovery of 1,3-bis(aryloxy)benzene derivatives.

    PubMed

    Kusumi, Kensuke; Shinozaki, Koji; Kanaji, Toshiya; Kurata, Haruto; Naganawa, Atsushi; Otsuki, Kazuhiro; Matsushita, Takeshi; Sekiguchi, Tetsuya; Kakuuchi, Akito; Seko, Takuya

    2015-04-01

    The structure-activity relationships of a novel series of sphingosine-1-phosphate receptor antagonists have been examined in detail. The initial hit compound 1 was modified through synthesis to improve its S1P2 activity. The synthesis of a series of analogs revealed that 1,3-bis(aryloxy)benzene derivatives, as represented by 22, are potent and selective S1P2 antagonists. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. P2 receptor subtypes in the cardiovascular system.

    PubMed Central

    Kunapuli, S P; Daniel, J L

    1998-01-01

    Extracellular nucleotides have been implicated in a number of physiological functions. Nucleotides act on cell-surface receptors known as P2 receptors, of which several subtypes have been cloned. Both ATP and ADP are stored in platelets and are released upon platelet activation. Furthermore, nucleotides are also released from damaged or broken cells. Thus during vascular injury nucleotides play an important role in haemostasis through activation of platelets, modulation of vascular tone, recruitment of neutrophils and monocytes to the site of injury, and facilitation of adhesion of leucocytes to the endothelium. Nucleotides also moderate these functions by generating nitric oxide and prostaglandin I2 through activation of endothelial cells, and by activating different receptor subtypes on vascular smooth muscle cells. In the heart, P2 receptors regulate contractility through modulation of L-type Ca2+ channels, although the molecular mechanisms involved are still under investigation. Classical pharmacological studies have identified several P2 receptor subtypes in the cardiovascular system. Molecular pharmacological studies have clarified the nature of some of these receptors, but have complicated the picture with others. In platelets, the classical P2T receptor has now been resolved into three P2 receptor subtypes: the P2Y1, P2X1 and P2TAC receptors (the last of these, which is coupled to the inhibition of adenylate cyclase, is yet to be cloned). In peripheral blood leucocytes, endothelial cells, vascular smooth muscle cells and cardiomyocytes, the effects of classical P2X, P2Y and P2U receptors have been found to be mediated by more than one P2 receptor subtype. However, the exact functions of these multiple receptor subtypes remain to be understood, as P2-receptor-selective agonists and antagonists are still under development. PMID:9841859

  17. Obesity-stimulated aldosterone release is not related to an S1P-dependent mechanism.

    PubMed

    Werth, Stephan; Müller-Fielitz, Helge; Raasch, Walter

    2017-12-01

    Aldosterone has been identified as an important factor in obesity-associated hypertension. Here, we investigated whether sphingosine-1-phosphate (S1P), which has previously been linked to obesity, increases aldosterone release. S1P-induced aldosterone release was determined in NCI H295R cells in the presence of S1P receptor (S1PR) antagonists. In vivo release of S1P (100-300 µg/kg bw ) was investigated in pithed, lean Sprague Dawley (SD) rats, diet-obese spontaneous hypertensive rats (SHRs), as well as in lean or obese Zucker rats. Aldosterone secretion was increased in NCI H295R cells by S1P, the selective S1PR1 agonist SEW2871 and the selective S1PR2 antagonist JTE013. Treatment with the S1PR1 antagonist W146 or fingolimod and the S1PR1/3 antagonist VPbib2319 decreased baseline and/or S1P-stimulated aldosterone release. Compared to saline-treated SD rats, plasma aldosterone increased by ~50 pg/mL after infusing S1P. Baseline levels of S1P and aldosterone were higher in obese than in lean SHRs. Adrenal S1PR expression did not differ between chow- or CD-fed rats that had the highest S1PR1 and lowest S1PR4 levels. S1P induced a short-lasting increase in plasma aldosterone in obese, but not in lean SHRs. However, 2-ANOVA did not demonstrate any difference between lean and obese rats. S1P-induced aldosterone release was also similar between obese and lean Zucker rats. We conclude that S1P is a local regulator of aldosterone production. S1PR1 agonism induces an increase in aldosterone secretion, while stimulating adrenal S1PR2 receptor suppresses aldosterone production. A significant role of S1P in influencing aldosterone secretion in states of obesity seems unlikely. © 2017 Society for Endocrinology.

  18. Quasimolecular emission near the Xe(5p 56s 1,3 P 1 - 5p 6 1 S 0) and Kr (4p 55s 1,3 P 1 - 4p 6 1 S 0) resonance lines induced by collisions with He atoms

    NASA Astrophysics Data System (ADS)

    Alekseeva, O. S.; Devdariani, A. Z.; Grigorian, G. M.; Lednev, M. G.; Zagrebin, A. L.

    2017-02-01

    This study is devoted to the theoretical investigation of the quasimolecular emission of Xe*-He and Kr*-He collision pairs near the Xe (5p 56s 1,3 P 1 - 5p 6 1 S 0) and Kr (4p 55s 1,3 P 1 - 4p 6 1 S 0) resonance atomic lines. The potential curves of the quasimolecules Xe(5p 56s) + He and Kr(4p 55s) + He have been obtained with the use of the effective Hamiltonian and pseudopotential methods. Based on these potential curves the processes of quasimolecular emission of Xe*+He and Kr*+He mixtures have been considered and the spectral distributions I(ħΔω) of photons emitted have been obtained in the framework of quasistatic approximation.

  19. Evidence for association between vitamin D receptor BsmI polymorphism and type 1 diabetes in Japanese.

    PubMed

    Shimada, Akira; Kanazawa, Yasuhiko; Motohashi, Yoshiko; Yamada, Satoru; Maruyama, Taro; Ikegami, Hiroshi; Awata, Takuya; Kawasaki, Eiji; Kobayashi, Tetsuro; Nakanishi, Koji; Kawabata, Yumiko; Kurihara, Susumu; Uga, Miho; Tanaka, Shoichiro

    2008-06-01

    Type 1 diabetes is considered to be T-helper 1 (Th1) type autoimmune disease. Because the vitamin D receptor is expressed on CD4+T cells and is known to affect cytokine responses, several groups have investigated the association between the vitamin D receptor gene BsmI polymorphism and type 1 diabetes. However, this issue is still controversial; therefore, we examined this gene polymorphism in a large number of type 1 diabetic patients as a multi-center collaborative study in Japan. A total of 1,373 subjects, including 774 cases and 599 control subjects of Japanese origin, were studied. The frequency of carriers of the BB genotype in type 1 diabetic patients was significantly higher than that in controls (p<0.01, odds ratio 3.65). Moreover, IFN-gamma production upon anti-CD3 stimulation in the BB genotype group was significantly higher than that in the Bb and bb genotype groups (p<0.05), suggesting that the polyclonal T cell response in BB genotype patients is Th1 dominant. Based upon these results, we propose that it may be worthwhile to focus on subjects with the BB genotype of this gene polymorphism as having high risk for type 1 diabetes.

  20. Activation of neurokinin-1 receptor by substance P inhibits melanogenesis in B16-F10 melanoma cells.

    PubMed

    Ping, Fengfeng; Shang, Jing; Zhou, Jia; Song, Jing; Zhang, Luyong

    2012-12-01

    Skin pigmentation plays a number of valuable roles and its regulation is a complex process that is controlled by different factors. Substance P (SP) regulates many biological functions, including neurogenic inflammation, pain, and stress. However, to date, the regulatory role of SP in the control of melanogenesis has not been elucidated. The present study was designed to investigate the effects of SP on melanogenesis and to elucidate its underlying mechanism(s). After treatment for 48 h in mouse B16-F10 melanoma cells, SP (1 and 10nM) significantly down-regulated tyrosinase activity and melanin content. Importantly, western blot analysis revealed the presence of neurokinin-1 receptor (NK-1 R) in B16-F10 cells and the activation of it after SP treatment. It was also found that preincubation with NK-1 receptor antagonist Spantide I could partially reversed SP-induced down-regulations of tyrosinase activity, melanin content and the expression of tyrosinase and tyrosinase-related protein 1. Furthermore, SP could remarkably inhibit the expressions of microphtalmia-associated transcription factor (MITF) and p-p38 MAPK and stimulated p-p70 S6K1. These effects could also be partially reversed by the pretreatment with Spantide I. These results collectively suggested that SP inhibited melanogenesis in B16-F10 cells, which might be attributed to the fact that SP induces the activation of NK-1 receptor, stimulates the phosphorylation of p70 S6K1 and inhibits that of p38 MAPK, decreases the tyrosinase and tyrosinase-related protein 1 expression through MITF, finally resulting in the suppression of melanogenesis. These observations in vitro indicated that the regulation of the SP/NK-1 receptor system might be a useful novel management for skin pigmentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Reconstructed Serine 288 in the Left Flipper Region of the Rat P2X7 Receptor Stabilizes Nonsensitized States.

    PubMed

    Ishchenko, Yevheniia; Novosolova, Nataliia; Khafizov, Kamil; Bart, Geneviève; Timonina, Arina; Fayuk, Dmitriy; Skorinkin, Andrei; Giniatullin, Rashid

    2017-07-05

    Serine 275, a conserved residue of the left flipper region of ATP-gated P2X3 receptors, plays a key role in both agonist binding and receptor desensitization. It is conserved in most of the P2X receptors except P2X7 and P2X6. By combining experimental patch-clamp and modeling approaches, we explored the role of the corresponding residue in the rat P2X7 receptor (rP2X7) by replacing the phenylalanine at position 288 with serine and characterizing the membrane currents generated by either the wild-type (WT) or the mutated rP2X7 receptor. F288S, an rP2X7 mutation, slowed the deactivation subsequent to 2 and 20 s applications of 1 mM ATP. F288S also prevented sensitization (a progressive current growth) observed with the WT in response to a 20 s application of 1 mM ATP. Increasing the ATP concentration to 5 mM promoted sensitization also in the mutated rP2X7 receptor, accelerating the deactivation rate to typical WT values. YO-PRO1 uptake in cells expressing either the WT or the F288S P2X7 receptor was consistent with recorded membrane current data. Interestingly, in the human P2X7 (hP2X7) receptor, substitution Y288S did not change the deactivation rate, while the Y288F mutant generated a "rat-like" phenotype with a fast deactivation rate. Our combined experimental, kinetic, and molecular modeling data suggest that the rat F288S novel phenotype is due to a slower rate of ATP binding and/or unbinding and stabilization of nonsensitized receptor states.

  2. CRF1 receptor-deficiency increases cocaine reward.

    PubMed

    Contarino, Angelo; Kitchener, Pierre; Vallée, Monique; Papaleo, Francesco; Piazza, Pier-Vincenzo

    2017-05-01

    Stimulant drugs produce reward but also activate stress-responsive systems. The corticotropin-releasing factor (CRF) and the related hypothalamus-pituitary-adrenal (HPA) axis stress-responsive systems are activated by stimulant drugs. However, their role in stimulant drug-induced reward remains poorly understood. Herein, we report that CRF 1 receptor-deficient (CRF 1 -/-), but not wild-type, mice show conditioned place preference (CPP) responses to a relatively low cocaine dose (5 mg/kg, i.p.). Conversely, wild-type, but not CRF 1 -/-, mice display CPP responses to a relatively high cocaine dose (20 mg/kg, i.p.), indicating that CRF 1 receptor-deficiency alters the rewarding effects of cocaine. Acute pharmacological antagonism of the CRF 1 receptor by antalarmin also eliminates cocaine reward. Nevertheless, CRF 1 -/- mice display higher stereotypy responses to cocaine than wild-type mice. Despite the very low plasma corticosterone concentration, CRF 1 -/- mice show higher nuclear glucocorticoid receptor (GR) levels in the brain region of the hippocampus than wild-type mice. Full rescue of wild-type-like corticosterone and GR circadian rhythm and level in CRF 1 -/- mice by exogenous corticosterone does not affect CRF 1 receptor-dependent cocaine reward but induces stereotypy responses to cocaine. These results indicate a critical role for the CRF 1 receptor in cocaine reward, independently of the closely related HPA axis activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Adenine Nucleotide Analogues Locked in a Northern Methanocarba Conformation: Enhanced Stability and Potency as P2Y1 Receptor Agonists

    PubMed Central

    Ravi, R. Gnana; Kim, Hak Sung; Servos, Jörg; Zimmermann, Herbert; Lee, Kyeong; Maddileti, Savitri; Boyer, José L.; Harden, T. Kendall; Jacobson, Kenneth A.

    2016-01-01

    Preference for the Northern (N) ring conformation of the ribose moiety of nucleotide 5′-triphosphate agonists at P2Y1, P2Y2, P2Y4, and P2Y11 receptors, but not P2Y6 receptors, was established using a ring-constrained methanocarba (a 3.1.0-bicyclohexane) ring as a ribose substitute (Kim et al. J. Med. Chem. 2002, 45, 208–218.). We have now combined the ring-constrained (N)-methanocarba modification of adenine nucleotides with other functionalities known to enhance potency at P2 receptors. The potency of the newly synthesized analogues was determined in the stimulation of phospholipase C through activation of turkey erythrocyte P2Y1 or human P2Y1 and P2Y2 receptors stably expressed in astrocytoma cells. An (N)-methanocarba-2-methylthio-ADP analogue displayed an EC50 at the hP2Y1 receptor of 0.40 nM and was 55-fold more potent than the corresponding triphosphate and 16-fold more potent than the riboside 5′-diphosphate. 2-Cl–(N)-methanocarba-ATP and its N6-Me analogue were also highly selective, full agonists at P2Y1 receptors. The (N)-methanocarba-2-methylthio and 2-chloromonophosphate analogues were full agonists exhibiting micromolar potency at P2Y1 receptors, while the corresponding ribosides were inactive. Although β,γ-methylene-ATP was inactive at P2Y receptors, β,γ-methylene-(N)-methanocarba-ATP was a potent hP2Y1 receptor agonist with an EC50 of 160 nM and was selective versus hP2Y2 and hP2Y4 receptors. The rates of hydrolysis of Northern (N) and Southern (S) methanocarba analogues of AMP by rat 5′-ectonucleotidase were negligible. The rates of hydrolysis of the corresponding triphosphates by recombinant rat NTPDase1 and 2 were studied. Both isomers were hydrolyzed by NTPDase 1 at about half the rate of ATP hydrolysis. The (N) isomer was hardly hydrolyzed by NTPDase 2, while the (S) isomer was hydrolyzed at one-third of the rate of ATP hydrolysis. This suggests that new, more stable and selective nucleotide agonists may be designed on the basis of

  4. Type-7 metabotropic glutamate receptors negatively regulate α1-adrenergic receptor signalling.

    PubMed

    Iacovelli, Luisa; Di Menna, Luisa; Peterlik, Daniel; Stangl, Christina; Orlando, Rosamaria; Molinaro, Gemma; De Blasi, Antonio; Bruno, Valeria; Battaglia, Giuseppe; Flor, Peter J; Uschold-Schmidt, Nicole; Nicoletti, Ferdinando

    2017-02-01

    We studied the interaction between mGlu7 and α 1 -adrenergic receptors in heterologous expression systems, brain slices, and living animals. L-2-Amino-4-phosphonobutanoate (L-AP4), and l-serine-O-phosphate (L-SOP), which activate group III mGlu receptors, restrained the stimulation of polyphosphoinositide (PI) hydrolysis induced by the α 1 -adrenergic receptor agonist, phenylephrine, in HEK 293 cells co-expressing α 1 -adrenergic and mGlu7 receptors. The inibitory action of L-AP4 was abrogated by (i) the mGlu7 receptor antagonist, XAP044; (ii) the C-terminal portion of type-2 G protein coupled receptor kinase; and (iii) the MAP kinase inhibitors, UO126 and PD98059. This suggests that the functional interaction between mGlu7 and α 1 -adrenergic receptors was mediated by the βγ-subunits of the G i protein and required the activation of the MAP kinase pathway. Remarkably, activation of neither mGlu2 nor mGlu4 receptors reduced α 1 -adrenergic receptor-mediated PI hydrolysis. In mouse cortical slices, both L-AP4 and L-SOP were able to attenuate norepinephrine- and phenylephrine-stimulated PI hydrolysis at concentrations consistent with the activation of mGlu7 receptors. L-AP4 failed to affect norepinephrine-stimulated PI hydrolysis in cortical slices from mGlu7 -/- mice, but retained its inhibitory activity in slices from mGlu4 -/- mice. At behavioural level, i.c.v. injection of phenylephrine produced antidepressant-like effects in the forced swim test. The action of phenylephrine was attenuated by L-SOP, which was inactive per se. Finally, both phenylephrine and L-SOP increased corticosterone levels in mice, but the increase was halved when the two drugs were administered in combination. Our data demonstrate that α 1 -adrenergic and mGlu7 receptors functionally interact and suggest that this interaction might be targeted in the treatment of stress-related disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Scalable synthesis and isolation of the four stereoisomers of methyl 1-amino-3-(4-bromophenyl)cyclopentanecarboxylate, useful intermediates for the synthesis of S1P1 receptor agonists.

    PubMed

    Wallace, Grier A; Gordon, Thomas D; Hayes, Martin E; Konopacki, Donald B; Fix-Stenzel, Shannon R; Zhang, Xiaolei; Grongsaard, Pintipa; Cusack, Kevin P; Schaffter, Lisa M; Henry, Rodger F; Stoffel, Robert H

    2009-07-03

    The individual isomers of methyl 1-amino-3-(4-bromophenyl)cyclopentanecarboxylate are useful intermediates for the synthesis of S1P1 receptor agonists. Herein we describe a scalable synthesis and isolation of each of the four stereoisomers of this compound in gram quantities with >98% ee and de. The utility of this approach is demonstrated by the synthesis of ((1R,3R)-1-amino-3-(4-octylphenyl)cyclopentyl)methanol in 7 steps, 11% overall yield, and >98% ee and de.

  6. Relation of epidermal growth factor receptor and estrogen receptor-independent pS2 protein to the malignant transformation of mucinous cystic neoplasms of the pancreas.

    PubMed

    Kirby, R E; Lewandrowski, K B; Southern, J F; Compton, C C; Warshaw, A L

    1995-01-01

    To evaluate the role of epidermal growth factor receptor (EGF-R) and pS2 protein in the evolution of malignancy in mucinous cystic tumors of the pancreas. Mucinous cystic tumors of the pancreas include histologically benign but premalignant mucinous cystic neoplasms and mucinous cystadenocarcinoma. The molecular events leading to transformation from a benign to a malignant mucinous tumor are not known. Overexpression of EGF-R and detection of an estrogen-induced protein (pS2) has been demonstrated in ductal adenocarcinomas of the pancreas, but these factors have not been evaluated in mucinous cystic tumors. Twenty-six mucinous tumors were examined for EGF-R, pS2 protein, and estrogen and progesterone receptors. Eight (61.2%) of 13 malignant tumors exhibited increased expression of EGF-R, whereas EGF-R was not detected in any of the 13 benign tumors (P = .002). The pS2 protein was detected in nine of 11 malignant and 11 of 11 benign tumors (P = .480). Estrogen and progesterone receptors were not detected in the epithelium of either tumor type. The median survival time of the patients with EGF-R-negative tumors was 29.0 months compared with 14.5 months for those with EGF-R-positive tumors, but this difference did not reach significance owing to the small population size. Overexpression of EGF-R in mucinous cystic tumors, as in ductal adenocarcinomas, may be an important feature associated with malignancy and may have prognostic significance. Failure to detect EGF-R in histologically benign epithelium suggests that the upregulation of EGF-R may be important in the evolution of aggressive behavior. The expression of pS2 protein appears to be independent of estrogen and may play a role in the proliferative activity of mucinous tumors. However, pS2 expression is not a feature associated exclusively with malignancy.

  7. Abluminal Stimulation of Sphingosine 1-Phosphate Receptors 1 and 3 Promotes and Stabilizes Endothelial Sprout Formation

    PubMed Central

    Lenz, Steven M.; Awojoodu, Anthony O.

    2015-01-01

    Local delivery of lipid mediators has become a promising new approach for therapeutic angiogenesis and regenerative medicine. In this study, we investigated how gradient stimulation (either abluminal/distal or luminal/proximal) of engineered microvessels with sphingosine 1-phosphate (S1P) receptor-subtype-targeted molecules affects endothelial sprout growth using a microfluidic device. Our studies show that distal stimulation of microvessels with FTY720, an S1P1/3 selective agonist, promotes both arterial and venular sprout growth, whereas proximal stimulation does not. Using novel pharmacological antagonists of S1P receptor subtypes, we further show that S1P3 functionality is necessary for VEGF-induced sprouting, and confirmed these findings ex vivo using a murine aortic ring assay from S1P3-deficient mice. S1P3 agonist stimulation enhanced vascular stability in both cell types via upregulation of the interendothelial junction protein VE-cadherin. Lastly, S1P3 activation under flow promoted endothelial sprouting and branching while decreasing migratory cell fate in the microfluidic device. We used an in vivo murine dorsal skinfold window chamber model to confirm S1P3's role in neovascular branching. Together, these data suggest that a distal transendothelial gradient of S1P1/3-targeted drugs is an effective technique for both enhancing and stabilizing capillary morphogenesis in angiogenic applications. PMID:25315888

  8. A Sphingosine 1-phosphate receptor 2 selective allosteric agonist

    PubMed Central

    Satsu, Hideo; Schaeffer, Marie-Therese; Guerrero, Miguel; Saldana, Adrian; Eberhart, Christina; Hodder, Peter; Cayanan, Charmagne; Schürer, Stephan; Bhhatarai, Barun; Roberts, Ed; Rosen, Hugh; Brown, Steven J.

    2013-01-01

    Molecular probe tool compounds for the Sphingosine 1-phosphate receptor 2 (S1PR2) are important for investigating the multiple biological processes in which the S1PR2 receptor has been implicated. Amongst these are NF-κB-mediated tumor cell survival and fibroblast chemotaxis to fibronectin. Here we report our efforts to identify selective chemical probes for S1PR2 and their characterization. We employed high throughput screening to identify two compounds which activate the S1PR2 receptor. SAR optimization led to compounds with high nanomolar potency. These compounds, XAX-162 and CYM-5520, are highly selective and do not activate other S1P receptors. Binding of CYM-5520 is not competitive with the antagonist JTE-013. Mutation of receptor residues responsible for binding to the zwitterionic headgroup of sphingosine 1-phosphate (S1P) abolishes S1P activation of the receptor, but not activation by CYM-5520. Competitive binding experiments with radiolabeled S1P demonstrate that CYM-5520 is an allosteric agonist and does not displace the native ligand. Computational modeling suggests that CYM-5520 binds lower in the orthosteric binding pocket, and that co-binding with S1P is energetically well tolerated. In summary, we have identified an allosteric S1PR2 selective agonist compound. PMID:23849205

  9. CaLecRK-S.5, a pepper L-type lectin receptor kinase gene, confers broad-spectrum resistance by activating priming

    PubMed Central

    Woo, Joo Yong; Jeong, Kwang Ju; Kim, Young Jin; Paek, Kyung-Hee

    2016-01-01

    In Arabidopsis, several L-type lectin receptor kinases (LecRKs) have been identified as putative immune receptors. However, to date, there have been few analyses of LecRKs in crop plants. Virus-induced gene silencing of CaLecRK-S.5 verified the role of CaLecRK-S.5 in broad-spectrum resistance. Compared with control plants, CaLecRK-S.5-silenced plants showed reduced hypersensitive response, reactive oxygen species burst, secondary metabolite production, mitogen-activated protein kinase activation, and defense-related gene expression in response to Tobacco mosaic virus pathotype P0 (TMV-P0) infection. Suppression of CaLecRK-S.5 expression significantly enhanced the susceptibility to Pepper mild mottle virus pathotype P1,2,3, Xanthomonas campestris pv. vesicatoria, Phytophthora capsici, as well as TMV-P0. Additionally, β-aminobutyric acid treatment and a systemic acquired resistance assay revealed that CaLecRK-S.5 is involved in priming of plant immunity. Pre-treatment with β-aminobutyric acid before viral infection restored the reduced disease resistance phenotypes shown in CaLecRK-S.5-silenced plants. Systemic acquired resistance was also abolished in CaLecRK-S.5-silenced plants. Finally, RNA sequencing analysis indicated that CaLecRK-S.5 positively regulates plant immunity at the transcriptional level. Altogether, these results suggest that CaLecRK-S.5-mediated broad-spectrum resistance is associated with the regulation of priming. PMID:27647723

  10. Sphingosine 1-Phosphate Receptor Modulators in Multiple Sclerosis

    PubMed Central

    Subei, Adnan M.

    2015-01-01

    Sphingosine 1-phosphate (S1P) receptor modulators possess a unique mechanism of action as disease modifying therapy for multiple sclerosis (MS). Subtype 1 S1P receptors are expressed on the surfaces of lymphocytes and are important in regulating egression from lymph nodes. The S1P receptor modulators indirectly antagonize the receptor’s function and sequester lymphocytes in lymph nodes. Fingolimod was the first S1P agent approved in the United States in 2010 for relapsing MS after two phase 3 trials (FREEDOMS and TRANSFORMS) demonstrated potent efficacy, and good safety and tolerability. Post-marketing experience as well as a third phase 3 trial (FREEDOMS II) also showed favorable results. More selective S1P receptor agents: ponesimod (ACT128800), siponimod (BAF312), ozanimod (RPC1063), ceralifimod (ONO-4641), GSK2018682, and MT-1303 are still in relatively early stages of development, but phase 1 and 2 trials showed promising efficacy and safety. However, these observations have yet to be reproduced in phase 3 clinical trials. PMID:26239599

  11. Transferrin receptor-1 gene polymorphisms are associated with type 2 diabetes.

    PubMed

    Fernández-Real, José Manuel; Mercader, Josep Maria; Ortega, Francisco José; Moreno-Navarrete, Jose Maria; López-Romero, Pedro; Ricart, Wifredo

    2010-07-01

    Iron is involved in oxidative stress and type 2 diabetes (T2D). Transferrin receptor (TFRC) constitutes the major receptor by which most cells take up iron. The aim of this study was to evaluate whether TFRC gene polymorphisms are associated with T2D. We evaluated TFRC gene polymorphism (rs3817672, 210AG, S142G) in a sample of T2D patients and nondiabetic controls (n = 722), and 39 SNPs within the TFRC genomic region analysed by the Welcome Trust Case Control Consortium (WTCCC) (1921 T2D subjects and 3000 controls). In a subset of subjects, glucose tolerance and insulin sensitivity were also studied. The frequency of the G allele at the position 210 of the TFRC gene was significantly higher in T2D patients. Both GG and GA genotypes had a 69% (P < 0.01) greater risk of developing T2D estimated under a dominant model. The increased prevalence of the G allele run in parallel to increased sex-adjusted log-serum ferritin and slightly increased soluble transferrin receptor among patients with T2D. Furthermore, post-load glucose and insulin sensitivity were significantly associated with circulating soluble transferrin receptor, and insulin sensitivity was significantly associated with serum ferritin among G allele carriers, (r = -0.33, P = 0.001) but not in AA homozygotes. Sixteen other TFRC SNPs were also associated to T2D according to the Welcome Trust Case Control Consortium data. TFRC gene variants are associated with T2D.

  12. Endocannabinoids Stimulate Human Melanogenesis via Type-1 Cannabinoid Receptor*

    PubMed Central

    Pucci, Mariangela; Pasquariello, Nicoletta; Battista, Natalia; Di Tommaso, Monia; Rapino, Cinzia; Fezza, Filomena; Zuccolo, Michela; Jourdain, Roland; Finazzi Agrò, Alessandro; Breton, Lionel; Maccarrone, Mauro

    2012-01-01

    We show that a fully functional endocannabinoid system is present in primary human melanocytes (normal human epidermal melanocyte cells), including anandamide (AEA), 2-arachidonoylglycerol, the respective target receptors (CB1, CB2, and TRPV1), and their metabolic enzymes. We also show that at higher concentrations AEA induces normal human epidermal melanocyte apoptosis (∼3-fold over controls at 5 μm) through a TRPV1-mediated pathway that increases DNA fragmentation and p53 expression. However, at lower concentrations, AEA and other CB1-binding endocannabinoids dose-dependently stimulate melanin synthesis and enhance tyrosinase gene expression and activity (∼3- and ∼2-fold over controls at 1 μm). This CB1-dependent activity was fully abolished by the selective CB1 antagonist SR141716 or by RNA interference of the receptor. CB1 signaling engaged p38 and p42/44 mitogen-activated protein kinases, which in turn activated the cyclic AMP response element-binding protein and the microphthalmia-associated transcription factor. Silencing of tyrosinase or microphthalmia-associated transcription factor further demonstrated the involvement of these proteins in AEA-induced melanogenesis. In addition, CB1 activation did not engage the key regulator of skin pigmentation, cyclic AMP, showing a major difference compared with the regulation of melanogenesis by α-melanocyte-stimulating hormone through melanocortin 1 receptor. PMID:22431736

  13. 78 FR 77565 - Airworthiness Directives; AgustaWestland S.p.A. (Type Certificate Previously Held by Agusta S.p.A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Airworthiness Directives; AgustaWestland S.p.A. (Type Certificate Previously Held by Agusta S.p.A.) Helicopters... directive (AD): 2013-25-09 AGUSTAWESTLAND S.P.A. (TYPE CERTIFICATE FORMERLY HELD BY AGUSTA S.P.A... airworthiness directive (AD) for certain AgustaWestland S.p.A. (Agusta) Model AB139 and AW139 helicopters. This...

  14. μ-Opioid receptor activation inhibits N- and P-type Ca2+ channel currents in magnocellular neurones of the rat supraoptic nucleus

    PubMed Central

    Soldo, Brandi L; Moises, Hylan C

    1998-01-01

    The whole-cell voltage-clamp technique was used to examine opioid regulation of Ba2+ currents (IBa) through voltage-sensitive Ca2+ channels in isolated magnocellular supraoptic neurones (MNCs). The effects of local application of μ-, δ- or κ-opioid receptor selective agonists were examined on specific components of high voltage-activated (HVA) IBa, pharmacologically isolated by use of Ca2+ channel-subtype selective antagonists. The μ-opioid receptor selective agonist, DAMGO, suppressed HVA IBa (in 64/71 neurones) in a naloxone-reversible and concentration-dependent manner (EC50 = 170 nm, Emax = 19.5 %). The DAMGO-induced inhibition was rapid in onset, associated with kinetic slowing and voltage dependent, being reversed by strong depolarizing prepulses. Low-voltage activated (LVA) IBa was not modulated by DAMGO. Administration of κ- (U69 593) or δ-selective (DPDPE) opioid receptor agonists did not affect IBa. However, immunostaining of permeabilized MNCs with an antibody specific for κ1-opioid receptors revealed the presence of this opioid receptor subtype in a large number of isolated somata. μ-Opioid-induced inhibition in IBa was largely abolished after blockade of N-type and P-type channel currents by ω-conotoxin GVIA (1 μm) and ω-agatoxin IVA (100 nm), respectively. Quantitation of antagonist effects on DAMGO-induced reductions in IBa revealed that N- and P-type channels contributed roughly equally to the μ-opioid sensitive portion of total IBa. These results indicate that μ-opioid receptors are negatively coupled to N- and P-type Ca2+ channels in the somatodendritic regions of MNCs, possibly via a membrane-delimited G-protein-dependent pathway. They also support a scheme in which opioids may act in part to modulate cellular activity and regulate neurosecretory function by their direct action on the neuroendocrine neurones of the hypothalamic supraoptic neucleus. PMID:9824718

  15. A variant of the sigma receptor type-1 gene is a protective factor for Alzheimer disease.

    PubMed

    Uchida, Naohiko; Ujike, Hiroshi; Tanaka, Yuji; Sakai, Ayumu; Yamamoto, Mitsutoshi; Fujisawa, Yoshikatsu; Kanzaki, Akihiro; Kuroda, Shigetoshi

    2005-12-01

    Some preclinical evidence suggests that the sigma receptor type 1, which plays several roles in learning and memory, may also be involved in the pathogenesis of Alzheimer disease (AD). The authors provide here genetic evidence that the sigma receptor type 1 (SIGMAR1) gene is involved in susceptibility to AD. Two polymorphisms of the SIGMAR1 gene, G-241T/C-240T and Q2P, were analyzed in a Japanese sample of 239 patients with AD and 227 comparisons subjects. These two polymorphisms were in complete linkage disequilibrium with each other, resulting in only two haplotypes, GC-241-240Q2 and TT-241-240P2. There was a significant association between AD and the TT-241-240P2 haplotype of the SIGMAR1 gene and its homozygote, found with late-onset, but not early-onset AD. After stratification by epsilon4 allele status of the apolipoprotein E gene, TT-241-240P2 homozygosity of the SIGMAR1 gene reduced the risk of AD in epsilon4 allele carriers by three-fourths. The present study suggests that the TT-241-240P2 haplotype of the SIGMAR1 gene, which decreases expression of the gene, may have a protective role against susceptibility to AD.

  16. HSF1 stress response pathway regulates autophagy receptor SQSTM1/p62-associated proteostasis.

    PubMed

    Watanabe, Yoshihisa; Tsujimura, Atsushi; Taguchi, Katsutoshi; Tanaka, Masaki

    2017-01-02

    Proteostasis is important for protecting cells from harmful proteins and is mainly controlled by the HSF1 (heat shock transcription factor 1) stress response pathway. This pathway facilitates protein refolding by molecular chaperones; however, it is unclear whether it functions in autophagy or inclusion formation. The autophagy receptor SQSTM1/p62 is involved in selective autophagic clearance and inclusion formation by harmful proteins, and its phosphorylation at S349, S403, and S407 is required for binding to substrates. Here, we demonstrate that casein kinase 1 phosphorylates the SQSTM1 S349 residue when harmful proteins accumulate. Investigation of upstream factors showed that both SQSTM1 S349 and SQSTM1 S403 residues were phosphorylated in an HSF1 dependent manner. Inhibition of SQSTM1 phosphorylation suppressed inclusion formation by ubiquitinated proteins and prevented colocalization of SQSTM1 with aggregation-prone proteins. Moreover, HSF1 inhibition impaired aggregate-induced autophagosome formation and elimination of protein aggregates. Our findings indicate that HSF1 triggers SQSTM1-mediated proteostasis.

  17. HSF1 stress response pathway regulates autophagy receptor SQSTM1/p62-associated proteostasis

    PubMed Central

    Watanabe, Yoshihisa; Tsujimura, Atsushi; Taguchi, Katsutoshi; Tanaka, Masaki

    2017-01-01

    ABSTRACT Proteostasis is important for protecting cells from harmful proteins and is mainly controlled by the HSF1 (heat shock transcription factor 1) stress response pathway. This pathway facilitates protein refolding by molecular chaperones; however, it is unclear whether it functions in autophagy or inclusion formation. The autophagy receptor SQSTM1/p62 is involved in selective autophagic clearance and inclusion formation by harmful proteins, and its phosphorylation at S349, S403, and S407 is required for binding to substrates. Here, we demonstrate that casein kinase 1 phosphorylates the SQSTM1 S349 residue when harmful proteins accumulate. Investigation of upstream factors showed that both SQSTM1 S349 and SQSTM1 S403 residues were phosphorylated in an HSF1 dependent manner. Inhibition of SQSTM1 phosphorylation suppressed inclusion formation by ubiquitinated proteins and prevented colocalization of SQSTM1 with aggregation-prone proteins. Moreover, HSF1 inhibition impaired aggregate-induced autophagosome formation and elimination of protein aggregates. Our findings indicate that HSF1 triggers SQSTM1-mediated proteostasis. PMID:27846364

  18. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions

    PubMed Central

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul

    2015-01-01

    ABSTRACT HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1

  19. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions.

    PubMed

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul; Melikyan, Gregory B

    2015-09-01

    HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1 receptor antagonist, NF

  20. Molecular Recognition at Purine and Pyrimidine Nucleotide (P2) Receptors

    PubMed Central

    Jacobson, Kenneth A.; Constanzi, Stefano; Ohno, Michihiro; Joshi, Bhalchandra V.; Besada, Pedro; Xu, Bin; Tchilibon, Susanna

    2015-01-01

    In comparison to other classes of cell surface receptors, the medicinal chemistry at P2X (ligand-gated ion channels) and P2Y (G protein-coupled) nucleotide receptors has been relatively slow to develop. Recent effort to design selective agonists and antagonists based on a combination of library screening, empirical modification of known ligands, and rational design have led to the introduction of potent antagonists of the P2X1 (derivatives of pyridoxal phosphates and suramin), P2X3 (A-317491), P2X7 (derivatives of the isoquinoline KN-62), P2Y1 (nucleotide analogues MRS 2179 and MRS 2279), P2Y2 (thiouracil derivatives such as AR-C126313), and P2Y12 (nucleotide/nucleoside analogues AR-C69931X and AZD6140) receptors. A variety of native agonist ligands (ATP, ADP, UTP, UDP, and UDP-glucose) are currently the subject of structural modification efforts to improve selectivity. MRS2365 is a selective agonist for P2Y1 receptors. The dinucleotide INS 37217 potently activates the P2Y2 receptor. UTP-γ-S and UDP-β-S are selective agonists for P2Y2/P2Y4 and P2Y6 receptors, respectively. The current knowledge of the structures of P2X and P2Y receptors, is derived mainly from mutagenesis studies. Site-directed mutagenesis has shown that ligand recognition in the human P2Y1 receptor involves individual residues of both the TMs (3, 5, 6, and 7), as well as EL 2 and 3. The binding of the negatively-charged phosphate moiety is dependent on positively charged lysine and arginine residues near the exofacial side of TMs 3 and 7. PMID:15078212

  1. 78 FR 41888 - Airworthiness Directives; AgustaWestland S.p.A. (Type Certificate Previously Held by Agusta S.p.A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ...-0604; Directorate Identifier 2012-SW-110-AD] RIN 2120-AA64 Airworthiness Directives; AgustaWestland S.p.A. (Type Certificate Previously Held by Agusta S.p.A.) Helicopters AGENCY: Federal Aviation... (AD): AgustaWestland S.p.A. (Type Certificate Formerly Held By Agusta S.p.A.) Helicopters: Docket No...

  2. 78 FR 54596 - Airworthiness Directives; AgustaWestland S.p.A. (Type Certificate Formerly Held by Agusta S.p.A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ...-0751; Directorate Identifier 2012-SW-051-AD] RIN 2120-AA64 Airworthiness Directives; AgustaWestland S.p.A. (Type Certificate Formerly Held by Agusta S.p.A) (Agusta) Helicopters AGENCY: Federal Aviation... airworthiness directive (AD): Agustawestland S.p.A. (Type Certificate Formerly Held by Augsta S.p.A) (Agusta...

  3. Synergistic effects of adenosine A1 and P2Y receptor stimulation on calcium mobilization and PKC translocation in DDT1 MF-2 cells.

    PubMed

    Fredholm, Bertil B; Assender, Jean W; Irenius, Eva; Kodama, Noriko; Saito, Naoaki

    2003-06-01

    1. The effect of adenosine analogues and of nucleotides, alone or in combination, on intracellular calcium, accumulation of inositol (1,4,5) trisphosphate (InsP3), and on activation of protein kinase C (PKC) was studied in DDT1 MF2 cells derived from a Syrian hamster myosarcoma. These cells were found to express mRNA for A1 and some as yet unidentified P2Y receptor(s). 2. Activation of either receptor type stimulated the production of InsP3 and raised intracellular calcium in DDT1 MF2 cells. Similarly, the A1 selective agonist N6-cyclopentyladenosine (CPA) increased PKC-dependent phosphorylation of the substrate MBP(4-14) and induced a PKC translocation to the plasma membrane as determined using [3H]-phorbol dibutyrate (PDBu) binding in DDT1 MF-2 cells. However, neither adenosine nor CPA induced a significant translocation of transiently transfected gamma-PKC-GFP from the cytosol to the cell membrane. In contrast to adenosine analogues, ATP and UTP also caused a rapid but transient translocation of gamma-PKC-GFP and activation of PKC. 3. Doses of the A1 agonist CPA and of ATP or UTP per se caused barely detectable increases in intracellular Ca2+ but when combined, they caused an almost maximal stimulation. Similarly, adenosine (0.6 microM) and UTP (or ATP, 2.5 microM), which per se caused no detectable translocation of either gamma- or epsilon-PKC-GFP, caused when combined a very clear-cut translocation of both PKC subforms, albeit with different time courses. These results show that simultaneous activation of P2Y and adenosine A1 receptors synergistically increases Ca2+ transients and translocation of PKC in DDT1 MF-2 cells. Since adenosine is rapidly formed by breakdown of extracellular ATP, such interactions may be biologically important.

  4. Polymorphisms in exons 1B and 1C of the type I interleukin-1 receptor gene in patients with endometriosis.

    PubMed

    D'Amora, Paulo; Sato, Hélio; Girão, Manoel J B C; Silva, Ismael D C G; Schor, Eduardo

    2006-09-01

    To study possible correlation between the prevalence of polymorphisms in the type I interleukin-1 receptor gene and pelvic endometriosis. Genotypes of 223 women were analyzed: 109 women with surgically and histologically confirmed endometriosis and 114 healthy women. Distributions of two single-base polymorphisms of the human interleukin-1 receptor type I (IL-1RI) gene were evaluated: PstI, due to a C-->T transition in exon 1B and BsrBI a C-->A transition at position 52 in exon 1C. Polymorphisms were detected by polymerase chain reaction (PCR) followed by restriction fragment length polymorphism analysis (RFLP) resolved on 3% agarose gels stained with ethidium bromide. Genotypes for PstI polymorphisms did not differ significantly among control and endometriosis (P = 0.058). However, in relation to BsrBI polymorphism, protective risk was observed for the development of endometriosis [OR 0.39-IC 95% (0.2-0.9)]. BsrBI heterozygote genotype (C/A) showed protective effect against endometriosis development.

  5. Crystal structure of extracellular domain of human lectin-like transcript 1 (LLT1), the ligand for natural killer receptor-P1A.

    PubMed

    Kita, Shunsuke; Matsubara, Haruki; Kasai, Yoshiyuki; Tamaoki, Takaharu; Okabe, Yuki; Fukuhara, Hideo; Kamishikiryo, Jun; Krayukhina, Elena; Uchiyama, Susumu; Ose, Toyoyuki; Kuroki, Kimiko; Maenaka, Katsumi

    2015-06-01

    Emerging evidence has revealed the pivotal roles of C-type lectin-like receptors (CTLRs) in the regulation of a wide range of immune responses. Human natural killer cell receptor-P1A (NKRP1A) is one of the CTLRs and recognizes another CTLR, lectin-like transcript 1 (LLT1) on target cells to control NK, NKT and Th17 cells. The structural basis for the NKRP1A-LLT1 interaction was limitedly understood. Here, we report the crystal structure of the ectodomain of LLT1. The plausible receptor-binding face of the C-type lectin-like domain is flat, and forms an extended β-sheet. The residues of this face are relatively conserved with another CTLR, keratinocyte-associated C-type lectin, which binds to the CTLR member, NKp65. A LLT1-NKRP1A complex model, prepared using the crystal structures of LLT1 and the keratinocyte-associated C-type lectin-NKp65 complex, reasonably satisfies the charge consistency and the conformational complementarity to explain a previous mutagenesis study. Furthermore, crystal packing and analytical ultracentrifugation revealed dimer formation, which supports a complex model. Our results provide structural insights for understanding the binding modes and signal transduction mechanisms, which are likely to be conserved in the CTLR family, and for further rational drug design towards regulating the LLT1 function. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Type 1 angiotensin II receptor-associated protein ARAP1 binds and recycles the receptor to the plasma membrane.

    PubMed

    Guo, Deng-Fu; Chenier, Isabelle; Tardif, Valerie; Orlov, Sergei N; Inagami, Tadashi

    2003-10-31

    The carboxyl terminus of the type 1 angiotensin II receptor (AT(1)) plays an important role in receptor phosphorylation, desensitization, and internalization. The yeast two-hybrid system was employed to isolate proteins associated with the carboxyl terminal region of the AT(1A) receptor. In the present study, we report the isolation of a novel protein, ARAP1, which promotes recycling of AT(1A) to the plasma membrane in HEK-293 cells. ARAP1 cDNA encodes a 493-amino-acid protein and its mRNA is ubiquitously expressed in rat tissues. A complex of ARAP1 and AT(1A) was observed by immunoprecipitation and Western blotting in HEK-293 cells. In the presence of ARAP1, recycled AT(1A) showed a significant Ca(2+) release response to a second stimulation by Ang II 30 min after the first treatment. Immunocytochemical analysis revealed co-localization of recycled AT(1A) and ARAP1 in the plasma membrane 45 min after the initial exposure to Ang II. Taken together, these results indicate a role for ARAP1 in the recycling of the AT(1) receptor to the plasma membrane with presumable concomitant recovery of receptor signal functions.

  7. A Transcriptional Regulatory Network Containing Nuclear Receptors and Long Noncoding RNAs Controls Basal and Drug-Induced Expression of Cytochrome P450s in HepaRG Cells.

    PubMed

    Chen, Liming; Bao, Yifan; Piekos, Stephanie C; Zhu, Kexin; Zhang, Lirong; Zhong, Xiao-Bo

    2018-07-01

    Cytochrome P450 (P450) enzymes are responsible for metabolizing drugs. Expression of P450s can directly affect drug metabolism, resulting in various outcomes in therapeutic efficacy and adverse effects. Several nuclear receptors are transcription factors that can regulate expression of P450s at both basal and drug-induced levels. Some long noncoding RNAs (lncRNAs) near a transcription factor are found to participate in the regulatory functions of the transcription factors. The aim of this study is to determine whether there is a transcriptional regulatory network containing nuclear receptors and lncRNAs controlling both basal and drug-induced expression of P450s in HepaRG cells. Small interfering RNAs or small hairpin RNAs were applied to knock down four nuclear receptors [hepatocyte nuclear factor 1 α (HNF1 α ), hepatocyte nuclear factor 4 α (HNF4 α ), pregnane X receptor (PXR), and constitutive androstane receptor (CAR)] as well as two lncRNAs [HNF1 α antisense RNA 1 (HNF1 α -AS1) and HNF4 α antisense RNA 1 (HNF4 α -AS1)] in HepaRG cells with or without treatment of phenobarbital or rifampicin. Expression of eight P450 enzymes was examined in both basal and drug-induced levels. CAR and PXR mainly regulated expression of specific P450s. HNF1 α and HNF4 α affected expression of a wide range of P450s as well as other transcription factors. HNF1 α and HNF4 α controlled the expression of their neighborhood lncRNAs, HNF1 α -AS1 and HNF4 α -AS1, respectively. HNF1 α -AS1 and HNF4 α -AS1 was also involved in the regulation of P450s and transcription factors in diverse manners. Altogether, our study concludes that a transcription regulatory network containing the nuclear receptors and lncRNAs controls both basal and drug-induced expression of P450s in HepaRG cells. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Dopamine modulation of transient receptor potential vanilloid type 1 (TRPV1) receptor in dorsal root ganglia neurons.

    PubMed

    Chakraborty, Saikat; Rebecchi, Mario; Kaczocha, Martin; Puopolo, Michelino

    2016-03-15

    The transient receptor potential vanilloid type 1 (TRPV1) receptor plays a key role in the modulation of nociceptor excitability. To address whether dopamine can modulate the activity of TRPV1 channels in nociceptive neurons, the effects of dopamine and dopamine receptor agonists were tested on the capsaicin-activated current recorded from acutely dissociated small diameter (<27 μm) dorsal root ganglia (DRG) neurons. Dopamine or SKF 81297 (an agonist at D1/D5 receptors), caused inhibition of both inward and outward currents by ∼60% and ∼48%, respectively. The effect of SKF 81297 was reversed by SCH 23390 (an antagonist at D1/D5 receptors), confirming that it was mediated by activation of D1/D5 dopamine receptors. In contrast, quinpirole (an agonist at D2 receptors) had no significant effect on the capsaicin-activated current. Inhibition of the capsaicin-activated current by SKF 81297 was mediated by G protein coupled receptors (GPCRs), and highly dependent on external calcium. The inhibitory effect of SKF 81297 on the capsaicin-activated current was not affected when the protein kinase A (PKA) activity was blocked with H89, or when the protein kinase C (PKC) activity was blocked with bisindolylmaleimide II (BIM). In contrast, when the calcium-calmodulin-dependent protein kinase II (CaMKII) was blocked with KN-93, the inhibitory effect of SKF 81297 on the capsaicin-activated current was greatly reduced, suggesting that activation of D1/D5 dopamine receptors may be preferentially linked to CaMKII activity. We suggest that modulation of TRPV1 channels by dopamine in nociceptive neurons may represent a way for dopamine to modulate incoming noxious stimuli. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  9. Role of the metabotropic P2Y(4) receptor during hypoglycemia: cross talk with the ionotropic NMDAR1 receptor.

    PubMed

    Cavaliere, Fabio; Amadio, Susanna; Angelini, Daniela F; Sancesario, Giuseppe; Bernardi, Giorgio; Volonté, Cinzia

    2004-10-15

    It is well established that both extracellular ATP and glutamate exert a critical role during metabolic impairment, that several P2 receptor subunits are directly involved in this action and that a strong relationship exists between glutamatergic and purinergic signals. Therefore, here we studied the molecular behavior of the purinergic metabotropic P2Y(4) and the glutamatergic ionotropic NMDAR1 receptors during hypoglycemic cell death. We find that these proteins are oppositely modulated during glucose starvation (P2Y(4) is induced, whereas NMDAR1 is inhibited) and that both P2 and NMDA antagonists can restore basal protein expression levels. Moreover, double immunofluorescence experiments with confocal laser microscopy reveal co-localization at the membrane level between the P2Y(4) and NMDAR1 receptors, in both homologous (cerebellar granule neurons) and heterologous (Hek-293) cellular systems. This is furthermore confirmed by co-immunoprecipitation experiments. Finally, when we express the P2Y(4) receptor in the heterologous SH-SY5Y neuronal cell line, hypoglycemia then causes severe cell death and simultaneous downregulation of the NMDAR1 protein. In summary, our work establishes a potential molecular interplay between P2Y(4) and NMDAR1 receptors during glucose deprivation and the causative role of the P2Y(4) during cell death.

  10. Comparison of hippocampal G protein activation by 5-HT(1A) receptor agonists and the atypical antipsychotics clozapine and S16924.

    PubMed

    Newman-Tancredi, A; Rivet, J-M; Cussac, D; Touzard, M; Chaput, C; Marini, L; Millan, M J

    2003-09-01

    This study employed [(35)S]guanosine 5'- O-(3-thiotriphosphate) ([(35)S]GTPgammaS) binding to compare the actions of antipsychotic agents known to stimulate cloned, human 5-HT(1A) receptors with those of reference agonists at postsynaptic 5-HT(1A) receptors. In rat hippocampal membranes, the following order of efficacy was observed (maximum efficacy, E(max), values relative to 5-HT=100): (+)8-OH-DPAT (85), flesinoxan (62), eltoprazine (60), S14506 (59), S16924 (48), buspirone (41), S15535 (22), clozapine (22), ziprasidone (21), pindolol (7), p-MPPI (0), WAY100,635 (0), spiperone (0). Despite differences in species and tissue source, the efficacy and potency (pEC(50)) of agonists (with the exception of clozapine) correlated well with those determined previously at human 5-HT(1A) receptors expressed in Chinese hamster ovary (CHO) cells. In contrast, clozapine was more potent at hippocampal membranes. The selective antagonists p-MPPI and WAY100,635 abolished stimulation of binding by (+)8-OH-DPAT, clozapine and S16924 (p-MPPI), indicating that these actions were mediated specifically by 5-HT(1A) receptors. Clozapine and S16924 also attenuated 5-HT- and (+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding, consistent with partial agonist properties. In [(35)S]GTPgammaS autoradiographic studies, 5-HT-induced stimulation, mediated through 5-HT(1A) receptors, was more potent in the septum (pEC(50) approximately 6.5) than in the dentate gyrus of the hippocampus (pEC(50) approximately 5) suggesting potential differences in coupling efficiency or G protein expression. Though clozapine (30 and 100 microM) did not enhance [(35)S]GTPgammaS labelling in any structure, S16924 (10 micro M) modestly increased [(35)S]GTPgammaS labelling in the dentate gyrus. On the other hand, both these antipsychotic agents attenuated 5-HT (10 microM)-stimulated [(35)S]GTPgammaS binding in the dentate gyrus and septum. In conclusion, clozapine, S16924 and ziprasidone act as partial agonists for G

  11. Ribavirin Contributes to Hepatitis C Virus Suppression by Augmenting pDC Activation and Type 1 IFN Production.

    PubMed

    Wang, Yang; McGivern, David R; Cheng, Liang; Li, Guangming; Lemon, Stanley M; Niu, Junqi; Su, Lishan; Reszka-Blanco, Natalia J

    2015-01-01

    Ribavirin is used as a component of combination therapies for the treatment of chronic hepatitis C virus (HCV) infection together with pegylated interferon and/or direct-acting antiviral drugs. Its mechanism of action, however, is not clear. Direct antiviral activity and immunomodulatory functions have been implicated. Plasmacytoid dendritic cells (pDCs) are the principal source of type 1 interferon during viral infection. The interaction of pDCs with HCV-infected hepatocytes is the subject of intense recent investigation, but the effect of ribavirin on pDC activation has not been evaluated. In this study we showed that ribavirin augments toll-like receptors 7 and 9-mediated IFNα/β expression from pDCs and up-regulated numerous interferon-stimulated genes. Using the H77S.3 HCV infection and replication system, we showed that ribavirin enhanced the ability of activated pDCs to inhibit HCV replication, correlated with elevated induction of IFNα. Our findings provide novel evidence that ribavirin contributes to HCV inhibition by augmenting pDCs-derived type 1 IFN production.

  12. Ribavirin Contributes to Hepatitis C Virus Suppression by Augmenting pDC Activation and Type 1 IFN Production

    PubMed Central

    Wang, Yang; McGivern, David R; Cheng, Liang; Li, Guangming; Lemon, Stanley M; Niu, Junqi; Su, Lishan; Reszka-Blanco, Natalia J

    2015-01-01

    Ribavirin is used as a component of combination therapies for the treatment of chronic hepatitis C virus (HCV) infection together with pegylated interferon and/or direct-acting antiviral drugs. Its mechanism of action, however, is not clear. Direct antiviral activity and immunomodulatory functions have been implicated. Plasmacytoid dendritic cells (pDCs) are the principal source of type 1 interferon during viral infection. The interaction of pDCs with HCV-infected hepatocytes is the subject of intense recent investigation, but the effect of ribavirin on pDC activation has not been evaluated. In this study we showed that ribavirin augments toll-like receptors 7 and 9-mediated IFNα/β expression from pDCs and up-regulated numerous interferon-stimulated genes. Using the H77S.3 HCV infection and replication system, we showed that ribavirin enhanced the ability of activated pDCs to inhibit HCV replication, correlated with elevated induction of IFNα. Our findings provide novel evidence that ribavirin contributes to HCV inhibition by augmenting pDCs-derived type 1 IFN production. PMID:26274905

  13. Neurokinin-1 receptor agonists bias therapeutic dendritic cells to induce type 1 immunity by licensing host dendritic cells to produce IL-12

    PubMed Central

    Janelsins, Brian M.; Sumpter, Tina L.; Tkacheva, Olga A.; Rojas-Canales, Darling M.; Erdos, Geza; Mathers, Alicia R.; Shufesky, William J.; Storkus, Walter J.; Falo, Louis D.; Morelli, Adrian E.; Larregina, Adriana T.

    2013-01-01

    Substance-P and hemokinin-1 are proinflammatory neuropeptides with potential to promote type 1 immunity through agonistic binding to neurokinin-1 receptor (NK1R). Dendritic cells (DCs) are professional antigen-presenting cells that initiate and regulate the outcome of innate and adaptive immune responses. Immunostimulatory DCs are highly desired for the development of positive immunization techniques. DCs express functional NK1R; however, regardless of their potential DC-stimulatory function, the ability of NK1R agonists to promote immunostimulatory DCs remains unexplored. Here, we demonstrate that NK1R signaling activates therapeutic DCs capable of biasing type 1 immunity by inhibition of interleukin-10 (IL-10) synthesis and secretion, without affecting their low levels of IL-12 production. The potent type 1 effector immune response observed following cutaneous administration of NK1R-signaled DCs required their homing in skin-draining lymph nodes (sDLNs) where they induced inflammation and licensed endogenous-conventional sDLN-resident and -recruited inflammatory DCs to secrete IL-12. Our data demonstrate that NK1R signaling promotes immunostimulatory DCs, and provide relevant insight into the mechanisms used by neuromediators to regulate innate and adaptive immune responses. PMID:23365459

  14. Identification of H209 as Essential for pH 8-Triggered Receptor-Independent Syncytium Formation by S Protein of Mouse Hepatitis Virus A59.

    PubMed

    Li, Pei; Shan, Yiwei; Zheng, Wangliang; Ou, Xiuyuan; Mi, Dan; Mu, Zhixia; Holmes, Kathryn V; Qian, Zhaohui

    2018-06-01

    The spike glycoprotein (S) of murine coronavirus mouse hepatitis virus (MHV) strain A59 uses murine carcinoembryonic antigen-related cell adhesion molecule 1a as its receptor for cell entry, but S protein can also be triggered in the absence of receptor by pH 8.0 alone at 37°C. The mechanism by which conformational changes of this S glycoprotein can be triggered by pH 8.0 has not yet been determined. Here, we show that MHV-A59 S protein is triggered by pH 8.0 at 37°C to induce receptor-independent syncytium (RIS) formation on 293T cells, and that the conformational changes in S proteins triggered by pH 8.0 are very similar to those triggered by receptor binding. We systemically mutated each of 15 histidine residues in S protein and found that H209 is essential for pH 8.0-triggered RIS formation, while H179, H441, H643, and H759 also play important roles in this process. Replacement of H209 with Ala had no effect on receptor binding, but in murine 17Cl.1 cells mutant H209A MHV-A59 showed delayed growth kinetics and was readily outcompeted by wild-type virus when mixed together, indicating that the H209A mutation caused a defect in virus fitness. Finally, the H209A mutation significantly increased the thermostability of S protein in its prefusion conformation, which may raise the energy barrier for conformational change of S protein required for membrane fusion and lead to a decrease in virus fitness in cell culture. Thus, MHV-A59 may have evolved to lower the stability of its S protein in order to increase virus fitness. IMPORTANCE Enveloped viruses enter cells through fusion of viral and cellular membranes, and the process is mediated by interactions between viral envelope proteins and their host receptors. In the prefusion conformation, viral envelope proteins are metastable, and activation to the fusion conformation is tightly regulated, since premature activation would lead to loss of viral infectivity. The stability of viral envelope proteins greatly

  15. 78 FR 37162 - Airworthiness Directives; Agusta S.p.A. (Type Certificate Currently Held by AgustaWestland S.p.A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ...-0518; Directorate Identifier 2009-SW-021-AD] RIN 2120-AA64 Airworthiness Directives; Agusta S.p.A. (Type Certificate Currently Held by AgustaWestland S.p.A) (Agusta) Helicopters AGENCY: Federal Aviation....p.A. (Type Certificate Currently Held By Agustawestland S.p.A.) (Agusta): Docket No. FAA-2013-0518...

  16. Common low-density lipoprotein receptor p.G116S variant has a large effect on plasma low-density lipoprotein cholesterol in circumpolar inuit populations.

    PubMed

    Dubé, Joseph B; Wang, Jian; Cao, Henian; McIntyre, Adam D; Johansen, Christopher T; Hopkins, Scarlett E; Stringer, Randa; Hosseinzadeh, Siyavash; Kennedy, Brooke A; Ban, Matthew R; Young, T Kue; Connelly, Philip W; Dewailly, Eric; Bjerregaard, Peter; Boyer, Bert B; Hegele, Robert A

    2015-02-01

    Inuit are considered to be vulnerable to cardiovascular disease because their lifestyles are becoming more Westernized. During sequence analysis of Inuit individuals at extremes of lipid traits, we identified 2 nonsynonymous variants in low-density lipoprotein receptor (LDLR), namely p.G116S and p.R730W. Genotyping these variants in 3324 Inuit from Alaska, Canada, and Greenland showed they were common, with allele frequencies 10% to 15%. Only p.G116S was associated with dyslipidemia: the increase in LDL cholesterol was 0.54 mmol/L (20.9 mg/dL) per allele (P=5.6×10(-49)), which was >3× larger than the largest effect sizes seen with other common variants in other populations. Carriers of p.G116S had a 3.02-fold increased risk of hypercholesterolemia (95% confidence interval, 2.34-3.90; P=1.7×10(-17)), but did not have classical familial hypercholesterolemia. In vitro, p.G116S showed 60% reduced ligand-binding activity compared with wild-type receptor. In contrast, p.R730W was associated with neither LDL cholesterol level nor altered in vitro activity. LDLR p.G116S is thus unique: a common dysfunctional variant in Inuit whose large effect on LDL cholesterol may have public health implications. © 2014 American Heart Association, Inc.

  17. Targeting Aberrant p70S6K Activation for Estrogen Receptor-Negative Breast Cancer Prevention.

    PubMed

    Wang, Xiao; Yao, Jun; Wang, Jinyang; Zhang, Qingling; Brady, Samuel W; Arun, Banu; Seewaldt, Victoria L; Yu, Dihua

    2017-11-01

    The prevention of estrogen receptor-negative (ER-) breast cancer remains a major challenge in the cancer prevention field, although antiestrogen and aromatase inhibitors have shown adequate efficacy in preventing estrogen receptor-positive (ER + ) breast cancer. Lack of commonly expressed, druggable targets is a major obstacle for meeting this challenge. Previously, we detected the activation of Akt signaling pathway in atypical hyperplasic early-stage lesions of patients. In the current study, we found that Akt and the downstream 70 kDa ribosomal protein S6 kinase (p70S6K) signaling pathway was highly activated in ER - premalignant breast lesions and ER - breast cancer. In addition, p70S6K activation induced transformation of ER - human mammary epithelial cells (hMEC). Therefore, we explored the potential of targeting Akt/p70S6K in the p70S6K activated, ER - hMEC models and mouse mammary tumor models for the prevention of ER - breast cancer. We found that a clinically applicable Akt/p70S6K dual inhibitor, LY2780301, drastically decreased proliferation of hMECs with ErbB2-induced p70S6K activation via Cyclin B1 inhibition and cell-cycle blockade at G 0 -G 1 phase, while it did not significantly reverse the abnormal acinar morphology of these hMECs. In addition, a brief treatment of LY2780301 in MMTV- neu mice that developed atypical hyperplasia (ADH) and mammary intraepithelial neoplasia (MIN) lesions with activated p70S6K was sufficient to suppress S6 phosphorylation and decrease cell proliferation in hyperplasic MECs. In summary, targeting the aberrant Akt/p70S6K activation in ER - hMEC models in vitro and in the MMTV- neu transgenic mouse model in vivo effectively inhibited Akt/S6K signaling and reduced proliferation of hMECs in vitro and ADH/MIN lesions in vivo , indicating its potential in prevention of p70S6K activated ER - breast cancer. Cancer Prev Res; 10(11); 641-50. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. The future of type 1 cannabinoid receptor allosteric ligands.

    PubMed

    Alaverdashvili, Mariam; Laprairie, Robert B

    2018-02-01

    Allosteric modulation of the type 1 cannabinoid receptor (CB1R) holds great therapeutic potential. This is because allosteric modulators do not possess intrinsic efficacy, but instead augment (positive allosteric modulation) or diminish (negative allosteric modulation) the receptor's response to endogenous ligand. Consequently, CB1R allosteric modulators have an effect ceiling which allows for the tempering of CB1R signaling without the desensitization, tolerance, dependence, and psychoactivity associated with orthosteric compounds. Pain, movement disorders, epilepsy, obesity are all potential therapeutic targets for CB1R allosteric modulation. Several challenges exist for the development of CB1R allosteric modulators, such as receptor subtype specificity, translation to in vivo systems, and mixed allosteric/agonist/inverse agonist activity. Despite these challenges, elucidation of crystal structures of CB1R and compound design based on structure-activity relationships will advance the field. In this review, we will cover recent progress for CB1R allosteric modulators and discuss the future promise of this research.

  19. P2X and P2Y receptors as possible targets of therapeutic manipulations in CNS illnesses.

    PubMed

    Köles, Laszlo; Furst, Susanna; Illes, Peter

    2005-03-01

    Adenine and/or uridine nucleotide-sensitive receptors are classified into two types belonging to the ligand-gated ionotropic family (P2X) and the metabotropic, G-protein-coupled family (P2Y). In humans, seven different P2X receptors (P2X(1-7)) and eight different P2Y receptors (P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11-14)) have been detected hitherto. All P2 receptors are expressed in the CNS, with the preferential expression of the P2X(2), P2X(4), P2X(6) and P2Y(1) receptors in neurons. In addition to the neurotransmitter and modulator functions, neurite outgrowth, proliferation of glial cells and the expression of transmitter receptors at target cells have also been suggested to be regulated by extracellular nucleotides in the nervous system. In spite of the expanding knowledge in the purinergic research field, the present therapeutic utilization of P2 receptor ligands is mostly related to peripheral diseases such as thromboembolic disorders and cystic fibrosis. In this review we provide some evidence that P2 receptors play an important role in the regulation of CNS functions related to hippocampal activity, the mesolimbic dopaminergic system and the nociceptive system. The role of purinergic receptors located on astrocytes/microglia and implications of these receptors for neurodegenerative/neuroinflammatory disorders, CNS injury and epilepsy will be highlighted as well. (c) 2005 Prous Science. All rights reserved.

  20. 77 FR 73273 - Airworthiness Directives; Agusta S.p.A. (Type Certificate Currently Held by AgustaWestland S.p.A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... Airworthiness Directives; Agusta S.p.A. (Type Certificate Currently Held by AgustaWestland S.p.A.) (Agusta.... Helicopters (Type Certificate Currently Held By AgustaWestland S.P.A.) (Agusta): Amendment 39-17281; Docket No... ``Mail'' address between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. Examining the...

  1. Dexmedetomidine Prevents Excessive γ-Aminobutyric Acid Type A Receptor Function after Anesthesia.

    PubMed

    Wang, Dian-Shi; Kaneshwaran, Kirusanthy; Lei, Gang; Mostafa, Fariya; Wang, Junhui; Lecker, Irene; Avramescu, Sinziana; Xie, Yu-Feng; Chan, Nathan K; Fernandez-Escobar, Alejandro; Woo, Junsung; Chan, Darren; Ramsey, Amy J; Sivak, Jeremy M; Lee, C Justin; Bonin, Robert P; Orser, Beverley A

    2018-06-08

    Postoperative delirium is associated with poor long-term outcomes and increased mortality. General anesthetic drugs may contribute to delirium because they increase cell-surface expression and function of α5 subunit-containing γ-aminobutyric acid type A receptors, an effect that persists long after the drugs have been eliminated. Dexmedetomidine, an α2 adrenergic receptor agonist, prevents delirium in patients and reduces cognitive deficits in animals. Thus, it was postulated that dexmedetomidine prevents excessive function of α5 γ-aminobutyric acid type A receptors. Injectable (etomidate) and inhaled (sevoflurane) anesthetic drugs were studied using cultured murine hippocampal neurons, cultured murine and human cortical astrocytes, and ex vivo murine hippocampal slices. γ-Aminobutyric acid type A receptor function and cell-signaling pathways were studied using electrophysiologic and biochemical methods. Memory and problem-solving behaviors were also studied. The etomidate-induced sustained increase in α5 γ-aminobutyric acid type A receptor cell-surface expression was reduced by dexmedetomidine (mean ± SD, etomidate: 146.4 ± 51.6% vs. etomidate + dexmedetomidine: 118.4 ± 39.1% of control, n = 8 each). Dexmedetomidine also reduced the persistent increase in tonic inhibitory current in hippocampal neurons (etomidate: 1.44 ± 0.33 pA/pF, n = 10; etomidate + dexmedetomidine: 1.01 ± 0.45 pA/pF, n = 9). Similarly, dexmedetomidine prevented a sevoflurane-induced increase in the tonic current. Dexmedetomidine stimulated astrocytes to release brain-derived neurotrophic factor, which acted as a paracrine factor to reduce excessive α5 γ-aminobutyric acid type A receptor function in neurons. Finally, dexmedetomidine attenuated memory and problem-solving deficits after anesthesia. Dexmedetomidine prevented excessive α5 γ-aminobutyric acid type A receptor function after anesthesia. This novel α2 adrenergic receptor- and brain-derived neurotrophic factor

  2. Agonists and antagonists for P2 receptors

    PubMed Central

    Jacobson, Kenneth A.; Costanzi, Stefano; Joshi, Bhalchandra V.; Besada, Pedro; Shin, Dae Hong; Ko, Hyojin; Ivanov, Andrei A.; Mamedova, Liaman

    2015-01-01

    Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X2/3/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X2/3/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformation-ally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4 nM at the P2Y1 receptor, with >10 000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed. PMID:16805423

  3. Selective Activation of Sphingosine 1-Phosphate Receptors 1 and 3 Promotes Local Microvascular Network Growth

    PubMed Central

    Sefcik, Lauren S.; Petrie Aronin, Caren E.; Awojoodu, Anthony O.; Shin, Soo J.; Mac Gabhann, Feilim; MacDonald, Timothy L.; Wamhoff, Brian R.; Lynch, Kevin R.; Peirce, Shayn M.

    2011-01-01

    Proper spatial and temporal regulation of microvascular remodeling is critical to the formation of functional vascular networks, spanning the various arterial, venous, capillary, and collateral vessel systems. Recently, our group has demonstrated that sustained release of sphingosine 1-phosphate (S1P) from biodegradable polymers promotes microvascular network growth and arteriolar expansion. In this study, we employed S1P receptor-specific compounds to activate and antagonize different combinations of S1P receptors to elucidate those receptors most critical for promotion of pharmacologically induced microvascular network growth. We show that S1P1 and S1P3 receptors act synergistically to enhance functional network formation via increased functional length density, arteriolar diameter expansion, and increased vascular branching in the dorsal skinfold window chamber model. FTY720, a potent activator of S1P1 and S1P3, promoted a 107% and 153% increase in length density 3 and 7 days after implantation, respectively. It also increased arteriolar diameters by 60% and 85% 3 and 7 days after implantation. FTY720-stimulated branching in venules significantly more than unloaded poly(D, L-lactic-co-glycolic acid). When implanted on the mouse spinotrapezius muscle, FTY720 stimulated an arteriogenic response characterized by increased tortuosity and collateralization of branching microvascular networks. Our results demonstrate the effectiveness of S1P1 and S1P3 receptor-selective agonists (such as FTY720) in promoting microvascular growth for tissue engineering applications. PMID:20874260

  4. S1P/S1PR3 signaling mediated proliferation of pericytes via Ras/pERK pathway and CAY10444 had beneficial effects on spinal cord injury.

    PubMed

    Tang, Hai-Bin; Jiang, Xiao-Jian; Wang, Chen; Liu, Shi-Chang

    2018-04-15

    Pericytes have long been regarded merely to maintain structural and functional integrity of blood-brain barrier (BBB). Nevertheless, it has also been identified as a component of scar-forming stromal cells after spinal cord injury (SCI). In process of enlargement of spinal cavity after SCI, the number of pericytes increased and outnumbered astrocytes. However, the mechanism of proliferation of pericytes remains unclear. Sphingosine-1-phosphate (S1P) has been reported to play important roles in the formation of glia scar, but previous studies had paid more attention to the astrocytes. The present study aimed to observe the effects of S1P and S1P receptors (S1PRs) on proliferation of pericytes and investigate the underlying mechanism. By double immunostaining, we found that the number of PDGFRβ-positive pericytes was gradually increased and sealed the cavity, which surrounded by reactive astrocytes. Moreover, the subtype of S1PR3 was found to be induced by SCI and mainly expressed on pericytes. Further, by use of CAY10444, an inhibitor of S1PR3, we showed that S1P/S1PR3 mediated the proliferation of pericytes through Ras/pERK pathway. Moreover, CAY10444 was found to have the effects of enhancing neuronal survival, alleviating glial scar formation, and improving locomotion recovery after SCI. The results suggested that S1P/S1PR3 might be a promising target for clinical therapy for SCI. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Cannabinoid type-1 receptor signaling in central serotonergic neurons regulates anxiety-like behavior and sociability

    PubMed Central

    Häring, Martin; Enk, Vanessa; Aparisi Rey, Alejandro; Loch, Sebastian; Ruiz de Azua, Inigo; Weber, Tillmann; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat

    2015-01-01

    The endocannabinoid (eCB) system possesses neuromodulatory functions by influencing the release of various neurotransmitters, including γ-aminobutyric acid (GABA) and glutamate. A functional interaction between eCBs and the serotonergic system has already been suggested. Previously, we showed that cannabinoid type-1 (CB1) receptor mRNA and protein are localized in serotonergic neurons of the raphe nuclei, implying that the eCB system can modulate serotonergic functions. In order to substantiate the physiological role of the CB1 receptor in serotonergic neurons of the raphe nuclei, we generated serotonergic 5-hydroxytryptamine (5-HT) neuron-specific CB1 receptor-deficient mice, using the Cre/loxP system with a tamoxifen-inducible Cre recombinase under the control of the regulatory sequences of the tryptophan hydroxylase 2 gene (TPH2-CreERT2), thus, restricting the recombination to 5-HT neurons of the central nervous system (CNS). Applying several different behavioral paradigms, we revealed that mice lacking the CB1 receptor in serotonergic neurons are more anxious and less sociable than control littermates. Thus, we were able to show that functional CB1 receptor signaling in central serotonergic neurons modulates distinct behaviors in mice. PMID:26388750

  6. The effect of early trauma exposure on serotonin type 1B receptor expression revealed by reduced selective radioligand binding.

    PubMed

    Murrough, James W; Czermak, Christoph; Henry, Shannan; Nabulsi, Nabeel; Gallezot, Jean-Dominique; Gueorguieva, Ralitza; Planeta-Wilson, Beata; Krystal, John H; Neumaier, John F; Huang, Yiyun; Ding, Yu-Shin; Carson, Richard E; Neumeister, Alexander

    2011-09-01

    Serotonergic dysfunction is implicated in the pathogenesis of posttraumatic stress disorder (PTSD), and recent animal models suggest that disturbances in serotonin type 1B receptor function, in particular, may contribute to chronic anxiety. However, the specific role of the serotonin type 1B receptor has not been studied in patients with PTSD. To investigate in vivo serotonin type 1B receptor expression in individuals with PTSD, trauma-exposed control participants without PTSD (TC), and healthy (non-trauma-exposed) control participants (HC) using positron emission tomography and the recently developed serotonin type 1B receptor selective radiotracer [(11)C]P943. Cross-sectional positron emission tomography study under resting conditions. Academic and Veterans Affairs medical centers. Ninety-six individuals in 3 study groups: PTSD (n = 49), TC (n = 20), and HC (n = 27). Main Outcome Measure  Regional [(11)C]P943 binding potential (BP(ND)) values in an a priori-defined limbic corticostriatal circuit investigated using multivariate analysis of variance and multiple regression analysis. A history of severe trauma exposure in the PTSD and TC groups was associated with marked reductions in [(11)C]P943 BP(ND) in the caudate, the amygdala, and the anterior cingulate cortex. Participant age at first trauma exposure was strongly associated with low [(11)C]P943 BP(ND). Developmentally earlier trauma exposure also was associated with greater PTSD symptom severity and major depression comorbidity. These data suggest an enduring effect of trauma history on brain function and the phenotype of PTSD. The association of early age at first trauma and more pronounced neurobiological and behavioral alterations in PTSD suggests a developmental component in the cause of PTSD.

  7. Measurement of the 1s2s ^1S0 - 1s2p ^3P1 interval in helium-like silicon.

    NASA Astrophysics Data System (ADS)

    Redshaw, M.; Harry, R.; Myers, E. G.; Weatherford, C. A.

    2001-05-01

    Accurate calculation of the energy levels of helium-like ions is a basic problem in relativistic atomic theory. For the n=3D2 levels at moderate Z, published calculations give all ``structure'' but not all explicit QED contributions to order (Zα)^4 a.u.(D.R. Plante, W.R. Johnson and J. Sapirstein, Phys. Rev. A 49), 3519 (1994).^, (K.T. Cheng, M.H. Chen, W.R. Johnson and J. Sapirstein, Phys. Rev. A 50), 247 (1994).. Measurements of the 1s2p ^3P - 1s2s ^3S transitions, which lie in the vacuum ultra-violet, are barely precise enough to challenge the theory. However, the intercombination 1s2s ^1S0 - 1s2p ^3P1 interval lies in the infra-red for Z<40 and enables precision measurements using laser spectroscopy(E.G. Myers, J.K. Thompson, E.P. Gavathas, N.R. Claussen, J.D. Silver and D.J.H. Howie, Phys. Rev. Lett. 75), 3637 (1995).. We aim to measure this interval in Si^12+ using a foil-stripped 1 MeV/u ion beam from the Florida State Van de Graaff accelerator and a single-mode c.w. Nd:YAG laser at 1.319 μm. To obtain a sufficient transition probability, the Si^12+ beam is merged co-linearly with the laser light inside an ultra-high finesse build-up cavity. The results should provide a clear test of current and developing calculations of QED contributions in two-electron ions.

  8. Molecular Determinants of Phosphatidylinositol 4,5-Bisphosphate (PI(4,5)P2) Binding to Transient Receptor Potential V1 (TRPV1) Channels*

    PubMed Central

    Poblete, Horacio; Oyarzún, Ingrid; Olivero, Pablo; Comer, Jeffrey; Zuñiga, Matías; Sepulveda, Romina V.; Báez-Nieto, David; González Leon, Carlos; González-Nilo, Fernando; Latorre, Ramón

    2015-01-01

    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been recognized as an important activator of certain transient receptor potential (TRP) channels. More specifically, TRPV1 is a pain receptor activated by a wide range of stimuli. However, whether or not PI(4,5)P2 is a TRPV1 agonist remains open to debate. Utilizing a combined approach of mutagenesis and molecular modeling, we identified a PI(4,5)P2 binding site located between the TRP box and the S4-S5 linker. At this site, PI(4,5)P2 interacts with the amino acid residues Arg-575 and Arg-579 in the S4-S5 linker and with Lys-694 in the TRP box. We confirmed that PI(4,5)P2 behaves as a channel agonist and found that Arg-575, Arg-579, and Lys-694 mutations to alanine reduce PI(4,5)P2 binding affinity. Additionally, in silico mutations R575A, R579A, and K694A showed that the reduction in binding affinity results from the delocalization of PI(4,5)P2 in the binding pocket. Molecular dynamics simulations indicate that PI(4,5)P2 binding induces conformational rearrangements of the structure formed by S6 and the TRP domain, which cause an opening of the lower TRPV1 channel gate. PMID:25425643

  9. Insulin-like growth factor type-1 receptor down-regulation associated with dwarfism in Holstein calves.

    PubMed

    Blum, J W; Elsasser, T H; Greger, D L; Wittenberg, S; de Vries, F; Distl, O

    2007-10-01

    Perturbations in endocrine functions can impact normal growth. Endocrine traits were studied in three dwarf calves exhibiting retarded but proportionate growth and four phenotypically normal half-siblings, sired by the same bull, and four unrelated control calves. Plasma 3,5,3'-triiodothyronine and thyroxine concentrations in dwarfs and half-siblings were in the physiological range and responded normally to injected thyroid-releasing hormone. Plasma glucagon concentrations were different (dwarfs, controls>half-siblings; P<0.05). Plasma growth hormone (GH), insulin-like growth factor-1 (IGF-1) and insulin concentrations in the three groups during an 8-h period were similar, but integrated GH concentrations (areas under concentration curves) were different (dwarfs>controls, P<0.02; half-siblings>controls, P=0.08). Responses of GH to xylazine and to a GH-releasing-factor analogue were similar in dwarfs and half-siblings. Relative gene expression of IGF-1, IGF-2, GH receptor (GHR), insulin receptor, IGF-1 type-1 and -2 receptors (IGF-1R, IGF-2R), and IGF binding proteins were measured in liver and anconeus muscle. GHR mRNA levels were different in liver (dwarfsP<0.002; dwarfsP=0.06; half-siblingsP=0.08) but not in muscle. IGF-1R mRNA abundance in liver in half-siblings and controls was 2.4- and 2.5-fold higher (P=0.003 and P=0.001, respectively) and in muscle tissue was 2.3- and 1.8-fold higher (P=0.01 and P=0.08, respectively) than in dwarfs. Hepatic IGF-1R protein levels (Western blots) in muscle were 2.5-fold higher (P<0.05) and in liver and muscle (quantitative immunohistochemistry) were higher (P<0.02 and P<0.07, respectively) in half-siblings than in dwarfs. The reduced presence of IGF-1R may have been the underlying cause of dwarfism in studied calves.

  10. Agonist and antagonist effects of diadenosine tetraphosphate, a platelet dense granule constituent, on platelet P2Y1, P2Y12 and P2X1 receptors.

    PubMed

    Chang, Hung; Yanachkov, Ivan B; Michelson, Alan D; Li, YouFu; Barnard, M R; Wright, George E; Frelinger, Andrew L

    2010-02-01

    Diadenosine 5',5'''-P(1),P(4)- tetraphosphate (Ap(4)A) is stored in platelet dense granules, but its effects on platelet function are not well understood. We examined the effects of Ap(4)A on platelet purinergic receptors P2Y(1), P2Y(12) and P2X(1). Flow cytometry was used to measure the effects of Ap(4)A in the presence or absence of ADP on: a) P2Y(12)-mediated decrease in intraplatelet phosphorylated vasodilator stimulated phosphoprotein (VASP), b) P2Y(1)-mediated increase in platelet cytosolic Ca(2+), and c) P2X(1)-mediated intraplatelet entry of extracellular Ca(2+). ADP-stimulated platelet shape change (P2Y(1)-mediated) and aggregation (P2Y(1)- and P2Y(12)-mediated) were measured optically. Ap(4)A inhibited 3 microM ADP-induced: a) platelet aggregation (IC(50) 9.8+/-2.8 microM), b) P2Y(1)-mediated shape change, c) P2Y(1)-mediated increase in platelet cytosolic Ca(2+) (IC(50) 40.8+/-12.3 microM), and d) P2Y(12)-mediated decrease in VASP phosphorylation (IC(50)>250 microM). In the absence of added ADP, Ap(4)A had agonist effects on platelet P2X(1) and P2Y(12), but not P2Y(1), receptors. Ap(4)A, a constituent of platelet dense granules, is a) an antagonist of platelet P2Y(1) and P2Y(12) receptors, where it inhibits the effects of ADP, and b) an agonist of platelet P2X(1) and P2Y(12) receptors. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Agonist and Antagonist Effects of Diadenosine Tetraphosphate, a Platelet Dense Granule Constituent, on Platelet P2Y1, P2Y12 and P2X1 Receptors

    PubMed Central

    Chang, Hung; Yanachkov, Ivan B.; Michelson, Alan D.; Li, YouFu; Barnard, M.R.; Wright, George E.; Frelinger, Andrew L.

    2010-01-01

    Introduction Diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) is stored in platelet dense granules, but its effects on platelet function are not well understood. Methods and Results We examined the effects of Ap4A on platelet purinergic receptors P2Y1, P2Y12 and P2X1. Flow cytometry was used to measure the effects of Ap4A in the presence or absence of ADP on: a) P2Y12-mediated decrease in intraplatelet phosphorylated vasodilator stimulated phosphoprotein (VASP), b) P2Y1-mediated increase in platelet cytosolic Ca2+, and c) P2X1-mediated intraplatelet entry of extracellular Ca2+. ADP-stimulated platelet shape change (P2Y1-mediated) and aggregation (P2Y1- and P2Y12-mediated) were measured optically. Ap4A inhibited 3 µM ADP-induced: a) platelet aggregation (IC50 9.8 ± 2.8 µM), b) P2Y1-mediated shape change, c) P2Y1-mediated increase in platelet cytosolic Ca2+ (IC50 40.8 ± 12.3 µM), and d) P2Y12-mediated decrease in VASP phosphorylation (IC50 >250 µM). In the absence of added ADP, Ap4A had agonist effects on platelet P2X1 and P2Y12, but not P2Y1, receptors. Conclusion Ap4A, a constituent of platelet dense granules, is a) an antagonist of platelet P2Y1 and P2Y12 receptors, where it inhibits the effects of ADP, and b) an agonist of platelet P2X1 and P2Y12 receptors. PMID:19945153

  12. Impaired P2X1 Receptor-Mediated Adhesion in Eosinophils from Asthmatic Patients.

    PubMed

    Wright, Adam; Mahaut-Smith, Martyn; Symon, Fiona; Sylvius, Nicolas; Ran, Shaun; Bafadhel, Mona; Muessel, Michelle; Bradding, Peter; Wardlaw, Andrew; Vial, Catherine

    2016-06-15

    Eosinophils play an important role in the pathogenesis of asthma and can be activated by extracellular nucleotides released following cell damage or inflammation. For example, increased ATP concentrations were reported in bronchoalveolar lavage fluids of asthmatic patients. Although eosinophils are known to express several subtypes of P2 receptors for extracellular nucleotides, their function and contribution to asthma remain unclear. In this article, we show that transcripts for P2X1, P2X4, and P2X5 receptors were expressed in healthy and asthmatic eosinophils. The P2X receptor agonist α,β-methylene ATP (α,β-meATP; 10 μM) evoked rapidly activating and desensitizing inward currents (peak 18 ± 3 pA/pF at -60 mV) in healthy eosinophils, typical of P2X1 homomeric receptors, which were abolished by the selective P2X1 antagonist NF449 (1 μM) (3 ± 2 pA/pF). α,β-meATP-evoked currents were smaller in eosinophils from asthmatic patients (8 ± 2 versus 27 ± 5 pA/pF for healthy) but were enhanced following treatment with a high concentration of the nucleotidase apyrase (17 ± 5 pA/pF for 10 IU/ml and 11 ± 3 pA/pF for 0.32 IU/ml), indicating that the channels are partially desensitized by extracellular nucleotides. α,β-meATP (10 μM) increased the expression of CD11b activated form in eosinophils from healthy, but not asthmatic, donors (143 ± 21% and 108 ± 11% of control response, respectively). Furthermore, α,β-meATP increased healthy (18 ± 2% compared with control 10 ± 1%) but not asthmatic (13 ± 1% versus 10 ± 0% for control) eosinophil adhesion. Healthy human eosinophils express functional P2X1 receptors whose activation leads to eosinophil αMβ2 integrin-dependent adhesion. P2X1 responses are constitutively reduced in asthmatic compared with healthy eosinophils, probably as the result of an increase in extracellular nucleotide concentration. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. Critical Hydrogen Bond Formation for Activation of the Angiotensin II Type 1 Receptor*

    PubMed Central

    Cabana, Jérôme; Holleran, Brian; Beaulieu, Marie-Ève; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan; Lavigne, Pierre

    2013-01-01

    G protein-coupled receptors contain selectively important residues that play central roles in the conformational changes that occur during receptor activation. Asparagine 111 (N1113.35) is such a residue within the angiotensin II type 1 (AT1) receptor. Substitution of N1113.35 for glycine leads to a constitutively active receptor, whereas substitution for tryptophan leads to an inactivable receptor. Here, we analyzed the AT1 receptor and two mutants (N111G and N111W) by molecular dynamics simulations, which revealed a novel molecular switch involving the strictly conserved residue D742.50. Indeed, D742.50 forms a stable hydrogen bond (H-bond) with the residue in position 1113.35 in the wild-type and the inactivable receptor. However, in the constitutively active mutant N111G-AT1 receptor, residue D74 is reoriented to form a new H-bond with another strictly conserved residue, N461.50. When expressed in HEK293 cells, the mutant N46G-AT1 receptor was poorly activable, although it retained a high binding affinity. Interestingly, the mutant N46G/N111G-AT1 receptor was also inactivable. Molecular dynamics simulations also revealed the presence of a cluster of hydrophobic residues from transmembrane domains 2, 3, and 7 that appears to stabilize the inactive form of the receptor. Whereas this hydrophobic cluster and the H-bond between D742.50 and W1113.35 are more stable in the inactivable N111W-AT1 receptor, the mutant N111W/F77A-AT1 receptor, designed to weaken the hydrophobic core, showed significant agonist-induced signaling. These results support the potential for the formation of an H-bond between residues D742.50 and N461.50 in the activation of the AT1 receptor. PMID:23223579

  14. Utp22p acts in concert with Utp8p to channel aminoacyl-tRNA from the nucleolus to the nuclear tRNA export receptor Los1p but not Msn5p.

    PubMed

    Eswara, Manoja B K; Clayton, Ashley; Mangroo, Dev

    2012-12-01

    Utp8p is an essential nucleolar protein that channels aminoacyl-tRNAs from aminoacyl-tRNA synthetases in the nucleolus to the nuclear tRNA export receptors located in the nucleoplasm and nuclear pore complex in Saccharomyces cerevisiae. Utp8p is also part of the U3 snoRNA-associated protein complex involved in 18S rRNA biogenesis in the nucleolus. We report that Utp22p, which is another member of the U3 snoRNA-associated protein complex, is also an intranuclear component of the nuclear tRNA export machinery. Depletion of Utp22p results in nuclear retention of mature tRNAs derived from intron-containing and intronless precursors. Moreover, Utp22p copurifies with the nuclear tRNA export receptor Los1p, the aminoacyl-tRNA synthetase Tys1p and Utp8p, but not with the RanGTPase Gsp1p and the nuclear tRNA export receptor Msn5p. Utp22p interacts directly with Utp8p and Los1p in a tRNA-independent manner in vitro. Utp22p also interacts directly with Tys1p, but this binding is stimulated when Tys1p is bound to tRNA. However, Utp22p, unlike Utp8p, does not bind tRNA saturably. These data suggest that Utp22p recruits Utp8p to aminoacyl-tRNA synthetases in the nucleolus to collect aminoacyl-tRNA and then accompanies the Utp8p-tRNA complex to deliver the aminoacyl-tRNAs to Los1p but not Msn5p. It is possible that Nrap/Nol6, the mammalian orthologue of Utp22p, plays a role in channelling aminoacyl-tRNA to the nuclear tRNA export receptor exportin-t.

  15. Rational drug design and synthesis of molecules targeting the angiotensin II type 1 and type 2 receptors.

    PubMed

    Kellici, Tahsin F; Tzakos, Andreas G; Mavromoustakos, Thomas

    2015-03-02

    The angiotensin II (Ang II) type 1 and type 2 receptors (AT1R and AT2R) orchestrate an array of biological processes that regulate human health. Aberrant function of these receptors triggers pathophysiological responses that can ultimately lead to death. Therefore, it is important to design and synthesize compounds that affect beneficially these two receptors. Cardiovascular disease, which is attributed to the overactivation of the vasoactive peptide hormone Αng II, can now be treated with commercial AT1R antagonists. Herein, recent achievements in rational drug design and synthesis of molecules acting on the two AT receptors are reviewed. Quantitative structure activity relationships (QSAR) and molecular modeling on the two receptors aim to assist the search for new active compounds. As AT1R and AT2R are GPCRs and drug action is localized in the transmembrane region the role of membrane bilayers is exploited. The future perspectives in this field are outlined. Tremendous progress in the field is expected if the two receptors are crystallized, as this will assist the structure based screening of the chemical space and lead to new potent therapeutic agents in cardiovascular and other diseases.

  16. P2X receptor characterization and IL-1/IL-1Ra release from human endothelial cells.

    PubMed

    Wilson, H L; Varcoe, R W; Stokes, L; Holland, K L; Francis, S E; Dower, S K; Surprenant, A; Crossman, D C

    2007-05-01

    The pro-inflammatory cytokine, interleukin-1beta (IL-1beta), has been implicated in the pathogenesis of atherosclerosis, potentially via its release from vascular endothelium. Endothelial cells (EC) synthesize IL-1beta in response to inflammatory stimuli, but the demonstration and mechanism of release of IL-1 from ECs remains unclear. In activated monocytes, efficient release of bioactive IL-1beta occurred via activation of ATP-gated P2X(7) receptors (P2X(7)Rs). Activation of P2X(7)R in ECs from human umbilical vein (HUVECs) released IL-1 receptor antagonist (IL-1Ra). The purpose of this study was to provide a quantitative investigation of P2XR expression and function, in parallel with IL-1beta and IL-1Ra synthesis, processing and release, in HUVECs under pro-inflammatory conditions. Quantitative RT-PCR, immunoblotting, ELISA, flow cytometry, and whole-cell patch clamp recordings were used to determine protein expression and receptor function. IL-8-luciferase-reporter was used as an IL-1 sensitive bioassay. HUVECs expressed P2X(4)R and P2X(7)R subtypes and both were significantly up-regulated under inflammatory conditions. P2X(7)R currents were increased 3-fold by inflammatory stimuli, whereas no P2X(4)R-mediated currents were detected. Caspase-1, but not IL-1beta, was present intracellularly under basal conditions; inflammatory stimuli activated the synthesis of intracellular pro-IL-1beta and increased caspase-1 levels. Activation of P2X(7)Rs resulted in low-level release of bioactive IL-1beta and simultaneous release of IL-1Ra. The net biological effect of release was anti-inflammatory. Endothelial P2X(7)Rs induced secretion of both pro- and anti-inflammatory IL-1 receptor ligands, the balance of which may provide a means for altering the inflammatory state of the arterial vessel wall.

  17. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Chieri; Iwasaki, Tsuyoshi, E-mail: tsuyo-i@huhs.ac.jp; Kitano, Sachie

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murinemore » satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  18. Central sympathoexcitatory actions of angiotensin II: role of type 1 angiotensin II receptors.

    PubMed

    DiBona, G F

    1999-01-01

    The role of the renin-angiotensin system in the control of sympathetic nerve activity is reviewed. Two general mechanisms are considered, one that involves the effects of circulating angiotensin II (AngII) on the central nervous system and a second that involves the central nervous system effects of AngII that originates within the central nervous system. The role of type 1 AngII receptors in discrete brain sites that mediate the sympathoexcitatory actions of AngII of either circulating or central nervous system origin is examined. AngII of circulating origin has ready access to the subfornical organ and area postrema, where it can bind to type 1 AngII receptors on neurons whose connections to the nucleus tractus solitarius and rostral ventrolateral medulla result in sympathoexcitation. In the rostral ventrolateral medulla, angiotensin peptides of central nervous system origin, likely involving angiotensin species in addition to AngII and binding to receptors other than type 1 or 2 AngII receptors, tonically support sympathetic nerve activity.

  19. Neuropharmacology of Purinergic Receptors in Human Submucous Plexus: Involvement of P2X1, P2X2, P2X3 Channels, P2Y and A3 Metabotropic Receptors in Neurotransmission

    PubMed Central

    Liñán-Rico, A.; Wunderlich, JE.; Enneking, JT.; Tso, DR.; Grants, I.; Williams, KC.; Otey, A.; Michel, K.; Schemann, M.; Needleman, B.; Harzman, A.; Christofi, FL.

    2015-01-01

    Rationale The role of purinergic signaling in the human ENS is not well understood. We sought to further characterize the neuropharmacology of purinergic receptors in human ENS and test the hypothesis that endogenous purines are critical regulators of neurotransmission. Experimental Approach LSCM-Fluo-4-(Ca2+)-imaging of postsynaptic Ca2+ transients (PSCaTs) was used as a reporter of neural activity. Synaptic transmission was evoked by fiber tract electrical stimulation in human SMP surgical preparations. Pharmacological analysis of purinergic signaling was done in 1,556 neurons from 234 separate ganglia 107 patients; immunochemical labeling for P2XRs of neurons in ganglia from 19 patients. Real-time MSORT (Di-8-ANEPPS) imaging was used to test effects of adenosine on fast excitatory synaptic potentials (fEPSPs). Results Synaptic transmission is sensitive to pharmacological manipulations that alter accumulation of extracellular purines. Apyrase blocks PSCaTs in a majority of neurons. An ecto-NTPDase-inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP or adenosine deaminase augments PSCaTs. Blockade of reuptake/deamination of eADO inhibits PSCaTs. Adenosine inhibits fEPSPs and PSCaTs (IC50=25μM), sensitive to MRS1220-antagonism (A3AR). A P2Y agonist ADPβS inhibits PSCaTs (IC50=111nM) in neurons without stimulatory ADPβS responses (EC50=960nM). ATP or a P2X1,2,2/3 (α,β-MeATP) agonist evokes fast, slow, biphasic Ca2+ transients or Ca2+ oscillations (EC50=400μM). PSCaTs are sensitive to P2X1 antagonist NF279. Low (20nM) or high (5μM) concentrations of P2X antagonist TNP-ATP block PSCaTs in different neurons; proportions of neurons with P2XR-ir follow the order P2X2>P2X1P2X3; P2X1+ P2X2 and P2X3+P2X2 are co-localized. RT-PCR identified mRNA-transcripts for P2X1-7,P2Y1,2,12-14R. Responsive neurons were also identified by HuC/D-ir. Conclusions Purines are critical regulators of neurotransmission in the human enteric nervous system. Purinergic signaling involves

  20. Synthesis, radiolabeling, and preliminary biological evaluation of [3H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine, a potent antagonist radioligand for the P2X7 receptor.

    PubMed

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Pavani, Maria Giovanna; Tabrizi, Mojgan Aghazadeh; Moorman, Allan R; Di Virgilio, Francesco; Cattabriga, Elena; Pancaldi, Cecilia; Gessi, Stefania; Borea, Pier Andrea

    2004-11-15

    The design, synthesis, and preliminary biological evaluation of the first potent radioligand antagonist for the P2X(7) receptor, named [(3)H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine (compound 13), are reported. This compound bound to human P2X(7) receptors expressed in HEK transfected cells with K(D) and B(max) value of 3.46+/-0.1 nM and 727+/-73 fmol/mg of protein, respectively. The high affinity and facile labeling makes it a promising radioligand for a further characterization of P2X(7) receptor subtype.

  1. Phosphorous doped p-type MoS2 polycrystalline thin films via direct sulfurization of Mo film

    NASA Astrophysics Data System (ADS)

    Momose, Tomohiro; Nakamura, Atsushi; Daniel, Moraru; Shimomura, Masaru

    2018-02-01

    We report on the successful synthesis of a p-type, substitutional doping at S-site, MoS2 thin film using Phosphorous (P) as the dopant. MoS2 thin films were directly sulfurized for molybdenum films by chemical vapor deposition technique. Undoped MoS2 film showed n-type behavior and P doped samples showed p-type behavior by Hall-effect measurements in a van der Pauw (vdP) configuration of 10×10 mm2 area samples and showed ohmic behavior between the silver paste contacts. The donor and the acceptor concentration were detected to be ˜2.6×1015 cm-3 and ˜1.0×1019 cm-3, respectively. Hall-effect mobility was 61.7 cm2V-1s-1 for undoped and varied in the range of 15.5 ˜ 0.5 cm2V-1s-1 with P supply rate. However, the performance of field-effect transistors (FETs) declined by double Schottky barrier contacts where the region between Ni electrodes on the source/drain contact and the MoS2 back-gate cannot be depleted and behaves as a 3D material when used in transistor geometry, resulting in poor on/off ratio. Nevertheless, the FETs exhibit hole transport and the field-effect mobility showed values as high as the Hall-effect mobility, 76 cm2V-1s-1 in undoped MoS2 with p-type behavior and 43 cm2V-1s-1 for MoS2:P. Our findings provide important insights into the doping constraints for transition metal dichalcogenides.

  2. Hypoxia-inducible factor-1α in vascular smooth muscle regulates blood pressure homeostasis through a peroxisome proliferator-activated receptor-γ-angiotensin II receptor type 1 axis.

    PubMed

    Huang, Yan; Di Lorenzo, Annarita; Jiang, Weidong; Cantalupo, Anna; Sessa, William C; Giordano, Frank J

    2013-09-01

    Hypertension is a major worldwide health issue for which only a small proportion of cases have a known mechanistic pathogenesis. Of the defined causes, none have been directly linked to heightened vasoconstrictor responsiveness, despite the fact that vasomotor tone in resistance vessels is a fundamental determinant of blood pressure. Here, we reported a previously undescribed role for smooth muscle hypoxia-inducible factor-1α (HIF-1α) in controlling blood pressure homeostasis. The lack of HIF-1α in smooth muscle caused hypertension in vivo and hyperresponsiveness of resistance vessels to angiotensin II stimulation ex vivo. These data correlated with an increased expression of angiotensin II receptor type I in the vasculature. Specifically, we show that HIF-1α, through peroxisome proliferator-activated receptor-γ, reciprocally defined angiotensin II receptor type I levels in the vessel wall. Indeed, pharmacological blockade of angiotensin II receptor type I by telmisartan abolished the hypertensive phenotype in smooth muscle cell-HIF-1α-KO mice. These data revealed a determinant role of a smooth muscle HIF-1α/peroxisome proliferator-activated receptor-γ/angiotensin II receptor type I axis in controlling vasomotor responsiveness and highlighted an important pathway, the alterations of which may be critical in a variety of hypertensive-based clinical settings.

  3. Three different up-titration regimens of ponesimod, an S1P1 receptor modulator, in healthy subjects.

    PubMed

    Scherz, Michael W; Brossard, Patrick; D'Ambrosio, Daniele; Ipek, Murat; Dingemanse, Jasper

    2015-06-01

    Ponesimod is a selective S1P1 receptor modulator, and induces dose-dependent reduction of circulating lymphocytes upon oral dosing. Previous studies showed that single doses up to 75 mg or multiple doses up to 40 mg once daily are well tolerated, and heart rate (HR) reduction and atrio-ventricular conduction delays upon treatment initiation are reduced by gradual up-titration to the maintenance dose. This single-center, open-label, randomized, multiple-dose, 3-treatment, 3-way crossover study compared the tolerability, safety, pharmacokinetics, cardiodynamics, and effects on lymphocytes of 3 different up-titration regimens of ponesimod in healthy male and female subjects. Up-titration regimens comprised escalating periods of b.i.d. dosing (2.5 or 5 mg) and q.d. dosing (10 or 20 mg or both). After the third up-titration period a variable-duration washout period of 1-3 days was followed by re-challenge with a single 20-mg dose of ponesimod. Adverse events were transient and mild to moderate in intensity, not different between regimens. HR decrease after the first dose was greater than after all subsequent doses, including up-titration doses. Little or no HR change was observed with morning doses of b.i.d. regimens, suggesting that 2.5 and 5 mg b.i.d. are sufficient to sustain cardiac desensitization for the 12-hours dosing interval. © 2015, The American College of Clinical Pharmacology.

  4. The Coordinated P53 and Estrogen Receptor Cis-Regulation at an FLT1 Promoter SNP Is Specific to Genotoxic Stress and Estrogenic Compound

    PubMed Central

    Langen, Jan-Stephan; Schoenfelder, Gilbert; Resnick, Michael A.; Inga, Alberto

    2010-01-01

    Background Recently, we established that a C>T single nucleotide polymorphism (SNP) in the promoter of the VEGF receptor FLT1 gene generates a ½ site p53 response element (RE-T) that results in p53 responsiveness of the promoter. The transcriptional control required an estrogen receptor (ER) ½ site response element (ERE1) 225 nt upstream to the RE-T. Methodology/Principal Findings Here we report the identification of a second ER ½ site (ERE2) located 145 bp downstream of the RE-T and establish that both EREs can impact p53-mediated transactivation of FLT1-T in a manner that is cell type and ER level dependent. Gene reporter assays and ChIP experiments conducted in the breast cancer-derived MCF7 cells revealed that the ERE2 site was sufficient for p53-mediated ERα recruitment and transactivation of the FLT1-T promoter/reporter construct. Surprisingly, unlike the case for other p53 target promoters, p53-mediated transactivation of FLT1-T constructs or expression of the endogenous FLT1 gene, as well as binding of p53 and ER at the promoter constructs, was inducible by doxorubicin but not by 5-fluorouracil. Furthermore, ER activity at FLT1-T was differentially affected by ER ligands, compared to a control TFF1/pS2 ER target promoter. The p53-related transcription factors (TFs) p73 and p63 had no effect on FLT1 transactivation. Conclusions/Significance We establish a new dimension to the p53 master regulatory network where p53-mediated transcription from a ½ site RE can be determined by ER binding at one or more cis-acting EREs in manner that is dependent on level of ER protein, the type of ER ligand and the specific p53-inducing agent. PMID:20422012

  5. Reduced post-synaptic serotonin type 1A receptor binding in bipolar depression

    PubMed Central

    Nugent, Allison C.; Bain, Earle E.; Carlson, Paul J.; Neumeister, Alexander; Bonne, Omer; Carson, Richard E.; Eckelman, William; Herscovitch, Peter; Zarate, Carlos A.; Charney, Dennis S.; Drevets, Wayne C.

    2013-01-01

    Multiple lines of evidence suggest that serotonin type 1A (5-HT1A) receptor dysfunction is involved in the pathophysiology of mood disorders, and that alterations in 5-HT1A receptor function play a role in the mechanisms of antidepressant and mood stabilizer treatment. The literature is in disagreement, however, as to whether 5-HT1A receptor binding abnormalities exist in bipolar disorder (BD). We acquired PET images of 5-HT1A receptor binding in 26 unmedicated BD subjects and 37 healthy controls using [18F]FCWAY, a highly selective 5-HT1A receptor radio-ligand. The mean 5-HT1A receptor binding potential (BPP) was significantly lower in BD subjects compared to controls in cortical regions where 5-HT1A receptors are expressed post-synaptically, most prominently in the mesiotemporal cortex. Post-hoc assessments involving other receptor specific binding parameters suggested that this difference particularly affected the females with BD. The mean BPP did not differ between groups in the raphe nucleus, however, where 5-HT1A receptors are predominantly expressed pre-synaptically. Across subjects the BPP in the mesiotemporal cortex was inversely correlated with trough plasma cortisol levels, consistent with preclinical literature indicating that hippocampal 5-HT1A receptor expression is inhibited by glucocorticoid receptor stimulation. These findings suggest that 5-HT1A receptor binding is abnormally reduced in BD, and this abnormality may particularly involve the postsynaptic 5-HT1A receptor system of individuals with a tendency toward cortisol hypersecretion. PMID:23434290

  6. Decoding Corticotropin-Releasing Factor Receptor Type 1 Crystal 
Structures

    PubMed Central

    Doré, Andrew S.; Bortolato, Andrea; Hollenstein, Kaspar; Cheng, Robert K.Y.; Read, Randy J.; Marshall, Fiona H.

    2017-01-01

    The structural analysis of class B G protein-coupled receptors (GPCR), cell surface proteins responding to peptide hormones, has until recently been restricted to the extracellular domain (ECD). Cor-ticotropin-releasing factor receptor type 1 (CRF1R) is a class B receptor mediating stress response and also considered a drug target for depression and anxiety. Here we report the crystal structure of the trans-membrane domain of human CRF1R in complex with the small-molecule antagonist CP-376395 in a hex-agonal setting with translational non-crystallographic symmetry. Molecular dynamics and metadynamics simulations on this novel structure and the existing TMD structure for CRF1R provides insight as to how the small molecule ligand gains access to the induced-fit allosteric binding site with implications for the observed selectivity against CRF2R. Furthermore, molecular dynamics simulations performed using a full-length receptor model point to key interactions between the ECD and extracellular loop 3 of the TMD providing insight into the full inactive state of multidomain class B GPCRs. PMID:28183242

  7. Purinergic receptors P2RX4 and P2RX7 in familial multiple sclerosis

    PubMed Central

    Sadovnick, A Dessa; Gu, Ben J; Traboulsee, Anthony L; Bernales, Cecily Q; Encarnacion, Mary; Yee, Irene M; Criscuoli, Maria G; Huang, Xin; Ou, Amber; Milligan, Carol J; Petrou, Steven; Wiley, James S; Vilariño-Güell, Carles

    2017-01-01

    Genetic variants in the purinergic receptors P2RX4 and P2RX7 have been shown to affect susceptibility to multiple sclerosis (MS). In this study we set out to evaluate whether rare coding variants of major effect could also be identified in these purinergic receptors. Sequencing analysis of P2RX4 and P2RX7 in 193 MS patients and 100 controls led to the identification of a rare three variant haplotype (P2RX7 rs140915863:C>T (p.T205M), P2RX7 rs201921967:A>G (p.N361S) and P2RX4 rs765866317:G>A (p.G135S)) segregating with disease in a multi-incident family with six family members diagnosed with MS (LOD=3.07). Functional analysis of this haplotype in HEK293 cells revealed impaired P2X7 surface expression (p<0.01), resulting in over 95% inhibition of ATP-induced pore function (p<0.001) and a marked reduction in phagocytic ability (p<0.05). In addition, transfected cells showed 40% increased peak ATP-induced inward current (p<0.01), and a greater Ca2+ response to the P2X4 135S variant compared to wild type (p<0.0001). Our study nominates rare genetic variants in P2RX4 and P2RX7 as major genetic contributors to disease, further supporting a role for these purinergic receptors in MS and suggesting the disruption of transmembrane cation channels leading to impairment of phagocytosis as the pathological mechanisms of disease. PMID:28326637

  8. Subunit arrangement in P2X receptors.

    PubMed

    Jiang, Lin-Hua; Kim, Miran; Spelta, Valeria; Bo, Xuenong; Surprenant, Annmarie; North, R Alan

    2003-10-01

    ATP-gated ionotropic receptors (P2X receptors) are distributed widely in the nervous system. For example, a hetero-oligomeric receptor containing both P2X2 and P2X3 subunits is involved in primary afferent sensation. Each subunit has two membrane-spanning domains. We have used disulfide bond formation between engineered cysteines to demonstrate close proximity between the outer ends of the first transmembrane domain of one subunit and the second transmembrane domain of another. After expression in HEK 293 cells of such modified P2X2 or P2X4 subunits, the disulfide bond formation is evident because an ATP-evoked channel opening requires previous reduction with dithiothreitol. In the hetero-oligomeric P2X2/3 receptor the coexpression of doubly substituted subunits with wild-type partners allows us to deduce that the hetero-oligomeric channel contains adjacent P2X3 subunits but does not contain adjacent P2X2 subunits. The results suggest a "head-to-tail" subunit arrangement in the quaternary structure of P2X receptors and show that a trimeric P2X2/3 receptor would have the composition P2X2(P2X3)2.

  9. The P2X7 Receptor in Inflammatory Diseases: Angel or Demon?

    PubMed Central

    Savio, Luiz E. B.; de Andrade Mello, Paola; da Silva, Cleide Gonçalves; Coutinho-Silva, Robson

    2018-01-01

    Under physiological conditions, adenosine triphosphate (ATP) is present at low levels in the extracellular milieu, being massively released by stressed or dying cells. Once outside the cells, ATP and related nucleotides/nucleoside generated by ectonucleotidases mediate a high evolutionary conserved signaling system: the purinergic signaling, which is involved in a variety of pathological conditions, including inflammatory diseases. Extracellular ATP has been considered an endogenous adjuvant that can initiate inflammation by acting as a danger signal through the activation of purinergic type 2 receptors—P2 receptors (P2Y G-protein coupled receptors and P2X ligand-gated ion channels). Among the P2 receptors, the P2X7 receptor is the most extensively studied from an immunological perspective, being involved in both innate and adaptive immune responses. P2X7 receptor activation induces large-scale ATP release via its intrinsic ability to form a membrane pore or in association with pannexin hemichannels, boosting purinergic signaling. ATP acting via P2X7 receptor is the second signal to the inflammasome activation, inducing both maturation and release of pro-inflammatory cytokines, such as IL-1β and IL-18, and the production of reactive nitrogen and oxygen species. Furthermore, the P2X7 receptor is involved in caspases activation, as well as in apoptosis induction. During adaptive immune response, P2X7 receptor modulates the balance between the generation of T helper type 17 (Th17) and T regulatory (Treg) lymphocytes. Therefore, this receptor is involved in several inflammatory pathological conditions. In infectious diseases and cancer, P2X7 receptor can have different and contrasting effects, being an angel or a demon depending on its level of activation, cell studied, type of pathogen, and severity of infection. In neuroinflammatory and neurodegenerative diseases, P2X7 upregulation and function appears to contribute to disease progression. In this review, we

  10. GENERAL P, TYPE-I S, AND TYPE-II S WAVES IN ANELASTIC SOLIDS; INHOMOGENEOUS WAVE FIELDS IN LOW-LOSS SOLIDS.

    USGS Publications Warehouse

    Borcherdt, Roger D.; Wennerberg, Leif

    1985-01-01

    The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields cause the velocity to decrease, the fractional-energy loss (Q** minus **1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q** minus **1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q** minus **1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude.

  11. Largest vertebrate vomeronasal type 1 receptor gene repertoire in the semiaquatic platypus.

    PubMed

    Grus, Wendy E; Shi, Peng; Zhang, Jianzhi

    2007-10-01

    Vertebrate vomeronasal chemoreception plays important roles in many aspects of an organism's daily life, such as mating, territoriality, and foraging. Vomeronasal type 1 receptors (V1Rs) and vomeronasal type 2 receptors (V2Rs), 2 large families of G protein-coupled receptors, serve as vomeronasal receptors to bind to various pheromones and odorants. Contrary to the previous observations of reduced olfaction in aquatic and semiaquatic mammals, we here report the surprising finding that the platypus, a semiaquatic monotreme, has the largest V1R repertoire and nearly largest combined repertoire of V1Rs and V2Rs of all vertebrates surveyed, with 270 intact genes and 579 pseudogenes in the V1R family and 15 intact genes, 55 potentially intact genes, and 57 pseudogenes in the V2R family. Phylogenetic analysis shows a remarkable expansion of the V1R repertoire and a moderate expansion of the V2R repertoire in platypus since the separation of monotremes from placentals and marsupials. Our results challenge the view that olfaction is unimportant to aquatic mammals and call for further study into the role of vomeronasal reception in platypus physiology and behavior.

  12. LncRNA uc.48+ siRNA improved diabetic sympathetic neuropathy in type 2 diabetic rats mediated by P2X7 receptor in SCG.

    PubMed

    Wu, Bing; Zhang, Chunping; Zou, Lifang; Ma, Yucheng; Huang, Kangyu; Lv, Qiulan; Zhang, Xi; Wang, Shouyu; Xue, Yun; Yi, Zhihua; Jia, Tianyu; Zhao, Shanhong; Liu, Shuangmei; Xu, Hong; Li, Guilin; Liang, Shangdong

    2016-05-01

    Diabetic autonomic neuropathy includes the sympathetic ganglionic dysfunction. P2X7 receptor in superior cervical ganglia (SCG) participated in the pathological changes of cardiac dysfunction. Abnormal expression of long noncoding RNAs (lncRNAs) was reported to be involved in nervous system diseases. Our preliminary results obtained from rat lncRNA array profiling revealed that the expression of the uc.48+ was significantly increased in the rat SCG in response to diabetic sympathetic pathology. In this study, we found that lncRNAuc.48+ and P2X7 receptor in the SCG were increased in type 2 diabetic rats and were associated with the cardiac dysfunction. The uc.48+ small interference RNA (siRNA) improved the cardiac autonomic dysfunction and decreased the up-regulation P2X7 and the ratio of phosphorylated extracellular regulated protein kinases1/2 (p-ERK1/2) to ERK1/2 in SCG of type 2 diabetic rats. In conclusion, lncRNA uc.48+ siRNA improved diabetic sympathetic neuropathy in type 2 diabetic rats through regulating the expression of P2X7 and ERK signaling in SCG. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. [Study of serum levels of interlukin-2 and its receptor, interlukin-6, sICAM-1, sVCAM-1 in patients with recurrent genital herpes].

    PubMed

    Zhang, Min; Zhang, Yizhi

    2003-01-01

    To study cellular immunity status and serum levels of adhesion molecules of patients with recurrent genital herpes. Serum levels of interlukin-2 and its soluble receptor, interlukin-6, sICAM-1, sVCAM-1 were measured by ELISA in 34 patients with recurrent genital herpes. The serum levels of IL-2 and IL-6 were significantly lower in patients than in healthy controls (P < 0.01). The levels of sIL-2R, sICAM-1 and sVCAM-1 were significantly higher in patients than in controls (P < 0.05). No significant differences were seen in all variables of patients in relapse phase and remission phase (P > 0.05). There are cellular immunity deficiency and high serum levels of adhesion molecules in patients with recurrent genital herpes, and these changes may be related to therecurrence of genital herpes and the development of inflammatory reaction.

  14. Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS)x:(ZnS)1-x Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells.

    PubMed

    Xu, Xiaojie; Bullock, James; Schelhas, Laura T; Stutz, Elias Z; Fonseca, Jose J; Hettick, Mark; Pool, Vanessa L; Tai, Kong Fai; Toney, Michael F; Fang, Xiaosheng; Javey, Ali; Wong, Lydia Helena; Ager, Joel W

    2016-03-09

    P-type transparent conducting films of nanocrystalline (CuS)x:(ZnS)1-x were synthesized by facile and low-cost chemical bath deposition. Wide angle X-ray scattering (WAXS) and high resolution transmission electron microscopy (HRTEM) were used to evaluate the nanocomposite structure, which consists of sub-5 nm crystallites of sphalerite ZnS and covellite CuS. Film transparency can be controlled by tuning the size of the nanocrystallites, which is achieved by adjusting the concentration of the complexing agent during growth; optimal films have optical transmission above 70% in the visible range of the spectrum. The hole conductivity increases with the fraction of the covellite phase and can be as high as 1000 S cm(-1), which is higher than most reported p-type transparent materials and approaches that of n-type transparent materials such as indium tin oxide (ITO) and aluminum doped zinc oxide (AZO) synthesized at a similar temperature. Heterojunction p-(CuS)x:(ZnS)1-x/n-Si solar cells were fabricated with the nanocomposite film serving as a hole-selective contact. Under 1 sun illumination, an open circuit voltage of 535 mV was observed. This value compares favorably to other emerging heterojunction Si solar cells which use a low temperature process to fabricate the contact, such as single-walled carbon nanotube/Si (370-530 mV) and graphene/Si (360-552 mV).

  15. Role of peripheral sigma-1 receptors in ischaemic pain: Potential interactions with ASIC and P2X receptors.

    PubMed

    Kwon, S G; Roh, D H; Yoon, S Y; Choi, S R; Choi, H S; Moon, J Y; Kang, S Y; Kim, H W; Han, H J; Beitz, A J; Oh, S B; Lee, J H

    2016-04-01

    The role of peripheral sigma-1 receptors (Sig-1Rs) in normal nociception and in pathologically induced pain conditions has not been thoroughly investigated. Since there is mounting evidence that Sig-1Rs modulate ischaemia-induced pathological conditions, we investigated the role of Sig-1Rs in ischaemia-induced mechanical allodynia (MA) and addressed their possible interaction with acid-sensing ion channels (ASICs) and P2X receptors at the ischaemic site. We used a rodent model of hindlimb thrombus-induced ischaemic pain (TIIP) to investigate their role. Western blot was performed to observe changes in Sig-1R expression in peripheral nervous tissues. MA was measured after intraplantar (i.pl.) injections of antagonists for the Sig-1, ASIC and P2X receptors in TIIP rats or agonists of each receptor in naïve rats. Sig-1R expression significantly increased in skin, sciatic nerve and dorsal root ganglia at 3 days post-TIIP surgery. I.pl. injections of the Sig-1R antagonist, BD-1047 on post-operative days 0-3 significantly attenuated the development of MA during the induction phase, but had no effect on MA when given during the maintenance phase (days 3-6 post-surgery). BD-1047 synergistically increased amiloride (an ASICs blocker)- and TNP-ATP (a P2X antagonist)-induced analgesic effects in TIIP rats. In naïve rats, i.pl. injection of Sig-1R agonist PRE-084 alone did not produce MA; but it did induce MA when co-administered with either an acidic pH solution or a sub-effective dose of αβmeATP. Peripheral Sig-1Rs contribute to the induction of ischaemia-induced MA via facilitation of ASICs and P2X receptors. Thus, peripheral Sig-1Rs represent a novel therapeutic target for the treatment of ischaemic pain. © 2015 European Pain Federation - EFIC®

  16. Modulation of neurosteroid potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA receptors

    PubMed Central

    Adams, Joanna M.; Thomas, Philip; Smart, Trevor G.

    2015-01-01

    GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1β3γ2L and extrasynaptic-type α4β3δ GABAA receptors using electrophysiology. For α1β3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1β3S408A,S409Aγ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of β3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4β3δ and α4β3S408A,S409Aδ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4S443Aβ3S408A,S409Aδ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and β3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of β3S408,S409 implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously tuned by

  17. POLLUTANT PARTICLES PRODUCE VASOCONSTRICTION AND ENHANCE MAPK SIGNALING VIA ANGIOTENSIN TYPE 1 RECEPTOR

    EPA Science Inventory

    Exposure to particulate matter (PM) is associated with acute cardiovascular mortality and morbidity, but the mechanisms are not entirely clear. In this study, we hypothesized that PM may activate the angiotensin type 1 receptor (AT1R), a G protein-coupled receptor that regulates ...

  18. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism.

    PubMed

    Su, W C; Kitagawa, M; Xue, N; Xie, B; Garofalo, S; Cho, J; Deng, C; Horton, W A; Fu, X Y

    1997-03-20

    The achondroplasia class of chondrodysplasias comprises the most common genetic forms of dwarfism in humans and includes achondroplasia, hypochondroplasia and thanatophoric dysplasia types I and II (TDI and TDII), which are caused by different mutations in a fibroblast growth-factor receptor FGFR3 (ref. 1). The molecular mechanism and the mediators of these FGFR3-related growth abnormalities are not known. Here we show that mutant TDII FGFR3 has a constitutive tyrosine kinase activity which can specifically activate the transcription factor Stat1 (for signal transducer and activator of transcription). Furthermore, expression of TDII FGFR3 induced nuclear translocation of Stat1, expression of the cell-cycle inhibitor p21(WAF1/CIP1), and growth arrest of the cell. Thus, TDII FGFR3 may use Stat1 as a mediator of growth retardation in bone development. Consistent with this, Stat1 activation and increased p21(WAF1/CIP1) expression was found in the cartilage cells from the TDII fetus, but not in those from the normal fetus. Thus, abnormal STAT activation and p21(WAF1/CIP1) expression by the TDII mutant receptor may be responsible for this FGFR3-related bone disease.

  19. 1,4-Naphthoquinones potently inhibiting P2X7 receptor activity.

    PubMed

    Faria, R X; Oliveira, F H; Salles, J P; Oliveira, A S; von Ranke, N L; Bello, M L; Rodrigues, C R; Castro, H C; Louvis, A R; Martins, D L; Ferreira, V F

    2018-01-01

    P2X7 receptor (P2X7R) is an ATP-gated ion-channel with potential therapeutic applications. In this study, we prepared and searched a series of 1,4-naphthoquinones derivatives to evaluate their antagonistic effect on both human and murine P2X7 receptors. We explored the structure-activity relationship and binding mode of the most active compounds using a molecular modeling approach. Biological analysis of this series (eight analogues and two compounds) revealed significant in vitro inhibition against both human and murine P2X7R. Further characterization revealed that AN-03 and AN-04 had greater potency than BBG and A740003 in inhibiting dye uptake, IL-1β release, and carrageenan-induced paw edema in vivo. Moreover, we used electrophysiology and molecular docking analysis for characterizing AN-03 and AN-04 action mechanism. These results suggest 1,4-napthoquinones, mainly AN-04, as potential leads to design new P2X7R blockers and anti-inflammatory drugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. AT1-AA (Angiotensin II Type 1 Receptor Agonistic Autoantibody) Blockade Prevents Preeclamptic Symptoms in Placental Ischemic Rats.

    PubMed

    Cunningham, Mark W; Castillo, Javier; Ibrahim, Tarek; Cornelius, Denise C; Campbell, Nathan; Amaral, Lorena; Vaka, Venkata Ramana; Usry, Nathan; Williams, Jan M; LaMarca, Babbette

    2018-05-01

    Women with preeclampsia produce AT1-AA (agonistic autoantibodies to the angiotensin II type 1 receptor), which stimulate reactive oxygen species, inflammatory factors, and hypertensive mechanisms (ET [endothelin] and sFlt-1 [soluble fms-like tyrosine kinase-1]) in rodent models of preeclampsia. The placental ischemic reduced uterine perfusion pressure (RUPP) rat model of preeclampsia exhibits many of these features. In this study, we examined the maternal outcomes of AT1-AA inhibition ('n7AAc') in RUPP rats. Blood pressure was higher in RUPP rats versus normal pregnant (NP) rats (123±2 versus 99±2 mm Hg, P <0.05), which was reduced in RUPP+'n7AAc' (105±3 versus 123±2 mm Hg, P <0.05 versus RUPP). Uterine artery resistant index was increased in RUPP versus NP rats (0.71±0.02 versus 0.49±0.02, P <0.05) and normalized in RUPP+'n7AAc' rats (0.55±0.03). Antiangiogenic factor sFlt-1 was elevated in RUPP versus NP rats (176±37 versus 77±15 pg/mL, P <0.05) but normalized in RUPP+'n7AAc' (86±9, P =0.05 versus RUPP). Plasma nitrate and nitrite were decreased (14±1 versus 20±1 µMNO 3 , P <0.05) and isoprostanes were elevated (20 117±6304 versus 2809±1375 pg/mL, P <0.05) in RUPP versus NP rats; and normalized in RUPP+'n7AAc' rats; (18±2 µMNO 3 ; 4311±1 pg/mL). PPET-1 (preproendothelin-1) expression increased 4-fold in RUPP versus NP rats which were prevented with 'n7AAc'. Importantly, placental cytolytic natural killer cells were elevated in RUPP versus NP rats (8±2% versus 2±2% gated, P <0.05), which was prevented in RUPP+'n7AAc' total (3±1% gated, P <0.05) In conclusion, AT1-AA inhibition prevents the rise in maternal blood pressure and several pathophysiological factors associated with preeclampsia in RUPP rats and could be a potential therapy for preeclampsia. © 2018 American Heart Association, Inc.

  1. AP1S3 Mutations Are Associated with Pustular Psoriasis and Impaired Toll-like Receptor 3 Trafficking

    PubMed Central

    Setta-Kaffetzi, Niovi; Simpson, Michael A.; Navarini, Alexander A.; Patel, Varsha M.; Lu, Hui-Chun; Allen, Michael H.; Duckworth, Michael; Bachelez, Hervé; Burden, A. David; Choon, Siew-Eng; Griffiths, Christopher E.M.; Kirby, Brian; Kolios, Antonios; Seyger, Marieke M.B.; Prins, Christa; Smahi, Asma; Trembath, Richard C.; Fraternali, Franca; Smith, Catherine H.; Barker, Jonathan N.; Capon, Francesca

    2014-01-01

    Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has the unique potential to deliver insights into gene function. Here, we report two founder mutations (c.11T>G [p.Phe4Cys] and c.97C>T [p.Arg33Trp]) in AP1S3, the gene encoding AP-1 complex subunit σ1C, in 15 unrelated individuals with a severe autoinflammatory skin disorder known as pustular psoriasis. Because the variants are predicted to destabilize the 3D structure of the AP-1 complex, we generated AP1S3-knockdown cell lines to investigate the consequences of AP-1 deficiency in skin keratinocytes. We found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling. These findings identify pustular psoriasis as an autoinflammatory phenotype caused by defects in vesicular trafficking and demonstrate a requirement of AP-1 for Toll-like receptor homeostasis. PMID:24791904

  2. Blockade of human P2X7 receptor function with a monoclonal antibody.

    PubMed

    Buell, G; Chessell, I P; Michel, A D; Collo, G; Salazzo, M; Herren, S; Gretener, D; Grahames, C; Kaur, R; Kosco-Vilbois, M H; Humphrey, P P

    1998-11-15

    A monoclonal antibody (MoAb) specific for the human P2X7 receptor was generated in mice. As assessed by flow cytometry, the MoAb labeled human blood-derived macrophage cells natively expressing P2X7 receptors and cells transfected with human P2X7 but not other P2X receptor types. The MoAb was used to immunoprecipitate the human P2X7 receptor protein, and in immunohistochemical studies on human lymphoid tissue, P2X7 receptor labeling was observed within discrete areas of the marginal zone of human tonsil sections. The antibody also acted as a selective antagonist of human P2X7 receptors in several functional studies. Thus, whole cell currents, elicited by the brief application of 2',3'-(4-benzoyl)-benzoyl-ATP in cells expressing human P2X7, were reduced in amplitude by the presence of the MoAb. Furthermore, preincubation of human monocytic THP-1 cells with the MoAb antagonized the ability of P2X7 agonists to induce the release of interleukin-1beta.

  3. Cannabinoid Type 1 Receptors Transiently Silence Glutamatergic Nerve Terminals of Cultured Cerebellar Granule Cells

    PubMed Central

    Ramírez-Franco, Jorge; Bartolomé-Martín, David; Alonso, Beatris; Torres, Magdalena; Sánchez-Prieto, José

    2014-01-01

    Cannabinoid receptors are the most abundant G protein-coupled receptors in the brain and they mediate retrograde short-term inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at many excitatory synapses. The induction of presynaptically silent synapses is a means of modulating synaptic strength, which is important for synaptic plasticity. Persistent activation of cannabinoid type 1 receptors (CB1Rs) mutes GABAergic terminals, although it is unclear if CB1Rs can also induce silencing at glutamatergic synapses. Cerebellar granule cells were transfected with VGLUT1-pHluorin to visualise the exo-endocytotic cycle. We found that prolonged stimulation (10 min) of cannabinoid receptors with the agonist HU-210 induces the silencing of previously active synapses. However, the presynaptic silencing induced by HU-210 is transient as it reverses after 20 min. cAMP with forskolin prevented CB1R-induced synaptic silencing, via activation of the Exchange Protein directly Activated by cAMP (Epac). Furthermore, Epac activation accelerated awakening of already silent boutons. Electron microscopy revealed that silencing was associated with synaptic vesicle (SV) redistribution within the nerve terminal, which diminished the number of vesicles close to the active zone of the plasma membrane. Finally, by combining functional and immunocytochemical approaches, we observed a strong correlation between the release capacity of the nerve terminals and RIM1α protein content, but not that of Munc13-1 protein. These results suggest that prolonged stimulation of cannabinoid receptors can transiently silence glutamatergic nerve terminals. PMID:24533119

  4. Substance P receptors in brain stem respiratory centers of the rat: regulation of NK1 receptors by hypoxia.

    PubMed

    Mazzone, S B; Hinrichsen, C F; Geraghty, D P

    1997-09-01

    Substance P (SP) is a key neurotransmitter involved in the brain stem integration of carotid body chemoreceptor reflexes. In this study, the characteristics and location of SP receptors in the rat brain stem and their regulation by hypoxia were investigated using homogenate radioligand binding and quantitative autoradiography. Specific binding of [125I] Bolton-Hunter SP (BHSP) to brain stem homogenates was saturable (approximately 0.3 nM) and to a single class of high-affinity sites (K(d), 0.16 nM; maximum density of binding sites, 0.43 fmol/mg wet weight tissue). The order of potency of agonists for inhibition of BHSP binding was SP > [Sar9Met(O2)11]SP > neurokinin A > septide > neurokinin B > [Nle10]-neurokinin A(4-10) = senktide, and for nonpeptide antagonists, RP 67580 > CP-96,345 > RP 68651 = CP-96,344, consistent with binding to NK1 receptors. The effect of single and multiple, 5-min bouts of hypoxia (8.5% O2/91.5% N2) on BHSP binding was investigated using quantitative autoradiography. Binding sites were localized to the lateral, medial and commissural nucleus of the solitary tract (NTS), the hypoglossal nucleus, central gray and the spinal trigeminal tract and nucleus (Sp5 and nSp5, respectively). Five min after a single bout of hypoxia, the density of BHSP binding sites had decreased significantly (P < .05) in the medial NTS (-33%) and lateral NTS (-24%) when compared to normoxic controls. However, the normal receptor complement was restored within 60 min of the hypoxic challenge. In the Sp5, a significant decrease (P < .05) in binding was observed 5 min after hypoxia which was still apparent after 60 min. In contrast, the density of BHSP binding sites in the hypoglossal nucleus decreased slowly and was significantly lower (P < .05) than normoxic controls 60 min after hypoxia. Five min after repetitive hypoxia (3 x 5 min bouts), BHSP binding in the NTS was reduced by more than 40%. Studies in homogenates showed that the affinity of SP for BHSP binding

  5. Soluble tumor necrosis factor receptor 1 is associated with diminished estimated glomerular filtration rate in colombian patients with type 2 diabetes.

    PubMed

    Gómez-Banoy, Nicolás; Cuevas, Virginia; Higuita, Andrea; Aranzález, Luz Helena; Mockus, Ismena

    2016-07-01

    The tumor necrosis factor α (TNF-α) family of inflammatory molecules plays a crucial role in the pathogenesis of type 2 diabetes mellitus (DM2) complications. TNF-α soluble receptors 1 (sTNFR1) and 2 (sTNFR2) have been associated with chronic kidney disease in DM2 patients. This cross-sectional study intended to determine serum concentrations of sTNFR1 and sTNFR2 in Colombian patients and correlated them with various clinical variables, especially kidney function. 92 Colombian patients with DM2 were recruited. Anthropometric variables, glycemic control parameters, lipid profile and renal function were assessed for each patient. Levels of sTNFR1 and sTNFR2 were determined using ELISA. Patients were stratified in two groups according to reduced estimated glomerular filtration rate (eGFR) (<60ml/min/1.73m(2)) and normal eGFR (≥60ml/min/1.73m(2)). Significantly elevated levels of sTNFR1 and sTNFR2 were observed in the diminished versus normal eGFR group. Also, significant differences were noticed between both groups in haemoglobin A1c (HbA1c) values, percentage of hypertensive subjects treated with angiotensin receptor blocker (ARB) and subjects treated with metformin. No differences were observed regarding body mass index (BMI), albuminuria and lipid profile. Multivariable linear regression analysis revealed that sTNFR1 alone showed a significant association with low eGFR (p=0.009). However, after adjusting for age, the association weakens. Moreover, sTNFR1 and sTNFR2 showed a linear negative correlation with eGFR (r=-0.448, p<0.001 and r=-0.376, p<0.001, respectively). A positive correlation was also seen between sTNFR1 and HbA1c, whereas a negative correlation between both sTNFRs and high-density lipoprotein (HDL) cholesterol was found. Elevated levels of sTNFRs, especially sTNFR1, are associated with loss of kidney function in Hispanic patients with DM2. Future studies should focus on social and genetic determinants of inflammation and their association with

  6. Discovery of a Series of Imidazo[4,5-b]pyridines with Dual Activity at Angiotensin II Type 1 Receptor and Peroxisome Proliferator-Activated Receptor-[gamma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casimiro-Garcia, Agustin; Filzen, Gary F.; Flynn, Declan

    2013-03-07

    Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPAR{gamma} confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPAR{gamma} activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC{sub 50} = 1.6 nM) with partialmore » PPAR{gamma} agonism (EC{sub 50} = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat.« less

  7. D1 receptors physically interact with N-type calcium channels to regulate channel distribution and dendritic calcium entry.

    PubMed

    Kisilevsky, Alexandra E; Mulligan, Sean J; Altier, Christophe; Iftinca, Mircea C; Varela, Diego; Tai, Chao; Chen, Lina; Hameed, Shahid; Hamid, Jawed; Macvicar, Brian A; Zamponi, Gerald W

    2008-05-22

    Dopamine signaling through D1 receptors in the prefrontal cortex (PFC) plays a critical role in the maintenance of higher cognitive functions, such as working memory. At the cellular level, these functions are predicated to involve alterations in neuronal calcium levels. The dendrites of PFC neurons express D1 receptors and N-type calcium channels, yet little information exists regarding their coupling. Here, we show that D1 receptors potently inhibit N-type channels in dendrites of rat PFC neurons. Using coimmunoprecipitation, we demonstrate the existence of a D1 receptor-N-type channel signaling complex in this region, and we provide evidence for a direct receptor-channel interaction. Finally, we demonstrate the importance of this complex to receptor-channel colocalization in heterologous systems and in PFC neurons. Our data indicate that the N-type calcium channel is an important physiological target of D1 receptors and reveal a mechanism for D1 receptor-mediated regulation of cognitive function in the PFC.

  8. Enduring, Handling-Evoked Enhancement of Hippocampal Memory Function and Glucocorticoid Receptor Expression Involves Activation of the Corticotropin-Releasing Factor Type 1 Receptor

    PubMed Central

    Fenoglio, Kristina A.; Brunson, Kristen L.; Avishai-Eliner, Sarit; Stone, Blake A.; Kapadia, Bhumika J.; Baram, Tallie Z.

    2011-01-01

    Early-life experience, including maternal care, influences hippocampus-dependent learning and memory throughout life. Handling of pups during postnatal d 2–9 (P2–9) stimulates maternal care and leads to improved memory function and stress-coping. The underlying molecular mechanisms may involve early (by P9) and enduring reduction of hypothalamic corticotropin-releasing factor (CRF) expression and subsequent (by P45) increase in hippocampal glucocorticoid receptor (GR) expression. However, whether hypothalamic CRF levels influence changes in hippocampal GR expression (and memory function), via reduced CRF receptor activation and consequent lower plasma glucocorticoid levels, is unclear. In this study we administered selective antagonist for the type 1 CRF receptor, NBI 30775, to nonhandled rats post hoc from P10–17 and examined hippocampus-dependent learning and memory later (on P50–70), using two independent paradigms, compared with naive and vehicle-treated nonhandled, and naive and antagonist-treated handled rats. Hippocampal GR and hypothalamic CRF mRNA levels and stress-induced plasma corticosterone levels were also examined. Transient, partial selective blockade of CRF1 in nonhandled rats improved memory functions on both the Morris watermaze and object recognition tests to levels significantly better than in naive and vehicle-treated controls and were indistinguishable from those in handled (naive, vehicle-treated, and antagonist-treated) rats. GR mRNA expression was increased in hippocampal CA1 and the dentate gyrus of CRF1-antagonist treated nonhandled rats to levels commensurate with those in handled cohorts. Thus, the extent of CRF1 activation, probably involving changes in hypothalamic CRF levels and release, contributes to the changes in hippocampal GR expression and learning and memory functions. PMID:15932935

  9. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xianwei, E-mail: XWang2@UAMS.edu; Lu, Jingjun; Khaidakov, Magomed

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiacmore » fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22{sup phox}, p47{sup phox}, p67{sup phox}, NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H{sub 2}O{sub 2}. Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac

  10. Magic wavelengths for the 6{s}^{2}{}^{1}{S}_{0}{--}6s6p{}^{3}{P}_{1}^{o} transition in ytterbium atom

    NASA Astrophysics Data System (ADS)

    Tang, Zhi-Ming; Yu, Yan-Mei; Jiang, Jun; Dong, Chen-Zhong

    2018-06-01

    The static and dynamic electric dipole polarizabilities of the 6{s}2{}1{S}0 and 6s6p{}3{P}1o states of Yb are calculated by using the relativistic ab initio method. Focusing on the red detuning region to the 6{s}2{}1{S}0{--}6s6p{}3{P}1o transition, we find two magic wavelengths at 1035.7(2) and 612.9(2) nm for the 6{s}2{}1{S}0{--}6s6p{}3{P}1o,{M}J=0 transition and three magic wavelengths at 1517.68(6), 1036.0(3) and 858(12) nm for the 6{s}2{}1{S}0{--}6s6p{}3{P}1o,{M}J=+/- 1 transitions. Such magic wavelengths are of particular interest for attaining the state-insensitive cooling, trapping, and quantum manipulation of neutral Yb atom.

  11. Fas/S1P1 crosstalk via NF-κB activation in osteoclasts controls subchondral bone remodeling in murine TMJ arthritis.

    PubMed

    Hutami, Islamy Rahma; Izawa, Takashi; Mino-Oka, Akiko; Shinohara, Takehiro; Mori, Hiroki; Iwasa, Akihiko; Tanaka, Eiji

    2017-09-02

    Enhanced turnover of subchondral trabecular bone is a hallmark of rheumatoid arthritis (RA) and it results from an imbalance between bone resorption and bone formation activities. To investigate the formation and activation of osteoclasts which mediate bone resorption, a Fas-deficient MRL/lpr mouse model which spontaneously develops autoimmune arthritis and exhibits decreased bone mass was studied. Various assays were performed on subchondral trabecular bone of the temporomandibular joint (TMJ) from MRL/lpr mice and MRL+/+ mice. Initially, greater osteoclast production was observed in vitro from bone marrow macrophages obtained from MRL/lpr mice due to enhanced phosphorylation of NF-κB, as well as Akt and MAPK, to receptor activator of nuclear factor-κB ligand (RANKL). Expression of sphingosine 1-phosphate receptor 1 (S1P 1 ) was also significantly upregulated in the condylar cartilage. S1P 1 was found to be required for S1P-induced migration of osteoclast precursor cells and downstream signaling via Rac1. When SN50, a synthetic NF-κB-inhibitory peptide, was applied to the MRL/lpr mice, subchondral trabecular bone loss was reduced and both production of osteoclastogenesis markers and sphingosine kinase (Sphk) 1/S1P 1 signaling were reduced. Thus, the present results suggest that Fas/S1P 1 signaling via activation of NF-κB in osteoclast precursor cells is a key factor in the pathogenesis of RA in the TMJ. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Biased signaling of the proton-sensing receptor OGR1 by benzodiazepines.

    PubMed

    Pera, Tonio; Deshpande, Deepak A; Ippolito, Michael; Wang, Bin; Gavrila, Adelina; Michael, James V; Nayak, Ajay P; Tompkins, Eric; Farrell, Eleni; Kroeze, Wesley K; Roth, Bryan L; Panettieri, Reynold A; Benovic, Jeffrey L; An, Steven S; Dulin, Nickolai O; Penn, Raymond B

    2018-02-01

    GPCRs have diverse signaling capabilities, based on their ability to assume various conformations. Moreover, it is now appreciated that certain ligands can promote distinct receptor conformations and thereby bias signaling toward a specific pathway to differentially affect cell function. The recently deorphanized G protein-coupled receptor OGR1 [ovarian cancer G protein-coupled receptor 1 ( GPR68)] exhibits diverse signaling events when stimulated by reductions in extracellular pH. We recently demonstrated airway smooth muscle cells transduce multiple signaling events, reflecting a diverse capacity to couple to multiple G proteins. Moreover, we recently discovered that the benzodiazepine lorazepam, more commonly recognized as an agonist of the γ-aminobutyric acid A (GABA A ) receptor, can function as an allosteric modulator of OGR1 and, similarly, can promote multiple signaling events. In this study, we demonstrated that different benzodiazepines exhibit a range of biases for OGR1, with sulazepam selectively activating the canonical Gs of the G protein signaling pathway, in heterologous expression systems, as well as in several primary cell types. These findings highlight the potential power of biased ligand pharmacology for manipulating receptor signaling qualitatively, to preferentially activate pathways that are therapeutically beneficial.-Pera, T., Deshpande, D. A., Ippolito, M., Wang, B., Gavrila, A., Michael, J. V., Nayak, A. P., Tompkins, E., Farrell, E., Kroeze, W. K., Roth, B. L., Panettieri, R. A. Jr Benovic, J. L., An, S. S., Dulin, N. O., Penn, R. B. Biased signaling of the proton-sensing receptor OGR1 by benzodiazepines.

  13. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes1[W

    PubMed Central

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1(C65Y)(for ethylene response1-1), ers1-1(I62P) (for ethylene response sensor1-1), and ers1C65Y are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1(C65Y), but not ers1-1(I62P), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1(I62P); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1(I62P) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1C65Y, which implied that ETR1 and EIN4 have synergistic effects on ers1C65Y functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors. PMID:22227969

  14. Regulated expression of the rat recombinant P2X(3) receptor in stably transfected CHO-K1 tTA cells.

    PubMed

    Lachnit, W G; Oglesby, I B; Gever, J R; Gever, M; Huang, C; Li, X C; Jin, H; McGivern, J G; Ford, A P

    2000-07-03

    In this report, the regulatable expression by tetracycline of the rat recombinant P2X(3) receptor in stably transfected Chinese hamster ovary (CHO-K1) expressing the tetracycline-controlled transactivator (tTA) is described. cDNA encoding the rat P2X(3)-receptor was subcloned into pTRE (a tetracycline-repressible expression vector) which was used to transfect stably CHO-K1 tTA cells. Using whole cell patch clamp techniques, 100 microM ATP evoked inward currents of 2.9+/-1.6 nA in transfected cells grown in the absence of tetracycline (tet-). The P2X(3) receptor protein was detectable by immunoblot as early as 24 h and protein expression levels continued to increase as much as 192 h following activation of tTA by the removal of the antibiotic. Saturation binding isotherms using [35S]ATP gamma S yielded a pK(d) of 8.2+/-0.1 and a B(max) of 31.9+/-3.5 pmol/mg protein in tet- cell membranes and a pK(d) of 8.1+/-0.1 and a B(max) of 5.8+/-0.8 pmol/mg protein in tet+ cell membranes. The agonist ligands 2MeSATP and alpha beta MeATP displaced the binding of [35S]ATP gamma S in tet- cell membranes with very high affinity, yielding pIC(50) values of 9.4+/-0.2 and 7.5+/-0. 2, respectively. In tet+ cell membrane, displacement of [35S]ATP gamma S by 2MeSATP and alpha beta MeATP was of much lower affinity (pIC(50) values of 7.8 and 6.2, respectively). ATP, ADP and UTP showed similar displacement of [35S]ATP gamma S binding in tet- and tet+ cell membranes. In other experiments, cytosolic Ca(2+) was monitored using the fluorescent indicator, fluo-3. Increases in cytosolic Ca(2+) were elicited by 100 nM alpha beta MeATP in tet- cells while no increases in cytosolic Ca(2+) were detected below 100 microM alpha beta MeATP in either tet+ cells or untransfected cells. These calcium responses to alpha beta MeATP had a pEC(50) of 6.7 and were transient, returning to baseline within 120 s. Suramin produced concentration-dependent, parallel, dextral shifts of E/[A] curves to alpha beta Me

  15. Sphingosine-1-phosphate receptor expression in cardiac fibroblasts is modulated by in vitro culture conditions.

    PubMed

    Landeen, Lee K; Aroonsakool, Nakon; Haga, Jason H; Hu, Betty S; Giles, Wayne R

    2007-06-01

    The bioactive molecule sphingosine-1-phosphate (S1P) binds with high affinity to five recognized receptors (S1P(1-5)) to affect various tissues, including cellular responses of cardiac fibroblasts (CFbs) and myocytes. CFbs are essential components of myocardium, and detailed study of their cell signaling and physiology is required for a number of emerging disciplines. Meaningful studies on CFbs, however, necessitate methods for selective, reproducible cell isolations. Macrophages reside within normal cardiac tissues and often are isolated with CFbs. A protocol was therefore developed that significantly reduces macrophage levels and utilizes more CFb-specific markers (discoidin domain receptor-2) instead of, or in addition to, more commonly used cytoskeletal markers. Our results demonstrate that primary isolated, purified CFbs express predominantly S1P(1-3); however, the relative levels of these receptor subtypes are modulated with time and by culture conditions. In coculture experiments, macrophages altered CFb S1P receptor levels relative to controls. Further investigations using known macrophage-secreted factors showed that S1P and H(2)O(2) had minimal effects on CFb S1P(1-3) expression, whereas transforming growth factor-beta1, TNF-alpha, and PDGF-BB significantly altered all S1P receptor subtypes. Lowering FBS concentrations from 10% to 0.1% increased S1P(2), whereas supplementation with either PDGF-BB or Rho-associated protein kinase inhibitor Y-27632 significantly elevated S1P(3) levels. S1P(2) and S1P(3) receptor levels are known to regulate cell migration. Using cells isolated from either normal or S1P(3)-null mice, we demonstrate that S1P(3) is important and necessary for CFb migration. These results highlight the importance of demonstrating CFb culture purity in functional studies of S1P and also identify conditions that modulate S1P receptor expression in CFbs.

  16. High density lipoprotein promotes proliferation of adipose-derived stem cells via S1P1 receptor and Akt, ERK1/2 signal pathways.

    PubMed

    Shen, Haitao; Zhou, Enchen; Wei, Xiujing; Fu, Zhiwei; Niu, Chenguang; Li, Yang; Pan, Bing; Mathew, Anna V; Wang, Xu; Pennathur, Subramaniam; Zheng, Lemin; Wang, Yongyu

    2015-05-15

    Adipose-derived stem cells (ADSC) are non-hematopoietic mesenchymal stem cells that have shown great promise in their ability to differentiate into multiple cell lineages. Their ubiquitous nature and the ease of harvesting have attracted the attention of many researchers, and they pose as an ideal candidate for applications in regenerative medicine. Several reports have demonstrated that transplanting ADSC can promote repair of injured tissue and angiogenesis in animal models. Survival of these cells after transplant remains a key limiting factor for the success of ADSC transplantation. Circulating factors like High Density Lipoprotein (HDL) has been known to promote survival of other stems cells like bone marrow derived stem cells and endothelial progenitor cells, both by proliferation and by inhibiting cell apoptosis. The effect of HDL on transplanted adipose-derived stem cells in vivo is largely unknown. This study focused on exploring the effects of plasma HDL on ADSC and delineating the mechanisms involved in their proliferation after entering the bloodstream. Using the MTT and BrdU assays, we tested the effects of HDL on ADSC proliferation. We probed the downstream intracellular Akt and ERK1/2 signaling pathways and expression of cyclin proteins in ADSC using western blot. Our study found that HDL promotes proliferation of ADSC, by binding to sphingosine-1- phosphate receptor-1(S1P1) on the cell membrane. This interaction led to activation of intracellular Akt and ERK1/2 signaling pathways, resulting in increased expression of cyclin D1 and cyclin E, and simultaneous reduction in expression of cyclin-dependent kinase inhibitors p21 and p27, therefore promoting cell cycle progression and cell proliferation. These studies raise the possibility that HDL may be a physiologic regulator of stem cells and increasing HDL concentrations may be valuable strategy to promote ADSC transplantation.

  17. Postsynaptic N-type or P/Q-type calcium channels mediate long-term potentiation by group I metabotropic glutamate receptors in the trigeminal oralis.

    PubMed

    Weon, Haein; Kim, Tae Wan; Youn, Dong-Ho

    2017-11-01

    Both N-type and P/Q-type voltage-gated Ca 2+ channels (VGCCs) are involved in the induction of long-term potentiation (LTP), the long-lasting increase of synaptic strength, in the central nervous system. To provide further information on the roles of N-type and P/Q-type VGCCs in the induction of LTP at excitatory synapses of trigeminal primary afferents in the spinal trigeminal subnucleus oralis (Vo), we investigated whether they contribute to the induction of LTP by activation of group I metabotropic glutamate receptors (mGluRs). (S)-3,5-Dihydroxyphenylglycine (DHPG; 10μM for 5min), the group I mGluR agonist, was used to induce LTP of excitatory postsynaptic currents that were evoked in the Vo neurons by stimulating the trigeminal track. Weak blockade of the N-type or P/Q-type VGCCs by ω-conotoxin GVIA or ω-agatoxin IVA, respectively, which inhibited only 20-40% of Ca 2+ currents recorded in isolated trigeminal ganglion neurons but had no effect on the basal excitatory synaptic transmission, completely blocked the induction of LTP. In contrast, stronger blockade of the channels, which inhibited >50% of Ca 2+ currents and about 30% of basal synaptic transmission, resulted in the development of long-term depression (LTD), the long-lasting decrease of synaptic strength. Interestingly, the postsynaptic mechanism of DHPG-induced LTP, which was determined by paired-pulse ratio, disappeared when LTP was blocked, or LTD occurred, while a presynaptic mechanism still remained. Our data suggest that postsynaptic N-type and P/Q-type VGCCs mediate the DHPG-induced LTP at the trigeminal afferent synapses in the Vo. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Structural and Molecular Modeling Features of P2X Receptors

    PubMed Central

    Alves, Luiz Anastacio; da Silva, João Herminio Martins; Ferreira, Dinarte Neto Moreira; Fidalgo-Neto, Antonio Augusto; Teixeira, Pedro Celso Nogueira; de Souza, Cristina Alves Magalhães; Caffarena, Ernesto Raúl; de Freitas, Mônica Santos

    2014-01-01

    Currently, adenosine 5′-triphosphate (ATP) is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors. PMID:24637936

  19. Striatal D1- and D2-type dopamine receptors are linked to motor response inhibition in human subjects.

    PubMed

    Robertson, Chelsea L; Ishibashi, Kenji; Mandelkern, Mark A; Brown, Amira K; Ghahremani, Dara G; Sabb, Fred; Bilder, Robert; Cannon, Tyrone; Borg, Jacqueline; London, Edythe D

    2015-04-15

    Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D1- and D2-type receptors are unclear. Although evidence supports dissociable contributions of D1- and D2-type receptors to response inhibition in rats and associations of D2-type receptors to response inhibition in humans, the relationship between D1-type receptors and response inhibition has not been evaluated in humans. Here, we tested whether individual differences in striatal D1- and D2-type receptors are related to response inhibition in human subjects, possibly in opposing ways. Thirty-one volunteers participated. Response inhibition was indexed by stop-signal reaction time on the stop-signal task and commission errors on the continuous performance task, and tested for association with striatal D1- and D2-type receptor availability [binding potential referred to nondisplaceable uptake (BPND)], measured using positron emission tomography with [(11)C]NNC-112 and [(18)F]fallypride, respectively. Stop-signal reaction time was negatively correlated with D1- and D2-type BPND in whole striatum, with significant relationships involving the dorsal striatum, but not the ventral striatum, and no significant correlations involving the continuous performance task. The results indicate that dopamine D1- and D2-type receptors are associated with response inhibition, and identify the dorsal striatum as an important locus of dopaminergic control in stopping. Moreover, the similar contribution of both receptor subtypes suggests the importance of a relative balance between phasic and tonic dopaminergic activity subserved by D1- and D2-type receptors, respectively, in support of response inhibition. The results also suggest that the stop-signal task and the continuous performance task use different neurochemical mechanisms subserving motor response inhibition. Copyright © 2015 the authors 0270-6474/15/355990-08$15.00/0.

  20. AP1S3 mutations are associated with pustular psoriasis and impaired Toll-like receptor 3 trafficking.

    PubMed

    Setta-Kaffetzi, Niovi; Simpson, Michael A; Navarini, Alexander A; Patel, Varsha M; Lu, Hui-Chun; Allen, Michael H; Duckworth, Michael; Bachelez, Hervé; Burden, A David; Choon, Siew-Eng; Griffiths, Christopher E M; Kirby, Brian; Kolios, Antonios; Seyger, Marieke M B; Prins, Christa; Smahi, Asma; Trembath, Richard C; Fraternali, Franca; Smith, Catherine H; Barker, Jonathan N; Capon, Francesca

    2014-05-01

    Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has the unique potential to deliver insights into gene function. Here, we report two founder mutations (c.11T>G [p.Phe4Cys] and c.97C>T [p.Arg33Trp]) in AP1S3, the gene encoding AP-1 complex subunit σ1C, in 15 unrelated individuals with a severe autoinflammatory skin disorder known as pustular psoriasis. Because the variants are predicted to destabilize the 3D structure of the AP-1 complex, we generated AP1S3-knockdown cell lines to investigate the consequences of AP-1 deficiency in skin keratinocytes. We found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling. These findings identify pustular psoriasis as an autoinflammatory phenotype caused by defects in vesicular trafficking and demonstrate a requirement of AP-1 for Toll-like receptor homeostasis. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. Angiotensin II AT2 receptor decreases AT1 receptor expression and function via nitric oxide/cGMP/Sp1 in renal proximal tubule cells from Wistar–Kyoto rats

    PubMed Central

    Yang, Jian; Chen, Caiyu; Ren, Hongmei; Han, Yu; He, Duofen; Zhou, Lin; Hopfer, Ulrich; Jose, Pedro A.; Zeng, Chunyu

    2013-01-01

    Background The renin–angiotensin (Ang) system controls blood pressure, in part, by regulating renal tubular sodium transport. In the kidney, activation of the angiotensin II type 1 (AT1) receptor increases renal sodium reabsorption, whereas the angiotensin II type 2 (AT2) receptor produces the opposite effect. We hypothesized that the AT2 receptor regulates AT1 receptor expression and function in the kidney. Methods and results In immortalized renal proximal tubule (RPT) cells from Wistar–Kyoto rats, CGP42112, an AT2 receptor agonist, decreased AT1 receptor mRNA and protein expression (P < 0.05), as assessed by reverse transcriptase-polymerase chain reaction and immunoblotting. The inhibitory effect of the AT2 receptor on AT1 receptor expression was blocked by the AT2 receptor antagonist, PD123319 (10−6 mol/l), the nitric oxide synthase inhibitor Nw-nitro-l-arginine methyl ester (10−4 mol/l), or the nitric oxide-dependent soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (10−5 mol/l), indicating that both nitric oxide and cyclic guanosine monophosphate (cGMP) were involved in the signaling pathway. Furthermore, CGP42112 decreased Sp1 serine phosphorylation and reduced the binding of Sp1 to AT1 receptor DNA. Stimulation with Ang II (10−11 mol/l per 30 min) enhanced Na+-K+-ATPase activity in RPT cells, which was prevented by pretreatment with CGP42112 (10−7 mol/l per 24 h) (P < 0.05). The above-mentioned results were confirmed in RPT cells from AT2 receptor knockout mice; AT1 receptor expression and Ang II-stimulated Na+-K+-ATPase activity were greater in these cells than in RPT cells from wild-type mice (P < 0.05). AT1/AT2 receptors co-localized and co-immunoprecipitated in RPT cells; short-term CGP42112 (10−7 mol/l per 30 min) treatment increased AT1/AT2 receptor co-immunoprecipitation (P < 0.05). Conclusions These results indicate that the renal AT2 receptor, via nitric oxide/cGMP/Sp1 pathway, regulates AT1 receptor

  2. 1-Aryl-1H- and 2-aryl-2H-1,2,3-triazole derivatives blockade P2X7 receptor in vitro and inflammatory response in vivo.

    PubMed

    Gonzaga, Daniel Tadeu Gomes; Ferreira, Leonardo Braga Gomes; Moreira Maramaldo Costa, Thadeu Estevam; von Ranke, Natalia Lidmar; Anastácio Furtado Pacheco, Paulo; Sposito Simões, Ana Paula; Arruda, Juliana Carvalho; Dantas, Luiza Pereira; de Freitas, Hércules Rezende; de Melo Reis, Ricardo Augusto; Penido, Carmen; Bello, Murilo Lamim; Castro, Helena Carla; Rodrigues, Carlos Rangel; Ferreira, Vitor Francisco; Faria, Robson Xavier; da Silva, Fernando de Carvalho

    2017-10-20

    Fifty-one 1,2,3-triazole derivatives were synthesized and evaluated with respect to P2X7 receptor (P2X7R) activity and its associated pore. These triazoles were screened in vitro for dye uptake assay and its cytotoxicity against mammalian cell types. Seven 1,2,3-triazole derivatives (5e, 6e, 8h, 9d, 9i, 11, and 12) potently blocked P2X7 receptor pore formation in vitro (J774.G8 cells and peritoneal macrophages). All blockers displayed IC 50 value inferior to 500 nM, and they have low toxicity in either cell types. These seven selected triazoles inhibited P2X7R mediated interleukin-1 (IL-1β) release. In particular, compound 9d was the most potent P2X7R blocker. Additionally, in mouse acute models of inflammatory responses induced by ATP or carrageenan administration in the paw, compound 9d promoted a potent blocking response. Similarly, 9d also reduced mouse LPS-induced pleurisy cellularity. In silico predictions indicate this molecule appropriate to develop an anti-inflammatory agent when it was compared to commercial analogs. Electrophysiological studies suggest a competitive mechanism of action of 9d to block P2X7 receptor. Molecular docking was performed on the ATP binding site in order to observe the preferential interaction pose, indicating that binding mode of the 9d is by interacting its 1,2,3-triazole and ether moiety with positively charged residues and with its chlorobenzene moiety orientated toward the apolar end of the ATP binding site which are mainly composed by the Ile170, Trp167 and Leu309 residues from α subunit. These results highlight 9d derivative as a drug candidate with potential therapeutic application based on P2X7 receptor blockade. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. CdS-Free p-Type Cu2ZnSnSe4/Sputtered n-Type In x Ga1- x N Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Liang; Kuo, Dong-Hau; Tuan, Thi Tran Anh

    2017-03-01

    Cu2ZnSnSe4 (CZTSe) films for solar cell devices were fabricated by sputtering with a Cu-Zn-Sn metal target, followed by two-step post-selenization at 500-600°C for 1 h in the presence of single or double compensation discs to supply Se vapor. After that, two kinds of n-type III-nitride bilayers were prepared by radio frequency sputtering for CdS-free CZTSe thin film solar cell devices: In0.15Ga0.85N/GaN/CZTSe and In0.15Ga0.85N/In0.3Ga0.7N/CZTSe. The p-type CZTSe and the n-type In x Ga1- x N films were characterized. The properties of CZTSe changed with the selenization temperature and the In x Ga1- x N with its indium content. With the CdS-free modeling for a solar cell structure, the In0.15Ga0.85N/In0.3Ga0.7N/CZTSe solar cell device had an improved efficiency of 4.2%, as compared with 1.1% for the conventional design with the n-type conventional ZnO/CdS bilayer. Current density of ˜48 mA/cm2, the maximum open-circuit voltage of 0.34 V, and fill factor of 27.1% are reported. The 3.8-fold increase in conversion efficiency for the CZTSe thin film solar cell devices by replacing n-type ZnO/CdS with the III-nitride bilayer proves that sputtered III-nitride films have their merits.

  4. Carbachol induces p70S6K1 activation through an ERK-dependent but Akt-independent pathway in human colonic epithelial cells.

    PubMed

    Jiang, Xiaohua; Sinnett-Smith, James; Rozengurt, Enrique

    2009-09-25

    Stimulation of human colonic epithelial T84 cells with the muscarinic receptor agonist carbachol, a stable analog of acetylcholine, induced Akt, p70S6K1 and ERK activation. Treatment of T84 cells with the selective inhibitor of EGF receptor (EGFR) tyrosine kinase AG1478 abrogated Akt phosphorylation on Ser(473) induced by either carbachol or EGF, indicating that carbachol-induced Akt activation is mediated through EGFR transactivation. Surprisingly, AG1478 did not suppress p70S6K1 phosphorylation on Thr(389) in response to carbachol, indicating the G protein-coupled receptor (GPCR) stimulation induces p70S6K1 activation, at least in part, via an Akt-independent pathway. In contrast, treatment with the selective MEK inhibitor U0126 (but not with the inactive analog U0124) inhibited carbachol-induced p70S6K1 activation, indicating that the MEK/ERK/RSK pathway plays a critical role in p70S6K1 activation in GPCR-stimulated T84 cells. These findings imply that GPCR activation induces p70S6K1 via ERK rather than through the canonical PI 3-kinase/Akt/TSC/mTORC1 pathway in T84 colon carcinoma cells.

  5. Carbachol induces p70S6K1 activation through an ERK-dependent but Akt-independent pathway in human colonic epithelial cells

    PubMed Central

    Jiang, Xiaohua; Sinnett-Smith, James; Rozengurt, Enrique

    2009-01-01

    Stimulation of human colonic epithelial T84 cells with the muscarinic receptor agonist carbachol, a stable analog of acetylcholine, induced Akt, p70S6K1 and ERK activation. Treatment of T84 cells with the selective inhibitor of EGF receptor (EGFR) tyrosine kinase AG1478 abrogated Akt phosphorylation on Ser473 induced by either carbachol or EGF, indicating that carbachol-induced Akt activation is mediated through EGFR transactivation. Surprisingly, AG1478 did not suppress p70S6K1 phosphorylation on Thr389 in response to carbachol, indicating the G protein-coupled receptor (GPCR) stimulation induces p70S6K1 activation, at least in part, via an Akt-independent pathway. In contrast, treatment with the selective MEK inhibitor U0126 (but not with the inactive analog U0124) inhibited carbachol-induced p70S6K1 activation, indicating that the MEK/ERK/RSK pathway plays a critical role in p70S6K1 activation in GPCR-stimulated T84 cells. These findings imply that GPCR activation induces p70S6K1 via ERK rather than through the canonical PI 3-kinase/Akt/TSC/mTORC1 pathway in T84 colon carcinoma cells. PMID:19615971

  6. 78 FR 58868 - Airworthiness Directives; Agusta S.p.A. (Type Certificate Currently Held by Agusta Westland S.p.A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... Airworthiness Directives; Agusta S.p.A. (Type Certificate Currently Held by Agusta Westland S.p.A) (Agusta... Office between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. The AD docket contains... standard maintenance regulations. For helicopters with T/R hub and blade assembly, part number (P/N) 109...

  7. Hypertension in response to autoantibodies to the angiotensin II type I receptor (AT1-AA) in pregnant rats: role of endothelin-1.

    PubMed

    LaMarca, Babbette; Parrish, Marc; Ray, Lillian Fournier; Murphy, Sydney R; Roberts, Lyndsay; Glover, Porter; Wallukat, Gerd; Wenzel, Katrin; Cockrell, Kathy; Martin, James N; Ryan, Michael J; Dechend, Ralf

    2009-10-01

    Agonistic autoantibodies to the angiotensin II type I receptor (AT1-AA) and endothelin -1 (ET-1) are suggested to be important links between placental ischemia and hypertension during preeclampsia. Activation of the angiotensin II type 1 receptor (AT1R) increases endothelial cell production of ET-1; however, the importance of ET-1 in response to AT1-AA-mediated AT1 R activation during preeclampsia is unknown. Furthermore, the role of AT1-AA-mediated increases in blood pressure during pregnancy remains unclear. The objective of this study was to test the hypothesis that AT1-AA, increased to levels observed in preeclamptic women and placental ischemic rats, increases mean arterial pressure (MAP) by activation of the ET-1 system. Chronic infusion of purified rat AT1-AA into normal pregnant (NP) rats for 7 days increased AT1-AA from 0.68+/-0.5 to 10.88+/-1.1 chronotropic units (P<0.001). The increased AT1-AA increased MAP from 99+/-1 to 119+/-2 mm Hg (P<0.001). The hypertension was associated with significant increases in renal cortices (11-fold) and placental (4-fold) ET-1. To determine whether ET-1 mediates AT1-AA-induced hypertension, pregnant rats infused with AT1-AA and NP rats were treated with an ET(A) receptor antagonist. MAP was 100+/-1 mm Hg in AT1-AA+ET(A) antagonist-treated rats versus 98+/-2 mm Hg in ET(A) antagonist-treated rats. Collectively, these data support the hypothesis that one potential pathway whereby AT1-AAs increase blood pressure during pregnancy is by an ET-1-dependent mechanism.

  8. Involvement of interleukin-1 type 1 receptors in lipopolysaccharide-induced sickness responses.

    PubMed

    Matsuwaki, Takashi; Shionoya, Kiseko; Ihnatko, Robert; Eskilsson, Anna; Kakuta, Shigeru; Dufour, Sylvie; Schwaninger, Markus; Waisman, Ari; Müller, Werner; Pinteaux, Emmanuel; Engblom, David; Blomqvist, Anders

    2017-11-01

    Sickness responses to lipopolysaccharide (LPS) were examined in mice with deletion of the interleukin (IL)-1 type 1 receptor (IL-1R1). IL-1R1 knockout (KO) mice displayed intact anorexia and HPA-axis activation to intraperitoneally injected LPS (anorexia: 10 or 120µg/kg; HPA-axis: 120µg/kg), but showed attenuated but not extinguished fever (120µg/kg). Brain PGE 2 synthesis was attenuated, but Cox-2 induction remained intact. Neither the tumor necrosis factor-α (TNFα) inhibitor etanercept nor the IL-6 receptor antibody tocilizumab abolished the LPS induced fever in IL-1R1 KO mice. Deletion of IL-1R1 specifically in brain endothelial cells attenuated the LPS induced fever, but only during the late, 3rd phase of fever, whereas deletion of IL-1R1 on neural cells or on peripheral nerves had little or no effect on the febrile response. We conclude that while IL-1 signaling is not critical for LPS induced anorexia or stress hormone release, IL-1R1, expressed on brain endothelial cells, contributes to the febrile response to LPS. However, also in the absence of IL-1R1, LPS evokes a febrile response, although this is attenuated. This remaining fever seems not to be mediated by IL-6 receptors or TNFα, but by some yet unidentified pyrogenic factor. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Substance P Exacerbates Dopaminergic Neurodegeneration through Neurokinin-1 Receptor-Independent Activation of Microglial NADPH Oxidase

    PubMed Central

    Chu, Chun-Hsien; Qian, Li; Chen, Shih-Heng; Wilson, Belinda; Oyarzabal, Esteban; Jiang, Lulu; Ali, Syed; Robinson, Bonnie; Kim, Hyoung-Chun

    2014-01-01

    Although dysregulated substance P (SP) has been implicated in the pathophysiology of Parkinson's disease (PD), how SP affects the survival of dopaminergic neurons remains unclear. Here, we found that mice lacking endogenous SP (TAC1−/−), but not those deficient in the SP receptor (neurokinin-1 receptor, NK1R), were more resistant to lipopolysaccharide (LPS)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic neurodegeneration than wild-type controls, suggesting a NK1R-independent toxic action of SP. In vitro dose–response studies revealed that exogenous SP enhanced LPS- and 1-methyl-4-phenylpyridinium (MPP+)-induced dopaminergic neurodegeneration in a bimodal manner, peaking at submicromolar and subpicomolar concentrations, but was substantially less effective at intermediate concentrations. Mechanistically, the actions of submicromolar levels of SP were NK1R-dependent, whereas subpicomolar SP-elicited actions required microglial NADPH oxidase (NOX2), the key superoxide-producing enzyme, but not NK1R. Subpicomolar concentrations of SP activated NOX2 by binding to the catalytic subunit gp91phox and inducing membrane translocation of the cytosolic subunits p47phox and p67phox. The importance of NOX2 was further corroborated by showing that inhibition or disruption of NOX2 blocked subpicomolar SP-exacerbated neurotoxicity. Together, our findings revealed a critical role of microglial NOX2 in mediating the neuroinflammatory and dopaminergic neurodegenerative effects of SP, which may provide new insights into the pathogenesis of PD. PMID:25209287

  10. Activity of Protein Kinase C is Important for 3α,5α-THP’s Actions at Dopamine Type 1-like and/or GABAA receptors in the Ventral Tegmental Area for Lordosis of Rats

    PubMed Central

    Frye, Cheryl A.; Walf, Alicia A.

    2008-01-01

    In the ventral tegmental area, progestogens facilitate sexual receptivity of rodents via actions at dopamine type 1-like and/or γ-aminobutyric type A receptors and activation of downstream signal transduction molecules. In the present study, we investigated whether effects of progesterone’s metabolite, 3α,5α-THP, to enhance lordosis via actions at these receptors in the ventral tegmental area requires phospholipase C-dependent protein kinase C. The objective of this study was to test the hypothesis that: if progestogens’ actions through dopamine type 1-like and/or γ-aminobutyric type A receptors in the ventral tegmental area for lordosis require protein kinase C, then inhibiting protein kinase C in the ventral tegmental area should reduce 3α,5α-THP-facilitated lordosis and its enhancement by dopamine type 1-like or γ-aminobutyric type A receptor agonists. Ovariectomized, E2 (10 μg s.c. at hr 0)-primed rats were tested for their baseline lordosis responses and then received a series of three infusions to the ventral tegmental area: first, bisindolylmaleimide (75 nM/side) or vehicle; second, SKF38393 (100 ng/side), muscimol (100 ng/side), or vehicle; third, 3α,5α-THP (100, 200 ng) or vehicle. Rats were pre-tested for lordosis and motor behavior and then tested for lordosis after each infusion and 10 and 60 mins after the last infusion. Rats were tested for motor behavior following their last lordosis test. As has been previously demonstrated, 3α,5α-THP infusions to the ventral tegmental area increased lordosis and effects were further enhanced by infusions of SKF38393 and muscimol. Infusions of bisindolylmaleimide to the ventral tegmental area attenuated 3α,5α-THP-, SKF38393-, and/or muscimol-facilitated lordosis. Effects on lordosis were not solely due to changes in general motor behavior. Thus, 3α,5α-THP’s actions in the ventral tegmental area through membrane receptors may require activity of protein kinase C. PMID:18675324

  11. Mechanisms of dopamine D1 receptor-mediated ERK1/2 activation in the parkinsonian striatum and their modulation by metabotropic glutamate receptor type 5.

    PubMed

    Fieblinger, Tim; Sebastianutto, Irene; Alcacer, Cristina; Bimpisidis, Zisis; Maslava, Natallia; Sandberg, Sabina; Engblom, David; Cenci, M Angela

    2014-03-26

    In animal models of Parkinson's disease, striatal overactivation of ERK1/2 via dopamine (DA) D1 receptors is the hallmark of a supersensitive molecular response associated with dyskinetic behaviors. Here we investigate the pathways involved in D1 receptor-dependent ERK1/2 activation using acute striatal slices from rodents with unilateral 6-hydroxydopamine (6-OHDA) lesions. Application of the dopamine D1-like receptor agonist SKF38393 induced ERK1/2 phosphorylation and downstream signaling in the DA-denervated but not the intact striatum. This response was mediated through a canonical D1R/PKA/MEK1/2 pathway and independent of ionotropic glutamate receptors but blocked by antagonists of L-type calcium channels. Coapplication of an antagonist of metabotropic glutamate receptor type 5 (mGluR5) or its downstream signaling molecules (PLC, PKC, IP3 receptors) markedly attenuated SKF38393-induced ERK1/2 activation. The role of striatal mGluR5 in D1-dependent ERK1/2 activation was confirmed in vivo in 6-OHDA-lesioned animals treated systemically with SKF38393. In one experiment, local infusion of the mGluR5 antagonist MTEP in the DA-denervated rat striatum attenuated the activation of ERK1/2 signaling by SKF38393. In another experiment, 6-OHDA lesions were applied to transgenic mice with a cell-specific knockdown of mGluR5 in D1 receptor-expressing neurons. These mice showed a blunted striatal ERK1/2 activation in response to SFK38393 treatment. Our results reveal that D1-dependent ERK1/2 activation in the DA-denervated striatum depends on a complex interaction between PKA- and Ca(2+)-dependent signaling pathways that is critically modulated by striatal mGluR5.

  12. Mineralocorticoid Receptor Mutations and a Severe Recessive Pseudohypoaldosteronism Type 1

    PubMed Central

    Hubert, Edwige-Ludiwyne; Teissier, Raphaël; Fernandes-Rosa, Fábio L.; Fay, Michel; Rafestin-Oblin, Marie-Edith; Jeunemaitre, Xavier; Metz, Chantal; Escoubet, Brigitte

    2011-01-01

    Pseudohypoaldosteronism type 1 (PHA1) is a rare genetic disease of mineralocorticoid resistance characterized by salt wasting and failure to thrive in infancy. Here we describe the first case of a newborn with severe recessive PHA1 caused by two heterozygous mutations in NR3C2, gene coding for the mineralocorticoid receptor (MR). Independent segregation of the mutations occurred in the family, with p.Ser166X being transmitted from the affected father and p.Trp806X from the asymptomatic mother Whereas the truncated MR166X protein was degraded, MR806X was expressed both at the mRNA and protein level. Functional studies demonstrated that despite its inability to bind aldosterone, MR806X had partial ligand-independent transcriptional activity. Partial nuclear localization of MR806X in the absence of hormone was identified as a prerequisite to initiate transcription. This exceptional case broadens the spectrum of clinical phenotypes of PHA1 and demonstrates that minimal residual activity of MR is compatible with life. It also suggests that rare hypomorphic NR3C2 alleles may be more common than expected from the prevalence of detected PHA1 cases. This might prove relevant for patient's care in neonatal salt losing disorders and may affect renal salt handling and blood pressure in the general population. PMID:21903996

  13. Pre- and postsynaptic type-1 cannabinoid receptors control the alterations of glutamate transmission in experimental autoimmune encephalomyelitis.

    PubMed

    Musella, Alessandra; Sepman, Helena; Mandolesi, Georgia; Gentile, Antonietta; Fresegna, Diego; Haji, Nabila; Conrad, Andrea; Lutz, Beat; Maccarrone, Mauro; Centonze, Diego

    2014-04-01

    Type-1 cannabinoid receptors (CB1R) are important regulators of the neurodegenerative damage in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). In GABAergic striatal neurons, CB1R stimulation exerts protective effects by limiting inflammation-induced potentiation of glutamate-mediated spontaneous excitatory postsynaptic currents (sEPSCs). Here we show that CB1R located on GABAergic or on glutamatergic neurons are differentially involved in the pre- and postsynaptic alterations of sEPSCs caused by EAE in the striatum. After induction of EAE, mice selectively lacking CB1R on GABAergic neurons (GABA-CB1R-KO) showed exacerbated alterations of sEPSC duration in GABAergic medium spiny neurons (MSN). On the other hand, EAE-induced alterations of corticostriatal sEPSC frequency were exacerbated only in mice lacking CB1R on glutamatergic neurons (Glu-CB1R-KO), indicating that this subset of receptors controls the effects of inflammation on glutamate release. While EAE severity was enhanced in whole CB1R-KO mice, GABA-CB1R-KO and Glu-CB1R-KO mice had similar motor deficits as the respective wild-type (WT) counterparts. Our results provide further evidence that CB1R are involved in EAE pathophysiology, and suggest that both pre- and postsynaptic alterations of glutamate transmission are important to drive excitotoxic neurodegeneration typical of this disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Type I interleukin-1 receptor is required for pulmonary responses to subacute ozone exposure in mice.

    PubMed

    Johnston, Richard A; Mizgerd, Joseph P; Flynt, Lesley; Quinton, Lee J; Williams, Erin S; Shore, Stephanie A

    2007-10-01

    Interleukin (IL)-1, a proinflammatory cytokine, is expressed in the lung after ozone (O(3)) exposure. IL-1 mediates its effects through the type I IL-1 receptor (IL-1RI), the only signaling receptor for both IL-1alpha and IL-1beta. The purpose of this study was to determine the role of IL-1RI in pulmonary responses to O(3.) To that end, wild-type, C57BL/6 (IL-1RI(+/+)) mice and IL-1RI-deficient (IL-1RI(-/-)) mice were exposed to O(3) either subacutely (0.3 ppm for 72 h) or acutely (2 ppm for 3 h). Subacute O(3) exposure increased bronchoalveolar lavage fluid (BALF) protein, interferon-gamma-inducible protein (IP)-10, soluble tumor necrosis factor receptor 1 (sTNFR1), and neutrophils in IL-1RI(+/+) and IL-1RI(-/-) mice. With the exception of IP-10, all outcome indicators were reduced in IL-1RI(-/-) mice. Furthermore, subacute O(3) exposure increased IL-6 mRNA expression in IL-1RI(+/+), but not IL-1RI(-/-) mice. Acute (2 ppm) O(3) exposure increased BALF protein, IL-6, eotaxin, KC, macrophage inflammatory protein (MIP)-2, IP-10, monocyte chemotactic protein-1, sTNFR1, neutrophils, and epithelial cells in IL-1RI(+/+) and IL-1RI(-/-) mice. For IL-6, eotaxin, MIP-2, and sTNFR1, there were small but significant reductions of these outcome indicators in IL-1RI(-/-) versus IL-1RI(+/+) mice at 6 hours after exposure, but not at other time points, whereas other outcome indicators were unaffected by IL-1RI deficiency. These results suggest that IL-1RI is required for O(3)-induced pulmonary inflammation during subacute O(3) exposure, but plays a more minor role during acute O(3) exposure. In addition, these results suggest that the induction of IL-6 via IL-1RI may be important in mediating the effects of O(3) during subacute exposure.

  15. Structure of nerve growth factor complexed with the shared neurotrophin receptor p75.

    PubMed

    He, Xiao-Lin; Garcia, K Christopher

    2004-05-07

    Neurotrophins are secreted growth factors critical for the development and maintenance of the vertebrate nervous system. Neurotrophins activate two types of cell surface receptors, the Trk receptor tyrosine kinases and the shared p75 neurotrophin receptor. We have determined the 2.4 A crystal structure of the prototypic neurotrophin, nerve growth factor (NGF), complexed with the extracellular domain of p75. Surprisingly, the complex is composed of an NGF homodimer asymmetrically bound to a single p75. p75 binds along the homodimeric interface of NGF, which disables NGF's symmetry-related second p75 binding site through an allosteric conformational change. Thus, neurotrophin signaling through p75 may occur by disassembly of p75 dimers and assembly of asymmetric 2:1 neurotrophin/p75 complexes, which could potentially engage a Trk receptor to form a trimolecular signaling complex.

  16. Agonist-induced internalization of the substance P (NK1) receptor expressed in epithelial cells.

    PubMed

    Garland, A M; Grady, E F; Payan, D G; Vigna, S R; Bunnett, N W

    1994-10-01

    Internalization of the NK1 receptor (NK1R) and substance P was observed in cells transfected with cDNA encoding the rat NK1R by using anti-receptor antibodies and cyanine 3-labelled substance P (cy3-substance P). After incubation at 4 degrees C, NK1R immunoreactivity and cy3-substance P were confined to the plasma membrane. Within 3 min of incubation at 37 degrees C, NK1R immunoreactivity and cy3-substance P were internalized into small intracellular vesicles located beneath the plasma membrane. Fluorescein isothiocyanate-labelled transferrin and cy3-substance P were internalized into the same vesicles, identifying them as early endosomes. After 60 min at 37 degrees C, NK1R immunoreactivity was detected in larger, perinuclear vesicles. Internalization of 125I-labelled substance P was studied by using an acid wash to dissociate cell-surface label from that which has been internalized. Binding reached equilibrium after incubation for 60 min at 4 degrees C with no detectable internalization. After 10 min incubation at 37 degrees C, 83.5 +/- 1.0% of specifically bound counts were internalized. Hyperosmolar sucrose and phenylarsine oxide, which are inhibitors of endocytosis, prevented internalization of 125I-labelled substance P and accumulation of NK1R immunoreactivity into endosomes. Acidotropic agents caused retention of 125I-labelled substance P within the cell and inhibited degradation of the internalized peptide. Continuous incubation of cells with substance P at 37 degrees C reduced 125I-substance P binding at the cell surface. Therefore, substance P and its receptor are internalized into early endosomes within minutes of binding, and internalized substance P is degraded. Internalization depletes NK1Rs from the cell surface and may down-regulate the response of a cell to substance P.

  17. p70S6K1 (S6K1)-mediated Phosphorylation Regulates Phosphatidylinositol 4-Phosphate 5-Kinase Type I γ Degradation and Cell Invasion.

    PubMed

    Jafari, Naser; Zheng, Qiaodan; Li, Liqing; Li, Wei; Qi, Lei; Xiao, Jianyong; Gao, Tianyan; Huang, Cai

    2016-12-02

    Phosphatidylinositol 4-phosphate 5-kinase type I γ (PIPKIγ90) ubiquitination and subsequent degradation regulate focal adhesion assembly, cell migration, and invasion. However, it is unknown how upstream signals control PIPKIγ90 ubiquitination or degradation. Here we show that p70S6K1 (S6K1), a downstream target of mechanistic target of rapamycin (mTOR), phosphorylates PIPKIγ90 at Thr-553 and Ser-555 and that S6K1-mediated PIPKIγ90 phosphorylation is essential for cell migration and invasion. Moreover, PIPKIγ90 phosphorylation is required for the development of focal adhesions and invadopodia, key machineries for cell migration and invasion. Surprisingly, substitution of Thr-553 and Ser-555 with Ala promoted PIPKIγ90 ubiquitination but enhanced the stability of PIPKIγ90, and depletion of S6K1 also enhanced the stability of PIPKIγ90, indicating that PIPKIγ90 ubiquitination alone is insufficient for its degradation. These data suggest that S6K1-mediated PIPKIγ90 phosphorylation regulates cell migration and invasion by controlling PIPKIγ90 degradation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Type 1 receptor tyrosine kinases are differentially phosphorylated in mammary carcinoma and differentially associated with steroid receptors.

    PubMed Central

    Bacus, S. S.; Chin, D.; Yarden, Y.; Zelnick, C. R.; Stern, D. F.

    1996-01-01

    The neu/erbB-2/HER-2 proto-oncogene is amplified and/or overexpressed in up to 30% of mammary carcinomas and has been variably correlated with poor prognosis. The signaling activity of the encoded receptor tyrosine kinase is regulated by interactions with other type 1 receptors and their ligands. We have used a novel approach, phosphorylation-sensitive anti-Neu antibodies, to quantify signaling by Neu and epidermal growth factor receptor in a panel of frozen sections of mammary carcinoma specimens. We also determined the relationship of Neu, phosphorylated Neu (and epidermal growth factor receptor), and phosphotyrosine to the expression of Neu-related receptors (epidermal growth factor receptor, HER-3, and HER-4) and to prognostic factors (estrogen and progesterone receptor). We found that tyrosine phosphorylation of Neu (and hence signaling activity) is highly variable among mammary carcinomas. Neu and HER-4 were associated with divergent correlates, suggesting that they have profoundly different biological activities. These results have implications for etiology of mammary carcinoma for clinical evaluation of mammary carcinoma patients, and for development of Neu-targeted therapeutic strategies. Images Figure 1 Figure 2 PMID:8579117

  19. Cloning and functional analysis of P2X1b, a new variant in rat optic nerve that regulates the P2X1 receptor in a use-dependent manner.

    PubMed

    Rangel-Yescas, Gisela E; Vazquez-Cuevas, Francisco G; Garay, Edith; Arellano, Rogelio O

    2012-01-01

    P2X receptors are trimeric, ATP-gated cation channels. In mammals seven P2X subtypes have been reported (P2X1-P2X7), as well as several variants generated by alternative splicing. Variants confer to the homomeric or heteromeric channels distinct functional and/or pharmacological properties. Molecular biology, biochemical, and functional analysis by electrophysiological methods were used to identify and study a new variant of the P2X1 receptor named P2X1b. This new variant, identified in rat optic nerve, was also expressed in other tissues. P2X1b receptors lack amino acids 182 to 208 of native P2X1, a region that includes residues that are highly conserved among distinct P2X receptors. When expressed in Xenopus oocytes, P2X1b was not functional as a homomer; however, when co-expressed with P2X1, it downregulated the electrical response generated by ATP compared with that of oocytes expressing P2X1 alone, and it seemed to form heteromeric channels with a modestly enhanced ATP potency. A decrease in responses to ATP in oocytes co-expressing different ratios of P2X1b to P2X1 was completely eliminated by overnight pretreatment with apyrase. Thus, it is suggested that P2X1b regulates, through a use-dependent mechanism, the availability, in the plasma membrane, of receptor channels that can be operated by ATP.

  20. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study.

    PubMed

    Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J

    1998-08-21

    Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical

  1. Cytokine-like factor-1, a novel soluble protein, shares homology with members of the cytokine type I receptor family.

    PubMed

    Elson, G C; Graber, P; Losberger, C; Herren, S; Gretener, D; Menoud, L N; Wells, T N; Kosco-Vilbois, M H; Gauchat, J F

    1998-08-01

    In this report we describe the identification, cloning, and expression pattern of human cytokine-like factor 1 (hCLF-1) and the identification and cloning of its murine homologue. They were identified from expressed sequence tags using amino acid sequences from conserved regions of the cytokine type I receptor family. Human CLF-1 and murine CLF-1 shared 96% amino acid identity and significant homology with many cytokine type I receptors. CLF-1 is a secreted protein, suggesting that it is either a soluble subunit within a cytokine receptor complex, like the soluble form of the IL-6R alpha-chain, or a subunit of a multimeric cytokine, e.g., IL-12 p40. The highest levels of hCLF-1 mRNA were observed in lymph node, spleen, thymus, appendix, placenta, stomach, bone marrow, and fetal lung, with constitutive expression of CLF-1 mRNA detected in a human kidney fibroblastic cell line. In fibroblast primary cell cultures, CLF-1 mRNA was up-regulated by TNF-alpha, IL-6, and IFN-gamma. Western blot analysis of recombinant forms of hCLF-1 showed that the protein has the tendency to form covalently linked di- and tetramers. These results suggest that CLF-1 is a novel soluble cytokine receptor subunit or part of a novel cytokine complex, possibly playing a regulatory role in the immune system and during fetal development.

  2. The P2Y(1) and P2Y(12) receptors mediate autoinhibition of transmitter release in sympathetic innervated tissues.

    PubMed

    Quintas, Clara; Fraga, Sónia; Gonçalves, Jorge; Queiroz, Glória

    2009-12-01

    In the sympathetic nervous system, ATP is a co-transmitter and modulator of transmitter release, inhibiting noradrenaline release by acting on P2Y autoreceptors, but in peripheral tissues the subtypes involved have only scarcely been identified. We investigated the identity of the noradrenaline release-inhibiting P2Y subtypes in the epididymal portion of vas deferens and tail artery of the rat. The subtypes operating as autoreceptors, the signalling mechanism and cross-talk with alpha(2)-autoreceptors, was also investigated in the epididymal portion. In both tissues, the nucleotides 2-methylthioATP, 2-methylthioADP, ADP and ATP inhibited noradrenaline release up to 68%, with the following order of potency: 2-methylthioADP=2-methylthioATP>ADP=ATP in the epididymal portion and 2-methylthioADP=2-methylthioATP=ADP>ATP in the tail artery. The selective P2Y(1) antagonist 2'-deoxy-N(6)-methyladenosine 3',5'-bisphosphate (30microM) and the P2Y(12) antagonist 2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyloxymethyl)-propyl ester (30microM) increased noradrenaline release per se by 25+/-8% and 18+/-3%, respectively, in the epididymal portion but not in tail artery. Both antagonists attenuated the effect of nucleotides in the epididymal portion whereas in tail artery only the P2Y(1) antagonist was effective. The agonist of P2Y(1) and P2Y(12) receptors, 2-methylthioADP, caused an inhibition of noradrenaline release that was not prevented by inhibition of phospholipase C or protein kinase C but was abolished by pertussis toxin. 2-methylthioADP and the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine were less potent at inhibiting noradrenaline release under marked influence of alpha(2)-autoinhibition. In both tissues, nucleotides modulate noradrenaline release by activation of inhibitory P2Y(1) receptors but in the epididymal portion P2Y(12) receptors also participate. P2Y(1) and P2Y(12) receptors are coupled to G

  3. Substance P exacerbates dopaminergic neurodegeneration through neurokinin-1 receptor-independent activation of microglial NADPH oxidase.

    PubMed

    Wang, Qingshan; Chu, Chun-Hsien; Qian, Li; Chen, Shih-Heng; Wilson, Belinda; Oyarzabal, Esteban; Jiang, Lulu; Ali, Syed; Robinson, Bonnie; Kim, Hyoung-Chun; Hong, Jau-Shyong

    2014-09-10

    Although dysregulated substance P (SP) has been implicated in the pathophysiology of Parkinson's disease (PD), how SP affects the survival of dopaminergic neurons remains unclear. Here, we found that mice lacking endogenous SP (TAC1(-/-)), but not those deficient in the SP receptor (neurokinin-1 receptor, NK1R), were more resistant to lipopolysaccharide (LPS)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic neurodegeneration than wild-type controls, suggesting a NK1R-independent toxic action of SP. In vitro dose-response studies revealed that exogenous SP enhanced LPS- and 1-methyl-4-phenylpyridinium (MPP(+))-induced dopaminergic neurodegeneration in a bimodal manner, peaking at submicromolar and subpicomolar concentrations, but was substantially less effective at intermediate concentrations. Mechanistically, the actions of submicromolar levels of SP were NK1R-dependent, whereas subpicomolar SP-elicited actions required microglial NADPH oxidase (NOX2), the key superoxide-producing enzyme, but not NK1R. Subpicomolar concentrations of SP activated NOX2 by binding to the catalytic subunit gp91(phox) and inducing membrane translocation of the cytosolic subunits p47(phox) and p67(phox). The importance of NOX2 was further corroborated by showing that inhibition or disruption of NOX2 blocked subpicomolar SP-exacerbated neurotoxicity. Together, our findings revealed a critical role of microglial NOX2 in mediating the neuroinflammatory and dopaminergic neurodegenerative effects of SP, which may provide new insights into the pathogenesis of PD. Copyright © 2014 the authors 0270-6474/14/3412490-14$15.00/0.

  4. Medial prefrontal cortex TRPV1 and CB1 receptors modulate cardiac baroreflex activity by regulating the NMDA receptor/nitric oxide pathway.

    PubMed

    Lagatta, Davi C; Kuntze, Luciana B; Ferreira-Junior, Nilson C; Resstel, Leonardo B M

    2018-05-29

    The ventral medial prefrontal cortex (vMPFC) facilitates the cardiac baroreflex response through N-methyl-D-aspartate (NMDA) receptor activation and nitric oxide (NO) formation by neuronal NO synthase (nNOS) and soluble guanylate cyclase (sGC) triggering. Glutamatergic transmission is modulated by the cannabinoid receptor type 1 (CB 1 ) and transient receptor potential vanilloid type 1 (TRPV 1 ) receptors, which may inhibit or stimulate glutamate release in the brain, respectively. Interestingly, vMPFC CB 1 receptors decrease cardiac baroreflex responses, while TRPV 1 channels facilitate them. Therefore, the hypothesis of the present study is that the vMPFC NMDA/NO pathway is regulated by both CB 1 and TRPV 1 receptors in the modulation of cardiac baroreflex activity. In order to test this assumption, we used male Wistar rats that had stainless steel guide cannulae bilaterally implanted in the vMPFC. Subsequently, a catheter was inserted into the femoral artery, for cardiovascular recordings, and into the femoral vein for assessing baroreflex activation. The increase in tachycardic and bradycardic responses observed after the microinjection of a CB 1 receptors antagonist into the vMPFC was prevented by an NMDA antagonist as well as by the nNOS and sGC inhibition. NO extracellular scavenging also abolished these responses. These same pharmacological manipulations inhibited cardiac reflex enhancement induced by TRPV 1 agonist injection into the area. Based on these results, we conclude that vMPFC CB 1 and TRPV 1 receptors inhibit or facilitate the cardiac baroreflex activity by stimulating or blocking the NMDA activation and NO synthesis.

  5. The Sigma-1 Receptor Antagonist, S1RA, Reduces Stroke Damage, Ameliorates Post-Stroke Neurological Deficits and Suppresses the Overexpression of MMP-9.

    PubMed

    Sánchez-Blázquez, Pilar; Pozo-Rodrigálvarez, Andrea; Merlos, Manuel; Garzón, Javier

    2018-06-01

    The glutamate N-methyl-D-aspartate receptor (NMDAR) plays an essential role in the excitotoxic neural damage that follows ischaemic stroke. Because the sigma-1 receptor1R) can regulate NMDAR transmission, exogenous and putative endogenous regulators of σ1R have been investigated using animal models of ischaemic stroke. As both agonists and antagonists provide some neural protection, the selective involvement of σ1Rs in these effects has been questioned. The availability of S1RA (E-52862/MR309), a highly selective σ1R antagonist, prompted us to explore its therapeutic potential in an animal model of focal cerebral ischaemia. Mice were subjected to right middle cerebral artery occlusion (MCAO), and post-ischaemic infarct volume and neurological deficits were determined across a range of intervals after the stroke-inducing surgery. Intracerebroventricular or intravenous treatment with S1RA significantly reduced the cerebral infarct size and neurological deficits caused by permanent MCAO (pMCAO). Compared with the control/sham-operated mice, the neuroprotective effects of S1RA were observed when delivered up to 5 h prior to surgery and 3 h after ischaemic onset. Interestingly, neither mice with the genetic deletion of σ1R nor wild-type mice that were pre-treated with the σ1R agonist PRE084 showed beneficial effects after S1RA administration with regard to stroke infarction. S1RA-treated mice showed faster behavioural recovery from stroke; this finding complements the significant decreases in matrix metalloproteinase-9 (MMP-9) expression and reactive astrogliosis surrounding the infarcted cortex. Our data indicate that S1RA, via σ1R, holds promising potential for clinical application as a therapeutic agent for ischaemic stroke.

  6. Identification of P2X3 and P2X7 Purinergic Receptors Activated by ATP in Rat Lacrimal Gland

    PubMed Central

    Vrouvlianis, Joanna; Scott, Rachel; Dartt, Darlene A.

    2011-01-01

    Purpose. To identify the type of purinergic receptors activated by adenosine triphosphate (ATP) in rat lacrimal gland and to determine their role in protein secretion. Methods. Purinergic receptors were identified by RT-PCR, Western blot analysis, and immunofluorescence techniques. Acini from rat lacrimal gland were isolated by collagenase digestion. Acini were incubated with the fluorescence indicator fura-2 tetra-acetoxylmethyl ester, and intracellular [Ca2+] ([Ca2+]i) was determined. Protein secretion was measured by fluorescence assay. Results. The authors previously showed that P2X7 receptors were functional in the lacrimal gland. In this study, they show that P2X1–4, and P2X6receptors were identified in the lacrimal gland by RT-PCR, Western blot, and immunofluorescence analyses. P2X5 receptors were not detected. ATP increased [Ca2+]i and protein secretion in a concentration-dependent manner. Removal of extracellular Ca2+ significantly reduced the ATP-stimulated increase in [Ca2+]i. Repeated applications of ATP caused desensitization of the [Ca2+]i response. Incubation with the P2X1 receptor inhibitor NF023 did not alter ATP-stimulated [Ca2+]i. Incubation with zinc, which potentiates P2X2 and P2X4 receptor responses, or lowering the pH to 6.8, which potentiates P2X2 receptor responses, did not alter the ATP-stimulated [Ca2+]i. P2X3 receptor inhibitors A-317491 and TNP-ATP significantly decreased ATP-stimulated [Ca2+]i and protein secretion, whereas the P2X3 receptor agonist α,β methylene ATP significantly increased them. The P2X7 receptor inhibitor A438079 had no effect on ATP-stimulated [Ca2+]i at 10−6 M but did have an effect at 10−4 M. Conclusions. Purinergic receptors P2X1–4 and P2X6 are present in the lacrimal gland. ATP uses P2X3 and P2X7 receptors to stimulate an increase in [Ca2+]i and protein secretion. PMID:21421865

  7. Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation.

    PubMed

    Peng, Wenjie; Bouwman, Kim M; McBride, Ryan; Grant, Oliver C; Woods, Robert J; Verheije, Monique H; Paulson, James C; de Vries, Robert P

    2018-05-15

    All human influenza pandemics have originated from avian influenza viruses. Although multiple changes are needed for an avian virus to be able to transmit between humans, binding to human-type receptors is essential. Several research groups have reported mutations in H5N1 viruses that exhibit specificity for human-type receptors and promote respiratory droplet transmission between ferrets. Upon detailed analysis, we have found that these mutants exhibit significant differences in fine receptor specificity compared to human H1N1 and H3N2 and retain avian-type receptor binding. We have recently shown that human influenza viruses preferentially bind to α2-6-sialylated branched N-linked glycans, where the sialic acids on each branch can bind to receptor sites on two protomers of the same hemagglutinin (HA) trimer. In this binding mode, the glycan projects over the 190 helix at the top of the receptor-binding pocket, which in H5N1 would create a stearic clash with lysine at position 193. Thus, we hypothesized that a K193T mutation would improve binding to branched N-linked receptors. Indeed, the addition of the K193T mutation to the H5 HA of a respiratory-droplet-transmissible virus dramatically improves both binding to human trachea epithelial cells and specificity for extended α2-6-sialylated N-linked glycans recognized by human influenza viruses. IMPORTANCE Infections by avian H5N1 viruses are associated with a high mortality rate in several species, including humans. Fortunately, H5N1 viruses do not transmit between humans because they do not bind to human-type receptors. In 2012, three seminal papers have shown how these viruses can be engineered to transmit between ferrets, the human model for influenza virus infection. Receptor binding, among others, was changed, and the viruses now bind to human-type receptors. Receptor specificity was still markedly different compared to that of human influenza viruses. Here we report an additional mutation in ferret

  8. Bradykinin mediates myogenic differentiation in murine myoblasts through the involvement of SK1/Spns2/S1P2 axis.

    PubMed

    Bruno, Gennaro; Cencetti, Francesca; Bernacchioni, Caterina; Donati, Chiara; Blankenbach, Kira Vanessa; Thomas, Dominique; Meyer Zu Heringdorf, Dagmar; Bruni, Paola

    2018-05-01

    Skeletal muscle tissue retains a remarkable regenerative capacity due to the activation of resident stem cells that in pathological conditions or after tissue damage proliferate and commit themselves into myoblasts. These immature myogenic cells undergo differentiation to generate new myofibers or repair the injured ones, giving a strong contribution to muscle regeneration. Cytokines and growth factors, potently released after tissue injury by leukocytes and macrophages, are not only responsible of the induction of the initial inflammatory response, but can also affect skeletal muscle regeneration. Growth factors exploit sphingosine kinase (SK), the enzyme that catalyzes the production of sphingosine 1-phosphate (S1P), to exert their biological effects in skeletal muscle. In this paper we show for the first time that bradykinin (BK), the leading member of kinin/kallikrein system, is able to induce myogenic differentiation in C2C12 myoblasts. Moreover, evidence is provided that SK1, the specific S1P-transporter spinster homolog 2 (Spns2) and S1P 2 receptor are involved in the action exerted by BK, since pharmacological inhibition/antagonism or specific down-regulation significantly alter BK-induced myogenic differentiation. Moreover, the molecular mechanism initiated by BK involves a rapid translocation of SK1 to plasma membrane, analyzed by time-lapse immunofluorescence analysis. The present study highlights the role of SK1/Spns2/S1P receptor 2 signaling axis in BK-induced myogenic differentiation, thus confirming the crucial involvement of this pathway in skeletal muscle cell biology. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Role of σ1 Receptors in Learning and Memory and Alzheimer's Disease-Type Dementia.

    PubMed

    Maurice, Tangui; Goguadze, Nino

    2017-01-01

    The present chapter will review the role of σ 1 receptor in learning and memory and neuroprotection , against Alzheimer's type dementia. σ 1 Receptor agonists have been tested in a variety of pharmacological and pathological models of learning impairments in rodents these last past 20 years. Their anti-amnesic effects have been explained by the wide-range modulatory role of σ 1 receptors on Ca 2+ mobilizations, neurotransmitter responses, and particularly glutamate and acetylcholine systems, and neurotrophic factors. Recent observations from genetic and pharmacological studies have shown that σ 1 receptor can also be targeted in neurodegenerative diseases, and particularly Alzheimer's disease . Several compounds, acting partly through the σ 1 receptor, have showed effective neuroprotection in transgenic mouse models of Alzheimer's disease . We will review the data and discuss the possible mechanisms of action, particularly focusing on oxidative stress and mitochondrial integrity, trophic factors and a novel hypothesis suggesting a functional interaction between the σ 1 receptor and α 7 nicotinic acetylcholine receptor. Finally, we will discuss the pharmacological peculiarities of non-selective σ 1 receptor ligands, now developed as neuroprotectants in Alzheimer's disease , and positive modulators, recently described and that showed efficacy against learning and memory deficits.

  10. Evidence of changes in alpha-1/AT1 receptor function generated by diet-induced obesity.

    PubMed

    Juarez, Esther; Tufiño, Cecilia; Querejeta, Enrique; Bracho-Valdes, Ismael; Bobadilla-Lugo, Rosa A

    2017-11-01

    To study whether hypercaloric diet-induced obesity deteriorates vascular contractility of rat aorta through functional changes in α 1 adrenergic and/or AT1 Angiotensin II receptors. Angiotensin II- or phenylephrine-induced contraction was tested on isolated aorta rings with and without endothelium from female Wistar rats fed for 7 weeks with hypercaloric diet or standard diet. Vascular expression of Angiotensin II Receptor type 1 (AT1R), Angiotensin II Receptor type 2 (AT2R), Cyclooxygenase-1 (COX-1), Cyclooxygenase-2 (COX-2), inducible Nitric Oxide Synthase (iNOS) and endothelial Nitric Oxide Synthase (eNOS), as well as blood pressure, glucose, insulin and angiotensin II blood levels were measured. Diet-induced obesity did not significantly change agonist-induced contractions (Emax and pD 2 hypercaloric diet vs standard diet n.s.d.) of both intact (e+) or endothelium free (e-) vessels but significantly decrease both phenylephrine and angiotensin II contraction (Emax p < 0.01 hypercaloric diet vs standard diet) in the presence of both prazosin and losartan but only in endothelium-intact vessels. Diet-induced obesity did not change angiotensin II AT1, AT2 receptor proteins expression but reduced COX-1 and NOS2 ( p < 0.05 vs standard diet). Seven-week hypercaloric diet-induced obesity produces alterations in vascular adrenergic and angiotensin II receptor dynamics that suggest an endothelium-dependent adrenergic/angiotensin II crosstalk. These changes reflect early-stage vascular responses to obesity.

  11. Sphingosine-1-phosphate receptor therapies: Advances in clinical trials for CNS-related diseases.

    PubMed

    O'Sullivan, Sinead; Dev, Kumlesh K

    2017-02-01

    The family of sphingosine-1-phosphate receptors (S1PRs) are G protein-coupled and comprise of five subtypes, S1P 1 -S1P 5 . These receptors are activated by the sphingolipid ligand, S1P, which is produced from the phosphorylation of sphingosine by sphingosine kinases. The activation of S1PRs modulates a host of cellular processes such as cell proliferation, migration and survival. These receptors are targeted by the drug fingolimod, a first in class oral therapy for multiple sclerosis. Importantly, S1PRs have also been implicated, in cellular experiments, pre-clinical studies and clinical trials in a range of other neurodegenerative diseases, neurological disorders and psychiatric illnesses, where S1PR drugs are proving beneficial. Overall, studies now highlight the importance of S1PRs as targets for modulating a variety of debilitating brain-related diseases. Here, we review the role of S1PRs in these illnesses. This article is part of the Special Issue entitled 'Lipid Sensing G Protein-Coupled Receptors in the CNS'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: Visualization of AMPA-type glutamate receptor endocytosis in living neurons.

    PubMed

    Hayashi, Ayako; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Okabe, Shigeo

    2016-01-01

    Techniques to visualize receptor trafficking in living neurons are important, but currently available methods are limited in their labeling efficiency, specificity and reliability. Here we report a method for receptor labeling with a basic leucine zipper domain peptide (ZIP) and a binding cassette specific to ZIP. Receptors are tagged with a ZIP-binding cassette at their extracellular domain. Tagged receptors expressed in cultured cells were labeled with exogenously applied fluorescently labeled ZIP with low background and high affinity. To test if ZIP labeling is useful in monitoring endocytosis and intracellular trafficking, we next conjugated ZIP with a pH-sensitive dye RhP-M (ZIP-RhP-M). ZIP binding to its binding cassette was pH-resistant and RhP-M fluorescence dramatically increased in acidic environment. Thus AMPA-type glutamate receptors (AMPARs) labeled by ZIP-RhP-M can report receptor endocytosis and subsequent intracellular trafficking. Application of ZIP-RhP-M to cultured hippocampal neurons expressing AMPARs tagged with a ZIP-binding cassette resulted in appearance of fluorescent puncta in PSD-95-positive large spines, suggesting local endocytosis and acidification of AMPARs in individual mature spines. This spine pool of AMPARs in acidic environment was distinct from the early endosomes labeled by transferrin uptake. These results suggest that receptor labeling by ZIP-RhP-M is a useful technique for monitoring endocytosis and intracellular trafficking. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. I1 Imidazoline Receptor: Novel Potential Cytoprotective Target of TVP1022, the S-Enantiomer of Rasagiline

    PubMed Central

    Frolov, Luba; Ovcharenko, Elena; Angel, Itzchak; Youdim, Moussa B. H.; Binah, Ofer

    2012-01-01

    TVP1022, the S-enantiomer of rasagiline (Azilect®) (N-propargyl-1R-aminoindan), exerts cyto/cardio-protective effects in a variety of experimental cardiac and neuronal models. Previous studies have demonstrated that the protective activity of TVP1022 and other propargyl derivatives involve the activation of p42/44 mitogen-activated protein kinase (MAPK) signaling pathway. In the current study, we further investigated the molecular mechanism of action and signaling pathways of TVP1022 which may account for the cyto/cardio-protective efficacy of the drug. Using specific receptor binding and enzyme assays, we demonstrated that the imidazoline 1 and 2 binding sites (I1 & I2) are potential targets for TVP1022 (IC50 = 9.5E-08 M and IC50 = 1.4E-07 M, respectively). Western blotting analysis showed that TVP1022 (1–20 µM) dose-dependently increased the immunoreactivity of phosphorylated p42 and p44 MAPK in rat pheochromocytoma PC12 cells and in neonatal rat ventricular myocytes (NRVM). This effect of TVP1022 was significantly attenuated by efaroxan, a selective I1 imidazoline receptor antagonist. In addition, the cytoprotective effect of TVP1022 demonstrated in NRVM against serum deprivation-induced toxicity was markedly inhibited by efaroxan, thus suggesting the importance of I1imidazoline receptor in mediating the cardioprotective activity of the drug. Our findings suggest that the I1imidazoline receptor represents a novel site of action for the cyto/cardio-protective efficacy of TVP1022. PMID:23166584

  14. I1 imidazoline receptor: novel potential cytoprotective target of TVP1022, the S-enantiomer of rasagiline.

    PubMed

    Barac, Yaron D; Bar-Am, Orit; Liani, Esti; Amit, Tamar; Frolov, Luba; Ovcharenko, Elena; Angel, Itzchak; Youdim, Moussa B H; Binah, Ofer

    2012-01-01

    TVP1022, the S-enantiomer of rasagiline (Azilect®) (N-propargyl-1R-aminoindan), exerts cyto/cardio-protective effects in a variety of experimental cardiac and neuronal models. Previous studies have demonstrated that the protective activity of TVP1022 and other propargyl derivatives involve the activation of p42/44 mitogen-activated protein kinase (MAPK) signaling pathway. In the current study, we further investigated the molecular mechanism of action and signaling pathways of TVP1022 which may account for the cyto/cardio-protective efficacy of the drug. Using specific receptor binding and enzyme assays, we demonstrated that the imidazoline 1 and 2 binding sites (I(1) & I(2)) are potential targets for TVP1022 (IC(50) =9.5E-08 M and IC(50) =1.4E-07 M, respectively). Western blotting analysis showed that TVP1022 (1-20 µM) dose-dependently increased the immunoreactivity of phosphorylated p42 and p44 MAPK in rat pheochromocytoma PC12 cells and in neonatal rat ventricular myocytes (NRVM). This effect of TVP1022 was significantly attenuated by efaroxan, a selective I(1) imidazoline receptor antagonist. In addition, the cytoprotective effect of TVP1022 demonstrated in NRVM against serum deprivation-induced toxicity was markedly inhibited by efaroxan, thus suggesting the importance of I(1)imidazoline receptor in mediating the cardioprotective activity of the drug. Our findings suggest that the I(1)imidazoline receptor represents a novel site of action for the cyto/cardio-protective efficacy of TVP1022.

  15. Tumor necrosis factor-α inhibits angiotensin II receptor type 1 expression in dorsal root ganglion neurons via β-catenin signaling.

    PubMed

    Yang, Y; Wu, H; Yan, J-Q; Song, Z-B; Guo, Q-L

    2013-09-17

    Both tumor necrosis factor (TNF)-α and the angiotensin (Ang) II/angiotensin II receptor type 1 (AT1) axis play important roles in neuropathic pain and nociception. In the present study, we explored the interaction between the two systems by examining the mutual effects between TNF-α and the Ang II/AT1 receptor axis in dorsal root ganglion (DRG) neurons. Rat DRG neurons were treated with TNF-α in different concentrations for different lengths of time in the presence or absence of transcription inhibitor actinomycin D, TNF receptor 1 (TNFR1) inhibitor SPD304, β-catenin signaling inhibitor CCT031374, or different kinase inhibitors. TNF-α decreased the AT1 receptor mRNA level as well as the AT1a receptor promoter activity in a dose-dependent manner within 30 h, which led to dose-dependent inhibition of Ang II-binding AT1 receptor level on the cell membrane. Actinomycin D (1 mg/ml), SPD304 (50 μM), p38 mitogen-activated protein kinase (MAPK) inhibitor PD169316 (25 μM), and CCT031374 (50 μM) completely abolished the inhibitory effect of TNF-α on AT1 receptor expression. TNF-α dose-dependently increased soluble β-catenin and phosphorylated GSK-3β levels, which was blocked by SPD304 and PD169316. In DRG neurons treated with AT2 receptor agonist CGP421140, or Ang II with or without AT1 receptor antagonist losartan or AT2 receptor antagonist PD123319 for 30 h, we found that Ang II and Ang II+PD123319 significantly decreased TNF-α expression, whereas CPG421140 and Ang II+losartan increased TNF-α expression. In conclusion, we demonstrate that TNF-α inhibits AT1 receptor expression at the transcription level via TNFR1 in rat DRG neurons by increasing the soluble β-catenin level through the p38 MAPK/GSK-3β pathway. In addition, Ang II appears to inhibit and induce TNF-α expression via the AT1 receptor and the AT2 receptor in DRG neurons, respectively. This is the first evidence of crosstalk between TNF-α and the Ang II/AT receptor axis in DRG neurons

  16. P2X receptor ligands and pain.

    PubMed

    Shieh, Char-Chang; Jarvis, Michael F; Lee, Chih-Hung; Perner, Richard J

    2006-08-01

    P2X receptors belong to a superfamily of ligand-gated ion channels that conduct the influx of Ca(2+), Na(+) and K(+) cations following activation by extracellular nucleotides such as ATP. Molecular cloning studies have identified seven subunits, namely P2X(1-7), that share approximately 40 - 50% identity in amino acid sequences within the subfamily. Using gene-silencing, pharmacological and electrophysiological approaches, recent studies have revealed roles for P2X(2), P2X(3), P2X(4) and P2X(7) receptors in nociceptive signalling. Homomeric P2X(3) and heteromeric P2X(2/3) receptors are highly localised in the peripheral sensory afferent neurons that conduct nociceptive sensory information to the spinal chord and brain. The discovery of A-317491, a selective and potent non-nucleotide P2X(3) antagonist, provided a pharmacological tool to determine the site and mode of action of P2X(3)-containing receptors in different pain behaviours, including neuropathic, inflammatory and visceral pain. Other P2X receptors (P2X(4) and P2X(7)) that are predominantly expressed in microglia, macrophages and cells of immune origin can trigger the release of cytokines, such as IL-1-beta and TNF-alpha. Genetic disruption of P2X(4) and P2X(7) signalling has been demonstrated to reduce inflammatory and neuropathic pain, suggesting that these two receptors might serve as integrators of neuroinflammation and pain. This article provides an overview of recent scientific literature and patents focusing on P2X(3), P2X(4) and P2X(7) receptors, and the identification of small molecule ligands for the potential treatment of neuropathic and inflammatory pain.

  17. Angiotensin II type 1 receptor antagonists in the treatment of hypertension in elderly patients: focus on patient outcomes

    PubMed Central

    Tadevosyan, Artavazd; MacLaughlin, Eric J; Karamyan, Vardan T

    2011-01-01

    Hypertension in the elderly is one of the main risk factors of cardiovascular and cerebrovascular diseases. Knowledge regarding the mechanisms of hypertension and specific considerations in managing hypertensive elderly through pharmacological intervention(s) is fundamental to improving clinical outcomes. Recent clinical studies in the elderly have provided evidence that angiotensin II type 1 (AT1) receptor antagonists can improve clinical outcomes to a similar or, in certain populations, an even greater extent than other classical arterial blood pressure-lowering agents. This newer class of antihypertensive agents presents several benefits, including potential for improved adherence, excellent tolerability profile with minimal first-dose hypotension, and a low incidence of adverse effects. Thus, AT1 receptor antagonists represent an appropriate option for many elderly patients with hypertension, type 2 diabetes, heart failure, and/or left ventricular dysfunction. PMID:22915967

  18. Mechanical stress-induced interleukin-1beta expression through adenosine triphosphate/P2X7 receptor activation in human periodontal ligament cells.

    PubMed

    Kanjanamekanant, K; Luckprom, P; Pavasant, P

    2013-04-01

    Mechanical stress is an important factor in maintaining homeostasis of the periodontium. Interleukin-1beta (IL-1β) and adenosine triphosphate (ATP) are considered potent inflammatory mediators. In macrophages, ATP-activated P2X7 receptor is involved in IL-1β processing and release. Our previous works demonstrated mechanical stress-induced expression of osteopontin and RANKL through the ATP/P2Y1 receptor in human periodontal ligament (HPDL) cells. This study was designed to examine the effect of mechanical stress on IL-1β expression in HPDL cells, as well as the mechanism and involvement of ATP and the P2 purinergic receptor. Cultured HPDL cells were treated with continuous compressive loading. IL-1β expression was analyzed at both mRNA and protein levels, using RT-PCR and ELISA, respectively. Cell viability was examined using the MTT assay. ATP was also used to stimulate HPDL cells. Inhibitors, antagonists and the small interfering RNA (siRNA) technique were used to investigate the role of ATP and the specific P2 subtypes responsible for IL-1β induction along with the intracellular mechanism. Mechanical stress could up-regulate IL-1β expression through the release of ATP in HPDL cells. ATP alone was also capable of increasing IL-1β expression. The induction of IL-1β was markedly inhibited by inhibitors and by siRNA targeting the P2X7 receptor. ATP-stimulated IL-1β expression was also diminished by intracellular calcium inhibitors. Our work clearly indicates the capability of HPDL cells to respond directly to mechanical stimulation. The results signified the important roles of ATP/P2 purinergic receptors, as well as intracellular calcium signaling, in mechanical stress-induced inflammation via up-regulation of the proinflammatory cytokine, IL-1β, in HPDL cells. © 2012 John Wiley & Sons A/S.

  19. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression

    PubMed Central

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-IL; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y.L.; Choi, Hueng-Sik

    2017-01-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ -binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907

  20. Patterned growth of p-type MoS 2 atomic layers using sol-gel as precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Wei; Lin, Junhao; Feng, Wei

    2D layered MoS 2 has drawn intense attention for its applications in flexible electronic, optoelectronic, and spintronic devices. Most of the MoS 2 atomic layers grown by conventional chemical vapor deposition techniques are n-type due to the abundant sulfur vacancies. Facile production of MoS 2 atomic layers with p-type behavior, however, remains challenging. Here, a novel one-step growth has been developed to attain p-type MoS 2 layers in large scale by using Mo-containing sol–gel, including 1% tungsten (W). Atomic-resolution electron microscopy characterization reveals that small tungsten oxide clusters are commonly present on the as-grown MoS 2 film due to themore » incomplete reduction of W precursor at the reaction temperature. These omnipresent small tungsten oxide clusters contribute to the p-type behavior, as verified by density functional theory calculations, while preserving the crystallinity of the MoS 2 atomic layers. The Mo containing sol–gel precursor is compatible with the soft-lithography techniques, which enables patterned growth of p-type MoS 2 atomic layers into regular arrays with different shapes, holding great promise for highly integrated device applications. Lastly, an atomically thin p–n junction is fabricated by the as-prepared MoS 2, which shows strong rectifying behavior.« less

  1. Patterned growth of p-type MoS 2 atomic layers using sol-gel as precursor

    DOE PAGES

    Zheng, Wei; Lin, Junhao; Feng, Wei; ...

    2016-07-19

    2D layered MoS 2 has drawn intense attention for its applications in flexible electronic, optoelectronic, and spintronic devices. Most of the MoS 2 atomic layers grown by conventional chemical vapor deposition techniques are n-type due to the abundant sulfur vacancies. Facile production of MoS 2 atomic layers with p-type behavior, however, remains challenging. Here, a novel one-step growth has been developed to attain p-type MoS 2 layers in large scale by using Mo-containing sol–gel, including 1% tungsten (W). Atomic-resolution electron microscopy characterization reveals that small tungsten oxide clusters are commonly present on the as-grown MoS 2 film due to themore » incomplete reduction of W precursor at the reaction temperature. These omnipresent small tungsten oxide clusters contribute to the p-type behavior, as verified by density functional theory calculations, while preserving the crystallinity of the MoS 2 atomic layers. The Mo containing sol–gel precursor is compatible with the soft-lithography techniques, which enables patterned growth of p-type MoS 2 atomic layers into regular arrays with different shapes, holding great promise for highly integrated device applications. Lastly, an atomically thin p–n junction is fabricated by the as-prepared MoS 2, which shows strong rectifying behavior.« less

  2. K(Ca)3.1 channels facilitate K+ secretion or Na+ absorption depending on apical or basolateral P2Y receptor stimulation.

    PubMed

    Palmer, Melissa L; Peitzman, Elizabeth R; Maniak, Peter J; Sieck, Gary C; Prakash, Y S; O'Grady, Scott M

    2011-07-15

    Human mammary epithelial (HME) cells express several P2Y receptor subtypes located in both apical and basolateral membranes. Apical UTP or ATP-γ-S stimulation of monolayers mounted in Ussing chambers evoked a rapid, but transient decrease in short circuit current (I(sc)), consistent with activation of an apical K+ conductance. In contrast, basolateral P2Y receptor stimulation activated basolateral K+ channels and increased transepithelial Na+ absorption. Chelating intracellular Ca2+ using the membrane-permeable compound BAPTA-AM, abolished the effects of purinoceptor activation on I(sc). Apical pretreatment with charybdotoxin also blocked the I(sc) decrease by >90% and similar magnitudes of inhibition were observed with clotrimazole and TRAM-34. In contrast, iberiotoxin and apamin did not block the effects of apical P2Y receptor stimulation. Silencing the expression of K(Ca)3.1 produced ∼70% inhibition of mRNA expression and a similar reduction in the effects of apical purinoceptor agonists on I(sc). In addition, silencing P2Y2 receptors reduced the level of P2Y2 mRNA by 75% and blocked the effects of ATP-γ-S by 65%. These results suggest that P2Y2 receptors mediate the effects of purinoceptor agonists on K+ secretion by regulating the activity of K(Ca)3.1 channels expressed in the apical membrane of HME cells. The results also indicate that release of ATP or UTP across the apical or basolateral membrane elicits qualitatively different effects on ion transport that may ultimately determine the [Na+]/[K+] composition of fluid within the mammary ductal network.

  3. The ACE-2/Ang1-7/Mas cascade enhances bone structure and metabolism following angiotensin-II type 1 receptor blockade.

    PubMed

    Abuohashish, Hatem M; Ahmed, Mohammed M; Sabry, Dina; Khattab, Mahmoud M; Al-Rejaie, Salim S

    2017-07-15

    The renin angiotensin system (RAS) regulates numerous systemic functions and is expressed locally in skeletal tissues. Angiotensin1-7 (Ang1-7) is a beneficial member of the RAS, and the therapeutic effects of a large number of angiotensin receptors blockers (ARBs) are mediated by an Ang1-7-dependent cascade. This study examines whether the reported osteo-preservative effects of losartan are mediated through the angiotensin converting enzyme2 (ACE-2)/Ang1-7/Mas pathway in ovariectomized (OVX) rats. Sham and OVX animals received losartan (10mg/kg/d p.o.) for 6 weeks. A specific Mas receptor blocker (A-779) was delivered via mini-osmotic pumps during the losartan treatment period. Serum and urine bone metabolism biomarker levels were measured. Bone trabecular and cortical morphometry were quantified in distal femurs, whereas mineral contents were estimated in ashed bones, serum and urine. Finally, the expression of RAS components, the receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) was determined. Losartan significantly improved the elevated bone metabolism marker levels and altered trabecular and cortical structures in OVX animals, and restored normal urinary and skeletal mineral levels. Mas receptor inhibition significantly abolished all osteo-protective effects of losartan and enhanced the deleterious effects of OVX. Losartan enhanced OVX-induced up-regulation of ACE-1, AngII, angiotensin type 1 (AT 1 ) receptor and RANKL expression, and increased ACE-2, Ang1-7, Mas and OPG expression in OVX animals. However, A-779 significantly eradicated the effects of losartan on RAS components and RANKL/OPG expression. Thus, Ang1-7 are involved in the osteo-preservative effects of losartan via Mas receptor, which may add therapeutic value to this well-known antihypertensive agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Expression of PTHrP and PTH/PTHrP receptor 1 in the superior cervical ganglia of rats.

    PubMed

    Filipović, Natalija; Vrdoljak, Marija; Vuica, Ana; Jerić, Milka; Jeličić Kadić, Antonia; Utrobičić, Toni; Mašek, Tomislav; Grković, Ivica

    2014-12-01

    PTHrP and its receptor PTHR1 are found in the CNS and peripheral nervous system. The presence of PTHrP mRNA has been detected in the superior cervical ganglion (SCG), but there are no data on the cellular distribution of PTHrP and PTHR1 in the SCG. Although it is known that ovarian activity and reproductive status influence sympathetic activity, and the PTHrP/PTHR1 system is influenced by estrogens in different tissues, it is not known whether these factors have a similar effect on expression of PTHrP and PTHR1 in the nervous system. Hence, we investigated the presence and distribution of PTHrP and PTHR1 in neurons and glia of the SCG of rats, as well as the influence of ovariectomy on their expression, by using immunohistochemistry. PTHrP and PTHR1 immunoreactivity was observed in cytoplasm as well as in nuclei of almost all neurons in the SCG. In male rats, intensity of PTHrP fluorescence was significantly higher in cytoplasm of NPY-, in comparison to NPY+ neurons (p < 0.05). In female rats, 2 months post-ovariectomy, significantly lower intensity of PTHrP fluorescence in cytoplasm of the SCG neurons was observed in comparison to sham operated animals (p < 0.05). In addition to neurons, PTHrP and PTHR1 immunoreactivity was observed in most of the glia and was not influenced by ovariectomy. Results show the expression of PTHrP and its receptor, PTHR1, in the majority of neurons and glial cells in the SCG of rats. Expression of PTHrP, but not PTHR1 in the cytoplasm of SCG neurons is influenced by ovarian activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Casein Kinase 1α Mediates the Degradation of Receptors for Type I and Type II Interferons Caused by Hemagglutinin of Influenza A Virus.

    PubMed

    Xia, Chuan; Wolf, Jennifer J; Vijayan, Madhuvanthi; Studstill, Caleb J; Ma, Wenjun; Hahm, Bumsuk

    2018-04-01

    Although influenza A virus (IAV) evades cellular defense systems to effectively propagate in the host, the viral immune-evasive mechanisms are incompletely understood. Our recent data showed that hemagglutinin (HA) of IAV induces degradation of type I IFN receptor 1 (IFNAR1). Here, we demonstrate that IAV HA induces degradation of type II IFN (IFN-γ) receptor 1 (IFNGR1), as well as IFNAR1, via casein kinase 1α (CK1α), resulting in the impairment of cellular responsiveness to both type I and II IFNs. IAV infection or transient HA expression induced degradation of both IFNGR1 and IFNAR1, whereas HA gene-deficient IAV failed to downregulate the receptors. IAV HA caused the phosphorylation and ubiquitination of IFNGR1, leading to the lysosome-dependent degradation of IFNGR1. Influenza viral HA strongly decreased cellular sensitivity to type II IFNs, as it suppressed the activation of STAT1 and the induction of IFN-γ-stimulated genes in response to exogenously supplied recombinant IFN-γ. Importantly, CK1α, but not p38 MAP kinase or protein kinase D2, was proven to be critical for HA-induced degradation of both IFNGR1 and IFNAR1. Pharmacologic inhibition of CK1α or small interfering RNA (siRNA)-based knockdown of CK1α repressed the degradation processes of both IFNGR1 and IFNAR1 triggered by IAV infection. Further, CK1α was shown to be pivotal for proficient replication of IAV. Collectively, the results suggest that IAV HA induces degradation of IFN receptors via CK1α, creating conditions favorable for viral propagation. Therefore, the study uncovers a new immune-evasive pathway of influenza virus. IMPORTANCE Influenza A virus (IAV) remains a grave threat to humans, causing seasonal and pandemic influenza. Upon infection, innate and adaptive immunity, such as the interferon (IFN) response, is induced to protect hosts against IAV infection. However, IAV seems to be equipped with tactics to evade the IFN-mediated antiviral responses, although the detailed

  6. Role of Angiotensin II type 1 receptor on renal NAD(P)H oxidase, oxidative stress and inflammation in nitric oxide inhibition induced-hypertension.

    PubMed

    Rincón, J; Correia, D; Arcaya, J L; Finol, E; Fernández, A; Pérez, M; Yaguas, K; Talavera, E; Chávez, M; Summer, R; Romero, F

    2015-03-01

    Activation of the renin-angiotensin system (RAS), renal oxidative stress and inflammation are constantly present in experimental hypertension. Nitric oxide (NO) inhibition with N(w)-nitro-L-arginine methyl ester (L-NAME) has previously been reported to produce hypertension, increased expression of Angiotensin II (Ang II) and renal dysfunction. The use of Losartan, an Ang II type 1 receptor (AT1R) antagonist has proven to be effective reducing hypertension and renal damage; however, the mechanism by which AT1R blockade reduced kidney injury and normalizes blood pressure in this experimental model is still complete unknown. The current study was designed to test the hypothesis that AT1R activation promotes renal NAD(P)H oxidase up-regulation, oxidative stress and cytokine production during L-NAME induced-hypertension. Male Sprague-Dawley rats were distributed in three groups: L-NAME, receiving 70 mg/100ml of L-NAME, L-NAME+Los, receiving 70 mg/100ml of L-NAME and 40 mg/kg/day of Losartan; and Controls, receiving water instead of L-NAME or L-NAME and Losartan. After two weeks, L-NAME induced high blood pressure, renal overexpression of AT1R, NAD(P)H oxidase sub-units gp91, p22 and p47, increased levels of oxidative stress, interleukin-6 (IL-6) and interleukin-17 (IL-17). Also, we found increased renal accumulation of lymphocytes and macrophages. Losartan treatment abolished the renal expression of gp91, p22, p47, oxidative stress and reduced NF-κB activation and IL-6 expression. These findings indicate that NO induced-hypertension is associated with up-regulation of NADPH oxidase, oxidative stress production and overexpression of key inflammatory mediators. These events are associated with up-regulation of AT1R, as evidenced by their reversal with AT1R blocker treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes.

    PubMed

    Wu, Kaifeng; Song, Nianhui; Liu, Zheng; Zhu, Haiming; Rodríguez-Córdoba, William; Lian, Tianquan

    2013-08-15

    Recent studies of group II-VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD-molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III-V semiconductor) and InP/CdS core/shell (a heterostructure beween group III-V and II-VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP-methylviologen (MV(2+)) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV(2+) from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV(2+) complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III-V and II-VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.

  8. A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Vries, Robert P.; Tzarum, Netanel; Peng, Wenjie

    In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non-fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human-type receptor specificity could enable transmission in the human population. Despite mutations in the receptor-binding pocket of the human H6N1 isolate, it has retained avian-type (NeuAcα2-3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completelymore » switches specificity to human-type (NeuAcα2-6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human-type receptor, stabilizing human receptor binding.« less

  9. DIRECT MODULATION OF P2X1 RECEPTOR-CHANNELS BY THE LIPID PHOSPHATIDYLINOSITOL 4,5-BISPHOSPHATE

    PubMed Central

    Bernier, Louis-Philippe; Ase, Ariel R.; Tong, Xinkang; Hamel, Edith; Blais, Dominique; Zhao, Qi; Logothetis, Diomedes E.; Séguéla, Philippe

    2012-01-01

    The P2X1 receptor-channels activated by extracellular ATP contribute to the neurogenic component of smooth muscle contraction in vascular beds and genito-urinary tracts of rodents and humans. In the present study, we investigated the interactions of plasma membrane phosphoinositides with P2X1 ATP receptors and their physiological consequences. In an isolated rat mesenteric artery preparation, we observed a strong inhibition of P2X1-mediated constrictive responses by depletion of PI(4,5)P2 with the PI4-kinase inhibitor wortmannin. Using the Xenopus oocyte expression system, we provided electrophysiological evidence that lowering PI(4,5)P2 levels with wortmannin significantly decreases P2X1 currents amplitude and recovery. Previously reported modulation of recovery of desensitized P2X1 currents by phospholipase C-coupled 5-HT2A metabotropic receptors was also found wortmannin-sensitive. Treatment with wortmannin alters the kinetics of P2X1 activation and inactivation without changing its sensitivity to ATP. The functional impact of wortmannin on P2X1 currents could be reversed by addition of intracellular PI(4,5)P2, but not PI(3,4,5)P3. and direct application of PI(4,5)P2 to excised inside-out macropatches rescued P2X1 currents from rundown. We showed that the proximal region of the intracellular C-terminus of P2X1 subunit directly binds to PI(4,5)P2 and other anionic phospholipids, and we identified the basic residue K364 as a critical determinant for phospholipid binding and sensitivity to wortmannin. Overall, these results indicate that PI(4,5)P2 plays a key role in the expression of full native and heterologous P2X1 function by regulating the amplitude, recovery and kinetics of ionotropic ATP responses through direct receptor-lipid interactions. PMID:18523136

  10. Molecular recognition at adenine nucleotide (P2) receptors in platelets.

    PubMed

    Jacobson, Kenneth A; Mamedova, Liaman; Joshi, Bhalchandra V; Besada, Pedro; Costanzi, Stefano

    2005-04-01

    Transmembrane signaling through P2Y receptors for extracellular nucleotides controls a diverse array of cellular processes, including thrombosis. Selective agonists and antagonists of the two P2Y receptors present on the platelet surface-the G (q)-coupled P2Y (1) subtype and the G (i)-coupled P2Y (12) subtype-are now known. High-affinity antagonists of each have been developed from nucleotide structures. The (N)-methanocarba bisphosphate derivatives MRS2279 and MRS2500 are potent and selective P2Y (1) receptor antagonists. The carbocyclic nucleoside AZD6140 is an uncharged, orally active P2Y (12) receptor antagonist of nM affinity. Another nucleotide receptor on the platelet surface, the P2X (1) receptor, the activation of which may also be proaggregatory, especially under conditions of high shear stress, has high-affinity ligands, although high selectivity has not yet been achieved. Although alpha,beta-methylene-adenosine triphosphate (ATP) is the classic agonist for the P2X (1) receptor, where it causes rapid desensitization, the agonist BzATP is among the most potent in activating this subtype. The aromatic sulfonates NF279 and NF449 are potent antagonists of the P2X (1) receptor. The structures of the two platelet P2Y receptors have been modeled, based on a rhodopsin template, to explain the basis for nucleotide recognition within the putative transmembrane binding sites. The P2Y (1) receptor model, especially, has been exploited in the design and optimization of antagonists targeted to interact selectively with that subtype.

  11. Identification of HNF4A Mutation p.T130I and HNF1A Mutations p.I27L and p.S487N in a Han Chinese Family with Early-Onset Maternally Inherited Type 2 Diabetes.

    PubMed

    Yang, Ying; Zhou, Tai-Cheng; Liu, Yong-Ying; Li, Xiao; Wang, Wen-Xue; Irwin, David M; Zhang, Ya-Ping

    2016-01-01

    Maturity-onset diabetes of the young (MODY) is characterized by the onset of diabetes before the age of 25 years, positive family history, high genetic predisposition, monogenic mutations, and an autosomal dominant mode of inheritance. Here, we aimed to investigate the mutations and to characterize the phenotypes of a Han Chinese family with early-onset maternally inherited type 2 diabetes. Detailed clinical assessments and genetic screening for mutations in the HNF4α, GCK, HNF-1α, IPF-1, HNF1β, and NEUROD1 genes were carried out in this family. One HNF4A mutation (p.T130I) and two HNF1A polymorphisms (p.I27L and p.S487N) were identified. Mutation p.T130I was associated with both early-onset and late-onset diabetes and caused downregulated HNF4A expression, whereas HNF1A polymorphisms p.I27L and p.S487N were associated with the age of diagnosis of diabetes. We demonstrated that mutation p.T130I in HNF4A was pathogenic as were the predicted polymorphisms p.I27L and p.S487N in HNF1A by genetic and functional analysis. Our results show that mutations in HNF4A and HNF1A genes might account for this early-onset inherited type 2 diabetes.

  12. Postnatal Development of CB1 Receptor Expression in Rodent Somatosensory Cortex

    PubMed Central

    Deshmukh, Suvarna; Onozuka, Kaori; Bender, Kevin J.; Bender, Vanessa A.; Lutz, Beat; Mackie, Ken; Feldman, Daniel E.

    2007-01-01

    Endocannabinoids are powerful modulators of synaptic transmission that act on presynaptic cannabinoid receptors. Cannabinoid receptor type 1 (CB1) is the dominant receptor in the CNS, and is present in many brain regions, including sensory cortex. To investigate the potential role of CB1 receptors in cortical development, we examined the developmental expression of CB1 in rodent primary somatosensory (barrel) cortex, using immunohistochemistry with a CB1-specific antibody. We found that before postnatal day (P) 6, CB1 receptor staining was present exclusively in the cortical white matter, and that CB1 staining appeared in the grey matter between P6 and P20 in a specific laminar pattern. CB1 staining was confined to axons, and was most prominent in cortical layers 2/3, 5a, and 6. CB1 null (−/−) mice showed altered anatomical barrel maps in layer 4, with enlarged inter-barrel septa, but normal barrel size. These results indicate that CB1 receptors are present in early postnatal development and influence development of sensory maps. PMID:17210229

  13. p35 Regulates the CRM1-Dependent Nucleocytoplasmic Shuttling of Nuclear Hormone Receptor Coregulator-Interacting Factor 1 (NIF-1)

    PubMed Central

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W. Y.; Li, Zhen; Fu, Amy K. Y.; Ip, Nancy Y.

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators. PMID:25329792

  14. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    PubMed

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  15. Effect of neonatal handling on serotonin 1A sub-type receptors in the rat hippocampus.

    PubMed

    Stamatakis, A; Mantelas, A; Papaioannou, A; Pondiki, S; Fameli, M; Stylianopoulou, F

    2006-06-19

    Serotonin 1A sub-type receptors play an important role in the etiopathogenesis of depression, which is known to occur more often in females than males. Early experiences can be a predisposing factor for depression; however, the underlying cellular processes remain unknown. In an effort to address such issues, we employed neonatal handling, an experimental model of early experience, which has been previously shown to render females more vulnerable to display enhanced depression-like behavior in response to chronic stress, while it increases the ability of males to cope. In rat pre-pubertal (30 days of age) and adult (90 days) hippocampus, of both males and females, the effect of neonatal handling on serotonin 1A sub-type receptor mRNA and protein levels was determined by in situ hybridization and immunohistochemistry, respectively, while the number of binding sites was determined by in vitro autoradiography using [(3)H]8-hydroxy-2(di-n-propylamino)tetralin as the ligand. Our results revealed a significant sex difference in serotonin 1A sub-type receptor mRNA, protein and binding sites, with females having higher levels than males. Handling resulted in statistically significant decreased numbers of cells positive for serotonin 1A sub-type receptor mRNA or protein, as well as [(3)H]8-hydroxy-2(di-n-propylamino)tetralin binding sites in the area 4 of Ammon's horn and dentate gyrus of both pre-pubertal males and females. In adult animals the number of serotonin 1A sub-type receptor mRNA positive cells was increased as a result of handling in the area 1 of Ammon's horn, area 4 of Ammon's horn and dentate gyrus of males, while it was decreased only in the area 4 of Ammon's horn of females. Furthermore, the number of serotonin sub-type 1A receptor immunopositive cells, as well as [(3)H]8-hydroxy-2(di-n-propylamino)tetralin binding sites was increased in the area 1 of Ammon's horn, area 4 of Ammon's horn and dentate gyrus of handled males, whereas it was decreased in these

  16. Functional characterization of P2Y1 versus P2X receptors in RBA-2 astrocytes: elucidate the roles of ATP release and protein kinase C.

    PubMed

    Weng, Ju-Yun; Hsu, Tsan-Ting; Sun, Synthia H

    2008-05-15

    A physiological concentration of extracellular ATP stimulated biphasic Ca(2+) signal, and the Ca(2+) transient was decreased and the Ca(2+) sustain was eliminated immediately after removal of ATP and Ca(2+) in RBA-2 astrocytes. Reintroduction of Ca(2+) induced Ca(2+) sustain. Stimulation of P2Y(1) receptors with 2-methylthioadenosine 5'-diphosphate (2MeSADP) also induced a biphasic Ca(2+) signaling and the Ca(2+) sustains were eliminated using Ca(2+)-free buffer. The 2MeSADP-mediated biphasic Ca(2+) signals were inhibited by phospholipase C (PLC) inhibitor U73122, and completely blocked by P2Y(1) selective antagonist MRS2179 and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) whereas enhanced by PKC inhibitors GF109203X and Go6979. Inhibition of capacitative Ca(2+) entry (CCE) decreased the Ca(2+)-induced Ca(2+) entry; nevertheless, ATP further enhanced the Ca(2+)-induced Ca(2+) entry in the intracellular Ca(2+) store-emptied and CCE-inhibited cells indicating that ATP stimulated Ca(2+) entry via CCE and ionotropic P2X receptors. Furthermore, the 2MeSADP-induced Ca(2+) sustain was eliminated by apyrase but potentiated by P2X(4) allosteric effector ivermectin (IVM). The agonist ADPbetaS stimulated a lesser P2Y(1)-mediated Ca(2+) signal and caused a two-fold increase in ATP release but that were not affected by IVM whereas inhibited by PMA, PLC inhibitor ET-18-OCH(3) and phospholipase D (PLD) inhibitor D609, and enhanced by removal of intra- or extracellular Ca(2+). Taken together, the P2Y(1)-mediated Ca(2+) sustain was at least in part via P2X receptors activated by the P2Y(1)-induced ATP release, and PKC played a pivotal role in desensitization of P2Y(1) receptors in RBA-2 astrocytes. Copyright 2007 Wiley-Liss, Inc.

  17. Angiotensin II type 1 receptor gene polymorphism could influence renoprotective response to losartan treatment in type 1 diabetic patients with high urinary albumin excretion rate.

    PubMed

    Dragović, Tamara; Ajdinović, Boris; Hrvacević, Rajko; Ilić, Vesna; Magić, Zvonko; Andelković, Zoran; Kocev, Nikola

    2010-04-01

    Diabetic nephropathy (DN) is a clinical syndrome characterized by persistent albuminuria, increasing arterial blood pressure and progressive decline in glomerular filtration rate (GFR). When persistent albuminuria is established, antihypertensive treatment becomes most important factor in slowing the progression of diabetic glomerulopathy. The aim of this study was to examine if renoprotective response to a short-term losartan therapy depends on 1166 A/C gene polymorphism for its target receptor. The study included 35 patients with diabetes mellitus type 1 and persistently high urinary albumin excretion rate (UAE: > 30 mg/24 h), genotyped for the 1166 A/C gene polymorphism for the angiotensin II type 1 receptor (AT1R). The participants were segregated into 3 genotype groups according to combinations of A or C allele: AA (16%), AC (15%) and CC (11%). The patients received losartan 50 mg daily for 4 weeks, following 100 mg daily for another 8 weeks. At baseline and after 12 weeks of the treatment period UAE, blood pressure, GFR and filtration fraction (FF) were determined. After 12 weeks of the treatment with losartan, albuminuria was reduced from baseline by 9% [95% confidence interval (CI): 1-17, p = 0.039] in the AA genotype, and by 11% (95% CI: 6-17, p = 0.0001) in the AC genotype. Losartan treatment reduced albuminuria in the CC group by 5% (95% CI: -13-22, p = 0.47). Glomerular filtration rate remained unchanged in all genotype groups. Filtration fraction was significantly reduced from baseline by 0.018 +/- 0.024 (p = 0.012) only in the AC genotype. In the AA genotype, FF was reduced from baseline by 0.017 +/- 0.03 (p = 0.052), and in the CC genotype by 0.01 +/- 0.008 (p = 0.092). In the AA group, systolic blood pressure declined from 136 +/- 24 mmHg at baseline, to an average of 121 +/- 18 mmHg at the end of the study (p = 0.001). The AC group achived reduction from 131 +/- 10 mmHg at baseline to 115 +/- 7 mmHg (p = 0.001) during the investigation period. In

  18. Functions of the Type 1 BMP Receptor Acvr1 (Alk2) in Lens Development: Cell Proliferation, Terminal Differentiation, and Survival

    PubMed Central

    Rajagopal, Ramya; Dattilo, Lisa K.; Kaartinen, Vesa; Deng, Chu-Xia; Umans, Lieve; Zwijsen, An; Roberts, Anita B.; Bottinger, Erwin P.; Beebe, David C.

    2009-01-01

    Purpose Bone morphogenetic protein (BMP) signaling is essential for the induction and subsequent development of the lens. The purpose of this study was to analyze the function(s) of the type 1 BMP receptor, Acvr1, in lens development. Methods Acvr1 was deleted from the surface ectoderm of mouse embryos on embryonic day 9 using the Cre-loxP method. Cell proliferation, cell cycle exit, and apoptosis were measured in tissue sections by immunohistochemistry, immunofluorescence, and TUNEL staining. Results Lenses formed in the absence of Acvr1. However, Acvr1CKO (conditional knockout) lenses were small. Acvr1 signaling promoted proliferation at early stages of lens formation but inhibited proliferation at later stages. Inhibition of cell proliferation by Acvr1 was necessary for the proper regionalization of the lens epithelium and promoted the withdrawal of lens fiber cells from the cell cycle. In spite of the failure of all Acvr1CKO fiber cells to withdraw from the cell cycle, they expressed proteins characteristic of differentiated fiber cells. Although the stimulation of proliferation was Smad independent, the ability of Acvr1 to promote cell cycle exit later in development depended on classical R-Smad-Smad4 signaling. Loss of Acvr1 led to an increase in apoptosis of lens epithelial and fiber cells. Increased cell death, together with the initial decrease in proliferation, appeared to account for the smaller sizes of the Acvr1CKO lenses. Conclusions This study revealed a novel switch in the functions of Acvr1 in regulating lens cell proliferation. Previously unknown functions mediated by this receptor included regionalization of the lens epithelium and cell cycle exit during fiber cell differentiation. PMID:18566469

  19. Human GRK4γ142V Variant Promotes Angiotensin II Type I Receptor-Mediated Hypertension via Renal Histone Deacetylase Type 1 Inhibition.

    PubMed

    Wang, Zheng; Zeng, Chunyu; Villar, Van Anthony M; Chen, Shi-You; Konkalmatt, Prasad; Wang, Xiaoyan; Asico, Laureano D; Jones, John E; Yang, Yu; Sanada, Hironobu; Felder, Robin A; Eisner, Gilbert M; Weir, Matthew R; Armando, Ines; Jose, Pedro A

    2016-02-01

    The influence of a single gene on the pathogenesis of essential hypertension may be difficult to ascertain, unless the gene interacts with other genes that are germane to blood pressure regulation. G-protein-coupled receptor kinase type 4 (GRK4) is one such gene. We have reported that the expression of its variant hGRK4γ(142V) in mice results in hypertension because of impaired dopamine D1 receptor. Signaling through dopamine D1 receptor and angiotensin II type I receptor (AT1R) reciprocally modulates renal sodium excretion and blood pressure. Here, we demonstrate the ability of the hGRK4γ(142V) to increase the expression and activity of the AT1R. We show that hGRK4γ(142V) phosphorylates histone deacetylase type 1 and promotes its nuclear export to the cytoplasm, resulting in increased AT1R expression and greater pressor response to angiotensin II. AT1R blockade and the deletion of the Agtr1a gene normalize the hypertension in hGRK4γ(142V) mice. These findings illustrate the unique role of GRK4 by targeting receptors with opposite physiological activity for the same goal of maintaining blood pressure homeostasis, and thus making the GRK4 a relevant therapeutic target to control blood pressure. © 2015 American Heart Association, Inc.

  20. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway.

    PubMed

    Li, Wei-Hua; Qiu, Ying; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2015-01-01

    As one member of G protein-coupled P2Y receptors, P2Y2 receptor can be equally activated by extracellular ATP and UTP. Our previous studies have proved that activation of P2Y2 receptor by extracellular ATP could promote prostate cancer cell invasion and metastasis in vitro and in vivo via regulating the expressions of some epithelial-mesenchymal transition/invasion-related genes (including IL-8, E-cadherin, Snail and Claudin-1), and the most significant change in expression of IL-8 was observed after P2Y2 receptor activation. However, the signaling pathway downstream of P2Y2 receptor and the role of IL-8 in P2Y2-mediated prostate cancer cell invasion remain unclear. Here, we found that extracellular ATP/UTP induced activation of EGFR and ERK1/2. After knockdown of P2Y2 receptor, the ATP -stimulated phosphorylation of EGFR and ERK1/2 was significantly suppressed. Further experiments showed that inactivation of EGFR and ERK1/2 attenuated ATP-induced invasion and migration, and suppressed ATP-mediated IL-8 production. In addition, knockdown of IL-8 inhibited ATP-mediated invasion and migration of prostate cancer cells. These findings suggest that P2Y2 receptor and EGFR cooperate to upregulate IL-8 production via ERK1/2 pathway, thereby promoting prostate cancer cell invasion and migration. Thus blocking of the P2Y2-EGFR-ERK1/2 pathway may provide effective therapeutic interventions for prostate cancer.

  1. Type 1 Inositol (1,4,5)-Trisphosphate Receptor Activates Ryanodine Receptor 1 to Mediate Calcium Spark Signaling in Adult Mammalian Skeletal Muscle*♦

    PubMed Central

    Tjondrokoesoemo, Andoria; Li, Na; Lin, Pei-Hui; Pan, Zui; Ferrante, Christopher J.; Shirokova, Natalia; Brotto, Marco; Weisleder, Noah; Ma, Jianjie

    2013-01-01

    Functional coupling between inositol (1,4,5)-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) represents a critical component of intracellular Ca2+ signaling in many excitable cells; however, the role of this mechanism in skeletal muscle remains elusive. In skeletal muscle, RyR-mediated Ca2+ sparks are suppressed in resting conditions, whereas application of transient osmotic stress can trigger activation of Ca2+ sparks that are restricted to the periphery of the fiber. Here we show that onset of these spatially confined Ca2+ sparks involves interaction between activation of IP3R and RyR near the sarcolemmal membrane. Pharmacological prevention of IP3 production or inhibition of IP3R channel activity abolishes stress-induced Ca2+ sparks in skeletal muscle. Although genetic ablation of the type 2 IP3R does not appear to affect Ca2+ sparks in skeletal muscle, specific silencing of the type 1 IP3R leads to ablation of stress-induced Ca2+ sparks. Our data indicate that membrane-delimited signaling involving cross-talk between IP3R1 and RyR1 contributes to Ca2+ spark activation in skeletal muscle. PMID:23223241

  2. Evidence for a G protein-coupled diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) receptor binding site in lung membranes from rat.

    PubMed

    Laubinger, W; Reiser, G

    1999-01-29

    Nucleotide receptors are of considerable importance in the treatment of lung diseases, such as cystic fibrosis. Because diadenosine polyphosphates may also be of significance as signalling molecules in lung, as they are in a variety of tissues, in the present work we investigated the binding sites for [3H]diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) in plasma membranes from rat lung and studied their possible coupling to G proteins. We present evidence for a single high-affinity binding site for [3H]Ap4A with similar affinity for other diadenosine polyphosphates ApnA (n = 2 to 6). Displacement studies with different nucleotides revealed that the [3H]Ap4A binding site was different from P2X and P2Y2 receptor binding sites. Pretreatment of lung membranes with GTPgammaS or GTP in the presence of Mg2+ increased the Ki for Ap4A from 91 nM to 5.1 microM, which is indicative of G protein coupling. The putative coupling to G proteins was further confirmed by the enhancement of [35S]GTPgammaS binding (to Galpha proteins) to lung membranes by Ap4A (63% increase over basal) in a concentration-dependent manner. Therefore, our data for the first time provide evidence of a G protein-coupled Ap4A binding site in lung membranes.

  3. The 5HT(1A) receptor ligand, S15535, antagonises G-protein activation: a [35S]GTPgammaS and [3H]S15535 autoradiography study.

    PubMed

    Newman-Tancredi, A; Rivet, J; Chaput, C; Touzard, M; Verrièle, L; Millan, M J

    1999-11-19

    4-(Benzodioxan-5-yl)1-(indan-2-yl)piperazine (S15535) is a highly selective ligand at 5-HT(1A) receptors. The present study compared its autoradiographic labelling of rat brain sections with its functional actions, visualised by guanylyl-5'-[gamma-thio]-triphosphate ([35S]GTPgammaS) autoradiography, which affords a measure of G-protein activation. [3H]S15535 binding was highest in hippocampus, frontal cortex, entorhinal cortex, lateral septum, interpeduncular nucleus and dorsal raphe, consistent with specific labelling of 5-HT(1A) receptors. In functional studies, S15535 (10 microM) did not markedly stimulate G-protein activation in any brain region, but abolished the activation induced by the selective 5-HT(1A) agonist, (+)-8-hydroxy-dipropyl-aminotetralin ((+)-8-OH-DPAT, 1 microM), in structures enriched in [3H]S15535 labelling. S15535 did not block 5-HT-stimulated activation in caudate nucleus or substantia nigra, regions where (+)-8-OH-DPAT was ineffective and [3H]S15535 binding was absent. Interestingly, S15535 attenuated (+)-8-OH-DPAT and 5-HT-stimulated G-protein activation in dorsal raphe, a region in which S15535 is known to exhibit agonist properties in vivo [Lejeune, F., Millan, M.J., 1998. Induction of burst firing in ventral tegmental area dopaminergic neurons by activation of serotonin (5-HT)(1A) receptors: WAY100,635-reversible actions of the highly selective ligands, flesinoxan and S15535. Synapse 30, 172-180.]. The present data show that (i) [3H]S15535 labels pre- and post-synaptic populations of 5-HT(1A) sites in rat brain sections, (ii) S15535 exhibits antagonist properties at post-synaptic 5-HT(1A) receptors in corticolimbic regions, and (iii) S15535 also attenuates agonist-stimulated G-protein activation at raphe-localised 5-HT(1A) receptors.

  4. P2 receptor signaling in neurons and glial cells of the central nervous system.

    PubMed

    Köles, Laszlo; Leichsenring, Anna; Rubini, Patrizia; Illes, Peter

    2011-01-01

    Purine and pyrimidine nucleotides are extracellular signaling molecules in the central nervous system (CNS) leaving the intracellular space of various CNS cell types via nonexocytotic mechanisms. In addition, ATP is a neuro-and gliotransmitter released by exocytosis from neurons and neuroglia. These nucleotides activate P2 receptors of the P2X (ligand-gated cationic channels) and P2Y (G protein-coupled receptors) types. In mammalians, seven P2X and eight P2Y receptor subunits occur; three P2X subtypes form homomeric or heteromeric P2X receptors. P2Y subtypes may also hetero-oligomerize with each other as well as with other G protein-coupled receptors. P2X receptors are able to physically associate with various types of ligand-gated ion channels and thereby to interact with them. The P2 receptor homomers or heteromers exhibit specific sensitivities against pharmacological ligands and have preferential functional roles. They may be situated at both presynaptic (nerve terminals) and postsynaptic (somatodendritic) sites of neurons, where they modulate either transmitter release or the postsynaptic sensitivity to neurotransmitters. P2 receptors exist at neuroglia (e.g., astrocytes, oligodendrocytes) and microglia in the CNS. The neuroglial P2 receptors subserve the neuron-glia cross talk especially via their end-feets projecting to neighboring synapses. In addition, glial networks are able to communicate through coordinated oscillations of their intracellular Ca(2+) over considerable distances. P2 receptors are involved in the physiological regulation of CNS functions as well as in its pathophysiological dysregulation. Normal (motivation, reward, embryonic and postnatal development, neuroregeneration) and abnormal regulatory mechanisms (pain, neuroinflammation, neurodegeneration, epilepsy) are important examples for the significance of P2 receptor-mediated/modulated processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Hemagglutinin of Influenza A Virus Antagonizes Type I Interferon (IFN) Responses by Inducing Degradation of Type I IFN Receptor 1.

    PubMed

    Xia, Chuan; Vijayan, Madhuvanthi; Pritzl, Curtis J; Fuchs, Serge Y; McDermott, Adrian B; Hahm, Bumsuk

    2015-12-16

    Influenza A virus (IAV) employs diverse strategies to circumvent type I interferon (IFN) responses, particularly by inhibiting the synthesis of type I IFNs. However, it is poorly understood if and how IAV regulates the type I IFN receptor (IFNAR)-mediated signaling mode. In this study, we demonstrate that IAV induces the degradation of IFNAR subunit 1 (IFNAR1) to attenuate the type I IFN-induced antiviral signaling pathway. Following infection, the level of IFNAR1 protein, but not mRNA, decreased. Indeed, IFNAR1 was phosphorylated and ubiquitinated by IAV infection, which resulted in IFNAR1 elimination. The transiently overexpressed IFNAR1 displayed antiviral activity by inhibiting virus replication. Importantly, the hemagglutinin (HA) protein of IAV was proved to trigger the ubiquitination of IFNAR1, diminishing the levels of IFNAR1. Further, influenza A viral HA1 subunit, but not HA2 subunit, downregulated IFNAR1. However, viral HA-mediated degradation of IFNAR1 was not caused by the endoplasmic reticulum (ER) stress response. IAV HA robustly reduced cellular sensitivity to type I IFNs, suppressing the activation of STAT1/STAT2 and induction of IFN-stimulated antiviral proteins. Taken together, our findings suggest that IAV HA causes IFNAR1 degradation, which in turn helps the virus escape the powerful innate immune system. Thus, the research elucidated an influenza viral mechanism for eluding the IFNAR signaling pathway, which could provide new insights into the interplay between influenza virus and host innate immunity. Influenza A virus (IAV) infection causes significant morbidity and mortality worldwide and remains a major health concern. When triggered by influenza viral infection, host cells produce type I interferon (IFN) to block viral replication. Although IAV was shown to have diverse strategies to evade this powerful, IFN-mediated antiviral response, it is not well-defined if IAV manipulates the IFN receptor-mediated signaling pathway. Here, we

  6. No association between the protein tyrosine phosphatase, receptor-type, Z Polypeptide 1 (PTPRZ1) gene and schizophrenia in the Japanese population.

    PubMed

    Ito, Yoshihito; Yamada, Shinnosuke; Takahashi, Nagahide; Saito, Shinichi; Yoshimi, Akira; Inada, Toshiya; Noda, Yukihiro; Ozaki, Norio

    2008-10-05

    NRG1-ERBB signaling influences the risk for schizophrenia pathology. A recent study has reported that MAGI1, MAGI2, and protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1; located on 7q31.3) gene products regulate the NRG1-ERBB4 signaling pathway, and PTPRZ1 is associated with schizophrenia in a Caucasian population. By applying a gene-based association concept, we analyzed any association between PTPRZ1 tagging SNPs and schizophrenia in the Japanese population (576 schizophrenics and 768 controls). After linkage disequilibrium analysis, 29 single nucleotide polymorphisms (SNPs) were genotyped using a 5'-exonuclease allelic discrimination assay. We found a significant association of one tagging SNP in a genotype-wise analysis (P = 0.007); however, this might be resulted from type I error due to multiple testing (P = 0.17 after SNPSpD correction). No association was observed between schizophrenic patients and controls in either allelic, genotypic, or haplotypic analyses. Our results therefore suggest that PTPRZ1 is unlikely to be related to the development of schizophrenia in the Japanese population.

  7. Overexpression of the Mitochondrial T3 Receptor p43 Induces a Shift in Skeletal Muscle Fiber Types

    PubMed Central

    Casas, François; Pessemesse, Laurence; Grandemange, Stéphanie; Seyer, Pascal; Gueguen, Naïg; Baris, Olivier; Lepourry, Laurence; Cabello, Gérard; Wrutniak-Cabello, Chantal

    2008-01-01

    In previous studies, we have characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43) acting as a mitochondrial transcription factor and consequently stimulating mitochondrial activity and mitochondrial biogenesis. We have established the involvement of this T3 pathway in the regulation of in vitro myoblast differentiation.We have generated mice overexpressing p43 under control of the human α-skeletal actin promoter. In agreement with the previous characterization of this promoter, northern-blot and western-blot experiments confirmed that after birth p43 was specifically overexpressed in skeletal muscle. As expected from in vitro studies, in 2-month old mice, p43 overexpression increased mitochondrial genes expression and mitochondrial biogenesis as attested by the increase of mitochondrial mass and mt-DNA copy number. In addition, transgenic mice had a body temperature 0.8°C higher than control ones and displayed lower plasma triiodothyronine levels. Skeletal muscles of transgenic mice were redder than wild-type animals suggesting an increased oxidative metabolism. In line with this observation, in gastrocnemius, we recorded a strong increase in cytochrome oxidase activity and in mitochondrial respiration. Moreover, we observed that p43 drives the formation of oxidative fibers: in soleus muscle, where MyHC IIa fibers were partly replaced by type I fibers; in gastrocnemius muscle, we found an increase in MyHC IIa and IIx expression associated with a reduction in the number of glycolytic fibers type IIb. In addition, we found that PGC-1α and PPARδ, two major regulators of muscle phenotype were up regulated in p43 transgenic mice suggesting that these proteins could be downstream targets of mitochondrial activity. These data indicate that the direct mitochondrial T3 pathway is deeply involved in the acquisition of contractile and metabolic features of muscle fibers in particular by regulating PGC-1α and PPARδ. PMID:18575627

  8. A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors.

    PubMed

    de Vries, Robert P; Tzarum, Netanel; Peng, Wenjie; Thompson, Andrew J; Ambepitiya Wickramasinghe, Iresha N; de la Pena, Alba T Torrents; van Breemen, Marielle J; Bouwman, Kim M; Zhu, Xueyong; McBride, Ryan; Yu, Wenli; Sanders, Rogier W; Verheije, Monique H; Wilson, Ian A; Paulson, James C

    2017-09-01

    In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non-fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human-type receptor specificity could enable transmission in the human population. Despite mutations in the receptor-binding pocket of the human H6N1 isolate, it has retained avian-type (NeuAcα2-3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completely switches specificity to human-type (NeuAcα2-6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human-type receptor, stabilizing human receptor binding. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  9. The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria.

    PubMed

    Mendes, Carolina C P; Gomes, Dawidson A; Thompson, Mayerson; Souto, Natalia C; Goes, Tercio S; Goes, Alfredo M; Rodrigues, Michele A; Gomez, Marcus V; Nathanson, Michael H; Leite, M Fatima

    2005-12-09

    There are three isoforms of the inositol 1,4,5- trisphosphate receptor (InsP(3)R), each of which has a distinct effect on Ca(2+) signaling. However, it is not known whether each isoform similarly plays a distinct role in the activation of Ca(2+)-mediated events. To investigate this question, we examined the effects of each InsP(3)R isoform on transmission of Ca(2+) signals to mitochondria and induction of apoptosis. Each isoform was selectively silenced using isoform-specific small interfering RNA in Chinese hamster ovary cells, which express all three InsP(3)R isoforms. ATP-induced cytosolic Ca(2+) signaling patterns were altered, regardless of which isoform was silenced, but in a different fashion depending on the isoform. ATP also induced Ca(2+) signals in mitochondria, which were inhibited more effectively by silencing the type III InsP(3)R than by silencing either the type I or type II isoform. The type III isoform also co-localized most strongly with mitochondria. When apoptosis was induced by activation of either the extrinsic or intrinsic apoptotic pathway, induction was reduced most effectively by silencing the type III InsP(3)R. These findings provide evidence that the type III isoform of the InsP(3)R plays a special role in induction of apoptosis by preferentially transmitting Ca(2+) signals into mitochondria.

  10. Targeting Anti-Insulin B Cell Receptors Improves Receptor Editing in Type 1 Diabetes-Prone Mice1, 2, 3

    PubMed Central

    Bonami, Rachel H.; Thomas, James W.

    2015-01-01

    Autoreactive B lymphocytes that commonly arise in the developing repertoire can be salvaged by receptor editing, a central tolerance mechanism that alters BCR specificity through continued L chain rearrangement. It is unknown whether autoantigens with weak cross-linking potential, such as insulin, elicit receptor editing, or if this process is dysregulated in related autoimmunity. To resolve these issues, an editing-competent model was developed in which anti-insulin Vκ125 was targeted to the Igκ locus and paired with anti-insulin VH125Tg. Physiologic, circulating insulin increased RAG-2 expression and was associated with BCR replacement that eliminated autoantigen recognition in a proportion of developing anti-insulin B lymphocytes. The proportion of anti-insulin B cells that underwent receptor editing was reduced in the type 1 diabetes-prone NOD strain relative to a non-autoimmune strain. Resistance to editing was associated with increased surface IgM expression on immature (but not transitional or mature) anti-insulin B cells in the NOD strain. The actions of mAb123 on central tolerance were also investigated, as selective targeting of insulin-occupied BCR by mAb123 eliminates anti-insulin B lymphocytes and prevents type 1 diabetes. Autoantigen-targeting by mAb123 increased RAG-2 expression and dramatically enhanced BCR replacement in newly developed B lymphocytes. Administering F(ab’)2123 induced IgM downregulation and reduced the frequency of anti-insulin B lymphocytes within the polyclonal repertoire of VH125Tg/NOD mice, suggesting enhanced central tolerance by direct BCR interaction. These findings indicate that weak or faulty checkpoints for central tolerance can be overcome by autoantigen-specific immunomodulatory therapy. PMID:26432895

  11. Transient Receptor Potential Vanilloid Type 1–Dependent Regulation of Liver-Related Neurons in the Paraventricular Nucleus of the Hypothalamus Diminished in the Type 1 Diabetic Mouse

    PubMed Central

    Gao, Hong; Miyata, Kayoko; Bhaskaran, Muthu D.; Derbenev, Andrei V.; Zsombok, Andrea

    2012-01-01

    The paraventricular nucleus (PVN) of the hypothalamus controls the autonomic neural output to the liver, thereby participating in the regulation of hepatic glucose production (HGP); nevertheless, mechanisms controlling the activity of liver-related PVN neurons are not known. Transient receptor potential vanilloid type 1 (TRPV1) is involved in glucose homeostasis and colocalizes with liver-related PVN neurons; however, the functional role of TRPV1 regarding liver-related PVN neurons has to be elucidated. A retrograde viral tracer was used to identify liver-related neurons within the brain-liver circuit in control, type 1 diabetic, and insulin-treated mice. Our data indicate that TRPV1 regulates liver-related PVN neurons. This TRPV1-dependent excitation diminished in type 1 diabetic mice. In vivo and in vitro insulin restored TRPV1 activity in a phosphatidylinositol 3-kinase/protein kinase C–dependent manner and stimulated TRPV1 receptor trafficking to the plasma membrane. There was no difference in total TRPV1 protein expression; however, increased phosphorylation of TRPV1 receptors was observed in type 1 diabetic mice. Our data demonstrate that TRPV1 plays a pivotal role in the regulation of liver-related PVN neurons. Moreover, TRPV1-dependent excitation of liver-related PVN neurons diminishes in type 1 diabetes, thus indicating that the brain-liver autonomic circuitry is altered in type 1 diabetes and may contribute to the autonomic dysfunction of HGP. PMID:22492526

  12. The Neonatal Fc Receptor (FcRn) Enhances Human Immunodeficiency Virus Type 1 (HIV-1) Transcytosis across Epithelial Cells

    PubMed Central

    Gupta, Sandeep; Gach, Johannes S.; Becerra, Juan C.; Phan, Tran B.; Pudney, Jeffrey; Moldoveanu, Zina; Joseph, Sarah B.; Landucci, Gary; Supnet, Medalyn Jude; Ping, Li-Hua; Corti, Davide; Moldt, Brian; Hel, Zdenek; Lanzavecchia, Antonio; Ruprecht, Ruth M.; Burton, Dennis R.; Mestecky, Jiri; Anderson, Deborah J.; Forthal, Donald N.

    2013-01-01

    The mechanisms by which human immunodeficiency virus type 1 (HIV-1) crosses mucosal surfaces to establish infection are unknown. Acidic genital secretions of HIV-1-infected women contain HIV-1 likely coated by antibody. We found that the combination of acidic pH and Env-specific IgG, including that from cervicovaginal and seminal fluids of HIV-1-infected individuals, augmented transcytosis across epithelial cells as much as 20-fold compared with Env-specific IgG at neutral pH or non-specific IgG at either pH. Enhanced transcytosis was observed with clinical HIV-1 isolates, including transmitted/founder strains, and was eliminated in Fc neonatal receptor (FcRn)-knockdown epithelial cells. Non-neutralizing antibodies allowed similar or less transcytosis than neutralizing antibodies. However, the ratio of total:infectious virus was higher for neutralizing antibodies, indicating that they allowed transcytosis while blocking infectivity of transcytosed virus. Immunocytochemistry revealed abundant FcRn expression in columnar epithelia lining the human endocervix and penile urethra. Acidity and Env-specific IgG enhance transcytosis of virus across epithelial cells via FcRn and could facilitate translocation of virus to susceptible target cells following sexual exposure. PMID:24278022

  13. Cannabinoid type 1 receptor antagonists for smoking cessation.

    PubMed

    Cahill, Kate; Ussher, Michael H

    2011-03-16

    Selective type 1 cannabinoid (CB1) receptor antagonists may assist with smoking cessation by restoring the balance of the endocannabinoid system, which can be disrupted by prolonged use of nicotine. They also seeks to address many smokers' reluctance to persist with a quit attempt because of concerns about weight gain. To determine whether selective CB1 receptor antagonists (currently rimonabant and taranabant) increase the numbers of people stopping smoking To assess their effects on weight change in successful quitters and in those who try to quit but fail. We searched the Cochrane Tobacco Addiction Review Group specialized register for trials, using the terms ('rimonabant' or 'taranabant') and 'smoking' in the title or abstract, or as keywords. We also searched MEDLINE, EMBASE, CINAHL and PsycINFO, using major MESH terms. We acquired electronic or paper copies of posters of preliminary trial results presented at the American Thoracic Society Meeting in 2005, and at the Society for Research on Nicotine and Tobacco European Meeting 2006. We also attempted to contact the authors of ongoing studies of rimonabant, and Sanofi Aventis (manufacturers of rimonabant). The most recent search was in January 2011. Types of studies Randomized controlled trialsTypes of participants Adult smokersTypes of interventions Selective CB1 receptor antagonists, such as rimonabant and taranabant. Types of outcome measures The primary outcome is smoking status at a minimum of six months after the start of treatment. We preferred sustained cessation rates to point prevalence, and biochemically verified cessation to self-reported quitting. We regarded smokers who drop out or are lost to follow up as continuing smokers. We have noted any adverse effects of treatment.A secondary outcome is weight change associated with the cessation attempt. Two authors checked the abstracts for relevance, and attempted to acquire full trial reports. One author extracted the data, and a second author checked

  14. Knocking out P2X receptors reduces transmitter secretion in taste buds.

    PubMed

    Huang, Yijen A; Stone, Leslie M; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E; Kinnamon, Sue C; Roper, Stephen D

    2011-09-21

    In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors [P2X2 and P2X3 double knock-out (DKO) mice]. The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca(2+) in taste Receptor (Type II) cells from DKO mice, as from wild-type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we used reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion.

  15. Knocking out P2X receptors reduces transmitter secretion in taste buds

    PubMed Central

    Huang, Yijen A.; Stone, Leslie M.; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C.; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E.; Kinnamon, Sue C.; Roper, Stephen D.

    2011-01-01

    In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors (P2X2 and P2X3 double knockout, or “DKO” mice). The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca2+ in taste Receptor (Type II) cells from DKO mice, as from wild type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we employed reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion. PMID:21940456

  16. Decavanadate, a P2X receptor antagonist, and its use to study ligand interactions with P2X7 receptors.

    PubMed

    Michel, Anton D; Xing, Mengle; Thompson, Kyla M; Jones, Clare A; Humphrey, Patrick P A

    2006-03-18

    In this study we have studied decavanadate effects at P2X receptors. Decavanadate competitively blocked 2'- and 3'-O-(4benzoylbenzoyl) ATP (BzATP) stimulated ethidium accumulation in HEK293 cells expressing human recombinant P2X7 receptors (pK(B) 7.5). The effects of decavanadate were rapid (minutes) in both onset and offset and contrasted with the much slower kinetics of pyridoxal 5-phosphate (P5P), Coomassie brilliant blue (CBB) and 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN62). Decavanadate competitively blocked the slowly reversible, or irreversible, blockade of the P2X7 receptor produced by P5P and oxidised ATP suggesting competition for a common binding site. However, the interaction between decavanadate and KN62 was non-competitive. Decavanadate also blocked P2X2 and P2X4 receptors but with slightly lower potency. These data demonstrate that decavanadate is the first reversible and competitive antagonist of the P2X7 receptor and is a useful tool for studying the mechanism of interaction of ligands with the P2X7 receptor.

  17. A promising p-type transparent conducting material: Layered oxysulfide [Cu2S2][Sr3Sc2O5

    NASA Astrophysics Data System (ADS)

    Liu, Min-Ling; Wu, Li-Bin; Huang, Fu-Qiang; Chen, Li-Dong; Chen, I.-Wei

    2007-12-01

    Sr3Cu2Sc2O5S2, a layered oxysulfide, composed of anti-PbO-like [Cu2S2] slabs alternating with perovskitelike [Sr3Sc2O5] slabs, was systematically studied as a p-type transparent conducting material. The material has a wide energy gap of 3.1eV and a p-type electrical conductivity of 2.8Scm-1 at room temperature. The hole mobility of +150cm2V-1S-1 at room temperature, which is much higher than the typical value of ˜10-1-10width="0.3em"/>cm2V-1S-1 found in other copper compounds. The performances of bulk undoped Sr3Cu2Sc2O5S2 show the promise of copper oxysulfides as a class of p-type transparent conductive materials that is essential for optoelectronic applications.

  18. D2 Dopamine receptor Taq1A polymorphism, body weight, and dietary intake in type 2 diabetes

    PubMed Central

    Barnard, Neal D.; Noble, Ernest P.; Ritchie, Terry; Cohen, Joshua; Jenkins, David J.A.; Turner-McGrievy, Gabrielle; Gloede, Lise; Ferdowsian, Hope

    2008-01-01

    OBJECTIVE Certain D2 dopamine receptor Taq 1A genotypes (A1A1, A1A2) have been associated with obesity and substance abuse. We hypothesized that their presence would be associated with reduced efficacy of dietary interventions in individuals with type 2 diabetes. RESEARCH METHODS & PROCEDURES In the course of a randomized clinical trial in an outpatient research center in which 93 adults with type 2 diabetes were assigned to a low-fat vegan diet or a diet following 2003 American Diabetes Association guidelines for 74 weeks, Taq 1A genotype was determined. Nutrient intake, body weight, and hemoglobin A1c (A1c) were measured over 74 weeks. RESULTS The A1 allele was highly prevalent, occurring in 47% of white participants (n = 49), which was significantly higher than the 29% prevalence previously reported in nondiabetic whites (P=0.01). The A1 allele was found in 55% of black participants (n = 44). Black participants with A1+ genotypes had significantly greater mean body weight (11.2 kg heavier, P=0.05), and greater intake of fat (P=0.002), saturated fat (P=0.01) and cholesterol (P=0.02), compared with A2A2 (A1-) individuals; dietary changes during the study did not favor one genotype group. Among whites, baseline anthropometric and nutrient differences between gene groups were small. However, among whites in the vegan group, A1+ individuals reduced fat intake (P=0.04) and A1c (P=0.01) significantly less than did A1- individuals. CONCLUSIONS The A1 allele appears to be highly prevalent among individuals with type 2 diabetes. Potential influences on diet, weight, and glycemic control merit further exploration. PMID:18834717

  19. Degenerate p-type conductivity in wide-gap LaCuOS1-xSex (x=0-1) epitaxial films

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Hidenori; Ueda, Kazushige; Ohta, Hiromichi; Hirano, Masahiro; Kamiya, Toshio; Hosono, Hideo

    2003-02-01

    Epitaxial films of LaCuOS1-xSex (x=0-1) solid solution were grown on MgO (001) substrates and their electrical and optical properties were examined. Sharp emission due to room-temperature exciton with binding energy of ˜50 meV is observed for all x values. Hall mobility becomes large with an increase in the Se content and it reaches 8.0 cm2V-1s-1 in LaCuOSe, a comparable value to that of p-type GaN:Mg. Doping of Mg2+ ions at La3+ sites enhances a hole concentration up to 2.2×1020 cm-3, while maintaining the Hall mobility as large as 4.0 cm2V-1s-1. Consequently, a degenerate p-type electrical conduction with a conductivity of 140 S cm-1 was achieved.

  20. Neuropharmacology of purinergic receptors in human submucous plexus: Involvement of P2X₁, P2X₂, P2X₃ channels, P2Y and A₃ metabotropic receptors in neurotransmission.

    PubMed

    Liñán-Rico, A; Wunderlich, J E; Enneking, J T; Tso, D R; Grants, I; Williams, K C; Otey, A; Michel, K; Schemann, M; Needleman, B; Harzman, A; Christofi, F L

    2015-08-01

    The role of purinergic signaling in human ENS is not well understood. We sought to further characterize the neuropharmacology of purinergic receptors in human ENS and test the hypothesis that endogenous purines are critical regulators of neurotransmission. LSCM-Fluo-4/(Ca(2+))-imaging of postsynaptic Ca(2+) transients (PSCaTs) was used as a reporter of synaptic transmission evoked by fiber tract electrical stimulation in human SMP surgical preparations. Pharmacological analysis of purinergic signaling was done in 1,556 neurons (identified by HuC/D-immunoreactivity) in 235 ganglia from 107 patients; P2XR-immunoreactivity was evaluated in 19 patients. Real-time MSORT (Di-8-ANEPPS) imaging tested effects of adenosine on fast excitatory synaptic potentials (fEPSPs). Synaptic transmission is sensitive to pharmacological manipulations that alter accumulation of extracellular purines: Apyrase blocks PSCaTs in a majority of neurons. An ecto-NTPDase-inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP or adenosine deaminase augments PSCaTs. Blockade of reuptake/deamination of eADO inhibits PSCaTs. Adenosine inhibits fEPSPs and PSCaTs (IC50 = 25 µM), sensitive to MRS1220-antagonism (A3AR). A P2Y agonist ADPβS inhibits PSCaTs (IC50 = 111 nM) in neurons without stimulatory ADPbS responses (EC50 = 960 nM). ATP or a P2X1,2,2/3 (α,β-MeATP) agonist evokes fast, slow, biphasic Ca(2+) transients or Ca(2+) oscillations (ATP,EC50 = 400 mM). PSCaTs are sensitive to P2X1 antagonist NF279. Low (20 nM) or high (5 µM) concentrations of P2X antagonist TNP-ATP block PSCaTs in different neurons; proportions of neurons with P2XR-immunoreactivity follow the order P2X2 > P2X1 > P2X3; P2X1 + P2X2 and P2X3 + P2X2 are co-localized. RT-PCR identified mRNA-transcripts for P2X1-7, P2Y1,2,12-14R. Purines are critical regulators of neurotransmission in human ENS. Purinergic signaling involves P2X1, P2X2, P2X3 channels, P2X1 + P2X2 co-localization and inhibitory P2Y or A3 receptors. These are

  1. Insulinlike growth factor receptor type 1 and type 2 are downregulated in the nitrofen-induced hypoplastic lung.

    PubMed

    Ruttenstock, Elke; Doi, Takashi; Dingemann, Jens; Puri, Prem

    2010-06-01

    In congenital diaphragmatic hernia (CDH), high mortality rates are attributed to severe pulmonary hypoplasia. The insulinlike growth factor receptor type 1 (IGF-1R) and type 2 (IGF-2R) play a critical role in the alveologenesis during lung development. The IGF-1R null mutation mice die after birth because of respiratory failure. The IGF-2R knockout mice showed retarded lungs with poorly formed alveoli. We hypothesized that IGF-1R and IGF-2R gene expression levels are downregulated in the nitrofen-induced CDH model. Pregnant rats were exposed to either olive oil or 100 mg of nitrofen on day 9.5 (D9.5) of gestation. Fetuses were harvested on D18 and D21 and divided into control and nitrofen groups. Relative messenger RNA (mRNA) levels of IGF-1R and IGF-2R were determined using real time reverse transcription polymerase chain reaction. Immunohistochemistry was performed to determine protein expression. Relative levels of IGF-1R mRNA were significantly decreased in the nitrofen group (2.91 +/- 0.81) on D21 compared to controls (5.29 +/- 2.59) (P < .05). Expression levels of IGF-2R mRNA on D21 were also significantly decreased in nitrofen group (1.76 +/- 0.49) compared to controls (3.59 +/- 2.45) (P < .05). Immunohistochemistry performed on D21 showed decreased IGF-1R and also IGF-2R expression in nitrofen group. Downregulation of IGF-1R and IGF-2R gene expression may interfere with normal alveologenesis causing pulmonary hypoplasia in the nitrofen-induced CDH model. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Targeted Proteomics-Driven Computational Modeling of Macrophage S1P Chemosensing*

    PubMed Central

    Manes, Nathan P.; Angermann, Bastian R.; Koppenol-Raab, Marijke; An, Eunkyung; Sjoelund, Virginie H.; Sun, Jing; Ishii, Masaru; Germain, Ronald N.; Meier-Schellersheim, Martin; Nita-Lazar, Aleksandra

    2015-01-01

    Osteoclasts are monocyte-derived multinuclear cells that directly attach to and resorb bone. Sphingosine-1-phosphate (S1P)1 regulates bone resorption by functioning as both a chemoattractant and chemorepellent of osteoclast precursors through two G-protein coupled receptors that antagonize each other in an S1P-concentration-dependent manner. To quantitatively explore the behavior of this chemosensing pathway, we applied targeted proteomics, transcriptomics, and rule-based pathway modeling using the Simmune toolset. RAW264.7 cells (a mouse monocyte/macrophage cell line) were used as model osteoclast precursors, RNA-seq was used to identify expressed target proteins, and selected reaction monitoring (SRM) mass spectrometry using internal peptide standards was used to perform absolute abundance measurements of pathway proteins. The resulting transcript and protein abundance values were strongly correlated. Measured protein abundance values, used as simulation input parameters, led to in silico pathway behavior matching in vitro measurements. Moreover, once model parameters were established, even simulated responses toward stimuli that were not used for parameterization were consistent with experimental findings. These findings demonstrate the feasibility and value of combining targeted mass spectrometry with pathway modeling for advancing biological insight. PMID:26199343

  3. A chimeric antigen receptor for TRAIL-receptor 1 induces apoptosis in various types of tumor cells.

    PubMed

    Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Hamana, Hiroshi; Nakagawa, Hidetoshi; Jin, Aishun; Lin, Zhezhu; Muraguchi, Atsushi

    2014-10-31

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its associated receptors (TRAIL-R/TR) are attractive targets for cancer therapy because TRAIL induces apoptosis in tumor cells through TR while having little cytotoxicity on normal cells. Therefore, many agonistic monoclonal antibodies (mAbs) specific for TR have been produced, and these induce apoptosis in multiple tumor cell types. However, some TR-expressing tumor cells are resistant to TR-specific mAb-induced apoptosis. In this study, we constructed a chimeric antigen receptor (CAR) of a TRAIL-receptor 1 (TR1)-specific single chain variable fragment (scFv) antibody (TR1-scFv-CAR) and expressed it on a Jurkat T cell line, the KHYG-1 NK cell line, and human peripheral blood lymphocytes (PBLs). We found that the TR1-scFv-CAR-expressing Jurkat cells killed target cells via TR1-mediated apoptosis, whereas TR1-scFv-CAR-expressing KHYG-1 cells and PBLs killed target cells not only via TR1-mediated apoptosis but also via CAR signal-induced cytolysis, resulting in cytotoxicity on a broader range if target cells than with TR1-scFv-CAR-expressing Jurkat cells. The results suggest that TR1-scFv-CAR could be a new candidate for cancer gene therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A cadmium-transporting P1B-type ATPase in yeast Saccharomyces cerevisiae.

    PubMed

    Adle, David J; Sinani, Devis; Kim, Heejeong; Lee, Jaekwon

    2007-01-12

    Detoxification and homeostatic acquisition of metal ions are vital for all living organisms. We have identified PCA1 in yeast Saccharomyces cerevisiae as an overexpression suppressor of copper toxicity. PCA1 possesses signatures of a P1B-type heavy metal-transporting ATPase that is widely distributed from bacteria to humans. Copper resistance conferred by PCA1 is not dependent on catalytic activity, but it appears that a cysteine-rich region located in the N terminus sequesters copper. Unexpectedly, when compared with two independent natural isolates and an industrial S. cerevisiae strain, the PCA1 allele of the common laboratory strains we have examined possesses a missense mutation in a predicted ATP-binding residue conserved in P1B-type ATPases. Consistent with a previous report that identifies an equivalent mutation in a copper-transporting P1B-type ATPase of a Wilson disease patient, the PCA1 allele found in laboratory yeast strains is nonfunctional. Overexpression or deletion of the functional allele in yeast demonstrates that PCA1 is a cadmium efflux pump. Cadmium as well as copper and silver, but not other metals examined, dramatically increase PCA1 protein expression through post-transcriptional regulation and promote subcellular localization to the plasma membrane. Our study has revealed a novel metal detoxification mechanism in yeast mediated by a P1B-type ATPase that is unique in structure, substrate specificity, and mode of regulation.

  5. Type I and type II interferons upregulate functional type I interleukin-1 receptor in a human fibroblast cell line TIG-1.

    PubMed

    Takii, T; Niki, N; Yang, D; Kimura, H; Ito, A; Hayashi, H; Onozaki, K

    1995-12-01

    The regulation of type I interleukin-1 receptor (IL-1R) expression by type I, interferon (IFN)-alpha A/D, and type II IFN, IFN-gamma, in a human fibroblast cell line TIG-1 was investigated. After 2 h stimulation with human IFN-alpha A/D or IFN-gamma, the levels of type I IL-1R mRNA increased. We previously reported that IL-1 upregulates transcription and cell surface molecules of type I IL-1R in TIG-1 cells through induction of prostaglandin (PG) E2 and cAMP accumulation. However, indomethacin was unable to inhibit the effect of IFNs, indicating that IFNs augment IL-1R expression through a pathway distinct from that of IL-1. The augmentation was also observed in other fibroblast cell lines. Nuclear run-on assays and studies of the stability of mRNA suggested that the increase in IL-1R mRNA was a result of the enhanced transcription of IL-1R gene. Binding studies using 125I-IL-1 alpha revealed that the number of cell surface IL-1R increased with no change in binding affinity by treatment with these IFNs. Pretreatment of the cells with IFNs enhanced IL-1-induced IL-6 production, indicating that IFNs upregulate functional IL-1R. IL-1 and IFNs are produced by the same cell types, as well as by the adjacent different cell types, and are concomitantly present in lesions of immune and inflammatory reactions. These results therefore suggest that IFNs exhibit synergistic effects with IL-1 through upregulation of IL-1R. Augmented production of IL-6 may also contribute to the reactions.

  6. The effect of the angiotensin II receptor, type 1 receptor antagonists, losartan and telmisartan, on thioacetamide-induced liver fibrosis in rats.

    PubMed

    Czechowska, G; Celinski, K; Korolczuk, A; Wojcicka, G; Dudka, J; Bojarska, A; Madro, A; Brzozowski, T

    2016-08-01

    It has been reported previously that the density of angiotensin II receptors is increased in the rat liver in experimentally-induced fibrosis. We hypothesized that pharmacological blockade of angiotensin receptors may produce beneficial effects in models of liver fibrosis. In this study, we used the widely used thioacetamide (TAA)-induced model of liver fibrosis (300 mg/L TAA ad libitum for 12 weeks). Rats received daily injections (i.p), lasting 4 weeks of the angiotensin II type 1 receptor antagonists, losartan 30 mg/kg (TAA + L) or telmisartan 10 mg/kg (TAA + T) and were compared to rat that received TAA alone. Chronic treatment with losartan and telmisartan was associated with a significant reduction in the activity of alkaline phosphatase, and decreased concentrations of tumor necrosis factor-alpha and transforming growth factor beta-1 compared to controls. We also found a significant reduction interleukin-6 in rats receiving telmisartan (P < 0.05) but not losartan. Both treatments increased the concentration of liver glutathione along with a concomitant decrease of GSSG compared to controls. In addition, increased paraoxonase 1 activity was observed in the serum of rats receiving telmisartan group compared to the TAA alone controls. Finally, histological evaluation of liver sections revealed losartan and telmisartan treatment was associated with reduced inflammation and liver fibrosis. Taken together, these results indicate that both telmisartan and losartan have anti-inflammatory and anti-oxidative properties in the TAA model of liver fibrosis. These finding add support to a growing body of literature indicating a potentially important role for the angiotensin system in liver fibrosis and indicate angiotensin antagonists may be useful agents for fibrosis treatment.

  7. The apelin receptor inhibits the angiotensin II type 1 receptor via allosteric trans-inhibition

    PubMed Central

    Siddiquee, K; Hampton, J; McAnally, D; May, LT; Smith, LH

    2013-01-01

    Background and Purpose The apelin receptor (APJ) is often co-expressed with the angiotensin II type-1 receptor (AT1) and acts as an endogenous counter-regulator. Apelin antagonizes Ang II signalling, but the precise molecular mechanism has not been elucidated. Understanding this interaction may lead to new therapies for the treatment of cardiovascular disease. Experimental Approach The physical interaction of APJ and AT1 receptors was detected by co-immunoprecipitation and bioluminescence resonance energy transfer (BRET). Functional and pharmacological interactions were measured by G-protein-dependent signalling and recruitment of β-arrestin. Allosterism and cooperativity between APJ and AT1 were measured by radioligand binding assays. Key Results Apelin, but not Ang II, induced APJ : AT1 heterodimerization forced AT1 into a low-affinity state, reducing Ang II binding. Likewise, apelin mediated a concentration-dependent depression in the maximal production of inositol phosphate (IP1) and β-arrestin recruitment to AT1 in response to Ang II. The signal depression approached a limit, the magnitude of which was governed by the cooperativity indicative of a negative allosteric interaction. Fitting the data to an operational model of allosterism revealed that apelin-mediated heterodimerization significantly reduces Ang II signalling efficacy. These effects were not observed in the absence of apelin. Conclusions and Implications Apelin-dependent heterodimerization between APJ and AT1 causes negative allosteric regulation of AT1 function. As AT1 is significant in the pathogenesis of cardiovascular disease, these findings suggest that impaired apelin and APJ function may be a common underlying aetiology. Linked Article This article is commented on by Goupil et al., pp. 1101–1103 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12040 PMID:22935142

  8. The Calcium-Sensing Receptor Couples to Gαs and Regulates PTHrP and ACTH Secretion in Pituitary Cells

    PubMed Central

    Mamillapalli, Ramanaiah; Wysolmerski, John

    2013-01-01

    The calcium-sensing receptor (CaR) is a G-protein-coupled receptor (GPCR) that binds and signals in response to extracellular calcium and other polycations. It is highly expressed on parathyroid and kidney cells, where it participates in the regulation of systemic calcium homeostasis. It is also expressed on many other cell types and is involved in a wide array of biological functions such as cell growth and differentiation, ion transport and hormone secretion. It has been described to couple to several different G-proteins including Gαi/0, Gαq/11 and Gα12/13. Recently, it has also been shown to stimulate cAMP production by coupling to Gαs in immortalized or malignant breast cells. The CaR is expressed on cells in the anterior pituitary and had previously been described to stimulate cAMP production in these cells. In this report, we examined signaling from the CaR in murine pituitary corticotroph-derived, AtT-20 cells. We found that CaR activation led to the stimulation of cAMP production, and PTHrP and ACTH secretion from these cells. Furthermore, manipulation of cAMP levels was able to modulate PTHrP and ACTH secretion independent of changes in extracellular calcium. Finally, we demonstrated that the CaR couples to Gαs in AtT-20 cells. Therefore, in pituitary corticotroph-like cells, as in breast cancer cells, the CaR utilizes Gαs and activates cAMP production to stimulate hormone secretion. PMID:20032198

  9. Agonistic antibody to angiotensin II type 1 receptor accelerates atherosclerosis in ApoE-/- mice

    PubMed Central

    Li, Weijuan; Chen, Yaoqi; Li, Songhai; Guo, Xiaopeng; Zhou, Wenping; Zeng, Qiutang; Liao, Yuhua; Wei, Yumiao

    2014-01-01

    This study aimed to investigate the effects of agonistic antibody to angiotensin II type 1 receptor (AT1-AA) on atherosclerosis in male ApoE-/- mice which were employed to establish the animal models of AT1-AA in two ways. In the first group, mice were injected subcutaneously with conjugated AT1 peptide at multiple sites; in the second group, mice were infused with AT1-AA prepared from rabbits that were treated with AT1 peptide intraperitoneally. Mice in each group were further randomly divided into five subgroups and treated with AT1 peptide/AT1-AA, AT1 peptide/AT1-AA plus valsartan, AT1 peptide/AT1-AA plus fenofibrate, AT1 peptide/ AT1-AA plus pyrrolidine dithiocarbamate (PDTC) and control vehicle, respectively. Antibodies were detected in mice (except for mice in control group). Aortic atherosclerotic lesions were assessed by oil red O staining, while plasma CRP, TNF-α, nuclear factor-kappa B (NF-κB) and H2O2 were determined by ELISA. CCR2 (the receptor of MCP-1), macrophages, and smooth muscle cells were detected by immunohistochemistry. P47phox, MCP-1 and eNOS were detected by RT-PCR, while P47phox, NF-κB and MCP-1 were detected by Western blot assay. The aortic atherosclerotic lesions were significantly increased in AT1 peptide/AT1-AA treated mice, along with simultaneous increases in inflammatory parameters. However, mice treated with valsartan, fenofibrate or PDTC showed alleviated progression of atherosclerosis and reductions in inflammatory parameters. Thus, AT1-AA may accelerate aortic atherosclerosis in ApoE-/- mice, which is mediated, at least in part, by the inflammatory reaction involving nicotinamide-adenine dinucleotide phosphate oxidase, reactive oxygen species, and NF-κB. In addition, valsartan, fenofibrate and PDTC may inhibit the AT1-AA induced atherosclerosis. PMID:25628779

  10. Gastric cancer: the role of insulin-like growth factor 2 (IGF 2) and its receptors (IGF 1R and M6-P/IGF 2R).

    PubMed

    Pavelić, Kresimir; Kolak, Toni; Kapitanović, Sanja; Radosević, Senka; Spaventi, Sime; Kruslin, Bozo; Pavelić, Jasminka

    2003-11-01

    Insulin-like growth factor 2 (IGF 2) appears to be involved in the progression of many tumours. It binds to at least two different types of receptor: IGF type 1 (IGF 1R) and mannose 6-phosphate/IGF type 2 (M6-P/IGF 2R). Ligand binding to IGF 1R provokes mitogenic and anti-apoptotic effects. M6-P/IGF 2R has a tumour suppressor function--it mediates IGF 2 degradation. Mutation of M6-P/IGF 2R causes both diminished growth suppression and augmented growth stimulation. The aim of this study was to investigate the role of IGF 2 and its receptors (IGF 1R and IGF 2R) in human gastric cancer. The expression of IGF 2 and its receptors was measured in order to analyse the possible correlation between the activity of these genes and cell proliferation in two different gastric tumour types: diffuse and intestinal. The effect of IGF 1 receptor blockage on cell proliferation and anchorage-independent cell growth was also examined. Increased expression of IGF 2 and IGF 1R genes (at the mRNA and protein level) was found in gastric cancer when compared with non-tumour tissue. Furthermore, there was a significant difference between IGF 2 expression in the more aggressive diffuse type and that in the intestinal type of gastric cancer. Moreover, the IGF 2 peptide level in the culture media obtained from the diffuse type of cancer cells was significantly higher when compared with the intestinal type. The level of IGF 2 peptide in the conditioned media strongly correlated with [3H]thymidine incorporation and cell proliferation. On the contrary, IGF 2R mRNA expression was much higher in the intestinal type of cancer than in the diffuse type. In addition, IGF 2R protein expression was substantially lower with progression of the diffuse cancer type to a higher stage. The alphaIR3 monoclonal antibody strongly inhibited [3H]thymidine incorporation and decreased the number of colonies in soft agar of cells overexpressing IGF 2. These findings suggest that members of the IGF family are involved

  11. Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes.

    PubMed

    Saffert, Paul; Enenkel, Cordula; Wendler, Petra

    2017-01-01

    Protein complexes of the Type II AAA+ (ATPases associated with diverse cellular activities) family are typically hexamers of 80-150 kDa protomers that harbor two AAA+ ATPase domains. They form double ring assemblies flanked by associated domains, which can be N-terminal, intercalated or C-terminal to the ATPase domains. Most prominent members of this family include NSF (N-ethyl-maleimide sensitive factor), p97/VCP (valosin-containing protein), the Pex1/Pex6 complex and Hsp104 in eukaryotes and ClpB in bacteria. Tremendous efforts have been undertaken to understand the conformational dynamics of protein remodeling type II AAA+ complexes. A uniform mode of action has not been derived from these works. This review focuses on p97/VCP and the Pex1/6 complex, which both structurally remodel ubiquitinated substrate proteins. P97/VCP plays a role in many processes, including ER- associated protein degradation, and the Pex1/Pex6 complex dislocates and recycles the transport receptor Pex5 from the peroxisomal membrane during peroxisomal protein import. We give an introduction into existing knowledge about the biochemical and cellular activities of the complexes before discussing structural information. We particularly emphasize recent electron microscopy structures of the two AAA+ complexes and summarize their structural differences.

  12. Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation.

    PubMed

    Zhang, Guoqi; Yang, Li; Kim, Gab Seok; Ryan, Kieran; Lu, Shulin; O'Donnell, Rebekah K; Spokes, Katherine; Shapiro, Nathan; Aird, William C; Kluk, Michael J; Yano, Kiichiro; Sanchez, Teresa

    2013-07-18

    The endothelium, as the interface between blood and all tissues, plays a critical role in inflammation. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid, highly abundant in plasma, that potently regulates endothelial responses through interaction with its receptors (S1PRs). Here, we studied the role of S1PR2 in the regulation of the proadhesion and proinflammatory phenotype of the endothelium. By using genetic approaches and a S1PR2-specific antagonist (JTE013), we found that S1PR2 plays a key role in the permeability and inflammatory responses of the vascular endothelium during endotoxemia. Experiments with bone marrow chimeras (S1pr2(+/+) → S1pr2(+/+), S1pr2(+/+) → S1pr2(-/-), and S1pr2(-/-) → S1pr2(+/+)) indicate the critical role of S1PR2 in the stromal compartment, in the regulation of vascular permeability and vascular inflammation. In vitro, JTE013 potently inhibited tumor necrosis factor α-induced endothelial inflammation. Finally, we provide detailed mechanisms on the downstream signaling of S1PR2 in vascular inflammation that include the activation of the stress-activated protein kinase pathway that, together with the Rho-kinase nuclear factor kappa B pathway (NF-kB), are required for S1PR2-mediated endothelial inflammatory responses. Taken together, our data indicate that S1PR2 is a key regulator of the proinflammatory phenotype of the endothelium and identify S1PR2 as a novel therapeutic target for vascular disorders.

  13. Pathophysiological roles of P2 receptors in glial cells.

    PubMed

    Abbracchio, Maria P; Verderio, Claudia

    2006-01-01

    Extracellular nucleotides act through specific receptors on target cells: the seven ionotropic P2X and the eight G protein-coupled P2Y receptors. All these receptors are expressed by brain astroglia and microglia. In astrocytes, P2 receptors have been implicated in short-term calcium-dependent cell-cell communication. Upon mechanical stimulation or activation by other transmitters, astrocytes release ATP and respond to ATP with a propagating wave of intracellular calcium increases, allowing a homotypic astrocyte-astrocyte communication, as well as an heterotypic signalling which also involves neurons, oligodendrocytes and microglia. Astrocytic P2 receptors also mediate reactive astrogliosis, a reaction contributing to neuronal death in neurodegenerative diseases. Signalling leading to inflammatory astrogliosis involves induction of cyclo-oxygenase 2 through stimulation of ERK1,2 and of the transcriptional factors AP-1 and NF-kappaB. Microglia also express several P2 receptors linked to intracellular calcium increases. P2 receptor subtypes are differentially regulated by typical proinflammatory signals for these cells (e.g. lipopolysaccharide), suggesting specific roles in brain immune responses. Globally, these findings highlight the roles of P2 receptors in glial cell pathophysiology suggesting a contribution to neurodegenerative diseases characterized by excessive gliosis and neuro-inflammation. They also open up the possibility of modulating brain damage by ligands selectively targeting the specific P2 receptor subtypes involved in the gliotic response.

  14. Human pDCs display sex-specific differences in type I interferon subtypes and interferon α/β receptor expression.

    PubMed

    Ziegler, Susanne M; Beisel, Claudia; Sutter, Kathrin; Griesbeck, Morgane; Hildebrandt, Heike; Hagen, Sven H; Dittmer, Ulf; Altfeld, Marcus

    2017-02-01

    The outcomes of many diseases differ between women and men, with women experiencing a higher incidence and more severe pathogenesis of autoimmune and some infectious diseases. It has been suggested that this is partially due to activation of plasmacytoid dendritic cells (pDCs), the main producers of interferon (IFN)-α, in response to toll-like receptor (TLR)7 stimulation. We investigated the induction of type I IFN (IFN-I) subtypes upon TLR7 stimulation on isolated pDCs. Our data revealed a sex-specific differential expression of IFN-Is, with pDCs from females showing a significantly higher mRNA expression of all 13 IFN-α subtypes. In addition, pDCs from females had higher levels of IFN-β mRNA after stimulation, indicating that sex differences in IFN-I production by pDCs were mediated by a signaling event upstream of the first loop of IFN-I mRNA transcription. Furthermore, the surface expression levels of the common IFN-α/β receptor subunit 2 were significantly higher on pDCs from females in comparison to males. These data indicate that higher IFN-α production is already established at the mRNA level and propose a contribution of higher IFN-α/β receptor 2 expression on pDCs to the immunological differences in IFN-I production observed between females and males. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Wild-type NM23-H1, but not its S120 mutants, suppresses desensitization of muscarinic potassium current.

    PubMed

    Otero, A S; Doyle, M B; Hartsough, M T; Steeg, P S

    1999-03-08

    NM23 (NDP kinase) modulates the gating of muscarinic K+ channels by agonists through a mechanism distinct from GTP regeneration. To better define the function of NM23 in this pathway and to identify sites in NM23 that are important for its role in muscarinic K+ channel function, we utilized MDA-MB-435 human breast carcinoma cells that express low levels of NM23-H1. M2 muscarinic receptors and GIRK1/GIRK4 channel subunits were co-expressed in cells stably transfected with vector only (control), wild-type NM23-H1, or several NM23-H1 mutants. Lysates from all cell lines tested exhibit comparable nucleoside diphosphate (NDP) kinase activity. Whole cell patch clamp recordings revealed a substantial reduction of the acute desensitization of muscarinic K+ currents in cells overexpressing NM23-H1. The mutants NM23-H1P96S and NM23-H1S44A resembled wild-type NM23-H1 in their ability to reduce desensitization. In contrast, mutants NM23-H1S120G and NM23-H1S120A completely abolished the effect of NM23-H1 on desensitization of muscarinic K+ currents. Furthermore, NM23-H1S120G potentiated acute desensitization, indicating that this mutant retains the ability to interact with the muscarinic pathway, but has properties antithetical to those of the wild-type protein. We conclude that NM23 acts as a suppressor of the processes leading to the desensitization of muscarinic K+ currents, and that Ser-120 is essential for its actions.

  16. Inositol 1,4,5-trisphosphate receptor type II (InsP3R-II) is reduced in obese mice, but metabolic homeostasis is preserved in mice lacking InsP3R-II

    PubMed Central

    Feriod, Colleen N.; Nguyen, Lily; Jurczak, Michael J.; Kruglov, Emma A.; Nathanson, Michael H.; Shulman, Gerald I.; Bennett, Anton M.

    2014-01-01

    Inositol 1,4,5-trisphosphate receptor type II (InsP3R-II) is the most prevalent isoform of the InsP3R in hepatocytes and is concentrated under the canalicular membrane, where it plays an important role in bile secretion. We hypothesized that altered calcium (Ca2+) signaling may be involved in metabolic dysfunction, as InsP3R-mediated Ca2+ signals have been implicated in the regulation of hepatic glucose homeostasis. Here, we find that InsP3R-II, but not InsP3R-I, is reduced in the livers of obese mice. In our investigation of the functional consequences of InsP3R-II deficiency, we found that organic anion secretion at the canalicular membrane and Ca2+ signals were impaired. However, mice lacking InsP3R-II showed no deficits in energy balance, glucose production, glucose tolerance, or susceptibility to hepatic steatosis. Thus, our results suggest that reduced InsP3R-II expression is not sufficient to account for any disruptions in metabolic homeostasis that are observed in mouse models of obesity. We conclude that metabolic homeostasis is maintained independently of InsP3R-II. Loss of InsP3R-II does impair secretion of bile components; therefore, we suggest that conditions of obesity would lead to a decrease in this Ca2+-sensitive process. PMID:25315698

  17. Inflammation enhances Y1 receptor signaling, neuropeptide Y-mediated inhibition of hyperalgesia, and substance P release from primary afferent neurons

    PubMed Central

    Taylor, Bradley K.; Fu, Weisi; Kuphal, Karen E.; Stiller, Carl-Olav; Winter, Michelle K.; Chen, Wenling; Corder, Gregory F.; Urban, Janice H.; McCarson, Kenneth E.; Marvizon, Juan Carlos

    2014-01-01

    Neuropeptide Y (NPY) is present in the superficial laminae of the dorsal horn and inhibits spinal nociceptive processing, but the mechanisms underlying its anti-hyperalgesic actions are unclear. We hypothesized that NPY acts at neuropeptide Y1 receptors in dorsal horn to decrease nociception by inhibiting substance P (SP) release, and that these effects are enhanced by inflammation. To evaluate SP release, we used microdialysis and neurokinin 1 receptor (NK1R) internalization in rat. NPY decreased capsaicin-evoked SP-like immunoreactivity in microdialysate of the dorsal horn. NPY also decreased non-noxious stimulus (paw brush)-evoked NK1R internalization (as well as mechanical hyperalgesia and mechanical and cold allodynia) after intraplantar injection of carrageenan. Similarly, in rat spinal cord slices with dorsal root attached, [Leu31, Pro34]-NPY inhibited dorsal root stimulus-evoked NK1R internalization. In rat dorsal root ganglion neurons, Y1 receptors colocalized extensively with calcitonin gene-related peptide (CGRP). In dorsal horn neurons, Y1 receptors were extensively expressed and this may have masked detection of terminal co-localization with CGRP or SP. To determine whether the pain inhibitory actions of Y1 receptors are enhanced by inflammation, we administered [Leu31, Pro34]-NPY after intraplantar injection of complete Freund's adjuvant (CFA) in rat. We found that [Leu31, Pro34]-NPY reduced paw clamp-induced NK1R internalization in CFA rats but not uninjured controls. To determine the contribution of increased Y1 receptor-G protein coupling, we measured [35S]GTPγS binding simulated by [Leu31, Pro34]-NPY in mouse dorsal horn. CFA inflammation increased the affinity of Y1 receptor G-protein coupling. We conclude that Y1 receptors contribute to the anti-hyperalgesic effects of NPY by mediating inhibition of SP release, and that Y1 receptor signaling in the dorsal horn is enhanced during inflammatory nociception. PMID:24184981

  18. Aldosterone-Induced Vascular Remodeling and Endothelial Dysfunction Require Functional Angiotensin Type 1a Receptors.

    PubMed

    Briet, Marie; Barhoumi, Tlili; Mian, Muhammad Oneeb Rehman; Coelho, Suellen C; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M; Paradis, Pierre; Schiffrin, Ernesto L

    2016-05-01

    We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors in Agtr1a(-/-) and wild-type (WT) mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure (BP) by ≈30 mm Hg in WT mice and ≈50 mm Hg in Agtr1a(-/-) mice. Aldosterone induced aortic and small artery remodeling, impaired endothelium-dependent relaxation in WT mice, and enhanced fibronectin and collagen deposition and vascular inflammation. None of these vascular effects were observed in Agtr1a(-/-) mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in WT mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in WT and Agtr1a(-/-) mice. Agtr1a(-/-) mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting that sodium retention could contribute to the exaggerated BP rise induced by aldosterone. Agtr1a(-/-) mice had decreased mesenteric artery expression of the calcium-activated potassium channel Kcnmb1, which may enhance myogenic tone and together with sodium retention, exacerbate BP responses to aldosterone/salt in Agtr1a(-/-) mice. We conclude that although aldosterone activation of mineralocorticoid receptors raises BP more in Agtr1a(-/-) mice, AGTR1a is required for mineralocorticoid receptor stimulation to induce vascular remodeling and inflammation and endothelial dysfunction. © 2016 American Heart Association, Inc.

  19. Mood stabilizer treatment increases serotonin type 1A receptor binding in bipolar depression

    PubMed Central

    Nugent, Allison C; Carlson, Paul J; Bain, Earle E; Eckelman, William; Herscovitch, Peter; Manji, Husseini; Zarate, Carlos A; Drevets, Wayne C

    2013-01-01

    Abnormal serotonin type 1A (5-HT1A) receptor function and binding have been implicated in the pathophysiology of mood disorders. Preclinical studies have consistently shown that stress decreases the gene expression of 5-HT1A receptors in experimental animals, and that the associated increase in hormone secretion plays a crucial role in mediating this effect. Chronic administration of the mood stabilizers lithium and divalproex (valproate semisodium) reduces glucocorticoid signaling and function in the hippocampus. Lithium has further been shown to enhance 5-HT1A receptor function. To assess whether these effects translate to human subject with bipolar disorder (BD), positron emission tomography (PET) and [18F]trans-4-fluoro-N-(2-[4-(2-methoxyphenyl) piperazino]-ethyl)-N-(2-pyridyl) cyclohexanecarboxamide ([18F]FCWAY) were used to acquire PET images of 5-HT1A receptor binding in 10 subjects with BD, before and after treatment with lithium or divalproex. Mean 5-HT1A binding potential (BPP) significantly increased following mood stabilizer treatment, most prominently in the mesiotemporal cortex (hippocampus plus amygdala). When mood state was also controlled for, treatment was associated with increases in BPP in widespread cortical areas. These preliminary findings are consistent with the hypothesis that these mood stabilizers enhance 5-HT1A receptor expression in BD, which may underscore an important component of these agents' mechanism of action. PMID:23926239

  20. Two active molecular phenotypes of the tachykinin NK1 receptor revealed by G-protein fusions and mutagenesis.

    PubMed

    Holst, B; Hastrup, H; Raffetseder, U; Martini, L; Schwartz, T W

    2001-06-08

    The NK1 neurokinin receptor presents two non-ideal binding phenomena, two-component binding curves for all agonists and significant differences between agonist affinity determined by homologous versus heterologous competition binding. Whole cell binding with fusion proteins constructed between either Galpha(s) or Galpha(q) and the NK1 receptor with a truncated tail, which secured non-promiscuous G-protein interaction, demonstrated monocomponent agonist binding closely corresponding to either of the two affinity states found in the wild-type receptor. High affinity binding of both substance P and neurokinin A was observed in the tail-truncated Galpha(s) fusion construct, whereas the lower affinity component was displayed by the tail-truncated Galpha(q) fusion. The elusive difference between the affinity determined in heterologous versus homologous binding assays for substance P and especially for neurokinin A was eliminated in the G-protein fusions. An NK1 receptor mutant with a single substitution at the extracellular end of TM-III-(F111S), which totally uncoupled the receptor from Galpha(s) signaling, showed binding properties that were monocomponent and otherwise very similar to those observed in the tail-truncated Galpha(q) fusion construct. Thus, the heterogenous pharmacological phenotype displayed by the NK1 receptor is a reflection of the occurrence of two active conformations or molecular phenotypes representing complexes with the Galpha(s) and Galpha(q) species, respectively. We propose that these molecular forms do not interchange readily, conceivably because of the occurrence of microdomains or "signal-transductosomes" within the cell membrane.

  1. Nogo-B receptor promotes the chemoresistance of human hepatocellular carcinoma via the ubiquitination of p53 protein

    PubMed Central

    Long, Fei; Liu, Ying; Liu, Zhenzhen; Li, Song; Yang, Xuejun; Sun, Deguang; Wang, Haibo; Liu, Qinlong; Liang, Rui; Li, Yan; Gao, Zhenming; Shao, Shujuan; Miao, Qing Robert; Wang, Liming

    2016-01-01

    Nogo-B receptor (NgBR), a type I single transmembrane domain receptor is the specific receptor for Nogo-B. Our previous work demonstrated that NgBR is highly expressed in breast cancer cells, where it promotes epithelial mesenchymal transition (EMT), an important step in metastasis. Here, we show that both in vitro and in vivo increased expression of NgBR contributes to the increased chemoresistance of Bel7402/5FU cells, a stable 5-FU (5-Fluorouracil) resistant cell line related Bel7402 cells. NgBR knockdown abrogates S-phase arrest in Bel7402/5FU cells, which correlates with a reduction in G1/S phase checkpoint proteins p53 and p21. In addition, NgBR suppresses p53 protein levels through activation of the PI3K/Akt/MDM2 pathway, which promotes p53 degradation via the ubiquitin proteasome pathway and thus increases the resistance of human hepatocellular cancer cells to 5-FU. Furthermore, we found that NgBR expression is associated with a poor prognosis of human hepatocellular carcinoma (HCC) patients. These results suggest that targeting NgBR in combination with chemotherapeutic drugs, such as 5-FU, could improve the efficacy of current anticancer treatments. PMID:26840457

  2. Purification of family B G protein-coupled receptors using nanodiscs: Application to human glucagon-like peptide-1 receptor.

    PubMed

    Cai, Yingying; Liu, Yuting; Culhane, Kelly J; DeVree, Brian T; Yang, Yang; Sunahara, Roger K; Yan, Elsa C Y

    2017-01-01

    Family B G protein-coupled receptors (GPCRs) play vital roles in hormone-regulated homeostasis. They are drug targets for metabolic diseases, including type 2 diabetes and osteoporosis. Despite their importance, the signaling mechanisms for family B GPCRs at the molecular level remain largely unexplored due to the challenges in purification of functional receptors in sufficient amount for biophysical characterization. Here, we purified the family B GPCR human glucagon-like peptide-1 (GLP-1) receptor (GLP1R), whose agonists, e.g. exendin-4, are used for the treatment of type 2 diabetes mellitus. The receptor was expressed in HEK293S GnTl- cells using our recently developed protocol. The protocol incorporates the receptor into the native-like lipid environment of reconstituted high density lipoprotein (rHDL) particles, also known as nanodiscs, immediately after the membrane solubilization step followed by chromatographic purification, minimizing detergent contact with the target receptor to reduce denaturation and prolonging stabilization of receptor in lipid bilayers without extra steps of reconstitution. This method yielded purified GLP1R in nanodiscs that could bind to GLP-1 and exendin-4 and activate Gs protein. This nanodisc purification method can potentially be a general strategy to routinely obtain purified family B GPCRs in the 10s of microgram amounts useful for spectroscopic analysis of receptor functions and activation mechanisms.

  3. Purification of family B G protein-coupled receptors using nanodiscs: Application to human glucagon-like peptide-1 receptor

    PubMed Central

    Cai, Yingying; Liu, Yuting; Culhane, Kelly J.; DeVree, Brian T.; Yang, Yang; Sunahara, Roger K.; Yan, Elsa C. Y.

    2017-01-01

    Family B G protein-coupled receptors (GPCRs) play vital roles in hormone-regulated homeostasis. They are drug targets for metabolic diseases, including type 2 diabetes and osteoporosis. Despite their importance, the signaling mechanisms for family B GPCRs at the molecular level remain largely unexplored due to the challenges in purification of functional receptors in sufficient amount for biophysical characterization. Here, we purified the family B GPCR human glucagon-like peptide-1 (GLP-1) receptor (GLP1R), whose agonists, e.g. exendin-4, are used for the treatment of type 2 diabetes mellitus. The receptor was expressed in HEK293S GnTl- cells using our recently developed protocol. The protocol incorporates the receptor into the native-like lipid environment of reconstituted high density lipoprotein (rHDL) particles, also known as nanodiscs, immediately after the membrane solubilization step followed by chromatographic purification, minimizing detergent contact with the target receptor to reduce denaturation and prolonging stabilization of receptor in lipid bilayers without extra steps of reconstitution. This method yielded purified GLP1R in nanodiscs that could bind to GLP-1 and exendin-4 and activate Gs protein. This nanodisc purification method can potentially be a general strategy to routinely obtain purified family B GPCRs in the 10s of microgram amounts useful for spectroscopic analysis of receptor functions and activation mechanisms. PMID:28609478

  4. Immediate and Catastrophic Antibody-Mediated Rejection in a Lung Transplant Recipient With Anti-Angiotensin II Receptor Type 1 and Anti-Endothelin-1 Receptor Type A Antibodies.

    PubMed

    Cozzi, E; Calabrese, F; Schiavon, M; Feltracco, P; Seveso, M; Carollo, C; Loy, M; Cardillo, M; Rea, F

    2017-02-01

    Preexisting donor-specific anti-HLA antibodies (DSAs) have been associated with reduced survival of lung allografts. However, antibodies with specificities other than HLA may have a detrimental role on the lung transplant outcome. A young man with cystic fibrosis underwent lung transplantation with organs from a suitable deceased donor. At the time of transplantation, there were no anti-HLA DSAs. During surgery, the patient developed a severe and intractable pulmonary hypertension associated with right ventriular dysfunction, which required arteriovenous extracorporeal membrane oxygenation. After a brief period of clinical improvement, a rapid deterioration in hemodynamics led to the patient's death on postoperative day 5. Postmortem studies showed that lung specimens taken at the end of surgery were compatible with antibody-mediated rejection (AMR), while terminal samples evidenced diffuse capillaritis, blood extravasation, edema, and microthrombi, with foci of acute cellular rejection (A3). Immunological investigations demonstrated the presence of preexisting antibodies against the endothelin-1 receptor type A (ET A R) and the angiotensin II receptor type 1 (AT 1 R), two of the most potent vasoconstrictors reported to date, whose levels slightly rose after transplantation. These data suggest that preexisting anti-ET A R and anti-AT 1 R antibodies may have contributed to the onset of AMR and to the catastrophic clinical course of this patient. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  5. The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type 1 interferon-dependent immunity.

    PubMed

    Wang, Yaya; Shaked, Iftach; Stanford, Stephanie M; Zhou, Wenbo; Curtsinger, Julie M; Mikulski, Zbigniew; Shaheen, Zachary R; Cheng, Genhong; Sawatzke, Kristy; Campbell, Amanda M; Auger, Jennifer L; Bilgic, Hatice; Shoyama, Fernanda M; Schmeling, David O; Balfour, Henry H; Hasegawa, Kiminori; Chan, Andrew C; Corbett, John A; Binstadt, Bryce A; Mescher, Matthew F; Ley, Klaus; Bottini, Nunzio; Peterson, Erik J

    2013-07-25

    Immune cells sense microbial products through Toll-like receptors (TLR), which trigger host defense responses including type 1 interferons (IFNs) secretion. A coding polymorphism in the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is a susceptibility allele for human autoimmune and infectious disease. We report that Ptpn22 selectively regulated type 1 IFN production after TLR engagement in myeloid cells. Ptpn22 promoted host antiviral responses and was critical for TLR agonist-induced, type 1 IFN-dependent suppression of inflammation in colitis and arthritis. PTPN22 directly associated with TNF receptor-associated factor 3 (TRAF3) and promotes TRAF3 lysine 63-linked ubiquitination. The disease-associated PTPN22W variant failed to promote TRAF3 ubiquitination, type 1 IFN upregulation, and type 1 IFN-dependent suppression of arthritis. The findings establish a candidate innate immune mechanism of action for a human autoimmunity "risk" gene in the regulation of host defense and inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Structural Insights into Cargo Recognition by the Yeast PTS1 Receptor*

    PubMed Central

    Hagen, Stefanie; Drepper, Friedel; Fischer, Sven; Fodor, Krisztian; Passon, Daniel; Platta, Harald W.; Zenn, Michael; Schliebs, Wolfgang; Girzalsky, Wolfgang; Wilmanns, Matthias; Warscheid, Bettina; Erdmann, Ralf

    2015-01-01

    The peroxisomal matrix protein import is facilitated by cycling import receptors that shuttle between the cytosol and the peroxisomal membrane. The import receptor Pex5p mediates the import of proteins harboring a peroxisomal targeting signal of type I (PTS1). Purified recombinant Pex5p forms a dimeric complex with the PTS1-protein Pcs60p in vitro with a KD of 0.19 μm. To analyze the structural basis for receptor-cargo recognition, the PTS1 and adjacent amino acids of Pcs60p were systematically scanned for Pex5p binding by an in vitro site-directed photo-cross-linking approach. The cross-linked binding regions of the receptor were subsequently identified by high resolution mass spectrometry. Most cross-links were found with TPR6, TPR7, as well as the 7C-loop of Pex5p. Surface plasmon resonance analysis revealed a bivalent interaction mode for Pex5p and Pcs60p. Interestingly, Pcs60p lacking its C-terminal tripeptide sequence was efficiently cross-linked to the same regions of Pex5p. The KD value of the interaction of truncated Pcs60p and Pex5p was in the range of 7.7 μm. Isothermal titration calorimetry and surface plasmon resonance measurements revealed a monovalent binding mode for the interaction of Pex5p and Pcs60p lacking the PTS1. Our data indicate that Pcs60p contains a second contact site for its receptor Pex5p, beyond the C-terminal tripeptide. The physiological relevance of the ancillary binding region was supported by in vivo import studies. The bivalent binding mode might be explained by a two-step concept as follows: first, cargo recognition and initial tethering by the PTS1-receptor Pex5p; second, lock-in of receptor and cargo. PMID:26359497

  7. Identification of the 1s2s2p 4P5/2-->1s22s 2S1/2 magnetic quadrupole inner-shell satellite line in the Ar16+ K-shell x-ray spectrum

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Bitter, M.; Hey, D.; Reed, K. J.

    2002-09-01

    We have identified the dipole-forbidden 1s2s2p 4P5/2-->1s22s 2S1/2 transition in lithiumlike Ar15+ in high-resolution K-shell x-ray emission spectra recorded at the Livermore EBIT-II electron-beam ion trap and the Princeton National Spherical Tokamak Experiment. Unlike other Ar15+ satellite lines, which can be excited by dielectronic recombination, the line is exclusively excited by electron-impact excitation. Its predicted radiative rate is comparable to that of the well-known 1s2p 3P1-->1s2 1S0 magnetic quadrupole transition in heliumlike Ar16+. As a result, it can also only be observed in low-density plasma. We present calculations of the electron-impact excitation cross sections of the innershell excited Ar15+ satellite lines, including the magnetic sublevels needed for calculating the linear line polarization. We compare these calculations to the relative magnitudes of the observed 1s2s2p-->1s22s transitions and find good agreement, confirming the identification of the lithiumlike 1s2s2p 4P5/2-->1s22s 2S1/2 magnetic quadrupole line.

  8. Bradykinin Type 2 Receptor BE1 Genotype Influences Bradykinin-Dependent Vasodilation During Angiotensin-Converting Enzyme Inhibition

    PubMed Central

    Van Guilder, Gary P.; Pretorius, Mias; Luther, James M.; Byrd, J. Brian; Hill, Kevin; Gainer, James V.; Brown, Nancy J.

    2008-01-01

    To test the hypothesis that the bradykinin receptor 2 (BDKRB2) BE1 +9/−9 polymorphism affects vascular responses to bradykinin, we measured the effect of intra-arterial bradykinin on forearm blood flow and tissue-type plasminogen activator (t-PA) release in 89 normotensive, nonsmoking, white American subjects in whom degradation of bradykinin was blocked by enalaprilat. BE1 genotype frequencies were +9/+9:+9/−9:−9/−9=19:42:28. BE1 genotype was associated with systolic blood pressure (121.4±2.8, 113.8±1.8, and 110.6±1.8 mm Hg in +9/+9, +9/−9, and −9/−9 groups, respectively; P=0.007). In the absence of enalaprilat, bradykinin-stimulated forearm blood flow, forearm vascular resistance, and net t-PA release were similar among genotype groups. Enalaprilat increased basal forearm blood flow (P=0.002) and decreased basal forearm vascular resistance (P=0.01) without affecting blood pressure. Enalaprilat enhanced the effect of bradykinin on forearm blood flow, forearm vascular resistance, and t-PA release (all P<0.001). During enalaprilat, forearm blood flow was significantly lower and forearm vascular resistance was higher in response to bradykinin in the +9/+9 compared with +9/−9 and −9/−9 genotype groups (P=0.04 for both). t-PA release tended to be decreased in response to bradykinin in the +9/+9 group (P=0.08). When analyzed separately by gender, BE1 genotype was associated with bradykinin-stimulated t-PA release in angiotensin-converting enzyme inhibitor–treated men but not women (P=0.02 and P=0.77, respectively), after controlling for body mass index. There was no effect of BE1 genotype on responses to the bradykinin type 2 receptor–independent vasodilator methacholine during enalaprilat. In conclusion, the BDKRB2 BE1 polymorphism influences bradykinin type 2 receptor–mediated vasodilation during angiotensin-converting enzyme inhibition. PMID:18180402

  9. Light induced changes of internal pH in a barnacle photoreceptor and the effect of internal pH on the receptor potential.

    PubMed Central

    Brown, H M; Meech, R W

    1979-01-01

    1. Intracellular pH (pH1) was measured in Balanus photoreceptors using pH-sensitive glass micro-electrodes. The average pH1 of twelve photoreceptors which had been dark adapted for at least 30 min was 7.3 +/- 0.07 (S.D.). 2. Illumination reduced the recorded pH1 by as much as 0.2 pH unit. The change in pH1 was graded with light intensity. 3. When the cells were exposed to CO2 in the dark, pH1 declined monophasically. Saline equilibrated with 2% CO2; 98% O2 produced a steady reduction in pH1 of about 0.25 unit in 2--3 min. The buffering capacity of the receptor cell cytoplasm calculated from such experiments is approximately 15 slykes. 4. In the presence of HCO3-1, CO2 saline produced smaller, biphasic changes in pH1. 5. The membrane depolarization produced by a bright flash (depolarizing receptor potential) was reversibly reduced in the presence of external CO2 or by injection of H+. Iontophoretic injection of HCO2- increased the amplitude of the receptor potential. 6. In individual cells there was a close correlation between the amplitude of the receptor potential and pH1. 7. Saline equilibrated with CO2 reduced the light induced current (recorded under voltage-clamp) by 40--50% without affecting its reversal potential. 8. Exposure of the receptor to 95% CO2 saline for several minutes (pH0 5.5) not only abolished the receptor potential but also reversibly decreased the K conductance of the membrane in the dark. These effects were not reproduced by pH0 5.5 buffered saline or by a 5 min exposure to saline equilibrated with N2. 9. It is suggested that changes in pH1 induced by light modulate the sensitivity of the receptor under physiological conditions. PMID:43890

  10. Post-translational regulation of P2X receptor channels: modulation by phospholipids

    PubMed Central

    Bernier, Louis-Philippe; Ase, Ariel R.; Séguéla, Philippe

    2013-01-01

    P2X receptor channels mediate fast excitatory signaling by ATP and play major roles in sensory transduction, neuro-immune communication and inflammatory response. P2X receptors constitute a gene family of calcium-permeable ATP-gated cation channels therefore the regulation of P2X signaling is critical for both membrane potential and intracellular calcium homeostasis. Phosphoinositides (PIPn) are anionic signaling phospholipids that act as functional regulators of many types of ion channels. Direct PIPn binding was demonstrated for several ligand- or voltage-gated ion channels, however no generic motif emerged to accurately predict lipid-protein binding sites. This review presents what is currently known about the modulation of the different P2X subtypes by phospholipids and about critical determinants underlying their sensitivity to PIPn levels in the plasma membrane. All functional mammalian P2X subtypes tested, with the notable exception of P2X5, have been shown to be positively modulated by PIPn, i.e., homomeric P2X1, P2X2, P2X3, P2X4, and P2X7, as well as heteromeric P2X1/5 and P2X2/3 receptors. Based on various results reported on the aforementioned subtypes including mutagenesis of the prototypical PIPn-sensitive P2X4 and PIPn-insensitive P2X5 receptor subtypes, an increasing amount of functional, biochemical and structural evidence converges on the modulatory role of a short polybasic domain located in the proximal C-terminus of P2X subunits. This linear motif, semi-conserved in the P2X family, seems necessary and sufficient for encoding direct modulation of ATP-gated channels by PIPn. Furthermore, the physiological impact of the regulation of ionotropic purinergic responses by phospholipids on pain pathways was recently revealed in the context of native crosstalks between phospholipase C (PLC)-linked metabotropic receptors and P2X receptor channels in dorsal root ganglion sensory neurons and microglia. PMID:24324400

  11. Determination of the 1s2{\\ell }2{{\\ell }}^{\\prime } state production ratios {{}^{4}P}^{o}/{}^{2}P, {}^{2}D/{}^{2}P and {{}^{2}P}_{+}/{{}^{2}P}_{-} from fast (1{s}^{2},1s2s\\,{}^{3}S) mixed-state He-like ion beams in collisions with H2 targets

    NASA Astrophysics Data System (ADS)

    Benis, E. P.; Zouros, T. J. M.

    2016-12-01

    New results are presented on the ratio {R}m={σ }{T2p}( {}4P)/{σ }{T2p}({}2P) concerning the production cross sections of Li-like 1s2s2p quartet and doublet P states formed in energetic ion-atom collisions by single 2p electron transfer to the metastable 1s2s {}3S component of the He-like ion beam. Spin statistics predict a value of R m = 2 independent of the collision system in disagreement with most reported measurements of {R}m≃ 1{--}9. A new experimental approach is presented for the evaluation of R m having some practical advantages over earlier approaches. It also allows for the determination of the separate contributions of ground- and metastable-state beam components to the measured spectra. Applying our technique to zero-degree Auger projectile spectra from 4.5 MeV {{{B}}}3+ (Benis et al 2002 Phys. Rev. A 65 064701) and 25.3 MeV {{{F}}}7+ (Zamkov et al 2002 Phys. Rev. A 65 062706) mixed state (1{s}2 {}1S,1s2s {}3S) He-like ion collisions with H2 targets, we report new values of {R}m=3.5+/- 0.4 for boron and {R}m=1.8+/- 0.3 for fluorine. In addition, the ratios of {}2D/{}2P and {{}2P}+/{{}2P}- populations from either the metastable and/or ground state beam component, also relevant to this analysis, are evaluated and compared to previously reported results for carbon collisions on helium (Strohschein et al 2008 Phys. Rev. A 77 022706) including a critical comparison to theory.

  12. P2X1 receptor-mediated inhibition of the proliferation of human coronary smooth muscle cells involving the transcription factor NR4A1.

    PubMed

    Hinze, Annette Viktoria; Mayer, Peter; Harst, Anja; von Kügelgen, Ivar

    2013-12-01

    Adenine nucleotides acting at P2X1 receptors are potent vasoconstrictors. Recently, we demonstrated that activation of adenosine A2B receptors on human coronary smooth muscle cells inhibits cell proliferation by the induction of the nuclear receptor subfamily 4, group A, member 1 (NR4A1; alternative notation Nur77). In the present study, we searched for long-term effects mediated by P2X1 receptors by analyzing receptor-mediated changes in cell proliferation and in the expression of NR4A1. Cultured human coronary smooth muscle cells were treated with selective receptor ligands. Effects on proliferation were determined by counting cells and measuring changes in impedance. The induction of transcription factors was assessed by qPCR. The P2X receptor agonist α,β-methylene-ATP and its analog β,γ-methylene-ATP inhibited cell proliferation by about 50 % after 5 days in culture with half-maximal concentrations of 0.3 and 0.08 μM, respectively. The effects were abolished or markedly attenuated by the P2X1 receptor antagonist NF449 (carbonylbis-imino-benzene-triylbis-(carbonylimino)tetrakis-benzene-1,3-disulfonic acid; 100 nM and 1 μM). α,β-methylene-ATP and β,γ-methylene-ATP applied for 30 min to 4 h increased the expression of NR4A1; NF449 blocked or attenuated this effect. Small interfering RNA directed against NR4A1 diminished the antiproliferative effects of α,β-methylene-ATP and β,γ-methylene-ATP. α,β-methylene-ATP (0.1 to 30 μM) decreased migration of cultured human coronary smooth muscle cells in a chamber measuring changes in impedance; NF449 blocked the effect. In conclusion, our results demonstrate for the first time that adenine nucleotides acting at P2X1 receptors inhibit the proliferation of human coronary smooth muscle cells via the induction of the early gene NR4A1.

  13. Pharmacological characterization of recombinant human and rat P2X receptor subtypes.

    PubMed

    Bianchi, B R; Lynch, K J; Touma, E; Niforatos, W; Burgard, E C; Alexander, K M; Park, H S; Yu, H; Metzger, R; Kowaluk, E; Jarvis, M F; van Biesen, T

    1999-07-02

    ATP functions as a fast neurotransmitter through the specific activation of a family of ligand-gated ion channels termed P2X receptors. In this report, six distinct recombinant P2X receptor subtypes were pharmacologically characterized in a heterologous expression system devoid of endogenous P2 receptor activity. cDNAs encoding four human P2X receptor subtypes (hP2X1, hP2X3, hP2X4, and hP2X7), and two rat P2X receptor subtypes (rP2X2 and rP2X3), were stably expressed in 1321N1 human astrocytoma cells. Furthermore, the rP2X2 and rP2X3 receptor subtypes were co-expressed in these same cells to form heteromultimeric receptors. Pharmacological profiles were determined for each receptor subtype, based on the activity of putative P2 ligands to stimulate Ca2+ influx. The observed potency and kinetics of each response was receptor subtype-specific and correlated with their respective electrophysiological properties. Each receptor subtype exhibited a distinct pharmacological profile, based on its respective sensitivity to nucleotide analogs, diadenosine polyphosphates and putative P2 receptor antagonists. Alphabeta-methylene ATP (alphabeta-meATP), a putative P2X receptor-selective agonist, was found to exhibit potent agonist activity only at the hP2X1, hP2X3 and rP2X3 receptor subtypes. Benzoylbenzoic ATP (BzATP, 2' and 3' mixed isomers), which has been reported to act as a P2X7 receptor-selective agonist, was least active at the rat and human P2X7 receptors, but was a potent (nM) agonist at hP2X1, rP2X3 and hP2X3 receptors. These data comprise a systematic examination of the functional pharmacology of P2X receptor activation.

  14. S-Glutathionylation of estrogen receptor α affects dendritic cell function.

    PubMed

    Zhang, Jie; Ye, Zhi-Wei; Chen, Wei; Manevich, Yefim; Mehrotra, Shikhar; Ball, Lauren; Janssen-Heininger, Yvonne; Tew, Kenneth D; Townsend, Danyelle M

    2018-03-23

    Glutathione S -transferase Pi (GSTP) is a thiolase that catalyzes the addition of glutathione (GSH) to receptive cysteines in target proteins, producing an S -glutathionylated residue. Accordingly, previous studies have reported that S -glutathionylation is constitutively decreased in cells from mice lacking GSTP ( Gstp1 / p2 -/- ). Here, we found that bone marrow-derived dendritic cells (BMDDCs) from Gstp1 / p2 -/- mice have proliferation rates that are greater than those in their WT counterparts ( Gstp1 / p2 +/+ ). Moreover, Gstp1 / p2 -/- BMDDCs had increased reactive oxygen species (ROS) levels and decreased GSH:glutathione disulfide (GSSG) ratios. Estrogen receptor α (ERα) is linked to myeloproliferation and differentiation, and we observed that its steady-state levels are elevated in Gstp1 / p2 -/- BMDDCs, indicating a link between GSTP and ERα activities. BMDDCs differentiated by granulocyte-macrophage colony-stimulating factor had elevated ERα levels, which were more pronounced in Gstp1 / p2 -/- than WT mice. When stimulated with lipopolysaccharide for maturation, Gstp1 / p2 -/- BMDDCs exhibited augmented endocytosis, maturation rate, cytokine secretion, and T-cell activation; heightened glucose uptake and glycolysis; increased Akt signaling (in the mTOR pathway); and decreased AMPK-mediated phosphorylation of proteins. Of note, GSTP formed a complex with ERα, stimulating ERα S -glutathionylation at cysteines 221, 245, 417, and 447; altering ERα's binding affinity for estradiol; and reducing overall binding potential (receptor density and affinity) 3-fold. Moreover, in Gstp1 / p2 -/- BMDDCs, ERα S -glutathionylation was constitutively decreased. Taken together, these findings suggest that GSTP-mediated S -glutathionylation of ERα controls BMDDC differentiation and affects metabolic function in dendritic cells. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Electron Excitation Rate Coefficients for Transitions from the IS21S Ground State to the 1S2S1,3S and 1S2P1,3P0 Excited States of Helium

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Kingston, A. E.; McDowell, M. R. C.

    1984-03-01

    The available experimental and theoretical electron impact excitation cross section data for the transitions from the 1s2 1S ground state to the 1s2s 1,3S and 1s2p 1,3P0 excited states of helium are assessed. Based on this assessed data, excitation rate coefficients are calculated over a wide electron temperature range below 3.0×106K. A comparison with other published results suggests that the rates used should be lower by a factor of 2 or more.

  16. Pharmacological profiles of cloned mammalian P2Y-receptor subtypes.

    PubMed

    von Kügelgen, Ivar

    2006-06-01

    Membrane-bound P2-receptors mediate the actions of extracellular nucleotides in cell-to-cell signalling. P2X-receptors are ligand-gated ion channels, whereas P2Y-receptors belong to the superfamily of G-protein-coupled receptors (GPCRs). So far, the P2Y family is composed out of 8 human subtypes that have been cloned and functionally defined; species orthologues have been found in many vertebrates. P2Y1-, P2Y2-, P2Y4-, P2Y6-, and P2Y11-receptors all couple to stimulation of phospholipase C. The P2Y11-receptor mediates in addition a stimulation of adenylate cyclase. In contrast, activation of the P2Y12-, P2Y13-, and P2Y14-receptors causes an inhibition of adenylate cyclase activity. The expression of P2Y1-receptors is widespread. The receptor is involved in blood platelet aggregation, vasodilatation and neuromodulation. It is activated by ADP and ADP analogues including 2-methylthio-ADP (2-MeSADP). 2'-Deoxy-N6-methyladenosine-3',5'-bisphosphate (MRS2179) and 2-chloro-N6-methyl-(N)-methanocarba-2'-deoxyadenosine 3',5'-bisphosphate (MRS2279) are potent and selective antagonists. P2Y2 transcripts are abundantly distributed. One important example for its functional role is the control of chloride ion fluxes in airway epithelia. The P2Y2-receptor is activated by UTP and ATP and blocked by suramin. The P2Y2-agonist diquafosol is used for the treatment of the dry eye disease. P2Y4-receptors are expressed in the placenta and in epithelia. The human P2Y4-receptor has a strong preference for UTP as agonist, whereas the rat P2Y4-receptor is activated about equally by UTP and ATP. The P2Y4-receptor is not blocked by suramin. The P2Y6-receptor has a widespread distribution including heart, blood vessels, and brain. The receptor prefers UDP as agonist and is selectively blocked by 1,2-di-(4-isothiocyanatophenyl)ethane (MRS2567). The P2Y11-receptor may play a role in the differentiation of immunocytes. The human P2Y11-receptor is activated by ATP as naturally occurring agonist and

  17. Phenotypic characterization of Grm1crv4 mice reveals a functional role for the type 1 metabotropic glutamate receptor in bone mineralization.

    PubMed

    Musante, Ilaria; Mattinzoli, Deborah; Otescu, Lavinia Alexandra; Bossi, Simone; Ikehata, Masami; Gentili, Chiara; Cangemi, Giuliana; Gatti, Cinzia; Emionite, Laura; Messa, Piergiorgio; Ravazzolo, Roberto; Rastaldi, Maria Pia; Riccardi, Daniela; Puliti, Aldamaria

    2017-01-01

    Recent increasing evidence supports a role for neuronal type signaling in bone. Specifically glutamate receptors have been found in cells responsible for bone remodeling, namely the osteoblasts and the osteoclasts. While most studies have focused on ionotropic glutamate receptors, the relevance of the metabotropic glutamate signaling in bone is poorly understood. Specifically type 1 metabotropic glutamate (mGlu1) receptors are expressed in bone, but the effect of its ablation on skeletal development has never been investigated. Here we report that Grm1 crv4/crv4 mice, homozygous for an inactivating mutation of the mGlu1 receptor, and mainly characterized by ataxia and renal dysfunction, exhibit decreased body weight, bone length and bone mineral density compared to wild type (WT) animals. Blood analyses of the affected mice demonstrate the absence of changes in circulating factors, such as vitamin D and PTH, suggesting renal damage is not the main culprit of the skeletal phenotype. Cultures of osteoblasts lacking functional mGlu1 receptors exhibit less homogeneous collagen deposition than WT cells, and present increased expression of osteocalcin, a marker of osteoblast maturation. These data suggest that the skeletal damage is directly linked to the absence of the receptor, which in turn leads to osteoblasts dysfunction and earlier maturation. Accordingly, skeletal histomorphology suggests that Grm1 crv4/crv4 mice exhibit enhanced bone maturation, resulting in premature fusion of the growth plate and shortened long bones, and further slowdown of bone apposition rate compared to the WT animals. In summary, this work reveals novel functions of mGlu1 receptors in the bone and indicates that in osteoblasts mGlu1 receptors are necessary for production of normal bone matrix, longitudinal bone growth, and normal skeletal development. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Pilocarpine-Induced Status Epilepticus Increases the Sensitivity of P2X7 and P2Y1 Receptors to Nucleotides at Neural Progenitor Cells of the Juvenile Rodent Hippocampus.

    PubMed

    Rozmer, Katalin; Gao, Po; Araújo, Michelle G L; Khan, Muhammad Tahir; Liu, Juan; Rong, Weifang; Tang, Yong; Franke, Heike; Krügel, Ute; Fernandes, Maria José S; Illes, Peter

    2017-07-01

    Patch-clamp recordings indicated the presence of P2X7 receptors at neural progenitor cells (NPCs) in the subgranular zone of the dentate gyrus in hippocampal brain slices prepared from transgenic nestin reporter mice. The activation of these receptors caused inward current near the resting membrane potential of the NPCs, while P2Y1 receptor activation initiated outward current near the reversal potential of the P2X7 receptor current. Both receptors were identified by biophysical/pharmacological methods. When the brain slices were prepared from mice which underwent a pilocarpine-induced status epilepticus or when brain slices were incubated in pilocarpine-containing external medium, the sensitivity of P2X7 and P2Y1 receptors was invariably increased. Confocal microscopy confirmed the localization of P2X7 and P2Y1 receptor-immunopositivity at nestin-positive NPCs. A one-time status epilepticus in rats caused after a latency of about 5 days recurrent epileptic fits. The blockade of central P2X7 receptors increased the number of seizures and their severity. It is hypothesized that P2Y1 receptors after a status epilepticus may increase the ATP-induced proliferation/ectopic migration of NPCs; the P2X7 receptor-mediated necrosis/apoptosis might counteract these effects, which would otherwise lead to a chronic manifestation of recurrent epileptic fits. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Pharmacological characterization of nucleotide P2Y receptors on endothelial cells of the mouse aorta

    PubMed Central

    Guns, Pieter-Jan D F; Korda, András; Crauwels, Herta M; Van Assche, Tim; Robaye, Bernard; Boeynaems, Jean-Marie; Bult, Hidde

    2005-01-01

    Nucleotides regulate various effects including vascular tone. This study was aimed to characterize P2Y receptors on endothelial cells of the aorta of C57BL6 mice. Five adjacent segments (width 2 mm) of the thoracic aorta were mounted in organ baths to measure isometric force development. Nucleotides evoked complete (adenosine 5′ triphosphate (ATP), uridine 5′ triphosphate (UTP), uridine 5′ diphosphate (UDP); >90%) or partial (adenosine 5′ diphosphate (ADP)) relaxation of phenylephrine precontracted thoracic aortic rings of C57BL6 mice. Relaxation was abolished by removal of the endothelium and was strongly suppressed (>90%) by inhibitors of nitric oxide synthesis. The rank order of potency was: UDP∼UTP∼ADP>adenosine 5′-[γ-thio] triphosphate (ATPγS)>ATP, with respective pD2 values of 6.31, 6.24, 6.22, 5.82 and 5.40. These results are compatible with the presence of P2Y1 (ADP>ATP), P2Y2 or P2Y4 (ATP and UTP) and P2Y6 (UDP) receptors. P2Y4 receptors were not involved, since P2Y4-deficient mice displayed unaltered responses to ATP and UTP. The purinergic receptor antagonist suramin exerted surmountable antagonism for all agonists. Its apparent pKb for ATP (4.53±0.07) was compatible with literature, but the pKb for UTP (5.19±0.03) was significantly higher. This discrepancy suggests that UTP activates supplementary non-P2Y2 receptor subtype(s). Further, pyridoxal-phosphate-6-azophenyl-2′-4′-disulphonic acid (PPADS) showed surmountable (UTP, UDP), nonsurmountable (ADP) or no antagonism (ATP). Finally, 2′-deoxy-N6-methyladenosine3′,5′-bisphosphate (MRS2179) inhibited ADP-evoked relaxation only. Taken together, these results point to the presence of functional P2Y1 (ADP), P2Y2 (ATP, UTP) and P2Y6 (UDP) receptors on murine aorta endothelial cells. The identity of the receptor(s) mediating the action of UTP is not fully clear and other P2Y subtypes might be involved in UTP-evoked vasodilatation. PMID:15997227

  20. Receptor specificity and trigemino-vascular inhibitory actions of a novel 5-HT1B/1D receptor partial agonist, 311C90 (zolmitriptan).

    PubMed

    Martin, G R; Robertson, A D; MacLennan, S J; Prentice, D J; Barrett, V J; Buckingham, J; Honey, A C; Giles, H; Moncada, S

    1997-05-01

    1. 311C90 (zolmitriptan zomig: (S)-4[[3-[2-(dimethylamino)ethyl]-1H-indol-5-yl]methyl]-2-oxazolidinone) is a novel 5-HT1B/1D receptor agonist with proven efficacy in the acute treatment of migraine. Here, we describe the receptor specificity of the drug and its actions on trigeminal-evoked plasma protein extravasation into the dura mater of the anaesthetized guinea-pig. 2. At the "5-HT1B-like' receptor mediating vascular contraction (rabbit saphenous vein), the compound was a potent (p[A50] = 6.79 +/- 0.06) partial agonist achieving 77 +/- 4% of the maximum effect to 5-hydroxytryptamine (5-HT). In the same experiments, sumatriptan (p[A50] = 6.48 +/- 0.04) was half as potent as 311C90 and produced 97 +/- 2% of the 5-HT maximum effect. Studies in which receptor inactivation methods were used to estimate the affinity (pKA) and efficacy relative to 5-HT (tau rel) for each agonist confirmed that 311C90 exhibits higher affinity than sumatriptan (pKA = 6.63 +/- 0.04 and 6.16 +/- 0.03, respectively) and that both drugs are partial agonists relative to 5-HT (tau rel = 0.61 +/- 0.03 and 0.63 +/- 0.10, respectively, compared to 5-HT = 1.0). 3. Consistent with its effects in rabbit saphenous vein, 311C90 also produced concentration-dependent contractions of primate basilar artery and human epicardial coronary artery rings. In basilar artery, agonist potency (p[A50] = 6.92 +/- 0.07) was similar to that demonstrated in rabbit saphenous vein, again being 2-3 fold higher than for sumatriptan (p[A50] = 6.46 +/- 0.03). Both agonists produced about 50% of the maximum response obtained with 5-HT in the same preparations. In rings of human coronary artery, the absolute potency of 311C90 and sumatriptan was higher than in primate basilar artery (p[A50] = 7.3 +/- 0.1 and 6.7 +/- 0.1, respectively), but maximum effects relative to 5-HT were lower (37 +/- 8% and 35 +/- 7%, respectively). In both types of vessel, the inability of 5-HT1B/1D agonists to achieve the same maximum as the

  1. Cysteinyl Leukotriene 1 Receptor Expression Associated With Bronchial Inflammation in Severe Exacerbations of COPD

    PubMed Central

    Zhu, Jie; Bandi, Venkata; Qiu, Shengyang; Figueroa, David J.; Evans, Jilly F.; Barnes, Neil; Guntupalli, Kay K.

    2012-01-01

    Background: Cysteinyl leukotriene 1 (CysLT1) receptor expression is known to be increased in the airway mucosa of patients with asthma, especially during exacerbations; however, nothing is known of its expression in COPD. Methods: We applied immunohistochemistry and in situ hybridization to endobronchial biopsies to determine inflammatory cell CysLT1 receptor protein and mRNA expression in the following: (1) 15 nonsmoker control subjects (NSC), (2) 16 smokers with moderate to severe COPD in its stable phase (S-COPD), and (3) 15 smokers with COPD hospitalized for a severe exacerbation (SE-COPD). Results: The total number of bronchial mucosal inflammatory cells (CD45+) and those expressing CysLT1 receptor protein were significantly greater in SE-COPD (CysLT1 receptor protein: median [range] = 139 [31-634]) as compared with S-COPD (32 [6-114]) or NSC (16 [4-66]) (P < .001 for both). CysLT1 receptor gene expression showed similar differences. A greater proportion of CD451 cells expressed CysLT1 receptor protein in SE-COPD (median [range] = 22% [8-81]) compared with S-COPD (10% [4-32]) (P < .03) or NSC (7% [1-19]) (P < .002). In SE-COPD, the relative frequencies of CysLT1 receptor-expressing cells were as follows: tryptase1 mast cells > CD681 monocytes/macrophage > neutrophils > CD201 B lymphocytes = EG21 eosinophils. Moreover, there were positive correlations between the numbers of cells expressing CysLT1 receptor protein and the numbers of CD451 cells (r = 0.78; P < .003) and tryptase1 mast cells (r = 0.62; P < .02). Conclusions: Bronchial mucosal CysLT1 receptor-positive inflammatory cells are present in the bronchial mucosa in COPD in greatest number in those experiencing a severe exacerbation. PMID:22871757

  2. Channel-Opening Kinetic Mechanism of Wild-Type GluK1 Kainate Receptors and a C-Terminal Mutant

    PubMed Central

    Han, Yan; Wang, Congzhou; Park, Jae Seon; Niu, Li

    2012-01-01

    GluK1 is a kainate receptor subunit in the ionotropic glutamate receptor family and can form functional channels when expressed, for instance, in HEK-293 cells. However, the channel-opening mechanism of GluK1 is poorly understood. One major challenge to studying the GluK1 channel is its apparent low surface expression, which results in a low whole-cell current response even to a saturating concentration of agonist. The low surface expression is thought to be contributed by an endoplasmic reticulum (ER) retention signal sequence. When this sequence motif is present as in the wild-type GluK1-2b C-terminus, the receptor is significantly retained in the ER. Conversely, when this sequence is lacking, as in wild-type GluK1-2a (i.e., a different alternatively spliced isoform at the C-terminus) and in a GluK1-2b mutant (i.e., R896A, R897A, R900A and K901A) that disrupts the ER retention signal, there is higher surface expression and greater whole-cell current response. Here we characterize the channel-opening kinetic mechanism for these three GluK1 receptors expressed in HEK-293 cells by using a laser-pulse photolysis technique. Our results show that the wild-type GluK1-2a, wild-type GluK1-2b and the mutant GluK1-2b have identical channel-opening and channel-closing rate constants. These results indicate that the C-terminal ER retention signal sequence, which affects receptor trafficking/expression, does not affect channel-gating properties. Furthermore, as compared with the GluK2 kainate receptor, the GluK1 channel is faster to open, close, and desensitize by at least two-fold, yet the EC50 value of GluK1 is similar to that of GluK2. PMID:22191429

  3. ALDOSTERONE-INDUCED VASCULAR REMODELING AND ENDOTHELIAL DYSFUNCTION REQUIRE FUNCTIONAL ANGIOTENSIN TYPE 1a RECEPTORS

    PubMed Central

    Coelho, Suellen C.; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M.; Paradis, Pierre; Schiffrin, Ernesto L.

    2016-01-01

    We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors (MR) in Agtr1a−/− and wild-type mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure by ~30 mmHg in wild-type mice, and ~50 mmHg in Agtr1a−/− mice. Aldosterone induced aortic and small artery remodeling and impaired endothelium-dependent relaxation in wild-type mice, and enhanced fibronectin and collagen deposition, and vascular inflammation. None of these vascular effects were observed in Agtr1a−/− mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in wild-type mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in wild-type and Agtr1a−/− mice. Agtr1a−/− mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting sodium retention that could contribute to the exaggerated blood pressure rise induced by aldosterone. Agtr1a−/− mice had decreased mesenteric artery expression of the calcium-activated potassium channel Kcnmb1, which may enhance myogenic tone and together with sodium retention exacerbate BP responses to aldosterone/salt in Agtr1a−/− mice. We conclude that although aldosterone activation of MR raises BP more in Agtr1a−/− mice, AGTR1a is required for MR stimulation to induce vascular remodeling and inflammation, and endothelial dysfunction. PMID:27045029

  4. Fetal and Maternal Innate Immunity Receptors Have Opposing Effects on the Severity of Experimental Malaria in Pregnancy: Beneficial Roles for Fetus-Derived Toll-Like Receptor 4 and Type I Interferon Receptor 1

    PubMed Central

    Rodrigues-Duarte, Lurdes; Pandya, Yash; Neres, Rita

    2018-01-01

    ABSTRACT Malaria in pregnancy (MiP) is a distinctive clinical form of Plasmodium infection and is a cause of placental insufficiency leading to poor pregnancy outcomes. Maternal innate immunity responses play a decisive role in the development of placental inflammation, but the action of fetus-derived factors in MiP outcomes has been overlooked. We investigated the role of the Tlr4 and Ifnar1 genes, taking advantage of heterogenic mating strategies to dissect the effects mediated by maternally and fetally derived Toll-like receptor 4 (TLR4) or type I interferon receptor 1 (IFNAR1). Using a mouse infection system displaying severe MiP outcomes, we found that the expressions of TLR4 and IFNAR1 in the maternal compartment take part in deleterious MiP outcomes, but their fetal counterparts patently counteract these effects. We uncovered that fetal TLR4 contributes to the in vitro uptake of infected erythrocytes by trophoblasts and to the innate immune response in the placenta, offering robust protection of fetus viability, but had no sensible impact on the placental parasite burden. In contrast, we observed that the expression of IFNAR1 in the fetal compartment was associated with a reduced placental parasite burden but had little beneficial effect on fetus outcomes. Furthermore, the downregulation of Ifnar1 expression in infected placentas and in trophoblasts exposed to infected erythrocytes indicated that the interferon-IFNAR1 pathway is involved in the trophoblast response to infection. This work unravels that maternal and fetal counterparts of innate immune pathways drive opposing responses in murine placental malaria and implicates the activation of innate receptors in fetal trophoblast cells in the control of placental infection and in the protection of the fetus. PMID:29440369

  5. Prostacyclin induction by high-density lipoprotein (HDL) in vascular smooth muscle cells depends on sphingosine 1-phosphate receptors: effect of simvastatin.

    PubMed

    González-Díez, María; Rodríguez, Cristina; Badimon, Lina; Martínez-González, José

    2008-07-01

    Prostacyclin (PGI2) is an important regulator of vascular homeostasis. Our goal was to analyze the role of sphingosine 1-phosphate (S1P) and its receptors in the up-regulation of cyclooxygenase-2 (Cox-2) induced by HDL in human vascular smooth muscle cells (VSMC). S1P induces Cox-2 expression in a time-and dose-dependent manner at concentrations (0.02-1 microM) compatible with those present in physiological HDL levels. The effect was mimicked by dihydro-S1P (DhS1P), a S1P derivative that only acts through cell surface S1P receptors. Desensitization of S1P receptors with S1P (or DhS1P) abolished HDL-induced Cox-2 up-regulation and PGI2 release. Inhibition of S1P receptors by suramin (inhibitor of S1P3), JTE013 (inhibitor of S1P2) or VPC23019 (inhibitor of S1P1 and S1P3) reduced the up-regulation of Cox-2 induced by HDL and S1P. The combination of suramin and JTE013 increased the inhibitory effect compared to that observed in cells treated with each inhibitor alone. siRNA against S1P2 or S1P3 significantly reduced the ability of HDL and S1P to up-regulate Cox-2. Simvastatin induced over-expression of S1P3 and potentiated the induction of Cox-2 expression produced by HDL (or S1P). Finally, suramin, JTE013 and VPC23019 inhibited p38 MAPK and ERK1/2 signaling pathways activated by HDL (or S1P) and the downstream activation of CREB, a key transcription factor involved in Cox-2 transcriptional up-regulation. These results indicate that S1P receptors, in particular S1P2 and S1P3, are involved in the Cox-2-dependent effects of HDL on vascular cells. Strategies aimed to therapeutically modulate S1P or S1P receptors could be useful to improve cardiovascular protection.

  6. Association of protein tyrosine phosphatase, non-receptor type 22 +1858C→T polymorphism and susceptibility to vitiligo: Systematic review and meta-analysis.

    PubMed

    Agarwal, Silky; Changotra, Harish

    2017-01-01

    Protein tyrosine phosphatase, non-receptor type 22 gene, which translates to lymphoid tyrosine phosphatase, is considered to be a susceptibility gene marker associated with several autoimmune diseases. Several studies have demonstrated the association of protein tyrosine phosphatase, non-receptor type 22 +1858C→T polymorphism with vitiligo. However, these studies showed conflicting results. Meta-analysis of the same was conducted earlier that included fewer number of publications in their study. We performed a meta-analysis of a total of seven studies consisting of 2094 cases and 3613 controls to evaluate the possible association of protein tyrosine phosphatase, non-receptor type 22 +1858C>T polymorphism with vitiligo susceptibility. We conducted a literature search in PubMed, Google Scholar and Dogpile for all published paper on protein tyrosine phosphatase, non-receptor type 22 +1858C→T polymorphism and vitiligo risk till June 2016. Data analysis was performed by RevMan 5.3 and comprehensive meta-analysis v3.0 software. Meta-analysis showed an overall significant association of protein tyrosine phosphatase, non- receptor type 22 +1858C→T polymorphism with vitiligo in all models (allelic model [T vs. C]: odds ratio = 1.50, 95% confidence interval [1.32-1.71], P< 0.001; dominant model [TT + CT vs. CC]: odds ratio = 1.61, 95% confidence interval [1.16-2.24], P = 0.004; recessive model [TT vs. CT + CC]: odds ratio = 4.82, 95% confidence interval [1.11-20.92], P = 0.04; homozygous model [TT vs. CC]: odds ratio = 5.34, 95% confidence interval [1.23-23.24], P = 0.03; co-dominant model [CT vs. CC]: odds ratio = 1.52, 95% confidence interval [1.09-2.13], P = 0.01). No publication bias was detected in the funnel plot study. Limited ethnic-based studies, unable to satisfy data by gender or vitiligo-type are some limitations of the present meta-analysis. Stratifying data by ethnicity showed an association of protein tyrosine phosphatase, non-receptor type 22 +1858C

  7. High throughput functional assays for P2X receptors.

    PubMed

    Namovic, Marian T; Jarvis, Michael F; Donnelly-Roberts, Diana

    2012-06-01

    Adenosine triphosphate (ATP) activates two receptor superfamilies, metabotropic P2Y and ionotropic P2X receptors. The P2X receptors are nonselective cation channels that are widely expressed on excitable cells including neurons, glia, and smooth muscle cells. The protocols in this unit are useful for evaluating ligands that interact with P2X receptors on native cells or that are cloned and expressed in recombinant heterologous cell systems. Calcium imaging methods are described for the pharmacological characterization of fast or slowly desensitizing P2X receptors. While these methods are readily applicable to a wide variety of ligand-gated ion channels, the protocols provided herein detail how they can be used to measure activation of homomeric P2X3 (fast desensitizing) and heteromeric P2X2/3 (slowly desensitizing) receptors. Appropriate agonists and/or calcium dyes can be substituted to assess activity at other P2X receptor subtypes. An additional protocol is provided for measuring P2X7 receptor-mediated pore formation in THP-1, a native human acute monocytic leukemia cell line that can be used to study homomeric P2X7 (non-desensitizing) receptors that are expressed on macrophages and microglial cells. © 2012 by John Wiley & Sons, Inc.

  8. 78 FR 44042 - Airworthiness Directives; Agusta S.p.A. Helicopters (Type Certificate Currently Held By...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ...-0643; Directorate Identifier 2012-SW-096-AD] RIN 2120-AA64 Airworthiness Directives; Agusta S.p.A. Helicopters (Type Certificate Currently Held By AgustaWestland S.P.A) (AgustaWestland) AGENCY: Federal... (Type Certificate Currently Held By Agustawestland S.p.A) (AgustaWestland): Docket No. FAA-2013-0643...

  9. Oxyntomodulin differentially affects glucagon-like peptide-1 receptor beta-arrestin recruitment and signaling through Galpha(s).

    PubMed

    Jorgensen, Rasmus; Kubale, Valentina; Vrecl, Milka; Schwartz, Thue W; Elling, Christian E

    2007-07-01

    The glucagon-like peptide (GLP)-1 receptor is a promising target for the treatment of type 2 diabetes and obesity, and there is great interest in characterizing the pharmacology of the GLP-1 receptor and its ligands. In the present report, we have applied bioluminescence resonance energy transfer assays to measure agonist-induced recruitment of betaarrestins and G-protein-coupled receptor kinase (GRK) 2 to the GLP-1 receptor in addition to traditional measurements of second messenger generation. The peptide hormone oxyntomodulin is described in the literature as a full agonist on the glucagon and GLP-1 receptors. Surprisingly, despite being full agonists in GLP-1 receptor-mediated cAMP accumulation, oxyntomodulin and glucagon were observed to be partial agonists in recruiting betaarrestins and GRK2 to the GLP-1 receptor. We suggest that oxyntomodulin and glucagon are biased ligands on the GLP-1 receptor.

  10. FTY720 Protects Cardiac Microvessels of Diabetes: A Critical Role of S1P1/3 in Diabetic Heart Disease

    PubMed Central

    Wei, Liping; Gao, Haokao; Zhang, Rongqing; Tao, Ling; Cao, Feng; Wang, Haichang

    2012-01-01

    Background: Diabetes is associated with an increased risk of cardiac microvascular disease. The mechanisms by which this damage occurs are unknown. However, research suggests that signaling through the sphingosine-1-phosphates receptor 1 and 3 (S1P1/3) by FTY720, a sphiongolipid drug that is structually similar to SIP, may play a role in the treatment on cardiac microvascular dysfunction in diabetes. We hypothesized that FTY720 might exert the cardioprotective effects of S1P1 and S1P3 viaprotein kinase C-beta (PKCβ II) signaling pathway. Methodology/Principal Findings: Transthoracic echocardiography was performed to detect the change of cardiac function. Scanning and transmission electron microscope with lanthanum tracer were used to determine microvascular ultrastructure and permeability in vivo. Apoptosis was detected by TUNEL and CD31 dual labeling in paraffin-embedded sections. Laser capture miscrodissection was used to assess cardiac micovascular endothelial cells (CMECs) in vivo. RT-PCR and Western blot analysis were used to determine the mRNA levels and protein expression of S1P1, S1P3, and PKCβ II. In the diabetic rats vs. controls, cardiac capillaries showed significantly higher density; CD31 positive endothelial cells were significantly reduced; the apoptosis index of cardiac endothlial cells was significantly higher. And FTY720 could increase the expressional level of S1P1 and boost S1P3 trasnslocation from membrane to nuclear, then ameliorate cardiac microvascular barrier impairment and pathologic angiogenesis induced by diabetes. In addition, overexpression of PKCβ II significantly decreased the protective effect of FTY720. Conclusions: Our study represents that the deregulation of S1P1 and S1P3 is an important signalresponsible for cardiac microvascular dysfunction in diabetes. FTY720 might be competent to serve as a potential therapeutic approach for diabetic heart disease through ameliorating cardiac microvascular barrier impairment and

  11. Roles of ER, SRC-1, and CBP Phosphorylation in Estrogen Receptor-Regulated Gene Expression

    DTIC Science & Technology

    1999-06-01

    J. S. Sutcliff, P. Fang, R. J. Galjaard, Y. H. Jiang, C. S. localization of three repair genes: the xeroderma pigmentosum group C gene Benton, J. M...receptor-mediated scription efficiency, a central DNA-binding domain, which me- transcription; SRC-1, p300/CBP, and RAC3/ACTR/AIB1 pos - diates receptor

  12. Characterization of Ryanodine Receptor Type 1 Single Channel Activity Using “On-Nucleus” Patch Clamp

    PubMed Central

    Wagner, Larry E.; Groom, Linda A.; Dirksen, Robert T.; Yule, David I.

    2014-01-01

    In this study, we provide the first description of the biophysical and pharmacological properties of ryanodine receptor type 1 (RyR1) expressed in a native membrane using the on-nucleus configuration of the patch clamp technique. A stable cell line expressing rabbit RyR1 was established (HEK-RyR1) using the FLP-in 293 cell system. In contrast to untransfected cells, RyR1 expression was readily demonstrated by immunoblotting and immunocytochemistry in HEK-RyR1 cells. In addition, the RyR1 agonists 4-CMC and caffeine activated Ca2+ release that was inhibited by high concentrations of ryanodine. On nucleus patch clamp was performed in nuclei prepared from HEK-RyR1 cells. Raising the [Ca2+] in the patch pipette resulted in the appearance of a large conductance cation channel with well resolved kinetics and the absence of prominent subconductance states. Current versus voltage relationships were ohmic and revealed a chord conductance of ~750 pS or 450 pS in symmetrical 250 mM KCl or CsCl, respectively. The channel activity was markedly enhanced by caffeine and exposure to ryanodine resulted in the appearance of a subconductance state with a conductance ~40 % of the full channel opening with a Po near unity. In total, these properties are entirely consistent with RyR1 channel activity. Exposure of RyR1 channels to cyclic ADP ribose (cADPr), nicotinic acid adenine dinucleotide phosphate (NAADP) or dantrolene did not alter the single channel activity stimulated by Ca2+, and thus, it is unlikely these molecules directly modulate RyR1 channel activity. In summary, we describe an experimental platform to monitor the single channel properties of RyR channels. We envision that this system will be influential in characterizing disease-associated RyR mutations and the molecular determinants of RyR channel modulation. PMID:24972488

  13. Involvement of substance P and the NK-1 receptor in human pathology.

    PubMed

    Muñoz, Miguel; Coveñas, Rafael

    2014-07-01

    The peptide substance P (SP) shows a widespread distribution in both the central and peripheral nervous systems, but it is also present in cells not belonging to the nervous system (immune cells, liver, lung, placenta, etc.). SP is located in all body fluids, such as blood, cerebrospinal fluid, breast milk, etc. i.e. it is ubiquitous in human body. After binding to the neurokinin-1 (NK-1) receptor, SP regulates many pathophysiological functions in the central nervous system, such as emotional behavior, stress, depression, anxiety, emesis, vomiting, migraine, alcohol addiction, seizures and neurodegeneration. SP has been also implicated in pain, inflammation, hepatitis, hepatotoxicity, cholestasis, pruritus, myocarditis, bronchiolitis, abortus, bacteria and viral infection (e.g., HIV infection) and it plays an important role in cancer (e.g., tumor cell proliferation, antiapoptotic effects in tumor cells, angiogenesis, migration of tumor cells for invasion, infiltration and metastasis). This means that the SP/NK-1 receptor system is involved in the molecular bases of many human pathologies. Thus, knowledge of this system is the key for a better understanding and hence a better management of many human diseases. In this review, we update the involvement of the SP/NK-1 receptor system in the physiopathology of the above-mentioned pathologies and we suggest valuable future therapeutic interventions involving the use of NK-1 receptor antagonists, particularly in the treatment of emesis, depression, cancer, neural degeneration, inflammatory bowel disease, viral infection and pruritus, in which that system is upregulated.

  14. Blocking angiotensin II Type 1 receptor triggers apoptotic cell death in human pancreatic cancer cells.

    PubMed

    Gong, Qiaoke; Davis, Molly; Chipitsyna, Galina; Yeo, Charles J; Arafat, Hwyda A

    2010-07-01

    Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignancy with an annual mortality rate close to its annual incidence. We recently demonstrated that angiotensin II (AngII) type 1 receptor (AT1R) might be involved in PDA angiogenesis. This study evaluated the antiproliferative and proapoptotic effects of an AT1R blocker, losartan, in PDA cells with different p53 mutation status. Cell cycle was analyzed by flow cytometric analysis of DNA content; apoptosis by annexin V-fluorescein isothiocyanate (V-FITC) and terminal deoxytransferase (TdT)-mediated dUTP nick-end labeling staining; messenger RNA and protein by real-time polymerase chain reaction and Western blotting; caspase-3 activity by colorimetric assay; and promoter activity by luciferase assay. Losartan dose-dependently decreased cell survival and increased their preG1 accumulation. It also increased p53, p21, p27, and Bax and reduced Bcl-2 and Bcl-xl expression. In wtp53 cells, losartan increased p53 transcription and activated caspase-3 in both cell lines. However, its proapoptotic effects in mtp53 cells were mainly caspase-3-dependent. Our data describe the involvement of AT1R in PDA cell apoptotic machinery and provide the first evidences that losartan stimulates the proapoptotic signaling pathways regardless of the p53 mutation status. As loss of p53 function is frequently observed in PDA patients, our data suggest AT1R blockade as a novel therapeutic strategy to control PDA growth.

  15. Nmd3p Is a Crm1p-Dependent Adapter Protein for Nuclear Export of the Large Ribosomal Subunit

    PubMed Central

    Ho, Jennifer Hei-Ngam; Kallstrom, George; Johnson, Arlen W.

    2000-01-01

    In eukaryotic cells, nuclear export of nascent ribosomal subunits through the nuclear pore complex depends on the small GTPase Ran. However, neither the nuclear export signals (NESs) for the ribosomal subunits nor the receptor proteins, which recognize the NESs and mediate export of the subunits, have been identified. We showed previously that Nmd3p is an essential protein from yeast that is required for a late step in biogenesis of the large (60S) ribosomal subunit. Here, we show that Nmd3p shuttles and that deletion of the NES from Nmd3p leads to nuclear accumulation of the mutant protein, inhibition of the 60S subunit biogenesis, and inhibition of the nuclear export of 60S subunits. Moreover, the 60S subunits that accumulate in the nucleus can be coimmunoprecipitated with the NES-deficient Nmd3p. 60S subunit biogenesis and export of truncated Nmd3p were restored by the addition of an exogenous NES. To identify the export receptor for Nmd3p we show that Nmd3p shuttling and 60S export is blocked by the Crm1p-specific inhibitor leptomycin B. These results identify Crm1p as the receptor for Nmd3p export. Thus, export of the 60S subunit is mediated by the adapter protein Nmd3p in a Crm1p-dependent pathway. PMID:11086007

  16. G protein-coupled estrogen receptor inhibits the P2Y receptor-mediated Ca(2+) signaling pathway in human airway epithelia.

    PubMed

    Hao, Yuan; Chow, Alison W; Yip, Wallace C; Li, Chi H; Wan, Tai F; Tong, Benjamin C; Cheung, King H; Chan, Wood Y; Chen, Yangchao; Cheng, Christopher H; Ko, Wing H

    2016-08-01

    P2Y receptor activation causes the release of inflammatory cytokines in the bronchial epithelium, whereas G protein-coupled estrogen receptor (GPER), a novel estrogen (E2) receptor, may play an anti-inflammatory role in this process. We investigated the cellular mechanisms underlying the inhibitory effect of GPER activation on the P2Y receptor-mediated Ca(2+) signaling pathway and cytokine production in airway epithelia. Expression of GPER in primary human bronchial epithelial (HBE) or 16HBE14o- cells was confirmed on both the mRNA and protein levels. Stimulation of HBE or 16HBE14o- cells with E2 or G1, a specific agonist of GPER, attenuated the nucleotide-evoked increases in [Ca(2+)]i, whereas this effect was reversed by G15, a GPER-specific antagonist. G1 inhibited the secretion of two proinflammatory cytokines, interleukin (IL)-6 and IL-8, in cells stimulated by adenosine 5'-(γ-thio)triphosphate (ATPγS). G1 stimulated a real-time increase in cAMP levels in 16HBE14o- cells, which could be inhibited by adenylyl cyclase inhibitors. The inhibitory effects of E2 or G1 on P2Y receptor-induced increases in Ca(2+) were reversed by treating the cells with a protein kinase A (PKA) inhibitor. These results demonstrated that the inhibitory effects of G1 or E2 on P2Y receptor-mediated Ca(2+) mobilization and cytokine secretion were due to GPER-mediated activation of a cAMP-dependent PKA pathway. This study has reported, for the first time, the expression and function of GPER as an anti-inflammatory component in human bronchial epithelia, which may mediate through its opposing effects on the pro-inflammatory pathway activated by the P2Y receptors in inflamed airway epithelia.

  17. P2X Receptors as Drug Targets

    PubMed Central

    Jarvis, Michael F.

    2013-01-01

    The study of P2X receptors has long been handicapped by a poverty of small-molecule tools that serve as selective agonists and antagonists. There has been progress, particularly in the past 10 years, as cell-based high-throughput screening methods were applied, together with large chemical libraries. This has delivered some drug-like molecules in several chemical classes that selectively target P2X1, P2X3, or P2X7 receptors. Some of these are, or have been, in clinical trials for rheumatoid arthritis, pain, and cough. Current preclinical research programs are studying P2X receptor involvement in pain, inflammation, osteoporosis, multiple sclerosis, spinal cord injury, and bladder dysfunction. The determination of the atomic structure of P2X receptors in closed and open (ATP-bound) states by X-ray crystallography is now allowing new approaches by molecular modeling. This is supported by a large body of previous work using mutagenesis and functional expression, and is now being supplemented by molecular dynamic simulations and in silico ligand docking. These approaches should lead to P2X receptors soon taking their place alongside other ion channel proteins as therapeutically important drug targets. PMID:23253448

  18. Insulin receptor isoforms A and B as well as insulin receptor substrates-1 and -2 are differentially expressed in prostate cancer.

    PubMed

    Heni, Martin; Hennenlotter, Jörg; Scharpf, Marcus; Lutz, Stefan Z; Schwentner, Christian; Todenhöfer, Tilman; Schilling, David; Kühs, Ursula; Gerber, Valentina; Machicao, Fausto; Staiger, Harald; Häring, Hans-Ulrich; Stenzl, Arnulf

    2012-01-01

    In different cancers types, insulin receptor isoform composition or insulin receptor substrate (IRS) isoforms are different to healthy tissue. This may be a molecular link to increased cancer risk in diabetes and obesity. Since this is yet unclear for prostate cancer, we investigated IR isoform composition and IRS balance in prostate cancer compared to benign and tumor adjacent benign prostate tissue and brought this into relation to cell proliferation. We studied 23 benign prostate samples from radical cystectomy or benign prostatic hyperplasia surgery, 30 samples from benign tissue directly adjacent to prostate cancer foci and 35 cancer samples from different patients. RNA expression levels for insulin receptor isoforms A and B, IRS-1, IRS-2, and IGF-1 receptor were assessed by quantitative real-time RT-PCR. In addition, RNA- and protein expression of the cell cycle regulator p27(Kip1) was quantified by real-time RT-PCR and immunohistochemistry. Insulin receptor isoform A to B ratio was significantly higher in cancer as well as in tumor adjacent benign prostate tissue compared to purely benign prostates (p<0.05). IRS-1 to IRS-2 ratios were lower in malignant than in benign prostatic tissue (p<0.05). These altered ratios both in cancer and adjacent tissue were significantly associated with reduced p27(Kip1) content (p<0.02). Interestingly, IGF-1 receptor levels were significantly lower in patients with type 2 diabetes (p = 0.0019). We found significant differences in the insulin signaling cascade between benign prostate tissue and prostate cancer. Histological benign tissue adjacent to cancer showed expression patterns similar to the malignancies. Our findings suggest a role of the insulin signaling pathway in prostate cancer and surrounding tissue and can hence be relevant for both novel diagnostic and therapeutic approaches in this malignancy.

  19. Molecular mechanisms of platelet P2Y(12) receptor regulation.

    PubMed

    Cunningham, Margaret R; Nisar, Shaista P; Mundell, Stuart J

    2013-02-01

    Platelets are critical for haemostasis, however inappropriate activation can lead to the development of arterial thrombosis, which can result in heart attack and stroke. ADP is a key platelet agonist that exerts its actions via stimulation of two surface GPCRs (G-protein-coupled receptors), P2Y(1) and P2Y(12). Similar to most GPCRs, P2Y receptor activity is tightly regulated by a number of complex mechanisms including receptor desensitization, internalization and recycling. In the present article, we review the molecular mechanisms that underlie P2Y(1) and P2Y(12) receptor regulation, with particular emphasis on the structural motifs within the P2Y(12) receptor, which are required to maintain regulatory protein interaction. The implications of these findings for platelet responsiveness are also discussed.

  20. Precision Laser Spectroscopic Measurement of Helium -4(1S2S S(3) to 1S2P P(3)) Lamb Shift and Fine Structure

    NASA Astrophysics Data System (ADS)

    Dixson, Ronald Gene

    This thesis is a presentation of the results of a precise measurement of the absolute wavelength and fine structure splitting of the 1s2s ^3S to 1s2p ^3P transition of the ^4He atom. The experiment described in this thesis is the first one in which laser spectroscopy has been done on the 2 ^3S to 2^3 P transition in a metastable atomic beam. The energy interval between the 2^3S and the 2^3P state is precisely determined by comparison of the absolute wavelength of the transition with our standard laser (an iodine stabilized He-Ne laser with an accuracy of 1.6 parts in 10^{10 }) in a Fabry-Perot interferometer. The experimental Lamb shift of the transition is determined by subtracting from the measured frequency the precisely known non-quantum electrodynamic contributions to the theoretical value of the interval. From our measurements of the absolute wavelength, the following weighted (2J + 1) average for the 2^3S to 2^3P transition frequency and experimental Lamb Shift are obtained:eqalign{& rm f_{2S{-}2P} = 276 736 495.59 (5) rm MHz.cr& {bf L}[ 2^3Sto2 ^3P] = 5311.26 (5) rm MHz.cr} Our value for the Lamb Shift is in agreement with the best previous measurement but a factor of 60 more precise. It is also two orders of magnitude more precise than the present theoretical calculation, presenting quite a challenge to theorists. Nevertheless, this work is very timely since it is anticipated (DRA94) (MOR94) that the theory will reach this level in the near future. The measured fine structure splittings of the 2^3P level are: eqalign{rm 2^3P_0to rm2^3P_2 &: 31908.135 (3) rm MHzcrrm 2^3P_1to rm2^3P_2 &: sk{5}2291.173 (3) rm MHz}These results are more precise than previous microwave measurements and in significant disagreement with them, a situation which is especially timely and interesting since new theoretical calculations of these fine structure intervals (DRA94) at this level of precision are nearing completion.

  1. Telomerase and Tel1p Preferentially Associate with Short Telomeres in S. cerevisiae

    PubMed Central

    Sabourin, Michelle; Tuzon, Creighton T.; Zakian, Virginia A.

    2009-01-01

    SUMMARY In diverse organisms, telomerase preferentially elongates short telomeres. We generated a single short telomere in otherwise wild-type (WT) S. cerevisiae cells. The binding of the positive regulators Ku and Cdc13p was similar at short and WT-length telomeres. The negative regulators Rif1p and Rif2p were present at the short telomere, although Rif2p levels were reduced. Two telomerase holoenzyme components, Est1p and Est2p, were preferentially enriched at short telomeres in late S/G2 phase, the time of telomerase action. Tel1p, the yeast ATM-like checkpoint kinase, was highly enriched at short telomeres from early S through G2 phase and even into the next cell cycle. Nonetheless, induction of a single short telomere did not elicit a cell-cycle arrest. Tel1p binding was dependent on Xrs2p and required for preferential binding of telomerase to short telomeres. These data suggest that Tel1p targets telomerase to the DNA ends most in need of extension. PMID:17656141

  2. Toll-Like Receptor 3 Is Critical for Coxsackievirus B4-Induced Type 1 Diabetes in Female NOD Mice

    PubMed Central

    Thuma, Jean R.; Courreges, Maria C.; Benencia, Fabian; James, Calvin B.L.; Malgor, Ramiro; Kantake, Noriko; Mudd, William; Denlinger, Nathan; Nolan, Bret; Wen, Li; Schwartz, Frank L.

    2015-01-01

    Group B coxsackieviruses (CVBs) are involved in triggering some cases of type 1 diabetes mellitus (T1DM). However, the molecular mechanism(s) responsible for this remain elusive. Toll-like receptor 3 (TLR3), a receptor that recognizes viral double-stranded RNA, is hypothesized to play a role in virus-induced T1DM, although this hypothesis is yet to be substantiated. The objective of this study was to directly investigate the role of TLR3 in CVB-triggered T1DM in nonobese diabetic (NOD) mice, a mouse model of human T1DM that is widely used to study both spontaneous autoimmune and viral-induced T1DM. As such, we infected female wild-type (TLR3+/+) and TLR3 knockout (TLR3−/−) NOD mice with CVB4 and compared the incidence of diabetes in CVB4-infected mice with that of uninfected counterparts. We also evaluated the islets of uninfected and CVB4-infected wild-type and TLR3 knockout NOD mice by immunohistochemistry and insulitis scoring. TLR3 knockout mice were markedly protected from CVB4-induced diabetes compared with CVB4-infected wild-type mice. CVB4-induced T-lymphocyte-mediated insulitis was also significantly less severe in TLR3 knockout mice compared with wild-type mice. No differences in insulitis were observed between uninfected animals, either wild-type or TLR3 knockout mice. These data demonstrate for the first time that TLR3 is 1) critical for CVB4-induced T1DM, and 2) modulates CVB4-induced insulitis in genetically prone NOD mice. PMID:25422874

  3. Decreased concentrations of soluble interleukin-1 receptor accessory protein levels in the peritoneal fluid of women with endometriosis.

    PubMed

    Michaud, Nadège; Al-Akoum, Mahéra; Gagnon, Geneviève; Girard, Karine; Blanchet, Pierre; Rousseau, Julie Anne; Akoum, Ali

    2011-12-01

    Interleukin 1 (IL1) may play an important role in endometriosis-associated pelvic inflammation, and natural specific inhibitors, including soluble IL1 receptor accessory protein (sIL1RAcP) and soluble IL1 receptor type 2 (sIL1R2), are critical for counterbalancing the pleiotropic effects of IL1. The objective of this study was to evaluate the levels of sIL1RAcP, together with those of sIL1R2 and IL1β, in the peritoneal fluid of women with and without endometriosis. Peritoneal fluid samples were obtained at laparoscopy and assessed by ELISA. sIL1RAcP concentrations were reduced in endometriosis stages I-II and III-IV. sIL1R2 concentrations were decreased, and those of IL1β were significantly increased in endometriosis stages I-II. sIL1RAcP and sIL1R2 concentrations were significantly decreased in the secretory phase of the menstrual cycle, and IL1β concentrations were elevated in the proliferative and the secretory phases. sIL1RAcP and sIL1R2 concentrations were reduced in women with endometriosis who were infertile, fertile, suffering from pelvic pain or pain-free. However, IL1β concentrations were significantly reduced in women with endometriosis who were infertile or had pelvic pain. These changes may exacerbate the local peritoneal inflammatory reaction observed in women with endometriosis and contribute to endometriosis pathophysiology and the major symptoms of this disease. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Dietary restriction but not angiotensin II type 1 receptor blockade improves DNA damage-related vasodilator dysfunction in rapidly aging Ercc1Δ/- mice.

    PubMed

    Wu, Haiyan; van Thiel, Bibi S; Bautista-Niño, Paula K; Reiling, Erwin; Durik, Matej; Leijten, Frank P J; Ridwan, Yanto; Brandt, Renata M C; van Steeg, Harry; Dollé, Martijn E T; Vermeij, Wilbert P; Hoeijmakers, Jan H J; Essers, Jeroen; van der Pluijm, Ingrid; Danser, A H Jan; Roks, Anton J M

    2017-08-01

    DNA damage is an important contributor to endothelial dysfunction and age-related vascular disease. Recently, we demonstrated in a DNA repair-deficient, prematurely aging mouse model ( Ercc1 Δ/- mice) that dietary restriction (DR) strongly increases life- and health span, including ameliorating endothelial dysfunction, by preserving genomic integrity. In this mouse mutant displaying prominent accelerated, age-dependent endothelial dysfunction we investigated the signaling pathways involved in improved endothelium-mediated vasodilation by DR, and explore the potential role of the renin-angiotensin system (RAS). Ercc1 Δ/- mice showed increased blood pressure and decreased aortic relaxations to acetylcholine (ACh) in organ bath experiments. Nitric oxide (NO) signaling and phospho-Ser 1177 -eNOS were compromised in Ercc1 Δ / - DR improved relaxations by increasing prostaglandin-mediated responses. Increase of cyclo-oxygenase 2 and decrease of phosphodiesterase 4B were identified as potential mechanisms. DR also prevented loss of NO signaling in vascular smooth muscle cells and normalized angiotensin II (Ang II) vasoconstrictions, which were increased in Ercc1 Δ/- mice. Ercc1 Δ/ - mutants showed a loss of Ang II type 2 receptor-mediated counter-regulation of Ang II type 1 receptor-induced vasoconstrictions. Chronic losartan treatment effectively decreased blood pressure, but did not improve endothelium-dependent relaxations. This result might relate to the aging-associated loss of treatment efficacy of RAS blockade with respect to endothelial function improvement. In summary, DR effectively prevents endothelium-dependent vasodilator dysfunction by augmenting prostaglandin-mediated responses, whereas chronic Ang II type 1 receptor blockade is ineffective. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Regulation of the Cardiac Muscle Ryanodine Receptor by O2 Tension and S-Nitrosoglutathione†

    PubMed Central

    Sun, Junhui; Yamaguchi, Naohiro; Xu, Le; Eu, Jerry P.; Stamler, Jonathan S.; Meissner, Gerhard

    2009-01-01

    The cardiac and skeletal muscle sarcoplasmic reticulum ryanodine receptor Ca2+ release channels contain thiols that are potential targets of endogenously produced reactive oxygen and nitrogen intermediates. Previously, we showed that the skeletal muscle ryanodine receptor (RyR1) has O2-sensitive thiols; only when these thiols are in the reduced state (pO2 ~ 10 mmHg) can physiological concentrations of NO (nanomolar) activate RyR1. Here, we report that cardiac muscle ryanodine receptor (RyR2) activity also depends on pO2, but unlike RyR1, RyR2 was not activated or S-nitrosylated directly by NO. Rather, activation and S-nitrosylation of RyR2 required S-nitrosoglutathione. The effects of peroxynitrite were indiscriminate on RyR1 and RyR2. Our results indicate that both RyR1 and RyR2 are pO2-responsive yet point to different mechanisms by which NO and S-nitrosoglutathione influence cardiac and skeletal muscle sarcoplasmic reticulum Ca2+ release. PMID:19053230

  6. Differential regulation of the cell cycle by alpha1-adrenergic receptor subtypes.

    PubMed

    Gonzalez-Cabrera, Pedro J; Shi, Ting; Yun, June; McCune, Dan F; Rorabaugh, Boyd R; Perez, Dianne M

    2004-11-01

    Alpha(1)-Adrenergic receptors have been implicated in growth-promoting pathways. A microarray study of individual alpha(1)-adrenergic receptor subtypes (alpha(1A), alpha(1B), and alpha(1D)) expressed in Rat-1 fibroblasts revealed that epinephrine altered the transcription of several cell cycle regulatory genes in a direction consistent with the alpha(1A)- and alpha(1D)-adrenergic receptors mediating G(1)-S cell cycle arrest and the alpha(1B-)mediating cell-cycle progression. A time course indicated that in alpha(1A) cells, epinephrine stimulated a G(1)-S arrest, which began after 8 h of stimulation and maximized at 16 h, at which point was completely blocked with cycloheximide. The alpha(1B)-adrenergic receptor profile also showed unchecked cell cycle progression, even under low serum conditions and induced foci formation. The G(1)-S arrest induced by alpha(1A)- and alpha(1D)-adrenergic receptors was associated with decreased cyclin-dependent kinase-6 and cyclin E-associated kinase activities and increased expression of the cyclin-dependent kinase inhibitor p27(Kip1), all of which were blocked by prazosin. There were no differences in kinase activities and/or expression of p27(Kip1) in epinephrine alpha(1B)-AR fibroblasts, although the microarray did indicate differences in p27(Kip1) RNA levels. Cell counts proved the antimitotic effect of epinephrine in alpha(1A) and alpha(1D) cells and indicated that alpha(1B)-adrenergic receptor subtype expression was sufficient to cause proliferation of Rat-1 fibroblasts independent of agonist stimulation. Analysis in transfected PC12 cells also confirmed the alpha(1A)- and alpha(1B)-adrenergic receptor effect. The alpha(1B)-subtype native to DDT1-MF2 cells, a smooth muscle cell line, caused progression of the cell cycle. These results indicate that the alpha(1A)- and alpha(1D)-adrenergic receptors mediate G(1)-S cell-cycle arrest, whereas alpha(1B)-adrenergic receptor expression causes a cell cycle progression and may induce

  7. Substance P acting via the neurokinin-1 receptor regulates adverse myocardial remodeling in a rat model of hypertension

    PubMed Central

    Dehlin, Heather M.; Manteufel, Edward J.; Monroe, Andrew L.; Reimer, Michael H.; Levick, Scott P.

    2013-01-01

    Background Substance P is a sensory nerve neuropeptide located near coronary vessels in the heart. Therefore, substance P may be one of the first mediators released in the heart in response to hypertension, and can contribute to adverse myocardial remodeling via interactions with the neurokinin-1 receptor. We asked: 1) whether substance P promoted cardiac hypertrophy, including the expression of fetal genes known to be re-expressed during pathological hypertrophy; and 2) the extent to which substance P regulated collagen production and fibrosis. Methods and Results Spontaneously hypertensive rats (SHR) were treated with the neurokinin-1 receptor antagonist L732138 (5 mg/kg/d) from 8 to 24 weeks of age. Age-matched WKY served as controls. The gene encoding substance P, TAC1, was up-regulated as blood pressure increased in SHR. Fetal gene expression by cardiomyocytes was increased in SHR and was prevented by L732138. Cardiac fibrosis also occurred in the SHR and was prevented by L732138. Endothelin-1 was up-regulated in the SHR and this was prevented by L732138. In isolated cardiac fibroblasts, substance P transiently up-regulated several genes related to cell-cell adhesion, cell-matrix adhesion, and extracellular matrix regulation, however, no changes in fibroblast function were observed. Conclusions Substance P activation of the neurokinin-1 receptor induced expression of fetal genes related to pathological hypertrophy in the hypertensive heart. Additionally, activation of the neurokinin-1 receptor was critical to the development of cardiac fibrosis. Since no functional changes were induced in isolated cardiac fibroblasts by substance P, we conclude that substance P mediates fibrosis via up-regulation of endothelin-1. PMID:23962787

  8. β-Adrenergic Receptor-Mediated Cardiac Contractility is Inhibited via Vasopressin Type 1A-Receptor-Dependent Signaling

    PubMed Central

    Tilley, Douglas G.; Zhu, Weizhong; Myers, Valerie D.; Barr, Larry A.; Gao, Erhe; Li, Xue; Song, Jianliang; Carter, Rhonda L.; Makarewich, Catherine A.; Yu, Daohai; Troupes, Constantine D.; Grisanti, Laurel A.; Coleman, Ryan C.; Koch, Walter J.; Houser, Steven R.; Cheung, Joseph Y.; Feldman, Arthur M.

    2014-01-01

    Background Enhanced arginine vasopressin (AVP) levels are associated with increased mortality during end-stage human heart failure (HF), and cardiac AVP type 1A receptor (V1AR) expression becomes increased. Additionally, mice with cardiac-restricted V1AR overexpression develop cardiomyopathy and decreased β-adrenergic receptor (βAR) responsiveness. This led us to hypothesize that V1AR signaling regulated βAR responsiveness and in doing so contributes to HF development. Methods and Results Transaortic constriction resulted in decreased cardiac function and βAR density and increased cardiac V1AR expression, effects reversed by a V1AR-selective antagonist. Molecularly, V1AR stimulation led to decreased βAR ligand affinity, as well as βAR-induced Ca2+ mobilization and cAMP generation in isolated adult cardiomyocytes, effects recapitulated via ex vivo Langendorff analysis. V1AR-mediated regulation of βAR responsiveness was demonstrated to occur in a previously unrecognized Gq protein-independent/GRK-dependent manner. Conclusions This newly discovered relationship between cardiac V1AR and βAR may be informative for the treatment of patients with acute decompensated HF and elevated AVP. PMID:25205804

  9. Potentiating role of interleukin-1beta (IL-1beta) and IL-1beta type 1 receptors in the medial hypothalamus in defensive rage behavior in the cat.

    PubMed

    Hassanain, M; Bhatt, S; Zalcman, S; Siegel, A

    2005-06-28

    Recently, this laboratory provided evidence that interleukin-1beta (IL-1beta), an immune and brain-derived cytokine, microinjected into the medial hypothalamus, potentiates defensive rage behavior in the cat elicited from the midbrain periaqueductal gray (PAG), and that such effects are blocked by a 5-HT2 receptor antagonist. Since this finding represents the first time that a brain cytokine has been shown to affect defensive rage behavior, the present study replicated and extended these findings by documenting the specific potentiating role played by IL-1beta Type 1 receptor (IL-1RI), and the anatomical relationship between IL-1beta and 5-HT2 receptors in the medial hypothalamus. IL-1beta (10 ng) microinjected into the medial hypothalamus induced two separate phases of facilitation, one at 60 min and another at 180 min, post-injection. In turn, these effects were blocked with pretreatment of the selective IL-1 Type I receptor antagonist (IL-1ra) (10 ng), demonstrating the selectivity of the effects of IL-1beta on medial hypothalamic neurons upon PAG-elicited defensive rage behavior. The next stage of the study utilized immunohistochemical methods to demonstrate that IL-1beta and 5-HT2 receptors were present on the same neurons within regions of the medial hypothalamus where IL-1beta and the IL-1beta receptor antagonists were administered. This provided anatomical evidence suggesting a relationship between IL-1RI and 5-HT2 receptors in the medial hypothalamus that is consistent with the previous pharmacological observations in our laboratory. The overall findings show that activation of IL-1RI in the medial hypothalamus potentiates defensive rage behavior in the cat and that these effects may also be linked to the presence of 5-HT2 receptors on the same groups of neurons in this region of hypothalamus.

  10. Defining the minimal structural requirements for partial agonism at the type I myo-inositol 1,4,5-trisphosphate receptor.

    PubMed

    Wilcox, R A; Fauq, A; Kozikowski, A P; Nahorski, S R

    1997-02-03

    The novel synthetic analogues D-3-fluoro-myo-inositol 1,5-bisphosphate-4-phosphorothioate, [3F-Ins(1,5)P2-4PS], D-3-fluoro-myo-inositol 1,4-bisphosphate-5-phosphorothioate [3F-Ins(1,4)P2-5PS], and D-3-fluoro-myo-inositol 1-phosphate-4,5-bisphosphorothioate [3F-Ins(1)P-(4,5)PS2] were utilised to define the structure-activity relationships which could produce partial agonism at the Ca2+ mobilising myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] receptor. Based on prior structure-activity data we hypothesised that the minimal structural requirements for lns(1,4,5)P3 receptor partial agonism, were phosphorothioate substitution of the crucial vicinal 4,5-bisphosphate pair accompanied by another structural perturbation, such fluorination of 3-position of the myo-inositol ring. All the analogues fully displaced [3H]Ins(1,4,5)P3 from a single Ins(1,4,5)P3 binding site in pig cerebellar membranes [3F-Ins(1,5)P2-4PS (1C50 = 26 nM), 3F-Ins(1,4)P2-5PS (IC50 = 80 nM) and 3F-Ins(1)P-(4,5)PS2 (IC50 = 109 nM) cf. Ins(1,4,5)P3 (IC50 = 11 nM)]. In contrast, 3F-Ins(1,5)P2-4PS (IC50 = 424 nM) and 3F-Ins(1,4)P2-5PS (IC50 = 3579 nM) were weak full agonists at the Ca2+ mobilising Ins(1,4,5)P3 receptor of permeabilised SH-SY5Y neuroblastoma cells, being respectively 4- and 36-fold less potent than Ins(1,4,5)P3 (EC50 = 99 nM). While 3F-Ins(1)P-(4,5)PS2 (EC50 = 11345 nM) was a partial agonist releasing only 64.3 +/- 1.9% of the Ins(1,4,5)P3-sensitive intracellular Ca2+ pools. 3F-Ins(1)P-(4,5)PS2 was unique among the Ins(1,4,5)P3 receptor partial agonists so far identified in having a relatively high affinity for the Ins(1,4,5)P3 binding site, accompanied by a significant loss of intrinsic activity for Ca2+ mobilisation. This improved affinity was probably due to the retention of the 1-position phosphate, which enhances interaction with the Ins-(1,4,5)P3 receptor. 3F-Ins(1)P-(4,5)PS2 may be an important lead compound for the development of efficient Ins(1,4,5)P3 receptor antagonists.

  11. Permeability and single channel conductance of human homomeric ρ1 GABAC receptors

    PubMed Central

    Wotring, Virginia E; Chang, Yongchang; Weiss, David S

    1999-01-01

    Homomeric human ρ1 GABAC receptors were expressed in Xenopus oocytes and in human embryonic kidney cells (HEK293) in order to examine their conductance and permeability. Reversal potentials of currents elicited by γ-aminobutyric acid (GABA) were measured in extracellular solutions of various ionic composition to determine relative permeability of homomeric ρ1 receptors. The rank order of anionic permeability was: SCN− > I− > NO3− > Br− > Cl− > formate (For−) > HCO3− > acetate (Ac−) ≈ proprionate (Prop−) ≈ isethionate (Ise−) ≈ F−≈ PO4−. In the oocyte expression system, relative permeabilities to SCN−, I−, NO3−, Br− and HCO3− were higher for ρ1 GABAC receptors than α1β2γ2L GABAA receptors. Expression of ρ1 GABAC receptors in Xenopus oocytes and in HEK293 cells gave similar relative permeabilities for selected anions, suggesting that the expression system does not significantly alter permeation properties. The pore diameter of the homomeric ρ1 GABAC receptor expressed in oocytes was estimated to be 0.61 nm, which is somewhat larger than the 0.56 nm pore diameter estimated for α1β2γ2L GABAA receptors. Homomeric ρ1 GABA receptors expressed in oocytes had a single channel chord conductance of 0.65 ± 0.04 pS (mean ±s.e.m.s) when the internal chloride concentration ([Cl−]i) was 20 mm. With a [Cl−]i of 100 mm, the single channel chord conductance was 1.59 ± 0.24 pS. The mean open time directly measured from 43 GABA-induced channel openings in six patches was 3.2 ± 0.8 s. The mean open time in the presence of 100 μm picrotoxin was 0.07 ± 0.01 s (77 openings from 3 patches). The differences observed in ionic permeabilities, pore size, single channel conductance and mean open time suggest that the ρ1 homomeric receptor may not be the native retinal GABAC receptor reported previously. PMID:10581305

  12. Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor.

    PubMed

    Aungraheeta, Riyaad; Conibear, Alexandra; Butler, Mark; Kelly, Eamonn; Nylander, Sven; Mumford, Andrew; Mundell, Stuart J

    2016-12-08

    Ticagrelor is a potent antagonist of the P2Y 12 receptor (P2Y 12 R) and consequently an inhibitor of platelet activity effective in the treatment of atherothrombosis. Here, we sought to further characterize its molecular mechanism of action. Initial studies showed that ticagrelor promoted a greater inhibition of adenosine 5'-diphosphate (ADP)-induced Ca 2+ release in washed platelets vs other P2Y 12 R antagonists. This additional effect of ticagrelor beyond P2Y 12 R antagonism was in part as a consequence of ticagrelor inhibiting the equilibrative nucleoside transporter 1 (ENT1) on platelets, leading to accumulation of extracellular adenosine and activation of G s -coupled adenosine A 2A receptors. This contributed to an increase in basal cyclic adenosine monophosphate (cAMP) and vasodilator-stimulated phosphoprotein phosphorylation (VASP-P). In addition, ticagrelor increased platelet cAMP and VASP-P in the absence of ADP in an adenosine receptor-independent manner. We hypothesized that this increase originated from a direct effect on basal agonist-independent P2Y 12 R signaling, and this was validated in 1321N1 cells stably transfected with human P2Y 12 R. In these cells, ticagrelor blocked the constitutive agonist-independent activity of the P2Y 12 R, limiting basal G i -coupled signaling and thereby increasing cAMP levels. These data suggest that ticagrelor has the pharmacological profile of an inverse agonist. Based on our results showing insurmountable inhibition of ADP-induced Ca 2+ release and forskolin-induced cAMP, the mode of antagonism of ticagrelor also appears noncompetitive, at least functionally. In summary, our studies describe 2 novel modes of action of ticagrelor, inhibition of platelet ENT1 and inverse agonism at the P2Y 12 R that contribute to its effective inhibition of platelet activation. © 2016 by The American Society of Hematology.

  13. Comparative Expression Analysis of Cytochrome P450 1A1, Cytochrome P450 1B1 and Nuclear Receptors in the Female Genital and Colorectal Tissues of Human and Pigtailed Macaque.

    PubMed

    Hu, Minlu; Zhou, Tian; Pearlman, Andrew P; Paton, Dorothy L; Rohan, Lisa C

    2016-01-01

    This manuscript summarizes our recent progress in examine the CYP1A1 and CYP1B1 as well as a number of nuclear receptors in the female genital and colorectal tissues of human and pigtailed macaque. Understanding the nuclear receptor mediated regulation of CYP1A1 and 1B1 expression in these tissues is necessary for identifying cancer risk factors and developing CYP1A1/1B1-targeted anti-cancer therapeutics. However, there is a lack of systematic and comparative analysis of the expression profile of CYP1A1, 1B1 and NRs in the female genital and colorectal tissues of human and clinically relevant animal models. The current study aims to fill this gap. We found CYP1A1, CYP1B1 and a number of nuclear receptors were expressed in the female genital and colorectal tissues of human and macaque. However, the mRNA level and protein localization of these CYP enzymes and NRs depended on the type of tissue examined. Cytochrome P450 (CYP) 1A1 and CYP1B1 activate hormonal and environmental procarcinogens, and are associated with carcinogenesis in female genital and colorectal tissues. Understanding the nuclear receptor (NR) mediated regulation of CYP expression in these tissues is necessary for identifying cancer risk factors and developing CYP1A1/1B1-targeted anti-cancer therapeutics. The study aims to analyze the expression profile of CYP1A1, 1B1 and NRs in the female genital and colorectal tissues of human and pigtailed macaques. We found that compared to the liver, human CYP1A1 mRNA level in the genital and colorectal tissues was significantly lower, while the CYP1B1 level was significantly higher. CYP1A1 protein was mainly localized in the plasma membrane of the uterine and endocervical epithelial cells. The CYP1B1 protein was concentrated in the nucleus of genital and colorectal tissues. Fourteen NRs in the genital tract and 12 NRs in colorectal tissue were expressed at levels similar to or higher than the liver. The expression and localization of CYP1A1, CYP1B1, and NRs in

  14. Cannabinoid Receptor Type 1 Agonist ACEA Protects Neurons from Death and Attenuates Endoplasmic Reticulum Stress-Related Apoptotic Pathway Signaling.

    PubMed

    Vrechi, Talita A; Crunfli, Fernanda; Costa, Andressa P; Torrão, Andréa S

    2018-05-01

    Neurodegeneration is the result of progressive destruction of neurons in the central nervous system, with unknown causes and pathological mechanisms not yet fully elucidated. Several factors contribute to neurodegenerative processes, including neuroinflammation, accumulation of neurotoxic factors, and misfolded proteins in the lumen of the endoplasmic reticulum (ER). Endocannabinoid signaling has been pointed out as an important modulatory system in several neurodegeneration-related processes, inhibiting the inflammatory response and increasing neuronal survival. Thus, we investigated the presumptive protective effect of the selective cannabinoid type 1 (CB1) receptor agonist arachidonyl-2'-chloroethylamide (ACEA) against inflammatory (lipopolysaccharide, LPS) and ER stress (tunicamycin) stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells). Cell viability analysis revealed that ACEA was able to protect against cell death induced by LPS and tunicamycin. This neuroprotective effect occurs via the CB1 receptor in the inflammation process and via the transient receptor potential of vanilloid type-1 (TRPV1) channel in ER stress. Furthermore, the immunoblotting analyses indicated that the neuroprotective effect of ACEA seems to involve the modulation of eukaryotic initiation factor 2 (eIF2α), transcription factor C/EBP homologous protein (CHOP), and caspase 12, as well as the survival/death p44/42 MAPK, ERK1/2-related signaling pathways. Together, these data suggest that the endocannabinoid system is a potential therapeutic target in neurodegenerative processes, especially in ER-related neurodegenerative diseases.

  15. Effect of hypobaric hypoxia on the P2X receptors of pyramidal cells in the immature rat hippocampus CA1 sub-field.

    PubMed

    Zhao, Yan-Dong; Cheng, Sai-Yu; Ou, Shan; Xiao, Zhi; He, Wen-Juan; Jian-Cui; Ruan, Huai-Zhen

    2012-01-01

    This study was designed to evaluate the effect of hypobaric hypoxia (HH) on the function and expression of P2X receptors in rat hippocampus CA1 pyramidal cells. The functional changes of P2X receptors were investigated through the cell HH model and the expressional alterations of P2X receptors were observed through the animal HH model. P2X receptors mediated currents were recorded from the freshly dissociated CA1 pyramidal cells of 7-day-old SD rats by whole cell patch clamp recording. The expression and distribution of P2X receptors were observed through immunohistochemistry and western blot at HH 3-day and 7-day. In acute HH conditions, the amplitudes of ATP evoked peak currents were decreased compared to control. The immunohistochemistry and western blot results reflected there was no change in P2X receptors expression after 3 days HH injury, while P2X receptors expression was up-regulated in response to 7 days HH injury. These findings supported the possibility that the function of P2X receptors was sensitive to HH damage and long-term function decrease should result in the expression increase of P2X receptors.

  16. Genetic polymorphism of ACE and the angiotensin II type1 receptor genes in children with chronic kidney disease

    PubMed Central

    2011-01-01

    Aim and Methods We investigated the association between polymorphisms of the angiotensin converting enzyme-1 (ACE-1) and angiotensin II type one receptor (AT1RA1166C) genes and the causation of renal disease in 76 advanced chronic kidney disease (CKD) pediatric patients undergoing maintenance hemodialysis (MHD) or conservative treatment (CT). Serum ACE activity and creatine kinase-MB fraction (CK-MB) were measured in all groups. Left ventricular mass index (LVMI) was calculated according to echocardiographic measurements. Seventy healthy controls were also genotyped. Results The differences of D allele and DI genotype of ACE were found significant between MHD group and the controls (p = 0.0001). ACE-activity and LVMI were higher in MHD, while CK-MB was higher in CT patients than in all other groups. The combined genotype DD v/s ID+II comparison validated that DD genotype was a high risk genotype for hypertension .~89% of the DD CKD patients were found hypertensive in comparison to ~ 61% of patients of non DD genotype(p = 0.02). The MHD group showed an increased frequency of the C allele and CC genotype of the AT1RA1166C polymorphism (P = 0.0001). On multiple linear regression analysis, C-allele was independently associated with hypertension (P = 0.04). Conclusion ACE DD and AT1R A/C genotypes implicated possible roles in the hypertensive state and in renal damage among children with ESRD. This result might be useful in planning therapeutic strategies for individual patients. PMID:21859496

  17. Real-time monitoring of pH-dependent intracellular trafficking of ovarian cancer G protein-coupled receptor 1 in living leukocytes.

    PubMed

    Tan, Modong; Yamaguchi, Satoshi; Nakamura, Motonao; Nagamune, Teruyuki

    2018-04-11

    G-protein coupled receptors (GPCRs) are involved in many diseases and important biological phenomena; elucidating the mechanisms underlying regulation of their signal transduction potentially provides both novel targets for drug discovery and insight into living systems. A proton-sensing GPCR, ovarian cancer G protein-coupled receptor 1 (OGR1), has been reported to be related to acidosis and diseases that cause tissue acidification, but the mechanism of proton-induced activation of OGR1-mediated signal transduction in acidic conditions remains unclear. Here, pH-dependent intracellular trafficking of OGR1 was visualized in living leukocytes by a real-time fluorescence microscopic method based on sortase A-mediated pulse labeling of OGR1. OGR1 labeled on the cell surface with a small fluorescent dye was clearly observed to remain in the plasma membrane during incubation in mildly acidic medium (pH 6.6) and to be internalized to the intracellular compartments on changing the medium to slightly basic pH (7.7). Quantitative single-cell image analysis showed that most of the internalized OGR1s were then recycled to the plasma membrane for signal transduction if the extracellular pH was returned to the mildly acidic state. However, in a minor population of cells (40%), the internalized OGR1s were retained in endosomes or transported to lysosomes and degraded, leading to low efficiency of their recycling to the plasma membrane. Thus, the present live-cell monitoring strongly suggests that the signal transduction activity of OGR1 is regulated by pH-dependent internalization and recycling to the plasma membrane. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Role of P2 purinergic receptors in synaptic transmission under normoxic and ischaemic conditions in the CA1 region of rat hippocampal slices

    PubMed Central

    Coppi, Elisabetta; Pugliese, Anna Maria; Stephan, Holger; Müller, Christa E.

    2007-01-01

    The role of ATP and its stable analogue ATPγS [adenosine-5′-o-(3-thio)triphosphate] was studied in rat hippocampal neurotransmission under normoxic conditions and during oxygen and glucose deprivation (OGD). Field excitatory postsynaptic potentials (fEPSPs) from the dendritic layer or population spikes (PSs) from the soma were extracellularly recorded in the CA1 area of the rat hippocampus. Exogenous application of ATP or ATPγS reduced fEPSP and PS amplitudes. In both cases the inhibitory effect was blocked by the selective A1 adenosine receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) and was potentiated by different ecto-ATPase inhibitors: ARL 67156 (6-N,N-diethyl-D-β,γ-dibromomethylene), BGO 136 (1-hydroxynaphthalene-3,6-disulfonate) and PV4 [hexapotassium dihydrogen monotitanoundecatungstocobaltate(II) tridecahydrate, K6H2[TiW11CoO40]·13H2O]. ATPγS-mediated inhibition was reduced by the P2 antagonist suramin [8-(3-benzamido-4-methylbenzamido)naphthalene-1,3,5-trisulfonate] at the somatic level and by other P2 blockers, PPADS (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonate) and MRS 2179 (2′-deoxy-N6-methyladenosine 3′,5′-bisphosphate), at the dendritic level. After removal of both P2 agonists, a persistent increase in evoked synaptic responses was recorded both at the dendritic and somatic levels. This effect was prevented in the presence of different P2 antagonists. A 7-min OGD induced tissue anoxic depolarization and was invariably followed by irreversible loss of fEPSP. PPADS, suramin, MRS2179 or BBG (brilliant blue G) significantly prevented the irreversible failure of neurotransmission induced by 7-min OGD. Furthermore, in the presence of these P2 antagonists, the development of anoxic depolarization was blocked or significantly delayed. Our results indicate that P2 receptors modulate CA1 synaptic transmission under normoxic conditions by eliciting both inhibitory and excitatory effects. In the same brain region, P2 receptor

  19. β-Adrenergic Receptor Mediation of Stress-Induced Reinstatement of Extinguished Cocaine-Induced Conditioned Place Preference in Mice: Roles for β1 and β2 Adrenergic Receptors

    PubMed Central

    Vranjkovic, Oliver; Hang, Shona; Baker, David A.

    2012-01-01

    Stress can trigger the relapse of drug use in recovering cocaine addicts and reinstatement in rodent models through mechanisms that may involve norepinephrine release and β-adrenergic receptor activation. The present study examined the role of β-adrenergic receptor subtypes in the stressor-induced reinstatement of extinguished cocaine-induced (15 mg/kg i.p.) conditioned place preference in mice. Forced swim (6 min at 22°C) stress or activation of central noradrenergic neurotransmission by administration of the selective α2 adrenergic receptor antagonist 2-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-2,3-dihydro-1-methyl-1H-isoindole (BRL-44,408) (10 mg/kg i.p.) induced reinstatement in wild-type, but not β- adrenergic receptor-deficient Adrb1/Adrb2 double-knockout, mice. In contrast, cocaine administration (15 mg/kg i.p.) resulted in reinstatement in both wild-type and β-adrenergic receptor knockout mice. Stress-induced reinstatement probably involved β2 adrenergic receptors. The β2 adrenergic receptor antagonist -(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI-118,551) (1 or 2 mg/kg i.p.) blocked reinstatement by forced swim or BRL-44,408, whereas administration of the nonselective β-adrenergic receptor agonist isoproterenol (2 or 4 mg/kg i.p.) or the β2 adrenergic receptor-selective agonist clenbuterol (2 or 4 mg/kg i.p.) induced reinstatement. Forced swim-induced, but not BRL-44,408-induced, reinstatement was also blocked by a high (20 mg/kg) but not low (10 mg/kg) dose of the β1 adrenergic receptor antagonist betaxolol, and isoproterenol-induced reinstatement was blocked by pretreatment with either ICI-118,551 or betaxolol, suggesting a potential cooperative role for β1 and β2 adrenergic receptors in stress-induced reinstatement. Overall, these findings suggest that targeting β-adrenergic receptors may represent a promising pharmacotherapeutic strategy for preventing drug relapse, particularly in cocaine addicts whose drug use is stress

  20. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis in Mice via a Toll-Like Receptor 4/p21-Activated Kinase 1 Cascade.

    PubMed

    Wu, Yaxin; Wu, Jiao; Chen, Ting; Li, Qing; Peng, Wei; Li, Huan; Tang, Xiaowei; Fu, Xiangsheng

    2018-05-01

    The underlying pathogenic mechanism of Fusobacterium nucleatum in the carcinogenesis of colorectal cancer has been poorly understood. Using C57BL/6-Apc Min/+ mice, we investigated gut microbial structures with F. nucleatum, antibiotics, and Toll-like receptor 4 (TLR4) antagonist TAK-242 treatment. In addition, we measured intestinal tumor formation and the expression of TLR4, p21-activated kinase 1 (PAK1), phosphorylated-PAK1 (p-PAK1), phosphorylated-β-catenin S675 (p-β-catenin S675), and cyclin D1 in mice with different treatments. Fusobacterium nucleatum and antibiotics treatment altered gut microbial structures in mice. In addition, F. nucleatum invaded into the intestinal mucosa in large amounts but were less abundant in the feces of F. nucleatum-fed mice. The average number and size of intestinal tumors in F. nucleatum groups was significantly increased compared to control groups in Apc Min/+ mice (P < 0.05). The expression of TLR4, PAK1, p-PAK1, p-β-catenin S675, and cyclin D1 was significantly increased in F. nucleatum groups compared to the control groups (P < 0.05). Moreover, TAK-242 significantly decreased the average number and size of intestinal tumors compared to F. nucleatum groups (P < 0.05). The expression of p-PAK1, p-β-catenin S675, and cyclin D1 was also significantly decreased in the TAK-242-treated group compared to F. nucleatum groups (P < 0.05). Fusobacterium nucleatum potentiates intestinal tumorigenesis in Apc Min/+ mice via a TLR4/p-PAK1/p-β-catenin S675 cascade. Fusobacterium nucleatum-induced intestinal tumorigenesis can be inhibited by TAK-242, implicating TLR4 as a potential target for the prevention and therapy of F. nucleatum-related colorectal cancer.

  1. The remedial effect of soluble interleukin-1 receptor type II on endometriosis in the nude mouse model.

    PubMed

    Gao, Liying; Sun, Liang; Cui, Yugui; Hou, Zhen; Gao, Li; Zhou, Jing; Mao, Yundong; Han, Suping; Liu, Jiayin

    2010-01-01

    Recent studies have shown that the local expression of soluble interleukin (IL) -1 receptor type II (sIL-1 RII) in endometrial tissue of women with endometriosis is decreased, and the depression of IL-1 RII was more significant in infertile women than that in fertile women with endometriosis. In this research, we investigated the remedial effect of sIL-1-RII administration on endometriosis in the nude mouse model. NINETEEN NUDE MODEL MICE WITH ENDOMETRIOSIS WERE RANDOMLY DIVIDED INTO THREE GROUPS: group A was treated by intraperitoneal administration with only sIL-1 RII for two weeks, group B was similarly treated with only IL-1, and group C (control) was administered saline . After 2 weeks, the size of the ectopic endometrial lesions was calculated, and the expression of vascular endothelial growth factor (VEGF) and B-cell lymphoma leukemia-2 (Bcl-2) were detected by immunohistochemistry. The IL-8 and VEGF levels in the peritoneal fluid (PF) and serum were also measured by enzyme-linked immunosorbent assay (ELISA). The mean size of ectopic endometrial lesion did not differ between the three groups (P > 0.05). Compared with the control, the expression of VEGF and Bcl-2 was significantly lower in group A, and higher in group B. In the three groups, the levels of IL-8 in the PF and serum were highest in group A, and lowest in group B. sIL-1 RII may suppresse hyperplasia of ectopic endometriosis, perhaps by reducing the expression of certain cytokines, such as VEGF, IL-8, and Bcl-2, which could provide a new clinical strategy for the treatment of endometriosis.

  2. Enhanced Functional Activity of the Cannabinoid Type-1 Receptor Mediates Adolescent Behavior.

    PubMed

    Schneider, Miriam; Kasanetz, Fernando; Lynch, Diane L; Friemel, Chris M; Lassalle, Olivier; Hurst, Dow P; Steindel, Frauke; Monory, Krisztina; Schäfer, Carola; Miederer, Isabelle; Leweke, F Markus; Schreckenberger, Mathias; Lutz, Beat; Reggio, Patricia H; Manzoni, Olivier J; Spanagel, Rainer

    2015-10-14

    Adolescence is characterized by drastic behavioral adaptations and comprises a particularly vulnerable period for the emergence of various psychiatric disorders. Growing evidence reveals that the pathophysiology of these disorders might derive from aberrations of normal neurodevelopmental changes in the adolescent brain. Understanding the molecular underpinnings of adolescent behavior is therefore critical for understanding the origin of psychopathology, but the molecular mechanisms that trigger adolescent behavior are unknown. Here, we hypothesize that the cannabinoid type-1 receptor (CB1R) may play a critical role in mediating adolescent behavior because enhanced endocannabinoid (eCB) signaling has been suggested to occur transiently during adolescence. To study enhanced CB1R signaling, we introduced a missense mutation (F238L) into the rat Cnr1 gene that encodes for the CB1R. According to our hypothesis, rats with the F238L mutation (Cnr1(F238L)) should sustain features of adolescent behavior into adulthood. Gain of function of the mutated receptor was demonstrated by in silico modeling and was verified functionally in a series of biochemical and electrophysiological experiments. Mutant rats exhibit an adolescent-like phenotype during adulthood compared with wild-type littermates, with typical high risk/novelty seeking, increased peer interaction, enhanced impulsivity, and augmented reward sensitivity for drug and nondrug reward. Partial inhibition of CB1R activity in Cnr1(F238L) mutant rats normalized behavior and led to a wild-type phenotype. We conclude that the activity state and functionality of the CB1R is critical for mediating adolescent behavior. These findings implicate the eCB system as an important research target for the neuropathology of adolescent-onset mental health disorders. We present the first rodent model with a gain-of-function mutation in the cannabinoid type-1 receptor (CB1R). Adult mutant rats exhibit an adolescent-like phenotype with

  3. A comparative analysis of the activity of ligands acting at P2X and P2Y receptor subtypes in models of neuropathic, acute and inflammatory pain.

    PubMed

    Andó, R D; Méhész, B; Gyires, K; Illes, P; Sperlágh, B

    2010-03-01

    This study was undertaken to compare the analgesic activity of antagonists acting at P2X1, P2X7, and P2Y12 receptors and agonists acting at P2Y1, P2Y2, P2Y4, and P2Y6 receptors in neuropathic, acute, and inflammatory pain. The effect of the wide spectrum P2 receptor antagonist PPADS, the selective P2X7 receptor antagonist Brilliant Blue G (BBG), the P2X1 receptor antagonist (4,4',4'',4-[carbonylbis(imino-5,1,3-benzenetriyl-bis(carbonylimino))]tetrakis-1,3-benzenedisulfonic acid, octasodium salt (NF449) and (8,8'-[carbonylbis(imino-3,1-phenylenecarbonylimino)]bis-1,3,5-naphthalene-trisulphonic acid, hexasodium salt (NF023), the P2Y12 receptor antagonist (2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyloxymethyl)-propylester (MRS2395), the selective P2Y1 receptor agonist ([[(1R,2R,3S,4R,5S)-4-[6-amino-2-(methylthio)-9H-purin-9-yl]-2,3-dihydroxybicyclo[3.1.0]hex-1-yl]methyl] diphosphoric acid mono ester trisodium salt (MRS2365), the P2Y2/P2Y4 agonist uridine-5'-triphosphate (UTP), and the P2Y4/P2Y6 agonist uridine-5'-diphosphate (UDP) were examined on mechanical allodynia in the Seltzer model of neuropathic pain, on acute thermal nociception, and on the inflammatory pain and oedema induced by complete Freund's adjuvant (CFA). MRS2365, MRS2395 and UTP, but not the other compounds, significantly alleviated mechanical allodynia in the neuropathic pain model, with the following rank order of minimal effective dose (mED) values: MRS2365 > MRS2395 > UTP. All compounds had a dose-dependent analgesic action in acute pain except BBG, which elicited hyperalgesia at a single dose. The rank order of mED values in acute pain was the following: MRS2365 > MRS2395 > NF449 > NF023 > UDP = UTP > PPADS. MRS2365 and MRS2395 had a profound, while BBG had a mild effect on inflammatory pain, with a following rank order of mED values: MRS2395 > MRS2365 > BBG. None of the tested compounds had significant action on oedema evoked by intraplantar

  4. P17, an Original Host Defense Peptide from Ant Venom, Promotes Antifungal Activities of Macrophages through the Induction of C-Type Lectin Receptors Dependent on LTB4-Mediated PPARγ Activation.

    PubMed

    Benmoussa, Khaddouj; Authier, Hélène; Prat, Mélissa; AlaEddine, Mohammad; Lefèvre, Lise; Rahabi, Mouna Chirine; Bernad, José; Aubouy, Agnès; Bonnafé, Elsa; Leprince, Jérome; Pipy, Bernard; Treilhou, Michel; Coste, Agnès

    2017-01-01

    Despite the growing knowledge with regard to the immunomodulatory properties of host defense peptides, their impact on macrophage differentiation and on its associated microbicidal functions is still poorly understood. Here, we demonstrated that the P17, a new cationic antimicrobial peptide from ant venom, induces an alternative phenotype of human monocyte-derived macrophages (h-MDMs). This phenotype is characterized by a C-type lectin receptors (CLRs) signature composed of mannose receptor (MR) and Dectin-1 expression. Concomitantly, this activation is associated to an inflammatory profile characterized by reactive oxygen species (ROS), interleukin (IL)-1β, and TNF-α release. P17-activated h-MDMs exhibit an improved capacity to recognize and to engulf Candida albicans through the overexpression both of MR and Dectin-1. This upregulation requires arachidonic acid (AA) mobilization and the activation of peroxisome proliferator-activated receptor gamma (PPARγ) nuclear receptor through the leukotriene B4 (LTB4) production. AA/LTB4/PPARγ/Dectin-1-MR signaling pathway is crucial for P17-mediated anti-fungal activity of h-MDMs, as indicated by the fact that the activation of this axis by P17 triggered ROS production and inflammasome-dependent IL-1β release. Moreover, we showed that the increased anti-fungal immune response of h-MDMs by P17 was dependent on intracellular calcium mobilization triggered by the interaction of P17 with pertussis toxin-sensitive G-protein-coupled receptors on h-MDMs. Finally, we also demonstrated that P17-treated mice infected with C. albicans develop less severe gastrointestinal infection related to a higher efficiency of their macrophages to engulf Candida , to produce ROS and IL-1β and to kill the yeasts. Altogether, these results identify P17 as an original activator of the fungicidal response of macrophages that acts upstream PPARγ/CLRs axis and offer new immunomodulatory therapeutic perspectives in the field of infectious diseases.

  5. Huntingtin-Interacting Protein 1 Phosphorylation by Receptor Tyrosine Kinases

    PubMed Central

    Ames, Heather M.; Wang, Anmin A.; Coughran, Alanna; Evaul, Kristen; Huang, Sha; Graves, Chiron W.; Soyombo, Abigail A.

    2013-01-01

    Huntingtin-interacting protein 1 (HIP1) binds inositol lipids, clathrin, actin, and receptor tyrosine kinases (RTKs). HIP1 is elevated in many tumors, and its expression is prognostic in prostate cancer. HIP1 overexpression increases levels of the RTK epidermal growth factor receptor (EGFR) and transforms fibroblasts. Here we report that HIP1 is tyrosine phosphorylated in the presence of EGFR and platelet-derived growth factor β receptor (PDGFβR) as well as the oncogenic derivatives EGFRvIII, HIP1/PDGFβR (H/P), and TEL/PDGFβR (T/P). We identified a four-tyrosine “HIP1 phosphorylation motif” (HPM) in the N-terminal region of HIP1 that is required for phosphorylation mediated by both EGFR and PDGFβR but not by the oncoproteins H/P and T/P. We also identified a tyrosine residue (Y152) within the HPM motif of HIP1 that inhibits HIP1 tyrosine phosphorylation. The HPM tyrosines are conserved in HIP1's only known mammalian relative, HIP1-related protein (HIP1r), and are also required for HIP1r phosphorylation. Tyrosine-to-phenylalanine point mutations in the HPM of HIP1 result in proapoptotic activity, indicating that an intact HPM may be necessary for HIP1's role in cellular survival. These data suggest that phosphorylation of HIP1 by RTKs in an N-terminal region contributes to the promotion of cellular survival. PMID:23836884

  6. Huntingtin-interacting protein 1 phosphorylation by receptor tyrosine kinases.

    PubMed

    Ames, Heather M; Wang, Anmin A; Coughran, Alanna; Evaul, Kristen; Huang, Sha; Graves, Chiron W; Soyombo, Abigail A; Ross, Theodora S

    2013-09-01

    Huntingtin-interacting protein 1 (HIP1) binds inositol lipids, clathrin, actin, and receptor tyrosine kinases (RTKs). HIP1 is elevated in many tumors, and its expression is prognostic in prostate cancer. HIP1 overexpression increases levels of the RTK epidermal growth factor receptor (EGFR) and transforms fibroblasts. Here we report that HIP1 is tyrosine phosphorylated in the presence of EGFR and platelet-derived growth factor β receptor (PDGFβR) as well as the oncogenic derivatives EGFRvIII, HIP1/PDGFβR (H/P), and TEL/PDGFβR (T/P). We identified a four-tyrosine "HIP1 phosphorylation motif" (HPM) in the N-terminal region of HIP1 that is required for phosphorylation mediated by both EGFR and PDGFβR but not by the oncoproteins H/P and T/P. We also identified a tyrosine residue (Y152) within the HPM motif of HIP1 that inhibits HIP1 tyrosine phosphorylation. The HPM tyrosines are conserved in HIP1's only known mammalian relative, HIP1-related protein (HIP1r), and are also required for HIP1r phosphorylation. Tyrosine-to-phenylalanine point mutations in the HPM of HIP1 result in proapoptotic activity, indicating that an intact HPM may be necessary for HIP1's role in cellular survival. These data suggest that phosphorylation of HIP1 by RTKs in an N-terminal region contributes to the promotion of cellular survival.

  7. AN ANGIOTENSIN II TYPE 1 RECEPTOR ACTIVATION SWITCH PATCH REVEALED THROUGH EVOLUTIONARY TRACE ANALYSIS

    PubMed Central

    Bonde, Marie Mi; Yao, Rong; Ma, Jian-Nong; Madabushi, Srinivasan; Haunsø, Stig; Burstein, Ethan S.; Whistler, Jennifer L.; Sheikh, Søren P.; Lichtarge, Olivier; Hansen, Jakob Lerche

    2010-01-01

    Seven transmembrane (7TM) or G protein-coupled receptors constitute a large superfamily of cell surface receptors sharing a structural motif of seven transmembrane spanning alpha helices. Their activation mechanism most likely involves concerted movements of the transmembrane helices, but remains to be completely resolved. Evolutionary Trace (ET) analysis is a computational method, which identifies clusters of functionally important residues by integrating information on evolutionary important residue variations with receptor structure. Combined with known mutational data, ET predicted a patch of residues in the cytoplasmic parts of TM2, TM3, and TM6 to form an activation switch that is common to all family A 7TM receptors. We tested this hypothesis in the rat Angiotensin II (Ang II) type 1 (AT1) receptor. The receptor has important roles in the cardiovascular system, but has also frequently been applied as a model for 7TM receptor activation and signaling. Six mutations: F66A, L67R, L70R, L119R, D125A, and I245F were targeted to the putative switch and assayed for changes in activation state by their ligand binding, signaling, and trafficking properties. All but one receptor mutant (that was not expressed well) displayed phenotypes associated with changed activation state, such as increased agonist affinity or basal activity, promiscuous activation, or constitutive internalization highlighting the importance of testing different signaling pathways. We conclude that this evolutionary important patch mediates interactions important for maintaining the inactive state. More broadly, these observations in the AT1 receptor are consistent with computational predictions of a generic role for this patch in 7TM receptor activation. PMID:20227396

  8. Anticonvulsant activity of a mGlu(4alpha) receptor selective agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid.

    PubMed

    Chapman, A G; Talebi, A; Yip, P K; Meldrum, B S

    2001-07-20

    The metabotropic Group III agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid (ACPT-1), selective for the mGlu(4alpha) receptor, suppresses sound-induced seizures in DBA/2 mice following its intracerebroventricular (i.c.v.) administration (ED(50) 5.6 [2.9-10.7], nmol i.c.v., 15 min, clonic phase) and in genetically epilepsy-prone (GEP) rats following focal administration into the inferior colliculus (ED(50) 0.08 [0.01-0.50], nmol, 60 min, clonic phase). ACPT-1 also protects against clonic seizures induced in DBA/2 mice by the Group I agonist, (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG) (ED(50) 0.60 [0.29-1.2], nmol i.c.v.) and by the Group III antagonist, (RS)-alpha-methylserine-O-phosphate (MSOP) (ED(50) 49.3 [37.9-64.1], nmol i.c.v.). Another Group III agonist, (RS)-4-phosphonophenyl-glycine (PPG), preferentially activating the mGlu(8) receptor, previously shown to protect against sound-induced seizures in DBA/2 mice and GEP rats, also protects against seizures induced in DBA/2 by 3,5-DHPG (ED(50) 3.7 [2.4-5.7], nmol i.c.v.) and by the Group III antagonist, MSOP (ED(50) 40.2 [21.0-77.0], nmol i.c.v.). At very high doses (500 nmol i.c.v. and above), Group III antagonists have pro-convulsant and convulsant activity. The anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(4) receptor agonist ACPT-1, is partially reversed by the co-administration of the Group III antagonists, MSOP, (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG) or (S)-2-amino-2-methyl-4-phosphonobutanoic acid (MAP4), in the 20-50 nmol dose range. At doses of 50-200 nmol, MPPG and MAP4 cause further reversal of the ACPT-1 anticonvulsant protection, while the MSOP effect on ACPT-1 protection is abolished at higher doses. In contrast, the anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(8) receptor agonist PPG, is not

  9. Structural analysis of the interaction of IGF I with the IGF types 1 and 2 and insulin receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cascieri, M.A.; Chicchi, G.G.; Hayes, N.S.

    1987-05-01

    A synthetic gene for human IGF I has been synthesized which directs the synthesis and secretion of fully active human IGF I (rIGF I) from yeast. rIGF I inhibits binding of /sup 125/I-IGF I to type 1 IGF receptors from human placenta (IGF-R1, IC50 = 4 nM), binding of /sup 125/I-insulin to insulin receptors (IR, IC50 = 881 nM), binding of /sup 125/I-MSA to type 2 IGF receptors from rat liver (IGF-R2, IC50 = 80 nM), and binding of /sup 125/I-IGF I to crude human serum binding protein (hBP, IC50 = 0.42 nM). rIGF I is equipotent to human IGFmore » I in stimulating glucose transport in murine BC3H1 cells and in stimulating DNA synthesis in rat A10 cells. Site directed mutagenesis of the synthetic gene is being used to characterize the structural requirements for binding to these receptors. IGF I (FFY) B(23-25) is equipotent to rIGF I at the IGF-R1 (6.9 nM), the IGF-R2 (36 nM), and the IR (841 nM) and is less potent at the hBP (1.7 nM). In contrast, IGF I(SFY) B(23-25) is 20-fold less potent than rIGF I at the IGF-R1 and is 10-fold less potent than rIGF I at hBP. This peptide is greater than 10-fold less active at the IGF-R2 and the IR. This peptide is a full agonist in the cell assays but 20-50 fold less potent than rIGF I. These data are consistent with the hypothesis that the F to S change destabilizes the tertiary structure of IGF I.« less

  10. Design of chimeric peptide ligands to galanin receptors and substance P receptors.

    PubMed

    Langel, U; Land, T; Bartfai, T

    1992-06-01

    Several chimeric peptides were synthesized and found to be high-affinity ligands for both galanin and substance P receptors in membranes from the rat hypothalamus. The peptide galantide, composed of the N-terminal part of galanin and C-terminal part of substance P (SP), galanin-(1-12)-Pro-SP-(5-11) amide, which is the first galanin antagonist to be reported, recognizes two classes of galanin binding sites (KD(1) less than 0.1 nM and KD(2) approximately 6 nM) in the rat hypothalamus, while it appears to bind to a single population of SP receptors (KD approximately 40 nM). The chimeric peptide has higher affinity towards galanin receptors than the endogenous peptide galanin-(1-29) (KD approximately 1 nM) or its N-terminal fragment galanin-(1-13) (KD approximately 1 microM), which constitutes the N-terminus of the chimeric peptide. Galantide has also higher affinity for the SP receptors than the C-terminal SP fragment-(4-11) amide (KD = 0.4 microM), which constitutes its C-terminal portion. Substitution of amino acid residues, which is of importance for recognition of galanin by galanin receptors, such as [Trp2], in the galanin portion of the chimeric peptide or substitution of ([Phe7] or [Met11]-amide) in the SP portion of chimeric peptide both cause significant loss in affinity of the analogs of galantide for both the galanin- and the SP-receptors. These results suggest that the high affinity of the chimeric peptide, galantide, may in part be accounted for by simultaneous recognition/binding to both receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Arterial Stiffness Is Increased in Patients With Type 1 Diabetes Without Cardiovascular Disease

    PubMed Central

    Llauradó, Gemma; Ceperuelo-Mallafré, Victòria; Vilardell, Carme; Simó, Rafael; Freixenet, Núria; Vendrell, Joan; González-Clemente, José Miguel

    2012-01-01

    OBJECTIVE To investigate the relationship between arterial stiffness and low-grade inflammation in subjects with type 1 diabetes without clinical cardiovascular disease. RESEARCH DESIGN AND METHODS Sixty-eight patients with type 1 diabetes and 68 age- and sex-matched healthy subjects were evaluated. Arterial stiffness was assessed by aortic pulse wave velocity (aPWV). Serum concentrations of high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-6, and soluble fractions of tumor necrosis factor-α receptors 1 and 2 (sTNFαR1 and sTNFαR2, respectively) were measured. All statistical analyses were stratified by sex. RESULTS Subjects with diabetes had a higher aPWV compared with healthy control subjects (men: 6.9 vs. 6.3 m/s, P < 0.001; women: 6.4 vs. 6.0 m/s, P = 0.023). These differences remained significant after adjusting for cardiovascular risk factors. Men with diabetes had higher concentrations of hsCRP (1.2 vs. 0.6 mg/L; P = 0.036), IL-6 (0.6 vs. 0.3 pg/mL; P = 0.002), sTNFαR1 (2,739 vs. 1,410 pg/mL; P < 0.001), and sTNFαR2 (2,774 vs. 2,060 pg/mL; P < 0.001). Women with diabetes only had higher concentrations of IL-6 (0.6 vs. 0.4 pg/mL; P = 0.039). In men with diabetes, aPWV correlated positively with hsCRP (r = 0.389; P = 0.031) and IL-6 (r = 0.447; P = 0.008), whereas in women with diabetes no significant correlation was found. In men, multiple linear regression analysis showed that the following variables were associated independently with aPWV: age, BMI, type 1 diabetes, and low-grade inflammation (R2 = 0.543). In women, these variables were age, BMI, mean arterial pressure, and type 1 diabetes (R2 = 0.550). CONCLUSIONS Arterial stiffness assessed as aPWV is increased in patients with type 1 diabetes without clinical cardiovascular disease, independently of classical cardiovascular risk factors. In men with type 1 diabetes, low-grade inflammation is independently associated with arterial stiffness. PMID:22357186

  12. Sorting of β1-Adrenergic Receptors Is Mediated by Pathways That Are Either Dependent on or Independent of Type I PDZ, Protein Kinase A (PKA), and SAP97*

    PubMed Central

    Nooh, Mohammed M.; Chumpia, Maryanne M.; Hamilton, Thomas B.; Bahouth, Suleiman W.

    2014-01-01

    The β1-adrenergic receptor1-AR) is a target for treatment of major cardiovascular diseases, such as heart failure and hypertension. Recycling of agonist-internalized β1-AR is dependent on type I PSD-95/DLG/ZO1 (PDZ) in the C-tail of the β1-AR and on protein kinase A (PKA) activity (Gardner, L. A., Naren, A. P., and Bahouth, S. W. (2007) J. Biol. Chem. 282, 5085–5099). We explored the effects of point mutations in the PDZ and in the activity of PKA on recycling of the β1-AR and its binding to the PDZ-binding protein SAP97. These studies indicated that β1-AR recycling was inhibited by PKA inhibitors and by mutations in the PDZ that interfered with SAP97 binding. The trafficking effects of short sequences differing in PDZ and SAP97 binding were examined using chimeric mutant β1-AR. β1-AR chimera containing the type I PDZ of the β2-adrenergic receptor that does not bind to SAP97 failed to recycle except when serine 312 was mutated to aspartic acid. β1-AR chimera with type I PDZ sequences from the C-tails of aquaporin-2 or GluR1 recycled in a SAP97- and PKA-dependent manner. Non-PDZ β1-AR chimera derived from μ-opioid, dopamine 1, or GluR2 receptors promoted rapid recycling of chimeric β1-AR in a SAP97- and PKA-independent manner. Moreover, the nature of the residue at position −3 in the PDZ regulated whether the β1-AR was internalized alone or in complex with SAP97. These results indicate that divergent pathways were involved in trafficking the β1-AR and provide a roadmap for its trafficking via type I PDZs versus non-PDZs. PMID:24324269

  13. Role of vascular smooth muscle PPARγ in regulating AT1 receptor signaling and angiotensin II-dependent hypertension.

    PubMed

    Carrillo-Sepulveda, Maria Alicia; Keen, Henry L; Davis, Deborah R; Grobe, Justin L; Sigmund, Curt D

    2014-01-01

    Peroxisome proliferator activated receptor γ (PPARγ) has been reported to play a protective role in the vasculature; however, the underlying mechanisms involved are not entirely known. We previously showed that vascular smooth muscle-specific overexpression of a dominant negative human PPARγ mutation in mice (S-P467L) leads to enhanced myogenic tone and increased angiotensin-II-dependent vasoconstriction. S-P467L mice also exhibit increased arterial blood pressure. Here we tested the hypotheses that a) mesenteric smooth muscle cells isolated from S-P467L mice exhibit enhanced angiotensin-II AT1 receptor signaling, and b) the increased arterial pressure of S-P467L mice is angiotensin-II AT1 receptor dependent. Phosphorylation of mitogen-activated protein/extracellular signal-regulated kinase (ERK1/2) was robustly increased in mesenteric artery smooth muscle cell cultures from S-P467L in response to angiotensin-II. The increase in ERK1/2 activation by angiotensin-II was blocked by losartan, a blocker of AT1 receptors. Angiotensin-II-induced ERK1/2 activation was also blocked by Tempol, a scavenger of reactive oxygen species, and correlated with increased Nox4 protein expression. To investigate whether endogenous renin-angiotensin system activity contributes to the elevated arterial pressure in S-P467L, non-transgenic and S-P467L mice were treated with the AT1 receptor blocker, losartan (30 mg/kg per day), for 14-days and arterial pressure was assessed by radiotelemetry. At baseline S-P467L mice showed a significant increase of systolic arterial pressure (142.0 ± 10.2 vs 129.1 ± 3.0 mmHg, p<0.05). Treatment with losartan lowered systolic arterial pressure in S-P467L (132.2 ± 6.9 mmHg) to a level similar to untreated non-transgenic mice. Losartan also lowered arterial pressure in non-transgenic (113.0 ± 3.9 mmHg) mice, such that there was no difference in the losartan-induced depressor response between groups (-13.53 ± 1.39 in S-P467L vs -16.16 ± 3.14 mmHg in

  14. Lack of the purinergic receptor P2X7 results in resistance to contact hypersensitivity

    PubMed Central

    Weber, Felix C.; Esser, Philipp R.; Müller, Tobias; Ganesan, Jayanthi; Pellegatti, Patrizia; Simon, Markus M.; Zeiser, Robert; Idzko, Marco; Jakob, Thilo

    2010-01-01

    Sensitization to contact allergens requires activation of the innate immune system by endogenous danger signals. However, the mechanisms through which contact allergens activate innate signaling pathways are incompletely understood. In this study, we demonstrate that mice lacking the adenosine triphosphate (ATP) receptor P2X7 are resistant to contact hypersensitivity (CHS). P2X7-deficient dendritic cells fail to induce sensitization to contact allergens and do not release IL-1β in response to lipopolysaccharide (LPS) and ATP. These defects are restored by pretreatment with LPS and alum in an NLRP3- and ASC-dependent manner. Whereas pretreatment of wild-type mice with P2X7 antagonists, the ATP-degrading enzyme apyrase or IL-1 receptor antagonist, prevents CHS, IL-1β injection restores CHS in P2X7-deficient mice. Thus, P2X7 is a crucial receptor for extracellular ATP released in skin in response to contact allergens. The lack of P2X7 triggering prevents IL-1β release, which is an essential step in the sensitization process. Interference with P2X7 signaling may be a promising strategy for the prevention of allergic contact dermatitis. PMID:21059855

  15. Reassessment of the Unique Mode of Binding between Angiotensin II Type 1 Receptor and Their Blockers

    PubMed Central

    Matsuo, Yoshino; Saku, Keijiro; Karnik, Sadashiva S.

    2013-01-01

    While the molecular structures of angiotensin II (Ang II) type 1 (AT1) receptor blockers (ARBs) are very similar, they are also slightly different. Although each ARB has been shown to exhibit a unique mode of binding to AT1 receptor, different positions of the AT1 receptor have been analyzed and computational modeling has been performed using different crystal structures for the receptor as a template and different kinds of software. Therefore, we systematically analyzed the critical positions of the AT1 receptor, Tyr113, Tyr184, Lys199, His256 and Gln257 using a mutagenesis study, and subsequently performed computational modeling of the binding of ARBs to AT1 receptor using CXCR4 receptor as a new template and a single version of software. The interactions between Tyr113 in the AT1 receptor and the hydroxyl group of olmesartan, between Lys199 and carboxyl or tetrazole groups, and between His256 or Gln257 and the tetrazole group were studied. The common structure, a tetrazole group, of most ARBs similarly bind to Lys199, His256 and Gln257 of AT1 receptor. Lys199 in the AT1 receptor binds to the carboxyl group of EXP3174, candesartan and azilsartan, whereas oxygen in the amidecarbonyl group of valsartan may bind to Lys199. The benzimidazole portion of telmisartan may bind to a lipophilic pocket that includes Tyr113. On the other hand, the n-butyl group of irbesartan may bind to Tyr113. In conclusion, we confirmed that the slightly different structures of ARBs may be critical for binding to AT1 receptor and for the formation of unique modes of binding. PMID:24260317

  16. Combined glutathione S transferase M1/T1 null genotypes is associated with type 2 diabetes mellitus

    PubMed Central

    POROJAN, MIHAI D.; BALA, CORNELIA; ILIES, ROXANA; CATANA, ANDREEA; POPP, RADU A.; DUMITRASCU, DAN L.

    2015-01-01

    Background Due to new genetic insights, a considerably large number of genes and polymorphic gene variants are screened and linked with the complex pathogenesis of type 2 diabetes (DM). Our study aimed to investigate the association between the two isoforms of the glutathione S-transferase genes (Glutathione S transferase isoemzyme type M1- GSTM1 and Glutathione S transferase isoemzyme type T1-GSTT1) and the prevalence of DM in the Northern Romanian population. Methods We conducted a cross-sectional, randomized, case-control study evaluating the frequency of GSTM1 and GSTT1 null alleles in patients diagnosed with DM. A total of 106 patients diagnosed with DM and 124 healthy controls were included in the study. GSTM1 and GSTT1 null alleles genotyping was carried out using Multiplex PCR amplification of relevant gene fragments, followed by gel electrophoresis analysis of the resulting amplicons. Results Molecular analysis did not reveal an increased frequency of the null GSTM1 and GSTT1 alleles (mutant genotypes) respectively in the DM group compared to controls (p=0.171, OR=1.444 CI=0.852–2.447; p=0.647, OR=0.854, CI=0.436–1.673). Nevertheless, the combined GSTM1/GSTT1 null genotypes were statistically significantly higher in DM patients compared to control subjects (p=0.0021, OR=0.313, CI=0.149–0.655) Conclusions The main finding of our study is that the combined, double GSTM1/GSTT1 null genotypes are to be considered among the polymorphic genetic risk factors for type 2 DM. PMID:26528065

  17. Substance P - Neurokinin-1 Receptor Interaction Upregulates Monocyte Tissue Factor

    PubMed Central

    Khan, Mohammad M; Douglas, Steven D; Benton, Tami D

    2011-01-01

    Monocytes play an important role in hemostasis. In this study, the prothrombotic effects of the neuropeptide substance P (SP) on human monocytes through neurokinin-1 receptor (NK1-R) were characterized. SP upregulated monocyte tissue factor (TF), the major coagulation cascade stimulator, in a concentration and time dependent manner. Specific inhibition of NK1-R completely blocked TF expression. Monocytes stimulated by SP released cytokines and chemokines. When monocytes were stimulated with cytokines or chemokines, TF was expressed by the cytokines (GM-CSF, IFN-γ and TNF-α). Cytokines may play a major role in the mechanism of SP induced monocyte TF expression. NK1-R antagonists (NK1-RA) may have a role in developing novel therapeutic approaches to patients vulnerable to vaso-occlusive disorders. PMID:22115773

  18. Different Involvement of Type 1, 2, and 3 Ryanodine Receptors in Memory Processes

    ERIC Educational Resources Information Center

    Galeotti, Nicoletta; Quattrone, Alessandro; Vivoli, Elisa; Norcini, Monica; Bartolini, Alessandro; Ghelardini, Carla

    2008-01-01

    The administration of the ryanodine receptor (RyR) agonist 4-Cmc (0.003-9 nmol per mouse intracerebroventricularly [i.c.v.]) ameliorated memory functions, whereas the RyR antagonist ryanodine (0.0001-1 nmol per mouse i.c.v.) induced amnesia in the mouse passive avoidance test. The role of the type 1, 2, and 3 RyR isoforms in memory processes was…

  19. P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release.

    PubMed

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Gomez, Ana I; Machado, Francisco; Di Virgilio, Francesco; Pelegrín, Pablo

    2012-07-01

    Prostaglandins (PGs) are important lipid mediators involved in the development of inflammatory associated pain and fever. PGE2 is a well-established endogenous pyrogen activated by proinflammatory cytokine interleukin (IL)-1β. P2X7 receptors (P2X7Rs) expressed by inflammatory cells are stimulated by the danger signal extracellular ATP to activate the inflammasome and release IL-1β. Here we show that P2X7R activation is required for the release of PGE2 and other autacoids independent of inflammasome activation, with an ATP EC(50) for PGE2 and IL-1β release of 1.58 and 1.23 mM, respectively. Furthermore, lack of P2X7R or specific antagonism of P2X7R decreased the febrile response in mice triggered after intraperitoneal LPS or IL-1β inoculation. Accordingly, LPS inoculation caused intraperitoneal ATP accumulation. Therefore, P2X7R antagonists emerge as novel therapeutics for the treatment for acute inflammation, pain and fever, with wider anti-inflammatory activity than currently used cyclooxygenase inhibitors.-Barberà-Cremades, M., Baroja-Mazo, A., Gomez, A. I., Machado, F., Di Virgilio, F., Pelegrín, P. P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release.

  20. Characterization of a novel function-blocking antibody targeted against the platelet P2Y1 receptor.

    PubMed

    Karim, Zubair A; Vemana, Hari Priya; Alshbool, Fatima Z; Lin, Olivia A; Alshehri, Abdullah M; Javaherizadeh, Payam; Paez Espinosa, Enma V; Khasawneh, Fadi T

    2015-03-01

    Platelet hyperactivity is associated with vascular disease and contributes to the genesis of thrombotic disorders. ADP plays an important role in platelet activation and activates platelets through 2 G-protein-coupled receptors, the Gq-coupled P2Y1 receptor (P2Y1R), and the Gi-coupled P2Y12 receptor. Although the involvement of the P2Y1R in thrombogenesis is well established, there are no antagonists that are currently available for clinical use. Our goal is to determine whether a novel antibody targeting the ligand-binding domain, ie, second extracellular loop (EL2) of the P2Y1R (EL2Ab) could inhibit platelet function and protect against thrombogenesis. Our results revealed that the EL2Ab does indeed inhibit ADP-induced platelet aggregation, in a dose-dependent manner. Furthermore, EL2Ab was found to inhibit integrin GPIIb-IIIa activation, dense and α granule secretion, and phosphatidylserine exposure. These inhibitory effects translated into protection against thrombus formation, as evident by a prolonged time for occlusion in a FeCl3-induced thrombosis model, but this was accompanied by a prolonged tail bleeding time. We also observed a dose-dependent displacement of the radiolabeled P2Y1R antagonist [(3)H]MRS2500 from its ligand-binding site by EL2Ab. Collectively, our findings demonstrate that EL2Ab binds to and exhibits P2Y1R-dependent function-blocking activity in the context of platelets. These results add further evidence for a role of the P2Y1R in thrombosis and validate the concept that targeting it is a relevant alternative or complement to current antiplatelet strategies. © 2015 American Heart Association, Inc.

  1. Gestational Exposure to Elevated Testosterone Levels Induces Hypertension via Heightened Vascular Angiotensin II Type 1 Receptor Signaling in Rats1

    PubMed Central

    Chinnathambi, Vijayakumar; More, Amar S.; Hankins, Gary D.; Yallampalli, Chandra; Sathishkumar, Kunju

    2014-01-01

    ABSTRACT Pre-eclampsia is a life-threatening pregnancy disorder whose pathogenesis remains unclear. Plasma testosterone levels are elevated in pregnant women with pre-eclampsia and polycystic ovary syndrome, who often develop gestational hypertension. We tested the hypothesis that increased gestational testosterone levels induce hypertension via heightened angiotensin II signaling. Pregnant Sprague-Dawley rats were injected with vehicle or testosterone propionate from Gestational Day 15 to 19 to induce a 2-fold increase in plasma testosterone levels, similar to levels observed in clinical conditions like pre-eclampsia. A subset of rats in these two groups was given losartan, an angiotensin II type 1 receptor antagonist by gavage during the course of testosterone exposure. Blood pressure levels were assessed through a carotid arterial catheter and endothelium-independent vascular reactivity through wire myography. Angiotensin II levels in plasma and angiotensin II type 1 receptor expression in mesenteric arteries were also examined. Blood pressure levels were significantly higher on Gestational Day 20 in testosterone-treated dams than in controls. Treatment with losartan during the course of testosterone exposure significantly attenuated testosterone-induced hypertension. Plasma angiotensin II levels were not significantly different between control and testosterone-treated rats; however, elevated testosterone levels significantly increased angiotensin II type 1 receptor protein levels in the mesenteric arteries. In testosterone-treated rats, mesenteric artery contractile responses to angiotensin II were significantly greater, whereas contractile responses to K+ depolarization and phenylephrine were unaffected. The results demonstrate that elevated testosterone during gestation induces hypertension in pregnant rats via heightened angiotensin II type 1 receptor-mediated signaling, providing a molecular mechanism linking elevated maternal testosterone levels with

  2. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanos, P.K.; Wang, G.; Thanos, P.K.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brainmore » regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.« less

  3. Evidence for the η(b)(2S) and observation of h(b)(1P)→η(b)(1S)γ and h(b)(2P)→η(b)(1S)γ.

    PubMed

    Mizuk, R; Asner, D M; Bondar, A; Pedlar, T K; Adachi, I; Aihara, H; Arinstein, K; Aulchenko, V; Aushev, T; Aziz, T; Bakich, A M; Bay, A; Belous, K; Bhardwaj, V; Bhuyan, B; Bischofberger, M; Bonvicini, G; Bozek, A; Bračko, M; Brodzicka, J; Browder, T E; Chekelian, V; Chen, A; Chen, P; Cheon, B G; Chilikin, K; Chistov, R; Cho, I-S; Cho, K; Choi, S-K; Choi, Y; Dalseno, J; Danilov, M; Doležal, Z; Drásal, Z; Drutskoy, A; Eidelman, S; Epifanov, D; Fast, J E; Gaur, V; Gabyshev, N; Garmash, A; Golob, B; Haba, J; Hara, T; Hayasaka, K; Hayashii, H; Horii, Y; Hoshi, Y; Hou, W-S; Hsiung, Y B; Hyun, H J; Iijima, T; Ishikawa, A; Itoh, R; Iwabuchi, M; Iwasaki, Y; Iwashita, T; Jaegle, I; Julius, T; Kang, J H; Kapusta, P; Kawasaki, T; Kim, H J; Kim, H O; Kim, J H; Kim, K T; Kim, M J; Kim, Y J; Kinoshita, K; Ko, B R; Koblitz, S; Kodyš, P; Korpar, S; Kouzes, R T; Križan, P; Krokovny, P; Kuhr, T; Kumita, T; Kuzmin, A; Kwon, Y-J; Lange, J S; Lee, S-H; Li, J; Libby, J; Liu, C; Liu, Y; Liu, Z Q; Liventsev, D; Louvot, R; Matvienko, D; McOnie, S; Miyabayashi, K; Miyata, H; Mohanty, G B; Mohapatra, D; Moll, A; Muramatsu, N; Mussa, R; Nakao, M; Natkaniec, Z; Ng, C; Nishida, S; Nishimura, K; Nitoh, O; Nozaki, T; Ohshima, T; Okuno, S; Olsen, S L; Onuki, Y; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Pestotnik, R; Petrič, M; Piilonen, L E; Poluektov, A; Röhrken, M; Sakai, Y; Sandilya, S; Santel, D; Sanuki, T; Sato, Y; Schneider, O; Schwanda, C; Senyo, K; Seon, O; Sevior, M E; Shapkin, M; Shen, C P; Shibata, T-A; Shiu, J-G; Shwartz, B; Sibidanov, A; Simon, F; Smerkol, P; Sohn, Y-S; Sokolov, A; Solovieva, E; Stanič, S; Starič, M; Sumihama, M; Sumiyoshi, T; Tanida, K; Tatishvili, G; Teramoto, Y; Tikhomirov, I; Trabelsi, K; Tsuboyama, T; Uchida, M; Uehara, S; Uglov, T; Unno, Y; Uno, S; Vanhoefer, P; Varner, G; Varvell, K E; Vinokurova, A; Vorobyev, V; Wang, C H; Wang, M-Z; Wang, P; Wang, X L; Watanabe, M; Watanabe, Y; Williams, K M; Won, E; Yabsley, B D; Yamaoka, J; Yamashita, Y; Yuan, C Z; Zhang, Z P; Zhilich, V

    2012-12-07

    We report the first evidence for the η(b)(2S) using the h(b)(2P)→η(b)(2S)γ transition and the first observation of the h(b)(1P)→η(b)(1S)γ and h(b)(2P)→η(b)(1S)γ transitions. The mass and width of the η(b)(1S) and η(b)(2S) are measured to be m(η(b)(1S))=(9402.4±1.5±1.8) MeV/c(2), m(η(b)(2S))=(9999.0±3.5(-1.9)(+2.8)) MeV/c(2), and Γ(η(b)(1S))=(10.8(-3.7-2.0)(+4.0+4.5)) MeV. We also update the h(b)(1P) and h(b)(2P) mass measurements. We use a 133.4 fb(-1) data sample collected at energies near the Υ(5S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider.

  4. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium

    PubMed Central

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A.; Pearson, Joanna F.; Appleby, Peter A.; Walker, Dawn; Eardley, Ian

    2013-01-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca2+. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca2+ and in a scratch repair assay. The results confirmed the functional expression of P2Y4 receptors and excluded nonexpressed receptors/channels (P2X1, P2X3, P2X6, P2Y6, P2Y11, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X2, P2X4, P2Y1, P2Y2, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca2+ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting. PMID:23720349

  5. Photoaffinity labeling the substance P receptor using a derivative of substance P containing para-benzoylphenylalanine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, N.D.; White, C.F.; Leeman, S.E.

    A novel photoreactive substance P (SP) analogue has been synthesized by solid-phase peptide synthesis methodology to incorporate the amino acid p-benzoyl-L-phenylalanine (L-Phe(pBz)) in place of the Phe{sup 8} residue of SP. (Phe{sup 8}(OpBz))SP was equipotent with SP in competing for SP binding sites on rat submaxillary gland membranes and had potent sialagogic activity in vivo. In the absence of light, the {sup 125}I-labeled Bolton-Hunter conjugate of (Phe{sup 8}(pBz))SP bound in a saturable and reversible manner to an apparently homogeneous class of binding sites with an affinity K{sub D} = 0.4 nM. The binding of {sup 125}I-(Phe{sup 8}(pBz))SP was inhibited competitivelymore » by various tachykinin peptides and analogues with the appropriate specificity for SP/NK-1 receptors. Upon photolysis, up to 70{percent} of the specifically bound {sup 125}I-(Phe{sup 8}(pBz))SP underwent covalent linkage to two polypeptides of M{sub r} = 53 000 and 46 000, identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Quantitative analysis of the inhibitory effects of SP and related peptides on {sup 125}I-(Phe{sup 8}(pBz))SP photoincorporation indicated that the binding sites of the two photolabeled polypeptides have the same peptide specificity, namely, that typical of NK-1-type SP receptors. Further information on the relationship between the two labeled SP binding sites was provided by enzymatic digestion studies. The highly specific and remarkably efficient photolabeling achieved with {sup 125}I-(Phe{sup 8}(pBz))SP suggests that this photoaffinity probe will be of considerable value for the characterization of the molecular structure of the SP receptor.« less

  6. Liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxin is dependent on the aryl hydrocarbon receptor and TNF/IL-1 receptors.

    PubMed

    Kennedy, Gregory D; Nukaya, Manabu; Moran, Susan M; Glover, Edward; Weinberg, Samuel; Balbo, Silvia; Hecht, Stephen S; Pitot, Henry C; Drinkwater, Norman R; Bradfield, Christopher A

    2014-07-01

    We set out to better understand the signal transduction pathways that mediate liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxn ("dioxin"). To this end, we first employed congenic mice homozygous for either the Ahr(b1) or Ahr(d) alleles (encoding an aryl hydrocarbon receptor (AHR) with high or low binding affinity for dioxin, respectively) and demonstrated that hepatocellular tumor promotion in response to dioxin segregated with the Ahr locus. Once we had genetic evidence for the importance of AHR signaling, we then asked if tumor promotion by dioxin was influenced by "interleukin-1 (IL-1)-like" inflammatory cytokines. The importance of this question arose from our earlier observation that aspects of the acute hepatocellular toxicity of dioxin are dependent upon IL1-like cytokine signaling. To address this issue, we employed a triple knock-out (TKO) mouse model with null alleles at the loci encoding the three relevant receptors for tumor necrosis factors α and β and IL-1α and IL-1β (i.e., null alleles at the Tnfrsf1a, Tnfrsf1b, and Il-1r1 loci). The observation that TKO mice were resistant to the tumor promoting effects of dioxin in liver suggests that inflammatory cytokines play an important step in dioxin mediated liver tumor promotion in the mouse. Collectively, these data support the idea that the mechanism of dioxin acute hepatotoxicity and its activity as a promoter in a mouse two stage liver cancer model may be similar, i.e., tumor promotion by dioxin, like acute hepatotoxicity, are mediated by the linked action of two receptor systems, the AHR and the receptors for the "IL-1-like" cytokines. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Charge-Transfer-Induced p-Type Channel in MoS2 Flake Field Effect Transistors.

    PubMed

    Min, Sung-Wook; Yoon, Minho; Yang, Sung Jin; Ko, Kyeong Rok; Im, Seongil

    2018-01-31

    The two-dimensional transition-metal dichalcogenide semiconductor MoS 2 has received extensive attention for decades because of its outstanding electrical and mechanical properties for next-generation devices. One weakness of MoS 2 , however, is that it shows only n-type conduction, revealing its limitations for homogeneous PN diodes and complementary inverters. Here, we introduce a charge-transfer method to modify the conduction property of MoS 2 from n- to p-type. We initially deposited an n-type InGaZnO (IGZO) film on top of the MoS 2 flake so that electron charges might be transferred from MoS 2 to IGZO during air ambient annealing. As a result, electron charges were depleted in MoS 2 . Such charge depletion lowered the MoS 2 Fermi level, which makes hole conduction favorable in MoS 2 when optimum source/drain electrodes with a high work function are selected. Our IGZO-supported MoS 2 flake field effect transistors (FETs) clearly display channel-type conversion from n- to p-channel in this way. Under short- and long-annealing conditions, n- and p-channel MoS 2 FETs are achieved, respectively, and a low-voltage complementary inverter is demonstrated using both channels in a single MoS 2 flake.

  8. [Impact of anti-diabetic therapy based on glucagon-like peptide-1 receptor agonists on the cardiovascular risk of patients with type 2 diabetes mellitus].

    PubMed

    Camafort-Babkowski, Miguel

    2013-08-17

    Anti-diabetic drugs have, in addition to their well-known glucose lowering-effect, different effects in the rest of cardiovascular factors that are associated with diabetes mellitus. Glucagon-like peptide-1 (GLP-1) receptor agonists have recently been incorporated to the therapeutic arsenal of type 2 diabetes mellitus. The objective of this review is to summarize the available evidence on the effect of the GLP-1 receptor agonists on different cardiovascular risk factors, mediated by the effect of GLP-1 receptor agonists on the control of hyperglycaemia and the GLP-1 receptor agonists effect on other cardiovascular risk factors (weight control, blood pressure control, lipid profile and all other cardiovascular risk biomarkers). In addition, we present the emerging evidence with regards to the impact that GLP-1 receptor agonists therapy could have in the reduction of cardiovascular events and the currently ongoing studies addressing this issue. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  9. Variations of the angiotensin II type 1 receptor gene are associated with extreme human longevity.

    PubMed

    Benigni, Ariela; Orisio, Silvia; Noris, Marina; Iatropoulos, Paraskevas; Castaldi, Davide; Kamide, Kei; Rakugi, Hiromi; Arai, Yasumichi; Todeschini, Marta; Ogliari, Giulia; Imai, Enyu; Gondo, Yasuyuki; Hirose, Nobuyoshi; Mari, Daniela; Remuzzi, Giuseppe

    2013-06-01

    Longevity phenotype in humans results from the influence of environmental and genetic factors. Few gene polymorphisms have been identified so far with a modest effect on lifespan leaving room for the search of other players in the longevity game. It has been recently demonstrated that targeted disruption of the mouse homolog of the human angiotensin II type 1 receptor (AT1R) gene (AGTR1) translates into marked prolongation of animal lifespan (Benigni et al., J Clin Invest 119(3):524-530, 2009). Based on the above study in mice, here we sought to search for AGTR1 variations associated to reduced AT1 receptor protein levels and to prolonged lifespan in humans. AGTR1 was sequenced in 173 Italian centenarians and 376 younger controls. A novel non-synonymous mutation was detected in a centenarian. Two polymorphisms in AGTR1 promoter, rs422858 and rs275653, in complete linkage disequilibrium, were significantly associated with the ability to attain extreme old age. We then replicated the study of rs275653 in a large independent cohort of Japanese origin (598 centenarians and semi-supercentenarians, 422 younger controls) and indeed confirmed its association with exceptional old age. In combined analyses, rs275653 was associated to extreme longevity either at recessive model (P = 0.007, odds ratio (OR) 3.57) or at genotype level (P = 0.015). Significance was maintained after correcting for confounding factors. Fluorescence activated cell sorting analysis revealed that subjects homozygous for the minor allele of rs275653 had less AT1R-positive peripheral blood polymorphonuclear cells. Moreover, rs275653 was associated to lower blood pressure in centenarians. These findings highlight the role of AGTR1 as a possible candidate among longevity-enabling genes.

  10. ESR study of p-type natural 2H-polytype MoS2 crystals: The As acceptor activity

    NASA Astrophysics Data System (ADS)

    Stesmans, A.; Iacovo, S.; Afanas'ev, V. V.

    2016-10-01

    Low-temperature (T = 1.7-77 K) multi frequency electron spin resonance (ESR) study on p-type 2H-polytype geological MoS2 crystals reveals p-type doping predominantly originating from As atoms substituting for S sites in densities of (2.4 ± 0.2) × 1017 cm-3. Observation of a "half field"(g ˜ 3.88) signal firmly correlating with the central Zeeman As accepter signal indicates the presence of spin S > ½ As agglomerates, which together with the distinct multicomponent makeup of the Zeeman signal points to manifest non-uniform As doping; only ˜13% of the total As response originates from individual decoupled As dopants. From ESR monitoring the latter vs. T, an activation energy Ea = (0.7 ± 0.2) meV is obtained. This unveils As as a noticeable shallow acceptor dopant, appropriate for realization of effective p-type doping in targeted 2D MoS2-based switching devices.

  11. Autoantibodies against AT1 and α1-adrenergic receptors predict arterial stiffness progression in normotensive subjects over a 5-year period.

    PubMed

    Li, Gang; Cao, Zhe; Wu, Xiao-Wei; Wu, Hui-Kun; Ma, Yi; Wu, Bin; Wang, Wei-Qing; Cheng, Jian; Zhou, Zi-Hua; Tu, Yuan-Chao

    2017-12-15

    Arterial stiffness is an independent indicator of cardiovascular risk. Autoantibodies (AAs) against angiotensin AT 1 receptor (AT 1 -AAs) and α 1 -adrenergic receptor1 -AAs) are important in the pathogenesis of hypertension. We identified the types of AT 1 -AAs and α 1 -AAs in normotensive subjects, with the aim of determining whether these antibodies predict aortic stiffness progression. Carotid-femoral pulse wave velocity (cf-PWV) was used to measure aortic stiffness. Overall, 816 subjects (71% of those invited) underwent a medical examination and evaluation of aortic stiffness. The types of AT 1 -AAs and α 1 -AAs were measured at baseline. Meanwhile, plasma renin, angiotensin II (Ang II), and norepinephrine (NE) concentrations were measured at baseline and follow-up. Baseline mean cf-PWV was 9.90 ± 0.84 m/s and follow-up was 10.51 ± 1.12 m/s. The annualized ΔPWV was 0.12 ± 0.08 m/s/year. At the end of follow-up, 129 normotensive subjects developed hypertension and 144 subjects had PWV progression. After adjustment for covariates, AA type was independently associated with ΔPWV, annualized ΔPWV, and abnormal PWV. In our study, the risk of developing hypertension (RR =2.028, 95% CI: 1.227-3.351, P =0.006) and PWV progression (RR =2.910, 95% CI: 1.612-5.253, P <0.001) in AA-positive subjects was significantly higher than that in AA-negative subjects. Receiver operating characteristic (ROC) curve showed AA had an identify power to discriminate subjects with or without PWV and hypertension progression. We have shown for the first time that the types of A 1 -AAs and α 1 -AAs are independent predictors for aortic stiffness progression in normotensive subjects. Our data collectively support the utility of these AAs as potential markers of aortic stiffness. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. The pure estrogen receptor antagonist ICI 182,780 promotes a novel interaction of estrogen receptor-alpha with the 3',5'-cyclic adenosine monophosphate response element-binding protein-binding protein/p300 coactivators.

    PubMed

    Jaber, Basem M; Gao, Tong; Huang, Luping; Karmakar, Sudipan; Smith, Carolyn L

    2006-11-01

    Estrogen receptor-alpha (ERalpha) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. Abundant evidence demonstrates that ERalpha agonists promote, whereas antagonists inhibit, receptor binding to coactivators. In this report we demonstrate that binding of the ICI 182,780 (ICI) pure antiestrogen to ERalpha promotes its interaction with the cAMP response element-binding protein-binding protein (CBP)/p300 but not the p160 family of coactivators, demonstrating the specificity of this interaction. Amino acid mutations within the coactivator binding surface of the ERalpha ligand-binding domain revealed that CBP binds to this region of the ICI-liganded receptor. The carboxy-terminal cysteine-histidine rich domain 3 of CBP, rather than its amino-terminal nuclear interacting domain, shown previously to mediate agonist-dependent interactions of CBP with nuclear receptors, is required for binding to ICI-liganded ERalpha. Chromatin immunoprecipitation assays revealed that ICI but not the partial agonist/antagonist 4-hydroxytamoxifen is able to recruit CBP to the pS2 promoter, and this distinguishes ICI from this class of antiestrogens. Chromatin immunoprecipitation assays for pS2 and cytochrome P450 1B1 promoter regions revealed that ICI-dependent recruitment of CBP, but not receptor, to ERalpha targets is gene specific. ICI treatment did not recruit the steroid receptor coactivator 1 to the pS2 promoter, and it failed to induce the expression of this gene. Taken together, these data indicate that recruitment of the CBP coactivator/cointegrator without steroid receptor coactivator 1 to ERalpha is insufficient to promote transcription of ERalpha target genes.

  13. 78 FR 67015 - Airworthiness Directives; Agusta S.p.A. (Type Certificate Currently Held by Agusta Westland...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... Airworthiness Directives; Agusta S.p.A. (Type Certificate Currently Held by Agusta Westland) Helicopters AGENCY... Sec. 39.13 by adding the following new airworthiness directive (AD): 2013-22-16 Agusta S.P.A. (Type... new airworthiness directive (AD) for certain Agusta S.p.A. (Agusta) Model AW139 helicopters. This AD...

  14. Realizing p-Type MoS2 with Enhanced Thermoelectric Performance by Embedding VMo2S4 Nanoinclusions.

    PubMed

    Kong, Shuang; Wu, Tianmin; Zhuang, Wei; Jiang, Peng; Bao, Xinhe

    2018-01-18

    Two-dimensional transition-metal dichalcogenide semiconductors (TMDCs) such as MoS 2 are attracting increasing interest as thermoelectric materials owing to their abundance, nontoxicity, and promising performance. Recently, we have successfully developed n-type MoS 2 thermoelectric material via oxygen doping. Nevertheless, an efficient thermoelectric module requires both n-type and p-type materials with similar compatibility factors. Here, we present a facile approach to obtain a p-type MoS 2 thermoelectric material with a maximum figure of merit of 0.18 through the introduction of VMo 2 S 4 as a second phase by vanadium doping. VMo 2 S 4 nanoinclusions, confirmed by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) measurements, not only improve the electrical conductivity by simultaneously increasing the carrier concentration and the mobility but also result in the reduction of lattice thermal conductivity by enhancing the interface phonon scattering. Our studies not only shed new light toward improving thermoelectric performance of TMDCs by a facile elemental doping strategy but also pave the way toward thermoelectric devices based on TMDCs.

  15. The selective sphingosine 1-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate

    PubMed Central

    Gergely, P; Nuesslein-Hildesheim, B; Guerini, D; Brinkmann, V; Traebert, M; Bruns, C; Pan, S; Gray, NS; Hinterding, K; Cooke, NG; Groenewegen, A; Vitaliti, A; Sing, T; Luttringer, O; Yang, J; Gardin, A; Wang, N; Crumb, WJ; Saltzman, M; Rosenberg, M; Wallström, E

    2012-01-01

    BACKGROUND AND PURPOSE BAF312 is a next-generation sphingosine 1-phosphate (S1P) receptor modulator, selective for S1P1 and S1P5 receptors. S1P1 receptors are essential for lymphocyte egress from lymph nodes and a drug target in immune-mediated diseases. Here, we have characterized the immunomodulatory potential of BAF312 and the S1P receptor-mediated effects on heart rate using preclinical and human data. EXPERIMENTAL APPROACH BAF312 was tested in a rat experimental autoimmune encephalomyelitis (EAE) model. Electrophysiological recordings of G-protein-coupled inwardly rectifying potassium (GIRK) channels were carried out in human atrial myocytes. A Phase I multiple-dose trial studied the pharmacokinetics, pharmacodynamics and safety of BAF312 in 48 healthy subjects. KEY RESULTS BAF312 effectively suppressed EAE in rats by internalizing S1P1 receptors, rendering them insensitive to the egress signal from lymph nodes. In healthy volunteers, BAF312 caused preferential decreases in CD4+ T cells, Tnaïve, Tcentral memory and B cells within 4–6 h. Cell counts returned to normal ranges within a week after stopping treatment, in line with the elimination half-life of BAF312. Despite sparing S1P3 receptors (associated with bradycardia in mice), BAF312 induced rapid, transient (day 1 only) bradycardia in humans. BAF312-mediated activation of GIRK channels in human atrial myocytes can fully explain the bradycardia. CONCLUSION AND IMPLICATIONS This study illustrates species-specific differences in S1P receptor specificity for first-dose cardiac effects. Based on its profound but rapidly reversible inhibition of lymphocyte trafficking, BAF312 may have potential as a treatment for immune-mediated diseases. PMID:22646698

  16. Modeling Interactions among Individual P2 Receptors to Explain Complex Response Patterns over a Wide Range of ATP Concentrations

    PubMed Central

    Xing, Shu; Grol, Matthew W.; Grutter, Peter H.; Dixon, S. Jeffrey; Komarova, Svetlana V.

    2016-01-01

    Extracellular ATP acts on the P2X family of ligand-gated ion channels and several members of the P2Y family of G protein-coupled receptors to mediate intercellular communication among many cell types including bone-forming osteoblasts. It is known that multiple P2 receptors are expressed on osteoblasts (P2X2,5,6,7 and P2Y1,2,4,6). In the current study, we investigated complex interactions within the P2 receptor network using mathematical modeling. To characterize individual P2 receptors, we extracted data from published studies of overexpressed human and rodent (rat and mouse) receptors and fit their dependencies on ATP concentration using the Hill equation. Next, we examined responses induced by an ensemble of endogenously expressed P2 receptors. Murine osteoblastic cells (MC3T3-E1 cells) were loaded with fluo-4 and stimulated with varying concentrations of extracellular ATP. Elevations in the concentration of cytosolic free calcium ([Ca2+]i) were monitored by confocal microscopy. Dependence of the calcium response on ATP concentration exhibited a complex pattern that was not explained by the simple addition of individual receptor responses. Fitting the experimental data with a combination of Hill equations from individual receptors revealed that P2Y1 and P2X7 mediated the rise in [Ca2+]i at very low and high ATP concentrations, respectively. Interestingly, to describe responses at intermediate ATP concentrations, we had to assume that a receptor with a K1∕2 in that range (e.g. P2Y4 or P2X5) exerts an inhibitory effect. This study provides new insights into the interactions among individual P2 receptors in producing an ensemble response to extracellular ATP. PMID:27468270

  17. Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function

    PubMed Central

    Selvais, Charlotte; D'Auria, Ludovic; Tyteca, Donatienne; Perrot, Gwenn; Lemoine, Pascale; Troeberg, Linda; Dedieu, Stéphane; Noël, Agnès; Nagase, Hideaki; Henriet, Patrick; Courtoy, Pierre J.; Marbaix, Etienne; Emonard, Hervé

    2011-01-01

    Low-density lipoprotein receptor-related protein-1 (LRP-1) is a plasma membrane scavenger and signaling receptor, composed of a large ligand-binding subunit (515-kDa α-chain) linked to a shorter transmembrane subunit (85-kDa β-chain). LRP-1 cell-surface level and function are controlled by proteolytic shedding of its ectodomain. Here, we identified ectodomain sheddases in human HT1080 cells and demonstrated regulation of the cleavage by cholesterol by comparing the classical fibroblastoid type with a spontaneous epithelioid variant, enriched ∼2-fold in cholesterol. Two membrane-associated metalloproteinases were involved in LRP-1 shedding: a disintegrin and metalloproteinase-12 (ADAM-12) and membrane-type 1 matrix metalloproteinase (MT1-MMP). Although both variants expressed similar levels of LRP-1, ADAM-12, MT1-MMP, and specific tissue inhibitor of metalloproteinases-2 (TIMP-2), LRP-1 shedding from epithelioid cells was ∼4-fold lower than from fibroblastoid cells. Release of the ectodomain was triggered by cholesterol depletion in epithelioid cells and impaired by cholesterol overload in fibroblastoid cells. Modulation of LRP-1 shedding on clearance was reflected by accumulation of gelatinases (MMP-2 and MMP-9) in the medium. We conclude that cholesterol exerts an important control on LRP-1 levels and function at the plasma membrane by modulating shedding of its ectodomain, and therefore represents a novel regulator of extracellular proteolytic activities.—Selvais, C., D'Auria, L., Tyteca, D., Perrot, G, Lemoine, P., Troeberg, L., Dedieu, S., Noël, A., Nagase, H., Henriet, P., Courtoy, P. J., Marbaix, E., Emonard, H. Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function. PMID:21518850

  18. Electron-impact excitation of the 1{sup 1}{ital S}{r_arrow}3{sup 1}{ital P} and 1{sup 1}{ital S}{r_arrow}4{sup 1}{ital P} transitions in helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khakoo, M.A.; Roundy, D.; Rugamas, F.

    1996-11-01

    The method of electron-photon coincidence is used to {open_quote}{open_quote}resolve{close_quote}{close_quote} the electron-impact excitation of the {ital n}{sup 1}{ital P} levels ({ital n}=3 and 4) from nearby levels. Experimentally determined ratios of the differential cross sections for the electron-impact excitation of 1{sup 1}{ital S}{r_arrow}2{sup 1}{ital P}, to 1{sup 1}{ital S}{r_arrow}3{sup 1}{ital P}, and 4{sup 1}{ital P} transitions are presented at 30-, 40-, and 80-eV incident electron energies. Differential cross sections for the 1{sup 1}{ital S}{r_arrow}3{sup 1}{ital P} and 1{sup 1}{ital S}{r_arrow}4{sup 1}{ital P} transitions are derived by normalizing these ratios to available experimental differential cross sections for the 1{sup 1}{ital S}{r_arrow}2{sup 1}{italmore » P} transition. The ratios and differential cross sections are compared to available theoretical and semiempirical data. {copyright} {ital 1996 The American Physical Society.}« less

  19. Induction of an interleukin-1 receptor (IL-1R) on monocytic cells. Evidence that the receptor is not encoded by a T cell-type IL-1R mRNA.

    PubMed

    Spriggs, M K; Lioubin, P J; Slack, J; Dower, S K; Jonas, U; Cosman, D; Sims, J E; Bauer, J

    1990-12-25

    Primary human monocytes and the human monocytic cell line THP-1 were induced to express receptors for interleukin-1 alpha (IL-1 alpha) and IL-1 beta. Treatment of primary monocytes with dexamethasone resulted in a 10-fold increase in receptor number over untreated cells, to approximately 2,000 receptors/cell. Treatment of THP-1 cells with phorbol ester followed by prostaglandin E2 and dexamethasone resulted in the expression of approximately 30,000 receptors/cell. Competitive binding assays on THP-1 cells showed that both IL-1 alpha and IL-1 beta bind to the same receptor. The monocyte IL-1R is significantly smaller (63 kDa) than the T cell IL-1R (80 kDa) and is immunologically distinct. However, induction of monocytes and monocytic cell lines leads to the appearance of an abundant mRNA of approximately 5,000 bases which hybridizes to a cDNA probe from the T cell-type IL-1R. Sequence data obtained from a cDNA clone of this mRNA indicate that the message is identical to the T cell IL-1R mRNA throughout the coding region. A smaller mRNA, also homologous to the T cell IL-1R mRNA, accumulated in induced THP-1 cells and has a shorter 3'-untranslated region than the larger. Data are presented which suggest that neither form of this message encodes the 63-kDa IL-1R, but rather that this protein is the product of a separate nonhomologous mRNA.

  20. Substance P enhances microglial density in the substantia nigra through neurokinin-1 receptor/NADPH oxidase-mediated chemotaxis in mice.

    PubMed

    Wang, Qingshan; Oyarzabal, Esteban; Wilson, Belinda; Qian, Li; Hong, Jau-Shyong

    2015-10-01

    The distribution of microglia varies greatly throughout the brain. The substantia nigra (SN) contains the highest density of microglia among different brain regions. However, the mechanism underlying this uneven distribution remains unclear. Substance P (SP) is a potent proinflammatory neuropeptide with high concentrations in the SN. We recently demonstrated that SP can regulate nigral microglial activity. In the present study, we further investigated the involvement of SP in modulating nigral microglial density in postnatal developing mice. Nigral microglial density was quantified in wild-type (WT) and SP-deficient mice from postnatal day 1 (P1) to P30. SP was detected at high levels in the SN as early as P1 and microglial density did not peak until around P30 in WT mice. SP-deficient mice (TAC1(-/-)) had a significant reduction in nigral microglial density. No differences in the ability of microglia to proliferate were observed between TAC1(-/-) and WT mice, suggesting that SP may alter microglial density through chemotaxic recruitment. SP was confirmed to dose-dependently attract microglia using a trans-well culture system. Mechanistic studies revealed that both the SP receptor neurokinin-1 receptor (NK1R) and the superoxide-producing enzyme NADPH oxidase (NOX2) were necessary for SP-mediated chemotaxis in microglia. Furthermore, genetic ablation and pharmacological inhibition of NK1R or NOX2 attenuated SP-induced microglial migration. Finally, protein kinase Cδ (PKCδ) was recognized to couple SP/NK1R-mediated NOX2 activation. Altogether, we found that SP partly accounts for the increased density of microglia in the SN through chemotaxic recruitment via a novel NK1R-NOX2 axis-mediated pathway. © 2015 Authors; published by Portland Press Limited.

  1. A comparative analysis of the activity of ligands acting at P2X and P2Y receptor subtypes in models of neuropathic, acute and inflammatory pain

    PubMed Central

    Andó, RD; Méhész, B; Gyires, K; Illes, P; Sperlágh, B

    2010-01-01

    Background and purpose: This study was undertaken to compare the analgesic activity of antagonists acting at P2X1, P2X7, and P2Y12 receptors and agonists acting at P2Y1, P2Y2, P2Y4, and P2Y6 receptors in neuropathic, acute, and inflammatory pain. Experimental approach: The effect of the wide spectrum P2 receptor antagonist PPADS, the selective P2X7 receptor antagonist Brilliant Blue G (BBG), the P2X1 receptor antagonist (4,4′,4″,4-[carbonylbis(imino-5,1,3-benzenetriyl-bis(carbonylimino))]tetrakis-1,3-benzenedisulfonic acid, octasodium salt (NF449) and (8,8′-[carbonylbis(imino-3,1-phenylenecarbonylimino)]bis-1,3,5-naphthalene-trisulphonic acid, hexasodium salt (NF023), the P2Y12 receptor antagonist (2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyloxymethyl)-propylester (MRS2395), the selective P2Y1 receptor agonist ([[(1R,2R,3S,4R,5S)-4-[6-amino-2-(methylthio)-9H-purin-9-yl]-2,3-dihydroxybicyclo[3.1.0]hex-1-yl]methyl] diphosphoric acid mono ester trisodium salt (MRS2365), the P2Y2/P2Y4 agonist uridine-5′-triphosphate (UTP), and the P2Y4/P2Y6 agonist uridine-5′-diphosphate (UDP) were examined on mechanical allodynia in the Seltzer model of neuropathic pain, on acute thermal nociception, and on the inflammatory pain and oedema induced by complete Freund's adjuvant (CFA). Key results: MRS2365, MRS2395 and UTP, but not the other compounds, significantly alleviated mechanical allodynia in the neuropathic pain model, with the following rank order of minimal effective dose (mED) values: MRS2365 > MRS2395 > UTP. All compounds had a dose-dependent analgesic action in acute pain except BBG, which elicited hyperalgesia at a single dose. The rank order of mED values in acute pain was the following: MRS2365 > MRS2395 > NF449 > NF023 > UDP = UTP > PPADS. MRS2365 and MRS2395 had a profound, while BBG had a mild effect on inflammatory pain, with a following rank order of mED values: MRS2395 > MRS2365 > BBG. None of the tested

  2. Comparative Expression Analysis of Cytochrome P450 1A1, Cytochrome P450 1B1 and Nuclear Receptors in the Female Genital and Colorectal Tissues of Human and Pigtailed Macaque

    PubMed Central

    Hu, Minlu; Zhou, Tian; Pearlman, Andrew P; Paton, Dorothy L; Rohan, Lisa C

    2017-01-01

    Summary This manuscript summarizes our recent progress in examine the CYP1A1 and CYP1B1 as well as a number of nuclear receptors in the female genital and colorectal tissues of human and pigtailed macaque. Understanding the nuclear receptor mediated regulation of CYP1A1 and 1B1 expression in these tissues is necessary for identifying cancer risk factors and developing CYP1A1/1B1-targeted anti-cancer therapeutics. However, there is a lack of systematic and comparative analysis of the expression profile of CYP1A1, 1B1 and NRs in the female genital and colorectal tissues of human and clinically relevant animal models. The current study aims to fill this gap. We found CYP1A1, CYP1B1 and a number of nuclear receptors were expressed in the female genital and colorectal tissues of human and macaque. However, the mRNA level and protein localization of these CYP enzymes and NRs depended on the type of tissue examined. Cytochrome P450 (CYP) 1A1 and CYP1B1 activate hormonal and environmental procarcinogens, and are associated with carcinogenesis in female genital and colorectal tissues. Understanding the nuclear receptor (NR) mediated regulation of CYP expression in these tissues is necessary for identifying cancer risk factors and developing CYP1A1/1B1-targeted anti-cancer therapeutics. The study aims to analyze the expression profile of CYP1A1, 1B1 and NRs in the female genital and colorectal tissues of human and pigtailed macaques. We found that compared to the liver, human CYP1A1 mRNA level in the genital and colorectal tissues was significantly lower, while the CYP1B1 level was significantly higher. CYP1A1 protein was mainly localized in the plasma membrane of the uterine and endocervical epithelial cells. The CYP1B1 protein was concentrated in the nucleus of genital and colorectal tissues. Fourteen NRs in the genital tract and 12 NRs in colorectal tissue were expressed at levels similar to or higher than the liver. The expression and localization of CYP1A1, CYP1B1, and

  3. AMPA receptor activation controls type I metabotropic glutamate receptor signalling via a tyrosine kinase at parallel fibre-Purkinje cell synapses.

    PubMed

    Auger, Céline; Ogden, David

    2010-08-15

    Metabotropic glutamate receptors type 1 (mGluR1s) and ionotropic AMPA receptors (AMPARs) are colocalized at parallel fibre (PF) to Purkinje cell synapses of the cerebellum. Single stimulation of PFs activates fast AMPAR excitatory postsynaptic currents, whereas the activation of mGluR1s requires burst stimulation. mGluR1s signal through several pathways in Purkinje cells and the most prominent is the activation of a slow EPSC (sEPSC). To separate the two synaptic currents, studies of the sEPSC have commonly been performed in the presence of AMPA/KA receptor antagonists. We show here in rat cerebellar slices that inhibition of the fast EPSC by AMPAR antagonists strongly and selectively potentiates the mGluR1 sEPSC, showing a negative regulation of mGluR1 by AMPAR. This effect is observed with low concentrations of NBQX (300 nM to 1 microM), with the selective AMPAR antagonist GYKI 53655 and also with gamma-DGG, a low affinity glutamate receptor antagonist. When photorelease of glutamate from MNI-glutamate was used to study the postsynaptic responses in isolation, AMPAR inhibition produced a similar potentiation of the mGluR1 sEPSC, showing that the interaction is postsynaptic. Finally, perfusion of the postsynaptic cell with PP1, an inhibitor of src-family tyrosine kinase, increased the amplitude of the mGluR1 sEPSC and occluded the effect of AMPAR inhibition. Thus, at PF to Purkinje cell synapses, AMPAR activation inhibits the mGluR1 sEPSC via activation of a src-family tyrosine kinase. Consequently mGluR1 signalling will be more sensitive to spillover of glutamate than to local synaptic release. Furthermore, it will be enhanced at silent PF synapses which are the majority in Purkinje cells.

  4. The amphiphilic peptide adenoregulin enhances agonist binding to A1-adenosine receptors and [35S]GTP gamma S to brain membranes.

    PubMed

    Moni, R W; Romero, F S; Daly, J W

    1995-08-01

    1. Adenoregulin is an amphilic peptide isolated from skin mucus of the tree frog, Phyllomedusa bicolor. Synthetic adenoregulin enhanced the binding of agonists to several G-protein-coupled receptors in rat brain membranes. 2. The maximal enhancement of agonist binding, and in parentheses, the concentration of adenoregulin affording maximal enhancement were as follows: 60% (20 microM) for A1-adenosine receptors, 30% (100 microM) for A2a-adenosine receptors, 20% (2 microM) for alpha 2-adrenergic receptors, and 30% (10 microM) for 5HT1A receptors. High affinity agonist binding for A1-, alpha 2-, and 5HT1A-receptors was virtually abolished by GTP gamma S in the presence of adenoregulin, but was only partially abolished in its absence. Magnesium ions increased the binding of agonists to receptors and reduced the enhancement elicited by adenoregulin. 3. The effect of adenoregulin on binding of N6-cyclohexyladenosine ([3H]CHA) to A1-receptors was relatively slow and was irreversible. Adenoregulin increased the Bmax value for [3H]CHA binding sites, and the proportion of high affinity states, and slowed the rate of [3H]CHA dissociation. Binding of the A1-selective antagonist, [3H]DPCPX, was maximally enhanced by only 13% at 2 microM adenoregulin. Basal and A1-adenosine receptor-stimulated binding of [35S]GTP gamma S were maximally enhanced 45% and 23%, respectively, by 50 microM adenoregulin. In CHAPS-solubilized membranes from rat cortex, the binding of both [3H]CHA and [3H]DPCPX were enhanced by adenoregulin. Binding of [3H]CHA to membranes from DDT1 MF-2 cells was maximally enhanced 17% at 20 microM adenoregulin. In intact DDT1 MF-2 cells, 20 microM adenoregulin did not potentiate the inhibition of cyclic AMP accumulation mediated via the adenosine A1 receptor. 4. It is proposed that adenoregulin enhances agonist binding through a mechanism involving enhancement of guanyl nucleotide exchange at G-proteins, resulting in a conversion of receptors into a high affinity state

  5. Glucagon-like peptide-1 receptor agonists versus insulin glargine for type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Li, Wei-Xin; Gou, Jian-Feng; Tian, Jin-Hui; Yan, Xiang; Yang, Lin

    2010-01-01

    Background: Glucagon-like peptide-1 (GLP-1) receptor agonists are a new class of hypoglycemic drugs, including exenatide, liraglutide, albiglutide, lixisenatide, and taspoglutide. Insulin glargine is a standard agent used to supplement basal insulin in type 2 diabetes mellitus (T2DM). Objective: The aim of this study was to review the efficacy and safety profiles of GLP-1 receptor agonists versus insulin glargine in type 2 diabetic patients who have not achieved treatment goals with oral hypoglycemic agents. Methods: The Cochrane Library, MEDLINE, EMBASE, Science Citation Index Expanded, and the database of ongoing trials were searched from inception through April 2010. Additional data were sought from relevant Web sites, the American Diabetes Association, reference lists of included trials and related (systematic) reviews, and industry. Randomized controlled trials (RCTs) were selected if they were ≥3 months in duration, compared GLP-1 receptor agonists with insulin glargine in patients with T2DM, and included ≥1 of the following outcomes: mortality, complications of T2DM, glycemie control, weight, lipids, blood pressure, adverse effects, and health-related quality of life. Quasirandomized controlled trials were excluded. The quality of the eligible studies was assessed on the basis of the following aspects: randomization procedure, allocation concealment, blinding, incomplete outcome data (intent-to-treat [ITT] analysis), selective outcome reporting, and publication bias. Results: A total of 410 citations were retrieved; 5 multicenter RCTs that met the inclusion criteria were identified. They were all open-label designs with an insulin glargine arm, predefined outcomes reported, and ITT analysis. One trial had an unclear randomization procedure and allocation concealment. Publication bias was not able to be determined. No data wete found with regard to mortality or diabetes-associated complications, and few data were found on quality of life. The results of

  6. Dynamic Cross Talk between S1P and CXCL12 Regulates Hematopoietic Stem Cells Migration, Development and Bone Remodeling

    PubMed Central

    Golan, Karin; Kollet, Orit; Lapidot, Tsvee

    2013-01-01

    Hematopoietic stem cells (HSCs) are mostly retained in a quiescent non-motile mode in their bone marrow (BM) niches, shifting to a migratory cycling and differentiating state to replenish the blood with mature leukocytes on demand. The balance between the major chemo-attractants CXCL12, predominantly in the BM, and S1P, mainly in the blood, dynamically regulates HSC recruitment to the circulation versus their retention in the BM. During alarm situations, stress-signals induce a decrease in CXCL12 levels in the BM, while S1P levels are rapidly and transiently increased in the circulation, thus favoring mobilization of stem cells as part of host defense and repair mechanisms. Myeloid cytokines, including G-CSF, up-regulate S1P signaling in the BM via the PI3K pathway. Induced CXCL12 secretion from stromal cells via reactive oxygen species (ROS) generation and increased S1P1 expression and ROS signaling in HSCs, all facilitate mobilization. Bone turnover is also modulated by both CXCL12 and S1P, regulating the dynamic BM stromal microenvironment, osteoclasts and stem cell niches which all functionally express CXCL12 and S1P receptors. Overall, CXCL12 and S1P levels in the BM and circulation are synchronized to mutually control HSC motility, leukocyte production and osteoclast/osteoblast bone turnover during homeostasis and stress situations. PMID:24276423

  7. Mortality Benefit of Recombinant Human Interleukin-1 Receptor Antagonist for Sepsis Varies by Initial Interleukin-1 Receptor Antagonist Plasma Concentration.

    PubMed

    Meyer, Nuala J; Reilly, John P; Anderson, Brian J; Palakshappa, Jessica A; Jones, Tiffanie K; Dunn, Thomas G; Shashaty, Michael G S; Feng, Rui; Christie, Jason D; Opal, Steven M

    2018-01-01

    Plasma interleukin-1 beta may influence sepsis mortality, yet recombinant human interleukin-1 receptor antagonist did not reduce mortality in randomized trials. We tested for heterogeneity in the treatment effect of recombinant human interleukin-1 receptor antagonist by baseline plasma interleukin-1 beta or interleukin-1 receptor antagonist concentration. Retrospective subgroup analysis of randomized controlled trial. Multicenter North American and European clinical trial. Five hundred twenty-nine subjects with sepsis and hypotension or hypoperfusion, representing 59% of the original trial population. Random assignment of placebo or recombinant human interleukin-1 receptor antagonist × 72 hours. We measured prerandomization plasma interleukin-1 beta and interleukin-1 receptor antagonist and tested for statistical interaction between recombinant human interleukin-1 receptor antagonist treatment and baseline plasma interleukin-1 receptor antagonist or interleukin-1 beta concentration on 28-day mortality. There was significant heterogeneity in the effect of recombinant human interleukin-1 receptor antagonist treatment by plasma interleukin-1 receptor antagonist concentration whether plasma interleukin-1 receptor antagonist was divided into deciles (interaction p = 0.046) or dichotomized (interaction p = 0.028). Interaction remained present across different predicted mortality levels. Among subjects with baseline plasma interleukin-1 receptor antagonist above 2,071 pg/mL (n = 283), recombinant human interleukin-1 receptor antagonist therapy reduced adjusted mortality from 45.4% to 34.3% (adjusted risk difference, -0.12; 95% CI, -0.23 to -0.01), p = 0.044. Mortality in subjects with plasma interleukin-1 receptor antagonist below 2,071 pg/mL was not reduced by recombinant human interleukin-1 receptor antagonist (adjusted risk difference, +0.07; 95% CI, -0.04 to +0.17), p = 0.230. Interaction between plasma interleukin-1 beta concentration and recombinant human

  8. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization

    PubMed Central

    Hayafune, Masahiro; Berisio, Rita; Marchetti, Roberta; Silipo, Alba; Kayama, Miyu; Desaki, Yoshitake; Arima, Sakiko; Squeglia, Flavia; Ruggiero, Alessia; Tokuyasu, Ken; Molinaro, Antonio; Kaku, Hanae; Shibuya, Naoto

    2014-01-01

    Perception of microbe-associated molecular patterns (MAMPs) through pattern recognition receptors (PRRs) triggers various defense responses in plants. This MAMP-triggered immunity plays a major role in the plant resistance against various pathogens. To clarify the molecular basis of the specific recognition of chitin oligosaccharides by the rice PRR, CEBiP (chitin-elicitor binding protein), as well as the formation and activation of the receptor complex, biochemical, NMR spectroscopic, and computational studies were performed. Deletion and domain-swapping experiments showed that the central lysine motif in the ectodomain of CEBiP is essential for the binding of chitin oligosaccharides. Epitope mapping by NMR spectroscopy indicated the preferential binding of longer-chain chitin oligosaccharides, such as heptamer-octamer, to CEBiP, and also the importance of N-acetyl groups for the binding. Molecular modeling/docking studies clarified the molecular interaction between CEBiP and chitin oligosaccharides and indicated the importance of Ile122 in the central lysine motif region for ligand binding, a notion supported by site-directed mutagenesis. Based on these results, it was indicated that two CEBiP molecules simultaneously bind to one chitin oligosaccharide from the opposite side, resulting in the dimerization of CEBiP. The model was further supported by the observations that the addition of (GlcNAc)8 induced dimerization of the ectodomain of CEBiP in vitro, and the dimerization and (GlcNAc)8-induced reactive oxygen generation were also inhibited by a unique oligosaccharide, (GlcNβ1,4GlcNAc)4, which is supposed to have N-acetyl groups only on one side of the molecule. Based on these observations, we proposed a hypothetical model for the ligand-induced activation of a receptor complex, involving both CEBiP and Oryza sativa chitin-elicitor receptor kinase-1. PMID:24395781

  9. Neuromedin U Type 1 Receptor Stimulation of A-type K+ Current Requires the βγ Subunits of Go Protein, Protein Kinase A, and Extracellular Signal-regulated Kinase 1/2 (ERK1/2) in Sensory Neurons*

    PubMed Central

    Zhang, Yiming; Jiang, Dongsheng; Zhang, Yuan; Jiang, Xinghong; Wang, Fen; Tao, Jin

    2012-01-01

    Although neuromedin U (NMU) has been implicated in analgesia, the detailed mechanisms still remain unclear. In this study, we identify a novel functional role of NMU type 1 receptor (NMUR1) in regulating the transient outward K+ currents (IA) in small dorsal root ganglion (DRG) neurons. We found that NMU reversibly increased IA in a dose-dependent manner, instead the sustained delayed rectifier K+ current (IDR) was not affected. This NMU-induced IA increase was pertussis toxin-sensitive and was totally reversed by NMUR1 knockdown. Intracellular application of GDPβS (guanosine 5′-O-(2-thiodiphosphate)), QEHA peptide, or a selective antibody raised against the Gαo or Gβ blocked the stimulatory effects of NMU. Pretreatment of the cells with the protein kinase A (PKA) inhibitor or ERK inhibitor abolished the NMU-induced IA response, whereas inhibition of phosphatidylinositol 3-kinase or PKC had no such effects. Exposure of DRG neurons to NMU markedly induced the phosphorylation of ERK (p-ERK), whereas p-JNK or p-p38 was not affected. Moreover, the NMU-induced p-ERK increase was attenuated by PKA inhibition and activation of PKA by foskolin would mimic the NMU-induced IA increase. Functionally, we observed a significant decrease of the firing rate of neuronal action potential induced by NMU and pretreatment of DRG neurons with 4-AP could abolish this effect. In summary, these results suggested that NMU increases IA via activation of NMUR1 that couples sequentially to the downstream activities of Gβγ of the Go protein, PKA, and ERK, which could contribute to its physiological functions including neuronal hypoexcitability in DRG neurons. PMID:22493291

  10. Arrestin-dependent angiotensin AT1 receptor signaling regulates Akt and mTor-mediated protein synthesis.

    PubMed

    Kendall, Ryan T; Lee, Mi-Hye; Pleasant, Dorea L; Robinson, Katherine; Kuppuswamy, Dhandapani; McDermott, Paul J; Luttrell, Louis M

    2014-09-19

    Control of protein synthesis is critical to both cell growth and proliferation. The mammalian target of rapamycin (mTOR) integrates upstream growth, proliferation, and survival signals, including those transmitted via ERK1/2 and Akt, to regulate the rate of protein translation. The angiotensin AT1 receptor has been shown to activate both ERK1/2 and Akt in arrestin-based signalsomes. Here, we examine the role of arrestin-dependent regulation of ERK1/2 and Akt in the stimulation of mTOR-dependent protein translation by the AT1 receptor using HEK293 and primary vascular smooth muscle cell models. Nascent protein synthesis stimulated by both the canonical AT1 receptor agonist angiotensin II (AngII), and the arrestin pathway-selective agonist [Sar(1)-Ile(4)-Ile(8)]AngII (SII), is blocked by shRNA silencing of βarrestin1/2 or pharmacological inhibition of Akt, ERK1/2, or mTORC1. In HEK293 cells, SII activates a discrete arrestin-bound pool of Akt and promotes Akt-dependent phosphorylation of mTOR and its downstream effector p70/p85 ribosomal S6 kinase (p70/85S6K). In parallel, SII-activated ERK1/2 helps promote mTOR and p70/85S6K phosphorylation, and is required for phosphorylation of the known ERK1/2 substrate p90 ribosomal S6 kinase (p90RSK). Thus, arrestins coordinate AT1 receptor regulation of ERK1/2 and Akt activity and stimulate protein translation via both Akt-mTOR-p70/85S6K and ERK1/2-p90RSK pathways. These results suggest that in vivo, arrestin pathway-selective AT1 receptor agonists may promote cell growth or hypertrophy through arrestin-mediated mechanisms despite their antagonism of G protein signaling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. S-Nitrosation destabilizes glutathione transferase P1-1.

    PubMed

    Balchin, David; Stoychev, Stoyan H; Dirr, Heini W

    2013-12-23

    Protein S-nitrosation is a post-translational modification that regulates the function of more than 500 human proteins. Despite its apparent physiological significance, S-nitrosation is poorly understood at a molecular level. Here, we investigated the effect of S-nitrosation on the activity, structure, stability, and dynamics of human glutathione transferase P1-1 (GSTP1-1), an important detoxification enzyme ubiquitous in aerobes. S-Nitrosation at Cys47 and Cys101 reduces the activity of the enzyme by 94%. Circular dichroism spectroscopy, acrylamide quenching, and amide hydrogen-deuterium exchange mass spectrometry experiments indicate that the loss of activity is caused by the introduction of local disorder at the active site of GSTP1-1. Furthermore, the modification destabilizes domain 1 of GSTP1-1 against denaturation, smoothing the unfolding energy landscape of the protein and introducing a refolding defect. In contrast, S-nitrosation at Cys101 alone introduces a refolding defect in domain 1 but compensates by stabilizing the domain kinetically. These data elucidate the physical basis for the regulation of GSTP1-1 by S-nitrosation and provide general insight into the consequences of S-nitrosation on protein stability and dynamics.

  12. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway.

    PubMed

    Zhai, Weiwei; Chen, Dongdong; Shen, Haitao; Chen, Zhouqing; Li, Haiying; Yu, Zhengquan; Chen, Gang

    2016-06-14

    This study was designed to determine the role of the A1 adenosine receptors in intracerebral hemorrhage (ICH)-induced secondary brain injury and the underlying mechanisms. A collagenase-induced ICH model was established in Sprague-Dawley rats, and cultured primary rat cortical neurons were exposed to oxyhemoglobin at a concentration of 10 μM to mimic ICH in vitro. The A1 adenosine receptor agonist N(6)-cyclohexyladenosine and antagonist 8-phenyl-1,3-dipropylxanthine were used to study the role of A1 adenosine receptor in ICH-induced secondary brain injury, and antagonists of P38 and Hsp27 were used to study the underlying mechanisms of A1 adenosine receptor actions. The protein level of A1 adenosine receptor was significantly increased by ICH, while there was no significant change in protein levels of the other 3 adenosine receptors. In addition, the A1 adenosine receptor expression could be increased by N(6)-cyclohexyladenosine and decreased by 8-phenyl-1,3-dipropylxanthine under ICH conditions. Activation of the A1 adenosine receptor attenuated neuronal apoptosis in the subcortex, which was associated with increased phosphorylation of P38, MAPK, MAPKAP2, and Hsp27. Inhibition of the A1 adenosine receptor resulted in opposite effects. Finally, the neuroprotective effect of the A1 adenosine receptor agonist N(6)-cyclohexyladenosine was inhibited by antagonists of P38 and Hsp27. This study demonstrates that activation of the A1 adenosine receptor by N(6)-cyclohexyladenosine could prevent ICH-induced secondary brain injury via the P38-MAPKAP2-Hsp27 pathway.

  13. New Role for Interleukin-13 Receptor α1 in Myocardial Homeostasis and Heart Failure.

    PubMed

    Amit, Uri; Kain, David; Wagner, Allon; Sahu, Avinash; Nevo-Caspi, Yael; Gonen, Nir; Molotski, Natali; Konfino, Tal; Landa, Natalie; Naftali-Shani, Nili; Blum, Galia; Merquiol, Emmanuelle; Karo-Atar, Danielle; Kanfi, Yariv; Paret, Gidi; Munitz, Ariel; Cohen, Haim Y; Ruppin, Eytan; Hannenhalli, Sridhar; Leor, Jonathan

    2017-05-20

    The immune system plays a pivotal role in myocardial homeostasis and response to injury. Interleukins-4 and -13 are anti-inflammatory type-2 cytokines, signaling via the common interleukin-13 receptor α1 chain and the type-2 interleukin-4 receptor. The role of interleukin-13 receptor α1 in the heart is unknown. We analyzed myocardial samples from human donors (n=136) and patients with end-stage heart failure (n=177). We found that the interleukin-13 receptor α1 is present in the myocardium and, together with the complementary type-2 interleukin-4 receptor chain Il4ra , is significantly downregulated in the hearts of patients with heart failure. Next, we showed that Il13ra1 -deficient mice develop severe myocardial dysfunction and dyssynchrony compared to wild-type mice (left ventricular ejection fraction 29.7±9.9 versus 45.0±8.0; P =0.004, left ventricular end-diastolic diameter 4.2±0.2 versus 3.92±0.3; P =0.03). A bioinformatic analysis of mouse hearts indicated that interleukin-13 receptor α1 regulates critical pathways in the heart other than the immune system, such as extracellular matrix (normalized enrichment score=1.90; false discovery rate q=0.005) and glucose metabolism (normalized enrichment score=-2.36; false discovery rate q=0). Deficiency of Il13ra1 was associated with reduced collagen deposition under normal and pressure-overload conditions. The results of our studies in humans and mice indicate, for the first time, a role of interleukin-13 receptor α1 in myocardial homeostasis and heart failure and suggests a new therapeutic target to treat heart disease. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. Medicinal chemistry of P2X receptors: allosteric modulators.

    PubMed

    Müller, Christa E

    2015-01-01

    P2X receptors are trimeric ligand-gated ion channels whose potential as novel drug targets for a number of diseases has been recognized. They are mainly involved in inflammatory processes, including neuroinflammation, and pain sensation. The orthosteric binding site is lined by basic amino acid residues that bind the negatively charged agonist ATP. Therefore it is not easy to develop orthosteric ligands that possess drug-like properties for such a highly polar binding site. However, ligand-gated ion channels offer multiple additional binding sites for allosteric ligands, positive or negative allosteric modulators enhancing or blocking receptor function. So far, the P2X3 (and P2X2/3), as well as the P2X7 receptor subtype have been the main focus of drug development efforts. A number of potent and selective allosteric antagonists have been developed to block these receptors. We start to see the development of novel allosteric ligands also for the other P2X receptor subtypes, P2X1, P2X2 and especially P2X4. The times when only poor, non-selective, non-drug-like tools for studying P2X receptor function were available have been overcome. The first clinical studies with allosteric P2X3 and P2X7 antagonists suggest that P2X therapeutics may soon become a reality.

  15. Engagement of S1P₁-degradative mechanisms leads to vascular leak in mice.

    PubMed

    Oo, Myat Lin; Chang, Sung-Hee; Thangada, Shobha; Wu, Ming-Tao; Rezaul, Karim; Blaho, Victoria; Hwang, Sun-Il; Han, David K; Hla, Timothy

    2011-06-01

    GPCR inhibitors are highly prevalent in modern therapeutics. However, interference with complex GPCR regulatory mechanisms leads to both therapeutic efficacy and adverse effects. Recently, the sphingosine-1-phosphate (S1P) receptor inhibitor FTY720 (also known as Fingolimod), which induces lymphopenia and prevents neuroinflammation, was adopted as a disease-modifying therapeutic in multiple sclerosis. Although highly efficacious, dose-dependent increases in adverse events have tempered its utility. We show here that FTY720P induces phosphorylation of the C-terminal domain of S1P receptor 1 (S1P₁) at multiple sites, resulting in GPCR internalization, polyubiquitinylation, and degradation. We also identified the ubiquitin E3 ligase WWP2 in the GPCR complex and demonstrated its requirement in FTY720-induced receptor degradation. GPCR degradation was not essential for the induction of lymphopenia, but was critical for pulmonary vascular leak in vivo. Prevention of receptor phosphorylation, internalization, and degradation inhibited vascular leak, which suggests that discrete mechanisms of S1P receptor regulation are responsible for the efficacy and adverse events associated with this class of therapeutics.

  16. Dissociated Agonist of Glucocorticoid Receptor or Prednisone for Active Rheumatoid Arthritis: Effects on P1NP and Osteocalcin Pharmacodynamics

    PubMed Central

    Shoji, S; Suzuki, A; Conrado, DJ; Peterson, MC; Hey‐Hadavi, J; McCabe, D; Rojo, R

    2017-01-01

    Fosdagrocorat (PF‐04171327), a dissociated agonist of the glucocorticoid receptor, has potent anti‐inflammatory activity in patients with rheumatoid arthritis with reduced adverse effects on bone health. To identify fosdagrocorat doses with bone formation marker changes similar to prednisone 5 mg, we characterized treatment‐related changes in amino‐terminal propeptide of type I collagen (P1NP) and osteocalcin (OC) with fosdagrocorat (1, 5, 10, or 15 mg) and prednisone (5 or 10 mg) in a phase II randomized trial (N = 323). The time course of markers utilized a mixed‐effects longitudinal kinetic‐pharmacodynamic model. Median predicted changes from baseline at week 8 with fosdagrocorat 5, 10, and 15 mg were −18, −22, and −22% (P1NP), and −7, −13, and −17% (OC), respectively. Changes with prednisone 5 and 10 mg were −15% and −18% (P1NP) and −10% and −17% (OC). The probability of fosdagrocorat doses up to 15 mg being noninferior to prednisone 5 mg for P1NP and OC changes was >90%. PMID:28556506

  17. Calculations of resonances parameters for the ((2s2) 1Se, (2s2p) 1,3P0) and ((3s2) 1Se, (3s3p) 1,3P0) doubly excited states of helium-like ions with Z≤10 using a complex rotation method implemented in Scilab

    NASA Astrophysics Data System (ADS)

    Gning, Youssou; Sow, Malick; Traoré, Alassane; Dieng, Matabara; Diakhate, Babacar; Biaye, Mamadi; Wagué, Ahmadou

    2015-01-01

    In the present work a special computational program Scilab (Scientific Laboratory) in the complex rotation method has been used to calculate resonance parameters of ((2s2) 1Se, (2s2p) 1,3P0) and ((3s2) 1Se, (3s3p) 1,3P0) states of helium-like ions with Z≤10. The purpose of this study required a mathematical development of the Hamiltonian applied to Hylleraas wave function for intrashell states, leading to analytical expressions which are carried out under Scilab computational program. Results are in compliance with recent theoretical calculations.

  18. Deletion of angiotensin II type 1 receptor gene attenuates chronic alcohol-induced retinal ganglion cell death with preservation of VEGF expression.

    PubMed

    Miao, Xiao; Lv, Huayi; Wang, Bo; Chen, Qiang; Miao, Lining; Su, Guanfang; Tan, Yi

    2013-01-01

    To investigate how chronic alcohol consumption affects adult visual nervous system and whether renin-angiotensin system (RAS) is involved in this pathogenic process. Male transgenic mice with angiotensin II (Ang II) type 1 (AT1) receptor gene knockout (AT1-KO) and age-matched wild-type (WT) mice were pair-fed a modified Lieber-DeCarli alcohol or isocaloric maltose dextrin control liquid diet for 2 months. At the end of the study, retinas were harvested and subjected to histopathological and immunohistochemical examination. We found that chronic alcohol consumption significantly increased retinal ganglion cell (RGC) apoptosis in the retina of WT mice, but not AT1-KO mice, detected by terminal deoxynucleotidyl-transferase-mediated dUTP-nick-end labeling staining and caspase 3 activation, along with an up-regulation of AT1 expression in RGC. At the same time, the phosphorylation of P53 in RGCs was significantly increased for both WT and AT1-KO mice exposed to alcohol, which could be significantly, although partially, prevented by AT1 gene deletion. We further examined the expression of vascular endothelial growth factor (VEGF) and CD31, and found that alcohol treatment significantly decreased the expression of VEGF and CD31 in RGCs of WT mice, but not AT1-KO mice. Taken together, our study demonstrates that the induction of RGC apoptosis by chronic alcohol exposure may be related to p53-activation and VEGF depression, all which are partially dependent of AT1 receptor activation.

  19. Differential inhibition of N and P/Q Ca2+ currents by 5-HT1A and 5-HT1D receptors in spinal neurons of Xenopus larvae

    PubMed Central

    Sun, Qian-Quan; Dale, Nicholas

    1998-01-01

    In whole-cell patch clamp recordings made from non-sensory neurons acutely isolated from the spinal cord of Xenopus (stage 40–42) larvae, two forms of inhibition of the high voltage-activated (HVA) Ca2+ currents were produced by 5-HT. One was voltage dependent and associated with both slowing of the activation kinetics and shifting of the voltage dependence of the HVA currents. This inhibition was relieved by strong depolarizing prepulses. A second form of inhibition was neither associated with slowing of the activation kinetics nor relieved by depolarizing prepulses and was thus voltage independent. In all neurons examined, 5-HT (1 μM) reversibly reduced 34 ± 1.6 % (n = 102) of the HVA Ca2+ currents. In about 40 % of neurons, the inhibition was totally voltage independent. In another 5 %, the inhibition was totally voltage dependent. In the remaining neurons, inhibition was only partially (by around 40 %) relieved by a large depolarizing prepulse, suggesting that in these, the inhibition consisted of both voltage-dependent and -independent components. By using selective channel blockers, we found that 5-HT acted on both N- and P/Q-type channels. However, whereas the inhibition of P/Q-type currents was only voltage independent, the inhibition of N-type currents had both voltage-dependent and -independent components. The effects of 5-HT on HVA Ca2+ currents were mediated by 5-HT1A and 5-HT1D receptors. The 5-HT1A receptors not only preferentially caused voltage-independent inhibition, but did so by acting mainly on the ω-agatoxin-IVA-sensitive Ca2+ channels. In contrast, the 5-HT1D receptor produced both voltage-dependent and -independent inhibition and was preferentially coupled to ω-conotoxin-GVIA sensitive channels. This complexity of modulation may allow fine tuning of transmitter release and calcium signalling in the spinal circuitry of Xenopus larvae. PMID:9625870

  20. Activation of 5-HT7 serotonin receptors reverses metabotropic glutamate receptor-mediated synaptic plasticity in wild-type and Fmr1 knockout mice, a model of Fragile X syndrome.

    PubMed

    Costa, Lara; Spatuzza, Michela; D'Antoni, Simona; Bonaccorso, Carmela M; Trovato, Chiara; Musumeci, Sebastiano A; Leopoldo, Marcello; Lacivita, Enza; Catania, Maria V; Ciranna, Lucia

    2012-12-01

    Fragile X syndrome (FXS) is a genetic cause of intellectual disability and autism. Fmr1 knockout (Fmr1 KO) mice, an animal model of FXS, exhibit spatial memory impairment and synapse malfunctioning in the hippocampus, with abnormal enhancement of long-term depression mediated by metabotropic glutamate receptors (mGluR-LTD). The neurotransmitter serotonin (5-HT) modulates hippocampal-dependent learning through serotonin 1A (5-HT1A) and serotonin 7 (5-HT7) receptors; the underlying mechanisms are unknown. We used electrophysiology to test the effects of 5-HT on mGluR-LTD in wild-type and Fmr1 KO mice and immunocytochemistry and biotinylation assay to study related changes of 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA) glutamate receptor surface expression. Application of 5-HT or 8-OH-DPAT (a mixed 5-HT1A/5-HT7 agonist) reversed mGluR-LTD in hippocampal slices. Reversal of mGluR-LTD by 8-OH-DPAT persisted in the presence of the 5-HT1A receptor antagonist WAY-100635, was abolished by SB-269970 (5-HT7 receptor antagonist), and was mimicked by LP-211, a novel selective 5-HT7 receptor agonist. Consistently, 8-OH-DPAT decreased mGluR-mediated reduction of AMPA glutamate receptor 2 (GluR2) subunit surface expression in hippocampal slices and cultured hippocampal neurons, an effect mimicked by LP-211 and blocked by SB-269970. In Fmr1 KO mice, mGluR-LTD was abnormally enhanced; similarly to wild-type, 8-OH-DPAT reversed mGluR-LTD and decreased mGluR-induced reduction of surface AMPA receptors, an effect antagonized by SB-269970. Serotonin 7 receptor activation reverses metabotropic glutamate receptor-induced AMPA receptor internalization and LTD both in wild-type and in Fmr1 KO mice, correcting excessive mGluR-LTD. Therefore, selective activation of 5-HT7 receptors may represent a novel strategy in the therapy of FXS. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Use of NK1 receptor antagonists in the exploration of physiological functions of substance P and neurokinin A.

    PubMed

    Otsuka, M; Yoshioka, K; Yanagisawa, M; Suzuki, H; Zhao, F Y; Guo, J Z; Hosoki, R; Kurihara, T

    1995-07-01

    Tachykinin NK1 receptor antagonists were used to explore the physiological functions of substance P (SP) and neurokinin A (NKA). Pharmacological profiles of three NK1 receptor antagonists, GR71251, GR82334, and RP 67580, were examined in the isolated spinal cord preparation of the neonatal rat. These tachykinin receptor antagonists exhibited considerable specificities and antagonized the actions of both SP and NKA to induce the depolarization of ventral roots. Electrical stimulation of the saphenous nerve with C-fiber strength evoked a depolarization lasting about 30 s of the ipsilateral L3 ventral root. This response, which is referred to as saphenous-nerve-evoked slow ventral root potential (VRP), was depressed by these NK1 receptor antagonists. In contrast, the saphenous-nerve-evoked slow VRP was potentiated by application of a mixture of peptidase inhibitors, including thiorphan, actinonin, and captopril in the presence of naloxone, but not after further addition of GR71251. Likewise, in the isolated coeliac ganglion of the guinea pig, electrical stimulation of the mesenteric nerves evoked in some ganglionic cells slow excitatory postsynaptic potentials (EPSPs), which were depressed by GR71251 and potentiated by peptidase inhibitors. These results further support the notion that SP and NKA serve as neurotransmitters producing slow EPSPs in the neonatal rat spinal cord and guinea pig prevertebral ganglia.

  2. A peptidases-resistant glycosylated analogue of substance P-(5-11). Specificity towards substance P receptors.

    PubMed

    Poujade, C; Lavielle, S; Torrens, Y; Beaujouan, J C; Glowinski, J; Marquet, A

    1984-09-01

    Glycosylated analogues of the C-terminal heptapeptide of substance P either free or blocked on the N-terminal glutamine were synthesized in order to develop a metabolically stable peptide that would have an increased specificity for one type of receptor. Of the analogue described, (N-alpha-Boc-beta-D-Glc-p (1----5) Gln) -Gln-Phe-Phe-Gly-Leu-Met-NH2 is highly resistant to degradation on exposure to rat hypothalamic slices. This glycosylated peptide is about one third as potent as substance P in eliciting contractions of the guinea-pig ileum and is almost devoided of affinity for the 125I-Bolton Hunter-SP specific binding sites on rat brain synaptosomes.

  3. A novel mutation in the P2Y12 receptor and a function-reducing polymorphism in protease-activated receptor 1 in a patient with chronic bleeding.

    PubMed

    Patel, Y M; Lordkipanidzé, M; Lowe, G C; Nisar, S P; Garner, K; Stockley, J; Daly, M E; Mitchell, M; Watson, S P; Austin, S K; Mundell, S J

    2014-05-01

    The study of patients with bleeding problems is a powerful approach in determining the function and regulation of important proteins in human platelets. We have identified a patient with a chronic bleeding disorder expressing a homozygous P2RY(12) mutation, predicting an arginine to cysteine (R122C) substitution in the G-protein-coupled P2Y(12) receptor. This mutation is found within the DRY motif, which is a highly conserved region in G-protein-coupled receptors (GPCRs) that is speculated to play a critical role in regulating receptor conformational states. To determine the functional consequences of the R122C substitution for P2Y(12) function. We performed a detailed phenotypic analysis of an index case and affected family members. An analysis of the variant R122C P2Y(12) stably expressed in cells was also performed. ADP-stimulated platelet aggregation was reduced as a result of a significant impairment of P2Y(12) activity in the patient and family members. Cell surface R122C P2Y(12) expression was reduced both in cell lines and in platelets; in cell lines, this was as a consequence of agonist-independent internalization followed by subsequent receptor trafficking to lysosomes. Strikingly, members of this family also showed reduced thrombin-induced platelet activation, owing to an intronic polymorphism in the F2R gene, which encodes protease-activated receptor 1 (PAR-1), that has been shown to be associated with reduced PAR-1 receptor activity. Our study is the first to demonstrate a patient with deficits in two stimulatory GPCR pathways that regulate platelet activity, further indicating that bleeding disorders constitute a complex trait. © 2014 International Society on Thrombosis and Haemostasis.

  4. The pharmacology of GR203040, a novel, potent and selective non-peptide tachykinin NK1 receptor antagonist.

    PubMed Central

    Beattie, D. T.; Beresford, I. J.; Connor, H. E.; Marshall, F. H.; Hawcock, A. B.; Hagan, R. M.; Bowers, J.; Birch, P. J.; Ward, P.

    1995-01-01

    1. The in vitro and in vivo pharmacology of GR203040 ((2S, 3S)-2-methoxy-5-tetrazol-1-yl-benzyl-(2-phenyl-piperidin-3-y l)-amine), a novel, highly potent and selective non-peptide tachykinin NK1 receptor antagonist, was investigated in the present study. 2. GR203040 potently inhibited [3H]-substance P binding to human NK1 receptors expressed in Chinese hamster ovary (CHO) and U373 MG astrocytoma cells, and NK1 receptors in ferret and gerbil cortex (pKi values of 10.3, 10.5, 10.1 and 10.1 respectively). GR203040 had lower affinity at rat NK1 receptors (pKi = 8.6) and little affinity for human NK2 receptors (pKi < 5.0) in CHO cells and NK3 receptors in guinea-pig cortex (pKi < 6.0). With the exception of the histamine H1 receptor (pIC50 = 7.5). GR203040 had little affinity (pIC50 < 6.0) at all non-NK1 receptors and ion channels examined. Furthermore, GR203040 produced only weak inhibition of Na+ currents in SH-SY5Y neuroblastoma and superior cervical ganglion cells (pIC50 values < 4.0). GR203040 produced only weak antagonism of Ca(2+)-evoked contractions of rat isolated portal vein (pKn = 4.1). The enantiomer of GR203040, GR205608 (2R, 3R)-2-methoxy-5-tetrazol-1-yl-benzyl-(2-phenyl-piperidin-3-y l)-amine), had 10,000 fold lower affinity at the human NK1 receptor expressed in CHO cells (pKi = 6.3). 3. In gerbil ex vivo binding experiments, GR203040 produced a dose-dependent inhibition of the binding of [3H]-substance P to cerebral cortical membranes (ED50 = 15 micrograms kg-1 s.c. and 0.42 mg kg-1 p.o.). At 10 micrograms kg-1 s.c., the inhibition of [3H]-substance P binding was maintained for > 6 h. In the rat, GR203040 was less potent (ED50 = 15.4 mg kg-1 s.c.) probably reflecting, at least in part, its lower affinity at the rat NK1 receptor. 4. In guinea-pig isolated ileum and dog isolated middle cerebral and basilar arteries, GR203040 produced a rightward displacement of the concentration-effect curves to substance P methyl ester (SPOMe) with suppression of the

  5. Pathophysiological consequences of receptor mistraffic: Tales from the platelet P2Y12 receptor.

    PubMed

    Cunningham, Margaret R; Aungraheeta, Riyaad; Mundell, Stuart J

    2017-07-05

    Genetic variations in G protein-coupled receptor (GPCR) genes can disrupt receptor function in a wide variety of human genetic diseases, including platelet bleeding disorders. Platelets are critical for haemostasis with inappropriate platelet activation leading to the development of arterial thrombosis, which can result in heart attack and stroke whilst decreased platelet activity is associated with an increased risk of bleeding. GPCRs expressed on the surface of platelets play key roles in regulating platelet activity and therefore function. Receptors include purinergic receptors (P2Y 1 and P2Y 12 ), proteinase-activated receptor (PAR1 and PAR4) and thromboxane receptors (TPα), among others. Pharmacological blockade of these receptors forms a powerful therapeutic tool in the treatment and prevention of arterial thrombosis. With the advance of genomic technologies, there has been a substantial increase in the identification of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms (SNPs) and insertion or deletions that have the potential to alter GPCR expression or function. A number of defects in platelet GPCRs that disrupt receptor function have now been characterized in patients with mild bleeding disorders. This review will focus on rare, function-disrupting variants of platelet GPCRs with particular emphasis upon mutations in the P2Y 12 receptor gene that affect receptor traffic to modulate platelet function. Further this review will outline how the identification and characterization of function-disrupting GPCR mutations provides an essential link in translating our detailed understanding of receptor traffic and function in cell line studies into relevant human biological systems. Copyright © 2017. Published by Elsevier B.V.

  6. Soluble tumor necrosis factor receptor p55 predicts cytokinemia and systemic inflammatory response after cardiopulmonary bypass.

    PubMed

    el-Barbary, Mahmoud; Khabar, Khalid S A

    2002-08-01

    To examine the behavior of soluble tumor necrosis factor (TNF) receptors in circulation before and after cardiopulmonary bypass and the relationship to the development of cytokinemia and acute complications comprising systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS). The predictive value of soluble TNF receptor is assessed herein. Prospective study comparing prebypass and postbypass levels in patients with and without complications indicative of SIRS and MODS. Cardiac surgical intensive care unit in a tertiary care hospital. A total of 20 pediatric patients who underwent cardiopulmonary bypass during open heart surgery. Blood samples were collected from catheters before and 2 hrs and 24 hrs after the onset of bypass. We measured plasma levels of soluble TNF receptors by using enzyme-linked immunosorbent assay in 20 patients before and after cardiopulmonary bypass. Clinical data, including duration of bypass and tests or signs indicative of SIRS/MODS, were collected. Soluble TNF receptor I (p55 sR), significantly increased (2241 +/- 312 pg/mL) at 2 hrs after bypass (p <.0005) and remained elevated (2826 +/- 695 pg/mL) at 1 day after bypass (p <.005) when compared with prebypass levels (725 +/- 130 pg/mL). Patients with the acute complications of SIRS/MODS had a higher ratio of postbypass to prebypass p55 sR levels (5.0-fold, p <.001) when compared with patients with no SIRS/MODS (1.75-fold). Remarkably, before surgery, levels of TNF p55 sR predict both cytokinemia (r =.67 to.73, p <.05) and SIRS/MODS (p <.01). The prebypass levels of TNF p55 sR were consistently higher (range, 1000-1400 pg/mL) in patients who subsequently developed SIRS/MODS than the levels (range, 400-570 pg/mL) in patients who did not develop SIRS/MODS. Hypotension, respiratory dysfunctions, and coagulopathy were particularly more prevailing (p <.005) among the complications that were associated with high prebypass levels of TNF p55 sR. Soluble TNF

  7. P17, an Original Host Defense Peptide from Ant Venom, Promotes Antifungal Activities of Macrophages through the Induction of C-Type Lectin Receptors Dependent on LTB4-Mediated PPARγ Activation

    PubMed Central

    Benmoussa, Khaddouj; Authier, Hélène; Prat, Mélissa; AlaEddine, Mohammad; Lefèvre, Lise; Rahabi, Mouna Chirine; Bernad, José; Aubouy, Agnès; Bonnafé, Elsa; Leprince, Jérome; Pipy, Bernard; Treilhou, Michel; Coste, Agnès

    2017-01-01

    Despite the growing knowledge with regard to the immunomodulatory properties of host defense peptides, their impact on macrophage differentiation and on its associated microbicidal functions is still poorly understood. Here, we demonstrated that the P17, a new cationic antimicrobial peptide from ant venom, induces an alternative phenotype of human monocyte-derived macrophages (h-MDMs). This phenotype is characterized by a C-type lectin receptors (CLRs) signature composed of mannose receptor (MR) and Dectin-1 expression. Concomitantly, this activation is associated to an inflammatory profile characterized by reactive oxygen species (ROS), interleukin (IL)-1β, and TNF-α release. P17-activated h-MDMs exhibit an improved capacity to recognize and to engulf Candida albicans through the overexpression both of MR and Dectin-1. This upregulation requires arachidonic acid (AA) mobilization and the activation of peroxisome proliferator-activated receptor gamma (PPARγ) nuclear receptor through the leukotriene B4 (LTB4) production. AA/LTB4/PPARγ/Dectin-1-MR signaling pathway is crucial for P17-mediated anti-fungal activity of h-MDMs, as indicated by the fact that the activation of this axis by P17 triggered ROS production and inflammasome-dependent IL-1β release. Moreover, we showed that the increased anti-fungal immune response of h-MDMs by P17 was dependent on intracellular calcium mobilization triggered by the interaction of P17 with pertussis toxin-sensitive G-protein-coupled receptors on h-MDMs. Finally, we also demonstrated that P17-treated mice infected with C. albicans develop less severe gastrointestinal infection related to a higher efficiency of their macrophages to engulf Candida, to produce ROS and IL-1β and to kill the yeasts. Altogether, these results identify P17 as an original activator of the fungicidal response of macrophages that acts upstream PPARγ/CLRs axis and offer new immunomodulatory therapeutic perspectives in the field of infectious diseases

  8. Efficient modulation of γ-aminobutyric acid type A receptors by piperine derivatives.

    PubMed

    Schöffmann, Angela; Wimmer, Laurin; Goldmann, Daria; Khom, Sophia; Hintersteiner, Juliane; Baburin, Igor; Schwarz, Thomas; Hintersteininger, Michael; Pakfeifer, Peter; Oufir, Mouhssin; Hamburger, Matthias; Erker, Thomas; Ecker, Gerhard F; Mihovilovic, Marko D; Hering, Steffen

    2014-07-10

    Piperine activates TRPV1 (transient receptor potential vanilloid type 1 receptor) receptors and modulates γ-aminobutyric acid type A receptors (GABAAR). We have synthesized a library of 76 piperine analogues and analyzed their effects on GABAAR by means of a two-microelectrode voltage-clamp technique. GABAAR were expressed in Xenopus laevis oocytes. Structure-activity relationships (SARs) were established to identify structural elements essential for efficiency and potency. Efficiency of piperine derivatives was significantly increased by exchanging the piperidine moiety with either N,N-dipropyl, N,N-diisopropyl, N,N-dibutyl, p-methylpiperidine, or N,N-bis(trifluoroethyl) groups. Potency was enhanced by replacing the piperidine moiety by N,N-dibutyl, N,N-diisobutyl, or N,N-bistrifluoroethyl groups. Linker modifications did not substantially enhance the effect on GABAAR. Compound 23 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dipropyl-2,4-pentadienamide] induced the strongest modulation of GABAA (maximal GABA-induced chloride current modulation (IGABA-max = 1673% ± 146%, EC50 = 51.7 ± 9.5 μM), while 25 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dibutyl-2,4-pentadienamide] displayed the highest potency (EC50 = 13.8 ± 1.8 μM, IGABA-max = 760% ± 47%). Compound 23 induced significantly stronger anxiolysis in mice than piperine and thus may serve as a starting point for developing novel GABAAR modulators.

  9. Polymorphisms of glutathione S-transferase π 1 and toll-like receptors 2 and 9: Association with breast cancer susceptibility

    PubMed Central

    AL-HARRAS, MOHAMMAD F.; HOUSSEN, MAHA E.; SHAKER, MOHAMED E.; FARAG, KAMEL; FAROUK, OMAR; MONIR, REHAN; EL-MAHDY, RASHA; ABO-HASHEM, EKBAL M.

    2016-01-01

    Polymorphisms in antioxidant enzymes and innate immune receptors have been implicated in the development of various types of cancer. The present study aimed to investigate whether polymorphisms of glutathione S-transferase π 1 (GSTP1) and toll-like receptors (TLRs) 2 and 9 are associated with susceptibility to breast cancer among females. The study was conducted on 72 Egyptian female patients with breast cancer, along with 100 healthy volunteers. Polymorphisms of GSTP1 (codon 105 Ile/Val) and TLR9 rs187084 (1237T/C) genes were assessed by polymerase chain reaction (PCR)-restriction fragment length polymorphism, while the −196 to −174 deletion/insertion (del/ins) polymorphism of TLR2 was detected by PCR. The results indicated a decrease in GSTP1 Val allele frequency in breast cancer patients compared with healthy controls, at rates of 22.9 vs. 32.5%, respectively. In addition, the breast cancer group demonstrated a decreased TLR9 C allele frequency compared with the control group, at rates of 36.1 vs. 51.5%, respectively (P=0.0047). A non-significant difference was detected in the frequency of the TLR2 −196 to −174 del allele in breast cancer patients when compared to normal controls. In conclusion, these results suggested that the GSTP1 Val and TLR9 1237C alleles, but not TLR2 −196 to −174 del, are likely to be associated with breast cancer development among females. PMID:26998146

  10. Polymorphisms of glutathione S-transferase π 1 and toll-like receptors 2 and 9: Association with breast cancer susceptibility.

    PubMed

    Al-Harras, Mohammad F; Houssen, Maha E; Shaker, Mohamed E; Farag, Kamel; Farouk, Omar; Monir, Rehan; El-Mahdy, Rasha; Abo-Hashem, Ekbal M

    2016-03-01

    Polymorphisms in antioxidant enzymes and innate immune receptors have been implicated in the development of various types of cancer. The present study aimed to investigate whether polymorphisms of glutathione S-transferase π 1 (GSTP1) and toll-like receptors (TLRs) 2 and 9 are associated with susceptibility to breast cancer among females. The study was conducted on 72 Egyptian female patients with breast cancer, along with 100 healthy volunteers. Polymorphisms of GSTP1 (codon 105 Ile/Val) and TLR9 rs187084 (1237T/C) genes were assessed by polymerase chain reaction (PCR)-restriction fragment length polymorphism, while the -196 to -174 deletion/insertion (del/ins) polymorphism of TLR2 was detected by PCR. The results indicated a decrease in GSTP1 Val allele frequency in breast cancer patients compared with healthy controls, at rates of 22.9 vs. 32.5%, respectively. In addition, the breast cancer group demonstrated a decreased TLR9 C allele frequency compared with the control group, at rates of 36.1 vs. 51.5%, respectively (P=0.0047). A non-significant difference was detected in the frequency of the TLR2 -196 to -174 del allele in breast cancer patients when compared to normal controls. In conclusion, these results suggested that the GSTP1 Val and TLR9 1237C alleles, but not TLR2 -196 to -174 del, are likely to be associated with breast cancer development among females.

  11. Kinetic, pharmacological and activity-dependent separation of two Ca2+ signalling pathways mediated by type 1 metabotropic glutamate receptors in rat Purkinje neurones

    PubMed Central

    Canepari, Marco; Ogden, David

    2006-01-01

    Type 1 metabotropic glutamate receptors (mGluR1) in Purkinje neurones (PNs) are important for motor learning and coordination. Here, two divergent mGluR1 Ca2+-signalling pathways and the associated membrane conductances were distinguished kinetically and pharmacologically after activation by 1-ms photorelease of l-glutamate or by bursts of parallel fibre (PF) stimulation. A new, mGluR1-mediated transient K+ conductance was seen prior to the slow EPSC (sEPSC). It was seen only in PNs previously allowed to fire spontaneously or held at depolarized potentials for several seconds and was slowly inhibited by agatoxin IVA, which blocks P/Q-type Ca2+ channels. It peaked in 148 ms, had well-defined kinetics and, unlike the sEPSC, was abolished by the phospholipase C (PLC) inhibitor U73122. It was blocked by the BK Ca2+-activated K+ channel blocker iberiotoxin and unaffected by apamin, indicating selective activation of BK channels by PLC-dependent store-released Ca2+. The K+ conductance and underlying transient Ca2+ release showed a highly reproducible delay of 99.5 ms following PF burst stimulation, with a precision of 1–2 ms in repeated responses of the same PN, and a subsequent fast rise and fall of Ca2+ concentration. Analysis of Ca2+ signals showed that activation of the K+ conductance by Ca2+ release occured in small dendrites and subresolution structures, most probably spines. The results show that PF burst stimulation activates two pathways of mGluR1 signalling in PNs. First, transient, PLC-dependent Ca2+ release from stores with precisely reproducible timing and second, slower Ca2+ influx in the cation-permeable sEPSC channel. The priming by prior Ca2+ influx in P/Q-type Ca2+ channels may determine the path of mGluR1 signalling. The precise timing of PLC-mediated store release may be important for interactions of PF mGluR1 signalling with other inputs to the PN. PMID:16497716

  12. Inhibition of miR-128-3p by Tongxinluo Protects Human Cardiomyocytes from Ischemia/reperfusion Injury via Upregulation of p70s6k1/p-p70s6k1

    PubMed Central

    Chen, Gui-hao; Xu, Chuan-sheng; Zhang, Jie; Li, Qing; Cui, He-he; Li, Xiang-dong; Chang, Li-ping; Tang, Rui-jie; Xu, Jun-yan; Tian, Xia-qiu; Huang, Pei-sen; Xu, Jun; Jin, Chen; Yang, Yue-jin

    2017-01-01

    Background and Aims: Tongxinluo (TXL) is a multifunctional traditional Chinese medicine that has been widely used to treat cardiovascular and cerebrovascular diseases. However, no studies have explored whether TXL can protect human cardiomyocytes (HCMs) from ischemia/reperfusion (I/R) injury. Reperfusion Injury Salvage Kinase (RISK) pathway activation was previously demonstrated to protect the hearts against I/R injury and it is generally activated via Akt or (and) Erk 1/2, and their common downstream protein, ribosomal protein S6 kinase (p70s6k). In addition, prior studies proved that TXL treatment of cells promoted secretion of VEGF, which could be stimulated by the increased phosphorylation of one p70s6k subtype, p70s6k1. Consequently, we hypothesized TXL could protect HCMs from I/R injury by activating p70s6k1 and investigated the underlying mechanism. Methods and Results: HCMs were exposed to hypoxia (18 h) and reoxygenation (2 h) (H/R), with or without TXL pretreatment. H/R reduced mitochondrial membrane potential, increased bax/bcl-2 ratios and cytochrome C levels and induced HCM apoptosis. TXL preconditioning reversed these H/R-induced changes in a dose-dependent manner and was most effective at 400 μg/mL. The anti-apoptotic effect of TXL was abrogated by rapamycin, an inhibitor of p70s6k. However, inhibitors of Erk1/2 (U0126) or Akt (LY294002) failed to inhibit the protective effect of TXL. TXL increased p70s6k1 expression and, thus, enhanced its phosphorylation. Furthermore, transfection of cardiomyocytes with siRNA to p70s6k1 abolished the protective effects of TXL. Among the micro-RNAs (miR-145-5p, miR-128-3p and miR-497-5p) previously reported to target p70s6k1, TXL downregulated miR-128-3p in HCMs during H/R, but had no effects on miR-145-5p and miR-497-5p. An in vivo study confirmed the role of the p70s6k1 pathway in the infarct-sparing effect of TXL, demonstrating that TXL decreased miR-128-3p levels in the rat myocardium during I/R. Transfection

  13. Genetic association between the interleukin-2 receptor-alpha gene and mode of onset of type 1 diabetes in the Japanese population.

    PubMed

    Kawasaki, Eiji; Awata, Takuya; Ikegami, Hiroshi; Kobayashi, Tetsuro; Maruyama, Taro; Nakanishi, Koji; Shimada, Akira; Uga, Miho; Kurihara, Susumu; Kawabata, Yumiko; Tanaka, Shoichiro; Kanazawa, Yasuhiko; Eguchi, Katsumi

    2009-03-01

    The IL-2 receptor-alpha (IL2RA), also known as CD25, is expressed on the regulatory T cells, which play an important role in the control of immune responses and the maintenance of immune homeostasis. Our objective was to determine whether variants in the IL2RA gene are associated with type 1 diabetes in the Japanese population. We genotyped the four single-nucleotide polymorphisms (rs706778, rs3118470, ss52580101, and rs11594656) of the IL2RA in 885 patients with type 1 diabetes and 606 control subjects of Japanese origin. The allele and genotype frequencies were examined in the patient groups stratified by their mode of onset in a case-control study. We found evidence of association with acute-onset, but not slow-onset and fulminant, type 1 diabetes for two of the four single-nucleotide polymorphisms genotyped (rs706778 and rs3118470). The rs706778 A allele and the rs3118470 G allele were associated with an increased disease risk [odds ratio (OR) for rs706778 AA genotype 1.54, P = 4.2 x 10(-4) and OR for rs3118470 GG genotype 1.50, P = 0.0019, respectively]. Furthermore, the A-G haplotype was associated with increased type 1 diabetes risk in the acute-onset form (OR 1.30, P = 0.002). The present data confirm the type 1 diabetes association with IL2RA and provide evidence that the different contributions of the IL2RA in the susceptibility to acute-onset and other forms of type 1 diabetes in the Japanese population.

  14. Pannexin1 channels act downstream of P2X7 receptors in ATP-induced murine T-cell death

    PubMed Central

    Shoji, Kenji F; Sáez, Pablo J; Harcha, Paloma A; Aguila, Hector L; Sáez, Juan C

    2014-01-01

    Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1−/− mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1−/− mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP. PMID:24590064

  15. EP2 receptors mediate airway relaxation to substance P, ATP, and PGE2.

    PubMed

    Fortner, C N; Breyer, R M; Paul, R J

    2001-08-01

    Substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of constricted mouse tracheal smooth muscle. Relaxation to either SP or ATP is blocked by indomethacin, but the specific eicosanoid(s) involved have not been definitively identified. SP and ATP are reported to release PGE2 from airway epithelium in other species, suggesting PGE2 as a likely mediator in epithelium-dependent airway relaxation. Using mice homozygous for a gene-targeted deletion of the EP2 receptor [EP2(-/-)], one of the PGE2 receptors, we tested the hypothesis that PGE2 is the primary mediator of relaxation to SP or ATP. Relaxation in response to SP or ATP was significantly reduced in tracheas from EP2(-/-) mice. There were no differences between EP2(-/-) and wild-type tracheas in their physical dimensions, contraction to ACh, or relaxation to isoproterenol, thus ruling out any general alterations of smooth muscle function. There were also no differences between EP2(-/-) and wild-type tracheas in basal or stimulated PGE2 production. Exogenous PGE2 produced significantly less relaxation in EP2(-/-) tracheas compared with the wild type. Taken together, this experimental evidence supports the following two conclusions: EP2 receptors are of primary importance in airway relaxation to PGE2 and relaxation to SP or ATP is mediated through PGE2 acting on EP2 receptors.

  16. P2X7 receptors regulate multiple types of membrane trafficking responses and non-classical secretion pathways.

    PubMed

    Qu, Yan; Dubyak, George R

    2009-06-01

    Activation of the P2X7 receptor (P2X7R) triggers a remarkably diverse array of membrane trafficking responses in leukocytes and epithelial cells. These responses result in altered profiles of cell surface lipid and protein composition that can modulate the direct interactions of P2X7R-expressing cells with other cell types in the circulation, in blood vessels, at epithelial barriers, or within sites of immune and inflammatory activation. Additionally, these responses can result in the release of bioactive proteins, lipids, and large membrane complexes into extracellular compartments for remote communication between P2X7R-expressing cells and other cells that amplify or modulate inflammation, immunity, and responses to tissue damages. This review will discuss P2X7R-mediated effects on membrane composition and trafficking in the plasma membrane (PM) and intracellular organelles, as well as actions of P2X7R in controlling various modes of non-classical secretion. It will review P2X7R regulation of: (1) phosphatidylserine distribution in the PM outer leaflet; (2) shedding of PM surface proteins; (3) release of PM-derived microvesicles or microparticles; (4) PM blebbing; (5) cell-cell fusion resulting in formation of multinucleate cells; (6) phagosome maturation and fusion with lysosomes; (7) permeability of endosomes with internalized pathogen-associated molecular patterns; (8) permeability/integrity of mitochondria; (9) exocytosis of secretory lysosomes; and (10) release of exosomes from multivesicular bodies.

  17. Discovery and synthesis of a novel and selective drug-like P2X(1) antagonist.

    PubMed

    Jaime-Figueroa, S; Greenhouse, R; Padilla, F; Dillon, M P; Gever, J R; Ford, A P D W

    2005-07-01

    Although there is extensive literature to indicate that many different types of P2 purinoceptors are present in the lower urinary tract, the physiological role of these receptors in micturition is still uncertain. In part, this uncertainty has been caused by a lack of P2 subtype selective ligands. In this paper we report the discovery, gram scale synthesis, and binding results for 1, the first potent, drug-like, selective P2X(1) receptor antagonist described. Compound 1 was shown to be more than 30-fold selective over other purinergic receptor subtypes.

  18. Pharmacological characterization of P2X7 receptors in rat peritoneal cells.

    PubMed

    Chen, Y-W; Donnelly-Roberts, D L; Namovic, M T; Gintant, G A; Cox, B F; Jarvis, M F; Harris, R R

    2005-03-01

    P2X(7) receptor activation by ATP results in the release of IL-1beta and IL-18. Prolonged stimulation can lead to pore formation and cell death. In this study we pharmacologically characterized P2X(7) receptors on rat peritoneal cells (RPC) and on 1321N1 cells transfected with rat P2X(7) receptor (1321rP2X(7)-11). RPC were isolated from rats by lavage. P2X(7) agonist induced pore formation in RPC was measured by EtBr uptake. P2X(7)-stimulated pore formation and Ca(++) influx in 1321rP2X(7)-11 cells were measured by a fluorometric imaging plate reader. The effects of pyridoxal phosphate-6-azo phenyl -2'-4'-disulfonic acid (PPADS) on pore formation and Ca(++) influx were examined in both RPC and 1321rP2X(7)-11. P2X(7)-mediated IL-1beta release in RPC and the effect of PPADS were determined. RPC express functional P2X(7) receptors that were activated by ATP analogs with a rank order of potency of 2'- 3'-O-(4-Benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) > ATP > alpha,beta-methylene ATP. Activation of P2X(7) receptors by BzATP was inhibited by PPADS. Similar results were also obtained in 1321rP2X(7)-11 cells. Activation of P2X(7) receptors on RPC resulted in IL-1 beta secretion, which was inhibited by PPADS. RPC express functional P2X(7) receptors that form pores and mediate the release of IL-1beta.

  19. Artemisinin disrupts androgen responsiveness of human prostate cancer cells by stimulating the 26S proteasome-mediated degradation of the androgen receptor protein.

    PubMed

    Steely, Andrea M; Willoughby, Jamin A; Sundar, Shyam N; Aivaliotis, Vasiliki I; Firestone, Gary L

    2017-10-01

    Androgen receptor (AR) expression and activity is highly linked to the development and progression of prostate cancer and is a target of therapeutic strategies for this disease. We investigated whether the antimalarial drug artemisinin, which is a sesquiterpene lactone isolated from the sweet wormwood plant Artemisia annua, could alter AR expression and responsiveness in cultured human prostate cancer cell lines. Artemisinin treatment induced the 26S proteasome-mediated degradation of the receptor protein, without altering AR transcript levels, in androgen-responsive LNCaP prostate cancer cells or PC-3 prostate cancer cells expressing exogenous wild-type AR. Furthermore, artemisinin stimulated AR ubiquitination and AR receptor interactions with the E3 ubiquitin ligase MDM2 in LNCaP cells. The artemisinin-induced loss of AR protein prevented androgen-responsive cell proliferation and ablated total AR transcriptional activity. The serine/threonine protein kinase AKT-1 was shown to be highly associated with artemisinin-induced proteasome-mediated degradation of AR protein. Artemisinin treatment activated AKT-1 enzymatic activity, enhanced receptor association with AKT-1, and induced AR serine phosphorylation. Treatment of LNCaP cells with the PI3-kinase inhibitor LY294002, which inhibits the PI3-kinase-dependent activation of AKT-1, prevented the artemisinin-induced AR degradation. Furthermore, in transfected receptor-negative PC-3 cells, artemisinin failed to stimulate the degradation of an altered receptor protein (S215A/S792A) with mutations in its two consensus AKT-1 serine phosphorylation sites. Taken together, our results indicate that artemisinin induces the degradation of AR protein and disrupts androgen responsiveness of human prostate cancer cells, suggesting that this natural compound represents a new potential therapeutic molecule that selectively targets AR levels.

  20. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemicalmore » changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  1. Mesenchymal Stem Cells Sense Three Dimensional Type I Collagen through Discoidin Domain Receptor 1.

    PubMed

    Lund, A W; Stegemann, J P; Plopper, G E

    2009-01-01

    The extracellular matrix provides structural and organizational cues for tissue development and defines and maintains cellular phenotype during cell fate determination. Multipotent mesenchymal stem cells use this matrix to tightly regulate the balance between their differentiation potential and self-renewal in the native niche. When understood, the mechanisms that govern cell-matrix crosstalk during differentiation will allow for efficient engineering of natural and synthetic matrices to specifically direct and maintain stem cell phenotype. This work identifies the discoidin domain receptor 1 (DDR1), a collagen activated receptor tyrosine kinase, as a potential link through which stem cells sense and respond to the 3D organization of their extracellular matrix microenvironment. DDR1 is dependent upon both the structure and proteolytic state of its collagen ligand and is specifically expressed and localized in three dimensional type I collagen culture. Inhibition of DDR1 expression results in decreased osteogenic potential, increased cell spreading, stress fiber formation and ERK1/2 phosphorylation. Additionally, loss of DDR1 activity alters the cell-mediated organization of the naïve type I collagen matrix. Taken together, these results demonstrate a role for DDR1 in the stem cell response to and interaction with three dimensional type I collagen. Dynamic changes in cell shape in 3D culture and the tuning of the local ECM microstructure, directs crosstalk between DDR1 and two dimensional mechanisms of osteogenesis that can alter their traditional roles.

  2. Using p-type PbS Quantum Dots to Quench Photocurrent of Fullerene-Au NP@MoS2 Composite Structure for Ultrasensitive Photoelectrochemical Detection of ATP.

    PubMed

    Li, Meng-Jie; Zheng, Ying-Ning; Liang, Wen-Bin; Yuan, Ruo; Chai, Ya-Qin

    2017-12-06

    Ultrasensitive and rapid quantification of the universal energy currency adenosine triphosphate (ATP) is an extremely critical mission in clinical applications. In this work, a "signal-off" photoelectrochemical (PEC) biosensor was designed for ultrasensitive ATP detection based on a fullerene (C 60 )-decorated Au nanoparticle@MoS 2 (C 60 -Au NP@MoS 2 ) composite material as a signal indicator and a p-type PbS quantum dot (QD) as an efficient signal quencher. Modification of wide band gap C 60 with narrow band gap MoS 2 to form an ideal PEC signal indicator was proposed, which could significantly improve photocurrent conversion efficiency, leading to a desirable PEC signal. In the presence of p-type PbS QDs, the PEC signal of n-type C 60 -Au NP@MoS 2 was effectively quenched because p-type PbS QDs could compete with C 60 -Au NP@MoS 2 to consume light energy and electron donor. Besides, the conversion of a limited amount of target ATP into an amplified output PbS QD-labeled short DNA sequence (output S 1 ) was achieved via target-mediated aptazyme cycling amplification strategy, facilitating ultrasensitive ATP detection. The proposed signal-off PEC strategy exhibited a wide linear range from 1.00 × 10 -2 pM to 100 nM with a low detection limit of 3.30 fM. Importantly, this proposed strategy provides a promising platform to detect ATP at ultralow levels and has potential applications, including diagnosis of ATP-related diseases, monitoring of diseases progression and evaluation of prognosis.

  3. Frequent POLE1 p.S297F mutation in Chinese patients with ovarian endometrioid carcinoma.

    PubMed

    Zou, Yang; Liu, Fa-Ying; Liu, Huai; Wang, Feng; Li, Wei; Huang, Mei-Zhen; Huang, Yan; Yuan, Xiao-Qun; Xu, Xiao-Yun; Huang, Ou-Ping; He, Ming

    2014-03-01

    The catalytic subunit of DNA polymerase epsilon (POLE1) functions primarily in nuclear DNA replication and repair. Recently, POLE1 mutations were detected frequently in colorectal and endometrial carcinomas while with lower frequency in several other types of cancer, and the p.P286R and p.V411L mutations were the potential mutation hotspots in human cancers. Nevertheless, the mutation frequency of POLE1 in ovarian cancer still remains largely unknown. Here, we screened a total of 251 Chinese samples with distinct subtypes of ovarian carcinoma for the presence of POLE1 hotspot mutations by direct sequencing. A heterozygous somatic POLE1 mutation, p.S297F (c.890C>T), but not p.P286R and p.V411L hotspot mutations observed in other cancer types, was identified in 3 out of 37 (8.1%) patients with ovarian endometrioid carcinoma; this mutation was evolutionarily highly conserved from Homo sapiens to Schizosaccharomyces. Of note, the POLE1 mutation coexisted with mutation in the ovarian cancer-associated PPP2R1A (protein phosphatase 2, regulatory subunit A, α) gene in a 46-year-old patient, who was also diagnosed with ectopic endometriosis in the benign ovary. In addition, a 45-year-old POLE1-mutated ovarian endometrioid carcinoma patient was also diagnosed with uterine leiomyoma while the remaining 52-year-old POLE1-mutated patient showed no additional distinctive clinical manifestation. In contrast to high frequency of POLE1 mutations in ovarian endometrioid carcinoma, no POLE1 mutations were identified in patients with other subtypes of ovarian carcinoma. Our results showed for the first time that the POLE1 p.S297F mutation, but not p.P286R and p.V411L hotspot mutations observed in other cancer types, was frequent in Chinese ovarian endometrioid carcinoma, but absent in other subtypes of ovarian carcinoma. These results implicated that POLE1 p.S297F mutation might be actively involved in the pathogenesis of ovarian endometrioid carcinoma, but might not be actively

  4. Activity of Tumor Necrosis Factor-alpha (TNF-alpha) and its soluble type I receptor (p55TNF-R) in some drug-induced cutaneous reactions.

    PubMed

    Chodorowska, Grazyna; Czelej, Dorota; Niewiedzioł, Marta

    2003-01-01

    Plasma concentration of TNF-alpha and its type I receptor (p55TNF-R) was examined in 126 patients with drug-induced skin reactions using immunoenzymatic ELISA method. Patients were subdivided into 6 groups: maculopapular eruptions (ME), erythema multiforme (EM), erythema multiforme coexisting with erythema nodosum (EMN), hyperergic vasculitis (HV), Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN). In the acute clinical stage highly significant (p<0.001) or significant (p<0.01) elevation of mean plasma concentrations of the cytokine and its receptor was found in all examined groups in comparison with the control. Clearing of clinical symptoms was connected with considerable decrease (p<0.001, p<0.01) of mean plasma levels of the both proteins in comparison with the before treatment values. TNF-alpha concentrations still remained significantly more elevated than those observed in the control. The results indicate that plasma activity of TNF-alpha and its p55 receptor change with the clinical course of the examined drug-induced skin reactions, which suggests the partake of both proteins in the pathogenesis of these diseases.

  5. Functional analysis of a frame-shift mutant of the dihydropyridine receptor pore subunit (α1S) expressing two complementary protein fragments

    PubMed Central

    Ahern, Chris A; Vallejo, Paola; Mortenson, Lindsay; Coronado, Roberto

    2001-01-01

    Background The L-type Ca2+ channel formed by the dihydropyridine receptor (DHPR) of skeletal muscle senses the membrane voltage and opens the ryanodine receptor (RyR1). This channel-to-channel coupling is essential for Ca2+ signaling but poorly understood. We characterized a single-base frame-shift mutant of α1S, the pore subunit of the DHPR, that has the unusual ability to function voltage sensor for excitation-contraction (EC) coupling by virtue of expressing two complementary hemi-Ca2+ channel fragments. Results Functional analysis of cDNA transfected dysgenic myotubes lacking α1S were carried out using voltage-clamp, confocal Ca2+ indicator fluoresence, epitope immunofluorescence and immunoblots of expressed proteins. The frame-shift mutant (fs-α1S) expressed the N-terminal half of α1S (M1 to L670) and the C-terminal half starting at M701 separately. The C-terminal fragment was generated by an unexpected restart of translation of the fs-α1S message at M701 and was eliminated by a M701I mutation. Protein-protein complementation between the two fragments produced recovery of skeletal-type EC coupling but not L-type Ca2+ current. Discussion A premature stop codon in the II-III loop may not necessarily cause a loss of DHPR function due to a restart of translation within the II-III loop, presumably by a mechanism involving leaky ribosomal scanning. In these cases, function is recovered by expression of complementary protein fragments from the same cDNA. DHPR-RyR1 interactions can be achieved via protein-protein complementation between hemi-Ca2+ channel proteins, hence an intact II-III loop is not essential for coupling the DHPR voltage sensor to the opening of RyR1 channel. PMID:11806762

  6. Equus caballus Major Histocompatibility Complex Class I Is an Entry Receptor for Equine Herpesvirus Type 1

    PubMed Central

    Kurtz, Brian M.; Singletary, Lauren B.; Kelly, Sean D.; Frampton, Arthur R.

    2010-01-01

    In this study, Equus caballus major histocompatibility complex class I (MHC-I) was identified as a cellular entry receptor for the alphaherpesvirus equine herpesvirus type 1 (EHV-1). This novel EHV-1 receptor was discovered using a cDNA library from equine macrophages. cDNAs from this EHV-1-susceptible cell type were inserted into EHV-1-resistant B78H1 murine melanoma cells, these cells were infected with an EHV-1 lacZ reporter virus, and cells that supported virus infection were identified by X-Gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside) staining. Positive cells were subjected to several rounds of purification to obtain homogeneous cell populations that were shown to be uniformly infected with EHV-1. cDNAs from these cell populations were amplified by PCR and then sequenced. The sequence data revealed that the EHV-1-susceptible cells had acquired an E. caballus MHC-I cDNA. Cell surface expression of this receptor was verified by confocal immunofluorescence microscopy. The MHC-I cDNA was cloned into a mammalian expression vector, and stable B78H1 cell lines were generated that express this receptor. These cell lines were susceptible to EHV-1 infection while the parental B78H1 cells remained resistant to infection. In addition, EHV-1 infection of the B78H1 MHC-I-expressing cell lines was inhibited in a dose-dependent manner by an anti-MHC-I antibody. PMID:20610718

  7. Interaction of H+ and Zn2+ on recombinant and native rat neuronal GABAA receptors

    PubMed Central

    Krishek, Belinda J; Moss, Stephen J; Smart, Trevor G

    1998-01-01

    The interaction of Zn2+ and H+ ions with GABAA receptors was examined using Xenopus laevis oocytes expressing recombinant GABAA receptors composed of subunits selected from α1, β1, γ2S and δ types, and by using cultured rat cerebellar granule neurones. The potency of Zn2+ as a non-competitive antagonist of GABA-activated responses on α1β1 receptors was reduced by lowering the external pH from 7.4 to 5.4, increasing the Zn2+ IC50 value from 1.2 to 58.3 μm. Zinc-induced inhibition was largely unaffected by alkaline pH up to pH 9.4. For α1β1δ subunits, concentration-response curves for GABA were displaced laterally by Zn2+ in accordance with a novel mixed/competitive-type inhibition. The Zn2+ IC50 at pH 7.4 was 16.3 μm. Acidification of Ringer solution resulted in a reduced antagonism by Zn2+ (IC50, 49.0 μm) without affecting the type of inhibition. At pH 9.4, Zn2+ inhibition remained unaffected. The addition of the γ2S subunit to the α1β1δ construct caused a marked reduction in the potency of Zn2+ (IC50, 615 μm), comparable to that observed with α1β1γ2S receptors (IC50 639 μm). GABA concentration-response curves were depressed in a mixed/non-competitive fashion. In cultured cerebellar granule neurones, Zn2+ inhibited responses to GABA in a concentration-dependent manner. Lowering external pH from 7.4 to 6.4 increased the IC50 from 139 to 253 μm. The type of inhibition exhibited by Zn2+ on cerebellar granule neurones, previously grown in high K+-containing culture media, was complex, with the GABA concentration-response curves shifting laterally with reduced slopes and similar maxima. The Zn2+-induced shift in the GABA EC50 values was reduced by lowering the external pH from 7.4 to 6.4. The interaction of H+ and Zn2+ ions on GABAA receptors suggests that they share either a common regulatory pathway or coincident binding sites on the receptor protein. The apparent competitive mode of block induced by Zn2+ on α1β1δ receptors is shared by GABAA

  8. N- and C-terminal substance P fragments: differential effects on striatal [3H]substance P binding and NK1 receptor internalization.

    PubMed

    Michael-Titus, A T; Blackburn, D; Connolly, Y; Priestley, J V; Whelpton, R

    1999-07-13

    N- and C-terminal substance P (SP) fragments increase striatal dopamine outflow at nanomolar concentrations. This contrasts with their low affinity for NK1 receptors. To explore this discrepancy, we investigated the interaction of SP and SP fragments with NK1 sites in fresh striatal slices, the same model used in the functional studies on dopamine outflow. [3H]SP bound specifically to one site (Kd = 6.6 +/- 0.9 nM; Bmax = 12.6 +/- 0.7 fmol/mg protein). [3H]SP binding was displaced by SP (IC50 = 11.8 nM), but not by SP(1-7) or SP(5-11), up to 10 microM. In contrast, 10 nM SP(1-7) or SP(5-11) induced significant internalization of the NK1 receptor, similar to that induced by SP. We suggest that SP fragments have high affinity for an NK1 receptor conformer which is different from that labelled by [3H]SP.

  9. Substance P inhibits natural killer cell cytotoxicity through the neurokinin-1 receptor.

    PubMed

    Monaco-Shawver, Linda; Schwartz, Lynnae; Tuluc, Florin; Guo, Chang-Jiang; Lai, Jian Ping; Gunnam, Satya M; Kilpatrick, Laurie E; Banerjee, Pinaki P; Douglas, Steven D; Orange, Jordan S

    2011-01-01

    SP is a potent neuroimmunomodulator that functions through ligating members of the neurokinin receptor family, one of which, NK1R, is widely expressed in immune cells. As in humans, circulating SP levels are increased in pathologic states associated with impairment of NK cell functions, such as depression and HIV infection, we hypothesized that SP has a direct, inhibitory effect upon NK cells. We have studied a clonal human NK cell line (YTS) as well as ex vivo human NK cells and have determined that truncated and full-length NK1R isoforms are expressed in and SP bound by ex vivo NK cells and the YTS NK cell line. Incubation of YTS cells with 10⁻⁶ M SP and ex vivo NK cells with 10⁻⁵ M SP inhibited cytotoxic ability by ∼20% and reduced degranulation. This inhibitory effect upon cytotoxicity was partially prevented by the NK1R antagonist CP96,345. The treatment of YTS or ex vivo NK cells with SP neither down-modulated NCR expression nor affected triggering receptor-induced NF-κB activation. Preincubation of YTS cells with SP, however, did abbreviate the typically prolonged intracellular calcium increase induced by target cell engagement and reduced triggering receptor-induced pERK. Thus, SP has the potential to regulate NK cell functions and acts downstream from neurokinin receptors to modulate NK cell activation signaling. This mechanism may contribute to impairment of NK cell function in certain disease states associated with increased circulating SP. Antagonism of this system may present an opportunity to augment NK cell function therapeutically in selected human diseases.

  10. Substance P (SP) enhances CCL5-induced chemotaxis and intracellular signaling in human monocytes, which express the truncated neurokinin-1 receptor (NK1R)

    PubMed Central

    Chernova, Irene; Lai, Jian-Ping; Li, Haiying; Schwartz, Lynnae; Tuluc, Florin; Korchak, Helen M.; Douglas, Steven D.; Kilpatrick, Laurie E.

    2009-01-01

    Substance P (SP) is a potent modulator of monocyte/macrophage function. The SP-preferring receptor neurokinin-1 receptor (NK1R) has two forms: a full-length NK1R (NK1R-F) isoform and a truncated NK1R (NK1R-T) isoform, which lacks the terminal cytoplasmic 96-aa residues. The distribution of these receptor isoforms in human monocytes is not known. We previously identified an interaction among SP, NK1R, and HIV viral strains that use the chemokine receptor CCR5 as a coreceptor, suggesting crosstalk between NK1R and CCR5. The purpose of this study was to determine which form(s) of NK1R are expressed in human peripheral blood monocytes and to determine whether SP affects proinflammatory cellular responses mediated through the CCR5 receptor. Human peripheral blood monocytes were found to express NK1R-T but not NK1R-F. SP interactions with NK1R-T did not mobilize calcium (Ca2+), but SP mobilized Ca2+ when the NK1R-F was transfected into monocytes. However, the NK1R-T was functional in monocytes, as SP enhanced the CCR5 ligand CCL5-elicited Ca2+ mobilization, a response inhibited by the NK1R antagonist aprepitant. SP interactions with the NK1R-T also enhanced CCL5-mediated chemotaxis, which was ERK1/2-dependent. NK1R-T selectively activated ERK2 but increased ERK1 and ERK2 activation by CCL5. Activation of NK1R-T elicited serine phosphorylation of CCR5, indicating that crosstalk between CCL5 and SP may occur at the level of the receptor. Thus, NK1R-T is functional in human monocytes and activates select signaling pathways, and the NK1R-T-mediated enhancement of CCL5 responses does not require the NK1R terminal cytoplasmic domain. PMID:18835883

  11. P2Y receptors and atherosclerosis in apolipoprotein E-deficient mice

    PubMed Central

    Guns, Pieter-Jan DF; Hendrickx, Jan; Van Assche, Tim; Fransen, Paul; Bult, Hidde

    2010-01-01

    Background and purpose: P2Y nucleotide receptors are involved in the regulation of vascular tone, smooth muscle cell (SMC) proliferation and inflammatory responses. The present study investigated whether they are involved in atherosclerosis. Experimental approach: mRNA of P2Y receptors was quantified (RT-PCR) in atherosclerotic and plaque-free aorta segments of apolipoprotein E-deficient (apoE–/–) mice. Macrophage activation was assessed in J774 macrophages, and effects of non-selective purinoceptor antagonists on atherosclerosis were evaluated in cholesterol-fed apoE–/– mice. Key results: P2Y6 receptor mRNA was consistently elevated in segments with atherosclerosis, whereas P2Y2 receptor expression remained unchanged. Expression of P2Y1 or P2Y4 receptor mRNA was low or undetectable, and not influenced by atherosclerosis. P2Y6 mRNA expression was higher in cultured J774 macrophages than in cultured aortic SMCs. Furthermore, immunohistochemical staining of plaques demonstrated P2Y6-positive macrophages, but few SMCs, suggesting that macrophage recruitment accounted for the increase in P2Y6 receptor mRNA during atherosclerosis. In contrast to ATP, the P2Y6-selective agonist UDP increased mRNA expression and activity of inducible nitric oxide synthase and interleukin-6 in J774 macrophages; this effect was blocked by suramin (100–300 µM) or pyridoxal-phosphate-6-azophenyl-2′-4′-disulphonic acid (PPADS, 10–30 µM). Finally, 4-week treatment of cholesterol-fed apoE–/– mice with suramin or PPADS (50 and 25 mg·kg−1·day−1 respectively) reduced plaque size, without changing plaque composition (relative SMC and macrophage content) or cell replication. Conclusions and implications: These results suggest involvement of nucleotide receptors, particularly P2Y6 receptors, during atherosclerosis, and warrant further research with selective purinoceptor antagonists or P2Y6 receptor-deficient mice. PMID:20050854

  12. Substance P receptor desensitization requires receptor activation but not phospholipase C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiya, Hiroshi; Putney, J.W. Jr.

    1988-08-01

    Previous studies have shown that exposure of parotid acinar cells to substance P at 37{degree}C results in activation of phospholipase C, formation of ({sup 3}H)inositol 1,4,5-trisphosphate (IP{sub 3}), and persistent desensitization of the substance P response. In cells treated with antimycin in medium containing glucose, ATP was decreased to {approximately}20% of control values, IP{sub 3} formation was completely inhibited, but desensitization was unaffected. When cells were treated with antimycin in the absence of glucose, cellular ATP was decreased to {approximately}5% of control values, and both IP{sub 3} formation and desensitization were blocked. A series of substance P-related peptides increased themore » formation of ({sup 3}H)IP{sub 3} and induced desensitization of the substance P response with a similar rank order of potencies. The substance P antagonist, (D-Pro{sup 2}, D-Try{sup 7,9})-substance P, inhibited substance P-induced IP{sub 3} formation and desensitization but did not induce desensitization. These results suggest that the desensitization of substance P-induced IP{sub 3} formation requires agonist activation of a P-type substance P receptor, and that one or more cellular ATP-dependent processes are required for this reaction. However, activation of phospholipase C and the generation of inositol phosphates does not seem to be a prerequisite for desensitization.« less

  13. Allosteric modulation of ATP-gated P2X receptor channels

    PubMed Central

    Coddou, Claudio; Stojilkovic, Stanko S.; Huidobro-Toro, J. Pablo

    2013-01-01

    Seven mammalian purinergic receptor subunits, denoted P2X1 to P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca2+ influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites. PMID:21639805

  14. Immunolocalization of Substance P and NK-1 Receptor in ADIPOSE Stem Cells.

    PubMed

    Muñoz, Miguel; Muñoz, Mario F; Ayala, Antonio

    2017-12-01

    Substance P (SP) is a neuropeptide belonging to the thachykinin peptide family. SP, after binding to its receptor, the neurokinin 1 receptor (NK1R), controls several transcription factors such as NF-κB, hypoxia inducible factor (HIF-1α), c-myc, c-fos, c-jun, and AP-1. SP and NK1R have a widespread distribution in both the central and peripheral nervous systems. They are also present in cells not belonging to the nervous system (immune cells, placenta, etc.). SP is located in all body fluids, that is, blood, cerebrospinal fluid, etc., making it ubiquitous throughout the human body. SP and NK1R genes are expressed in the stem cell line TF-1 and in primary stem cells derived from human placental cord blood. However, to our knowledge, the presence of SP and the NK1R receptor in adipose stem cells (ADSC) is unknown. We demonstrated by immunofluorescence the localization of SP and NK1R in human and rat ADSC. SP and NK1R are located in both the cytoplasm and the nucleus of these cells. The NK1R is higher in the nucleus than in the cytoplasm of ADSCs. By Western blot we demonstrated the presence of different isoforms of NK1R that have different subcellular locations in the ADSC. SP induces proliferation and mitogenesis through NK1R in ADSCs. These findings reported here for the first time suggest an important role for a SP/NK1R system, either as genetic and/or epigenetic factor, in both the cytoplasm and nucleus functions of the ADSCs. J. Cell. Biochem. 118: 4686-4696, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Substance P and the Neurokinin-1 Receptor: The New CRF.

    PubMed

    Schank, Jesse R; Heilig, Markus

    2017-01-01

    Substance P (SP) is an 11-amino acid neuropeptide of the tachykinin family that preferentially activates the neurokinin-1 receptor (NK1R). First isolated 85 years ago and sequenced 40 years later, SP has been extensively studied. Early studies identified a role for SP and the NK1R in contraction of intestinal smooth muscle, central pain processing, and neurogenic inflammation. An FDA-approved NK1R antagonist, aprepitant, is used clinically for the treatment of chemotherapy-induced nausea, as the NK1R influences the activity of the brain stem emesis centers. More recently, SP and the NK1R have gained attention for their role in complex psychiatric processes including stress, anxiety, and depression. However, clinical development of NK1R antagonists for these indications has so far been unsuccessful. Several preclinical studies have also demonstrated a role of the NK1R in drug taking and drug seeking, especially as it relates to escalated consumption and stress-elicited seeking. This line of research developed in parallel with findings supporting a role of corticotropin-releasing factor (CRF) in stress-induced drug seeking. Over this time, CRF arguably gained more attention as a target for development of addiction pharmacotherapies. However, this effort has not resulted in a viable drug for use in human populations. Given promising clinical findings for the efficacy of NK1R antagonists on craving in alcoholics, along with recent data suggesting that a number of negative results from NK1R trials were likely due to insufficient receptor occupancy, the NK1R merits being revisited as a target for the development of novel pharmacotherapeutics for addiction. © 2017 Elsevier Inc. All rights reserved.

  16. Rearrangements of mycoreovirus 1 S1, S2 and S3 induced by the multifunctional protein p29 encoded by the prototypic hypovirus Cryphonectria hypovirus 1 strain EP713.

    PubMed

    Tanaka, Toru; Sun, Liying; Tsutani, Kouhei; Suzuki, Nobuhiro

    2011-08-01

    Mycoreovirus 1 (MyRV1), a member of the family Reoviridae possessing a genome consisting of 11 dsRNA segments (S1-S11), infects the chestnut blight fungus and reduces its virulence (hypovirulence). Studies have previously demonstrated reproducible induction of intragenic rearrangements of MyRV1 S6 (S6L: almost full-length duplication) and S10 (S10ss: internal deletion of three-quarters of the ORF), mediated by the multifunctional protein p29 encoded by the prototype hypovirus, Cryphonectria hypovirus 1 (CHV1) strain EP713, of the family Hypoviridae with ssRNA genomes. The current study showed that CHV1 p29 also induced rearrangements of the three largest MyRV1 segments, S1, S2 and S3, which encode structural proteins. These rearranged segments involved in-frame extensions of almost two-thirds of the ORFs (S1L, S2L and S3L, respectively), which is rare for a reovirus rearrangement. MyRV1 variants carrying S1L, S2L or S3L always contained S10ss (MyRV1/S1L+S10ss2, MyRV1/S2L+S10ss2 or MyRV1/S3L+S10ss2). Levels of mRNAs for the rearranged and co-existing unaltered genome segments in fungal colonies infected with each of the MyRV1 variants appeared to be comparable to those for the corresponding normal segments in wild-type MyRV1-infected colonies, suggesting that the rearranged segments were fully competent for packaging and transcription. Protein products of the rearranged segments were detectable in fungal colonies infected with S2L MyRV1/S2L+S10ss2 and S3L MyRV1/S3L+S10ss2, whilst S1L-encoded protein remained undetectable. S1L, S2L and S3L were associated with enhancement of the aerial hyphae growth rate. This study has provided additional examples of MyRV1 intragenic rearrangements induced by p29, and suggests that normal S1, S2 and S3 are required for the symptoms caused by MyRV1.

  17. Pan-STARRS 1 observations of the unusual active Centaur P/2011 S1(Gibbs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, H. W.; Ip, W. H.; Chen, W. P.

    2014-05-01

    P/2011 S1 (Gibbs) is an outer solar system comet or active Centaur with a similar orbit to that of the famous 29P/Schwassmann-Wachmann 1. P/2011 S1 (Gibbs) has been observed by the Pan-STARRS 1 (PS1) sky survey from 2010 to 2012. The resulting data allow us to perform multi-color studies of the nucleus and coma of the comet. Analysis of PS1 images reveals that P/2011 S1 (Gibbs) has a small nucleus <4 km radius, with colors g {sub P1} – r {sub P1} = 0.5 ± 0.02, r {sub P1} – i {sub P1} = 0.12 ± 0.02, and i {submore » P1} – z {sub P1} = 0.46 ± 0.03. The comet remained active from 2010 to 2012, with a model-dependent mass-loss rate of ∼100 kg s{sup –1}. The mass-loss rate per unit surface area of P/2011 S1 (Gibbs) is as high as that of 29P/Schwassmann-Wachmann 1, making it one of the most active Centaurs. The mass-loss rate also varies with time from ∼40 kg s{sup –1} to 150 kg s{sup –1}. Due to its rather circular orbit, we propose that P/2011 S1 (Gibbs) has 29P/Schwassmann-Wachmann 1-like outbursts that control the outgassing rate. The results indicate that it may have a similar surface composition to that of 29P/Schwassmann-Wachmann 1. Our numerical simulations show that the future orbital evolution of P/2011 S1 (Gibbs) is more similar to that of the main population of Centaurs than to that of 29P/Schwassmann-Wachmann 1. The results also demonstrate that P/2011 S1 (Gibbs) is dynamically unstable and can only remain near its current orbit for roughly a thousand years.« less

  18. The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases

    PubMed Central

    Boucharaba, Ahmed; Serre, Claire-Marie; Guglielmi, Julien; Bordet, Jean-Claude; Clézardin, Philippe; Peyruchaud, Olivier

    2006-01-01

    Platelet-derived lysophosphatidic acid (LPA) supports the progression of breast and ovarian cancer metastasis to bone. The mechanisms through which LPA promotes bone metastasis formation are, however, unknown. Here we report that silencing of the type 1 LPA receptor (LPA1) in cancer cells blocks the production of tumor-derived cytokines that are potent activators of osteoclast-mediated bone destruction and significantly reduces the progression of osteolytic bone metastases. Moreover, functional blockade of LPA action on its cognate receptor LPA1 using a pharmacological antagonist mimics the effects of silencing LPA1 in tumor cells in vitro and substantially reduces bone metastasis progression in animals. Overall, these results suggest that inhibition of platelet-derived LPA action on LPA1 expressed by tumor cells may be a promising therapeutic target for patients with bone metastases. PMID:16769891

  19. Calcium Signalling through Ligand-Gated Ion Channels such as P2X1 Receptors in the Platelet and other Non-Excitable Cells.

    PubMed

    Mahaut-Smith, Martyn P; Taylor, Kirk A; Evans, Richard J

    2016-01-01

    Ligand-gated ion channels on the cell surface are directly activated by the binding of an agonist to their extracellular domain and often referred to as ionotropic receptors. P2X receptors are ligand-gated non-selective cation channels with significant permeability to Ca(2+) whose principal physiological agonist is ATP. This chapter focuses on the mechanisms by which P2X1 receptors, a ubiquitously expressed member of the family of ATP-gated channels, can contribute to cellular responses in non-excitable cells. Much of the detailed information on the contribution of P2X1 to Ca(2+) signalling and downstream functional events has been derived from the platelet. The underlying primary P2X1-generated signalling event in non-excitable cells is principally due to Ca(2+) influx, although Na(+) entry will also occur along with membrane depolarization. P2X1 receptor stimulation can lead to additional Ca(2+) mobilization via a range of routes such as amplification of G-protein-coupled receptor-dependent Ca(2+) responses. This chapter also considers the mechanism by which cells generate extracellular ATP for autocrine or paracrine activation of P2X1 receptors. For example cytosolic ATP efflux can result from opening of pannexin anion-permeable channels or following damage to the cell membrane. Alternatively, ATP stored in specialised secretory vesicles can undergo quantal release via the process of exocytosis. Examples of physiological or pathophysiological roles of P2X1-dependent signalling in non-excitable cells are also discussed, such as thrombosis and immune responses.

  20. Disordered expression of inhibitory receptors on the NK1-type natural killer (NK) leukaemic cells from patients with hypersensitivity to mosquito bites

    PubMed Central

    Seo, N; Tokura, Y; Ishihara, S; Takeoka, Y; Tagawa, S; Takigawa, M

    2000-01-01

    Recent studies have revealed the existence of a distinct type of NK cell leukaemia of the juvenile type, which presents with hypersensitivity to mosquito bites (HMB) as an essential clinical manifestation and is infected with clonal Epstein–Barr virus (EBV). This disorder is thus called HMB-EBV-NK disease and has been reported in Orientals, mostly from Japan. We investigated the profile of cytokine production and the expression of both types of NK inhibitory receptors, i.e. CD94 lectin-like dimers and killer-cell immunoglobulin-like receptors, in NK leukaemic cells from three patients with HMB-EBV-NK disease. It was found that freshly isolated NK leukaemic cells expressed mRNA for interferon-gamma (IFN-γ) and additionally produced IL-10 upon stimulation with IL-2, indicating that the NK cells were of NK1 type. More than 98% of NK cells from the patients bore CD94 at a higher level than did normal NK cells, whereas p70 or NKAT2, belonging to immunoglobulin-like receptor, was not expressed in those NK cells. Freshly isolated leukaemic NK cells transcribed mRNA for CD94-associated molecule NKG2C at an abnormally high level, and upon stimulation with IL-2 and/or IL-12 they expressed NKG2A as well. The disordered expression of these inhibitory receptors not only provides some insights into the pathogenesis of HMB-EBV-NK disease but also can be used as phenotypic markers for the diagnosis of this type of NK cell leukaemia. PMID:10844517

  1. Differential regulation of serotonin-1A receptor stimulated [35S]GTPγS binding in the dorsal raphe nucleus by citalopram and escitalopram

    PubMed Central

    Rossi, Dania V.; Burke, Teresa F.; Hensler, Julie G.

    2008-01-01

    The effect of chronic citalopram or escitalopram administration on 5-HT1A receptor function in the dorsal raphe nucleus was determined by measuring [35S]GTPγS binding stimulated by the 5-HT1A receptor agonist (R)-(+)-8-OH-DPAT (1nM-10μM). Although chronic administration of citalopram or escitalopram has been shown to desensitize somatodendritic 5-HT1A autoreceptors, we found that escitalopram treatment decreased the efficacy of 5-HT1A receptors to activate G-proteins, whereas citalopram treatment did not. The binding of [3H]8-OH-DPAT to the coupled, high affinity agonist state of the receptor was not altered by either treatment. Interestingly, escitalopram administration resulted in greater occupancy of serotonin transporter sites as measured by the inhibition of [3H]cyanoimipramine binding. As the binding and action of escitalopram is limited by the inactive enantiomer R-citalopram present in racemic citalopram, we propose that the regulation of 5-HT1A receptor function in the dorsal raphe nucleus at the level of receptor-G protein interaction may be a result of greater inhibition of the serotonin transporter by escitalopram. PMID:18289523

  2. Human Immunodeficiency Virus Type-1 Elite Controllers Maintain Low Co-Expression of Inhibitory Receptors on CD4+ T Cells.

    PubMed

    Noyan, Kajsa; Nguyen, Son; Betts, Michael R; Sönnerborg, Anders; Buggert, Marcus

    2018-01-01

    Human immunodeficiency virus type-1 (HIV-1) elite controllers (ELCs) represent a unique population that control viral replication in the absence of antiretroviral therapy (cART). It is well established that expression of multiple inhibitory receptors on CD8+ T cells is associated with HIV-1 disease progression. However, whether reduced co-expression of inhibitory receptors on CD4+ T cells is linked to natural viral control and slow HIV-1 disease progression remains undefined. Here, we report on the expression pattern of numerous measurable inhibitory receptors, associated with T cell exhaustion (programmed cell death-1, CTLA-4, and TIGIT), on different CD4+ T cell memory populations in ELCs and HIV-infected subjects with or without long-term cART. We found that the co-expression pattern of inhibitory receptors was significantly reduced in ELCs compared with HIV-1 cART-treated and viremic subjects, and similar to healthy controls. Markers associated with T cell exhaustion varied among different memory CD4+ T cell subsets and highest levels were found mainly on transitional memory T cells. CD4+ T cells co-expressing all inhibitory markers were positively correlated to T cell activation (CD38+ HLA-DR+) as well as the transcription factors Helios and FoxP3. Finally, clinical parameters such as CD4 count, HIV-1 viral load, and the CD4/CD8 ratio all showed significant associations with CD4+ T cell exhaustion. We demonstrate that ELCs are able to maintain lower levels of CD4+ T cell exhaustion despite years of ongoing viral replication compared with successfully cART-treated subjects. Our findings suggest that ELCs harbor a "healthy" state of inhibitory receptor expression on CD4+ T cells that might play part in maintenance of their control status.

  3. ATP excites mouse vomeronasal sensory neurons through activation of P2X receptors.

    PubMed

    Vick, J S; Delay, R J

    2012-09-18

    Purinergic signaling through activation of P2X and P2Y receptors is critically important in the chemical senses. In the mouse main olfactory epithelium (MOE), adenosine 5'-triphosphate (ATP) elicits an increase in intracellular calcium ([Ca(2+)](I)) and reduces the responsiveness of olfactory sensory neurons to odorants through activation of P2X and P2Y receptors. We investigated the role of purinergic signaling in vomeronasal sensory neuron (VSN)s from the mouse vomeronasal organ (VNO), an olfactory organ distinct from the MOE that responds to many conspecific chemical cues. Using a combination of calcium imaging and patch-clamp electrophysiology with isolated VSNs, we demonstrated that ATP elicits an increase in [Ca(2+)](I) and an inward current with similar EC(50)s. Neither adenosine nor the P2Y receptor ligands adenosine 5'-diphosphate, uridine 5'-triphosphate, and uridine-5'-disphosphate could mimic either effect of ATP. Moreover, the increase in [Ca(2+)](I) required the presence of extracellular calcium and the inward current elicited by ATP was partially blocked by the P2X receptor antagonists pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate and 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate. Consistent with the activation of P2X receptors, we detected gene expression of the P2X1 and 3 receptors in the VNO by Reverse transcription polymerase chain reaction (RT-PCR). When co-delivered with dilute urine, a natural stimulus, ATP significantly increased the inward current above that elicited by dilute urine or ATP alone. Mechanical stimulation of the VNO induced the release of ATP, detected by luciferin-luciferase luminometry, and this release of ATP was completely abolished in the presence of the connexin/pannexin hemichannel blocker, carbenoxolone. We conclude that the release of ATP could occur during the activity of the vasomotor pump that facilitates the movement of chemicals into the VNO for detection by VSNs. This mechanism could lead to a

  4. Effect of Onabotulinum Toxin A on Substance P and Receptor Neurokinin 1 in the Rat Ventral Prostate

    PubMed Central

    Cakir, Omer Onur; Podlasek, Carol A.; Wood, Douglas; McKenna, Kevin E.; McVary, Kevin T.

    2016-01-01

    Introduction The objective of this work is to examine if sensory innervation impacts lower urinary tract symptoms (LUTS). Onabotulinum toxin A (BoNTA) has been used for the treatment of overactive and neurogenic bladder and as a treatment for LUTS secondary to benign prostatic hyperplasia (BPH). The mechanism of how BoNTA impacts LUTS/BPH is unclear. In rats, BoNTA injection causes prostate denervation, apoptosis and atrophy. In clinical trials reduced prostate size and LUTS are observed inconsistently, suggesting a neurologic component. We will examine if BoNTA treatment inhibits substance P production in sensory nerve fibers in the rat prostate. Methods Twenty Sprague Dawley rats were divided into four groups including 1X PBS (control, n=6), 2.5 units Onabotulinum toxin A (BoNTA, n=6), 5 units BoNTA (n=6) injected into both lobes of the ventral prostate (VP) and sham surgery (n=2). Rats were Euthanized after one week. Substance P and its receptor neurokinin 1 localization and quantification were performed by counting the number of stained neurons and nerve bundles, by semi-quantitative immunohistochemical analysis and by western analysis. Results Substance P was localized in neuronal axons and bundles in the stroma of the VP but not in the epithelium. Receptor neurokinin 1 was identified in neuronal bundles of the stroma and in columnar epithelium of the VP ducts. Substance P decreased ~90% after BoNTA treatment (p=0.0001) while receptor neurokinin 1 did not change by IHC (p=0.213) or Western (p=0.3675). Conclusions BoNTA treatment decreases substance P in the rat VP. PMID:27144785

  5. Toll-Like Receptor Signaling Induces Nrf2 Pathway Activation through p62-Triggered Keap1 Degradation.

    PubMed

    Yin, Shasha; Cao, Wangsen

    2015-08-01

    Toll-like receptors (TLRs) induce inflammation and tissue repair through multiple signaling pathways. The Nrf2 pathway plays a key role in defending against the tissue damage incurred by microbial infection or inflammation-associated diseases. The critical event that mediates TLR-induced Nrf2 activation is still poorly understood. In this study, we found that lipopolysaccharide (LPS) and other Toll-like receptor (TLR) agonists activate Nrf2 signaling and the activation is due to the reduction of Keap1, the key Nrf2 inhibitor. TLR signaling-induced Keap1 reduction promoted Nrf2 translocation from the cytoplasm to the nucleus, where it activated transcription of its target genes. TLR agonists modulated Keap1 at the protein posttranslation level through autophagy. TLR signaling increased the expression of autophagy protein p62 and LC3-II and induced their association with Keap1 in the autophagosome-like structures. We also characterized the interaction between p62 and Keap1 and found that p62 is indispensable for TLR-mediated Keap1 reduction: TLR signaling had no effect on Keap1 if cells lacked p62 or if cells expressed a mutant Keap1 that could not interact with p62. Our study indicates that p62-mediated Keap1 degradation through autophagy represents a critical linkage for TLR signaling regulation of the major defense network, the Nrf2 signaling pathway. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Effects of angiotensin II type 1 receptor antagonist and temperature on prolonged cardioplegic arrest in neonatal rat myocytes.

    PubMed

    Lucchese, Gianluca; Cambi, Giulia Elisa; De Rita, Fabrizio; Franzoi, Mauro; Faggian, Giuseppe; Mazzucco, Alessandro; Modesti, Pietro Amedeo; Luciani, Giovanni Battista

    2013-08-01

    Cardioplegic arrest is a model of ischemia/reperfusion injury and results in the death of irreplaceable cardiac myocytes by a programmed cell death or apoptosis. Signal transducers and activators of transcription (STAT) signaling pathways play an important role in the modulation of apoptosis after ischemia and reperfusion. Angiotensin II type 1 (AT1) receptor antagonist added to cardioplegia could represent an additional modality for enhancing myocardial protection during cardioplegic arrest. To test that hypothesis, we studied the effect of AT1 receptor antagonism and cardioplegia temperature perfusion on STATs modulation during cardioplegic arrest in neonatal rat hearts. Isolated, nonworking hearts (n = 4 per group) from neonatal rats were perfused aerobically in the Langendorff mode according to the following scheme: Dulbecco's Modified Eagle's Medium solution (Group 1); cold (4°C) modified St. Thomas' Hospital no. 2 (MSTH2) cardioplegic solution (Group 2); cold (4°C) MSTH2 cardioplegic solution plus AT1 antagonist (Valsartan) (Group 3); and warm (34°C) MSTH2 cardioplegic solution (Group 4). Thus, myocytes were isolated by enzymatic digestion, and STAT1, STAT2, STAT3, and STAT5 were investigated in Western blot studies. Times to arrest after cardioplegia were 6-10 s for all groups with the exception of Group 1 (spontaneous arrest after 12-16 s). Total cardioplegia delivery volume was about 300 mL in 15 min. Perfusion with cold MSTH2 supplemented with AT1 receptor antagonist (Group 3) induced a significant reduction in STAT1, STAT2, and STAT5 tyrosine phosphorylation versus other groups (P < 0.05). The decreased activation of STAT1, STAT2, and STAT5 observed in Group 3 was accompanied by reduction of interleukin-1β (P < 0.05). On the other hand, STAT3 activation was significantly reduced in Groups 1 and 4 (P < 0.05). Only perfusion with AT1 receptor antagonist supplemented with cold MSTH2 significantly decreases the inflammatory

  7. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia.

    PubMed

    Tang, Chih-Hsin; Lu, Da-Yuu; Yang, Rong-Sen; Tsai, Huei-Yann; Kao, Ming-Ching; Fu, Wen-Mei; Chen, Yuh-Fung

    2007-07-15

    Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.

  8. Gain-of-function mutant of angiotensin II receptor, type 1A, causes hypertension and cardiovascular fibrosis in mice

    PubMed Central

    Billet, Sandrine; Bardin, Sabine; Verp, Sonia; Baudrie, Véronique; Michaud, Annie; Conchon, Sophie; Muffat-Joly, Martine; Escoubet, Brigitte; Souil, Evelyne; Hamard, Ghislaine; Bernstein, Kenneth E.; Gasc, Jean Marie; Elghozi, Jean-Luc; Corvol, Pierre; Clauser, Eric

    2007-01-01

    The role of the renin-angiotensin system has been investigated by overexpression or inactivation of its different genes in animals. However, there is no data concerning the effect of the constitutive activation of any component of the system. A knockin mouse model has been constructed with a gain-of-function mutant of the Ang II receptor, type 1A (AT1A), associating a constitutively activating mutation (N111S) with a C-terminal deletion, which impairs receptor internalization and desensitization. In vivo consequences of this mutant receptor expression in homozygous mice recapitulate its in vitro characteristics: the pressor response is more sensitive to Ang II and longer lasting. These mice present with a moderate (~20 mmHg) and stable increase in BP. They also develop early and progressive renal fibrosis and cardiac fibrosis and diastolic dysfunction. However, there was no overt cardiac hypertrophy. The hormonal parameters (low-renin and inappropriately normal aldosterone productions) mimic those of low-renin human hypertension. This new model reveals that a constitutive activation of AT1A leads to cardiac and renal fibrosis in spite of a modest effect on BP and will be useful for investigating the role of Ang II in target organs in a model similar to some forms of human hypertension. PMID:17607364

  9. Peripheral substance P and neurokinin-1 receptors have a role in inflammatory and neuropathic orofacial pain models.

    PubMed

    Teodoro, Fernanda C; Tronco Júnior, Marcos F; Zampronio, Aleksander R; Martini, Alessandra C; Rae, Giles A; Chichorro, Juliana G

    2013-06-01

    There is accumulating evidence that substance P released from peripheral sensory neurons participates in inflammatory and neuropathic pain. In this study it was investigated the ability of substance P to induce orofacial nociception and thermal and mechanical hyperalgesia, as well as the role of NK1 receptors on models of orofacial inflammatory and neuropathic pain. Substance P injected into the upper lip at 1, 10 and 100 μg/50 μL failed to induce nociceptive behavior. Also, substance P (0.1-10 μg/50 μL) injected into the upper lip did not evoke orofacial cold hyperalgesia and when injected at 1 μg/50 μL did not induce mechanical hyperalgesia. However, substance P at this latter dose induced orofacial heat hyperalgesia, which was reduced by the pre-treatment of rats with a non-peptide NK1 receptor antagonist (SR140333B, 3mg/kg). Systemic treatment with SR140333B (3 mg/kg) also reduced carrageenan-induced heat hyperalgesia, but did not exert any influence on carrageenan-induced cold hyperalgesia. Blockade of NK1 receptors with SR140333B also reduced by about 50% both phases of the formalin response evaluated in the orofacial region. Moreover, heat, but not cold or mechanical, hyperalgesia induced by constriction of the infraorbital nerve, a model of trigeminal neuropathic pain, was abolished by pretreatment with SR140333B. Considering that substance P was peripherally injected (i.e. upper lip) and the NK1 antagonist used lacks the ability to cross the blood-brain-barrier, our results demonstrate that the peripheral SP/NK1 system participates in the heat hyperalgesia associated with inflammation or nerve injury and in the persistent pain evoked by formalin in the orofacial region. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  11. Mapping of the Localization of Type 1 Angiotensin Receptor in Membrane Microdomains Using Bioluminescence Resonance Energy Transfer-based Sensors*

    PubMed Central

    Balla, András; Tóth, Dániel J.; Soltész-Katona, Eszter; Szakadáti, Gyöngyi; Erdélyi, László Sándor; Várnai, Péter; Hunyady, László

    2012-01-01

    Initiation and termination of signaling of the type I angiotensin receptor (AT1-R) can lead to dynamic changes in its localization in plasma membrane microdomains. Several markers were recently developed to investigate membrane microdomains. Here, we used several YFP-labeled fusion constructs (i.e. raft or non-raft plasma membrane markers) to analyze the agonist-induced changes in compartmentalization of AT1-R, including internalization or lateral movement between plasma membrane compartments in response to stimulation using bioluminescence resonance energy transfer measurements. Our data demonstrate that angiotensin II (AngII) stimulus changes the microdomain localization of wild type or mutated (DRY → AAY or TSTS → AAAA) AT1-Rs co-expressed with the fluorescent probes in HEK293 cells. The comparison of the trafficking of AT1-R upon AngII stimulus with those of [Sar1,Ile8]AngII or [Sar1,Ile4,Ile8]AngII stimulus revealed different types of changes, depending on the nature of the ligand. The observed changes in receptor compartmentalization of the AT1-R are strikingly different from those of 5HT-2C and EGF receptors, which demonstrate the usefulness of the bioluminescence resonance energy transfer-based measurements in the investigation of receptor trafficking in the plasma membrane in living cell experiments. PMID:22291018

  12. Purine ionotropic (P2X) receptors.

    PubMed

    Köles, L; Fürst, S; Illes, P

    2007-01-01

    Purinergic signaling is involved in the proper functioning of virtually all organs of the body. Although in some cases purines have a major influence on physiological functions (e.g. thrombocyte aggregation), more often they are just background modulators contributing to fine tuning of biological events. However, under pathological conditions, when a huge amount of adenosine 5'-triphosphate (ATP) can reach the extracellular space, their significance is increasing. ATP and its various degradation products activate membrane receptors divided into two main classes: the metabotropic P2Y and the ionotropic P2X family. This latter group, the purine ionotropic receptor, is the object of this review. After providing a description about the distribution and functional properties of P2X receptors in the body, their pharmacology will be summarized. In the second part of this review, the role of purines in those organ systems and body functions will be highlighted, where the (patho)physiological role of P2X receptors has been suggested or is even well established. Besides the regulation of organ systems, for instance in the cardiovascular, respiratory, genitourinary or gastrointestinal system, some special issues will also be discussed, such as the role of P2X receptors in pain, tumors, central nervous system (CNS) injury and embryonic development. Several examples will indicate that purine ionotropic receptors might serve as attractive targets for pharmacological interventions in various diseases, and that selective ligands for these receptors will probably constitute important future therapeutic tools in humans.

  13. Measurement of Υ (1 S +2 S +3 S ) production in p +p and Au + Au collisions at √{sNN}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta'Ani, H.; Alexander, J.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Aramaki, Y.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Bing, X.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Castera, P.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Garishvili, A.; Garishvili, I.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Han, R.; Hanks, J.; Hartouni, E. P.; Haruna, K.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H. J.; Kim, K.-B.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lenzi, B.; Lewis, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Mašek, L.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Miyachi, Y.; Miyasaka, S.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Nederlof, A.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nouicer, R.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Peresedov, V.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Samsonov, V.; Sano, M.; Sarsour, M.; Sato, T.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Semenov, V.; Sen, A.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, T. L.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Tomita, Y.; Torii, H.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xie, W.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zolin, L.; Phenix Collaboration

    2015-02-01

    Measurements of bottomonium production in heavy-ion and p +p collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The inclusive yield of the three Υ states, Υ (1 S +2 S +3 S ) , was measured in the PHENIX experiment via electron-positron decay pairs at midrapidity for Au +Au and p +p collisions at √{sNN}=200 GeV. The Υ (1 S +2 S +3 S ) →e+e- differential cross section at midrapidity was found to be Beed σ /d y =108 ±38 (stat) ±15 (syst) ±11 (luminosity) pb in p +p collisions. The nuclear modification factor in the 30% most central Au +Au collisions indicates a suppression of the total Υ state yield relative to the extrapolation from p +p collision data. The suppression is consistent with measurements made by STAR at RHIC and at higher energies by the CMS experiment at the Large Hadron Collider.

  14. Neuroprotective effects of angiotensin II type 1 receptor (AT1-R) blocker via modulating AT1-R signaling and decreased extracellular glutamate levels.

    PubMed

    Fujita, Tomoyoshi; Hirooka, Kazuyuki; Nakamura, Takehiro; Itano, Toshifumi; Nishiyama, Akira; Nagai, Yukiko; Shiraga, Fumio

    2012-06-26

    To investigate the mechanism of the neuroprotective effects of the angiotensin II type 1 receptor (AT1-R) blocker against retinal ischemia-reperfusion injury in the rat. Retinal ischemia was induced by increasing intraocular pressure. Glutamate release from the rat retina and intravitreal PO(2) (partial pressure of oxygen) profiles were monitored during and after ischemia using a microdialysis biosensor and oxygen-sensitive microelectrodes. ELISA was used to measure changes in the expression of AT1-R. Retinal mRNA expressions of p47phox and p67phox were measured by real-time polymerase chain reaction. Reactive oxygen species (ROS) were measured using dihydroethidium. Administration of candesartan, which is an AT1-R blocker (ARB), suppressed ischemia-induced increases in the extracellular glutamate. Candesartan also attenuated the increase in intravitreal PO(2) during reperfusion. AT1-R expression peaked at 12 hours after reperfusion. Although there was an increase in the retinal mRNA expression of p47phox and p64phox at 12 hours after the reperfusion, administration of candesartan suppressed these expressions. The production of ROS that was detected at 12 hours after reperfusion was also suppressed by the administration of candesartan or apocynin. NADPH oxidase-mediated ROS production increased at 12 hours after reperfusion. Candesartan may protect neurons by decreasing extracellular glutamate immediately after reperfusion and by attenuating oxidative stress via a modulation of the AT1-R signaling that occurs during ischemic insult.

  15. Determination of HIV-1 co-receptor usage.

    PubMed

    Cavarelli, Mariangela; Scarlatti, Gabriella

    2014-01-01

    Human immunodeficiency virus type I (HIV-1) infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly the β-chemokine receptor 5 (CCR5) and the α-chemokine receptor 4 (CXCR4). Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. In this chapter, methods to determine the co-receptor usage of HIV-1 variants are described.

  16. Vascular Repair After Menstruation Involves Regulation of Vascular Endothelial Growth Factor-Receptor Phosphorylation by sFLT-1

    PubMed Central

    Graubert, Michael D.; Asuncion Ortega, Maria; Kessel, Bruce; Mortola, Joseph F.; Iruela-Arispe, M. Luisa

    2001-01-01

    Regeneration of the endometrium after menstruation requires a rapid and highly organized vascular response. Potential regulators of this process include members of the vascular endothelial growth factor (VEGF) family of proteins and their receptors. Although VEGF expression has been detected in the endometrium, the relationship between VEGF production, receptor activation, and endothelial cell proliferation during the endometrial cycle is poorly understood. To better ascertain the relevance of VEGF family members during postmenstrual repair, we have evaluated ligands, receptors, and activity by receptor phosphorylation in human endometrium throughout the menstrual cycle. We found that VEGF is significantly increased at the onset of menstruation, a result of the additive effects of hypoxia, transforming growth factor-α, and interleukin-1β. Both VEGF receptors, FLT-1 and KDR, followed a similar pattern. However, functional activity of KDR, as determined by phosphorylation studies, revealed activation in the late menstrual and early proliferative phases. The degree of KDR phosphorylation was inversely correlated with the presence of sFLT-1. Endothelial cell proliferation analysis in endometrium showed a peak during the late menstrual and early proliferative phases in concert with the presence of VEGF, VEGF receptor phosphorylation, and decrease of sFLT-1. Together, these results suggest that VEGF receptor activation and the subsequent modulation of sFLT-1 in the late menstrual phase likely contributes to the onset of angiogenesis and endothelial repair in the human endometrium. PMID:11290558

  17. Avian P1 antigens inhibit agglutination mediated by P fimbriae of uropathogenic Escherichia coli.

    PubMed Central

    Johnson, J R; Swanson, J L; Neill, M A

    1992-01-01

    Whole egg white from pigeon, dove, and cockatiel eggs, as well as the ovomucoid fraction of pigeon egg white, exhibited strong P1 antigenic activities and inhibited agglutination of human P1 erythrocytes and of digalactoside-coated latex beads by P-fimbriated Escherichia coli strains. In contrast, chicken egg white exhibited only weak P1 antigenic activity and had little impact on P-fimbrial agglutination. These preparations did not affect hemagglutination by E. coli strains expressing mannose-resistant adhesins other than P fimbriae, i.e., Dr, F1845, and S adhesins. Human anti-P1 serum diminished the P-fimbrial inhibitory activities of pigeon egg white and pigeon ovomucoid. Pigeon ovomucoid was equipotent on a molar basis with globoside, and the pigeon, dove, and cockatiel egg white preparations were equipotent with each other in P-fimbrial inhibition. Incubation of p erythrocytes in whole egg whites or in pigeon ovomucoid did not render them agglutinable by P-fimbriated bacteria, whereas incubation in globoside did. These data demonstrate that whole egg whites (and their ovomucoid fraction) from members of the families Columbidae (pigeons and doves) and Psittacidae (parrots) specifically and potently inhibit P-fimbrial agglutination, probably by providing P1 antigen as a receptor for the P-fimbrial adhesin. Avian egg white preparations may facilitate adhesin characterization of wild-type uropathogenic strains and may useful in preventing upper urinary tract infections due to P-fimbriated E. coli. PMID:1346125

  18. Genetic variants of dopamine D2 receptor impact heterodimerization with dopamine D1 receptor.

    PubMed

    Błasiak, Ewa; Łukasiewicz, Sylwia; Szafran-Pilch, Kinga; Dziedzicka-Wasylewska, Marta

    2017-04-01

    The human dopamine D2 receptor gene has three polymorphic variants that alter its amino acid sequence: alanine substitution by valine in position 96 (V96A), proline substitution by serine in position 310 (P310S) and serine substitution by cysteine in position 311 (S311C). Their functional role has never been the object of extensive studies, even though there is some evidence that their occurrence correlates with schizophrenia. The HEK293 cell line was transfected with dopamine D1 and D2 receptors (or genetic variants of the D2 receptor), coupled to fluorescent proteins which allowed us to measure the extent of dimerization of these receptors, using a highly advanced biophysical approach (FLIM-FRET). Additionally, Fluoro-4 AM was used to examine changes in the level of calcium release after ligand stimulation of cells expressing different combinations of dopamine receptors. Using FLIM-FRET experiments we have shown that in HEK 293 expressing dopamine receptors, polymorphic mutations in the D2 receptor play a role in dimmer formation with the dopamine D1 receptor. The association level of dopamine receptors is affected by ligand administration, with variable effects depending on polymorphic variant of the D2 dopamine receptor. We have found that the level of heteromer formation is reflected by calcium ion release after ligand stimulation and have observed variations of this effect dependent on the polymorphic variant and the ligand. The data presented in this paper support the hypothesis on the role of calcium signaling regulated by the D1-D2 heteromer which may be of relevance for schizophrenia etiology. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. A Membrane-Type-1 Matrix Metalloproteinase (MT1-MMP) – Discoidin Domain Receptor 1 Axis Regulates Collagen-Induced Apoptosis in Breast Cancer Cells

    PubMed Central

    Assent, Delphine; Bourgot, Isabelle; Hennuy, Benoît; Geurts, Pierre; Noël, Agnès; Foidart, Jean-Michel; Maquoi, Erik

    2015-01-01

    During tumour dissemination, invading breast carcinoma cells become confronted with a reactive stroma, a type I collagen-rich environment endowed with anti-proliferative and pro-apoptotic properties. To develop metastatic capabilities, tumour cells must acquire the capacity to cope with this novel microenvironment. How cells interact with and respond to their microenvironment during cancer dissemination remains poorly understood. To address the impact of type I collagen on the fate of tumour cells, human breast carcinoma MCF-7 cells were cultured within three-dimensional type I collagen gels (3D COL1). Using this experimental model, we have previously demonstrated that membrane type-1 matrix metalloproteinase (MT1-MMP), a proteinase overexpressed in many aggressive tumours, promotes tumour progression by circumventing the collagen-induced up-regulation of BIK, a pro-apoptotic tumour suppressor, and hence apoptosis. Here we performed a transcriptomic analysis to decipher the molecular mechanisms regulating 3D COL1-induced apoptosis in human breast cancer cells. Control and MT1-MMP expressing MCF-7 cells were cultured on two-dimensional plastic plates or within 3D COL1 and a global transcriptional time-course analysis was performed. Shifting the cells from plastic plates to 3D COL1 activated a complex reprogramming of genes implicated in various biological processes. Bioinformatic analysis revealed a 3D COL1-mediated alteration of key cellular functions including apoptosis, cell proliferation, RNA processing and cytoskeleton remodelling. By using a panel of pharmacological inhibitors, we identified discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase specifically activated by collagen, as the initiator of 3D COL1-induced apoptosis. Our data support the concept that MT1-MMP contributes to the inactivation of the DDR1-BIK signalling axis through the cleavage of collagen fibres and/or the alteration of DDR1 receptor signalling unit, without triggering a

  20. Efficient Modulation of γ-Aminobutyric Acid Type A Receptors by Piperine Derivatives

    PubMed Central

    2014-01-01

    Piperine activates TRPV1 (transient receptor potential vanilloid type 1 receptor) receptors and modulates γ-aminobutyric acid type A receptors (GABAAR). We have synthesized a library of 76 piperine analogues and analyzed their effects on GABAAR by means of a two-microelectrode voltage-clamp technique. GABAAR were expressed in Xenopus laevis oocytes. Structure–activity relationships (SARs) were established to identify structural elements essential for efficiency and potency. Efficiency of piperine derivatives was significantly increased by exchanging the piperidine moiety with either N,N-dipropyl, N,N-diisopropyl, N,N-dibutyl, p-methylpiperidine, or N,N-bis(trifluoroethyl) groups. Potency was enhanced by replacing the piperidine moiety by N,N-dibutyl, N,N-diisobutyl, or N,N-bistrifluoroethyl groups. Linker modifications did not substantially enhance the effect on GABAAR. Compound 23 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dipropyl-2,4-pentadienamide] induced the strongest modulation of GABAA (maximal GABA-induced chloride current modulation (IGABA-max = 1673% ± 146%, EC50 = 51.7 ± 9.5 μM), while 25 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dibutyl-2,4-pentadienamide] displayed the highest potency (EC50 = 13.8 ± 1.8 μM, IGABA-max = 760% ± 47%). Compound 23 induced significantly stronger anxiolysis in mice than piperine and thus may serve as a starting point for developing novel GABAAR modulators. PMID:24905252

  1. Involvement of Type 1 Angiontensin II Receptor (AT1) in Cardiovascular Changes Induced by Chronic Emotional Stress: Comparison between Homotypic and Heterotypic Stressors.

    PubMed

    Costa-Ferreira, Willian; Vieira, Jonas O; Almeida, Jeferson; Gomes-de-Souza, Lucas; Crestani, Carlos C

    2016-01-01

    Consistent evidence has shown an important role of emotional stress in pathogenesis of cardiovascular diseases. Additionally, studies in animal models have demonstrated that daily exposure to different stressor (heterotypic stressor) evokes more severe changes than those resulting from repeated exposure to the same aversive stimulus (homotypic stressor), possibly due to the habituation process upon repeated exposure to the same stressor. Despite these pieces of evidence, the mechanisms involved in the stress-evoked cardiovascular dysfunction are poorly understood. Therefore, the present study investigated the involvement of angiotensin II (Ang II) acting on the type 1 Ang II receptor (AT1) in the cardiovascular dysfunctions evoked by both homotypic and heterotypic chronic emotional stresses in rats. For this purpose, we compared the effect of the chronic treatment with the AT1 receptor antagonist losartan (30 mg/kg/day, p.o.) on the cardiovascular and autonomic changes evoked by the heterotypic stressor chronic variable stress (CVS) and the homotypic stressor repeated restraint stress (RRS). RRS increased the sympathetic tone to the heart and decreased the cardiac parasympathetic activity, whereas CVS decreased the cardiac parasympathetic activity. Additionally, both stressors impaired the baroreflex function. Alterations in the autonomic activity and the baroreflex impairment were inhibited by losartan treatment. Additionally, CVS reduced the body weight and increased the circulating corticosterone; however, these effects were not affected by losartan. In conclusion, these findings indicate the involvement of angiotensin II/AT1 receptors in the autonomic changes evoked by both homotypic and heterotypic chronic stressors. Moreover, the present results provide evidence that the increase in the circulating corticosterone and body weight reduction evoked by heterotypic stressors are independent of AT1 receptors.

  2. In Vitro Effects of the Endocrine Disruptor p,p'-DDT on Human Follitropin Receptor.

    PubMed

    Munier, Mathilde; Grouleff, Julie; Gourdin, Louis; Fauchard, Mathilde; Chantreau, Vanessa; Henrion, Daniel; Coutant, Régis; Schiøtt, Birgit; Chabbert, Marie; Rodien, Patrice

    2016-07-01

    1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene (p,p'-DDT) is a persistent environmental endocrine disruptor (ED). Several studies have shown an association between p,p'-DDT exposure and reproductive abnormalities. To investigate the putative effects of p,p'-DDT on the human follitropin receptor (FSHR) function. We used Chinese hamster ovary (CHO) cells stably expressing human FSHR to investigate the impact of p,p'-DDT on FSHR activity and its interaction with the receptor. At a concentration of 5 μM p,p'-DDT increased the maximum response of the FSHR to follitropin by 32 ± 7.45%. However, 5 μM p,p'-DDT decreased the basal activity and did not influence the maximal response of the closely related LH/hCG receptor to human chorionic gonadotropin (hCG). The potentiating effect of p,p'-DDT was specific for the FSHR. Moreover, in cells that did not express FSHR, p,p'-DDT had no effect on cAMP response. Thus, the potentiating effect of p,p'-DDT was dependent on the FSHR. In addition, p,p'-DDT increased the sensitivity of FSHR to hCG and to a low molecular weight agonist of the FSHR, 3-((5methyl)-2-(4-benzyloxy-phenyl)-5-{[2-[3-ethoxy-4-methoxy-phenyl)-ethylcarbamoyl]-methyl}-4-oxo-thiazolidin-3-yl)-benzamide (16a). Basal activity in response to p,p'-DDT and potentiation of the FSHR response to FSH by p,p'-DDT varied among FSHR mutants with altered transmembrane domains (TMDs), consistent with an effect of p,p'-DDT via TMD binding. This finding was corroborated by the results of simultaneously docking p,p'-DDT and 16a into the FSHR transmembrane bundle. p,p'-DDT acted as a positive allosteric modulator of the FSHR in our experimental model. These findings suggest that G protein-coupled receptors are additional targets of endocrine disruptors. Munier M, Grouleff J, Gourdin L, Fauchard M, Chantreau V, Henrion D, Coutant R, Schiøtt B, Chabbert M, Rodien P. 2016. In vitro effects of the endocrine disruptor p,p'-DDT on human follitropin receptor. Environ Health

  3. Delivery of S1P Receptor-Targeted Drugs via Biodegradable Polymer Scaffolds Enhances Bone Regeneration in a Critical Size Cranial Defect*

    PubMed Central

    Das, Anusuya; Tanner, Shaun; Barker, Daniel A.; Green, David; Botchwey, Edward A.

    2014-01-01

    Biodegradable polymer scaffolds can be used to deliver soluble factors to enhance osseous remodeling in bone defects. To this end, we designed a poly(lactic-co-glycolic acid) (PLAGA) microsphere scaffold to sustain the release of FTY720, a selective agonist for sphingosine 1-phosphate (S1P) receptors. The microsphere scaffolds were created from fast degrading 50:50 PLAGA and/or from slow-degrading 85:15 PLAGA. Temporal and spatial regulation of bone remodeling depended on the use of appropriate scaffolds for drug delivery. The release profiles from the scaffolds were used to design an optimal delivery system to treat critical size cranial defects in a rodent model. The ability of local FTY720 delivery to maximize bone regeneration was evaluated with microcomputed tomography (microCT) and histology. Following 4 weeks of defect healing, FTY720 delivery from 85:15 PLAGA scaffolds resulted in a significant increase in bone volumes in the defect region compared to the controls. 85:15 microsphere scaffolds maintain their structural integrity over a longer period of time, and cause an initial burst release of FTY720 due to surface localization of the drug. This encourages cellular in-growth and an increase in new bone formation. PMID:23640833

  4. Delivery of S1P receptor-targeted drugs via biodegradable polymer scaffolds enhances bone regeneration in a critical size cranial defect.

    PubMed

    Das, Anusuya; Tanner, Shaun; Barker, Daniel A; Green, David; Botchwey, Edward A

    2014-04-01

    Biodegradable polymer scaffolds can be used to deliver soluble factors to enhance osseous remodeling in bone defects. To this end, we designed a poly(lactic-co-glycolic acid) (PLAGA) microsphere scaffold to sustain the release of FTY720, a selective agonist for sphingosine 1-phosphate (S1P) receptors. The microsphere scaffolds were created from fast degrading 50:50 PLAGA and/or from slow-degrading 85:15 PLAGA. Temporal and spatial regulation of bone remodeling depended on the use of appropriate scaffolds for drug delivery. The release profiles from the scaffolds were used to design an optimal delivery system to treat critical size cranial defects in a rodent model. The ability of local FTY720 delivery to maximize bone regeneration was evaluated with micro-computed tomography (microCT) and histology. Following 4 weeks of defect healing, FTY720 delivery from 85:15 PLAGA scaffolds resulted in a significant increase in bone volumes in the defect region compared to the controls. A 85:15 microsphere scaffolds maintain their structural integrity over a longer period of time, and cause an initial burst release of FTY720 due to surface localization of the drug. This encourages cellular in-growth and an increase in new bone formation. Copyright © 2013 Wiley Periodicals, Inc.

  5. sPLA2 IB induces human podocyte apoptosis via the M-type phospholipase A2 receptor

    PubMed Central

    Pan, Yangbin; Wan, Jianxin; Liu, Yipeng; Yang, Qian; Liang, Wei; Singhal, Pravin C.; Saleem, Moin A.; Ding, Guohua

    2014-01-01

    The M-type phospholipase A2 receptor (PLA2R) is expressed in podocytes in human glomeruli. Group IB secretory phospholipase A2 (sPLA2 IB), which is one of the ligands of the PLA2R, is more highly expressed in chronic renal failure patients than in controls. However, the roles of the PLA2R and sPLA2 IB in the pathogenesis of glomerular diseases are unknown. In the present study, we found that more podocyte apoptosis occurs in the kidneys of patients with higher PLA2R and serum sPLA2 IB levels. In vitro, we demonstrated that human podocyte cells expressed the PLA2R in the cell membrane. After binding with the PLA2R, sPLA2 IB induced podocyte apoptosis in a time- and concentration-dependent manner. sPLA2 IB-induced podocyte PLA2R upregulation was not only associated with increased ERK1/2 and cPLA2α phosphorylation but also displayed enhanced apoptosis. In contrast, PLA2R-silenced human podocytes displayed attenuated apoptosis. sPLA2 IB enhanced podocyte arachidonic acid (AA) content in a dose-dependent manner. These data indicate that sPLA2 IB has the potential to induce human podocyte apoptosis via binding to the PLA2R. The sPLA2 IB-PLA2R interaction stimulated podocyte apoptosis through activating ERK1/2 and cPLA2α and through increasing the podocyte AA content. PMID:25335547

  6. The type I BMP receptors, Bmpr1a and Acvr1, activate multiple signaling pathways to regulate lens formation

    PubMed Central

    Rajagopal, Ramya; Huang, Jie; Dattilo, Lisa K.; Kaartinen, Vesa; Mishina, Yuji; Deng, Chu-Xia; Umans, Lieve; Zwijsen, An; Roberts, Anita B.; Beebe, David C.

    2009-01-01

    BMPs play multiple roles in development and BMP signaling is essential for lens formation. However, the mechanisms by which BMP receptors function in vertebrate development are incompletely understood. To determine the downstream effectors of BMP signaling and their functions in the ectoderm that will form the lens, we deleted the genes encoding the type I BMP receptors, Bmpr1a and Acvr1, and the canonical transducers of BMP signaling, Smad4, Smad1 and Smad5. Bmpr1a and Acvr1 regulated cell survival and proliferation, respectively. Absence of both receptors interfered with the expression of proteins involved in normal lens development and prevented lens formation, demonstrating that BMPs induce lens formation by acting directly on the prospective lens ectoderm. Remarkably, the canonical Smad signaling pathway was not needed for most of these processes. Lens formation, placode cell proliferation, the expression of FoxE3, a lens-specific transcription factor, and the lens protein, αA-crystallin were regulated by BMP receptors in a Smad-independent manner. Placode cell survival was promoted by R-Smad signaling, but in a manner that did not involve Smad4. Of the responses tested, only maintaining a high level of Sox2 protein, a transcription factor expressed early in placode formation, required the canonical Smad pathway. A key function of Smad-independent BMP receptor signaling may be reorganization of actin cytoskeleton to drive lens invagination. PMID:19733164

  7. Expression of the neurokinin type 1 receptor in the human colon.

    PubMed

    Boutaghou-Cherid, Hikma; Porcher, Christophe; Liberge, Martine; Jule, Yvon; Bunnett, Nigel W; Christen, Marie-Odile

    2006-01-30

    The distribution of the neurokinin type 1 receptor (NK1r) in human intestine, mapped in a few immunohistochemical investigations in the antrum and the duodenum, is comparable to that widely studied in rodents. Importantly, despite pharmacological evidence of their presence in mammalian intestinal muscle, their immunohistochemical visualization in smooth muscle cells remains to be determined in human digestive tract. In the present work, we studied the distribution of NK1r in the human colon, with a particular view to visualize their expression in muscle cells. With this aim, part of colonic segments were incubated with nicardipine and TTX in order to induce accumulation of the NK1r on cell membrane. NK1r were visualized by using immunohistochemistry combined with fluorescence and confocal microscopy. Without incubation, NK1r-IR was clearly observed on the membrane and the cytoplasm of myenteric and submucous neurons and interstitial cells of Cajal, but could not be clearly determined in the longitudinal and circular muscle. NK1r-IR-expressing neurons and interstitial cells were closely surrounded by substance P (SP) immunoreactive nerves. Incubation of colonic segments with nicardipine and TTX at 4 degrees C for 1 h with SP allowed to reveal a strong NK1r-IR at the surface of muscle cells. Incubation with SP (10(-6) M) at 37 degrees C for 1 min induced a relocation of NK1r-IR into the cytoplasm of muscle. This is interpreted as an internalization of NK1r induced by the binding of SP on muscular NK1r. The present data contribute to emphasize the role of NK1r in tachykinin-mediated neuronal processes regulating intestinal motility.

  8. Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 in Purkinje cells is regulated by calcium and actin filaments.

    PubMed

    Fukatsu, Kazumi; Bannai, Hiroko; Inoue, Takafumi; Mikoshiba, Katsuhiko

    2010-09-01

    Inositol 1,4,5-trisphosphate receptor type 1 (IP(3) R1) is an intracellular Ca(2+) release channel that plays crucial roles in the functions of Purkinje cells. The dynamics of IP(3) R1 on the endoplasmic reticulum membrane and the distribution of IP(3) R1 in neurons are thought to be important for the spatial regulation of Ca(2+) release. In this study, we analyzed the lateral diffusion of IP(3) R1 in Purkinje cells in cerebellar slice cultures using fluorescence recovery after photobleaching. In the dendrites of Purkinje cells, IP(3) R1 showed lateral diffusion with an effective diffusion constant of approximately 0.30 μm(2) /s, and the diffusion of IP(3) R1 was negatively regulated by actin filaments. We found that actin filaments were also involved in the regulation of IP(3) R1 diffusion in the spine of Purkinje cells. Glutamate or quisqualic acid stimulation, which activates glutamate receptors and leads to a Ca(2+) transient in Purkinje cells, decreased the diffusion of IP(3) R1 and increased the density of actin in spines. These findings indicate that the neuronal activity-dependent augmentation of actin contributes to the stabilization of IP(3) R1 in spines. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.

  9. Sigma-1 receptor regulates Tau phosphorylation and axon extension by shaping p35 turnover via myristic acid

    PubMed Central

    Tsai, Shang-Yi A.; Pokrass, Michael J.; Klauer, Neal R.; Nohara, Hiroshi; Su, Tsung-Ping

    2015-01-01

    Dysregulation of cyclin-dependent kinase 5 (cdk5) per relative concentrations of its activators p35 and p25 is implicated in neurodegenerative diseases. P35 has a short t½ and undergoes rapid proteasomal degradation in its membrane-bound myristoylated form. P35 is converted by calpain to p25, which, along with an extended t½, promotes aberrant activation of cdk5 and causes abnormal hyperphosphorylation of tau, thus leading to the formation of neurofibrillary tangles. The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum chaperone that is implicated in neuronal survival. However, the specific role of the Sig-1R in neurodegeneration is unclear. Here we found that Sig-1Rs regulate proper tau phosphorylation and axon extension by promoting p35 turnover through the receptor’s interaction with myristic acid. In Sig-1R–KO neurons, a greater accumulation of p35 is seen, which results from neither elevated transcription of p35 nor disrupted calpain activity, but rather to the slower degradation of p35. In contrast, Sig-1R overexpression causes a decrease of p35. Sig-1R–KO neurons exhibit shorter axons with lower densities. Myristic acid is found here to bind Sig-1R as an agonist that causes the dissociation of Sig-1R from its cognate partner binding immunoglobulin protein. Remarkably, treatment of Sig-1R–KO neurons with exogenous myristic acid mitigates p35 accumulation, diminishes tau phosphorylation, and restores axon elongation. Our results define the involvement of Sig-1Rs in neurodegeneration and provide a mechanistic explanation that Sig-1Rs help maintain proper tau phosphorylation by potentially carrying and providing myristic acid to p35 for enhanced p35 degradation to circumvent the formation of overreactive cdk5/p25. PMID:25964330

  10. Lack of efficacy of L-759274, a novel neurokinin 1 (substance P) receptor antagonist, for the treatment of generalized anxiety disorder.

    PubMed

    Michelson, David; Hargreaves, Richard; Alexander, Robert; Ceesay, Paulette; Hietala, Jarmo; Lines, Christopher; Reines, Scott

    2013-02-01

    Preclinical studies suggest that substance P acting at neurokinin 1 (NK1) receptors may be involved in stress responses and NK1 receptor antagonists show activity in tests of anxiety. These data raise the possibility that NK1 receptor antagonists could be potential anxiolytic treatments in humans. We evaluated this hypothesis clinically using the NK1 antagonist L-759274. This is a randomized, double-blind, placebo- and active-controlled, multicentre, proof-of-concept trial. Patients with generalized anxiety disorder were randomized 1:1:1 to 6 wk of treatment with 40 mg L-759274 (n = 73), 1-6 mg lorazepam (n = 69) or placebo (n = 71). Efficacy was assessed using the Hamilton Anxiety Scale (HAMA). A positron emission tomography (PET) study was also performed in 16 healthy subjects to determine the relationship between NK1 receptor occupancy and plasma levels of L-759274 to verify adequate target engagement by the doses tested during the clinical trial. No statistically significant difference in mean change from baseline HAMA score at 6 wk was seen for L-759274 vs. placebo [difference = 1.0 (95% confidence intervals (CI) -1.2 to 3.2), p = 0.359] whereas the lorazepam group did show a significant improvement vs. placebo (difference = -2.7, 95% CI -5.0 to -0.4, p = 0.020) and L-759274 (difference = 3.7, 95% CI 1.5-6.0, p = 0.001]. Results from the PET study indicated that the L-759274 dosing regimen used in the clinical trial likely provided high levels of NK1 receptor occupancy (>90%), supporting the view that it was an adequate proof-of-concept trial. The NK1 receptor antagonist L-759274 does not appear to be efficacious for the treatment of generalized anxiety disorder.

  11. Tune-out wavelength for the 1 s 2 s3 S - 1 s 3 p 3 P transition of helium: relativistic effects

    NASA Astrophysics Data System (ADS)

    Drake, Gordon W. F.; Manalo, Jacob

    2017-04-01

    The tune-out wavelength is the wavelength at which the frequency dependent polarizability of an atom vanishes. It can be measured to very high precision by means of an interferometric comparison between two beams. This paper is part of a joint theoretical/ experimental project with K. Baldwin et al. (Australian National University) and L.-Y. Tang et al. (Wuhan Institute of Physics and Mathematics) to perform a high precision comparison between theory and experiment as a probe of atomic structure, including relativistic and quantum electrodynamic effects. We will report the results of calculations for the tune-out wavelength that is closest to the 1 s 2 s3 S - 1 s 3 p3 P transition of 4He. Our result for the M = 0 magnetic substate, obtained with a fully correlated Hylleraas basis set, is 413 . 079 958 51 (12) nm. This includes a leading relativistic contribution of - 0 . 059 218 5 (16) nm from the Breit interaction as a perturbation, and a relativistic recoil contribution of - 0 . 000 044 47 (17) nm. The results will be compared with recent relativistic CI calculations. Research supported by tha Natural Sciences and Engineering Research Council of Canada.

  12. Macrophage Polarization by Angiotensin II-type 1 Receptor Aggravates Renal Injury-acceleration of Atherosclerosis

    PubMed Central

    Yamamoto, Suguru; Yancey, Patricia G.; Zuo, Yiqin; Ma, Li-Jun; Kaseda, Ryohei; Fogo, Agnes B.; Ichikawa, Iekuni; Linton, MacRae F.; Fazio, Sergio; Kon, Valentina

    2011-01-01

    Background Angiotensin II (AII) is a major determinant of atherosclerosis. Although macrophages are the most abundant cells in atherosclerotic plaques and express AII type 1 receptor (AT1), the pathophysiologic role of macrophage AT1 in atherogenesis remains uncertain. We examined the contribution of macrophage AT1 to accelerated atherosclerosis in an AII-responsive setting induced by uninephrectomy (UNx). Methods and Results AT1−/− or AT1+/+ marrow from apolipoprotein E deficient (apoE−/−) mice was transplanted into recipient apoE−/− mice with subsequent UNx or sham operation: apoE−/−/AT1+/+→apoE−/− + Sham; apoE−/−/AT1+/+→apoE−/− + UNx; apoE−/−/AT1−/−→apoE−/− + Sham; apoE−/−/AT1−/−→apoE−/− + UNx. No differences in body weight, blood pressure, lipid profile, and serum creatinine were observed between the two UNx groups. ApoE−/−/AT1+/+→apoE−/− + UNx had significantly more atherosclerosis (16907 ± 21473 vs 116071 ± 8180 μm2, p<0.05). By contrast, loss of macrophage AT1 which reduced local AT1 expression, prevented any effect of UNx on atherosclerosis (77174 ± 9947 vs 75714 ± 11333 μm2, p=NS). Although UNx did not affect total macrophage content in the atheroma, lesions in apoE−/−/AT1−/−→apoE−/− + UNx had fewer classically activated macrophage phenotype (M1) and more alternatively activated phenotype (M2). Further, UNx did not affect plaque necrosis or apoptosis in apoE−/−/AT1−/−→apoE−/− whereas it significantly increased both (by 2- and 6-fold, respectively) in apoE−/−/AT1+/+→apoE−/− mice. Instead, apoE−/−/AT1−/−→apoE−/− had 5-fold-increase in macrophage-associated apoptotic bodies, indicating enhanced efferocytosis. In vitro studies confirmed blunted susceptibility to apoptosis, especially in M2 macrophages, and a more efficient phagocytic function of AT1−/− macrophages vs AT1+/+. Conclusions AT1 receptor of bone marrow

  13. Photoionization of Cl+ from the 3s23p4 3P2,1,0 and the 3s23p4 1D2,1S0 states in the energy range 19-28 eV

    NASA Astrophysics Data System (ADS)

    McLaughlin, Brendan M.

    2017-01-01

    Absolute photoionization cross-sections for the Cl+ ion in its ground and the metastable states, 3s23p4 3P2,1,0 and 3s23p4 1D2,1S0, were measured recently at the Advanced Light Source at Lawrence Berkeley National Laboratory using the merged beams photon-ion technique at a photon energy resolution of 15 meV in the energy range 19-28 eV. These measurements are compared with large-scale Dirac-Coulomb R-matrix calculations in the same energy range. Photoionization of this sulphur-like chlorine ion is characterized by multiple Rydberg series of auto-ionizing resonances superimposed on a direct photoionization continuum. A wealth of resonance features observed in the experimental spectra is spectroscopically assigned, and their resonance parameters are tabulated and compared with the recent measurements. Metastable fractions in the parent ion beam are determined from this study. Theoretical resonance energies and quantum defects of the prominent Rydberg series 3s23p3nd, identified in the spectra as 3p → nd transitions, are compared with the available measurements made on this element. Weaker Rydberg series 3s23p3ns, identified as 3p → ns transitions and window resonances 3s3p4(4P)np features, due to 3s → np transitions, are also found in the spectra.

  14. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    PubMed Central

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  15. Fitting Formulae and Constraints for the Existence of S-type and P-type Habitable Zones in Binary Systems

    NASA Astrophysics Data System (ADS)

    Wang, Zhaopeng; Cuntz, Manfred

    2017-10-01

    We derive fitting formulae for the quick determination of the existence of S-type and P-type habitable zones (HZs) in binary systems. Based on previous work, we consider the limits of the climatological HZ in binary systems (which sensitively depend on the system parameters) based on a joint constraint encompassing planetary orbital stability and a habitable region for a possible system planet. Additionally, we employ updated results on planetary climate models obtained by Kopparapu and collaborators. Our results are applied to four P-type systems (Kepler-34, Kepler-35, Kepler-413, and Kepler-1647) and two S-type systems (TrES-2 and KOI-1257). Our method allows us to gauge the existence of climatological HZs for these systems in a straightforward manner with detailed consideration of the observational uncertainties. Further applications may include studies of other existing systems as well as systems to be identified through future observational campaigns.

  16. Trypsin induces biphasic muscle contraction and relaxation via transient receptor potential vanilloid 1 and neurokinin receptors 1/2 in porcine esophageal body.

    PubMed

    Xiaopeng, Bai; Tanaka, Yoshimasa; Ihara, Eikichi; Hirano, Katsuya; Nakano, Kayoko; Hirano, Mayumi; Oda, Yoshinao; Nakamura, Kazuhiko

    2017-02-15

    Duodenal reflux of fluids containing trypsin relates to refractory gastroesophageal reflux disease (GERD). Esophageal peristalsis and clearance are important factors in GERD pathogenesis. However, the function of trypsin in esophageal body contractility is not fully understood. In this study, effects of trypsin on circular smooth muscle (CSM) and longitudinal smooth muscle (LSM) of the porcine esophageal body were examined. Trypsin elicited a concentration dependent biphasic response, a major contraction and a subsequent relaxation only in CSM. In CSM, contraction occurred at trypsin concentrations of 100nM and relaxation at 1μM. A proteinase-activated receptor (PAR)2 activating peptide, SLIGKV-NH 2 (1mM), induced a monophasic contraction. Those responses were unaffected by tetrodotoxin though abolished by the gap junction uncouplers carbenoxolone and octanol. They were also partially inhibited by a transient receptor potential vanilloid type 1 (TRPV1) antagonist and abolished by combination of neurokinin receptor 1 (NK 1 ) and NK 2 antagonists, but not by an NK 3 antagonist, suggesting a PAR2-TRPV1-substance P pathway in sensory neurons. Substance P (100nM), an agonist for various NK receptors (NK 1 , NK 2 and NK 3 ) with differing affinities, induced significant contraction in CSM, but not in LSM. The contraction was also blocked by the combination of NK 1 and NK 2 antagonists, but not by the NK 3 antagonist. Moreover, substance P-induced contractions were unaffected by the TRPV1 antagonist, but inhibited by a gap junction uncoupler. In conclusion, trypsin induced a biphasic response only in CSM and this was mediated by PAR2, TRPV1 and NK 1/2 . Gap junctions were indispensable in this tachykinin-induced response. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Angiotensin II Type 1 Receptor Knockdown Impairs Interleukin-1β-Induced Cytokines in Human Periodontal Fibroblasts.

    PubMed

    Gabriele, Lilian Gobbo; Morandini, Ana Carolina; Dionísio, Thiago José; Santos, Carlos Ferreira

    2017-01-01

    The renin-angiotensin (Ang) system (RAS) has been reported as an important modulator of inflammatory and immune responses. Evidence suggests an alternative Ang 1-7/Mas receptor axis as counter-regulatory to the classic RAS Ang II/Ang II Type 1 (AT1) receptor axis. It is known that periodontal pathogens elicit host-derived immune response due to release of cytokines such as interleukin (IL)-1β, and fibroblasts are among the most numerous sentinel cells that contribute to this production. The aim of this study is to determine whether AT1 receptor (AT1R) contributes to production of inflammatory cytokines that are important for periodontal pathogenesis using primary human gingival fibroblasts (HGFs) and human periodontal ligament fibroblasts (HPLFs) stimulated with IL-1β. Through RNA interference or pharmacologic inhibition using AT1R antagonist losartan, HGF and HPLF were stimulated by IL-1β for 3 (messenger RNA [mRNA]) or 24 (protein) hours. IL-1β upregulated mRNA expression of AT1R, IL-1β, IL-6, IL-8, tumor necrosis factor-alpha, and osteoprotegerin (OPG) in HGF and HPLF. AT1R knockdown impaired IL-1β-induced IL-6 and IL-8 secretion in cultured HGF and HPLF. AT1R silencing also increased OPG gene expression in HGF only. Pharmacologic inhibition of AT1R through losartan modulated mRNA transcription of IL-6 and IL-8 in HPLF but not in HGF. In contrast, IL-1β-induced secretion of IL-6 and IL-8 was not influenced by losartan in HGF or HPLF. These results suggest that AT1R knockdown and AT1R pharmacologic blockade by losartan may differently control balance of inflammatory cytokines, such as IL-6 and IL-8, in primary human periodontal fibroblasts.

  18. Activation of EGF Receptor Kinase by L1-mediated Homophilic Cell Interactions

    PubMed Central

    Islam, Rafique; Kristiansen, Lars V.; Romani, Susana; Garcia-Alonso, Luis; Hortsch, Michael

    2004-01-01

    Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulation of neuronal receptor tyrosine kinases (RTKs), especially FGF and EGF receptors. It has long been suspected that neural CAMs might physically interact with RTKs, but their activation by specific cell adhesion events has not been directly demonstrated. Here we report that gain-of-function conditions of the Drosophila L1-type CAM Neuroglian result in profound sensory axon pathfinding defects in the developing Drosophila wing. This phenotype can be suppressed by decreasing the normal gene dosage of the Drosophila EGF receptor gene. Furthermore, in Drosophila S2 cells, cell adhesion mediated by human L1-CAM results in the specific activation of human EGF tyrosine kinase at cell contact sites and EGF receptors engage in a physical interaction with L1-CAM molecules. Thus L1-type CAMs are able to promote the adhesion-dependent activation of EGF receptor signaling in vitro and in vivo. PMID:14718570

  19. Activation of EGF receptor kinase by L1-mediated homophilic cell interactions.

    PubMed

    Islam, Rafique; Kristiansen, Lars V; Romani, Susana; Garcia-Alonso, Luis; Hortsch, Michael

    2004-04-01

    Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulation of neuronal receptor tyrosine kinases (RTKs), especially FGF and EGF receptors. It has long been suspected that neural CAMs might physically interact with RTKs, but their activation by specific cell adhesion events has not been directly demonstrated. Here we report that gain-of-function conditions of the Drosophila L1-type CAM Neuroglian result in profound sensory axon pathfinding defects in the developing Drosophila wing. This phenotype can be suppressed by decreasing the normal gene dosage of the Drosophila EGF receptor gene. Furthermore, in Drosophila S2 cells, cell adhesion mediated by human L1-CAM results in the specific activation of human EGF tyrosine kinase at cell contact sites and EGF receptors engage in a physical interaction with L1-CAM molecules. Thus L1-type CAMs are able to promote the adhesion-dependent activation of EGF receptor signaling in vitro and in vivo.

  20. P2Y1 receptor antagonists mitigate oxygen and glucose deprivation‑induced astrocyte injury.

    PubMed

    Guo, Hui; Liu, Zhong-Qiang; Zhou, Hui; Wang, Zhi-Ling; Tao, Yu-Hong; Tong, Yu

    2018-01-01

    The aim of the present study was to elucidate the effects of blocking the calcium signaling pathway of astrocytes (ASs) on oxygen and glucose deprivation (OGD)‑induced AS injury. The association between the changes in the concentrations of AS‑derived transmitter ATP and glutamic acid, and the changes in calcium signaling under the challenge of OGD were investigated. The cortical ASs of Sprague Dawley rats were cultured to establish the OGD models of ASs. The extracellular concentrations of ATP and glutamic acid in the normal group and the OGD group were detected, and the intracellular concentration of calcium ions (Ca2+) was detected. The effects of 2'‑deoxy‑N6‑methyl adenosine 3', 5'‑diphosphate diammonium salt (MRS2179), a P2Y1 receptor antagonist, on the release of calcium and glutamic acid of ASs under the condition of OGD were observed. The OGD challenge induced the release of glutamic acid and ATP by ASs in a time‑dependent manner, whereas elevation in the concentration of glutamic acid lagged behind that of the ATP and Ca2+. The concentration of Ca2+ inside ASs peaked 16 h after OGD, following which the concentration of Ca2+ was decreased. The effects of elevated release of glutamic acid by ASs when challenged by OGD may be blocked by MRS2179, a P2Y1 receptor antagonist. Furthermore, MRS2179 may significantly mitigate OGD‑induced AS injury and increase cell survival. The ASs of rats cultured in vitro expressed P2Y1 receptors, which may inhibit excessive elevation in the concentration of intracellular Ca2+. Avoidance of intracellular calcium overload and the excessive release of glutamic acid may be an important reason why MRS2179 mitigates OGD‑induced AS injury.