Sample records for s2 glass fiber

  1. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    PubMed

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  2. Preparation and investigation of Ge-S-I glasses for infrared fiber optics

    NASA Astrophysics Data System (ADS)

    Velmuzhov, A. P.; Sukhanov, M. V.; Plekhovich, A. D.; Snopatin, G. E.; Churbanov, M. F.; Iskhakova, L. D.; Ermakov, R. P.; Kotereva, T. V.; Shiryaev, V. S.

    2016-02-01

    Glass samples of [GeSx]90I10 (x = 1.5, 1.7, 2.0, 2.3, 2.45, 2.6) compositions were prepared, and some their thermal, optical properties as well as tendency to crystallization were investigated. The compositional dependences of glass transition temperature, volume fraction of crystallized phase and activation energy of glass formation (Eg) have nonmonotonic character with a maximum for [GeS2.0]90I10 glass. Glasses of 85.8GeS2-14.2GeI4 and [GeS1.5]90I10 compositions are identified as promising for preparation of optical fiber. For the first time, Ge-S-I glass fibers were produced. Minimum optical losses in 85.8GeS2-14.2GeI4 glass fiber were 2.7 dB/m at a wavelength of 5.1 μm, and that in [GeS1.5]90I10 glass fiber were 14.5 dB/m at 5.5 μm.

  3. Oxynitride glass fibers

    NASA Technical Reports Server (NTRS)

    Patel, Parimal J.; Messier, Donald R.; Rich, R. E.

    1991-01-01

    Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future.

  4. Ho3+ doped fluoroaluminate glass fibers for 2.9 µm lasing

    NASA Astrophysics Data System (ADS)

    Jia, S. J.; Jia, Z. X.; Yao, C. F.; Wang, S. B.; Jiang, H. W.; Zhang, L.; Feng, Y.; Qin, G. S.; Ohishi, Y.; Qin, W. P.

    2018-01-01

    Ho3+ doped fluoroaluminate glass fibers based on chemically durable AlF3-BaF2-YF3-PbF2-MgF2-CaF2 glasses are fabricated by using a rod-in-tube method. By using an 84 cm long Ho3+-doped fluoroaluminate glass fiber as the gain medium and a 1120 nm fiber laser as the pump source, lasing at 2868 nm is obtained, the maximum unsaturated power is about 57 mW for a pump power of 1224 mW, and the corresponding slope efficiency is ~5.1%. The effect of the fiber length on lasing at 2868 nm is also investigated. Our results show that Ho3+-doped fluoroaluminate glass fibers are promising gain media for 2.9 µm laser applications.

  5. Stability of Glass Fiber-Plastic Composites

    DTIC Science & Technology

    1974-11-01

    investigated. 1. S-Glass The formation of S-g1ass 1s proprietary and differs between the two main sources ( Owens - Corning and Ferro Corporation) from...which samples were obtained for this research program. However, according to published work by Humphrey (8) of Owens - Corning , the approximate...of the glass fibers. S-glass fibers furnished by both Owens - Corning and Ferro Cor- poration were utilized and the results analyzed using scanning

  6. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers

    NASA Astrophysics Data System (ADS)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-01

    A glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba2TiSi2O8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  7. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers

    PubMed Central

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-01-01

    A glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba2TiSi2O8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers. PMID:28358045

  8. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.

    PubMed

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-30

    A glass-ceramic optical fiber containing Ba 2 TiSi 2 O 8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba 2 TiSi 2 O 8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  9. Adhesion of resin materials to S2-glass unidirectional and E-glass multidirectional fiber reinforced composites: effect of polymerization sequence protocols.

    PubMed

    Polacek, Petr; Pavelka, Vladimir; Ozcan, Mutlu

    2013-12-01

    To evaluate the effect of different polymerization sequences employed during application of bis-GMAbased particulate filler composites (PFC) or a flowable resin (FR) on fiber-reinforced composite (FRC). Unidirectional, pre-impregnated S2-glass fibers (Dentapreg) and multidirectional preimpregnated E-glass fibers (Dentapreg) (length: 40 mm; thickness: 0.5 mm) were obtained (N = 144, n = 12 per group) and embedded in translucent silicone material with the adhesion surface exposed. The resulting specimens were randomly divided into 12 groups for the following application sequences: a) FRC+PFC (photopolymerized in one step), b) FRC+FR (photopolymerized in one step), c) FRC+PFC (photopolymerized individually), d) FRC+FR (photopolymerized individually), e) FRC (photopolymerized)+intermediate adhesive resin and PFC (photopolymerized in one step), f) FRC (photopolymerized)+intermediate adhesive resin and FR (photopolymerized in one step). The sequences of unidirectional (groups a to f) were repeated for multidirectional (groups g to l) FRCs. PFCs were debonded from the FRC surfaces using the shear bond test in a universal testing machine (1 mm/min). On additional specimens from each FRC type, thermogravimetric analysis (TGA) was performed to characterize the fiber weight content (Wf) (N = 6, n = 3 per group). After debonding, all specimens were analyzed using SEM to categorize the failure modes. The data were statistically analyzed using 3-way ANOVA and Tukey's tests (α = 0.05). Significant effects of the FRC type (S2 or E-glass) (p < 0.01), resin type (PFC or FR) (p < 0.01) and polymerization protocol (p < 0.05) were observed on the bond strength (MPa). Interaction terms were also significant (p < 0.05). The multidirectional FRC groups (g to l) showed significantly lower bond strengths (2.3 ± 0.2 to 7.3 ± 0.3 MPa) than did the unidirectional FRC groups (a to f) (10.7 ± 0.6 to 24.4 ± 0.8 MPa). Among the unidirectional FRC groups, the highest values were obtained with

  10. Ho3+-doped AlF3-TeO2-based glass fibers for 2.1 µm laser applications

    NASA Astrophysics Data System (ADS)

    Wang, S. B.; Jia, Z. X.; Yao, C. F.; Ohishi, Y.; Qin, G. S.; Qin, W. P.

    2017-05-01

    Ho3+-doped AlF3-TeO2-based glass fibers based on AlF3-BaF2-CaF2-YF3-SrF2-MgF2-TeO2 glasses are fabricated by using a rod-in-tube method. The glass rod including a core and a thick cladding layer is prepared by using a suction method, where the thick cladding layer is used to protect the core from the effect of surface crystallization during the fiber drawing. By inserting the glass rod into a glass tube, the glass fibers with relatively low loss (~2.3 dB m-1 @ 1560 nm) are prepared. By using a 38 cm long Ho3+-doped AlF3-TeO2-based glass fiber as the gain medium and a 1965 nm fiber laser as the pump source, 2065 nm lasing is obtained for a threshold pump power of ~220 mW. With further increasing the pump power to ~325 mW, the unsaturated output power of the 2065 nm laser is about 82 mW and the corresponding slope efficiency is up to 68.8%. The effects of the gain fiber length on the lasing threshold, the slope efficiency, and the operating wavelength are also investigated. Our experimental results show that Ho3+-doped AlF3-TeO2-based glass fibers are promising gain media for 2.1 µm laser applications.

  11. Photosensitivity study of GeS2 chalcogenide glass under femtosecond laser pulses irradiation

    NASA Astrophysics Data System (ADS)

    Ayiriveetil, Arunbabu; Sabapathy, Tamilarasan; Kar, Ajoy K.; Asokan, Sundarrajan

    2015-07-01

    The present study discusses the photosensitivity of GeS2 chalcogenide glass in response to irradiation with femtosecond pulses at 1047 nm. Bulk GeS2 glasses are prepared by conventional melt quenching technique and the amorphous nature of the glass is confirmed using X-ray diffraction. Ultrafast laser inscription technique is used to fabricate the straight channel waveguides in the glass. Single scan and multi scan waveguides are inscribed in GeS2 glasses of length 0.65 cm using a master oscillator power amplifier Yb doped fiber laser (IMRA μjewel D400) with different pulse energy and translation speed. Diameters of the inscribed waveguides are measured and its dependence on the inscription parameters such as translation speed and pulse energy is studied. Butt coupling method is used to characterize the loss measurement of the inscribed optical waveguides. The mode field image of the waveguides is captured using CCD camera and compared with the mode field image of a standard SMF-28 fibers.

  12. Glass Fiber Resin Composites and Components at Arctic Temperatures

    DTIC Science & Technology

    2015-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited GLASS FIBER RESIN...3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE GLASS FIBER RESIN COMPOSITES AND COMPONENTS AT ARCTIC TEMPERATURES 5...public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Glass fiber reinforced composites (GFRC

  13. Structure and properties of Li 2S-P 2S 5-P 2S 3 glass and glass-ceramic electrolytes

    NASA Astrophysics Data System (ADS)

    Minami, Keiichi; Hayashi, Akitoshi; Ujiie, Satoshi; Tatsumisago, Masahiro

    High lithium ion conducting 70Li 2S·(30 - x)P 2S 5· xP 2S 3 (mol%) glasses and glass-ceramics were prepared by the mechanical milling method. Glasses were obtained in the composition range of 0 ≦ x ≦ 10. The substitution of P 2S 3 for P 2S 5 promoted the formation of the P 2S 6 4- units in the glasses. The conductivity of the glass increased with an increase in P 2S 3 contents up to 5 mol% and the glass with 5 mol% of P 2S 3 showed the conductivity of 1 × 10 -4 S cm -1 at room temperature. In the case of glass-ceramics, the conductivity increased with an increase in P 2S 3 contents up to 1 mol%, and the superionic conducting Li 7P 3S 11 crystal was precipitated in the glass-ceramic. The glass-ceramic with 1 mol% of P 2S 3 showed the highest conductivity of 3.9 × 10 -3 S cm -1 at room temperature.

  14. Y-Si-Al-O-N Glass Fibers.

    DTIC Science & Technology

    The excellent mechanical properties and outstanding water corrosion resistance of Y -Si-Al-O- N glasses indicate that they are attractive candidate...materials for forming into high performance glass fibers. Fibers of glasses containing, respectively,3.2 and 6.6 wt% N were drawn freehand in air, and

  15. Ytterbium-Phosphate Glass for Microstructured Fiber Laser

    PubMed Central

    Stępień, Ryszard; Franczyk, Marcin; Pysz, Dariusz; Kujawa, Ireneusz; Klimczak, Mariusz; Buczyński, Ryszard

    2014-01-01

    In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt%) of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index) and thermal proprieties (thermal expansion coefficient, rheology). The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M2 = 1.59, from a 53 cm-long cavity. PMID:28788702

  16. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  17. Continuous-wave laser-induced glass fiber generation

    NASA Astrophysics Data System (ADS)

    Nishioka, Nobuyasu; Hidai, Hirofumi; Matsusaka, Souta; Chiba, Akira; Morita, Noboru

    2017-09-01

    Pulsed-laser-induced glass fiber generation has been reported. We demonstrate a novel glass fiber generation technique by continuous-wave laser illumination and reveal the generation mechanism. In this technique, borosilicate glass, metal foil, and a heat insulator are stacked and clamped by a jig as the sample. Glass fibers are ejected from the side surface of the borosilicate glass by laser illumination of the sample from the borosilicate glass side. SEM observation shows that nanoparticles are attached on the glass fibers. High-speed imaging reveals that small bubbles are formed at the side surface of the borosilicate glass and the bursting of the bubble ejects the fibers. The temperature at the fiber ejection point is estimated to be 1220 K. The mechanism of the fiber ejection includes the following steps: the metal thin foil heated by the laser increases the temperature of the surrounding glass by heat conduction. Since the absorption coefficient of the glass is increased by increasing the temperature, the glass starts to absorb the laser irradiation. The heated glass softens and bubbles form. When the bubble bursts, molten glass and gas inside the bubble scatter into the air to generate the glass fibers.

  18. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  19. CO2-laser-assisted processing of glass fiber-reinforced thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Schares, Richard Ludwig; Stimpfl, Joffrey

    2013-02-01

    To fully exploit the potential of fiber-reinforced thermoplastic composites (FRTC) and to achieve a broad industrial application, automated manufacturing systems are crucial. Investigations at Fraunhofer IPT have proven that the use of laser system technology in processing FRTC allows to achieve high throughput, quality, flexibility, reproducibility and out-of-autoclave processing simultaneously. As 90% of the FRP in Europe1 are glass fiber-reinforced a high impact can be achieved by introducing laser-assisted processing with all its benefits to glass fiber-reinforced thermoplastics (GFRTC). Fraunhofer IPT has developed the diode laser-assisted tape placement (laying and winding) to process carbon fiber-reinforced thermoplastic composites (CFRTC) for years. However, this technology cannot be transferred unchanged to process milky transparent GFRTC prepregs (preimpregnated fibers). Due to the short wavelength (approx. 980 nm) and therefore high transmission less than 20% of the diode laser energy is absorbed as heat into non-colored GFRTC prepregs. Hence, the use of a different wave length, e.g. CO2-laser (10.6 μm) with more than 90% laser absorption, is required to allow the full potential of laser-assisted processing of GFRTC. Also the absorption of CO2-laser radiation at the surface compared to volume absorption of diode laser radiation is beneficial for the interlaminar joining of GFRTC. Fraunhofer IPT is currently developing and investigating the CO2-laser-assisted tape placement including new system, beam guiding, process and monitoring technology to enable a resource and energy efficient mass production of GFRP composites, e.g. pipes, tanks, masts. The successful processing of non-colored glass fiber-reinforced Polypropylene (PP) and Polyphenylene Sulfide (PPS) has already been proven.

  20. Quantitative risk assessment of durable glass fibers.

    PubMed

    Fayerweather, William E; Eastes, Walter; Cereghini, Francesco; Hadley, John G

    2002-06-01

    This article presents a quantitative risk assessment for the theoretical lifetime cancer risk from the manufacture and use of relatively durable synthetic glass fibers. More specifically, we estimate levels of exposure to respirable fibers or fiberlike structures of E-glass and C-glass that, assuming a working lifetime exposure, pose a theoretical lifetime cancer risk of not more than 1 per 100,000. For comparability with other risk assessments we define these levels as nonsignificant exposures. Nonsignificant exposure levels are estimated from (a) the Institute of Occupational Medicine (IOM) chronic rat inhalation bioassay of durable E-glass microfibers, and (b) the Research Consulting Company (RCC) chronic inhalation bioassay of durable refractory ceramic fibers (RCF). Best estimates of nonsignificant E-glass exposure exceed 0.05-0.13 fibers (or shards) per cubic centimeter (cm3) when calculated from the multistage nonthreshold model. Best estimates of nonsignificant C-glass exposure exceed 0.27-0.6 fibers/cm3. Estimates of nonsignificant exposure increase markedly for E- and C-glass when non-linear models are applied and rapidly exceed 1 fiber/cm3. Controlling durable fiber exposures to an 8-h time-weighted average of 0.05 fibers/cm3 will assure that the additional theoretical lifetime risk from working lifetime exposures to these durable fibers or shards is kept below the 1 per 100,000 level. Measured airborne exposures to respirable, durable glass fibers (or shards) in glass fiber manufacturing and fabrication operations were compared with the nonsignificant exposure estimates described. Sampling results for B-sized respirable E-glass fibers at facilities that manufacture or fabricate small-diameter continuous-filament products, from those that manufacture respirable E-glass shards from PERG (process to efficiently recycle glass), from milled fiber operations, and from respirable C-glass shards from Flakeglass operations indicate very low median exposures of 0

  1. Effects of glass scraps powder and glass fiber on mechanical properties of polyester composites

    NASA Astrophysics Data System (ADS)

    Sonsakul, K.; Boongsood, W.

    2017-11-01

    One concern in bus manufacturing is the high cost of glass fiber reinforced in polyester composites parts. The composites of glass fiber and polyester are low elongation and high strength, and glass scraps powder displays high hardness and good chemical compatibility with the polymer matrix and glass fiber. This research aimed to study the effects of glass scraps powder and glass fiber on mechanical performance of polyester composites. Glass fiber was randomly oriented fiber and used as new. Glass scraps were obtained from a bus factory and crushed to powder sizes of 120 and 240 μm by a ball mill. Polyester composites were prepared using Vacuum Infusion Process (VIP).Polyester reinforced with 3 layers of glass fiber was an initial condition. Then, one layer of glass fiber was replaced with glass scraps powder. Flexural strength, tensile strength, impact strength and hardness of the polyester composites were determined. Hardness was increased with a combination of smaller size and higher volume of glass scraps powder. Pictures of specimens obtained by using scanning electron microscope (SEM) confirmed that the powder of glass scraps packed in the layers of glass fiber in polyester composites.

  2. Mechanical characterization of glass fiber (woven roving/chopped strand mat E-glass fiber) reinforced polyester composites

    NASA Astrophysics Data System (ADS)

    Bhaskar, V. Vijaya; Srinivas, Kolla

    2017-07-01

    Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.

  3. Infrared glass fiber cables for CO laser medical applications

    NASA Astrophysics Data System (ADS)

    Arai, Tsunenori; Mizuno, Kyoichi; Sensaki, Koji; Kikuchi, Makoto; Watanabe, Tamishige; Utsumi, Atsushi; Takeuchi, Kiyoshi; Akai, Yoshiro

    1993-05-01

    We developed the medical fiber cables which were designed for CO laser therapy, i.e., angioplasty and endoscopic therapy. As-S chalcogenide glass fibers were used for CO laser delivery. A 230 micrometers core-diameter fiber was used for the angioplasty laser cable. The outer diameter of this cable was 600 micrometers . The total length and insertion length of the angioplasty laser cable were 2.5 m and 1.0 m, respectively. Typically, 2.0 W of fiber output was used in the animal experiment in vivo for the ablation of the model plaque which consisted of human atheromatous aorta wall. The transmission of the angioplasty laser cable was approximately 35%, because the reflection loss occurred at both ends of the fiber and window. Meanwhile, the core diameter of the energy delivery fiber for the endoscopic therapy was 450 micrometers . The outer diameter of this cable was 1.7 mm. Approximately 4.5 W of fiber output was used for clinical treatment of pneumothorax through a pneumoscope. Both types of the cables had the ultra-thin thermocouples for temperature monitoring at the tip of the cables. This temperature monitoring was extremely useful to prevent the thermal destruction of the fiber tip. Moreover, the As-S glass fibers were completely sealed by the CaF2 windows and outer tubes. Therefore, these cables were considered to have sufficient safety properties for medical applications. These laser cables were successfully used for the in vivo animal experiments and/or actual clinical therapies.

  4. Dynamic shear strength of S2 glass fiber reinforced polymer composites under shock compression

    NASA Astrophysics Data System (ADS)

    Yuan, Fuping; Tsai, Liren; Prakash, Vikas; Dandekar, Dattatraya P.; Rajendran, A. M.

    2008-05-01

    In the present paper, a series of plate impact shock-reshock and shock-release experiments were conducted to study the critical shear strength of a S2 glass fiber reinforced polymer (GRP) composite under shock compression levels ranging from 0.8 to 1.8 GPa. The GRP was fabricated at ARL, Aberdeen, using S2 glass woven roving in a Cycom 4102 polyester resin matrix. The experiments were conducted by using an 82.5 mm bore single-stage gas gun at Case Western Reserve University. In order to conduct shock-reshock and shock-release experiments a dual flyer plate assembly was utilized. The shock-reshock experiments were conducted by using a projectile faced with GRP and backed with a relatively high shock impedance Al 6061-T6 plate; while for the shock-release experiments the GRP was backed by a relatively lower impedance polymethyl methacrylate backup flyer plate. A multibeam velocity interferometer was used to measure the particle velocity profile at the rear surface of the target plate. By using self-consistent technique procedure described by Asay and Chabbildas [Shock Waves and High-Strain-Rate Phenomena, in Metals, edited by M. M. Myers and L. E. Murr (Plenum, New York, 1981), pp. 417-431], the critical shear strength of the GRP (2τc) was determined for impact stresses in the range of 0.8 to 1.8 GPa. The results show that the critical shear strength of the GRP is increased from 0.108 GPa to 0.682 GPa when the impact stress is increased from 0.8 to 1.8 GPa. The increase in critical shear strength may be attributed to rate-dependence and/or pressure dependent yield behavior of the GRP.

  5. Benefits of glass fibers in solar fiber optic lighting systems.

    PubMed

    Volotinen, Tarja T; Lingfors, David H S

    2013-09-20

    The transmission properties and coupling of solar light have been studied for glass core multimode fibers in order to verify their benefits for a solar fiber optic lighting system. The light transportation distance can be extended from 20 m with plastic fibers to over 100 m with the kind of glass fibers studied here. A high luminous flux, full visible spectrum, as well as an outstanding color rendering index (98) and correlated color temperature similar to the direct sun light outside have been obtained. Thus the outstanding quality of solar light transmitted through these fibers would improve the visibility of all kinds of objects compared to fluorescent and other artificial lighting. Annual relative lighting energy savings of 36% in Uppsala, Sweden, and 76% in Dubai were estimated in an office environment. The absolute savings can be doubled by using glass optical fibers, and are estimated to be in the order of 550 kWh/year in Sweden and 1160 kWh/year in Dubai for one system of only 0.159 m(2) total light collecting area. The savings are dependent on the fiber length, the daily usage time of the interior, the type of artificial lighting substituted, the system light output flux, and the available time of sunny weather at the geographic location.

  6. Glass formation and short-range order structures in the BaS + La 2S 3 + GeS 2 system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Josh R.; Martin, Steve W.; Ballato, John

    Here, infrared (IR) optical materials have enabled a broad range of optical sensing and measurement applications in the mid-wave and long-wave IR. Many IR transmitting glasses are based on covalently-bonded selenides and tellurides, such as As 2Se 3 and GeTe 2, which typically have relatively low glass transition temperatures ( T g) on the order of 200 to 350 °C. Many applications have working temperatures above the T g of these materials, which compels the development of new IR materials. This work studies the underlying short-range order (SRO) structure and glass formability of a new family of ionically-bonded sulfide glasses,more » xBaS + yLa 2S 3 + (1 – x – y)GeS 2, to develop high T g optical materials with a broad IR transmission range. These sulfide glasses were produced by melting sulfide materials inside evacuated and sealed carbon-coated silica ampoules at 1150 °C for 12 h and quenching to room temperature to form glass. Glass samples were then characterized by IR and Raman spectroscopies and differential thermal analysis (DTA). It was found that by increasing the modifier concentration, the predominantly Ge 4 SRO units, the superscript defines the number of bridging sulfur (BS) ions in the tetrahedral network found in GeS 2 glasses, are ultimately converted to Ge 0 units at >40 mol% network modifier content through the generation of non-bridging sulfur (NBS) ions. These molecular ionic units still form a glassy network, with some of the highest reported T g values to date for a pure sulfide glass. This suggests that this composition has strong ionic bonds between negatively-charged tetrahedral SRO units and the positively-charged modifier cations. While the glass network is depolymerized in the high modifier content glasses though the formation of a high concentration of molecular ionic Ge 0 SRO groups, they are, nevertheless, homogeneous glassy materials that exhibit the largest T g and Δ T (difference between crystallization temperature, T c

  7. Glass formation and short-range order structures in the BaS + La 2S 3 + GeS 2 system

    DOE PAGES

    Roth, Josh R.; Martin, Steve W.; Ballato, John; ...

    2018-06-01

    Here, infrared (IR) optical materials have enabled a broad range of optical sensing and measurement applications in the mid-wave and long-wave IR. Many IR transmitting glasses are based on covalently-bonded selenides and tellurides, such as As 2Se 3 and GeTe 2, which typically have relatively low glass transition temperatures ( T g) on the order of 200 to 350 °C. Many applications have working temperatures above the T g of these materials, which compels the development of new IR materials. This work studies the underlying short-range order (SRO) structure and glass formability of a new family of ionically-bonded sulfide glasses,more » xBaS + yLa 2S 3 + (1 – x – y)GeS 2, to develop high T g optical materials with a broad IR transmission range. These sulfide glasses were produced by melting sulfide materials inside evacuated and sealed carbon-coated silica ampoules at 1150 °C for 12 h and quenching to room temperature to form glass. Glass samples were then characterized by IR and Raman spectroscopies and differential thermal analysis (DTA). It was found that by increasing the modifier concentration, the predominantly Ge 4 SRO units, the superscript defines the number of bridging sulfur (BS) ions in the tetrahedral network found in GeS 2 glasses, are ultimately converted to Ge 0 units at >40 mol% network modifier content through the generation of non-bridging sulfur (NBS) ions. These molecular ionic units still form a glassy network, with some of the highest reported T g values to date for a pure sulfide glass. This suggests that this composition has strong ionic bonds between negatively-charged tetrahedral SRO units and the positively-charged modifier cations. While the glass network is depolymerized in the high modifier content glasses though the formation of a high concentration of molecular ionic Ge 0 SRO groups, they are, nevertheless, homogeneous glassy materials that exhibit the largest T g and Δ T (difference between crystallization temperature, T c

  8. Stability of Glass Fiber-Plastic Composites

    DTIC Science & Technology

    1974-11-01

    miniiiii’ 5 0712 01016774 9 x TECHNICA. . LIBRARY Jt U*Al>/l 1 Technical Report RL-75-6 STABILITY OF GLASS FIBER -PLASTIC COMPOSITES Wartan A...Subtitle) STABILITY OF GLASS FIBER -PLASTIC COMPOSITES 5. TYPE OF REPORT & PERIOD COVERED Technical Report 6. PERFORMING ORG. REPORT NUMBER 7...Exploratory research was conducted to determine the stages and nature of degradation of glass fiber -plastic composite systems under various environmental

  9. Nucleation and Crystallization as Induced by Bending Stress in Lithium Silicate Glass Fibers

    NASA Technical Reports Server (NTRS)

    Reis, Signo T.; Kim, Cheol W.; Brow, Richard K.; Ray, Chandra S.

    2003-01-01

    Glass Fibers of Li2O.2SiO2 (LS2) and Li2O.1.6SiO2 (LS1.6) compositions were heated near, but below, the glass transition temperature for different times while subjected to a constant bending stress of about 1.2 GPa. The nucleation density and the crystallization tendency estimated by differential thermal analysis (DTA) of a glass sample in the vicinity of the maximum of the bending stress increased relative to that of stress-free glass fibers. LS2 glass fibers were found more resistant to nucleation and crystallization than the Ls1.6 glass fibers. These results are discussed in regards to shear thinning effects on glass stability.

  10. Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber.

    PubMed

    Ta'eed, Vahid G; Fu, Libin; Pelusi, Mark; Rochette, Martin; Littler, Ian C; Moss, David J; Eggleton, Benjamin J

    2006-10-30

    We present the first demonstration of all optical wavelength conversion in chalcogenide glass fiber including system penalty measurements at 10 Gb/s. Our device is based on As2Se3 chalcogenide glass fiber which has the highest Kerr nonlinearity (n(2)) of any fiber to date for which either advanced all optical signal processing functions or system penalty measurements have been demonstrated. We achieve wavelength conversion via cross phase modulation over a 10 nm wavelength range near 1550 nm with 7 ps pulses at 2.1 W peak pump power in 1 meter of fiber, achieving only 1.4 dB excess system penalty. Analysis and comparison of the fundamental fiber parameters, including nonlinear coefficient, two-photon absorption coefficient and dispersion parameter with other nonlinear glasses shows that As(2)Se(3) based devices show considerable promise for radically integrated nonlinear signal processing devices.

  11. Phosphate-based glass fiber vs. bulk glass: Change in fiber optical response to probe in vitro glass reactivity.

    PubMed

    Massera, J; Ahmed, I; Petit, L; Aallos, V; Hupa, L

    2014-04-01

    This paper investigates the effect of fiber drawing on the thermal and structural properties as well as on the glass reactivity of a phosphate glass in tris(hydroxymethyl)aminomethane-buffered (TRIS) solution and simulated body fluid (SBF). The changes induced in the thermal properties suggest that the fiber drawing process leads to a weakening and probable re-orientation of the POP bonds. Whereas the fiber drawing did not significantly impact the release of P and Ca, an increase in the release of Na into the solution was noticed. This was probably due to small structural reorientations occurring during the fiber drawing process and to a slight diffusion of Na to the fiber surface. Both the powders from the bulk and the glass fibers formed a Ca-P surface layer when immersed in SBF and TRIS. The layer thickness was higher in the calcium and phosphate supersaturated SBF than in TRIS. This paper for the first time presents the in vitro reactivity and optical response of a phosphate-based bioactive glass (PBG) fiber when immersed in SBF. The light intensity remained constant for the first 48h after which a decrease with three distinct slopes was observed: the first decrease between 48 and 200h of immersion could be correlated to the formation of the Ca-P layer at the fiber surface. After this a faster decrease in light transmission was observed from 200 to ~425h in SBF. SEM analysis suggested that after 200h, the surface of the fiber was fully covered by a thin Ca-P layer which is likely to scatter light. For immersion times longer than ~425h, the thickness of the Ca-P layer increased and thus acted as a barrier to the dissolution process limiting further reduction in light transmission. The tracking of light transmission through the PBG fiber allowed monitoring of the fiber dissolution in vitro. These results are essential in developing new bioactive fiber sensors that can be used to monitor bioresponse in situ. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Novel High Temperature and Radiation Resistant Infrared Glasses and Optical Fibers for Sensing in Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballato, John

    One binary and three series of ternary non-oxide pure sulfide glasses compositions were investigated with the goal of synthesizing new glasses that exhibit high glass transition (Tg) and crystallization (Tc) temperatures, infrared transparency, and reliable glass formability. The binary glass series consisted of Ges 2 and La 2S 3 and the three glass series in the x(nBaS + mLa2S3) + (1-2x)GeS2 ternary system have BaS:La2S3 modifier ratios of 1:1, 1:2, and 2:1 with . With these glasses, new insights were realized as to how ionic glasses form and how glass modifiers affect both structure and glass formability. All synthesized compositionsmore » were characterized by Infrared (IR) and Raman spectroscopies and differential thermal analysis (DTA) to better understand the fundamental structure, optical, and thermal characteristics of the glasses. After a range of these glasses were synthesized, optimal compositions were formed into glass disks and subjected to gamma irradiation. Glass disks were characterized both before and after irradiation by microscope imaging, measuring the refractive index, density, and UV-VIS-IR transmission spectra. The final total dose the samples were subjected to was ~2.5 MGy. Ternary samples showed a less than 0.4% change in density and refractive index and minimal change in transmission window. The glasses also resisted cracking as seen in microscope images. Overall, many glass compositions were developed that possess operating temperatures above 500 °C, where conventional chalcogenide glasses such as As2S3 and have T gs from ~200-300 °C, and these glasses have a greater than Tc – Tg values larger than 100 °C and this shows that these glasses have good thermal stability of Tg such that they can be fabricated into optical fibers and as such can be considered candidates for high temperature infrared fiber optics. Initial fiber fabrication efforts showed that selected glasses could be drawn but larger samples would be needed for further

  13. Safely splicing glass optical fibers

    NASA Technical Reports Server (NTRS)

    Korbelak, K.

    1980-01-01

    Field-repair technique fuses glass fibers in flammable environment. Apparatus consists of v-groove vacuum chucks on manipulators, high-voltage dc power supply and tungsten electrodes, microscope to observe joint alignment and fusion, means of test transmission through joint. Apparatus is enclosed in gas tight bos filled with inert gas during fusion. About 2 feet of fiber end are necessary for splicing.

  14. Mechanical properties of woven glass fiber-reinforced composites.

    PubMed

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2006-06-01

    The aim of this investigation was to measure the flexural and compressive strengths and the corresponding moduli of cylindrical composite specimens reinforced with woven glass fiber. Test specimens were made by light-curing urethane dimethacrylate oligomer with woven glass fiber of 0.18-mm standard thickness. Tests were conducted using four reinforcement methods and two specimen diameters. Flexural strength and modulus of woven glass fiber-reinforced specimens were significantly greater than those without woven glass fiber (p < 0.01). Likewise, compressive strength of reinforced specimens was significantly greater than those without woven glass fiber (p < 0.01), except for specimens reinforced with woven glass fiber oriented at a tilt direction in the texture (p > 0.05). In terms of comparison between the two specimen diameters, no statistically significant differences in flexural strength and compressive strength (p > 0.05) were observed.

  15. Optimization of the contents of hollow glass microsphere and sodium hexametaphosphate for glass fiber vacuum insulation panel

    NASA Astrophysics Data System (ADS)

    Li, C. D.; Chen, Z. F.; Zhou, J. M.

    2016-07-01

    In this paper, various additive amounts of hollow glass microspheres (HGMs) and sodium hexametaphosphate (SHMP) powders were blended with flame attenuated glass wool (FAGW) to form hybrid core materials (HCMs) through the wet method. Among them, the SHMP was dissolved in the glass fiber suspension and coated on the surface of glass fibers while the HGMs were insoluble in the glass fiber suspension and filled in the fiber-fiber pores. The average pore diameter of the FAGW/HGM HCMs was 8-11 μm which was near the same as that of flame attenuated glass fiber mats (FAGMs, i.e., 10.5 µm). The tensile strength of the SHMP coated FAGMs was enhanced from 160 N/m to 370 N/m when SHMP content increased from 0 wt.% to 0.2 wt.%. By contrast, the tensile strength of the FAGW/HGM HCMs decreased from 160 N/m to 40 N/m when HGM content increased from 0 wt.% to 50 wt.%. Both the FAGW/HGM HCMs and SHMP coated FAGMs were vacuumed completely to form vacuum insulation panels (VIPs). The results showed that both the addition of SHMP and HGM led a slight increase in the thermal conductivity of the corresponding VIPs. To obtain a high-quality VIP, the optimal SHMP content and HGM content in glass fiber suspension was 0.12-0.2 wt.% and 0 wt.%.

  16. Evaluation of air jet erosion profiles in metal mesh supported SCR plate catalyst based on glass fiber concentrations

    NASA Astrophysics Data System (ADS)

    Rajath, S.; Nandakishora, Y.; Siddaraju, C.; Roy, Sukumar

    2018-04-01

    This paper explains the evaluation of erosion profiles in metal mesh supported SCR plate catalyst structures in which the glass fibers concentration in the catalyst material is considered as prime factor for erosion resistance and mechanical strength. The samples are prepared and tested at the specified and constant conditions like velocity as 30m/s, sand flow rate as 2g/min, average particle diameter 300 µm and all these samples were tested at different angles at impact preferably 15°,30°,45°,60°,75°,and 90° as per ASTM G76 standards. Say, if 5% glass fibers are present in catalyst material, then erosion resistance increases, but the density of glass fibers is very less because each glass fiber is approximately 20 microns in diameter and weight of individual is negligible. The composition in which 2% fiber is present has slightly higher erosion comparatively, but 3% glass fibers or more foreign inclusion like excessive binders can be eliminated that contributes much for the conversion of NOx. So 2% -3% glass fibers are preferred and optimized based on NOx conversion and erosion resistance property.

  17. An optical fiber glass containing PbSe quantum dots

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Jiang, Huilü; Ma, Dewei; Cheng, Xiaoyu

    2011-09-01

    An optical fiber material, sodium-aluminum-borosilicate glass doped with PbSe quantum dots (QDs) is synthesized by a high-temperature melting method. Crystallization, size distribution and absorption-photoluminescence (PL) of this material are observed by XRD, TEM, and spectrometer respectively. The obtained results indicate that the glass contains QDs in diameter of 6-13 nm depending on the heat-treatment temperature and with a higher doped concentration than those available. It shows an enhanced PL, widened FWHM (275-808 nm), obvious Stokes shift (20-110 nm), with the PL peak wavelength located within 1676-2757 nm depending on the size of QD. The glass is fabricated into an optical fiber in diameter of 10-70 μm and length of 1 m, with pliability and ductility similar to usual SiO 2 fibers. It can be easily fused and spliced with SiO 2 fibers due to a small difference of melting point between them. Characterized by high doped concentration and broad FWHM, this study suggests that the glass can be applied to designing novel broadband fiber amplifiers working in C-L waveband.

  18. Production of Bulk and Fiber Glass in Space

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The production of bulk glass and fiber glass in space and on the moon and Mars should lead to superior products. Specifically glass plates for windows and optical elements could be produced with theoretical strengths by production in vacuum. Water vapor is known to decrease glass strength by up to two orders of magnitude from theoretical. A low gravity glass plate apparatus prototype has been designed and built which uses centrifugal force to shape the glass and solar energy to melt the glass. Glass fiber could be produced on the moon or Mars from in-situ materials using standard technologies. This material could then be used as reinforcement in composite materials in construction of bases. Also, it has been shown that processing in reduced gravity suppresses crystallization in certain heavy metal fluoride glasses. It is proposed to reprocess optical fiber preforms on the space station and then pull these into optical fiber. It is estimated that the attenuation coefficient should be reduced by two orders of magnitude.

  19. Modifying glass fiber surface with grafting acrylamide by UV-grafting copolymerization for preparation of glass fiber reinforced PVDF composite membrane.

    PubMed

    Luo, Nan; Zhong, Hui; Yang, Min; Yuan, Xing; Fan, Yaobo

    2016-01-01

    Experimental design and response surface methodology (RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide (AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride) (PVDF) composite membrane (GFRP-CM). The factors considered for experimental design were the UV (ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0-0.25 wt.%, solvent of N-Dimethylacetamide (DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and energy dispersive X-ray spectroscopy (EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM. Copyright © 2015. Published by Elsevier B.V.

  20. Leaves Waste Composite with Glass Fiber Reinforcement

    NASA Astrophysics Data System (ADS)

    Khoiri, N.; Jannah, W. N.; Huda, C.; Maulana, RM; Marwoto, P.; Masturi

    2018-03-01

    A research has been made to fabricate leave waste composites and Polyvinyl Acetate (PvAc) polymers reinforced with glass fibers. The method used was a simple mixing of leaves powders, PvAc, and glass fibers varied from 0 g to 1 g. Mass of 16 g leaves powder and mass of PvAc 4 g. The mixing result is suppressed by 5 metric-tons for 15 minutes. The composite is dried at room temperature for 1 day then in the oven at 100°C for 1 hour. The compressive strength is measured bu a hydraulic press. The result show that the compressive strength increased to the highest point of 0.8 g and will decrease significantly when the addition of glass fiber mass of 1 g. The highest compressive strength reaches 52.6 MPa when the glass fiber mass is 0.8 g. The result of this research showed that leaves composites with Polyvinyl Acetate polymer reinforced with fiber glass can be used as alternative material of wood substitute.

  1. The effect of high fiber fraction on some mechanical properties of unidirectional glass fiber-reinforced composite.

    PubMed

    Abdulmajeed, Aous A; Närhi, Timo O; Vallittu, Pekka K; Lassila, Lippo V

    2011-04-01

    This study was designed to evaluate the effect of an increase of fiber-density on some mechanical properties of higher volume fiber-reinforced composite (FRC). Five groups of FRC with increased fiber-density were fabricated and two additional groups were prepared by adding silanated barium-silicate glass fillers (0.7 μm) to the FRC. The unidirectional E-glass fiber rovings were impregnated with light-polymerizable bisGMA-TEGDMA (50-50%) resin. The fibers were pulled through a cylindrical mold with an opening diameter of 4.2mm, light cured for 40s and post-cured at elevated temperature. The cylindrical specimens (n=12) were conditioned at room temperature for 2 days before testing with the three-point bending test (Lloyd Instruments Ltd.) adapted to ISO 10477. Fiber-density was analyzed by combustion and gravimetric analyzes. ANOVA analysis revealed that by increasing the vol.% fraction of E-glass fibers from 51.7% to 61.7% there was a change of 27% (p<0.05) in the modulus of elasticity, 34% (p<0.05) in the toughness, and 15% (p<0.05) in the load bearing capacity, while there was only 8% (p<0.05) increase in the flexural strength although it was statistically insignificant. The addition of particulate fillers did not improve the mechanical properties. This study showed that the properties of FRC could be improved by increasing fibervolume fraction. Modulus of elasticity, toughness, and load bearing capacity seem to follow the law of ratio of quantity of fibers and volume of the polymer matrix more precisely than flexural strength when high fiber-density is used. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Recent Progress In Infrared Chalcogenide Glass Fibers

    NASA Astrophysics Data System (ADS)

    Bornstein, A.; Croitoru, N.; Marom, E.

    1984-10-01

    Chalcogenide glasses containing elements like As, Ge, Sb and Se have been prepared. A new technique of preparing the raw material and subsequently drawing fibers has been devel-oped in order to avoid the forming of oxygen compounds. The fibers have been drawn by cru-cible and rod method from oxygen free raw material inside an Ar atmosphere glove box. The fibers drawn to date with air and glass cladding have a diameter of 50-500 pm and length of several meterd. Preliminary attenuation measurements indicate that the attentuation is better than 0.1 dB/cm and it is not affected even when the fiber is bent to 2 cm circular radius. The fibes were testes a CO laser beam and were not damaged at power densities below 10 kW/2cm2 CW &100 kw/cm using short pulses 75 n sec. The transmitted power density was 0.8 kW/cm2 which is an appropriate value to the needed for cutting and ablation of human tissues.

  3. Silver metaphosphate glass wires inside silica fibers--a new approach for hybrid optical fibers.

    PubMed

    Jain, Chhavi; Rodrigues, Bruno P; Wieduwilt, Torsten; Kobelke, Jens; Wondraczek, Lothar; Schmidt, Markus A

    2016-02-22

    Phosphate glasses represent promising candidates for next-generation photonic devices due to their unique characteristics, such as vastly tunable optical properties, and high rare earth solubility. Here we show that silver metaphosphate wires with bulk optical properties and diameters as small as 2 µm can be integrated into silica fibers using pressure-assisted melt filling. By analyzing two types of hybrid metaphosphate-silica fibers, we show that the filled metaphosphate glass has only negligible higher attenuation and a refractive index that is identical to the bulk material. The presented results pave the way towards new fiber-type optical devices relying on metaphosphate glasses, which are promising materials for applications in nonlinear optics, sensing and spectral filtering.

  4. Supercontinuum generation and analysis in extruded suspended-core As2S3 chalcogenide fibers

    NASA Astrophysics Data System (ADS)

    Si, Nian; Sun, Lihong; Zhao, Zheming; Wang, Xunsi; Zhu, Qingde; Zhang, Peiqing; Liu, Shuo; Pan, Zhanghao; Liu, Zijun; Dai, Shixun; Nie, Qiuhua

    2018-02-01

    Compared with the traditional fluoride fibers and tellurite fibers that can work in the near-infrared region, suspended-core fibers based on chalcogenide glasses have wider transmitting regions and higher nonlinear coefficients, thus the mid-infrared supercontinuum generations can be achieved easily. Rather than adopting the traditional fabrication technique of hole-drilling and air filling, we adopted a totally novel extrusion technique to fabricate As2S3 suspended-core fibers with four holes, and its mid-infrared supercontinuum generation was investigated systematically by integrating theoretical simulation and empirical results. The generalized nonlinear SchrÖdinger equation was used to simulate the supercontinuum generation in the As2S3 suspended-core fibers. The simulated supercontinuum generation in the As2S3 suspended-core fibers with different pump wavelengths (2-5 µm), increasing powers (0.3-4 kW), and various fiber lengths (1-50 cm) was obtained by a simulative software, MATLAB. The experimental results of supercontinuum generation via femtosecond optical parametric amplification (OPA) were recorded by changing fiber lengths (5-25 cm), pump wavelengths (2.9-5 µm), and pump powers (10-200 kW). The simulated consulting spectra are consistent with the experimental results of supercontinuum generation only if the fiber loss is sufficiently low.

  5. Fiber reinforced glasses and glass-ceramics for high performance applications

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Brennan, J. J.; Layden, G. K.

    1986-01-01

    The development of fiber reinforced glass and glass-ceramic matrix composites is described. The general concepts involved in composite fabrication and resultant composite properties are given for a broad range of fiber and matrix combinations. It is shown that composite materials can be tailored to achieve high levels of toughness, strength, and elastic stiffness, as well as wear resistance and dimensional stability.

  6. Method of producing a ceramic fiber-reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1994-01-01

    A fiber-reinforced composite composed of a BaO-Al2O3-2SiO2 (BAS) glass ceramic matrix is reinforced with CVD silicon carbide continuous fibers. A slurry of BAS glass powders is prepared and celsian seeds are added during ball melting. The slurry is cast into tapes which are cut to the proper size. Continuous CVD-SiC fibers are formed into mats of the desired size. The matrix tapes and the fiber mats are alternately stacked in the proper orientation. This tape-mat stack is warm pressed to produce a 'green' composite. The 'green' composite is then heated to an elevated temperature to burn out organic constituents. The remaining interim material is then hot pressed to form a silicon carbide fiber-reinforced celsian (BAS) glass-ceramic matrix composite which may be machined to size.

  7. Structural and optical properties of antimony-germanate-borate glass and glass fiber co-doped Eu3+ and Ag nanoparticles.

    PubMed

    Zmojda, Jacek; Kochanowicz, Marcin; Miluski, Piotr; Baranowska, Agata; Pisarski, Wojciech A; Pisarska, Joanna; Jadach, Renata; Sitarz, Maciej; Dorosz, Dominik

    2018-08-05

    In the paper analysis of structural and luminescent properties of antimony-germanate-borate glasses and glass fiber co-doped with 0.6AgNO 3 /0.2Eu 2 O 3 are presented. Heat treatment of the fabricated glass and optical fiber (400 °C, 12 h) enabled to obtain Ag nanoparticles (NPs) with average size 30-50 nm on their surface. It has been proofed that silver ions migrate to the glass surface, where they are reduced to Ag 0 nanoparticles. Simultaneously, FTIR analysis showed that heat treatment of the glass and optical fiber increases the local symmetry of the Eu 3+ site. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Quantitative risk assessment for a glass fiber insulation product.

    PubMed

    Fayerweather, W E; Bender, J R; Hadley, J G; Eastes, W

    1997-04-01

    California Proposition 65 (Prop65) provides a mechanism by which the manufacturer may perform a quantitative risk assessment to be used in determining the need for cancer warning labels. This paper presents a risk assessment under this regulation for professional and do-it-yourself insulation installers. It determines the level of insulation glass fiber exposure (specifically Owens Corning's R-25 PinkPlus with Miraflex) that, assuming a working lifetime exposure, poses no significant cancer risk under Prop65's regulations. "No significant risk" is defined under Prop65 as a lifetime risk of no more than one additional cancer case per 100,000 exposed persons, and nonsignificant exposure is defined as a working lifetime exposure associated with "no significant risk." This determination can be carried out despite the fact that the relevant underlying studies (i.e., chronic inhalation bioassays) of comparable glass wool fibers do not show tumorigenic activity. Nonsignificant exposures are estimated from (1) the most recent RCC chronic inhalation bioassay of nondurable fiberglass in rats; (2) intraperitoneal fiberglass injection studies in rats; (3) a distributional, decision analysis approach applied to four chronic inhalation rat bioassays of conventional fiberglass; (4) an extrapolation from the RCC chronic rat inhalation bioassay of durable refractory ceramic fibers; and (5) an extrapolation from the IOM chronic rat inhalation bioassay of durable E glass microfibers. When the EPA linear nonthreshold model is used, central estimates of nonsignificant exposure range from 0.36 fibers/cc (for the RCC chronic inhalation bioassay of fiberglass) through 21 fibers/cc (for the i.p. fiberglass injection studies). Lower 95% confidence bounds on these estimates vary from 0.17 fibers/cc through 13 fibers/cc. Estimates derived from the distributional approach or from applying the EPA linear nonthreshold model to chronic bioassays of durable fibers such as refractory ceramic fiber

  9. Product stewardship and science: safe manufacture and use of fiber glass.

    PubMed

    Hesterberg, Thomas W; Anderson, Robert; Bernstein, David M; Bunn, William B; Chase, Gerald A; Jankousky, Angela Libby; Marsh, Gary M; McClellan, Roger O

    2012-03-01

    This paper describes a proactive product stewardship program for glass fibers. That effort included epidemiological studies of workers, establishment of stringent workplace exposure limits, liaison with customers on safe use of products and, most importantly, a research program to evaluate the safety of existing glass fiber products and guide development of new even safer products. Chronic inhalation exposure bioassays were conducted with rodents and hamsters. Amosite and crocidolite asbestos produced respiratory tract cancers as did exposure to "biopersistent" synthetic vitreous fibers. "less biopersistent" glass fibers did not cause respiratory tract cancers. Corollary studies demonstrated the role of slow fiber dissolution rates and biopersistence in cancer induction. These results guided development of safer glass fiber products and have been used in Europe to regulate fibers and by IARC and NTP in classifying fibers. IARC concluded special purpose fibers and refractory ceramic fibers are "possibly carcinogenic to humans" and insulation glass wool, continuous glass filament, rock wool and slag wool are "not classifiable as to their carcinogenicity to human." The NTP's 12th report on carcinogens lists "Certain Glass Wool Fibers (Inhalable)" as "reasonably anticipated to be a human carcinogen." "Certain" in the descriptor refers to "biopersistent" glass fibers and excludes "less biopersistent" glass fibers. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Monitoring Fiber Stress During Curing of Single Fiber Glass- and Graphite-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Madhukar, Madhu S.; Kosuri, Ranga P.; Bowles, Kenneth J.

    1994-01-01

    The difference in thermal expansion characteristics of epoxy matrices and graphite fibers can produce significant residual stresses in the fibers during curing of composite materials. Tests on single fiber glass-epoxy and graphite-epoxy composite specimens were conducted in which the glass and graphite fibers were preloaded in tension, and the epoxy matrix was cast around the fibers. The fiber tension was monitored while the matrix was placed around the fiber and subjected to the temperature-time curing cycle. Two mechanisms responsible for producing stress in embedded fibers were identified as matrix thermal expansion and contraction and matrix cure shrinkage. A simple analysis based on the change in fiber tension during the curing cycle was conducted to estimate the produced stresses. Experimental results on single fiber glass- and graphite-epoxy composites show that the fiber was subjected to significant tensile stresses when the temperature was raised from the first to the second dwell period. When initial fiber pretension is about 60 percent of the fiber failure load, these curing-induced stresses can cause tensile fracture of the embedded fiber.

  11. Mid-infrared emissions of Pr{sup 3+}-doped GeS{sub 2}–Ga{sub 2}S{sub 3}–CdI{sub 2} chalcohalide glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Chunfeng; Guo, Haitao, E-mail: guoht_001@opt.ac.cn; Xu, Yantao

    2014-12-15

    Graphical abstract: ∼4.6 μm mid-infrared fluorescence emission from Pr{sup 3+} in the sulfide glass is successfully observed at room temperature excited by a 2.01 μm Tm{sup 3+}:YAG ceramic laser system. - Highlights: • Serial Pr{sup 3+}-doped GeS{sub 2}–Ga{sub 2}S{sub 3}–CdI{sub 2} chalcohalide glasses were synthesized. • ∼4.6 μm mid-infrared fluorescence from Pr{sup 3+} was observed at room temperature. • The compositional dependence of luminescence properties was studied. • Radiative properties have been determined using the Judd–Ofelt theory. - Abstract: For elucidation of the glass composition’s influence on the spectroscopic properties in the chalcohalide system and the discovery of a newmore » material for applications in mid-infrared fiber-lasers, a serial Pr{sup 3+}-doped (100 − x)(0.8GeS{sub 2}·0.2Ga{sub 2}S{sub 3})xCdI{sub 2} (x = 5, 10, 15 and 20) chalcohalide glasses were prepared. ∼4.6 μm mid-infrared fluorescence emission from Pr{sup 3+} in the sulfide glass is successfully observed at room temperature excited by a 2.01 μm Tm{sup 3+}:YAG ceramic laser system, and the effective line-width of fluorescence band is 106–227 nm. Intense compositional dependence of mid-infrared emissions is found. The radiative rates of Pr{sup 3+} ions in these glasses were calculated by using the Judd–Ofelt theory.« less

  12. 1887 nm lasing in Tm3+-doped TeO2-BaF2-Y2O3 glass microstructured fibers

    NASA Astrophysics Data System (ADS)

    Wang, Shunbin; Yao, Chuanfei; Jia, Zhixu; Qin, Guanshi; Qin, Weiping

    2017-04-01

    In this paper, we demonstrate ∼2 μm lasing in Tm3+-doped fluorotellurite microstructured fibers. The Tm3+-doped fibers are based on TeO2-BaF2-Y2O3 glasses and fabricated by using a rod-in-tube method. Under the pump of a 1570 nm Er3+-doped fiber laser, lasing at 1887 nm is obtained in a ∼42.5 cm long Tm3+-doped fiber with a threshold pump power of 94 mW. As the pump power increases to 780 mW, the obtained maximum unsaturated power reaches up to ∼408 mW with a slop efficiency of ∼58.1%. This result indicates that the Tm3+-doped fluorotellurite fibers are promising gain media for ∼2 μm fiber lasers.

  13. Fracture behavior of glass fiber reinforced polymer composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avci, A.; Arikan, H.; Akdemir, A

    2004-03-01

    Chopped strand glass fiber reinforced particle-filled polymer composite beams with varying notch-to-depth ratios and different volume fractions of glass fibers were investigated in Mode I fracture using three-point bending tests. Effects of polyester resin content and glass fiber content on fracture behavior was also studied. Polyester resin contents were used 13.00%%, 14.75%, 16.50%, 18.00% and 19.50%, and glass fiber contents were 1% and 1.5% of the total weight of the polymer composite system. Flexural strength of the polymer composite increases with increase in polyester and fiber content. The critical stress intensity factor was determined by using several methods such asmore » initial notch depth method, compliance method and J-integral method. The values of K{sub IC} obtained from these methods were compared.« less

  14. Passive Impact Damage Detection of Fiber Glass Composite Panels

    DTIC Science & Technology

    2013-12-19

    PASSIVE IMPACT DAMAGE DETECTION OF FIBER GLASS COMPOSITE PANELS. By BRUNO ZAMORANO-SENDEROS A dissertation...COVERED 04-11-2012 to 10-12-2013 4. TITLE AND SUBTITLE PASSIVE IMPACT DAMAGE DETECTION OF FIBER GLASS COMPOSITE PANELS 5a. CONTRACT NUMBER 5b...process. .................................... 31 Figure 3-8 Sensor attached to the fiber glass fabric

  15. Glass fiber addition strengthens low-density ablative compositions

    NASA Technical Reports Server (NTRS)

    Chandler, H. H.

    1974-01-01

    Approximately 15% of E-glass fibers was added to compositions under test and greatly improved char stability. Use of these fibers also reduced thermal strains which, in turn, minimized char shrinkage and associated cracks, subsurface voids, and disbonds. Increased strength allows honeycomb core reinforcement to be replaced by equivalent amount of glass fibers.

  16. Lung burden of a glass fiber by inhalation.

    PubMed

    Tanaka, I; Akiyama, T; Kido, M

    1991-01-01

    Pulmonary deposition and clearance of deposited particles from lungs are very important factors in order to induce pneumoconioses. In this paper, five Wistar male rats were exposed to glass fiber particles (mass median aerodynamic diameter (MMAD), 2.8 microns) for 6 hrs/day, 5 days/week for 4 weeks. The average exposure concentration was controlled by a continuous fluidized bed with a screw feeder and an overflow pipe at 0.79 mg/m3 during the exposure period. The fibrous particles concentrations in the exposure chamber were monitored by a light scattering method and showed to be constant during the exposure. The rats were sacrificed at 24 hours after the termination of the exposure and then the wet lung weight and the silica concentration in the lungs were measured. The lungs were treated for low temperature ashing (ca. 150 degrees C) by a plasma asher. After ashing, these samples were melted with sodium carbonate in platinum pot for the measurement of the silica content by the absorption spectrophotometry. The maximum content of SiO2 was 45 micrograms in the exposed rats and 20 micrograms in the control. The deposited amount of SiO2 by the exposure to glass fiber was 25 micrograms. The apparent deposition fraction defined as the deposited amount in the lungs to the amount of the inhaled glass fiber during the exposure was 6.8%. There was no significant difference of the apparent deposition fraction at same MMAD between glass fiber in this study and non-fibrous particles.

  17. Improving the interfacial and mechanical properties of short glass fiber/epoxy composites by coating the glass fibers with cellulose nanocrystals

    Treesearch

    A. Asadi; M. Miller; Robert Moon; K. Kalaitzidou

    2016-01-01

    In this study, the interfacial and mechanical properties of cellulose nanocrystals (CNC) coated glass fiber/epoxy composites were investigated as a function of the CNC content on the surface of glass fibers (GF). Chopped GF rovings were coated with CNC by immersing the GF in CNC (0–5 wt%) aqueous suspensions. Single fiber fragmentation (SFF) tests showed that the...

  18. Nonlinear characterization of silver nanocrystals incorporated tellurite glasses for fiber development

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiguang; Tan, Wenjiang; Si, Jinhai; Zhan, Huan; He, Jianli; Lin, Aoxiang

    2011-12-01

    To develop high nonlinear optical fibers for all-optical switching applications, 7.5 wt% AgNO3 was incorporated into tellurite glasses with composition of 75TeO2-20ZnO-5Na2CO3 (TZN75) under precisely-controlled experimental conditions to form 7.5Ag-TZN75 glass. Surface Plasmon resonance absorption peak of Ag nanocrystals embedded in 7.5Ag-TZN75 glass was found to center at 552 nm. By degenerated four-wave mixing method, the non-resonant nonlinear refractive index, n2, of 7.5Ag-TZN75 glass was measured to be 7.54×10-19 m2•W-1 at 1500 nm, about 3 times of the reference TZN75 glass without any dopant and 27 times of the silicate glasses and fibers, and the response time is about 1 picosecond.

  19. UV-transmitting step-index fluorophosphate glass fiber fabricated by the crucible technique

    NASA Astrophysics Data System (ADS)

    Galleani, Gustavo; Ledemi, Yannick; de Lima Filho, Elton Soares; Morency, Steeve; Delaizir, Gaëlle; Chenu, Sébastien; Duclere, Jean René; Messaddeq, Younes

    2017-02-01

    In this study, we report on the fabrication process of highly pure step-index fluorophosphate glass optical fibers by a modified crucible technique. High-purity fluorophosphate glasses based on 10 mol% of barium metaphosphate and 90 mol% of metal fluorides (AlF3sbnd CaF2sbnd MgF2sbnd SrF2) have been studied in order to produce step-index optical fibers transmitting in the deep-ultraviolet (DUV) region. The characteristic temperatures, viscosity around softening temperature and optical transmission in the UV-visible region of the prepared bulk glasses were characterized in a first step. The selected glass compositions were then used to prepare core-cladding optical preforms by using a modified built-in casting technique. While uncontrolled crystallization of the fiber was observed during the preform stretching by using the conventional method, we successfully obtained crystal-free fiber by using a modified crucible technique. In this alternative approach, the produced core-cladding preforms were inserted into a home-designed fused silica crucible assembly and heated at 643 °C to allow glass flowing throughout the crucible, preventing the formation of crystals. Single index fluorophosphate glass fibers were fabricated following the same process as well. The optical attenuation at 244 nm and in the interval 350-1750 nm was measured on both single index and step-index optical fibers. Their potential for using in DUV applications is discussed.

  20. Cytotoxicity of silica-glass fiber reinforced composites.

    PubMed

    Meriç, Gökçe; Dahl, Jon E; Ruyter, I Eystein

    2008-09-01

    Silica-glass fiber reinforced polymers can be used for many kinds of dental applications. The fiber reinforcement enhances the mechanical properties of the polymers, and they have good esthetic attributes. There is good initial bonding of glass fibers to polymers via an interface made from silane coupling agents. The aim of this in vitro study was to determine the cytotoxicity of two polymers reinforced with two differently sized silica-glass fibers before and after thermal cycling. Cytotoxicity of the polymers without fibers was also evaluated. Two different resin mixtures (A and B) were prepared from poly(vinyl chloridecovinylacetate) powder and poly(methyl methacrylate) (PMMA) dissolved in methyl methacrylate and mixed with different cross-linking agents. The resin A contained the cross-linking agents ethylene glycol dimethacrylate and 1,4-butanediol dimethacrylate, and for resin B diethylene glycol dimethacrylate was used. Woven silica-glass fibers were used for reinforcement. The fibers were sized with either linear poly(butyl methacrylate)-sizing or cross-linking PMMA-sizing. Cytotoxicity was evaluated by filter diffusion test (ISO 7405:1997) of newly made and thermocycled test specimens. Extracts were prepared according to ISO 10993-12 from newly made and from thermocycled specimens and tested by the MTT assay. The results from the experiments were statistically analyzed by one-way ANOVA and Tukey's test (rho<0.05). The filter diffusion test disclosed no change in staining intensity at the cell-test sample contact area indicating non-cytotoxicity in all experimental groups. Cell viability assessed by MTT assay was more than 90% in all experimental groups. All are non-cytotoxic. It can be concluded that correctly processed heat polymerized silica-glass fiber reinforced polymers induced no cytotoxicity and that thermocycling did not alter this property.

  1. Anomalous rheological behavior of long glass fiber reinforced polypropylene

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hak; Lee, Young Sil; Son, Younggon

    2012-12-01

    Dynamic rheological properties of PP-based long glass fiber-reinforced thermoplastics (LFT) were investigated. Weight fractions of the glass fibers investigated in the present study ranged from 0.15 to 0.5, which are higher than those of previous studies. We observed very abnormal rheological behavior. Complex viscosity (η*) of the LFT increased with the glass fiber content up to 40 wt. %. However, the η* with a weight fraction of 0.5 is observed to be lower than that of LFT with a weight fraction of 0.4 in spite of higher glass fiber content. From various experiments, we found that this abnormal behavior is analogous to the rheological behavior of a lyotropic liquid crystalline polymer solution and concluded that the abnormal rheological behavior for the LFT is attributed to the formation of a liquid crystal- like structure at high concentrations of long glass fibers.

  2. Nd- And Er-Doped Phosphate Glass For Fiber Laser.

    NASA Astrophysics Data System (ADS)

    Yamashita, Toshiharu T.

    1990-02-01

    Laser fibers prepared from Nd- and Er-doped phosphate glass possessing a large stimulated emission cross section have been investigated both in a single fiber and in a fiber bundle. In the single fiber, continuous wave oscillations were successfully obtained at 1.054 p.m and 1.366 µm on a high Nd-doped single-mode fiber of 10 mm in length and also at 1.535 pm in a Er-doped single-mode fiber, sensitized by Nd, Yb. Especially, a low threshold of 1 mw and a high slope-efficiency of 50% were achieved in 1.054 pm laser oscillation on a Nd-doped fiber, end-pumped with a laser diode. A fiber bundle of phosphate glass doped with 8 wt% Nd2O3 yielded an average output power of 100 W at 50 pps where the bundle was 4.6 mm in diameter and was side-pumped with flash lamps.

  3. Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics.

    PubMed

    Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A; Wondraczek, Lothar

    2015-03-10

    We report on the magneto-optical (MO) properties of heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb(3+) ion concentration of up to 9.7 × 10(21) cm(-3), the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400-1500 nm is found for a Tb(3+) concentration of ~6.5 × 10(21) cm(-3). For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb(3+) photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 × 10(-21) cm(2) for ~ 5.0 × 10(21) cm(-3) Tb(3+). This results in an optical gain parameter σem*τ of ~2.5 × 10(-24) cm(2)s, what could be of interest for implementation of a Tb(3+) fiber laser.

  4. Faraday rotation and photoluminescence in heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics

    PubMed Central

    Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A.; Wondraczek, Lothar

    2015-01-01

    We report on the magneto-optical (MO) properties of heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb3+ ion concentration of up to 9.7 × 1021 cm−3, the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400–1500 nm is found for a Tb3+ concentration of ~6.5 × 1021 cm−3. For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb3+ photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 × 10−21 cm2 for ~ 5.0 × 1021 cm−3 Tb3+. This results in an optical gain parameter σem*τ of ~2.5 × 10−24 cm2s, what could be of interest for implementation of a Tb3+ fiber laser. PMID:25754819

  5. Monitoring Damage Propagation in Glass Fiber Composites Using Carbon Nanofibers.

    PubMed

    Al-Sabagh, Ahmed; Taha, Eman; Kandil, Usama; Nasr, Gamal-Abdelnaser; Reda Taha, Mahmoud

    2016-09-10

    In this work, we report the potential use of novel carbon nanofibers (CNFs), dispersed during fabrication of glass fiber composites to monitor damage propagation under static loading. The use of CNFs enables a transformation of the typically non-conductive glass fiber composites into new fiber composites with appreciable electrical conductivity. The percolation limit of CNFs/epoxy nanocomposites was first quantified. The electromechanical responses of glass fiber composites fabricated using CNFs/epoxy nanocomposite were examined under static tension loads. The experimental observations showed a nonlinear change of electrical conductivity of glass fiber composites incorporating CNFs versus the stress level under static load. Microstructural investigations proved the ability of CNFs to alter the polymer matrix and to produce a new polymer nanocomposite with a connected nanofiber network with improved electrical properties and different mechanical properties compared with the neat epoxy. It is concluded that incorporating CNFs during fabrication of glass fiber composites can provide an innovative means of self-sensing that will allow damage propagation to be monitored in glass fiber composites.

  6. Improved resolution in practical light microscopy by means of a glass-fiber 2 π-tilting device

    NASA Astrophysics Data System (ADS)

    Bradl, Joachim; Rinke, Bernd; Schneider, Bernhard; Hausmann, Michael; Cremer, Christoph G.

    1996-01-01

    The spatial resolution of a conventional light microscope or a confocal laser scanning microscope can be determined by calculating the point spread function for the objective used. Normally, ideal conditions are assumed for these calculations. Such conditions, however, are often not fulfilled in biological applications especially in those cases where biochemical requirements (e.g. buffer conditions) influence the specimen preparation on the microscope slide (i.e. 'practical' light microscopy). It has been shown that the problem of a reduced z- resolution in 3D-microscopy (optical sectioning) can be overcome by a capillary in a 2(pi) - tilting device that allows object rotation into an optimal perspective. The application of the glass capillary instead of a standard slide has an additional influence on the imaging properties of the microscope. Therefore, another 2(pi) -tilting device was developed, using a glass fiber for object fixation and rotation. Such a fiber could be covered by standard cover glasses. To estimate the resolution of this setup, point spread functions were measured under different conditions using fluorescent microspheres of subwavelength dimensions. Results obtained from standard slide setups were compared to the glass fiber setup. These results showed that in practice rotation leads to an overall 3D-resolution improvement.

  7. Silicon carbide fiber reinforced strontium aluminosilicate glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam (Inventor)

    1992-01-01

    A SrO-Al2O3 - 2SrO2 (SAS) glass ceramic matrix is reinforced with CVD SiC continuous fibers. This material is prepared by casting a slurry of SAS glass powder into tapes. Mats of continuous CVD-SiC fibers are alternately stacked with the matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite. Organic constituents are burned out of the 'green' composite, and the remaining interim material is hot pressed.

  8. Containerless Manufacture of Glass Optical Fibers

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Ethridge, E. C.

    1985-01-01

    Contamination and crystallization reduced in proposed process. Solid optical fiber drawn from an acoustically levitated lump of molten glass. New material added in solid form, melted and then moved into main body of molten glass. Single axis acoustic levitation furnances levitate glass melts at temperature up to about 700 degrees C. Processing in unit limited to low-melting temperature glasses.

  9. From selenium- to tellurium-based glass optical fibers for infrared spectroscopies.

    PubMed

    Cui, Shuo; Chahal, Radwan; Boussard-Plédel, Catherine; Nazabal, Virginie; Doualan, Jean-Louis; Troles, Johann; Lucas, Jacques; Bureau, Bruno

    2013-05-10

    Chalcogenide glasses are based on sulfur, selenium and tellurium elements, and have been studied for several decades regarding different applications. Among them, selenide glasses exhibit excellent infrared transmission in the 1 to 15 µm region. Due to their good thermo-mechanical properties, these glasses could be easily shaped into optical devices such as lenses and optical fibers. During the past decade of research, selenide glass fibers have been proved to be suitable for infrared sensing in an original spectroscopic method named Fiber Evanescent Wave Spectroscopy (FEWS). FEWS has provided very nice and promising results, for example for medical diagnosis. Then, some sophisticated fibers, also based on selenide glasses, were developed: rare-earth doped fibers and microstructured fibers. In parallel, the study of telluride glasses, which can have transmission up to 28 µm due to its atom heaviness, has been intensified thanks to the DARWIN mission led by the European Space Agency (ESA). The development of telluride glass fiber enables a successful observation of CO₂ absorption band located around 15 µm. In this paper we review recent results obtained in the Glass and Ceramics Laboratory at Rennes on the development of selenide to telluride glass optical fibers, and their use for spectroscopy from the mid to the far infrared ranges.

  10. Flexural properties of polyethylene, glass and carbon fiber-reinforced resin composites for prosthetic frameworks.

    PubMed

    Maruo, Yukinori; Nishigawa, Goro; Irie, Masao; Yoshihara, Kumiko; Minagi, Shogo

    2015-01-01

    High flexural properties are needed for fixed partial denture or implant prosthesis to resist susceptibility to failures caused by occlusal overload. The aim of this investigation was to clarify the effects of four different kinds of fibers on the flexural properties of fiber-reinforced composites. Polyethylene fiber, glass fiber and two types of carbon fibers were used for reinforcement. Seven groups of specimens, 2 × 2 × 25 mm, were prepared (n = 10 per group). Four groups of resin composite specimens were reinforced with polyethylene, glass or one type of carbon fiber. The remaining three groups served as controls, with each group comprising one brand of resin composite without any fiber. After 24-h water storage in 37°C distilled water, the flexural properties of each specimen were examined with static three-point flexural test at a crosshead speed of 0.5 mm/min. Compared to the control without any fiber, glass and carbon fibers significantly increased the flexural strength (p < 0.05). On the contrary, the polyethylene fiber decreased the flexural strength (p < 0.05). Among the fibers, carbon fiber exhibited higher flexural strength than glass fiber (p < 0.05). Similar trends were observed for flexural modulus and fracture energy. However, there was no significant difference in fracture energy between carbon and glass fibers (p > 0.05). Fibers could, therefore, improve the flexural properties of resin composite and carbon fibers in longitudinal form yielded the better effects for reinforcement.

  11. Experimental approaches for exposure to sized glass fibers.

    PubMed Central

    Bernstein, D M; Drew, R T; Kuschner, M

    1980-01-01

    A number of studies have shown that glass fibers induce both malignant mesothelioma and fibrosis in rats and that these reactions may be primarily a function of the physical properties of the fiber. However, these studies were carried out with fibers having broad size distributions and used methods of administration which bear little resemblance to the way man is exposed. To better characterize the health effects of glass fibers, techniques have been developed to expose rats to glass fibers of defined sizes by intratracheal instillation of aqueous suspensions and by "nose only" inhalation exposure, and to determine the deposition, translocation, and ultimate fate of these fibers in the rat. The fibers have known size distributions with geometric mean diameters of 1.5 micrometers (sigma g = 1.1) and lengths of either 5 micrometers (sigma g = 1.49) or 60 micrometers (sigma g = 3.76). The fibers have been activated with neutron irradiation. Of the several resulting radionuclides, 65Zn appeared to be the most suitable for long-term clearance studies by use of in vivo whole body radioassay techniques. A fluidized bed aerosol generator has been developed to expose rats by "nose only" inhalation to approximately 500 fibers/cm3. The generator and exposure system permits reuse of fibers which pass through the exposure chamber and produces no significant alteration of the fiber size distribution. Rats were exposed by intratracheal instillations to 20 mg of the longer fibers and to equal numbers (2 mg) and equal mass (20 mg) of the shorter fibers. Through approximately 19 weeks little difference was observed in the whole rat clearance rate of long versus short fibers in the initial exposure group. Histopathology, however, showed differences at this time with the short fibers apparently successfully phagocytized by alveolar macrophages and cleared to the lymph nodes, while the long fibers were not. Images FIGURE 3. FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. FIGURE 10. PMID

  12. Easily melting glass for assembly of optical fiber into connectors

    NASA Astrophysics Data System (ADS)

    Setina, Janina; Auzans, Juris J.; Zolotarjova, J. J.

    1994-09-01

    The easily melting fluorine containing borophosphate glasses for construction knots have been obtained and investigated. The unique optical properties i.e. low refractive index - nD equals 1.41-1.45, wide spectral transparency region from 200 to 2000 nm as well as extended temperature application range from - 70 to +300 degree(s)C, thermostability and mechanical properties determine possibility to use fluorine containing borophosphate glass as optical glue. The process of structure formation within temperature range 20-1000 degree(s)C has been investigated in details. It has been determined by IR and X-ray methods that the development of glass network begins with decomposition of components at 500 degree(s)C with further formation of glass elements within temperature range 625-675 degree(s)C. The stable glassforming area is determined by P-O-B groups. The role of fluorine in structure development depends on its depolymerizator behavior, on the other hand it has some glassforming ability. Latter is based on ability of fluorine to move from boron to phosphorus coordination sphere. For the compositions under research the formation of monofluorophosphate groups at higher temperatures have been determined. The ratio P:B equals 1, 2:2 defines obtaining of stable glass without devitrification within the temperature range from 300 to 700 degree(s)C. The interfacial processes between fluorine containing melts and quartz fiber have been investigated.

  13. Kenaf-glass fiber reinforced unsaturated polyester hybrid composites: Tensile properties

    NASA Astrophysics Data System (ADS)

    Zhafer, S. F.; Rozyanty, A. R.; Shahnaz, S. B. S.; Musa, L.; Zuliahani, A.

    2016-07-01

    The use of natural fibers in composite is rising in recent years due their lightweight, non-abrasive, combustible, non-toxic, low cost and biodegradable properties. However, in comparison with synthetic fibers, the mechanical properties of natural fibers are lower. Therefore, the inclusion of synthetic fibers could improve the mechanical performance of natural fiber based composites. In this study, kenaf bast fiber and glass fiber at different weight percentage loading were used as reinforcement to produce hybrid composites. Unsaturated polyester (UP) resin was used as matrix and hand lay-up process was performed to apply the UP resin on the hybrid kenaf bast/glass fiber composite. Effect of different fiber loading on tensile strength, tensile modulus and elongation at break of the hybrid composite was studied. It has been found that the highest value of tensile strength and modulus was achieved at 10 wt.% kenaf/10 wt.% glass fiber loading. It was concluded that addition of glass fiber has improved the tensile properties of kenaf bast fiber based UP composites.

  14. LUBRICATING AND SIZING AGENT FOR GLASS FIBER,

    DTIC Science & Technology

    GLASS TEXTILES, SURFACE PROPERTIES), (*LUBRICANTS, GLASS TEXTILES), FIBERS , POLYVINYL ALCOHOL, STEARATES, CHROMIUM COMPOUNDS, ALUMINUM COMPOUNDS, MIXTURES, LACTATES, TITANIUM COMPOUNDS, MECHANICAL PROPERTIES, USSR

  15. Reinforcing effect of discontinuous microglass fibers on resin-modified glass ionomer cement.

    PubMed

    Garoushi, Sufyan; Vallittu, Pekka K; Lassila, Lippo

    2018-06-08

    This study investigated the reinforcing effect of discontinuous-glass fiber fillers with different loading-fractions on selected mechanical properties and wear of resin-modified glass ionomer cement (RMGIC). Experimental fiber-reinforced RMGIC (Exp-RMGIC) was prepared by adding discontinuous-glass fiber of 200-500 µm in length to the powder of RMGIC (GC Fuji II LC) with different weight ratios (15, 20, 25 and 30 wt%). Mechanical properties and wear were determined for each experimental and control material. Scanning electron microscopy was used to evaluate the microstructure of the Exp-RMGICs. Wear pattern was analyzed by a three-dimensional (3D) noncontact optical profilometer. Fiber-reinforced RMGIC (30 wt%) had significantly higher mechanical performance of fracture toughness (1.9 MPa•m 1/2 ), flexural strength (90.3 MPa), and diametral tensile strength (31 MPa) (p<0.05) compared to unreinforced material (0.8 MPa•m 1/2 , 51.9 and 20.7 MPa). The use of discontinuous-glass fiber fillers with RMGIC matrix is novel reinforcement and yielded superior toughening and flexural performance compared to conventional RMGIC.

  16. Fracture detection in concrete by glass fiber cloth reinforced plastics

    NASA Astrophysics Data System (ADS)

    Shin, Soon-Gi; Lee, Sung-Riong

    2006-04-01

    Two types of carbon (carbon fiber and carbon powder) and a glass cloth were used as conductive phases and a reinforcing fiber, respectively, in polymer rods. The carbon powder was used for fabricating electrically conductive carbon powder-glass fiber reinforced plastic (CP-GFRP) rods. The carbon fiber tows and the CP-GFRP rods were adhered to mortar specimens using epoxy resin and glass fiber cloth. On bending, the electrical resistance of the carbon fiber tow attached to the mortar specimen increased greatly after crack generation, and that of the CP-GFRP rod increased after the early stages of deflection in the mortar. Therefore, the CP-GFRP rod is superior to the carbon fiber tow in detecting fractures. Also, by reinforcing with a glass fiber cloth reinforced plastic, the strength of the mortar specimens became more than twice as strong as that of the unreinforced mortar.

  17. Fiber glass-bioactive glass composite for bone replacing and bone anchoring implants.

    PubMed

    Vallittu, Pekka K; Närhi, Timo O; Hupa, Leena

    2015-04-01

    Although metal implants have successfully been used for decades, devices made out of metals do not meet all clinical requirements, for example, metal objects may interfere with some new medical imaging systems, while their stiffness also differs from natural bone and may cause stress-shielding and over-loading of bone. Peer-review articles and other scientific literature were reviewed for providing up-dated information how fiber-reinforced composites and bioactive glass can be utilized in implantology. There has been a lot of development in the field of composite material research, which has focused to a large extent on biodegradable composites. However, it has become evident that biostable composites may also have several clinical benefits. Fiber reinforced composites containing bioactive glasses are relatively new types of biomaterials in the field of implantology. Biostable glass fibers are responsible for the load-bearing capacity of the implant, while the dissolution of the bioactive glass particles supports bone bonding and provides antimicrobial properties for the implant. These kinds of combination materials have been used clinically in cranioplasty implants and they have been investigated also as oral and orthopedic implants. The present knowledge suggests that by combining glass fiber-reinforced composite with particles of bioactive glass can be used in cranial implants and that the combination of materials may have potential use also as other types of bone replacing and repairing implants. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Preparation of special purity Ge - S - I and Ge - Se - I glasses

    NASA Astrophysics Data System (ADS)

    Velmuzhov, A. P.; Sukhanov, M. V.; Shiryaev, V. S.; Kotereva, T. V.; Snopatin, G. E.; Churbanov, M. F.

    2017-05-01

    The paper considers the new approaches for the production of special pure Ge - S - I and Ge - Se - I glasses via the germanium(IV) iodide, germanium(II) sulfide, as well as the Ge2S3, Ge2S3I2 and Ge2Se3I2 glassy alloys. The glass samples containing 0.03-0.17 ppm(wt) hydrogen impurity in the form of SH-group, 0.04-0.15 ppm(wt) hydrogen impurity in the form of SeH-group, and 0.5-7.8 ppm(wt) oxygen impurity in the form of Ge-O were produced. Using a crucible technique, the single-index [GeSe4]95I5 glass fibers of 300-400 μm diameter were drawn. The minimum optical losses in the best fiber were 1.7 dB/m at a wavelength of 5.5 μm; the background optical losses were within 2-3 dB/m in the spectral range of 2.5-8 μm.

  19. Angle-independent VO2 Thin Film on Glass Fiber Cloth as a Soft-Smart-Mirror (SSM)

    PubMed Central

    Cai, Nianjin; Zhang, Wang; Wang, Wanlin; Zhu, Yuchen; Zada, Imran; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Guo, Cuiping; Zhang, Zhijian; Zhang, Jianzhong; Wu, Liping; Zhang, Di

    2016-01-01

    Designing materials with a negative feedback function is beneficial for achieving temperature regulation inside a greenhouse. VO2 has been studied extensively because of its low insulator-to-metal transition temperature (IMT). In this study, reflection changes during a VO2 phase transition were investigated. Glass fiber cloth was used as a substrate, as it is stable and soft. A VO2 thin film on a glass fiber cloth whose surface contained 96% V4+ and 4% V5+ was prepared using an inorganic sol-gels method. The insulator-to-metal transition temperature was decreased by 38 °C, which was observed from the reflection curve detected using an angle-resolved spectrometer. This decrease in IMT occurred mainly because of the presence of V5+, which causes destabilization of the monoclinic phase of VO2. When the greenhouse temperature was increased from 30 °C to 40 °C, the reflected intensity of VO2 on glass fiber cloth decreased by 22% for the wavelength range of 400 nm to 800 nm. In addition, the angle-independent property of the VO2 thin film was observed using an angle-resolved spectrometer. Owing to its thermo-reflective properties, the thin film can serve as a soft-smart-mirror (SSM) inside a greenhouse to stabilize the temperature, playing a negative feedback role. PMID:27849051

  20. Angle-independent VO2 Thin Film on Glass Fiber Cloth as a Soft-Smart-Mirror (SSM)

    NASA Astrophysics Data System (ADS)

    Cai, Nianjin; Zhang, Wang; Wang, Wanlin; Zhu, Yuchen; Zada, Imran; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Guo, Cuiping; Zhang, Zhijian; Zhang, Jianzhong; Wu, Liping; Zhang, Di

    2016-11-01

    Designing materials with a negative feedback function is beneficial for achieving temperature regulation inside a greenhouse. VO2 has been studied extensively because of its low insulator-to-metal transition temperature (IMT). In this study, reflection changes during a VO2 phase transition were investigated. Glass fiber cloth was used as a substrate, as it is stable and soft. A VO2 thin film on a glass fiber cloth whose surface contained 96% V4+ and 4% V5+ was prepared using an inorganic sol-gels method. The insulator-to-metal transition temperature was decreased by 38 °C, which was observed from the reflection curve detected using an angle-resolved spectrometer. This decrease in IMT occurred mainly because of the presence of V5+, which causes destabilization of the monoclinic phase of VO2. When the greenhouse temperature was increased from 30 °C to 40 °C, the reflected intensity of VO2 on glass fiber cloth decreased by 22% for the wavelength range of 400 nm to 800 nm. In addition, the angle-independent property of the VO2 thin film was observed using an angle-resolved spectrometer. Owing to its thermo-reflective properties, the thin film can serve as a soft-smart-mirror (SSM) inside a greenhouse to stabilize the temperature, playing a negative feedback role.

  1. Angle-independent VO2 Thin Film on Glass Fiber Cloth as a Soft-Smart-Mirror (SSM).

    PubMed

    Cai, Nianjin; Zhang, Wang; Wang, Wanlin; Zhu, Yuchen; Zada, Imran; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Guo, Cuiping; Zhang, Zhijian; Zhang, Jianzhong; Wu, Liping; Zhang, Di

    2016-11-16

    Designing materials with a negative feedback function is beneficial for achieving temperature regulation inside a greenhouse. VO 2 has been studied extensively because of its low insulator-to-metal transition temperature (IMT). In this study, reflection changes during a VO 2 phase transition were investigated. Glass fiber cloth was used as a substrate, as it is stable and soft. A VO 2 thin film on a glass fiber cloth whose surface contained 96% V 4+ and 4% V 5+ was prepared using an inorganic sol-gels method. The insulator-to-metal transition temperature was decreased by 38 °C, which was observed from the reflection curve detected using an angle-resolved spectrometer. This decrease in IMT occurred mainly because of the presence of V 5+ , which causes destabilization of the monoclinic phase of VO 2 . When the greenhouse temperature was increased from 30 °C to 40 °C, the reflected intensity of VO 2 on glass fiber cloth decreased by 22% for the wavelength range of 400 nm to 800 nm. In addition, the angle-independent property of the VO 2 thin film was observed using an angle-resolved spectrometer. Owing to its thermo-reflective properties, the thin film can serve as a soft-smart-mirror (SSM) inside a greenhouse to stabilize the temperature, playing a negative feedback role.

  2. Black synthetic quartz glass layer for optical fiber cross-talk reduction fabricated by VAD method

    NASA Astrophysics Data System (ADS)

    Kobayashi, Soichi; Fukuda, Kaoru; Onishi, Gen; Fujii, Yusuke

    2016-09-01

    In this report the new black-glass fiber-preform fabricated by the vapor-phase axial deposition (VAD) method to realize high-resolution optical bundle fibers is discussed with the Energy Dispersive X-ray (EDX) analysis and the transmittance spectrum measurement. The black glass consists of SiO2, GeO2, Bi2O3 and Al2O3. Firstly, the rod-shaped soot of SiO2 and GeO2 is prepared by blowing SiCl4 and GeCl4 into the oxyhydrogen burner. Then the soot is dipped into the solution of the Bi and Al compounds. After drying the soot with Bi and Al penetrated, the soot is consolidated into the glass preform by heating with the carbon heater at 1650 degrees Celsius. The diameter of the obtained preform is 10.5 mm and the black glass layer thickness is 2.6 mm located at the periphery. The Bi concentration distribution shows the content of several wt% in the black glass layer. The black glass preform is drawn into the black optical fiber being expected to make a clear image because of no light leaking from the neighboring optical fibers as compared to the conventional fiber endoscope.

  3. Self-sensing E-glass-fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Brooks, David; Hayes, Simon A.; Khan, N. A.; Zolfaghar, K.; Fernando, Gerard F.

    1997-06-01

    Conventional E-glass fibers were surface treated to enable them to act as light guides for short distances. The reinforcing fiber light guides were embedded in glass fiber reinforced epoxy prepregs and processed into composites. The resultant composite was termed the self-sensing composite as any damage to these fibers or its interface would result in the attenuation of the transmitted light. Epoxy, silicone, fluoropolymer and sol-gel derived cladding materials were evaluated as potential cladding materials. RFLGs with a silicone coating was found to give the best light transmission. The self-sensing fibers were capable of detecting a 0.5 J direct impact. The feasibility of using the RFLGs for impact damage location was also demonstrated successfully as bleeding-light could be seen in the vicinity of the impact.

  4. Ceramic fiber reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  5. HIGH STRENGTH GLASS FIBERS DEVELOPMENT PROGRAM

    DTIC Science & Technology

    Contents: Status of information relative to commercial fiberglass Intrinsic strength of the glass fiber Degree of surface damage existing in...the fibers after processing into the filament wound structure Failure mechanisms in a filament wound structure Need for understanding in two distinct problem areas

  6. Preparation and characterization of glass hollow fiber membrane for water purification applications.

    PubMed

    Makhtar, Siti Nurfatin Nadhirah Mohd; Rahman, Mukhlis A; Ismail, Ahmad Fauzi; Othman, Mohd Hafiz Dzarfan; Jaafar, Juhana

    2017-07-01

    This work discusses the preparation and characterizations of glass hollow fiber membranes prepared using zeolite-5A as a starting material. Zeolite was formed into a hollow fiber configuration using the phase inversion technique. It was later sintered at high temperatures to burn off organic materials and change the zeolite into glass membrane. A preliminary study, that used thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), confirmed that zeolite used in this study changed to glass at temperatures above 1000 °C. The glass hollow fiber membranes prepared using the phase inversion technique has three different microstructures, namely (i) sandwich-like structure that originates from inner layer, (ii) sandwich-like that originates from outer layer, and (iii) symmetric sponge like. These variations were influenced by zeolite weight loading and the flow rate of water used to form the lumen. The separation performances of the glass hollow fiber membrane were studied using the pure water permeability and the rejection test of bovine serum albumin (BSA). The glass hollow fiber membrane prepared from using 48 wt% zeolite loading and bore fluid with 9 mL min -1 flow rate has the highest BSA rejection of 85% with the water permeability of 0.7 L m -2  h -1  bar -1 . The results showed that the separation performance of glass hollow fiber membranes was in the ultrafiltration range, enabled the retention of solutes with molecular sizes larger than 67 kDa such as milk proteins, endotoxin pyrogen, virus, and colloidal silica.

  7. Influence of nanosize clay platelets on the mechanical properties of glass fiber reinforced polyester composites.

    PubMed

    Jawahar, P; Balasubramanian, M

    2006-12-01

    Glass fiber reinforced polyester composite and hybrid nanoclay-fiber reinforced composites were prepared by hand lay-up process. The mechanical behavior of these materials and the changes as a result of the incorporation of both nanosize clay and glass fibers were investigated. Composites were prepared with a glass fibre content of 25 vol%. The proportion of the nanosize clay platelets was varied from 0.5 to 2.5 vol%. Hybrid clay-fiber reinforced polyester composite posses better tensile, flexural, impact, and barrier properties. Hybrid clay-fiber reinforced polyester composites also posses better shear strength, storage modulus, and glass transition temperature. The optimum properties were found to be with the hybrid laminates containing 1.5 vol% nanosize clay.

  8. Glass Fiber Used in Light Communications.

    DTIC Science & Technology

    1980-11-05

    narrow pulse width is extended about 4 millimicroseconds/ kilometer, the gallium arsenide emptying into the laser is extended about 0.1...glass for the core forms quartz glass fiber. Possibly the use of the chemical vapour deposition method can make low ref racting glass for the...directly from the vapour phase and reaches a very high optical homogeneity. When the temperature of the high frequency induction plasma flame is very

  9. Fiber-matrix integrity, micromorphology and flexural strength of glass fiber posts: Evaluation of the impact of rotary instruments.

    PubMed

    Pereira, Gabriel Kalil Rocha; Lançanova, Mateus; Wandscher, Vinicius Felipe; Kaizer, Osvaldo Bazzan; Limberger, Inácio; Özcan, Mutlu; Valandro, Luiz Felipe

    2015-08-01

    Several rotary instruments have been daily employed on clinic to promote cut aiming to adjust the length of fiber posts to the radicular conduct, but there is no information on the literature about the effects of the different rotary instruments and its impact on the micromorphology of surface and mechanical properties of the glass fiber post. This study aimed the impact of rotary instruments upon fiber-matrix integrity, micromorphology and flexural-strength of glass-fiber posts (GFP). GFP (N=110) were divided into 5 groups: Ctrl: as-received posts, DBc: coarse diamond-bur, DBff: extra-fine diamond-bur, CB: carbide-bur, DD: diamond-disc. Cutting procedures were performed under abundant irrigation. Posts exposed to rotary instruments were then subjected to 2-point inclined loading test (compression 45°) (n=10/group) and 3-point flexural-strength test (n=10/group). Fiber-matrix integrity and micromorphology at the cut surface were analyzed using a SEM (n=2/group). Cutting procedures did not significantly affect the 2-point (51.7±4.3-56.7±5.1 MPa) (p=0.0233) and 3-point flexural-strength (671.5±35.3-709.1±33.1 MPa) (p=0.0968) of the posts (One-way ANOVA and Tukey׳s test). Fiber detachment was observed only at the end point of the cut at the margins of the post. Cut surfaces of the CB group were smoother than those of the other groups. After 3-point flexural strength test, fiber-matrix separation was evident at the tensile side of the post. Rotary instruments tested with simultaneous water-cooling did not affect the resistance of the tested fiber posts but caused disintegration of the fibers from the matrix at the end of the cut, located at the margins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Real-time dissolution measurement of sized and unsized calcium phosphate glass fibers.

    PubMed

    Rinehart, J D; Taylor, T D; Tian, Y; Latour, R A

    1999-01-01

    The objective of this study was to develop an efficient "real time" measurement system able to directly measure, with microgram resolution, the dissolution rate of absorbable glass fibers, and utilize the system to evaluate the effectiveness of silane-based sizing as a means to delay the fiber dissolution process. The absorbable glass fiber used was calcium phosphate (CaP), with tetramethoxysilane selected as the sizing agent. E-glass fiber was used as a relatively nondegrading control. Both the unsized-CaP and sized-CaP degraded linearly at both the 37 degrees C and 60 degrees C test temperature levels used. No significant decrease in weight-loss rate was recorded when the CaP fiber tows were pretreated, using conventional application methods, with the tetramethoxysilane sizing for either temperature condition. The unsized-CaP and sized-CaP weight loss rates were each significantly higher at 60 than at 37 degrees C (both p < 0.02), as expected from dissolution kinetics. In terms of actual weight loss rate measured using our system for phosphate glass fiber, the unsized-CaP fiber we studied dissolved at a rate of 10.90 x 10(-09) and 41.20 x 10(-09) g/min-cm(2) at 37 degrees C and 60 degrees C, respectively. Considering performance validation of the developed system, the slope of the weight loss vs. time plot for the tested E-glass fiber was not significantly different compared to a slope equal to zero for both test temperatures. Copyright 1999 John Wiley & Sons, Inc.

  11. Containerless glass fiber processing

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Naumann, R. J.

    1986-01-01

    An acoustic levitation furnace system is described that was developed for testing the feasibility of containerless fiber pulling experiments. It is possible to levitate very dense materials such as platinum at room temperature. Levitation at elevated temperatures is much more difficult. Samples of dense heavy metal fluoride glass were levitated at 300 C. It is therefore possible that containerless fiber pulling experiments could be performed. Fiber pulling from the melt at 650 C is not possible at unit gravity but could be possible at reduced gravities. The Acoustic Levitation Furnace is described, including engineering parameters and processing information. It is illustrated that a shaped reflector greatly increases the levitation force aiding the levitation of more dense materials.

  12. Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm.

    PubMed

    Zhou, Dechun; Bai, Xuemei; Zhou, Hang

    2017-03-17

    Ho 3+ /Tm 3+ co-doped 50TeO 2 -25GeO 2 -3WO 3 -5La 2 O 3 -3Nb 2 O 5 -5Li 2 O-9BaF 2 glass fiber is prepared with the rod-tube drawing method of 15 μm core diameter and 125 μm inner cladding diameter applied in the 2.0 μm-infrared laser. The 2.0 μm luminescence properties of the core glass are researched and the fluorescence intensity variation for different Tm 3+ doping concentration is systematically analyzed. The results show that the 2.0 μm luminescence of Ho 3+ is greatly influenced by the doping concentration ratio of Ho 3+ to Tm 3+ and that the maximum fluorescence intensity of the core glass can be obtained and its emission cross section can reach 0.933 × 10 -21  cm 2 when the sensitized proportion of holmium to thulium is 0.3 to 0.7 (mol%). Simultaneously, the maximum phonon energy of the core glass sample is 753 cm -1 , which is significantly lower than that of silicate, gallate and germanate glass and the smaller matrix phonon energy can be conductive to the increase 2.0 μm-band emission intensity. The continuous laser with the maximum laser output power of 0.993 W and 2051 nm -wavelength of 31.9%-slope efficiency is output within the 0.5 m glass fiber and the experiment adopts 1560 nm erbium-doped fiber laser(EDFL) as the pump source and the self-built all-fiber laser. Therefore, the glass fiber has excellent laser characteristics and it is suitable for the 2.0 μm-band laser.

  13. Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm

    NASA Astrophysics Data System (ADS)

    Zhou, Dechun; Bai, Xuemei; Zhou, Hang

    2017-03-01

    Ho3+/Tm3+ co-doped 50TeO2-25GeO2-3WO3-5La2O3-3Nb2O5-5Li2O-9BaF2 glass fiber is prepared with the rod-tube drawing method of 15 μm core diameter and 125 μm inner cladding diameter applied in the 2.0 μm-infrared laser. The 2.0 μm luminescence properties of the core glass are researched and the fluorescence intensity variation for different Tm3+ doping concentration is systematically analyzed. The results show that the 2.0 μm luminescence of Ho3+ is greatly influenced by the doping concentration ratio of Ho3+ to Tm3+ and that the maximum fluorescence intensity of the core glass can be obtained and its emission cross section can reach 0.933 × 10-21 cm2 when the sensitized proportion of holmium to thulium is 0.3 to 0.7 (mol%). Simultaneously, the maximum phonon energy of the core glass sample is 753 cm-1, which is significantly lower than that of silicate, gallate and germanate glass and the smaller matrix phonon energy can be conductive to the increase 2.0 μm-band emission intensity. The continuous laser with the maximum laser output power of 0.993 W and 2051 nm -wavelength of 31.9%-slope efficiency is output within the 0.5 m glass fiber and the experiment adopts 1560 nm erbium-doped fiber laser(EDFL) as the pump source and the self-built all-fiber laser. Therefore, the glass fiber has excellent laser characteristics and it is suitable for the 2.0 μm-band laser.

  14. Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm

    PubMed Central

    Zhou, Dechun; Bai, Xuemei; Zhou, Hang

    2017-01-01

    Ho3+/Tm3+ co-doped 50TeO2-25GeO2-3WO3-5La2O3-3Nb2O5-5Li2O-9BaF2 glass fiber is prepared with the rod-tube drawing method of 15 μm core diameter and 125 μm inner cladding diameter applied in the 2.0 μm-infrared laser. The 2.0 μm luminescence properties of the core glass are researched and the fluorescence intensity variation for different Tm3+ doping concentration is systematically analyzed. The results show that the 2.0 μm luminescence of Ho3+ is greatly influenced by the doping concentration ratio of Ho3+ to Tm3+ and that the maximum fluorescence intensity of the core glass can be obtained and its emission cross section can reach 0.933 × 10−21 cm2 when the sensitized proportion of holmium to thulium is 0.3 to 0.7 (mol%). Simultaneously, the maximum phonon energy of the core glass sample is 753 cm−1, which is significantly lower than that of silicate, gallate and germanate glass and the smaller matrix phonon energy can be conductive to the increase 2.0 μm-band emission intensity. The continuous laser with the maximum laser output power of 0.993 W and 2051 nm -wavelength of 31.9%-slope efficiency is output within the 0.5 m glass fiber and the experiment adopts 1560 nm erbium-doped fiber laser(EDFL) as the pump source and the self-built all-fiber laser. Therefore, the glass fiber has excellent laser characteristics and it is suitable for the 2.0 μm-band laser. PMID:28303946

  15. Properties of indirect composites reinforced with monomer-impregnated glass fiber.

    PubMed

    Tanoue, Naomi; Sawase, Takashi; Matsumura, Hideo; McCabe, John F

    2012-07-01

    Sufficient flexural strength is required for long-term clinical use of fixed partial dentures made with fiber-reinforced composite. The flexural strengths of indirect composite materials reinforced with a monomer-preimpregnated glass fiber material were determined to evaluate the compatibility of the composites to glass fiber material. Four types (microhybrid, nanohybrid, microfilled, and minifilled) of indirect composites and a unidirectional long glass fiber material were selected for investigation. The composites were placed on a fiber plate and polymerized in accordance with the respective manufacturer's instructions. Rectangular bar fiber-composite specimens were machined and the flexural strength was calculated. The flexural strength of each indirect composite was also measured. The microfilled composite with the lowest filler content (70 wt%) exhibited the highest increase ratio using the fiber, although its strength without fiber reinforcement was the lowest (62.1 MPa). The fiber-microhybrid specimen demonstrated the highest mean strength (355.9 MPa), although the filler content of the microhybrid composite was comparatively low (73 wt%). The type of composite material should be considered for the selection of an optimal fiber-composite combination.

  16. IR Li2Ga2GeS6 nanocrystallized GeS2-Ga2S3-Li2S electroconductive chalcogenide glass with good nonlinearity

    PubMed Central

    Liu, Qiming; Zhang, Peng

    2014-01-01

    GeS2-Ga2S3-Li2S electroconductive glasses were prepared by the conventional melt-quenching method through carefully controlling the heating rate. Comparing with the reference of glass-forming region, our investigated GeS2-Ga2S3-Li2S system was extended to the cation ratio of 0–20% Li with around 40% Ga. GeS2-Ga2S3-Li2S glass-ceramics containing IR Li2Ga2GeS6 nonlinear nanocrystals were obtained by the more carefully controlled heating rate. Its optical nonlinearity was investigated by the Maker fringe measurements, the maximum second harmonic intensity was observed to be 0.35 of the reference Z-cut quartz. IR Li2Ga2GeS6 nonlinear crystals were directly obtained at the composition of 40GeS2-30GaS1.5-30LiS0.5. PMID:25030713

  17. High-efficiency ytterbium-free erbium-doped all-glass double cladding silicate glass fiber for resonantly-pumped fiber lasers.

    PubMed

    Qiang, Zexuan; Geng, Jihong; Luo, Tao; Zhang, Jun; Jiang, Shibin

    2014-02-01

    A highly efficient ytterbium-free erbium-doped silicate glass fiber has been developed for high-power fiber laser applications at an eye-safe wavelength near 1.55 μm. Our preliminary experiments show that high laser efficiency can be obtained from a relatively short length of the gain fiber when resonantly pumped at 1535 nm in both core- and cladding-pumping configurations. With a core-pumping configuration as high as 75%, optical-to-optical efficiency and 4 W output power were obtained at 1560 nm from a 1 m long gain fiber. When using a cladding-pumping configuration, approximately 13 W output power with 67.7% slope efficiency was demonstrated from a piece of 2 m long fiber. The lengths of silicate-based gain fiber are much shorter than their silica-based counterparts used in other experiments, which is significantly important for high-power narrow-band and/or pulsed laser applications.

  18. Borosilicate Glass Fiber-Optic Biosensor for the Detection of Escherichia coli.

    PubMed

    Maas, Michael B; Maybery, Giles H C; Perold, Willem J; Neveling, Deon P; Dicks, Leon M T

    2018-02-01

    Polyclonal antibodies against Escherichia coli and fluorescent, secondary, antibodies were immobilized on borosilicate glass fibers pre-treated with 3-glycidyloxypropyl trimethoxysilane (GPS). Light with an average wavelength of 627 nm, emitted by a diode placed at one end of the glass fiber, was detected by an ultrasensitive photodiode with peak sensitivity at 640 nm. Changes in fluorescence, caused by binding of E. coli to the antibodies, changed the net refractive index of the glass fiber and thus the internal reflection of light. These evanescent changes in photon energy were recorded by an ultrasensitive photodiode. Signals were amplified and changes in voltage recorded with a digital multimeter. A linear increase in voltage readings was recorded over 2 h when 3.0 × 10 7 CFU/ml and 2.77 × 10 9 CFU/ml E. coli were adhered to the antibodies. Voltage readings were recorded with E. coli cell numbers from 2 × 10 3 CFU/ml to 2 × 10 6 CFU/ml, but readings remained unchanged for 2 h, indicating that the limit of detection is 3.0 × 10 7 CFU/ml. This simple technology may be used to develop a low-cost, portable, fiber-optic biosensor to detect E. coli in infections and may have applications in the medical field. Research is in progress to optimize the sensitivity of the fiber-optic biosensor and determine its specificity.

  19. Effect of gamma radiation on the mechanical properties of natural silk fiber and synthetic E-glass fiber reinforced polypropylene composites: A comparative study

    NASA Astrophysics Data System (ADS)

    Shubhra, Quazi T. H.; Alam, A. K. M. M.

    2011-11-01

    Silk is a strong natural proteinous fiber and E-glass is a very strong synthetic fiber. Compression molding method was used to fabricate B. mori silk fiber reinforced polypropylene (PP) matrix composites. The tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and impact strength (IS) of prepared composites were 55.1 MPa, 780 MPa, 56.3 MPa, 3450 MPa and 17 kJ/m 2, respectively. Synthetic E-glass fiber reinforced PP based composites were fabricated in the same way and TS, TM, BS, BM, IS of E-glass fiber reinforced polypropylene composites were found to be 128.7 MPa, 4350 MPa, 141.6 MPa, 6300 MPa and 19 kJ/m 2, respectively. Gamma radiation is high energy ionizing radiation and was applied to increase the mechanical properties of the composites. Application of gamma ray increases the mechanical properties of silk/PP composites to a greater extent than that of E-glass/PP composites.

  20. Pr3 + -doped GeSx-based glasses for fiber amplifiers at 1.3 µm

    NASA Astrophysics Data System (ADS)

    Simons, D. R.; Faber, A. J.; de Waal, H.

    1995-03-01

    The photoluminescence properties of Pr3+ -doped GeS x -based glasses are studied and compared with those of other sulfide and fluoride glasses. The possibility of highly pump-power-efficient fiber amplifiers based on these GeSx-containing glasses in the telecommunications window at 1.3 mu m is discussed.

  1. Solder glass sealing technology for use in packaging of fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Kreutzmann, Gerd

    1990-08-01

    The solder glass sealing technology is an alternative to the direct sealing method of the socalled hboptocansu. Using solder glass for the junction of glass and the metal can the temperature at about 500 °C does not destroy the optical quality of the precision glass components. The glass can also be coated with an antireflective layer and even the sealing of filterglass is possible. In cases where coupling losses can't be tolerated, the fiber has to be fed directly through the wall into the housing. Fiber feedthroughs, using solder glass for the sealing of the fiber into a metal tube, are commonly metal soldered or welded into the wall and the fiber surface is directly leading to the semiconductor.

  2. Preparation of superhydrophobic glass fiber and interfacially reinforced glass fiber/epoxy composites by grafting polysiloxane nanowires

    NASA Astrophysics Data System (ADS)

    Lv, Junwei; Wang, Bin; Ma, Qi; Li, Mengyao; Wang, Wenjing; Lu, Gaotaihang; Li, Hui; Zhao, Chunxia

    2018-04-01

    Ethyltrichlorosilane used as precursor reacted with glass fiber (GF) surface. Then polysiloxane was functionalized onto GF surface to improve GF’s hydrophobicity and interfacial properties of GF reinforced composites. Fourier transform infrared spectroscopy (FTIR) confirmed the successful grafting of polysiloxane onto GF’s surface. Energy dispersive spectroscopy (EDS) characterized the variation of chemical composition of GF surface. Scanning electron microscopy (SEM) images showed that the polysiloxane was grafted onto GF’s surface uniformly and the surface roughness of GF was enhanced obviously. Static contact angle analysis (SCA) revealed the significant improvement of surface hydrophobicity. Compared with the original GF composites, the interfacial shear strength (IFSS) increased by 36.52%. Meanwhile, we discovered a facile way to accomplish the experiment.

  3. Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser

    PubMed Central

    Wen, Xin; Tang, Guowu; Yang, Qi; Chen, Xiaodong; Qian, Qi; Zhang, Qinyuan; Yang, Zhongmin

    2016-01-01

    Highly Tm3+ doped optical fibers are urgently desirable for 2.0 μm compact single-frequency fiber laser and high-repetition-rate mode-locked fiber laser. Here, we systematically investigated the optical parameters, energy transfer processes and thermal properties of Tm3+ doped barium gallo-germanate (BGG) glasses. Highly Tm3+ doped BGG glass single mode (SM) fibers were fabricated by the rod-in-tube technique. The Tm3+ doping concentration reaches 7.6 × 1020 ions/cm3, being the reported highest level in Tm3+ doped BGG SM fibers. Using ultra short (1.6 cm) as-drawn highly Tm3+ doped BGG SM fiber, a single-frequency fiber laser at 1.95 μm has been demonstrated with a maximum output power of 35 mW when in-band pumped by a home-made 1568 nm fiber laser. Additionally, a multilongitudinal-mode fiber laser at 1.95 μm has also been achieved in a 10 cm long as-drawn active fiber, yielding a maximum laser output power of 165 mW and a slope efficiency of 17%. The results confirm that the as-drawn highly Tm3+ doped BGG SM fibers are promising in applications that require high gain and high power from a short piece of active optical fiber. PMID:26828920

  4. Fiber glass pulling. [in space

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1987-01-01

    Experiments were conducted to determine the viability of performing containerless glass fiber pulling in space. The optical transmission properties and glass-forming capabilities of the heavy metal fluorides are reviewed and the acoustic characteristics required for a molten glass levitation system are examined. The design limitations of, and necessary modifications to the acoustic levitation furnace used in the experiments are discussed in detail. Acoustic levitator force measurements were performed and a thermal map of the furnace was generated from thermocouple data. It was determined that the thermal capability of the furnace was inadequate to melt a glass sample in the center. The substitution of a 10 KW carbon monoxide laser for the original furnace heating elements resulted in improved melt heating.

  5. Effects of accelerated artificial daylight aging on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses.

    PubMed

    Hatamleh, Muhanad M; Watts, David C

    2010-07-01

    The purpose of this study was to test the effect of different periods of accelerated artificial daylight aging on bond strength of glass fiber bundles embedded into maxillofacial silicone elastomer and on bending strength of the glass fiber bundles. Forty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer. Specimens were randomly allocated into four groups, and each group was subjected to different periods of accelerated daylight aging as follows (in hours); 0, 200, 400, and 600. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2)) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. Also a three-point bending test was performed to evaluate bending strength of the fiber bundles. One-way ANOVA and Bonferroni post hoc tests were carried out to detect statistical significance (p < 0.05). Mean (SD) values of maximum pull-out forces (in N) for groups 1 to 4 were: 13.63 (7.45), 19.67 (1.37), 13.58 (2.61), and 10.37 (2.52). Group 2 exhibited the highest pull-out force that was statistically significant when compared to the other groups. Maximum bending strengths of fiber bundles were in the range of 917.72 MPa to 1124.06 MPa. Bending strength significantly increased after 200 and 400 hours of aging only. After 200 hours of exposure to artificial daylight and moisture conditions, bond strength between glass fibers and heat-cured silicones is optimal, and the bending strength of the glass fiber bundles is enhanced.

  6. Glass fiber processing for the Moon/Mars program: Center director's discretionary fund final report

    NASA Technical Reports Server (NTRS)

    Tucker, D. S.; Ethridge, E.; Curreri, P.

    1992-01-01

    Glass fiber has been produced from two lunar soil simulants. These two materials simulate lunar mare soil and lunar highland soil compositions, respectively. Short fibers containing recrystallized areas were produced from the as-received simulants. Doping the highland simulant with 8 weight percent B2-O3 yielded a material which could be spun continuously. The effects of lunar gravity on glass fiber formation were studied utilizing NASA's KC-135 aircraft. Gravity was found to play a major role in final fiber diameter.

  7. Strength Analysis of Glass-Fiber-Reinforced Plastic during Buckling,

    DTIC Science & Technology

    An algorithm is developed for calculating and analyzing the stress tensor by the experimental function of deflections during the buckling of glass ... fiber -reinforced plastic shells loaded with a hydrostatic load. Malmeyster’s theory of strength is used to qualitatively establish the possible points of shell failure. (Author-PL)

  8. Effect of fiber orientation on the failure behavior of a glass-fiber reinforced thermoplastic composite

    NASA Astrophysics Data System (ADS)

    Liang, Jiaai; Kalyanasundaram, Shankar

    2017-05-01

    In this study, hour-glass specimens made of a glass-fiber reinforced polypropylene composite with different fiber orientations were stamp formed in an open die. Strains on the surfaces of these specimens were recorded by a 3D photogrammetric measurement system. Specimens were cut into the designed shapes with two different fiber orientations [0°/90° and 45°/45°]. Based on the forming limit diagrams drawn for these material systems, it is found that change in fiber orientation induces change in deformation mode and different forming limit in strains.

  9. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite

    PubMed Central

    Pandey, Pankaj; Bajwa, Dilpreet; Ulven, Chad; Bajwa, Sreekala

    2016-01-01

    In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU) composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA), specific gravity (SG), coefficient of linear thermal expansion (CLTE), flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively. PMID:28773512

  10. Study on processing parameters of glass cutting by nanosecond 532 nm fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Gao, Fan; Xiong, Baoxing; Zhang, Xiang; Yuan, Xiao

    2018-03-01

    The processing parameters of soda-lime glass cutting with several nanosecond 532 nm pulsed fiber laser are studied in order to obtain sufficiently large ablation rate and better processing quality. The influences of laser processing parameters on effective cutting speed and cutting quality of 1 2 mm thick soda-lime glass are studied. The experimental results show that larger laser pulse energy will lead to higher effective cutting speed and larger maximum edge collapse of the front side of the glass samples. Compared with that of 1.1 mm thick glass samples, the 2.0 mm thick glass samples is more difficult to cut. With the pulse energy of 51.2 μJ, the maximum edge collapse is more than 200 μm for the 2.0 mm thick glass samples. In order to achieve the high effective cutting speed and good cutting quality at the same time, the dual energy overlapping method is used to obtain the better cutting performance for the 2.0 mm thick glass samples, and the cutting speed of 194 mm/s and the maximum edge collapse of less than 132 μm are realized.

  11. Fluoride glass fibers: applications and prospects

    NASA Astrophysics Data System (ADS)

    Poulain, Marcel

    1998-09-01

    Fluoride glass fibers have been intensively developed for the last 20 years. A major effort was devoted to the fabrication of low loss fibers for repeaterless long haul telecommunications. This step which ended in the late eighties provided the basic technology for the manufacturing of multimode and single mode fibers with minimum losses below 10 dB/km. Such fibers area now used for various passive applications requiring the handling of IR signal. In this respect, fluoride fibers are complementary to silica fibers when wavelength exceeds 2 micrometers . Some practical set ups are operating for IR imaging, remote spectroscopy and thermometry. Special fibers such as polarization maintaining fibers have been developed for interferometric astronomy, which could also apply to sensors. UV transmission has still to be developed. Laser power delivery is another field of application for these fibers. YAG:Er laser at 2.9 micrometers attracts a growing interest for medical applications, ophthalmology and dentistry, while prospects for CO laser are positive. Active fibers are based on rare earth doped single mode fibers. They lead to the definition of numerous new laser lines and emphasized the potential of up conversion for the generation of visible light using IR pumping laser diodes. High power output has been achieved in the blue and the red light, which open prospects for compact and all solid state fiber lasers for a wide range of applications, from displays to medical uses. Optical amplification makes another field of R and D centered on telecommunication needs. Pr3+ doped fluoride fibers have been used for the 1.3 micrometers band, and Er based fluoride fiber amplifiers exhibit wider and flatter gain than those made from silica. Optical amplification may be implemented at other wavelengths for more general purposes.

  12. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide.

    PubMed

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-05-10

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.

  13. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide

    PubMed Central

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-01-01

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents. PMID:28809248

  14. In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers.

    PubMed

    Yang, Qingbo; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-10-01

    Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell-glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Transverse Anderson Localization in Disordered Glass Optical Fibers: A Review.

    PubMed

    Mafi, Arash; Karbasi, Salman; Koch, Karl W; Hawkins, Thomas; Ballato, John

    2014-07-28

    Disordered optical fibers show novel waveguiding properties that can be used for various device applications, such as beam-multiplexed optical communications and endoscopic image transport. The strong transverse scattering from the transversely disordered optical fibers results in transversely confined beams that can freely propagate in the longitudinal direction, similar to conventional optical fibers, with the advantage that any point in the cross section of the fiber can be used for beam transport. For beam multiplexing and imaging applications, it is highly desirable to make the localized beam radius as small as possible. This requires large refractive index differences between the materials that define the random features in the disordered fiber. Here, disordered glass-air fibers are briefly reviewed, where randomly placed airholes in a glass matrix provide the sufficiently large refractive index difference of 0.5 for strong random transverse scattering. The main future challenge for the fabrication of an optimally disordered glass-air fibers is to increase the fill-fraction of airholes to nearly 50% for maximum beam confinement.

  16. Transverse Anderson Localization in Disordered Glass Optical Fibers: A Review

    PubMed Central

    Mafi, Arash; Karbasi, Salman; Koch, Karl W.; Hawkins, Thomas; Ballato, John

    2014-01-01

    Disordered optical fibers show novel waveguiding properties that can be used for various device applications, such as beam-multiplexed optical communications and endoscopic image transport. The strong transverse scattering from the transversely disordered optical fibers results in transversely confined beams that can freely propagate in the longitudinal direction, similar to conventional optical fibers, with the advantage that any point in the cross section of the fiber can be used for beam transport. For beam multiplexing and imaging applications, it is highly desirable to make the localized beam radius as small as possible. This requires large refractive index differences between the materials that define the random features in the disordered fiber. Here, disordered glass-air fibers are briefly reviewed, where randomly placed airholes in a glass matrix provide the sufficiently large refractive index difference of 0.5 for strong random transverse scattering. The main future challenge for the fabrication of an optimally disordered glass-air fibers is to increase the fill-fraction of airholes to nearly 50% for maximum beam confinement. PMID:28788142

  17. In vitro cytotoxicity of Manville Code 100 glass fibers: Effect of fiber length on human alveolar macrophages

    PubMed Central

    Zeidler-Erdely, Patti C; Calhoun, William J; Ameredes, Bill T; Clark, Melissa P; Deye, Gregory J; Baron, Paul; Jones, William; Blake, Terri; Castranova, Vincent

    2006-01-01

    Background Synthetic vitreous fibers (SVFs) are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral) wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers ≥ 17 μm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 μm). It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number) of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence. Results Microscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 μm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion. Conclusion The data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was observed in fiber

  18. Abrasion Resistance and Mechanical Properties of Waste-Glass-Fiber-Reinforced Roller-compacted Concrete

    NASA Astrophysics Data System (ADS)

    Yildizel, S. A.; Timur, O.; Ozturk, A. U.

    2018-05-01

    The potential use of waste glass fibers in roller-compacted concrete (RCC) was investigated with the aim to improve its performance and reduce environmental effects. The research was focused on the abrasion resistance and compressive and flexural strengths of the reinforced concrete relative to those of reference mixes without fibers. The freeze-thaw resistance of RCC mixes was also examined. It was found that the use of waste glass fibers at a rate of 2 % increased the abrasion resistance of the RCC mixes considerably.

  19. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers

    PubMed Central

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-01-01

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er3+ can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce3+ and its effects on the luminescence properties of Er3+ are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce3+/Yb3+/Er3+ triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers. PMID:27646191

  20. Evaluation of Glass Fiber Reinforced Concrete Panels for Use in Military Construction.

    DTIC Science & Technology

    1984-06-01

    AD-A158 134 UNCLASSIFIED EVALUATION OF GLASS FIBER REINFORCED CONCRETE PANELS FOR USE IN MILITARY. . (U) CONSTRUCTION ENGINEERING RESEARCH LAB...Construction Engineering Research Laboratory i=h-C=iU. TECHNICAL REPORT M-85/15 June 1985 AD-A158 134 0~- 8 Evaluation of Glass Fiber ...Reinforced Concrete Panels for Use in Military Construction by Gilbert R. Williamson Glass fiber reinforced concrete (GFRC) materials are investigated

  1. Effects of glass fiber mesh with different fiber content and structures on the compressive properties of complete dentures.

    PubMed

    Yu, Sang-Hui; Cho, Hye-Won; Oh, Seunghan; Bae, Ji-Myung

    2015-06-01

    No study has yet evaluated the strength of complete dentures reinforced with glass fiber meshes with different content and structures. The purpose of this study was to compare the reinforcing effects of glass fiber mesh with different content and structures with that of metal mesh in complete dentures. Two types of glass fiber mesh were used: SES mesh (SES) and glass cloth (GC2, GC3, and GC4). A metal mesh was used for comparison. The complete dentures were made by placing the reinforcement 1 mm away from the tissue surface. A control group was prepared without any reinforcement (n=10). The compressive properties were measured by a universal testing machine at a crosshead speed of 5 mm/min. The results were analyzed with the Kruskal-Wallis test and the Duncan multiple range test (α=.05). The fracture resistance of the SES group was significantly higher than that of the control, GC4, and metal groups (asymptotic P=.004), but not significantly different from the GC2 and GC3 groups. The toughness of the SES and GC3 groups was significantly higher than that of the others (asymptotic P<.001), but not significantly different from that of the GC4 group. SES and GC3, which have different structures but similar volume content, were the most effective in reinforcing complete dentures. The content of the glass fiber mesh seemed more important than the structures. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Tailoring Interfacial Properties by Controlling Carbon Nanotube Coating Thickness on Glass Fibers Using Electrophoretic Deposition.

    PubMed

    Tamrakar, Sandeep; An, Qi; Thostenson, Erik T; Rider, Andrew N; Haque, Bazle Z Gama; Gillespie, John W

    2016-01-20

    The electrophoretic deposition (EPD) method was used to deposit polyethylenimine (PEI) functionalized multiwall carbon nanotube (CNT) films onto the surface of individual S-2 glass fibers. By varying the processing parameters of EPD following Hamaker's equation, the thickness of the CNT film was controlled over a wide range from 200 nm to 2 μm. The films exhibited low electrical resistance, providing evidence of coating uniformity and consolidation. The effect of the CNT coating on fiber matrix interfacial properties was investigated through microdroplet experiments. Changes in interfacial properties due to application of CNT coatings onto the fiber surface with and without a CNT-modified matrix were studied. A glass fiber with a 2 μm thick CNT coating and the unmodified epoxy matrix showed the highest increase (58%) in interfacial shear strength (IFSS) compared to the baseline. The increase in the IFSS was proportional to CNT film thickness. Failure analysis of the microdroplet specimens indicated higher IFSS was related to fracture morphologies with higher levels of surface roughness. EPD enables the thickness of the CNT coating to be adjusted, facilitating control of fiber/matrix interfacial resistivity. The electrical sensitivity provides the opportunity to fabricate a new class of sizing with tailored interfacial properties and the ability to detect damage initiation.

  3. Practical Aspects of Access Network Indoor Extensions Using Multimode Glass and Plastic Optical Fibers

    NASA Astrophysics Data System (ADS)

    Keiser, Gerd; Liu, Hao-Yu; Lu, Shao-Hsi; Devi Pukhrambam, Puspa

    2012-07-01

    Low-cost multimode glass and plastic optical fibers are attractive for high-capacity indoor telecom networks. Many existing buildings already have glass multimode fibers installed for local area network applications. Future indoor applications will use combinations of glass multimode fibers with plastic optical fibers that have low losses in the 850-nm-1,310-nm range. This article examines real-world link losses when randomly interconnecting glass and plastic fiber segments having factory-installed connectors. Potential interconnection issues include large variations in connector losses among randomly selected fiber segments, asymmetric link losses in bidirectional links, and variations in bandwidths among different types of fibers.

  4. Modification of glass fibers to improve reinforcement: a plasma polymerization technique.

    PubMed

    Cökeliler, Dilek; Erkut, Selim; Zemek, Josef; Biederman, Hynek; Mutlu, Mehmet

    2007-03-01

    This study evaluates the effect of plasma treated E-glass fiber to improve the mechanical properties of acrylic resin denture base material, polymethylmethacrlyate (PMMA). Plasma surface treatment of fibers is used as reinforcement in composite materials to modify the chemical and physical properties of their surfaces with tailored fiber-matrix bonding strength. Three different types of monomer 2-hydroxyethyl methacrylate (HEMA), triethyleneglycoldimethylether (TEGDME) and ethylenediamine (EDA) were used in the plasma polymerization modification of glass fibers. A radiofrequency generator was used to sustain plasma in a glass vacuum chamber. Glass fibers were modified at the same glow-discharge power of 25 W and exposure time of 30 min for each monomer. Fibers were incorporated into the acrylic with 1% (w/w) loading except control group. Specimens were prepared using a standard mold of 3 cmx0.5 cmx0.8 cm in dimension with eight specimens in each group. Samples were subjected to a flexural strength test set up at a crosshead speed of 5mm/min. Scanning electron microscopy (SEM) was used to examine the microstructure and X-ray photoelectron spectroscopy (XPS) was used for chemical analysis of the surface. Data were analyzed by means of ANOVA and Duncan's tests. Test results revealed that fiber reinforcement had a significant effect on the flexural strength of the specimens (p<0.05). Among the fiber reinforced groups, plasma treatment with EDA monomer resulted in the most significant increase in flexural strength values (p<0.05). XPS results have shown an increasing number of nitrogenous compounds in EDA treated fibers. The chemical structure of the surface, especially with the increase in nitrogenous compounds could give an idea for the amine film deposition and SEM figures showed an increase in surface roughness. The results showed that plasma treatment with EDA monomer was an effective alternative method of increasing the flexural strength of PMMA based denture base

  5. Impact tensile properties and strength development mechanism of glass for reinforcement fiber

    NASA Astrophysics Data System (ADS)

    Kim, T.; Oshima, K.; Kawada, H.

    2013-07-01

    In this study, impact tensile properties of E-glass were investigated by fiber bundle testing under a high strain rate. The impact tests were performed employing two types of experiments. One is the tension-type split Hopkinson pressure bar system, and the other is the universal high-speed tensile-testing machine. As the results, it was found that not only the tensile strength but also the fracture strain of E-glass fiber improved with the strain rate. The absorbed strain energy of this material significantly increased. It was also found that the degree of the strain rate dependency of E-glass fibers on the tensile strength was varied according to fiber diameter. As for the strain rate dependency of the glass fiber under tensile loading condition, change of the small crack-propagation behaviour was considered to clarify the development of the fiber strength. The tensile fiber strength was estimated by employing the numerical simulation based on the slow crack-growth model (SCG). Through the parametric study against the coefficient of the crack propagation rate, the numerical estimation value was obtained for the various testing conditions. It was concluded that the slow crack-growth behaviour in the glass fiber was an essential for the increase in the strength of this material.

  6. Studies on fabrication of glass fiber reinforced composites using polymer blends

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Kachhia, P. H.; Patel, S. N.; Rathod, S. T.; Valand, J. K.

    2018-05-01

    Glass fiber reinforced PVC/NBR composites have been fabricated via hot compression moulding process. PVC is brittle in nature and thus lower thermal stability. Therefore, to improve the toughness of PVC, NBR was incorporated in certain proportions. As both are polar and thus they are compatible. To improve the strength property further, these blends were used to fabricate glass fiber reinforced composites. SEM micrograph shows good wettability of the blend with glass fibers resulting in proper bonding which increase the strength of the composites.

  7. Effect of fiber content on flexural properties of glass fiber-reinforced polyamide-6 prepared by injection molding.

    PubMed

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-07-26

    The use of non-metal clasp denture (NMCD) materials may seriously affect the remaining tissues because of the low rigidity of NMCD materials such as polyamides. The purpose of this study was to develop a high-rigidity glass fiber-reinforced thermoplastic (GFRTP) composed of E-glass fiber and polyamide-6 for NMCDs using an injection molding. The reinforcing effects of fiber on the flexural properties of GFRTPs were investigated using glass fiber content ranging from 0 to 50 mass%. Three-point bending tests indicated that the flexural strength and elastic modulus of a GFRTP with a fiber content of 50 mass% were 5.4 and 4.7 times higher than those of unreinforced polyamide-6, respectively. The result showed that the physical characteristics of GFRTPs were greatly improved by increasing the fiber content, and the beneficial effects of fiber reinforcement were evident. The findings suggest that the injection-molded GFRTPs are adaptable to NMCDs because of their excellent mechanical properties.

  8. Plug Repairs of Marine Glass Fiber / Vinyl Ester Laminates Subjected to Uniaxial Tension

    DTIC Science & Technology

    2009-06-01

    Material characteristics of glass fiber / vinyl ester composites used in naval surface ships 1.1.1.2 Construction of surface ship hulls with FRP...Piping - Ventilation ducts - Deck gratings 1.1.1.1 Material characteristics of glass fiber / vinyl ester composites used in naval surface ships The...that polysester-based composites do [15, 24]. Typical processing methods for vinyl ester composites are hand lay-up, Resin Transfer Molding (RTM

  9. Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber.

    PubMed

    Fu, L; Rochette, M; Ta'eed, V; Moss, D; Eggleton, B

    2005-09-19

    We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate with 5.8 ps duration pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. These results are achieved with pulse peak powers <10 W in a fully passive device, including only 2.8 m of chalcogenide fiber. We obtain an excellent agreement between theory and experiment and show that both the high nonlinearity of the chalcogenide glass along with its high normal dispersion near 1550 nm enables a significant device length reduction in comparison with silica-based devices, without compromise on the performance. We find that even for only a few meters of fiber, the large normal dispersion of the chalcogenide glass inhibits spectral oscillations that would appear with self-phase modulation alone. We measure the two photon absorption attenuation coefficient and find that it advantageously affects the device transfer function.

  10. Fiber Optic Magnetic Field Sensors Using Metallic Glass Coatings.

    NASA Astrophysics Data System (ADS)

    Wang, Yu.

    1990-01-01

    In this thesis we have investigated the use of a magnetostrictive material with a single-mode optical fiber for detecting weak magnetic fields. The amorphous alloy Metglas^circler 2605SC (Fe_{81}B_ {13.5}Si_{3.5} C_2) was chosen as the magnetostrictive material because of the combination of its large magnetostriction and small magnetic anisotropy field among all available metals. For efficient coupling between the magnetostrictive material and the optical fiber, the magnetostrictive material was directly deposited onto the single-mode optical fiber. The coated fibers were used as the sensing element in the fiber optic magnetic field sensor (FOMS). Very high quality thick metallic glass films of the Metglas 2605 SC have been deposited using triode-magneton sputtering. This is the first time such material has been successfully deposited onto an optical fiber or onto any other substrate. The films were also deposited onto glass slides to allow the study of the magnetic properties of the film. The thicknesses of these films were 5-15 mum. The magnetic property of primary interest for our sensor application is the induced longitudinal magnetostrictive strain. However, the other magnetic properties such as magnetic anisotropy, surface and bulk coercivities, magnetic homogeneity and magnetization all affect the magnetostrictive response of the material. We have used ferromagnetic resonance (FMR) at microwave frequencies to study the magnetic anisotropy and homogeneity; vibrating sample magnetometry (VSM) to study the bulk magnetic hysteresis responses and coercivity; and the longitudinal magneto-optic kerr effect (LMOKE) to study the surface magnetic hysteresis responses and coercivity. The isothermalmagnetic annealing effect on these properties has also been studied in detail. The fiber optic magnetic field sensor constructed using the metallic-glass-coated fiber was tested. An electronic feedback control loop using a PZT cylinder was constructed for stabilizing the

  11. The recycling of comminuted glass-fiber-reinforced resin from electronic waste.

    PubMed

    Duan, Huabo; Jia, Weifeng; Li, Jinhui

    2010-05-01

    The reuse of comminuted glass-fiber-reinforced resin with various granularities gathered from printed circuit manufacturing residues was investigated. As fillers, these residues were converted into polymeric composite board by an extrusion and injection process using polypropylene as a bonding agent. The mechanical properties of the reproduced composite board were examined by considering the effects of mass fraction and glass-fiber distribution. Interfacial-layer micrograph analysis of the composite material fracture surface was used to study the fiber reinforcement mechanism. Results showed that using comminuted glass-fiber-reinforced resin as a filler material greatly enhanced the performance properties of the composite board. Although the length and diameter of filler varied, these variations had no appreciable effect on the mechanical properties of the processed board. Maximum values of 48.30 MPa for flexural strength, 31.34 MPa for tensile strength, and 31.34 J/m for impact strength were achieved from a composite board containing mass fractions of 30, 10, and 20% glass-fiber-reinforced resin waste, respectively. It was found that the maximum amount of recyclate that could be added to a composite board was 30% of weight. Beyond these percentages, the materials blend became unmanageable and the mixture less amenable to impregnation with fiber. Presented studies indicated that comminuted glass-fiber-reinforced resin waste-filled polypropylene composites are promising candidates for structural applications where high stiffness and fracture resistance are required.

  12. Method of producing a silicon carbide fiber reinforced strontium aluminosilicate glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1995-01-01

    A SrO-Al2O3-2SrO2 (SAS) glass ceramic matrix is reinforced with CVD SiC continuous fibers. This material is prepared by casting a slurry of SAS glass powder into tapes. Mats of continuous CVD-SiC fibers are alternately stacked with the matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite. Organic constituents are burned out of the 'green' composite, and the remaining interim material is hot pressed.

  13. Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber.

    PubMed

    Li, Kefeng; Zhang, Guang; Hu, Lili

    2010-12-15

    We report, for the first time to the best of our knowledge, a watt level cw fiber laser at ~2 μm from a piece of 40-cm-long newly developed highly thulium-doped (3.76 × 10(20) ions/cm(3)) tungsten tellurite glass double cladding fiber pumped by a commercial 800 nm laser diode. The maximum output power of the fiber laser reaches 1.12 W. The slope efficiency and the optical-optical efficiency with respect to the absorbed pump are 20% and 16%, respectively. The lasing threshold is 1.46 W, and the lasing wavelength is centered at 1937 nm.

  14. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber reinforced Post to Core Material

    PubMed Central

    Samadi, Firoza; Jaiswal, JN; Saha, Sonali

    2014-01-01

    ABSTRACT% Aim: To compare the effect of different chemical solvents on glass fiber reinforced posts and to study the effect of these solvents on the shear bond strength of glass fiber reinforced post to core material. Materials and methods: This study was conducted to evaluate the effect of three chemical solvents, i.e. silane coupling agent, 6% H2O2 and 37% phosphoric acid on the shear bond strength of glass fiber post to a composite resin restorative material. The changes in post surface characteristics after different treatments were also observed, using scanning electron microscopy (SEM) and shear bond strength was analyzed using universal testing machine (UTM). Results: Surface treatment with hydrogen peroxide had greatest impact on the post surface followed by 37% phosphoric acid and silane. On evaluation of the shear bond strength, 6% H2O2 exhibited the maximum shear bond strength followed in descending order by 37% phosphoric acid and silane respectively. Conclusion: The surface treatment of glass fiber post enhances the adhesion between the post and composite resin which is used as core material. Failure of a fiber post and composite resin core often occurs at the junction between the two materials. This failure process requires better characterization. How to cite this article: Sharma A, Samadi F, Jaiswal JN, Saha S. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber Reinforced Post to Core Material. Int J Clin Pediatr Dent 2014;7(3):192-196. PMID:25709300

  15. Replacement of glass particles by multidirectional short glass fibers in experimental composites: Effects on degree of conversion, mechanical properties and polymerization shrinkage.

    PubMed

    Bocalon, Anne C E; Mita, Daniela; Narumyia, Isabela; Shouha, Paul; Xavier, Tathy A; Braga, Roberto Ruggiero

    2016-09-01

    To test the null hypothesis that the replacement of a small fraction of glass particles with random short glass fibers does not affect degree of conversion (DC), flexural strength (FS), fracture toughness (FT) and post-gel polymerization shrinkage (PS) of experimental composites. Four experimental photocurable composites containing 1 BisGMA:1 TEGDMA (by weight) and 60vol% of fillers were prepared. The reinforcing phase was constituted by barium glass particles (2μm) and 0%, 2.5%, 5.0% or 7.5% of silanated glass fibers (1.4mm in length, 7-13μm in diameter). DC (n=4) was obtained using near-FTIR. FS (n=10) was calculated via biaxial flexural test and FT (n=10) used the "single edge notched beam" method. PS at 5min (n=8) was determined using the strain gage method. Data were analyzed by ANOVA/Tukey test (DC, FS, PS) or Kruskal-Wallis/Dunn's test (FT, alpha: 5% for both tests). DC was similar among groups (p>0.05). Only the composite containing 5.0% of fibers presented lower FS than the control (p<0.001). FT increased significantly between the control (1.3±0.17MPam(0.5)) and the composites containing either 5.0% (2.7±0.6MPam(0.5)) or 7.5% of fibers (2.8±0.6MPam(0.5), p<0.001). PS in relation to control was significantly reduced at 2.5% fibers (from 0.81±0.13% to 0.57±0.13%) and further reduced between 5.0% and 7.5% (from 0.42±0.12% to 0.23±0.07%, p<0.001). The replacement of a small fraction of filler particles with glass fibers significantly increased fracture toughness and reduced post-gel shrinkage of experimental composites. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Magnesium coated phosphate glass fibers for unidirectional reinforcement of polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Grant, David M; Palmer, Graham; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2015-10-01

    Bioresorbable composites have shown much potential for bone repair applications, as they have the ability to degrade completely over time and their degradation and mechanical properties can be tailored to suit the end application. In this study, phosphate glass fiber (from the system 45% P2 O5-16% CaO-24% MgO-11% Na2 O-4% Fe2 O3 (given in mol%)) were used to reinforce polycaprolactone (PCL) with approximately 20% fiber volume fraction. The glass fiber surfaces were coated with magnesium (Mg) through magnetron sputtering to improve the fiber-matrix interfacial properties. The Mg coating provided a rough fiber surface (roughness (Ra) of about 44nm). Both noncoated and Mg-coated fiber-reinforced composites were assessed. The water uptake and mass loss properties for the composites were assessed in phosphate-buffered saline (PBS) at 37°C for up to 28 days, and ion release profiles were also investigated in both water and PBS media. Inhibition of media influx was observed for the Mg-coated composites. The composite mechanical properties were characterized on the basis of both tensile and flexural tests and their retention in PBS media at 37°C was also investigated. A higher retention of the mechanical properties was observed for the Mg-coated composites over the 28 days degradation period. © 2014 Wiley Periodicals, Inc.

  17. Chemical Vapor Deposited SiC (SCS-0) Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1997-01-01

    Unidirectional SrO Al2O3 2SiO2 glass-ceramic matrix composites reinforced with uncoated Chemical Vapor Deposited (CVD) SiC (SCS-0) fibers have been fabricated by hot-pressing under appropriate conditions using the glass-ceramic approach. Almost fully dense composites having a fiber volume fraction of 0.24 have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix by x-ray diffraction. No chemical reaction was observed between the fiber and the matrix after high temperature processing. In three-point flexure, the composite exhibited a first matrix cracking stress of approx. 231 +/- 20 MPa and an ultimate strength of 265 +/- 17 MPa. Examination of fracture surfaces revealed limited short length fiber pull-out. From fiber push-out, the fiber/matrix interfacial debonding and frictional strengths were evaluated to be approx. 17.5 +/- 2.7 MPa and 11.3 +/- 1.6 MPa, respectively. Some fibers were strongly bonded to the matrix and could not be pushed out. The micromechanical models were not useful in predicting values of the first matrix cracking stress as well as the ultimate strength of the composites.

  18. Experimental Investigation of Thermal Properties in Glass Fiber Reinforced with Aluminium

    NASA Astrophysics Data System (ADS)

    Irudaya raja, S. Joseph; Vinod Kumar, T.; Sridhar, R.; Vivek, P.

    2017-03-01

    A test method of a Guarded heat flow meter are used to measure the thermal conductivity of glass fiber and filled with a aluminum powder epoxy composites using an instrument in accordance with ASTM. This experimental study reveals that the incorporation of aluminum and glass fiber reinforced results in enhancement of thermal conductivity of epoxy resin and thereby improves its heat transfer capability. Fiber metal laminates are good candidates for advanced automobile structural applications due to their high categorical mechanical and thermal properties. The most consequential factor in manufacturing of these laminates is the adhesive bonding between aluminum and FRP layers. Here several glass-fiber reinforced aluminum were laminates with different proportion of bonding adhesion were been manufactured. It was observed that the damage size is more preponderant in laminates with poor interfacial adhesion compared to that of laminates with vigorous adhesion between aluminum and glass layers numerically calculated ones and it is found that the values obtained for various composite models using experimental testing method.

  19. 2.45 GHz Microwave Processing and Its Influence on Glass Fiber Reinforced Plastics.

    PubMed

    Teufl, Daniel; Zaremba, Swen

    2018-05-18

    During the production of fiber-reinforced composite materials, liquid resin is introduced into the fiber material and cured, i.e., hardened. An elevated temperature is needed for this curing. Microwave curing of composites has been investigated for some time, but it has mostly been done using small domestic or laboratory equipment. However, no investigation has been carried out using an industrial-sized chamber-microwave for glass fiber-reinforced plastic (GFRP). Here, we show that microwave curing produces laminates of the same quality as oven-cured ones. The study shows that, if the process is done right, GFRP samples can be produced with an industrial scale microwave. Even if not fully cured, microwave samples show a glass transition temperature measured with DMA ( T g-DMA ) that is comparable to the T g-DMA according to the proposed cure cycle on the data sheet. Specific microwave-cured configurations show better inter-laminar shear strength than oven specimens. The results show that microwave-based heat introduction can be a beneficial curing method for GFRP laminates. A microwave-optimized process is faster and leads to better mechanical properties.

  20. 2.45 GHz Microwave Processing and Its Influence on Glass Fiber Reinforced Plastics

    PubMed Central

    Zaremba, Swen

    2018-01-01

    During the production of fiber-reinforced composite materials, liquid resin is introduced into the fiber material and cured, i.e., hardened. An elevated temperature is needed for this curing. Microwave curing of composites has been investigated for some time, but it has mostly been done using small domestic or laboratory equipment. However, no investigation has been carried out using an industrial-sized chamber-microwave for glass fiber-reinforced plastic (GFRP). Here, we show that microwave curing produces laminates of the same quality as oven-cured ones. The study shows that, if the process is done right, GFRP samples can be produced with an industrial scale microwave. Even if not fully cured, microwave samples show a glass transition temperature measured with DMA (Tg-DMA) that is comparable to the Tg-DMA according to the proposed cure cycle on the data sheet. Specific microwave-cured configurations show better inter-laminar shear strength than oven specimens. The results show that microwave-based heat introduction can be a beneficial curing method for GFRP laminates. A microwave-optimized process is faster and leads to better mechanical properties. PMID:29783684

  1. Polymer/glass nanocomposite fiber as an insulating material

    NASA Astrophysics Data System (ADS)

    Taygun, M. Erol; Akkaya, I.; Gönen, S. Ö.; Küçükbayrak, S.

    2017-02-01

    Production of the insulation materials with using nanofibers is the unique idea. With this idea, insulating facilities are enhanced with compressing air between the layers of nanofibers. Basically, glass wool is used as an insulation material. On the other hand, nanofiber glasses can be preferred for insulation purposes to be able to obtain insulation materials better then glass wool. From this point of view in this study, glass nanofibers were formed with sol-gel method by utilizing electrospinning technique. In the experimental part, first of all, sol-gel and polyvinylpyrolidone (PVP)/ethanol solutions were prepared. Then the relation of rheological properties with electrospinnability of PVP/sol-gel solutions was investigated by using a rheometer. Results showed that viscosity increased with the concentration of PVP. Meanwhile, the morphology of electrospun PVP/glass nanofibers was investigated by scanning electron microscope. It was also observed that the homogeneous nanofiber structure was obtained when the viscosity of the solution was 0.006 Pa.s. According to SEM results, it was concluded that nanocomposite fiber having a nanostructured morphology may be a good candidate for thermal insulation applications in the industry.

  2. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions.

    PubMed

    Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Glass fiber manufacturing and fiber safety: the producer's perspective.

    PubMed Central

    Bender, J R; Hadley, J G

    1994-01-01

    Historically, the potential health effects of airborne fibers have been associated with the dose, dimension, and durability. Increasing focus is being placed on the latter category. Concern about airborne fiber safety could be reduced by manufacturing fibers that are not respirable; however, due to performance and manufacturing constraints on glasswool insulations, this is not possible today. These products are an important part of today's economy and as a major manufacturer, Owens-Corning is committed to producing and marketing materials that are both safe and effective in their intended use. To this end, manufacturing technology seeks to produce materials that generate low concentrations of airborne fibers, thus minimizing exposure and irritation. The range of fiber diameters is controlled to assure effective product performance and, as far as possible, to minimize respirability. Glass compositions are designed to allow effective fiber forming and ultimate product function. Fiber dissolution is primarily a function of composition; this too, can be controlled within certain constraints. Coupled with these broad parameters is an extensive product stewardship program to assure the safety of these materials. This article will discuss the factors that influence glasswool insulation production, use, and safety. PMID:7882953

  4. Study of glass preforms for glass fiber optics applications (study of space processing of ceramic materials). [light transmission

    NASA Technical Reports Server (NTRS)

    Wang, F. F. Y.

    1974-01-01

    The feasibility, and technical and economic desirability was studied of space processing of glass preforms for optical fiber transmission applications. The results indicate that space processing can produce glass preforms of equal quality at lower cost than earth bound production, and can produce diameter modulation in the glass preform which promotes mode coupling and lowers the dispersion. The glass composition can be modified through the evaporative and diffusion processes, and graded refractive index profiles can be produced. A brief summary of the state of the art in optical fiber transmission is included.

  5. Effect of thermal cycling on composites reinforced with two differently sized silica-glass fibers.

    PubMed

    Meriç, Gökçe; Ruyter, I Eystein

    2007-09-01

    To evaluate the effects of thermal cycling on the flexural properties of composites reinforced with two differently sized fibers. Acid-washed, woven, fused silica-glass fibers, were heat-treated at 500 degrees C, silanized and sized with one of two sizing resins (linear poly(butyl methacrylate)) (PBMA), cross-linked poly(methyl methacrylate) (PMMA). Subsequently the fibers were incorporated into a polymer matrix. Two test groups with fibers and one control group without fibers were prepared. The flexural properties of the composite reinforced with linear PBMA-sized fibers were evaluated by 3-point bend testing before thermal cycling. The specimens from all three groups were thermally cycled in water (12,000 cycles, 5/55 degrees C, dwell time 30 s), and afterwards tested by 3-point bending. SEM micrographs were taken of the fibers and of the fractured fiber reinforced composites (FRC). The reduction of ultimate flexural strength after thermal cycling was less than 20% of that prior to thermal cycling for composites reinforced with linear PBMA-sized silica-glass fibers. The flexural strength of the composite reinforced with cross-linked PMMA-sized fibers was reduced to less than half of the initial value. This study demonstrated that thermal cycling differently influences the flexural properties of composites reinforced with different sized silica-glass fibers. The interfacial linear PBMA-sizing polymer acts as a stress-bearing component for the high interfacial stresses during thermal cycling due to the flexible structure of the linear PBMA above Tg. The cross-linked PMMA-sizing, however, acts as a rigid component and therefore causes adhesive fracture between the fibers and matrix after the fatigue process of thermal cycling and flexural fracture.

  6. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  7. Effect of Manufacturing Method to Tensile Properties of Hybrid Composite Reinforced by Natural (Agel Leaf Fiber) and Glass Fibers

    NASA Astrophysics Data System (ADS)

    Nugroho, A.; Abdurohman, K.; Kusmono; Hestiawan, H.; Jamasri

    2018-04-01

    This paper described the effect of different type of manufacturing method to tensile properties of hybrid composite woven agel leaf fiber and glass fiber as an alternative of LSU structure material. The research was done by using 3 ply of woven agel leaf fiber (ALF) and 3 ply of glass fiber (wr200) while the matrix was using unsaturated polyester. Composite manufacturing method used hand lay-up and vacuum bagging. Tensile test conducted with Tensilon universal testing machine, specimen shape and size according to standard size ASTM D 638. Based on tensile test result showed that the tensile strength of agel leaf fiber composite with unsaturated polyester matrix is 54.5 MPa by hand lay-up and 84.6 MPa with vacuum bagging method. From result of tensile test, hybrid fiber agel composite and glass fiber with unsaturated polyester matrix have potential as LSU structure.

  8. Comparative analysis of luminescent properties of germanate glass and double-clad optical fibers co-doped with Yb3+/Ho3+ ions

    NASA Astrophysics Data System (ADS)

    Pietrzycki, Marcin; Kochanowicz, Marcin; Romańczuk, Patryk; Żmojda, Jacek; Miluski, Piotr; Ragiń, Tomasz; Jeleń, Piotr; Sitarz, Maciej; Dorosz, Dominik

    2016-09-01

    The 2 μm and visible emission of low phonon (805 cm-1) germanate glasses and double - clad optical fiber co-doped with 0.7Yb2O3/(0.07-0.7)Ho2O3 ions have been investigated. Luminescence at 2 μm corresponding to Ho3+: 5I7 → 5I8 as well as upconversion luminescence in the visible spectral range corresponding to the Ho3+: 5S2(5F4)→5I8 (545 nm), and Ho3+: 5F5→5I8 (655 nm) transition, respectively were obtained. The optimization of the acceptor content and donor-acceptor ratio were conducted with the purpose of maximizing the luminescence intensity. The highest luminescence intensity in both spectral range was obtained in glass co-doped with 0.7Yb2O3/0.15 Ho2O3. Despite relatively small effective absorption coefficient of the optical fiber comparative analysis of luminescent properties of fabricated glasses (further core) and double - clad optical fiber showed significant contribution of reabsorption process of emitted ASE signal.

  9. Experimental Investigations on the effect of Additive on the Tensile Properties of Fiber Glass Fabric Lamina

    NASA Astrophysics Data System (ADS)

    Nava Sai Divya, A.; Raghu Kumar, B., Dr; Lakshmi Narayana, G., Dr

    2017-09-01

    The main objective of this work is to investigate the effect of additives on tensile behaviour of fiber glass fabric at lamina level to explore an alternative skin material for the outer body of aerospace applications and machines. This experimental work investigates the effect of silica concentration in epoxy resin lapox L-12 on the tensile properties of glass fabric lamina of 4H-satin weave having 3.6 mm thickness. The lamina was prepared by using hand lay-up method and tests were conducted on it. Various tensile properties values obtained from experimentation were compared for four glass fiber lamina composites fabricated by adding the silica powder to resin bath. The effect of variations in silica concentration (0% SiO2, 5% SiO2, 10% SiO2 and 15% SiO2) on the tensile properties of prepared material revealed that maximum stiffness was obtained at 15% and yield strength at 10% SiO2 concentration in glass fiber lamina. Increasing the silica concentration beyond 10% had led to deterioration in the material properties. The experimentation that was carried out on test specimen was reasonably successful as the effect of silica powder as an additive in glass fiber lamina enhanced the mechanical properties up to certain limit. The underpinning microscopic behaviour at the source of these observations will be investigated in a follow up work.

  10. Consumer perception of risk associated with filters contaminated with glass fibers.

    PubMed

    Cummings, K M; Hastrup, J L; Swedrock, T; Hyland, A; Perla, J; Pauly, J L

    2000-09-01

    The filters in Eclipse, a new cigarette-like smoking article marketed by R. J. Reynolds Tobacco Company, are contaminated with glass fibers, fragments, and particles. Reported herein are the results of a study in which consumers were questioned about their opinions as to whether exposure to glass fibers in such a filter poses an added health risk beyond that from smoking and whether the manufacturer has an obligation to inform consumers about the glass contamination problem. The study queried 137 adults who were interviewed while waiting at a Division of Motor Vehicles office in Erie County, New York in 1997. All but one person expressed the view that the presence of glass fibers on the filters poses an added health risk beyond that associated with exposure to tobacco smoke alone. Nearly all expressed the position that the cigarette manufacturer has a duty to inform the public about the potential for glass exposure.

  11. Preparation and characterization of PVDF-glass fiber composite membrane reinforced by interfacial UV-grafting copolymerization.

    PubMed

    Luo, Nan; Xu, Rongle; Yang, Min; Yuan, Xing; Zhong, Hui; Fan, Yaobo

    2015-12-01

    A novel inorganic-organic composite membrane, namely poly(vinylidene fluoride) PVDF-glass fiber (PGF) composite membrane, was prepared and reinforced by interfacial ultraviolet (UV)-grafting copolymerization to improve the interfacial bonding strength between the membrane layer and the glass fiber. The interfacial polymerization between inorganic-organic interfaces is a chemical cross-linking reaction that depends on the functionalized glass fiber with silane coupling (KH570) as the initiator and the polymer solution with acrylamide monomer (AM) as the grafting block. The Fourier transform infrared spectrometer-attenuated total reflectance (FTIR-ATR) spectra and the energy dispersive X-ray (EDX) pictures of the interface between the glass fiber and polymer matrix confirmed that the AM was grafted to the surface of the glass fiber fabric and that the grafting polymer was successfully embedded in the membrane matrix. The formation mechanisms, permeation, and anti-fouling performance of the PGF composite membrane were measured with different amounts of AM in the doping solutions. The results showed that the grafting composite membrane improved the interfacial bonding strength and permeability, and the peeling strength was improved by 32.6% for PGF composite membranes with an AM concentration at 2wt.%. Copyright © 2015. Published by Elsevier B.V.

  12. Mechanical properties and superficial characterization of a milled CAD-CAM glass fiber post.

    PubMed

    Ruschel, George Hebert; Gomes, Érica Alves; Silva-Sousa, Yara Terezinha; Pinelli, Rafaela Giedra Pirondi; Sousa-Neto, Manoel Damião; Pereira, Gabriel Kalil Rocha; Spazzin, Aloísio Oro

    2018-06-01

    Computer-aided design and computer-aided manufacturing (CAD-CAM) technology may be used to produce custom intraradicular posts, but studies are lacking. The purpose of this in vitro study was to evaluate the flexural properties (strength and modulus), failure mode, superficial morphology, and roughness of two CAD-CAM glass fiber posts (milled at different angulations) compared with a commercially available prefabricated glass fiber post. Three groups were tested (n = 10): PF (control group)- prefabricated glass fiber post; C-Cd-diagonally milled post; and C-Cv-vertically milled post. A 3-dimensional virtual image was obtained from a prefabricated post, which guided the posterior milling of posts from a glass fiber disk (Trilor Blanks; Bioloren). Surface roughness and morphology were evaluated using confocal laser microscopy. Flexural strength and modulus were evaluated with the 3-point bend test. Data were submitted to one-way analysis of variance followed by the Student-Newman-Keuls post hoc test (α = 0.05). The fractured surfaces were evaluated with scanning electron microscopy. The superficial roughness was highest for PF and similar for the experimental groups. Morphological analysis shows different sizes and directions of the glass fibers along the post. The flexural strength was highest for PF (900.1 ± 30.4 > C-Cd - 357.2 ± 30.7 > C-Cv 101.8 ± 4.3 MPa) as was the flexural modulus (PF 19.3 ± 2.0 GPa > C-Cv 10.1 ± 1.9 GPa > C-Cd 7.8 ± 1.3 GPa). A CAD-CAM milled post seems a promising development, but processing requires optimizing, as the prefabricated post still shows better mechanical properties and superficial characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Optical Spectra Tuning of All-Glass Photonic Bandgap Fiber Infiltrated with Silver Fast-Ion-Conducting Glasses.

    PubMed

    Konidakis, Ioannis; Pissadakis, Stavros

    2014-08-07

    Silver iodide metaphosphate glasses of the x AgI + (1- x )AgPO₃ family are embedded inside the air capillaries of a commercial silica photonic crystal fiber (PCF) by means of vacuum-assisted infiltration technique. In this paper, we report on tuning the photonic bandgap (PBG) guidance characteristics of the fabricated all-glass photonic bandgap fibers, by varying the composition of the fast-ion-conducting phosphate glass infiltration medium. Doping AgPO₃ metaphosphate glass with AgI significantly alters the PBG guidance patterns in the examined range between 350 and 1750 nm, as it leads to the introduction of numerous additional transmission stop-bands, while affecting scattering dependant losses. The effect of phosphate glass cooling method during sample fabrication on the transmission behavior of the x AgI + (1- x )AgPO₃/PCFs is also considered.

  14. Comparative evaluation between glass and polyethylene fiber reinforced composites: A review of the current literature

    PubMed Central

    Mangoush, Enas; Säilynoja, Eija; Prinssi, Roosa; Lassila, Lippo; Vallittu, Pekka K.

    2017-01-01

    Background Fiber reinforced composite (FRC) is a promising class of material that gives clinicians alternative treatment options. There are many FRC products available in the market based on either glass or polyethylene fiber type. The aim of this study was to present a comparison between glass and polyethylene fiber reinforced composites based on available literature review. Material and Methods A thorough literature search, with no limitation, was done up to June 2017. The range of relevant publications was surveyed using PubMed and Google Scholar. From the search results, articles related to our search terms were only considered. An assessment of these articles was done by two individuals in order to include only articles directly compare between glass and polyethylene FRCs. The search terms used were “fiber reinforced dental composites” and “glass and polyethylene fibers in dentistry”. Results The search provided 276 titles. Full-text analysis was performed for 29 articles that met the inclusion criteria. Most were laboratory-based research with various test specimen designs prepared according to ISO standard or with extracted teeth and only three articles were clinical studies. Most of studies (n=23) found superior characteristics of glass FRCs over polyethylene FRCs. Conclusions Significant reinforcement differences between commercial glass and polyethylene fiber reinforced composites were found. Key words:Fiber reinforced composite, glass fiber, polyethylene fiber. PMID:29410756

  15. Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement

    PubMed Central

    Etcheverry, Mariana; Barbosa, Silvia E.

    2012-01-01

    Glass fibers (GF) are the reinforcement agent most used in polypropylene (PP) based composites, as they have good balance between properties and costs. However, their final properties are mainly determined by the strength and stability of the polymer-fiber interphase. Fibers do not act as an effective reinforcing material when the adhesion is weak. Also, the adhesion between phases can be easily degraded in aggressive environmental conditions such as high temperatures and/or elevated moisture, and by the stress fields to which the material may be exposed. Many efforts have been done to improve polymer-glass fiber adhesion by compatibility enhancement. The most used techniques include modifications in glass surface, polymer matrix and/or both. However, the results obtained do not show a good costs/properties improvement relationship. The aim of this work is to perform an accurate analysis regarding methods for GF/PP adhesion improvement and to propose a new route based on PP in-situ polymerization onto fibers. This route involves the modification of fibers with an aluminum alkyl and hydroxy-α-olefin and from there to enable the growth of the PP chains using direct metallocenic copolymerization. The adhesion improvements were further proved by fragmentation test, as well as by mechanical properties measurements. The strength and toughness increases three times and the interfacial strength duplicates in PP/GF composites prepared with in-situ polymerized fibers. PMID:28817025

  16. Ballistic Performance of Alimina/S-2 Glass-Reinforced Polymer-Matrix Composite Hybrid Lightweight Armor Against Armor Piercing (AP) and Non-AP Projectiles

    DTIC Science & Technology

    2007-01-01

    and a phenolic -resin based polymeric matrix. Such armor panels offer superior protection against fragmented ballistic threats when compared to...database does not contain a material model for the HJ1 composite but provides a model for a Kevlar Fiber Reinforced Polymer (KFRP) containing 53 vol... phenolic resin and epoxy yield stresses and then with a ratio of the S-2 glass and aramid fibers volume fractions. To test the validity of the

  17. Influence of Glass Fiber on Fresh and Hardened Properties of Self Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Bharathi Murugan, R.; Haridharan, M. K.; Natarajan, C.; Jayasankar, R.

    2017-07-01

    The practical need of self-compacting concrete (SCC) is increasing due to increase in the infrastructure competence all over the world. The effective way of increasing the strength of concrete and enhance the behaviour under extreme loading (fire) is the keen interest. Glass fibers were added for five different of volume fractions (0%, 0.1%, 0.3%, 0.5% and 0.6%) to determine the optimum percentage of glass fiber without compensating the fresh properties and enhanced hardened properties of SCC concrete. The fresh state of concrete is characterized by slump flow, T-50cm slump flow, and V-funnel and L- box tests. The results obtained in fresh state are compared with the acceptance criteria of EFNARC specification. Concrete specimens were casted to evaluate the hardened properties such as compressive strength, split tensile strength, flexural strength and modulus of elasticity. Incorporation the glass fiber into SCC reduces the workability but within the standard specification. The hardened properties of SCC glass fiber reinforced concrete were enhanced, due to bridging the pre-existing micro cracks in concrete by glass fiber addition.

  18. Mechanical properties of reinforced denture base resin: the effect of position and the number of woven glass fibers.

    PubMed

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2002-09-01

    This study examined the effects of the position and the number of woven glass fibers on the flexural strength, flexural modulus, and toughness of reinforced denture base resin. The woven glass fiber consisted of 1-4 laminated sheets. Chemical curing was used to polymerize three types of 4-mm-thick test specimens: fibers in compresrion, fibers in the center, and fibers in tension. Unreinforced specimens were produced as controls. A three-point flexural test was performed and the woven glass fiber content was calculated after the woven glass fiber was fired. The best results were obtained when the woven glass fiber was incorporated outside the base resin under tension, thereby increasing the flexural strength and flexural modulus. Furthermore, the denture base resin reinforced with woven glass fiber was made tougher by increasing the number of woven glass fibers incorporated into the portion under tension.

  19. Man-made mineral fiber hazardous properties assessment using transgenic rodents: example of glass fiber testing.

    PubMed

    Bottin, M C; Vigneron, J C; Rousseau, R; Micillino, J C; Eypert-Blaison, C; Kauffer, E; Martin, P; Binet, S; Rihn, B H

    2003-09-01

    Transgenic BigBlue rats were exposed to CM 44 glass fibers (6.3 mg/m3) by nose only, 6 h/day for 5 days. Two endpoints were examined 1, 3, 14, 28, and 90 days following exposure: fiber biopersistence and mutations in lung DNA. The half-time of the fibers >20 microm was 12.8 days, and mutant frequencies of control and exposed rats were similar across all time points. The mutation spectra of both series were similar after 28 days of fixation time. These results showed that a glass fiber with a high clearance in the lung seems to not present any significant effect on mutagenesis on lung DNA and are in marked contrast to results for asbestos, which caused a twofold mutant frequency increase as described in a previous study.

  20. Apparatus For Making Glass Fibers Without The Aid Of Gravity

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis; Smith, Guy A.; Workman, Gary

    1995-01-01

    Report describes apparatus for making optical fibers in microgravity. Includes sting that makes initial contact with softened glass to start drawing fiber. Absence of gravity helps to suppress nucleation of crystallites, which increase scattering of light and thus reduce transmission of light along fiber.

  1. The kinetics of crystallization of molten binary and ternary oxide systems and their application to the origination of high modulus glass fibers

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1971-01-01

    Emphasis on the consideration of glass formation on a kinetic process made it possible to think of glass compositions different from those normally employed in the manufacture of glass fibers. Approximately 450 new glass compositions were prepared and three dozen of these compositions have values for Young's modulus measured on bulk specimens greater than nineteen million pounds per square inch. Of the new glasses about a hundred could be drawn into fibers by mechanical methods at high speeds. The fiber which has a Young's modulus measured on the fiber of 18.6 million pounds per square inch and has been prepared in quantity as a monofilament (to date more than 150 million lineal feet of 0.2 to 0.4 mil fiber have been produced). This fiber has also been successfully incorporated both in epoxy and polyimide matrices. The epoxy resin composite has shown a modulus forty percent better than that achievable using the most common grade of competitive glass fiber, and twenty percent better than that obtainable with the best available grade of competitive glass fiber. Other glass fibers of even higher modulus have been developed.

  2. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsui, Takashi; Miura, Noriaki; Oowaki, Katsura

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter suchmore » as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)« less

  3. Phagosomal pH and glass fiber dissolution in cultured nasal epithelial cells and alveolar macrophages: a preliminary study.

    PubMed Central

    Johnson, N F

    1994-01-01

    The dissolution rate of glass fibers has been shown to be pH sensitive using in vitro lung fluid simulant models. The current study investigated whether there is a difference in phagosomal pH (ppH) between rat alveolar macrophages (AM) and rat nasal epithelial cells (RNEC) and whether such a difference would influence the dissolution of glass fibers. The ppH was measured in cultured AM and RNEC using flow cytometric, fluorescence-emission rationing techniques with fluorescein-labeled, amorphous silica particles. Glass fiber dissolution was determined in AM and RNEC cultured for 3 weeks with fast dissolving glass fibers (GF-A) or slow dissolving ones (GF-B). The mean diameters of GF-A were 2.7 microns and of GF-B, 2.6 microns, the average length of both fibers was approximately 22 to 25 microns. Dissolution was monitored by measuring the length and diameter of intracellular fibers and estimating the volume, assuming a cylindrical morphology. The ppH of AM was 5.2 to 5.8, and the ppH of RNEC was 7.0 to 7.5. The GF-A dissolved more slowly in RNEC than in AM, and no dissolution was evident in either cell type with GF-B. The volume loss with GF-A after a 3-week culture with AM was 66% compared to 45% for cultured RNEC. These results are different from those obtained using in vitro lung fluid-simulant models where dissolution is faster at higher pH. This difference suggests that dissolution rates of glass fibers in AM should not be applied to the dissolution of fibers in epithelial cells. Images Figure 1. a Figure 1. b Figure 2. a Figure 2. b Figure 3. a Figure 3. b PMID:7882965

  4. Investigation of mechanical properties of hemp/glass fiber reinforced nano clay hybrid composites

    NASA Astrophysics Data System (ADS)

    Unki, Hanamantappa Ningappa; Shivanand, H. K.; Vidyasagar, H. N.

    2018-04-01

    Over the last twenty to thirty years composite materials have been used in engineering field. Composite materials possess high strength, high strength to weight ratio due to these facts composite materials are becoming popular among researchers and scientists. The major proportion of engineering materials consists of composite materials. Composite materials are used in vast applications ranging from day-to-day household articles to highly sophisticated applications. In this paper an attempt is made to prepare three different composite materials using e-glass and Hemp. In this present investigation hybrid composite of Hemp, Glass fiber and Nano clay will be prepared by Hand-layup technique. The glass fiber used in this present investigation is E-glass fiber bi-directional: 90˚ orientation. The composite samples will be made in the form of a Laminates. The wt% of nanoclay added in the preparation of sample is 20 gm constant. The fabricated composite Laminate will be cut into corresponding profiles as per ASTM standards for Mechanical Testing. The effect of addition of Nano clay and variation of Hemp/glass fibers will be studied. In the present work, a new Hybrid composite is developed in which Hemp, E glass fibers is reinforced with epoxy resin and with Nano clay.

  5. Investigation of mechanical properties of kenaf, hemp and E-glass fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Dinesh, Veena; Shivanand, H. K.; Vidyasagar, H. N.; Chari, V. Srinivasa

    2018-04-01

    Recently the use of fiber reinforced polymer composite in the automobile, aerospace overwhelming designing sectors has increased tremendously due to the ecological issues and health hazard possessed by the synthetic fiber during disposal and manufacturing. The paper presents tensile strength, flexural strength and hardness of kenaf-E glass-kenaf, hemp-E glass-hemp and kenaf-E glass-hemp fiber reinforced polyester composites. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses of each combination. In addition to the physical and mechanical properties, processing methods and application of kenaf and hemp fiber composites is also discussed.

  6. Effect of short glass fiber/filler particle proportion on flexural and diametral tensile strength of a novel fiber-reinforced composite.

    PubMed

    Fonseca, Rodrigo Borges; de Almeida, Letícia Nunes; Mendes, Gustavo Adolfo Martins; Kasuya, Amanda Vessoni Barbosa; Favarão, Isabella Negro; de Paula, Marcella Silva

    2016-01-01

    To evaluate the effect of glass fiber/filler particles proportion on flexural strength and diametral tensile strength of an experimental fiber-reinforced composite. Four experimental groups (N=10) were created using an experimental short fiber-reinforced composite, having as a factor under study the glass fiber (F) and filler particle (P) proportion: F22.5/P55 with 22.5 wt% of fiber and 55 wt% of filler particles; F25/P52.5 with 25 wt% of fiber and 52.5 wt% of filler particles; F27.5/P50 with 27.5 wt% of fiber and 50 wt% of filler particles; F30/P47.5 with 30 wt% of fiber and 47.5 wt% of filler particles. The experimental composite was made up by a methacrylate-based resin (50% Bis-GMA and 50% TEGDMA). Specimens were prepared for Flexural Strength (FS) (25 mm × 2 mm × 2 mm) and for Diametral Tensile Strength (DTS) (3×6 Ø mm) and tested at 0.5 mm/min in a universal testing machine. The results (in MPa) showed significance (different superscript letters mean statistical significant difference) for FS (p<0.009) and DTS (p<0.001)--FS results: F22.5/P55: 217.24±20.64(B); F25/P52.5: 245.77±26.80(AB); F27.5/P50: 246.88±32.28(AB); F30/P47.5: 259.91±26.01(A). DTS results: F22.5/P55: 21.82±4.42(B); F25/P52.5: 22.00±7.40(B); F27.5/P50: 18.63±4.41(B); F30/P47.5: 31.05±2.97(A). In SEM analysis, areas without fiber reinforcement demonstrated to be more prone to the presence of bubbles and crack development. The group F30/P47.5 showed areas with a great quantity of fibers without empty spaces for crack propagation. Increasing fiber content results in higher flexural and diametral tensile strength of an experimental composite reinforced with glass fibers. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  7. Modified rod-in-tube for high-NA tellurite glass fiber fabrication: materials and technologies.

    PubMed

    Chen, Qiuling; Wang, Hui; Wang, Qingwei; Chen, Qiuping; Hao, Yinlei

    2015-02-01

    In this paper, we report the whole fabrication process for high-numerical aperture (NA) tellurite glass fibers from material preparation to preform fabrication, and eventually, fiber drawing. A tellurite-based high-NA (0.9) magneto-optical glass fiber was drawn successfully and characterized. First, matchable core and cladding glasses were fabricated and matched in terms of physical properties. Second, a uniform bubble-free preform was fabricated by means of a modified rod-in-tube technique. Finally, the fiber drawing process was studied and optimized. The high-NA fibers (∅(core), 40-50 μm and ∅(cladding), 120-130 μm) so obtained were characterized for their geometrical and optical properties.

  8. The effect of short polyethylene fiber with different weight percentages on diametral tensile strength of conventional and resin modified glass ionomer cements

    PubMed Central

    Sharafeddin, Farahnaz; Ghaboos, Seyed-Ali

    2017-01-01

    Background The aim of this study was to investigate the effect of polyethylene fiber on diametral tensile strength of conventional and resin modified glass ionomer cements. Material and Methods 60 specimens in 6 groups (n=10) were prepared. In group 1 conventional glass ionomer (Fuji GC) and in group 2 resin modified glass ionomer (Fuji LC) were as control groups. In group 3 and 4 conventional glass ionomers mixed with short polyethylene fibers in proportion of 1 wt% and 3 wt%, respectively. In fifth and sixth groups, resin modified glass ionomer and short polyethylene fibers were mixed in 1 and 3% wt, respectively. Samples were prepared in a round brass mold (6.5×2.5 mm). After thermo-cycling, the diametral tensile strength of the specimens were tested and data were analyzed with ANOVA and post-hoc tests (p<0.05). Results Diametral tensile strength of both conventional and resin modified glass ionomer cements increased after mixing with polyethylene fiber (p<0.001). Also, reinforcement occurred as the mixing percentage increased from 1% wt to 3% wt in either conventional and resin modified glass ionomer (p<0.001). Conclusions The polyethylene fiber was shown to have a significant positive influence on diametral tensile strength of two types of glass ionomers. Key words:Conventional glass ionomer, diametral tensile strength, polyethylene fiber, resin modified glass ionomer. PMID:28298993

  9. Effects of fiber-glass-reinforced composite restorations on fracture resistance and failure mode of endodontically treated molars.

    PubMed

    Nicola, Scotti; Alberto, Forniglia; Riccardo, Michelotto Tempesta; Allegra, Comba; Massimo, Saratti Carlo; Damiano, Pasqualini; Mario, Alovisi; Elio, Berutti

    2016-10-01

    The study evaluated the fracture resistance and fracture patterns of endodontically treated mandibular first molars restored with glass-fiber-reinforced direct composite restorations. In total, 60 extracted intact first molars were treated endodontically; a mesio-occluso-distal (MOD) cavity was prepared and specimens were then divided into six groups: sound teeth (G1), no restoration (G2), direct composite restoration (G3), fiber-post-supported direct composite restoration (G4), direct composite reinforced with horizontal mesio-distal glass-fibers (G5), and buccal-palatal glass-fibers (G6). Specimens were subjected to 5000 thermocycles and 20,000 cycles of 45° oblique loading force at 1.3Hz and 50N; they were then loaded until fracture. The maximum fracture loads were recorded in Newtons (N) and data were analyzed with one-way ANOVA and post-hoc Tukey tests (p<0.05). Fractured specimens were analyzed with a scanning electron microscope (SEM). The mean static loads (in Newtons) were: G1, 831.83; G2, 282.86; G3, 364.18; G4, 502.93; G5, 499.26; and G6, 582.22. Fracture resistance did not differ among G4, G5, and G6, but was significantly higher than G3 (p=0.001). All specimens fractured in a catastrophic way. In G6, glass fibers inducted a partial deflection of the fracture, although they were not able to stop crack propagation. For the direct restoration of endodontically treated molars, reinforcement of composite resins with glass-fibers or fiber posts can enhance fracture resistance. The SEM analysis showed a low ability of horizontal glass-fibers to deviate the fracture, but this effect was not sufficient to lead to more favorable fracture patterns above the cement-enamel junction (CEJ). The fracture resistance of endodontically treated molars restored with direct composite restorations seems to be increased by reinforcement with fibers, even if it is insufficient to restore sound molar fracture resistance and cannot avoid vertical fractures. Copyright © 2016

  10. Preparation, mechanical, and in vitro properties of glass fiber-reinforced polycarbonate composites for orthodontic application.

    PubMed

    Tanimoto, Yasuhiro; Inami, Toshihiro; Yamaguchi, Masaru; Nishiyama, Norihiro; Kasai, Kazutaka

    2015-05-01

    Generally, orthodontic treatment uses metallic wires made from stainless steel, cobalt-chromium-nickel alloy, β-titanium alloy, and nickel-titanium (Ni-Ti) alloy. However, these wires are not esthetically pleasing and may induce allergic or toxic reactions. To correct these issues, in the present study we developed glass-fiber-reinforced plastic (GFRP) orthodontic wires made from polycarbonate and E-glass fiber by using pultrusion. After fabricating these GFRP round wires with a diameter of 0.45 mm (0.018 inch), we examined their mechanical and in vitro properties. To investigate how the glass-fiber diameter affected their physical properties, we prepared GFRP wires of varying diameters (7 and 13 µm). Both the GFRP with 13-µm fibers (GFRP-13) and GFRP with 7 µm fibers (GFRP-7) were more transparent than the metallic orthodontic wires. Flexural strengths of GFRP-13 and GFRP-7 were 690.3 ± 99.2 and 938.1 ± 95.0 MPa, respectively; flexural moduli of GFRP-13 and GFRP-7 were 25.4 ± 4.9 and 34.7 ± 7.7 GPa, respectively. These flexural properties of the GFRP wires were nearly equivalent to those of available Ni-Ti wires. GFRP-7 had better flexural properties than GFRP-13, indicating that the flexural properties of GFRP increase with decreasing fiber diameter. Using thermocycling, we found no significant change in the flexural properties of the GFRPs after 600 or 1,200 cycles. Using a cytotoxicity detection kit, we found that the glass fiber and polycarbonate components comprising the GFRP were not cytotoxic within the limitations of this study. We expect this metal-free GFRP wire composed of polycarbonate and glass fiber to be useful as an esthetically pleasing alternative to current metallic orthodontic wire. © 2014 Wiley Periodicals, Inc.

  11. 2.3 µm laser potential of TeO2 based glasses

    NASA Astrophysics Data System (ADS)

    Denker, B. I.; Dorofeev, V. V.; Galagan, B. I.; Motorin, S. E.; Sverchkov, S. E.

    2017-09-01

    Tm3+ doped TeO2-based well-dehydrated glasses were synthesized and investigated. The analysis of their spectral and relaxation properties have showed that these glasses can be a suitable host for bulk and fiber lasers emitting at ~2.3 µm wavelength (3H4-3H5 Tm3+ transition). Laser action in the bulk glass sample was demonstrated.

  12. Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis

    NASA Astrophysics Data System (ADS)

    Velmuzhov, A. P.; Shiryaev, V. S.; Sukhanov, M. V.; Kotereva, T. V.; Churbanov, M. F.; Zernova, N. S.; Plekhovich, A. D.

    2018-01-01

    The high-purity Ge26As17Se25Te32 glass sample was prepared by chemical distillation purification method. This glass is characterized by high value of glass transition temperature (263°С), high optical transparency in the spectral range of 2-10 μm, and low content of residual impurities. The Ge26As17Se25Te32 glass rods were drawn into single-index fibers using the "rod" method and the single crucible technique. The optical losses in the 400 μm diameter fiber, fabricated by the "rod" method, were within 0.3-1 dB/m in the spectral range 5.2-9.3 μm. The minimum optical losses in the 320 μm diameter fiber, fabricated by the "crucible" technique, were 1.6-1.7 dB/m in the spectral range 6-8.5 μm. Using these Ge26As17Se25Te32 glass fibers as a sensor, the aqueous solutions of acetone (0-20 mol.%) and ethanol (0-90 mol.%) were analyzed by fiber evanescent wave spectroscopy. Peculiarities in the change of the integrated intensity and spectral position of absorption bands of these organic substances in dependence on the analyte composition and the length of the sensitive zone were established.

  13. Durability of Waste Glass Flax Fiber Reinforced Mortar

    NASA Astrophysics Data System (ADS)

    Aly, M.; Hashmi, M. S. J.; Olabi, A. G.; Messeiry, M.

    2011-01-01

    The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.

  14. Durability of waste glass flax fiber reinforced mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aly, M.; Hashmi, M. S. J.; Olabi, A. G.

    2011-01-17

    The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performancemore » of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.« less

  15. All-fiber Yb-doped fiber laser passively mode-locking by monolayer MoS2 saturable absorber

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhu, Jianqi; Li, Pingxue; Wang, Xiaoxiao; Yu, Hua; Xiao, Kun; Li, Chunyong; Zhang, Guangyu

    2018-04-01

    We report on an all-fiber passively mode-locked ytterbium-doped (Yb-doped) fiber laser with monolayer molybdenum disulfide (ML-MoS2) saturable absorber (SA) by three-temperature zone chemical vapor deposition (CVD) method. The modulation depth, saturation fluence, and non-saturable loss of this ML-MoS2 are measured to be 3.6%, 204.8 μJ/cm2 and 6.3%, respectively. Based on this ML-MoS2SA, a passively mode-locked Yb-doped fiber laser has been achieved at 979 nm with pulse duration of 13 ps and repetition rate of 16.51 MHz. A mode-locked fiber laser at 1037 nm is also realized with a pulse duration of 475 ps and repetition rate of 26.5 MHz. To the best of our knowledge, this is the first report that the ML-MoS2 SA is used in an all-fiber Yb-doped mode-locked fiber laser at 980 nm. Our work further points the excellent saturable absorption ability of ML-MoS2 in ultrafast photonic applications.

  16. Glass Fiber Reinforced Polymer Dowel Bar Evaluation

    DOT National Transportation Integrated Search

    2012-09-01

    Glass Fiber Reinforced Polymer (GFRP) dowel bars were installed on one new construction project and two dowel bar : retrofit projects to evaluate the performance of this type of dowel bar in comparison to steel dowel bars installed on the same : cont...

  17. Tuning the mechanical properties of glass fiber-reinforced bismaleimide–triazine resin composites by constructing a flexible bridge at the interface

    PubMed Central

    Zeng, Xiaoliang; Yu, Shuhui; Lai, Maobai; Sun, Rong; Wong, Ching-Ping

    2013-01-01

    We demonstrate a new method that can simultaneously improve the strength and toughness of the glass fiber-reinforced bismaleimide–triazine (BT) resin composites by using polyethylene glycol (PEG) to construct a flexible bridge at the interface. The mechanical properties, including the elongation, ultimate tensile stress, Young’s modulus, toughness and dynamical mechanical properties were studied as a function of the length of PEG molecular chain. It was found that the PEG molecule acts as a bridge to link BT resin and glass fiber through covalent and non-covalent bondings, respectively, resulting in improved interfacial bonding. The incorporation of PEG produces an increase in elongation, ultimate tensile stress and toughness. The Young’s modulus and Tg were slightly reduced when the length of the PEG molecular chain was high. The elongation of the PEG-modified glass fiber-reinforced composites containing 5 wt% PEG-8000 increased by 67.1%, the ultimate tensile stress by 17.9% and the toughness by 78.2% compared to the unmodified one. This approach provides an efficient way to develop substrate material with improved strength and toughness for integrated circuit packaging applications. PMID:27877621

  18. Fiber reinforced PMR polyimide composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1978-01-01

    Commercially obtained PMR-15 polyimide prepregs with S-glass and graphite fiber reinforcements were evaluated along with in-house prepared glass and graphite cloth PMR 2 materials. A novel autoclave approach was conceived and used to demonstrate that both the PMR systems respond to 1.4 MPa (200 psi) autoclave pressures to produce void free composites equivalent to die molded laminates. Isothermal gravimetric analysis and subsequent mechanical property tests indicated that the PMR 2 system was significantly superior in thermo-oxidative stability, and that S-glass reinforcements may contribute to the accelerated degradation of composites at 316 C (600 F) when compared to graphite fiber reinforced composites. Fully reversed bending fatigue experiments were conducted with a type of fixture unused for organic matrix composites. These studies indicated that the graphite fiber composites were clearly superior in fatigue resistance to the glass fiber reinforced material and that PMR matrix composite systems yield performance of the same order as composite materials employing other families of matrices.

  19. Achieving Hydrogen Storage Goals through High-Strength Fiber Glass - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hong; Johnson, Kenneth I.; Newhouse, Norman L.

    Led by PPG and partnered with Hexagon Lincoln and Pacific Northwest National Laboratory (PNNL), the team recently carried out a project “Achieving Hydrogen Storage Goals through High-Strength Fiber Glass”. The project was funded by DOE’s Fuel Cell Technologies office within the Office of Energy Efficiency and Renewable Energy, starting on September 1, 2014 as a two-year project to assess technical and commercial feasibilities of manufacturing low-cost, high-strength glass fibers to replace T700 carbon fibers with a goal of reducing the composite total cost by 50% of the existing, commercial 700 bar hydrogen storage tanks used in personal vehicles.

  20. Effects of bond primers on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses.

    PubMed

    Hatamleh, Muhanad M; Watts, David C

    2011-02-01

    To evaluate the effect of three commonly used bond primers on the bending strength of glass fibers and their bond strength to maxillofacial silicone elastomer after 360 hours of accelerated daylight aging. Eighty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer M511 (Cosmesil). Twenty fiber bundles served as control and did not receive surface treatment with primers, whereas the remaining 60 fibers were treated with three primers (n = 20): G611 (Principality Medical), A-304 (Factor II), and A-330-Gold (Factor II). Forty specimens were dry stored at room temperature (23 ± 1°C) for 24 hours, and the remaining specimens were aged using an environmental chamber under accelerated exposure to artificial daylight for 360 hours. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2) ) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. A 3-point bending test was performed to evaluate the bending strength of the fiber bundles. One-way Analysis of Variance (ANOVA), Bonferroni post hoc test, and an independent t-test were carried out to detect statistical significances (p < 0.05). Mean (SD) values of maximum pull-out forces (N) before aging for groups: no primer, G611, A-304, A-330-G were: 13.63 (7.45), 20.44 (2.99), 22.06 (6.69), and 57.91 (10.15), respectively. All primers increased bond strength in comparison to control specimens (p < 0.05). Primer A-330-G showed the greatest increase among all primers (p < 0.05); however, bonding degraded after aging (p < 0.05), and pull-out forces were 13.58 (2.61), 6.17 (2.89), 6.95 (2.61), and 11.72 (3.03). Maximum bending strengths of fiber bundles at baseline increased after treatment with primers and light aging in

  1. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    NASA Astrophysics Data System (ADS)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  2. Risk factors for failure of glass fiber-reinforced composite post restorations: a prospective observational clinical study.

    PubMed

    Naumann, Michael; Blankenstein, Felix; Kiessling, Saskia; Dietrich, Thomas

    2005-12-01

    Glass fiber-reinforced endodontic posts are considered to have favorable mechanical properties for the reconstruction of endodontically treated teeth. The aim of the present investigation was to evaluate the survival of two tapered and one parallel-sided glass fiber-reinforced endodontic post systems in teeth with different stages of hard tissue loss and to identify risk factors for restoration failure. One-hundred and forty-nine glass fiber-reinforced endodontic posts in 122 patients were followed-up for 5-56 months [mean +/- standard deviation (SD): 39 +/- 11 months]. Glass fiber-reinforced endodontic posts were adhesively luted and the core was built with a composite resin. Cox proportional hazards models were used to evaluate the association of clinical variables and failure rate. Higher failure rates were found for restorations of anterior teeth compared with posterior teeth [Hazard-Ratios (HR): 3.1; 95% confidence interval (CI): 1.3-7.4], for restorations in teeth with no proximal contacts compared with at least one proximal contact (HR: 3.0; 95% CI: 1.0-9.0), and for teeth restored with single crowns compared with fixed bridges (HR: 4.3; 95% CI: 1.1-16.2). Tooth type, type of final restoration and the presence of adjacent teeth were found to be significant predictors of failure rates in endodontically treated teeth restored with glass fiber-reinforced endodontic posts.

  3. Nonwoven glass fiber mat reinforces polyurethane adhesive

    NASA Technical Reports Server (NTRS)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  4. Laser printed glass planar lightwave circuits with integrated fiber alignment structures

    NASA Astrophysics Data System (ADS)

    Desmet, A.; Radosavljevic, A.; Missinne, J.; Van Thourhout, D.; Van Steenberge, G.

    2018-02-01

    Femtosecond laser inscription allows straightforward manufacturing of glass planar lightwave circuits such as waveguides, interferometers, directional couplers, resonators and more complex structures. Fiber alignment structures are needed to facilitate communication with the glass planar lightwave circuit. In this study, a technique is described to create optical waveguides and alignment structures in the same laser exposure step. Using an industrial ytterbium-doped 1030 nm fiber laser pulses of 400 fs were focused into glass with a 0.4 NA objective causing permanent alteration of the material. Depending on laser parameters this modification allows direct writing of waveguides or the creation of channels after exposing the irradiated volumes to an etchant such as KOH. Writing of channels and waveguides with different laser powers, frequencies, polarisations, stage translation speeds and scan densities were investigated in fused silica and borosilicate glass. Waveguides with controlled dimensions were created, as well as etched U-grooves with a diameter of 126 μm and a sidewall roughness Ra of 255 nm. Cut back measurements were performed giving a waveguide propagation loss of 1.1 dB/cm in borosilicate glass. A coupling loss of 0.7 dB was measured for a transition between the waveguide and standard single mode fiber at 1550 nm, using index matching liquid. The described technique eliminates active alignment requirements and is useful for many applications such as microfluidic sensing, PLCs, fan-out connectors for multicore fibers and quantum optical networks.

  5. 1.4-7.2  μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime.

    PubMed

    Wang, Yingying; Dai, Shixun; Li, Guangtao; Xu, Dong; You, Chenyang; Han, Xin; Zhang, Peiqing; Wang, Xunsi; Xu, Peipeng

    2017-09-01

    We report a broadband supercontinuum (SC) generation in chalcogenide (ChG) step-index tapered fibers pumped in the normal dispersion regime. The fibers consisting of As 2 S 3 core and As 38 S 62 cladding glasses were fabricated using the isolated stacked extrusion method. A homemade tapering platform allows us to accurately control the core diameters and transition region lengths of the tapered fibers. An SC generation spanning from 1.4 to 7.2 μm was achieved by pumping a 12-cm-long tapered fiber with femtosecond laser pulses at 3.25 μm. To the best of our knowledge, this is the broadest SC generation obtained experimentally in tapered fibers when pumped in the normal dispersion regime so far. The effects of waist diameter and transition region length of the tapered fiber on the SC spectral behavior were also investigated.

  6. Online Structural-Health Monitoring of Glass Fiber-Reinforced Thermoplastics Using Different Carbon Allotropes in the Interphase.

    PubMed

    Müller, Michael Thomas; Pötzsch, Hendrik Florian; Gohs, Uwe; Heinrich, Gert

    2018-06-25

    An electromechanical response behavior is realized by nanostructuring the glass fiber interphase with different highly electrically conductive carbon allotropes like carbon nanotubes (CNT), graphene nanoplatelets (GNP), or conductive carbon black (CB). The operational capability of these multifunctional glass fibers for an online structural-health monitoring is demonstrated in endless glass fiber-reinforced polypropylene. The electromechanical response behavior, during a static or dynamic three-point bending test of various carbon modifications, shows qualitative differences in the signal quality and sensitivity due to the different aspect ratios of the nanoparticles and the associated electrically conductive network densities in the interphase. Depending on the embedding position within the glass fiber-reinforced composite compression, shear and tension loadings of the fibers can be distinguished by different characteristics of the corresponding electrical signal. The occurrence of irreversible signal changes during the dynamic loading can be attributed to filler reorientation processes caused by polymer creeping or by destruction of electrically conductive paths by cracks in the glass fiber interphase.

  7. Glass fiber-reinforced thermoplastics for use in metal-free removable partial dentures: combined effects of fiber loading and pigmentation on color differences and flexural properties.

    PubMed

    Tanimoto, Yasuhiro; Nagakura, Manamu; Nishiyama, Norihiro

    2018-02-21

    The purpose of this study was to investigate the combined effects of fiber loading and pigmentation on the color differences and flexural properties of glass fiber-reinforced thermoplastics (GFRTPs), for use in non-metal clasp dentures (NMCDs). The GFRTPs consisted mainly of E-glass fibers, a polypropylene matrix, and a coloring pigment: the GFRTPs with various fiber loadings (0, 10, and 20mass%) and pigmentations (0, 1, 2, and 4mass%) were fabricated by using an injection molding. The color differences of GFRTPs were measured based on the Commission Internationale de l'Eclairage (CIE) Lab color system, by comparing with a commercially available NMCD. The flexural properties of GFRTPs were evaluated by using a three-point bending test, according to International Standards Organization (ISO) specification number 20795-1. The visible colors of GFRTPs with pigment contents of 2mass% were acceptable for gingival color, and the glass fibers harmonized well with the resins. The ΔE* values of the GFRTPs with pigment contents of 2mass% obtained by using the CIE Lab system were lowest at all fiber loadings. For GFRTPs with fiber contents of 10 and 20mass% at 2mass% pigment content, these GFRTPs surpassed the ISO 20795-1 specification regarding flexural strength (> 60MPa) and modulus (> 1.5GPa). A combination of the results of color difference evaluation and mechanical examination indicates that the GFRTPs with fiber contents of 10 or 20mass%, and with pigment contents of 2mass% have acceptable esthetic appearance and sufficient rigidity for NMCDs. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  8. Glasses of the As/sub 2/S/sub 3/-T1/sub 2/S system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutenev, M.S.

    1986-08-01

    A dielcometric study of (AsS /SUB 1.5/ ) /SUB 1-x/ (TiS /SUB 0.5/ ) /SUB x/ (0 is less than or equal to x is less than or equal to 0.61) glasses was carried out. Glassforming alloys were prepared in thin-walled quartz ampules by rapid cooling from 700 C in air. The methods of determination of permittivity, refractive index, and density, the values of which are shown here, have been previously discussed. The molar infrared polarizability is calculated from the experimental data previously gathered, and the concentration dependence is shown. In this paper, the presence of chemical atomic order inmore » T1AsS/sub 2/ glass described by TISAsS /SUB 2/2/ structural units was experimentally proved. An assumption was made of strong mutual influence of T1AsS/sub 2/ and AsS /SUB 1.5/ complexes caused by coordination of thallium with bridging sulfur atoms.« less

  9. Radiological results for samples collected on paired glass- and cellulose-fiber filters at the Sandia complex, Tonopah Test Range, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, Steve A.; Shadel, Craig A.

    Airborne particulates are collected at U.S. Department of Energy sites that exhibit radiological contamination on the soil surface to help assess the potential for wind to transport radionuclides from the contamination sites. Collecting these samples was originally accomplished by drawing air through a cellulose-fiber filter. These filters were replaced with glass-fiber filters in March 2011. Airborne particulates were collected side by side on the two filter materials between May 2013 and May 2014. Comparisons of the sample mass and the radioactivity determinations for the side-by-side samples were undertaken to determine if the change in the filter medium produced significant results.more » The differences in the results obtained using the two filter types were assessed visually by evaluating the time series and correlation plots and statistically by conducting a nonparametric matched-pair sign test. Generally, the glass-fiber filters collect larger samples of particulates and produce higher radioactivity values for the gross alpha, gross beta, and gamma spectroscopy analyses. However, the correlation between the radioanalytical results for the glass-fiber filters and the cellulose-fiber filters was not strong enough to generate a linear regression function to estimate the glass-fiber filter sample results from the cellulose-fiber filter sample results.« less

  10. Glass Solder Approach for Robust, Low-Loss, Fiber-to-Waveguide Coupling

    NASA Technical Reports Server (NTRS)

    McNeil, Shirley; Battle, Philip; Hawthorne, Todd; Lower, John; Wiley, Robert; Clark, Brett

    2012-01-01

    The key advantages of this approach include the fact that the index of interface glass (such as Pb glass n = 1.66) greatly reduces Fresnel losses at the fiber-to-waveguide interface, resulting in lower optical losses. A contiguous structure cannot be misaligned and readily lends itself for use on aircraft or space operation. The epoxy-free, fiber-to-waveguide interface provides an optically pure, sealed interface for low-loss, highpower coupling. Proof of concept of this approach has included successful attachment of the low-melting-temperature glass to the x-y plane of the crystal, successful attachment of the low-meltingtemperature glass to the end face of a standard SMF (single-mode fiber), and successful attachment of a wetted lowmelting- temperature glass SMF to the end face of a KTP crystal. There are many photonic components on the market whose performance and robustness could benefit from this coupling approach once fully developed. It can be used in a variety of fibercoupled waveguide-based components, such as frequency conversion modules, and amplitude and phase modulators. A robust, epoxy-free, contiguous optical interface lends itself to components that require low-loss, high-optical-power handling capability, and good performance in adverse environments such as flight or space operation.

  11. Characterization of Glass Fiber Separator Material for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Frank, H.

    1984-01-01

    Characterization studies were carried out on a glass fiber paper that is currently employed as a separator material for some LiSOCl2 primary cells. The material is of the non-woven type made from microfilaments of E-type glass and contains an ethyl acrylate binder. Results from extraction studies and tensile testing revealed that the binder content and tensile strength of the paper were significantly less than values specified by the manufacturer. Scanning electron micrographs revealed the presence of clusters of impurities many of which were high in iron content. Results of emission spectroscopy revealed high overall levels of iron and leaching, followed by atomic absorption measurements, revealed that essentially all of this iron is soluble in SOCl2.

  12. Influence of injection molding process parameters on fiber concentration distribution in long glass fiber reinforced polypropylene

    NASA Astrophysics Data System (ADS)

    Scantamburlo, Andrea; Gazzola, Luca; Sorgato, Marco; Lucchetta, Giovanni

    2018-05-01

    In parts manufactured by injection molding of long glass fiber reinforced polypropylene, the local fiber orientation, fiber concentration and fiber length distribution varies along both the thickness direction and the flow path. This heterogeneous microstructure significantly influences the mechanical properties variability in the molded parts. The aim of this work is to investigate the influence of the matrix viscosity, the injection speed and the mold geometry on the fiber concentration distribution. In particular, the factors involved in fiber-matrix separation and fiber pull-out during the injection phases were analyzed in order to understand the phenomenon.

  13. Glass Fibers for Printed Circuit Boards

    NASA Astrophysics Data System (ADS)

    Longobardo, Anthony V.

    Fiberglass imparts numerous positive benefits to modern printed circuit boards. Reinforced laminate composites have an excellent cost-performance relationship that makes sense for most applications. At the leading edge of the technology, new glass fibers with improved properties, in combination with the best resin systems available, are able to meet very challenging performance, cost, and regulatory demands while remaining manufacturable.

  14. In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing.

    PubMed

    Zhou, Jie; Wang, Hui; Zhao, Shichang; Zhou, Nai; Li, Le; Huang, Wenhai; Wang, Deping; Zhang, Changqing

    2016-03-01

    Full-thickness skin defects represent urgent clinical problem nowadays. Wound dressing materials are hotly needed to induce dermal reconstruction or to treat serious skin defects. In this study, the borate bioactive glass (BG) micro-fibers were fabricated and compared with the traditional material 45S5 Bioglass(®) (SiG) micro-fibers. The morphology, biodegradation and bioactivity of BG and SiG micro-fibers were investigated in vitro. The wound size reduction and angiogenic effects of BG and SiG micro-fibers were evaluated by the rat full-thickness skin defect model and Microfil technique in vivo. Results indicated that the BG micro-fibers showed thinner fiber diameter (1 μm) and better bioactivity than the SiG micro-fibers did. The ionic extracts of BG and SiG micro-fibers were not toxic to human umbilical vein endothelial cells (HUVECs). In vivo, the BG micro-fiber wound dressings obviously enhanced the formation of blood vessel, and resulted in a much faster wound size reduction than the SiG micro-fibers, or than the control groups, after 9 days application. The good skin defect reconstruction ability of BG micro-fibers contributed to the B element in the composition, which results in the better bioactivity and angiogenesis. As shown above, the novel bioactive borate glass micro-fibers are expected to provide a promising therapeutic alternative for dermal reconstruction or skin defect repair. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The behavior of glass fibers in the rat following intraperitoneal injection.

    PubMed

    Collier, C G; Morris, K J; Launder, K A; Humphreys, J A; Morgan, A; Eastes, W; Townsend, S

    1994-12-01

    Potential carcinogenicity of fibers is believed to be determined by three factors: the dose, dimensions and durability of the fibers concerned. Currently there is considerable debate on the appropriateness of using results from intraperitoneal (i.p.) injection studies to predict the potential carcinogenicity of airborne fibers following inhalation. For ip results to have any significance to potential inhalation hazards, there should be some relation between the biopersistence, dose, and dose distribution of fibers in the serosal cavity and in the lung. Preliminary results on the durability of one experimental glass fiber in the peritoneal cavity suggest differences in dissolution when compared with durability in the lung. In the lung, the diameters of the long fibers (> 20 microns) were observed to decline at a rate consistent with their exposure to a neutral pH environment. The diameter of shorter fibers declined much more slowly, consistent with exposure to a more acidic environment such as is found in the phagolysosomes of alveolar macrophages. In the peritoneal cavity all fibers, regardless of length, dissolved at the same rate as short fibers in the lung. The effect of dose on the distribution of fibers in the peritoneal cavity was investigated using similar experimental glass fibers and compared with that of a powder made from ground fibers. For both materials at doses up to 1.5 mg, material was taken up by the peritoneal organs roughly in proportion to their surface area. This uptake was complete 1-2 days after injection. At higher doses, the majority of the material in excess of this 1.5 mg formed clumps of fibers (nodules) which were either free in the peritoneal cavity or loosely bound to peritoneal organs. These nodules displayed classic foreign body reactions with an associated granulomatous inflammatory response. The findings on both durability in the peritoneal cavity and the presence of two distinct populations of material following i.p. injection

  16. Nd3+-doped soft glass double-clad fibers with a hexagonal inner cladding

    NASA Astrophysics Data System (ADS)

    Wang, Longfei; He, Dongbing; Hu, Lili; Chen, Danping

    2015-04-01

    The stack-and-draw technique was used to fabricate Nd3+-doped silicate and phosphate glass double-clad step-index fibers with a non-circular inner cladding. For the silicate fiber, a maximum output power of 7.7 W was obtained from a 94 cm fiber. An output power of 1.25 W was also realized with a short length fiber of 8 cm, confirming the application potential of this fiber in single frequency lasers and pulsed amplifiers where an efficient rare-earth-doped fiber with short length is desirable. For the phosphate fiber, a maximum output power of 2.78 W was obtained from a single-mode fiber with a core diameter of up to 35 μm.

  17. Light-curing reinforcement for denture base resin using a glass fiber cloth pre-impregnated with various urethane oligomers.

    PubMed

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2004-09-01

    The purpose of this study was to investigate the flexural properties of denture base resin reinforced using glass fiber cloth and a urethane oligomer. The five types of oligomer used in this study were S5, S9, S3, U4, and U6, which have varying functional groups and viscosities. The flexural properties of S9 with glass fiber cloth could not be measured because S9 is elastic. In the heat-cured resin reinforced with S9, the reinforcement peeled away from the resin. In the self- and light-cured resins reinforced with S9, the flexural properties increased significantly. When reinforced with the other four oligomers (S5, S3, U4, and U6), the flexural strength and flexural modulus of the self-, heat-, and light-cured resins increased significantly (p<0.01).

  18. Degradable phosphate glass fiber reinforced polymer matrices: mechanical properties and cell response.

    PubMed

    Brauer, Delia S; Rüssel, Christian; Vogt, Sebastian; Weisser, Jürgen; Schnabelrauch, Matthias

    2008-01-01

    The development of biodegradable materials for internal fracture fixation is of great interest, as they would both eliminate the problem of stress shielding and obviate the need for a second operation to remove fixation devices. Preliminary investigations for the production of degradable fiber reinforced polymer composite materials are detailed. Composites were produced of phosphate invert glass fibers of the glass system P(2)O(5)-CaO-MgO-Na(2)O-TiO(2), which showed a low solubility in previous work. The fibers were embedded into a matrix of a degradable organic polymer network based on methacrylate-modified oligolactide. Fracture behavior, bending strength and elastic modulus were evaluated during 3-point bending tests and the fracture surface of the composites was investigated using a scanning electron microscope. Short-term biocompatibility was tested in an FDA/EtBr viability assay using MC3T3-E1 murine pre-osteoblast cells and showed a good cell compatibility of the composite materials. Results suggested that these composite materials are biocompatible and show mechanical properties which are of interest for the production of degradable bone fixation devices.

  19. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts.

    PubMed

    Soares, Carlos Jose; Santana, Fernanda Ribeiro; Pereira, Janaina Carla; Araujo, Tatiana Santos; Menezes, Murilo Souza

    2008-06-01

    Controversy exists concerning the use of fiber-reinforced posts to improve bond strength to resin cement because some precementation treatments can compromise the mechanical properties of the posts. The purpose of this study was to analyze the influence of airborne-particle abrasion on the mechanical properties and microtensile bond strength (MTBS) of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts. Flexural strength (delta(f)), flexural modulus (E(f)), and stiffness (S) were assessed using a 3-point bending test for glass fiber-reinforced and carbon fiber-reinforced resin posts submitted to airborne-particle abrasion (AB) with 50-microm Al(2)O(3), and for posts without any surface treatment (controls) (n=10). Forty glass fiber (GF) and 40 carbon fiber (CF) posts were submitted to 1 of 4 surface treatments (n=10) prior to MTBS testing: silane (S); silane and adhesive (SA); airborne-particle abrasion with 50-microm Al(2)O(3) and silane (ABS); airborne-particle abrasion, silane, and adhesive (ABSA). Two composite resin restorations (Filtek Z250) with rounded depressions in the lateral face were bilaterally fixed to the post with resin cement (RelyX ARC). Next, the specimen was sectioned with a precision saw running perpendicular to the bonded surface to obtain 10 bonded beam specimens with a cross-sectional area of 1 mm(2). Each beam specimen was tested in a mechanical testing machine (EMIC 2,000 DL), under stress, at a crosshead speed of 0.5 mm/min until failure. Data were analyzed by 2-way ANOVA followed by Tukey HSD test (alpha=.05). Failure patterns of tested specimens were analyzed using scanning electron microscopy (SEM). The 3-point bending test demonstrated significant differences among groups only for the post type factor for flexural strength, flexural modulus, and stiffness. The carbon fiber posts exhibited significantly higher mean flexural strength (P=.001), flexural modulus (P=.003), and stiffness (P=.001) values when compared with glass

  20. The weathering effect in natural environment on hybrid kenaf/glass fiber unsaturated polyester composite

    NASA Astrophysics Data System (ADS)

    Rozyanty, A. R.; Mohammed, M. M.; Musa, L.; Shahnaz, S. B. S.; Zuliahani, A.

    2017-04-01

    Kenaf and glass fiber hybrid composite was prepared by using hand lay-up process. The effect of weather on mechanical properties of kenaf/glass fiber hybrid composites was studied. The hybrid composite samples were exposed to natural weather. Tensile test was performed for samples at different weathering exposure time. Tensile strength of kenaf/glass fiber hybrid composite was 70.9 MPa and tensile modulus was at 30 GPa before expose to environment weather. Unfortunately, mechanical properties of hybrid composite decreased as exposure time increase due to the moisture absorption which further promotes weakness in interfacial bonding.

  1. Highly efficient Zr doped-TiO2/glass fiber photocatalyst and its performance in formaldehyde removal under visible light.

    PubMed

    Huang, Chao; Ding, Yaping; Chen, Yingwen; Li, Peiwen; Zhu, Shemin; Shen, Shubao

    2017-10-01

    Zr-doped-TiO 2 loaded glass fiber (ZT/GF) composite photocatalysts with different Zr/Ti ratios were prepared with a sol-gel process. Zr 4+ can replace Ti 4+ in the TiO 2 lattice, which is conducive to forming the anatase phase and reducing the calcination temperature. The glass fiber carrier was responsible for better dispersion and loading of Zr-doped-TiO 2 particles, improving the applicability of the Zr-doped-TiO 2 . The ZT/GF photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis) and Barrett-Joyner-Halenda (BJH). The performance of photocatalysts with different loading was evaluated in formaldehyde degradation under visible light at room temperature. ZT/GF0.2 exhibited the highest activity, with a formaldehyde removal rate as high as 95.14% being observed, which is better than that of the photocatalyst particles alone. The stability of the catalyst was also tested, and ZT/GF exhibited excellent catalytic performance with 94.38% removal efficiency, even after seven uses. Copyright © 2017. Published by Elsevier B.V.

  2. Extended Abstracts. International Symposium on Halide Glasses (2nd), Rensselaer Polytechnic Institute, Troy, New York, USA, 2-5 August 1983.

    DTIC Science & Technology

    1983-08-02

    Research and Development in ’" T. Miyashita and i.. . nabe 34 "Environmental Effects on the Strength of Fluoride Glass Fibers" A. Nakata, J. Lau, and J...continuous optical window. Ujnfortunately YVP3 ony permit’s thin samiples (1 mm) to be synthesized. Vitrco&us domnain ina the ternary sys ~tem TIT "Zni - YbF 4...synthesis methods, quenched glasses have been obtained in the CdF2-ZnF 2-BaF2 and CdF2-MnF2-BaF 2 ternary sys - tems. Binary glasses (Cd0 .5Ba0 .5 )F2 have

  3. Mechanical and Impact Characterization of Poly-Dicyclopentadiene (p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings

    DTIC Science & Technology

    2016-08-01

    Matrix Composites Using Novel Glass Fibers and Sizings by Steven E Boyd Approved for public release; distribution is...Research Laboratory Mechanical and Impact Characterization of Poly-Dicyclopentadiene (p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings...p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  4. The fatigue life study of polyphenylene sulfide composites filled with continuous glass fibers

    NASA Astrophysics Data System (ADS)

    Ye, Junjie; Hong, Yun; Wang, Yongkun; Zhai, Zhi; Shi, Baoquan; Chen, Xuefeng

    2018-04-01

    In this study, an effective microscopic model is proposed to investigate the fatigue life of composites containing continuous glass fibers, which is surrounded by polyphenylene sulfide (PPS) matrix materials. The representative volume element is discretized by parametric elements. Moreover, the microscopic model is established by employing the relation between average surface displacements and average surface tractions. Based on the experimental data, the required fatigue failure parameters of the PPS are determined. Two different fiber arrangements are considered for comparisons. Numerical analyses indicated that the square edge packing provides a more accuracy. In addition, microscopic structural parameters (fiber volume fraction, fiber off-axis angle) effect on the fatigue life of Glass/PPS composites is further discussed. It is revealed that fiber strength degradation effects on the fatigue life of continuous fiber-reinforced composites can be ignored.

  5. Structural and electronic features of binary Li2S-P2S5 glasses

    PubMed Central

    Ohara, Koji; Mitsui, Akio; Mori, Masahiro; Onodera, Yohei; Shiotani, Shinya; Koyama, Yukinori; Orikasa, Yuki; Murakami, Miwa; Shimoda, Keiji; Mori, Kazuhiro; Fukunaga, Toshiharu; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi

    2016-01-01

    The atomic and electronic structures of binary Li2S-P2S5 glasses used as solid electrolytes are modeled by a combination of density functional theory (DFT) and reverse Monte Carlo (RMC) simulation using synchrotron X-ray diffraction, neutron diffraction, and Raman spectroscopy data. The ratio of PSx polyhedral anions based on the Raman spectroscopic results is reflected in the glassy structures of the 67Li2S-33P2S5, 70Li2S-30P2S5, and 75Li2S-25P2S5 glasses, and the plausible structures represent the lithium ion distributions around them. It is found that the edge sharing between PSx and LiSy polyhedra increases at a high Li2S content, and the free volume around PSx polyhedra decreases. It is conjectured that Li+ ions around the face of PSx polyhedra are clearly affected by the polarization of anions. The electronic structure of the DFT/RMC model suggests that the electron transfer between the P ion and the bridging sulfur (BS) ion weakens the positive charge of the P ion in the P2S7 anions. The P2S7 anions of the weak electrostatic repulsion would causes it to more strongly attract Li+ ions than the PS4 and P2S6 anions, and suppress the lithium ionic conduction. Thus, the control of the edge sharing between PSx and LiSy polyhedra without the electron transfer between the P ion and the BS ion is expected to facilitate lithium ionic conduction in the above solid electrolytes. PMID:26892385

  6. Glass fiber effect on mechanical properties of Eco-SCC

    NASA Astrophysics Data System (ADS)

    Prasad M. L., V.; Loksesh, G.; Ramanjaneyulu, B.; Venkatesh, S.; Mousumi, K.

    2017-07-01

    Sustainable Construction encouraging the use of recycled materials and implies adoption of fewer natural resources in buildings and other infrastructure. In this paper Quarry Dust (QD) is used as partial replacement for River Sand (RS) to make Self Compacting Concrete (SCC) of grade M40. Glass fiber is used as strengthening material to the developed concrete. The present study mainly focused to develop Eco-SCC using QD. In this study it was found that, for developing Eco-SCC, what is the optimum dosage of replacement of QD in RS. Fresh properties of SCC are satisfying the EFNARC specifications and also target strength is achieved. Further it is concluded that, with the glass fiber addition there is an improvement in the split and flexural strength values.

  7. Chronic inhalation study of fiber glass and amosite asbestos in hamsters: twelve-month preliminary results.

    PubMed

    Hesterberg, T W; Axten, C; McConnell, E E; Oberdörster, G; Everitt, J; Miiller, W C; Chevalier, J; Chase, G R; Thevenaz, P

    1997-09-01

    The effects of chronic inhalation of glass fibers and amosite asbestos are currently under study in hamsters. The study includes 18 months of inhalation exposure followed by lifetime recovery. Syrian golden hamsters are exposed, nose only, for 6 hr/day, 5 day/week to size-selected test fibers: MMVF10a (Schuller 901 insulation glass); MMVF33 (Schuller 475 durable glass); amosite asbestos (three doses); or to filtered air (controls). Here we report interim results on airborne fiber characterization, lung fiber burden, and pathology (preliminary) through 12 months. Aerosolized test fibers averaged 15 to 20 microns in length and 0.5 to 1 micron in diameter. Target aerosol concentrations of World Health Organization (WHO) fibers (longer than 5 microns) were 250 fibers/cc for MMVF10a and MMVF33, and 25, 125, or 250 fibers/cc for amosite. WHO fiber lung burdens showed time-dependent and (for amosite) dose-dependent increases. After a 12-month exposure, lung burdens of fibers longer than 20 microns were greatest with amosite high and mid doses, similar for low-dose amosite and MMVF33, and smaller for MMVF10a. Biological responses of animals exposed for 12 months to MMVF10a were limited to nonspecific pulmonary inflammation. However, exposures to MMVF33 and each of three doses of amosite were associated with lung fibrosis and possible mesotheliomas (1 with MMVF33 and 2, 3, and 1 with amosite low, mid, and high doses, respectively). Pulmonary and pleural changes associated with amosite were qualitatively and quantitatively more severe than those associated with MMVF33. As of the 12-month time point, this study demonstrates that two different fiber glass compositions with similar fiber dimensions but different durabilities can have distinctly different effects on the hamster lung and pleura after inhalation exposure. (Preliminary tumor data through 18 months of exposure and 6 weeks of postexposure recovery became available as this manuscript went to press: No tumors were

  8. Chronic inhalation study of fiber glass and amosite asbestos in hamsters: twelve-month preliminary results.

    PubMed Central

    Hesterberg, T W; Axten, C; McConnell, E E; Oberdörster, G; Everitt, J; Miiller, W C; Chevalier, J; Chase, G R; Thevenaz, P

    1997-01-01

    The effects of chronic inhalation of glass fibers and amosite asbestos are currently under study in hamsters. The study includes 18 months of inhalation exposure followed by lifetime recovery. Syrian golden hamsters are exposed, nose only, for 6 hr/day, 5 day/week to size-selected test fibers: MMVF10a (Schuller 901 insulation glass); MMVF33 (Schuller 475 durable glass); amosite asbestos (three doses); or to filtered air (controls). Here we report interim results on airborne fiber characterization, lung fiber burden, and pathology (preliminary) through 12 months. Aerosolized test fibers averaged 15 to 20 microns in length and 0.5 to 1 micron in diameter. Target aerosol concentrations of World Health Organization (WHO) fibers (longer than 5 microns) were 250 fibers/cc for MMVF10a and MMVF33, and 25, 125, or 250 fibers/cc for amosite. WHO fiber lung burdens showed time-dependent and (for amosite) dose-dependent increases. After a 12-month exposure, lung burdens of fibers longer than 20 microns were greatest with amosite high and mid doses, similar for low-dose amosite and MMVF33, and smaller for MMVF10a. Biological responses of animals exposed for 12 months to MMVF10a were limited to nonspecific pulmonary inflammation. However, exposures to MMVF33 and each of three doses of amosite were associated with lung fibrosis and possible mesotheliomas (1 with MMVF33 and 2, 3, and 1 with amosite low, mid, and high doses, respectively). Pulmonary and pleural changes associated with amosite were qualitatively and quantitatively more severe than those associated with MMVF33. As of the 12-month time point, this study demonstrates that two different fiber glass compositions with similar fiber dimensions but different durabilities can have distinctly different effects on the hamster lung and pleura after inhalation exposure. (Preliminary tumor data through 18 months of exposure and 6 weeks of postexposure recovery became available as this manuscript went to press: No tumors were

  9. Biomass-derived porous carbon modified glass fiber separator as polysulfide reservoir for Li-S batteries.

    PubMed

    Selvan, Ramakrishnan Kalai; Zhu, Pei; Yan, Chaoi; Zhu, Jiadeng; Dirican, Mahmut; Shanmugavani, A; Lee, Yun Sung; Zhang, Xiangwu

    2018-03-01

    Biomass-derived porous carbon has been considered as a promising sulfur host material for lithium-sulfur batteries because of its high conductive nature and large porosity. The present study explored biomass-derived porous carbon as polysulfide reservoir to modify the surface of glass fiber (GF) separator. Two different carbons were prepared from Oak Tree fruit shells by carbonization with and without KOH activation. The KOH activated porous carbon (AC) provides a much higher surface area (796 m 2  g -1 ) than pyrolized carbon (PC) (334 m 2  g -1 ). The R factor value, calculated from the X-ray diffraction pattern, revealed that the activated porous carbon contains more single-layer sheets with a lower degree of graphitization. Raman spectra also confirmed the presence of sp 3 -hybridized carbon in the activated carbon structure. The COH functional group was identified through X-ray photoelectron spectroscopy for the polysulfide capture. Simple and straightforward coating of biomass-derived porous carbon onto the GF separator led to an improved electrochemical performance in Li-S cells. The Li-S cell assembled with porous carbon modified GF separator (ACGF) demonstrated an initial capacity of 1324 mAh g -1 at 0.2 C, which was 875 mAh g -1 for uncoated GF separator (calculated based on the 2nd cycle). Charge transfer resistance (R ct ) values further confirmed the high ionic conductivity nature of porous carbon modified separators. Overall, the biomass-derived activated porous carbon can be considered as a promising alternative material for the polysulfide inhibition in Li-S batteries. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Push-out bond strengths of different dental cements used to cement glass fiber posts.

    PubMed

    Pereira, Jefferson Ricardo; Lins do Valle, Accácio; Ghizoni, Janaina Salomon; Lorenzoni, Fábio César; Ramos, Marcelo Barbosa; Barbosa, Marcelo Ramos; Dos Reis Só, Marcus Vinícius

    2013-08-01

    Since the introduction of glass fiber posts, irreversible vertical root fractures have become a rare occurrence; however, adhesive failure has become the primary failure mode. The purpose of this study was to evaluate the push-out bond strength of glass fiber posts cemented with different luting agents on 3 segments of the root. Eighty human maxillary canines with similar root lengths were randomly divided into 8 groups (n=10) according to the cement assessed (Rely X luting, Luting and Lining, Ketac Cem, Rely X ARC, Biscem, Duo-link, Rely X U100, and Variolink II). After standardized post space preparation, the root dentin was pretreated for dual-polymerizing resin cements and untreated for the other cements. The mixed luting cement paste was inserted into post spaces with a spiral file and applied to the post surface that was seated into the canal. After 7 days, the teeth were sectioned perpendicular to their long axis into 1-mm-thick sections. The push-out test was performed at a speed of 0.5 mm/min until extrusion of the post occurred. The results were evaluated by 2-way ANOVA and the all pairwise multiple comparison procedures (Tukey test) (α=.05). ANOVA showed that the type of interaction between cement and root location significantly influenced the push-out strength (P<.05). The highest push-out strength results with root location were obtained with Luting and Lining (S3) (19.5 ±4.9 MPa), Ketac Cem (S2) (18.6 ±5.5 MPa), and Luting and Lining (S1) (18.0 ±7.6 MPa). The lowest mean values were recorded with Variolink II (S1) (4.6 ±4.0 MPa), Variolink II (S2) (1.6 ±1.5 MPa), and Rely X ARC (S3) (0.9 ±1.1 MPa). Self-adhesive cements and glass ionomer cements showed significantly higher values compared to dual-polymerizing resin cements. In all root segments, dual-polymerizing resin cements provided significantly lower bond strength. Significant differences among root segments were found only for Duo-link cement. Copyright © 2013 The Editorial Council of

  11. Investigation of Chemical Durability Mechanisms and Structure of Fluoride Glasses.

    DTIC Science & Technology

    1988-03-01

    coatings on fluoride glasses , it is possible to state the following conclusions: ()Coatings are necessary for both bulk and fiber optics to avoid major...interest for fiber optics applications.’ The chemicalSp . b g rdurability behavior of fluoride glasses not containing zirconium will be reported in later... fiber optics glass containing the base ZBL composition with where X = ppm in solution. V = solution volume (mL), S = additives of Al, Li, and Pb (Fig. 2

  12. Enhanced osteoprogenitor elongated collagen fiber matrix formation by bioactive glass ionic silicon dependent on Sp7 (osterix) transcription.

    PubMed

    Varanasi, Venu G; Odatsu, Tetsurou; Bishop, Timothy; Chang, Joyce; Owyoung, Jeremy; Loomer, Peter M

    2016-10-01

    Bioactive glasses release ions, those enhance osteoblast collagen matrix synthesis and osteogenic marker expression during bone healing. Collagen matrix density and osteogenic marker expression depend on osteogenic transcription factors, (e.g., Osterix (OSX)). We hypothesize that enhanced expression and formation of collagen by Si(4+) depends on enhanced expression of OSX transcription. Experimental bioactive glass (6P53-b) and commercial Bioglass(TM) (45S5) were dissolved in basal medium to make glass conditioned medium (GCM). ICP-MS analysis was used to measure bioactive glass ion release rates. MC3T3-E1 cells were cultured for 20 days, and gene expression and extracellular matrix collagen formation was analyzed. In a separate study, siRNA was used to determine the effect of OSX knockdown on impacting the effect of Si(4+) on osteogenic markers and matrix collagen formation. Each bioactive glass exhibited similar ion release rates for all ions, except Mg(2+) released by 6P53-b. Gene expression results showed that GCM markedly enhanced many osteogenic markers, and 45S5 GCM showed higher levels of expression and collagen matrix fiber bundle density than 6P53-b GCM. Upon knockdown of OSX transcription, collagen type 5, alkaline phosphatase, and matrix density were not enhanced as compared to wild type cells. This study illustrates that the enhancement of elongated collagen fiber matrix formation by Si(±) depends on OSX transcription. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2604-2615, 2016. © 2016 Wiley Periodicals, Inc.

  13. Preparation and optical properties of TeO2-BaO-ZnO-ZnF2 fluoro-tellurite glass for mid-infrared fiber Raman laser applications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Xiao, Xusheng; Gu, Shaoxuan; Xu, Yantao; Zhou, Zhiguang; Guo, Haitao

    2017-04-01

    A serial of novel fluoro-tellurite glasses with compositions of 60TeO2-20BaO-(20-x)ZnO-xZnF2 (x = 0, 2, 4, 5 and 6 mol%) were prepared. The compositional dependences of glass structural evaluation, Raman gain coefficient, UV-Vis transmission spectrum, IR transmission spectrum, linear refractive index and third-order nonlinearity were analyzed. The results showed that the addition of 6 mol% ZnF2 can further improve the Raman gain coefficient to as well as 52 × 10-11 cm/W and effectively decrease around 73% and 57% absorption coefficients respectively caused by free Osbnd H groups (@3.3 μm) and hydrogen-bonded Osbnd H groups (@4.5 μm) in glass. Addition of ZnF2 does not change the UV-Vis absorption edge, optical band gap energy and infrared region cut-off edge almost, while the linear refraction index and ultrafast third-nonlinearity show unmonotonic changes. These novel fluoro-tellurite glasses may be suitable candidates for using in mid-infrared Raman fiber laser and/or amplifier.

  14. [A maxillary premolar reconstruction with a glass fiber reinforced post].

    PubMed

    Viţalariu, Anca Mihaela; Antohe, Magda; Bahrim, Delia; Tatarciuc, Monica

    2006-01-01

    This paper presents the case of a 37 years old female patient who needed a reconstruction of an endodontic treated' second maxillary premolar. The patient presented large areas of occlusal abrasion caused by bruxism, therefore the solution consisted of a reconstruction with a non-metallic post reinforced with glass fibers. In such cases, the excessive occlusal forces developed by bruxism can produce a radicular fracture if the tooth would be reconstructed with a rigid metallic post. The glass-fiber reinforced post has some important qualities, which render it more suitable in most clinical cases: it is easy to use; has the ability to bond with restorative resins; decreases the risk of tooth fracture and provides better esthetics.

  15. Glass transition and heat capacities of inorganic glasses: Diminishing change in the heat capacity at T{sub g} for xNa{sub 2}S + (1{minus}x)B{sub 2}S{sub 3} glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kincs, J.; Cho, J.; Bloyer, D.

    1994-09-01

    The T{sub g}`s and heat capacity functions have been measured for a series of Na{sub 2}S + B{sub 2}S{sub 3} glasses for the first time. Unlike the alkali borates, T{sub g} decreases rapidly as Na{sub 2}S is added to B{sub 2}S{sub 3}. This effect, even in the presence of a rapidly increasing fraction of tetrahedrally coordinated borons, has been associated with the ``over crosslinking`` effect of the sulfide ion. Unlike the borate glasses where each added oxygen produces two tetrahedral borons, the conversion rate for the thioborates is between four and six. This behavior is suggested to result in themore » formation of local tightly-bonded molecular-like structures that exhibit less long-range network bonding than the alkali borite glasses. A a result, T{sub g} decreases with added alkali in alkali thioborates rather than increases as in the alkali borate glasses. The change in heat capacity at T{sub g}, {Delta}C{sub p}(T{sub g}) has been carefully measured and is found to also decrease dramatically as alkali sulfide is added to the glass. Again this effect is opposite to the trends observed for the alkali borate glasses. The decreasing {Delta}C{sub p}(T{sub g}) occurs even in the presence of a decreasing T{sub g}. The authors have tentatively associated the diminishing {Delta}C{sub p}(T{sub g}) values to the decreasing density of the configurational states above T{sub g}. This is attributed to the high coordination number and site specificity caused by the added alkali sulfide. The glassy state heat capacities were analyzed and found to reach {approximately}90% of the classical limiting DuLong-Petit value just below T{sub g} for all glasses. This was used to suggest that the diminishing {Delta}C{sub p}(T{sub g}) values are associated with a unique behavior in the system to become a liquid with very little change in the density of configurational states.« less

  16. Ocean Engineering Studies Compiled 1991. Volume 11. Pressure-Resistant Glass Light Enclosures

    DTIC Science & Technology

    1991-01-01

    resting on this gasket than when they were resting on bare type 316 stainless steel end closures, aluminum gasket, or glass fiber- phenolic laminate ...316 2.58 inches thick Brass (naval) 2.58 inches thick Titanium (Ti-6AI-4V) 1.82 inches thick Phenolic resin-glass fiber laminate 4.40 inches thick...The 6061-T6 aluminum and the 94 spcimen s phenolic resin-impregnated glass fiber 18,000 imploded at -- /- laminate materials performed the best 18,000

  17. Simulated and Experimental Damping Properties of a SMA/Fiber Glass Laminated Composite

    NASA Astrophysics Data System (ADS)

    Arnaboldi, S.; Bassani, P.; Biffi, C. A.; Tuissi, A.; Carnevale, M.; Lecis, N.; Loconte, A.; Previtali, B.

    2011-07-01

    In this article, an advanced laminated composite is developed, combining the high damping properties of shape memory alloy (SMA) with mechanical properties and light weight of a glass-fiber reinforced polymer. The composite is formed by stacking a glass-fiber reinforced epoxy core between two thin patterned strips of SMA alloy, and two further layers of fiber-glass reinforced epoxy. The bars of the laminated composite were assembled and cured in autoclave. The patterning was designed to enhance the interface adhesion between matrix and SMA inserts and optimally exploit the damping capacity of the SMA thin ribbons. The patterned ribbons of the SMA alloy were cut by means of a pulsed fiber laser source. Damping properties at different amplitudes on full scale samples were investigated at room temperature with a universal testing machine through dynamic tension tests, while temperature dependence was investigated by dynamic mechanical analyses (DMA) on smaller samples. Experimental results were used in conjunction with FEM analysis to optimize the geometry of the inserts. Experimental decay tests on the laminated composite have been carried out to identify the adimensional damping value related to their first flexural mode.

  18. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes

    PubMed Central

    Yasinskii, V. M.; Filimonenko, D. S.; Rostova, E.; Dietler, G.; Sekatskii, S. K.

    2018-01-01

    In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000–6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation. PMID:29849857

  19. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.

    PubMed

    Smirnov, A; Yasinskii, V M; Filimonenko, D S; Rostova, E; Dietler, G; Sekatskii, S K

    2018-01-01

    In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO 2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000-6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  20. Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid.

    PubMed

    Liu, Xin; Rahaman, Mohamed N; Day, Delbert E

    2013-03-01

    Microfibrous bioactive glasses are showing a considerable capacity to heal soft tissue wounds, but little information is available on the mechanism of healing. In the present study, the conversion of microfibrous borate bioactive glass (diameter = 0.2-5 μm) with the composition designated 13-93B3 (5.5 Na2O, 11.1 K2O, 4.6 MgO, 18.5 CaO, 3.7 P2O5, 56.6 B2O3 wt%) was evaluated in vitro as a function of immersion time in a simulated body fluid (SBF) at 37 °C using structural and chemical techniques. Silicate 45S5glass microfibers (45 SiO2, 24.5 Na2O, 24.5 CaO, 6 P2O5 wt%) were also studied for comparison. Microfibrous 13-93B3 glass degraded almost completely and converted to a calcium phosphate material within 7-14 days in SBF, whereas >85 % of the silica remained in the 45S5 microfibers, forming a silica gel phase. An amorphous calcium phosphate (ACP) product that formed on the 13-93B3 microfibers crystallized at a slower rate to hydroxyapatite (HA) when compared to the ACP that formed on the 45S5 fibers. For immersion times >3 days, the 13-93B3 fibers released a higher concentration of Ca into the SBF than the 45S5 fibers. The fast and more complete degradation, slow crystallization of the ACP product, and higher concentration of dissolved Ca in SBF could contribute to the capacity of the microfibrous borate 13-93B3 glass to heal soft tissue wounds.

  1. Effects of Fiber Content on Mechanical Properties of CVD SiC Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1996-01-01

    Unidirectional CVD SiC(f)(SCS-6) fiber-reinforced strontium aluminosilicate (SAS) glass-ceramic matrix composites containing various volume fractions, approximately 16 to 40 volume %, of fibers were fabricated by hot pressing at 1400 C for 2 h under 27.6 MPa. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase formed, with complete absence of the undesired hexacelsian phase, in the matrix. Room temperature mechanical properties were measured in 3-point flexure. The matrix microcracking stress and the ultimate strength increased with increase in fiber volume fraction, reached maximum values for V(sub f) approximately equal to 0.35, and degraded at higher fiber loadings. This degradation in mechanical properties is related to the change in failure mode, from tensile at lower V(sub f) to interlaminar shear at higher fiber contents. The extent of fiber loading did not have noticeable effect on either fiber-matrix debonding stress, or frictional sliding stress at the interface. The applicability of micromechanical models in predicting the mechanical properties of the composites was also examined. The currently available theoretical models do not appear to be useful in predicting the values of the first matrix cracking stress, and the ultimate strength of the SCS-6/SAS composites.

  2. Infrared imaging spectrometry by the use of bundled chalcogenide glass fibers and a PtSi CCD camera

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Kikuchi, Katsuhiro; Tanaka, Chinari; Sone, Hiroshi; Morimoto, Shozo; Yamashita, Toshiharu T.; Nishii, Junji

    1999-10-01

    A coherent fiber bundle for infrared image transmission was prepared by arranging 8400 chalcogenide (AsS) glass fibers. The fiber bundle, 1 m in length, is transmissive in the infrared spectral region of 1 - 6 micrometer. A remote spectroscopic imaging system was constructed with the fiber bundle and an infrared PtSi CCD camera. The system was used for the real-time observation (frame time: 1/60 s) of gas distribution. Infrared light from a SiC heater was delivered to a gas cell through a chalcogenide fiber, and transmitted light was observed through the fiber bundle. A band-pass filter was used for the selection of gas species. A He-Ne laser of 3.4 micrometer wavelength was also used for the observation of hydrocarbon gases. Gases bursting from a nozzle were observed successfully by a remote imaging system.

  3. Composition Dependence of the Na(+) Ion Conductivity in 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] Mixed Glass Former Glasses: A Structural Interpretation of a Negative Mixed Glass Former Effect.

    PubMed

    Martin, Steve W; Bischoff, Christian; Schuller, Katherine

    2015-12-24

    A negative mixed glass former effect (MGFE) in the Na(+) ion conductivity of glass has been found in 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] glasses where the Na(+) ion conductivity is significantly smaller for all of the ternary glasses than either of the binary end-member glasses. The minimum conductivity of ∼0.4 × 10(-6) (Ω cm)(-1) at 25 °C occurs for the x = 0.7 glass. Prior to this observation, the alkali ion conductivity of sulfide glasses at constant alkali concentration, but variable ratio of one glass former for another (x) ternary mixed glass former (MGF) glasses, has always produced a positive MGFE in the alkali ion conductivity; that is, the ternary glasses have always had higher ion conductivities that either of the end-member binary glasses. While the Na(+) ion conductivity exhibits a single global minimum value, the conductivity activation energy exhibits a bimodal double maximum at x ≈ 0.4 and x ≈ 0.7. The modified Christensen-Martin-Anderson-Stuart (CMAS) model of the activation energies reveals the origin of the negative MGFE to be due to an increase in the dielectric stiffness (a decrease in relative dielectric permittivity) of these glasses. When coupled with an increase in the average Na(+) ion jump distance and a slight increase in the mechanical stiffness of the glass, this causes the activation energy to go through maximum values and thereby produce the negative MGFE. The double maximum in the conductivity activation energy is coincident with double maximums in CMAS calculated strain, ΔES, and Coulombic, ΔEC, activation energies. In these ternary glasses, the increase in the dielectric stiffness of the glass arises from a negative deviation of the limiting high frequency dielectric permittivity as compared to the binary end-member glasses. While the CMAS calculated total activation energies ΔEact = ΔES + ΔEC are found to reproduce the overall shape of the composition dependence of the measured ΔEact values, they are consistently

  4. The development of a potassium-sulfide glass fiber cell and studies on impurities in alkali metal-sulfur cells

    NASA Technical Reports Server (NTRS)

    Tsang, F. Y.

    1977-01-01

    Potassium sulfur rechargeable cells, having as the electrolyte the thin walls of hollow glass fibers made from permeable glass, were developed. The cells had short lives, probably due to the construction materials and impurities in the potassium. The effect of the impurities in the analogous NA-S system was studied. Calcium, potassium, and NaOH/oxide impurities caused increased resistance or corrosion of the glass fibers. For long lived cell operation, the Na must contain less than 1 ppm Ca and less than a few ppm of hydroxide/oxide. Up to 150 ppm K can be tolerated. After purification of the Na anolyte, cell lifetimes in excess of 1000 deep charge-discharge cycles or over 8 months on continuous cycling at 10-30 percent depth of discharge were obtained.

  5. Influence of antimicrobial solutions in the decontamination and adhesion of glass-fiber posts to root canals

    PubMed Central

    HARAGUSHIKU, Gisele Aihara; BACK, Eduardo Donato Eing Engelke; TOMAZINHO, Paulo Henrique; BARATTO, Flares; FURUSE, Adilson Yoshio

    2015-01-01

    Objective This study evaluated the effect of root canal disinfectants on the elimination of bacteria from the root canals, as well as their effect on glass-fiber posts bond strength. Material and Methods Fifty-three endodontically treated root canals had post spaces of 11 mm in length prepared and contaminated with E. faecalis. For CFU/ml analysis, eight teeth were contaminated for 1 h or 30 days (n=4). Teeth were decontaminated with 5% NaOCl, 2% CHX, or distilled water. As control, no decontamination was conducted. After decontamination, sterile paper points were used to collect samples, and CFU/ml were counted. For push-out, three groups were evaluated (n=15): irrigation with 2.5% NaOCl, 2% CHX, or sterile distilled water. A bonding agent was applied to root canal dentin, and a glass-fiber post was cemented with a dual-cured cement. After 24 h, 1-mm-thick slices of the middle portion of root canals were obtained and submitted to the push-out evaluation. Three specimens of each group were evaluated in scanning electron microscopy (SEM). Data were analyzed with one-way ANOVA and Dunnett’s T3 test (α=0.05). Results The number of CFU/ml increased from 1 h to 30 days of contamination in control and sterile distilled water groups. Decontamination with NaOCl was effective only when teeth were contaminated for 1 h. CHX was effective at both contamination times. NaOCl did not influence the bond strength (p>0.05). Higher values were observed with CHX (p<0.05). SEM showed formation of resin tags in all groups. Conclusion CHX showed better results for the irrigation of contaminated root canals both in reducing the bacterial contamination and in improving the glass-fiber post bonding. PMID:26398518

  6. Stimulated Raman scattering in AsSe2-As2S5 microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Gao, Weiqing; Ni, Chenquan; Xu, Qiang; Li, Xue; Chen, Xiangcai; Chen, Li; Wen, Zhenqiang; Cheng, Tonglei; Xue, Xiaojie; Suzuki, Takenobu; Ohishi, Yasutake

    2017-02-01

    We demonstrate the effects of stimulated Raman scattering (SRS) in the all-solid-core chalcogenide microstructured optical fibers (MOFs) with AsSe2 core and As2S5 cladding, which are fabricated by the rod-in-tube drawing technique. The core diameters of the MOFs are 6.3 (Fiber I), 3.0 (Fiber II), 2.6 (Fiber III) and 2.2 (Fiber IV) μm, respectively. The chromatic dispersion of the fundamental mode in Fibers I-IV is simulated by the full-vectorial mode solver technique. The first-order Stokes wave is investigated in the fibers with different core diameters pumped by the picosecond pulses at 1958 nm. In Fiber I, no obvious Raman peak is observed with the pump power increasing, because the effective nonlinearity is not high. In Fiber II, a Raman Stokes peak at 2065 nm begins to emerge at the pump power of 110 mW. The conversion efficiency is as weak as -36.6 dB at 150 mW pumping. In Fiber III, the first-order Raman peak at 2060 nm begins to emerge at 40 mW pumping. The conversion efficiency is -15.0 dB, which is 21.6 dB higher than that in Fiber II. In Fiber IV, the Stokes peak at 2070 nm begins to appear at 56 mW pumping. The maximum conversion efficiency of the first-order Stokes wave is obtained in the MOF with the core diameter of 2.6 μm. The evolution of the first-order Stokes wave with pump power and fiber length is investigated. This is the first demonstration of Raman effects in the AsSe2-As2S5 MOF, to the best of our knowledge.

  7. Feasibility of Silver Doped TiO2/Glass Fiber Photocatalyst under Visible Irradiation as an Indoor Air Germicide

    PubMed Central

    Pham, Thanh-Dong; Lee, Byeong-Kyu

    2014-01-01

    This study investigated the feasibility of using Ag-TiO2 photocatalyst supported on glass fiber (Ag-TiO2/GF) prepared by a sol-gel method as an indoor air germicide. An experimental model was designed to investigate the bacterial disinfection efficiency of Staphylococcus (Staph), the most popular bacterium in hospitals in Korea, by the Ag-TiO2/GF photocatalyst. The silver content in Ag/TiO2 was altered from 1 to 10% to investigate the optimal ratio of Ag doped on TiO2/glass fiber (TiO2/GF) for photocatalytic disinfection of Staph. This study confirmed that Ag in Ag-TiO2/GF could work as an electron sink or donor to increase photocatalytic activity and promote the charge separation of electron-hole pairs generated from TiO2 after photon absorption. Ag also acts as an intermediate agent for the transfer of photo-generated electrons from the valence band of TiO2 to an acceptor (O2 gas) to promote photo-oxidation processes. The photocatalytic disinfection activity of Ag-TiO2/GF under visible light increased with the increase in silver content up to 7.5% and then slightly decreased with further increasing silver content. The highest disinfection efficiency and disinfection capacity of Staph using 7.5% Ag-TiO2/GF were 75.23% and 20 (CFU∙s−1∙cm−2) respectively. The medium level of humidity of 60% ± 5% showed better photocatalytic disinfection than the lower (40% ± 5%) or higher (80% ± 5%) levels. PMID:24658408

  8. Color stability of laboratory glass-fiber-reinforced plastics for esthetic orthodontic wires

    PubMed Central

    Inami, Toshihiro; Minami, Naomi; Yamaguchi, Masaru; Kasai, Kazutaka

    2015-01-01

    Objective In our previous study, glass-fiber-reinforced plastics (GFRPs) made from polycarbonate and glass fibers were prepared for esthetic orthodontic wires using pultrusion. These laboratory GFRP wires are more transparent than the commercially available nickel-titanium wire; however, an investigation of the color stability of GFRP during orthodontic treatment is needed. Accordingly, in the present study, the color stability of GFRP was assessed using colorimetry. Methods Preparation of GFRP esthetic round wires (diameter: 0.45 mm [0.018 inch]) using pultrusion was described previously. Here, to investigate how the diameter of fiber reinforcement affects color stability, GFRPs were prepared by incorporating either 13-µm (GFRP-13) or 7-µm glass (GFRP-7) fibers. The color changes of GFRPs after 24 h, and following 1, 2, and 4 weeks of coffee immersion at 37℃, were measured by colorimetry. We evaluated the color stability of GFRPs by two evaluating units: the color difference (ΔE*) and National Bureau of Standards (NBS). Results After immersion, both GFRPs showed almost no visible color change. According to the colorimetry measurements, the ΔE* values of GFRP-13 and GFRP-7 were 0.73-1.16, and 0.62-1.10, respectively. In accordance with NBS units, both GFRPs showed "slight" color changes. As a result, there were no significant differences in the ΔE* values or NBS units for GFRP-13 or GFRP-7. Moreover, for both GFRPs, no significant differences were observed in any of the immersion periods. Conclusions Our findings suggest that the GFRPs will maintain high color stability during orthodontic treatment, and are an attractive prospect as esthetic orthodontic wires. PMID:26023541

  9. Structural considerations in design of lightweight glass-fiber composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1973-01-01

    The development of structurally efficient, metal-lined, glass-fiber composite pressure vessels. Both the current state-of-the-art and current problems are discussed along with fracture mechanics considerations for the metal liner. The design concepts used for metal-lined, glass-fiber, composite pressure vessels are described and the structural characteristics of the composite designs are compared with each other and with homogeneous metal pressure vessels. Specific design techniques and available design data are identified. Results of a current program to evaluate flaw growth and fracture characteristics of the metal liners are reviewed and the impact of these results on composite pressure vessel designs is discussed.

  10. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

    PubMed

    Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan

    2013-10-21

    Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging

  11. Development of suspended core soft glass fibers for far-detuned parametric conversion

    NASA Astrophysics Data System (ADS)

    Rampur, Anupamaa; Ciąćka, Piotr; Cimek, Jarosław; Kasztelanic, Rafał; Buczyński, Ryszard; Klimczak, Mariusz

    2018-04-01

    Light sources utilizing χ (2) parametric conversion combine high brightness with attractive operation wavelengths in the near and mid-infrared. In optical fibers, it is possible to use χ (3) degenerate four-wave mixing in order to obtain signal-to-idler frequency detuning of over 100 THz. We report on a test series of nonlinear soft glass suspended core fibers intended for parametric conversion of 1000-1100 nm signal wavelengths available from an array of mature lasers into the near-to-mid-infrared range of 2700-3500 nm under pumping with an erbium sub-picosecond laser system. The presented discussion includes modelling of the fiber properties, details of their physical development and characterization, and experimental tests of parametric conversion.

  12. Frequency and deflection analysis of cenosphere/glass fiber interply hybrid composite cantilever beam

    NASA Astrophysics Data System (ADS)

    Bharath, J.; Joladarashi, Sharnappa; Biradar, Srikumar; Kumar, P. Naveen

    2018-04-01

    Interply hybrid laminates contain plies made of two or more different composite systems. Hybrid composites have unique features that can be used to meet specified design requirements in a more cost-effective way than nonhybrid composites. They offer many advantages over conventional composites including balanced strength and stiffness, enhanced bending and membrane mechanical properties, balanced thermal distortion stability, improved fatigue/impact resistance, improved fracture toughness and crack arresting properties, reduced weight and cost. In this paper an interply hybrid laminate composite containing Cenosphere reinforced polymer composite core and glass fiber reinforced polymer composite skin is analysied and effect of volume fraction of filler on frequency and load v/s deflection of hybrid composite are studied. Cenosphere reinforced polymer composite has increased specific strength, specific stiffness, specific density, savings in cost and weight. Glass fiber reinforced polymer composite has higher torsional rigidity when compared to metals. These laminate composites are fabricated to meet several structural applications and hence there is a need to study their vibration and deflection properties. Experimental investigation starts with fabrication of interply hybrid composite with cores of cenosphere reinforced epoxy composite volume fractions of CE 15, CE 25, CE15_UC as per ASTM E756-05C, and glasss fiber reinforced epoxy skin, cast product of required dimension by selecting glass fibre of proper thickness which is currently 0.25mm E-glass bidirectional woven glass fabric having density 2500kg/m3, in standard from cast parts of size 230mmX230mmX5mm in an Aluminum mould. Modal analysis of cantilever beam is performed to study the variation of natural frequency with strain gauge and the commercially available Lab-VIEW software and deflection in each of the cases by optical Laser Displacement Measurement Sensor to perform Load versus Deflection Analysis

  13. Laser-induced nonlinear crystalline waveguide on glass fiber format and diode-pumped second harmonic generation

    NASA Astrophysics Data System (ADS)

    Shi, Jindan; Feng, Xian

    2018-03-01

    We report a diode pumped self-frequency-doubled nonlinear crystalline waveguide on glass fiber. A ribbon fiber has been drawn on the glass composition of 50GeO2-25B2O3-25(La,Yb)2O3. Surface channel waveguides have been written on the surface of the ribbon fiber, using space-selective laser heating method with the assistance of a 244 nm CW UV laser. The Raman spectrum of the written area indicates that the waveguide is composed of structure-deformed nonlinear (La,Yb)BGeO5 crystal. The laser-induced surface wavy cracks have also been observed and the forming mechanism of the wavy cracks has been discussed. Efficient second harmonic generation has been observed from the laser-induced crystalline waveguide, using a 976 nm diode pump. 13 μW of 488 nm output has been observed from a 17 mm long waveguide with 26.0 mW of launched diode pump power, corresponding to a normalized conversion efficiency of 4.4%W-1.

  14. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements.

    PubMed

    Pereira, Jefferson Ricardo; Rosa, Ricardo Abreu da; Só, Marcus Vinícius Reis; Afonso, Daniele; Kuga, Milton Carlos; Honório, Heitor Marques; Valle, Accácio Lins do; Vidotti, Hugo Alberto

    2014-01-01

    The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs) and resinmodified glass ionomer cements (RMGICs). Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa) were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05). The post level did not influence the bond strength of fiber posts to root dentin (P=0.148). The major cause of failure was cohesive at the cement for all GICs and RMGICs. Except for Ionoseal, all cements provided satisfactory bond strength values.

  15. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements

    PubMed Central

    PEREIRA, Jefferson Ricardo; da ROSA, Ricardo Abreu; SÓ, Marcus Vinícius Reis; AFONSO, Daniele; KUGA, Milton Carlos; HONÓRIO, Heitor Marques; do VALLE, Accácio Lins; VIDOTTI, Hugo Alberto

    2014-01-01

    Objective The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs) and resin-modified glass ionomer cements (RMGICs). Material and Methods Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa) were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. Results Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05). The post level did not influence the bond strength of fiber posts to root dentin (P=0.148). The major cause of failure was cohesive at the cement for all GICs and RMGICs. Conclusions Except for Ionoseal, all cements provided satisfactory bond strength values. PMID:25004052

  16. Design Guide for glass fiber reinforced metal pressure vessel

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1973-01-01

    Design Guide has been prepared for pressure vessel engineers concerned with specific glass fiber reinforced metal tank design or general tank tradeoff study. Design philosophy, general equations, and curves are provided for safelife design of tanks operating under anticipated space shuttle service conditions.

  17. Isothermal and hygrothermal agings of hybrid glass fiber/carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Barjasteh, Ehsan

    New applications of fiber-reinforced polymer composites (FRPCs) are arising in non-traditional sectors of industry, such as civil infrastructure, automotive, and power distribution. For example, composites are being used in place of steel to support high-voltage overhead conductors. In this application, conductive strands of aluminum are wrapped around a solid composite rod comprised of unidirectional carbon and glass fibers in an epoxy matrix, which is commercially called ACCC conductor. Composite-core conductors such as these are expected to eventually replace conventional steel-reinforced conductors because of the reduced sag at high temperatures, lower weight, higher ampacity, and reduced line losses. Despite the considerable advantages in mechanical performance, long-term durability of composite conductors is a major concern, as overhead conductors are expected to retain properties (with minimal maintenance) over a service life that spans multiple decades. These concerns stem from the uncertain effects of long-term environmental exposure, which includes temperature, moisture, radiation, and aggressive chemicals, all of which can be exacerbated by cyclic loads. In general, the mechanical and physical properties of polymer composites are adversely affected by such environmental factors. Consequently, the ability to forecast changes in material properties as a function of environmental exposure, particularly bulk mechanical properties, which are affected by the integrity of fiber-matrix interfaces, is required to design for extended service lives. Polymer composites are susceptible to oxidative degradation at high temperatures approaching but not quite reaching the glass transition temperature ( Tg). Although the fibers are stable at such temperatures, the matrix and especially the fiber-matrix interface can undergo degradation that affects the physical and mechanical properties of the structure over time. Therefore, as a first step, the thermal aging of an

  18. Preparation and investigation of [GeSe4]100-xIx glasses as promising materials for infrared fiber sensors

    NASA Astrophysics Data System (ADS)

    Velmuzhov, A. P.; Sukhanov, M. V.; Shiryaev, V. S.; Plekhovich, A. D.; Kotereva, T. V.; Snopatin, G. E.; Gerasimenko, V. V.; Pushkin, A. A.

    2016-10-01

    The glasses of [GeSe4]100-xIx (x = 1, 3, 5, 8, 10) compositions are prepared; their thermal properties, transparency in the mid-IR range and stability against crystallization are investigated. The glass transition temperature (Tg) in this system decreases monotonically with increasing iodine content from the value of Tg = 176 °C at x = 1 to Tg = 129 °C at x = 10. It has been determined by X-ray diffraction method that the addition of iodine reduces the volume fraction of the crystalline phase in glasses after annealing at 350 °C. Using a single crucible technique, the rod of [GeSe4]95I5 glass was drawn into a single-index fiber of 300 μm diameter and 10 m length. The optical losses were 2-3 dB/m in the spectral range 2.5-8 μm; the minimum optical losses were 1.7 dB/m at a wavelength of 5.5 μm. The content of impurity hydrogen in the form of Se-H in the fiber was about 3.6 ppm(wt), impurity oxygen in the form of Ge-O is 1 ppm(wt). The possibility of use of such [GeSe4]95I5 glass single-index fiber for infrared analysis of liquids by example of crude oil and water solutions of acetone has been demonstrated.

  19. Chronic inhalation toxicity of size-separated glass fibers in Fischer 344 rats.

    PubMed

    Hesterberg, T W; Miiller, W C; McConnell, E E; Chevalier, J; Hadley, J G; Bernstein, D M; Thevenaz, P; Anderson, R

    1993-05-01

    This study was initiated to determine the chronic biological effects in Fisher 344 rats of inhaled size-separated respirable fractions of fibrous glass (FG) having compositions representative of common building insulation wools. Rats were exposed using nose-only inhalation chambers, 6 hr/day, 5 days/week, for 24 months to three concentrations (3, 16, and 30 mg/m3) of two different compositions of FG (designated MMVF 10 and MMVF 11), or to filtered air (negative control). Fibrous glass findings were compared to those from a concurrent inhalation study of chrysotile asbestos and refractory ceramic fiber (RCF). The FGs used in this study were size selected to be largely respirable in the rat and the aerosol generation technique did not alter the dimensions of the fibers. Interim euthanizations took place at 3- to 6-month intervals to monitor progression of pulmonary changes. Fibers were recovered from digested lung tissue for determination of changes in fiber number and morphology. In animals exposed to 30 mg/m3 of MMVF 10 or MMVF 11, 4.2 +/- 0.9 x 10(5) and 6.4 +/- 3.1 x 10(5) fibers/mg dry lung tissue, respectively, were recovered after 24 months of exposure. Exposure to chrysotile asbestos (10 mg/m3) and to a lesser extent RCF (30 mg/m3) resulted in pulmonary fibrosis as well as mesothelioma and significant increases in lung tumors. FG exposure was associated with a nonspecific inflammatory response (macrophage response) in the lungs that did not appear to progress after 6-12 months of exposure. These cellular changes are reversible and are similar to the effects observed after inhalation of an inert dust. No lung fibrosis was observed in the FG-exposed animals. Further, FG exposure resulted in no mesotheliomas and no statistically significant increase in lung tumor incidence when compared to that of the negative control group. These findings, along with previous inhalation studies, suggest that respirable fibrous glass does not represent a significant hazard for

  20. Development of a bioactive glass fiber reinforced starch-polycaprolactone composite.

    PubMed

    Jukola, H; Nikkola, L; Gomes, M E; Chiellini, F; Tukiainen, M; Kellomäki, M; Chiellini, E; Reis, R L; Ashammakhi, N

    2008-10-01

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this work was to develop and characterize BaG fiber reinforced starch-poly-epsilon-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt %) were produced using single-screw extrusion. They were then cut and compression-molded in layers with BaG fibers to form composite structures with different combinations. Mechanical and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the nonreinforced specimens. However, the mechanical properties of the composites after 2 weeks of hydrolysis were comparable to those of the nonreinforced samples. During the 6 weeks hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained as initial for the 6-week period of hydrolysis. In conclusion, it is possible to enhance initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, mechanical properties of the composites are typical for bone fillers and strength properties need to be further improved for allowing more demanding bone applications. (c) 2008 Wiley Periodicals, Inc.

  1. Glass fiber dissolution in simulated lung fluid and measures needed to improve consistency and correspondence to in vivo dissolution.

    PubMed Central

    Mattson, S M

    1994-01-01

    The dissolution of a range of glass fibers including commercial glass and mineral wools has been studied using a modification of Gamble's solution in a flow system at pH 7.4 and 37 degrees C. Dissolution has been followed by weight loss, effluent analysis, and morphology change of fibers and bulk glass. Flow per glass surface area can strongly affect both dissolution rate and morphology due to the effect of the dissolution process on the fluid. Effluent pH is shown to be a guide for choice of optimum flow/area conditions. These conditions provide measurable concentrations of dissolved glass in the effluent while maintaining their concentrations below the point at which they significantly affect the dissolution process. SiO2 and Al2O3 vary widely in the extent to which they are involved in the leaching process, which removes alkalis, alkaline earths, and B2O3. This makes analysis of a single component in the effluent unsuitable as a means of comparing the dissolution rates of a wide range of compositions. PMID:7882963

  2. Transmission performance analysis of WDM systems based on bismuth-doped phosphate glass fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Ji, Jianhua; Huang, Qian; Wang, Ke; Xu, Ming; Jiang, Chun

    2018-01-01

    In this paper transmission performance of Allwave fiber WDM systems cascaded by bismuth-doped phosphate glass fiber amplifiers pumped by 808 nm lasers is analyzed for the first time, to the best of our knowledge. The rate and power propagation equations of a three-level system are used to model the signal amplification and noise figure in the doped fibers. The simulation results show that the channels in the 1460-1470 nm wavelength region in 32 × 40 Gbit/s WDM system with 10 nm channel space can reach a BER less than 1 × 10-9 with the transmission distance more than 600 km, but when the channel space is reduced to 1 nm, the performance of the system is degraded greatly.

  3. Carbon fiber internal pressure vessels

    NASA Technical Reports Server (NTRS)

    Simon, R. A.

    1973-01-01

    Internal pressure vessels were designed; the filament was wound of carbon fibers and epoxy resin and tested to burst. The fibers used were Thornel 400, Thornel 75, and Hercules HTS. Additional vessels with type A fiber were made. Polymeric linears were used, and all burst testing was done at room temperature. The objective was to produce vessels with the highest attainable PbV/W efficiencies. The type A vessels showed the highest average efficiency: 2.56 x 10 to the 6th power cm. Next highest efficiency was with Thornel 400 vessels: 2.21 x 10 to the 6th power cm. These values compare favorably with efficiency values from good quality S-glass vessels, but strains averaged 0.97% or less, which is less than 1/3 the strain of S-glass vessels.

  4. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin - An In Vitro Study

    PubMed Central

    Murthy, H B Mallikarjuna; Shaik, Sharaz; Sachdeva, Harleen; Khare, Sumit; Haralur, Satheesh B; Roopa, K T

    2015-01-01

    Background: The impact strength of denture base resin is of great concern and many approaches have been made to strengthen acrylic resin dentures. The objective of this study was to compare the impact strength of the denture base resin with and without reinforcement and to evaluate the impact strength of denture base resin when reinforced with stainless steel mesh, glass fiber, and polyethylene fibers in the woven form. Materials and Methods: The specimens (maxillary denture bases) were fabricated using a standard polyvinylsiloxane mold with conventional heat cured polymethyl methacrylate resin. The specimens were divided into four groups (n = 10). Group I specimens or control group were not reinforced. Group II specimens were reinforced with stainless steel mesh and Group III and Group IV specimens were reinforced with three percent by weight of glass fibers and polyethylene fibers in weave form respectively. All the specimens were immersed in water for 1-week before testing. The impact strength was measured with falling weight impact testing machine. One-way analysis of variance and Tukey’s post-hoc test were used for statistical analysis. Results: Highest impact strength values were exhibited by the specimens reinforced with polyethylene fibers followed by glass fibers, stainless steel mesh, and control group. Conclusions: Reinforcement of maxillary complete dentures showed a significant increase in impact strength when compared to unreinforced dentures. Polyethylene fibers exhibit better impact strength followed by glass fibers and stainless steel mesh. By using pre-impregnated glass and polyethylene fibers in woven form (prepregs) the impact strength of the denture bases can be increased effectively. PMID:26124604

  5. Efficient Single-Frequency Thulium Doped Fiber Laser Near 2-micrometers

    NASA Technical Reports Server (NTRS)

    Geng, Jihong; Wu, Jianfeng; Jiang, Shibin; Yu, Jirong

    2007-01-01

    We demonstrate highly efficient diode-pumped single-frequency fiber laser with 35% slope efficiency and 50mW output power operating near 2 micrometers, which generated from a 2-cm long piece of highly Tm(3+)-doped germanate glass fiber pumped at 800nm.

  6. Customized fiber glass posts. Fatigue and fracture resistance.

    PubMed

    Costa, Rogério Goulart; De Morais, Eduardo Christiano Caregnatto; Campos, Edson Alves; Michel, Milton Domingos; Gonzaga, Carla Castiglia; Correr, Gisele Maria

    2012-02-01

    To evaluate the root fracture strength of human single-rooted premolars restored with customized fiberglass post-core systems after fatigue simulation. 40 human premolars had their crowns cut and the root length was standardized to 13 mm. The teeth were endodontically treated and embedded in acrylic resin. The specimens were distributed into four groups (n=10) according to the restorative material used: prefabricated fiber post (PFP), PFP+accessory fiber posts (PFPa), PFP+unidirectional fiberglass (PFPf), and unidirectional fiberglass customized post (CP). All posts were luted using resin cement and the cores were built up with a resin composite. The samples were stored for 24 hours at 37 degrees C and 100% relative humidity and then submitted to mechanical cycling. The specimens were then compressive-loaded in a universal testing machine at a crosshead speed of 0.5 mm/minute until fracture. The failure patterns were analyzed and classified. Data was submitted to one-way ANOVA and Tukey's test (alpha = 0.05). The mean values of maximum load (N) were: PFP - 811.4 +/- 124.3; PFPa - 729.2 +/- 157.2; PFPf- 747.5 +/- 204.7; CP - 762.4 +/- 110. Statistical differences were not observed among the groups. All groups showed favorable restorable failures. Fiberglass customized post did not show improved fracture resistance or differences in failure patterns when compared to prefabricated glass fiber posts.

  7. Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers

    PubMed Central

    Liao, Xili; Jiang, Xiaobo; Yang, Qiuhong; Wang, Longfei; Chen, Danping

    2017-01-01

    A series of Er3+/Tm3+ co-doped fluoride (ZBLAN) glasses and fibers was prepared and their fluorescence spectra was measured under excitation at 793 nm and 980 nm. Correlation between the self-absorption effect of rare-earth ions and the shift of the emission peak was investigated. With the increasing length of fiber, the emission peaks red-shift when self-absorption occurs at the upper level of emission transition or blue-shift when that occurs at the lower level. As a result of the strong self-absorption effect, Er3+/Tm3+ co-doped fibers mainly yield 1390–1470, 1850–1980, and 2625–2750 nm emissions when excited at 793 nm, and 1480–1580, 1800–1980, and 2625–2750 nm emissions when excited at 980 nm. Further, a broadband emission in the range of 1410–1580 nm covering the S + C communication band was obtained by the dual-pumping scheme of 793 nm and 980 nm. Results suggest that the dual-pumping scheme would be more effective and important for an Er3+/Tm3+ co-doped fiber amplifier working in the S + C communication band. PMID:28772846

  8. Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers.

    PubMed

    Liao, Xili; Jiang, Xiaobo; Yang, Qiuhong; Wang, Longfei; Chen, Danping

    2017-05-03

    A series of Er 3+ /Tm 3+ co-doped fluoride (ZBLAN) glasses and fibers was prepared and their fluorescence spectra was measured under excitation at 793 nm and 980 nm. Correlation between the self-absorption effect of rare-earth ions and the shift of the emission peak was investigated. With the increasing length of fiber, the emission peaks red-shift when self-absorption occurs at the upper level of emission transition or blue-shift when that occurs at the lower level. As a result of the strong self-absorption effect, Er 3+ /Tm 3+ co-doped fibers mainly yield 1390-1470, 1850-1980, and 2625-2750 nm emissions when excited at 793 nm, and 1480-1580, 1800-1980, and 2625-2750 nm emissions when excited at 980 nm. Further, a broadband emission in the range of 1410-1580 nm covering the S + C communication band was obtained by the dual-pumping scheme of 793 nm and 980 nm. Results suggest that the dual-pumping scheme would be more effective and important for an Er 3+ /Tm 3+ co-doped fiber amplifier working in the S + C communication band.

  9. Exotic Optical Fibers and Glasses: Innovative Material Processing Opportunities in Earth's Orbit.

    PubMed

    Cozmuta, Ioana; Rasky, Daniel J

    2017-09-01

    Exotic optical fibers and glasses are the platform material for photonics applications, primarily due to their superior signal transmission (speed, low attenuation), with extending bandwidth deep into the infrared, exceeding that of silica fibers. Gravitational effects (convection sedimentation) have a direct impact on the phase diagram of these materials and influence melting properties, crystallization temperatures, and viscosity of the elemental mix during the manufacturing process. Such factors constitute limits to the yield, transmission quality, and strength and value of these fibers; they also constrain the range of applications. Manufacturing in a gravity-free environment such as the Earth's Orbit also helps with other aspects of the fabrication process (i.e., improved form factor of the manufacturing unit, sustainability). In this article, revolutionary developments in the field of photonics over the past decade merge with the paradigm shift in the privatization of government-owned capabilities supporting a more diverse infrastructure (parabolic, suborbital, orbital), reduced price, and increased frequency to access space and the microgravity environment. With the increased dependence on data (demand, bandwidth, efficiency), space and the microgravity environment provide opportunities for optimized performance of these exotic optical fibers and glasses underlying the development of enabling technologies to meet future data demand. Existing terrestrial markets (Internet, telecommunications, market transactions) and emerging space markets (on-orbit satellite servicing, space manufacturing, space resources, space communications, etc.) seem to converge, and this innovative material processing opportunity of exotic optical fibers and glasses might just be that "killer app": technologically competitive, economically viable, and with the ability to close the business case.

  10. Exotic Optical Fibers and Glasses: Innovative Material Processing Opportunities in Earth's Orbit

    PubMed Central

    Rasky, Daniel J.

    2017-01-01

    Abstract Exotic optical fibers and glasses are the platform material for photonics applications, primarily due to their superior signal transmission (speed, low attenuation), with extending bandwidth deep into the infrared, exceeding that of silica fibers. Gravitational effects (convection sedimentation) have a direct impact on the phase diagram of these materials and influence melting properties, crystallization temperatures, and viscosity of the elemental mix during the manufacturing process. Such factors constitute limits to the yield, transmission quality, and strength and value of these fibers; they also constrain the range of applications. Manufacturing in a gravity-free environment such as the Earth's Orbit also helps with other aspects of the fabrication process (i.e., improved form factor of the manufacturing unit, sustainability). In this article, revolutionary developments in the field of photonics over the past decade merge with the paradigm shift in the privatization of government-owned capabilities supporting a more diverse infrastructure (parabolic, suborbital, orbital), reduced price, and increased frequency to access space and the microgravity environment. With the increased dependence on data (demand, bandwidth, efficiency), space and the microgravity environment provide opportunities for optimized performance of these exotic optical fibers and glasses underlying the development of enabling technologies to meet future data demand. Existing terrestrial markets (Internet, telecommunications, market transactions) and emerging space markets (on-orbit satellite servicing, space manufacturing, space resources, space communications, etc.) seem to converge, and this innovative material processing opportunity of exotic optical fibers and glasses might just be that “killer app”: technologically competitive, economically viable, and with the ability to close the business case. PMID:29375939

  11. Mechanical properties of as-cast and heat-treated ZA-27 alloy/short glass fiber composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S.C.; Girish, B.M.; Satish, B.M.

    1998-02-01

    This paper reports on the mechanical properties of as-cast and heat-treated ZA-27 alloy composites reinforced with glass fibers from 1 to 5 wt%. The composites were fabricated using the Compocasting method, in which short glass fibers were introduced into the vortex created in the molten alloy through an impeller rotated at 500 rpm. The molten mass was thoroughly stirred and poured into permanent molds and squeezed under pressure. The specimens were heat treated at 320 C for 1, 2, 3, and 4 h. The tests on the as-cast composites revealed that as the glass content in the composites was increased,more » the ultimate tensile strength (UTS), compressive strength, and hardness of the composite increased, while the ductility and impact strength were decreased. Heat treatment was found to improve significantly the ductility, compressive strength, and impact strength, while the hardness and UTS were reduced. This paper discusses the behavior of these composites.« less

  12. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    USDA-ARS?s Scientific Manuscript database

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  13. Fiber glass reinforcement wrap gets DOT nod for gas-line use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-13

    Panhandle Eastern Corp.'s Texas Eastern Transmission Corp. has become the first US natural-gas pipeline company to install, under federal waiver, a fiber glass reinforcement on an in-service gas pipeline. The Clock Spring repair system was installed in August on six segments of Texas Eastern's 20-in. gas pipeline in Fayette County, Ohio, after the company had received a US Department of Transportation (DOT) waiver to use the system in place of conventional DOT-mandated repair methods. The paper describes the conventional methods, as well as comparing costs of both methods.

  14. Production of continuous glass fiber using lunar simulant

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Curreri, Peter A.

    1991-01-01

    The processing parameters and mechanical properties of glass fibers pulled from simulated lunar basalt are tested. The simulant was prepared using a plasma technique. The composition is representative of a low titanium mare basalt (Apollo sample 10084). Lunar gravity experiments are to be performed utilizing parabolic aircraft free-fall maneuvers which yield 30 seconds of 1/6-g per maneuver.

  15. Light-weight sandwich panel honeycomb core with hybrid carbon-glass fiber composite skin for electric vehicle application

    NASA Astrophysics Data System (ADS)

    Cahyono, Sukmaji Indro; Widodo, Angit; Anwar, Miftahul; Diharjo, Kuncoro; Triyono, Teguh; Hapid, A.; Kaleg, S.

    2016-03-01

    The carbon fiber reinforced plastic (CFRP) composite is relative high cost material in current manufacturing process of electric vehicle body structure. Sandwich panels consisting polypropylene (PP) honeycomb core with hybrid carbon-glass fiber composite skin were investigated. The aim of present paper was evaluate the flexural properties and bending rigidity of various volume fraction carbon-glass fiber composite skins with the honeycomb core. The flexural properties and cost of panels were compared to the reported values of solid hybrid Carbon/Glass FRP used for the frame body structure of electric vehicle. The finite element model of represented sandwich panel was established to characterize the flexural properties of material using homogenization technique. Finally, simplified model was employed to crashworthiness analysis for engine hood of the body electric vehicle structure. The good cost-electiveness of honeycomb core with hybrid carbon-glass fiber skin has the potential to be used as a light-weight alternative material in body electric vehicle fabricated.

  16. Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading.

    PubMed

    Im, So-Min; Huh, Yoon-Hyuk; Cho, Lee-Ra; Park, Chan-Jin

    2017-02-01

    The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr-Co metal mesh-reinforced maxillary complete dentures under fatigue loading. Glass fiber mesh- and Cr-Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy. After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture ( P <.05) and the control group ( P <.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces. The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair.

  17. Effect of surface treatments on the flexural properties and adhesion of glass fiber-reinforced composite post to self-adhesive luting agent and radicular dentin.

    PubMed

    Elnaghy, Amr M; Elsaka, Shaymaa E

    2016-01-01

    This study evaluated the effect of different surface treatments on the flexural properties and adhesion of glass fiber post to self-adhesive luting agent and radicular dentin. Seventy-five single-rooted human teeth were prepared to receive a glass fiber post (Reblida). The posts were divided into five groups according to the surface treatment: Gr C (control; no treatment), Gr S (silanization for 60 s), Gr AP (airborne-particle abrasion), Gr HF (etching with 9 % hydrofluoric acid for 1 min), and Gr M10 (etching with CH2Cl2 for 10 min). Dual-cure self-adhesive luting agent (Rely X Unicem) was applied to each group for testing the adhesion using micropush-out test. Failure types were examined with stereomicroscope and surface morphology of the posts was characterized using a scanning electron microscopy (SEM). Flexural properties of posts were assessed using a three-point bending test. Data were analyzed using ANOVA and Tukey's HSD test. Statistical significance was set at the 0.05 probability level. Groups treated with M10 showed significantly higher bond strength than those obtained with other surface treatments (P < 0.05). In general, improvements in bond strength (MPa) were found in the following order: M10 > C > S > AP > HF. Most failure modes were adhesive type of failures between dentin and luting agent (48.2%). SEM analysis revealed that the fiber post surfaces were modified after surface treatments. The surface treatments did not compromise the flexural properties of fiber posts. Application of M10 to the fiber post surfaces enhanced the adhesion to self-adhesive luting agent and radicular dentin.

  18. Passive sampler for formaldehyde in air using 2,4-dinitrophenylhydrazine-coated glass fiber filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, J.O.; Lindahl, R.; Andersson, K.

    1986-12-01

    A method utilizing diffusive sampling of formaldehyde in air has been developed. A glass fiber filter, impregnated with 2,4-dinitrophenylhydrazine (DNPH) and phosphoric acid and mounted into a modified aerosol-sampling cassette, is used for sampling by controlled diffusion. The formaldehyde hydrazone formed is desorbed and determined by high-performance liquid chromatography with UV detection. The sampling rate of the sampler was determined to 61 mL/min, with a standard deviation of 5%. The sampling rate is independent of formaldehyde concentrations between 0.1 and 5 mg/m/sup 3/ and sampling times between 15 min and 8 h. The sensitivity of the diffusive method is approximatelymore » 0.005 mg/m/sup 3/ (5 ppm) in an 8-h sample, and the reproducibility is better than 3%.« less

  19. A glass fiber-reinforced composite - bioactive glass cranioplasty implant: A case study of an early development stage implant removed due to a late infection.

    PubMed

    Posti, Jussi P; Piitulainen, Jaakko M; Hupa, Leena; Fagerlund, Susanne; Frantzén, Janek; Aitasalo, Kalle M J; Vuorinen, Ville; Serlo, Willy; Syrjänen, Stina; Vallittu, Pekka K

    2015-03-01

    This case study describes the properties of an early development stage bioactive glass containing fiber-reinforced composite calvarial implant with histology that has been in function for two years and three months. The patient is a 33-year old woman with a history of substance abuse, who sustained a severe traumatic brain injury later unsuccessfully treated with an autologous bone flap and a custom-made porous polyethylene implant. She was thereafter treated with developmental stage glass fiber-reinforced composite - bioactive glass implant. After two years and three months, the implant was removed due to an implant site infection. The implant was analyzed histologically, mechanically, and in terms of chemistry and dissolution of bioactive glass. Mechanical integrity of the load bearing fiber-reinforced composite part of the implant was not affected by the in vivo period. Bioactive glass particles demonstrated surface layers of hydroxyapatite like mineral and dissolution, and related increase of pH was considerably less after two and three months period than that for fresh bioactive glass. There was a difference in the histology of the tissues inside the implant areas near to the margin of the implant that absorbed blood during implant installation surgery, showed fibrous tissue with blood vessels, osteoblasts, collagenous fibers with osteoid formation, and tiny clusters of more mature hard tissue. In the center of the implant, where there was less absorbed blood, only fibrous tissue was observed. This finding is in line with the combined positron emission tomography - computed tomography examination with (18F)-fluoride marker, which demonstrated activity of the mineralizing bone by osteoblasts especially at the area near to the margin of the implant 10 months after implantation. Based on these promising reactions found in the bioactive glass containing fiber-reinforced composite implant that has been implanted for two years and three months, calvarial

  20. Water Absorption and Thickness Swelling Behavior of Polypropylene Reinforced with Hybrid Recycled Newspaper and Glass Fiber

    NASA Astrophysics Data System (ADS)

    Shakeri, Alireza; Ghasemian, Ali

    2010-04-01

    This study aims to investigate the moisture absorption of recycled newspaper fiber and recycled newspaper-glass fiber hybrid reinforced polypropylene composites to study their suitability in outdoor applications. In this work composite materials were made from E-glass fiber (G), recycled newspaper (NP) and polypropylene (PP), by using internal mixing and hot-pressing molding. Long-term water absorption (WA) and thickness swelling (TS) kinetics of the composites was investigated with water immersion. It was found that the WA and TS increase with NP content in composite and water immersion time before an equilibrium condition was reached. Composites made from the NP show comparable results as those made of the hybrid fiber. The results suggest that the water absorption and thickness swelling composite decrease with increasing glass fiber contents in hybrid fiber composite. It is interesting to find that the WA and TS can be reduced significantly with incorporation of a coupling agent (maleated polypropylene) in the composite formulation. Further studies were conducted to model the water diffusion and thickness swelling of the composites. Diffusion coefficients and swelling rate parameters in the models were obtained by fitting the model predictions with the experimental data.

  1. Polishing parameter optimization for end-surface of chalcogenide glass fiber connector

    NASA Astrophysics Data System (ADS)

    Guo, Fangxia; Dai, Shixun; Tang, Junzhou; Wang, Xunsi; Li, Xing; Xu, Yinsheng; Wu, Yuehao; Liu, Zijun

    2017-11-01

    We have investigated the optimization parameters for polishing end-surface of chalcogenide glass fiber connector in the paper. Six SiC abrasive particles of different sizes were used to polish the fiber in order of size from large to small. We analyzed the effects of polishing parameters such as particle sizes, grinding speeds and polishing durations on the quality of the fiber end surface and determined the optimized polishing parameters. We found that, high-quality fiber end surface can be achieved using only three different SiC abrasives. The surface roughness of the final ChG fiber end surface is about 48 nm without any scratches, spots and cracks. Such polishing processes could reduce the average insertion loss of the connector to about 3.4 dB.

  2. Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading

    PubMed Central

    2017-01-01

    PURPOSE The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr–Co metal mesh-reinforced maxillary complete dentures under fatigue loading. MATERIALS AND METHODS Glass fiber mesh- and Cr–Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy. RESULTS After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture (P<.05) and the control group (P<.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces. CONCLUSION The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair. PMID:28243388

  3. Three-Dimensional Material Properties of Composites with S2-Glass Fibers or Ductile Hybrid Fabric

    DTIC Science & Technology

    2013-01-13

    RDECOM-TARDEC 6501 E. Eleven Mile Rd. Warren, MI 48397-5000 ABSTRACT Material properties were determined for fiber - reinforced polymers (FRPs) with...Research Development and Engineering Center (TARDEC) funded a research project to determine the mechanical properties of seven fiber reinforced ...Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Material properties were determined for fiber - reinforced

  4. Polypropylene/glass fiber hierarchical composites incorporating inorganic fullerene-like nanoparticles for advanced technological applications.

    PubMed

    Díez-Pascual, Ana M; Naffakh, Mohammed

    2013-10-09

    Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport.

  5. Randomized clinical study comparing metallic and glass fiber post in restoration of endodontically treated teeth.

    PubMed

    Gbadebo, Olaide S; Ajayi, Deborah M; Oyekunle, Oyekunle O Dosumu; Shaba, Peter O

    2014-01-01

    Post-retained crowns are indicated for endodontically treated teeth (ETT) with severely damaged coronal tissue. Metallic custom and prefabricated posts have been used over the years, however, due to unacceptable color, extreme rigidity and corrosion, fiber posts, which are flexible, aesthetically pleasing and have modulus of elasticity comparable with dentin were introduced. To compare clinical performance of metallic and glass fiber posts in restoration of ETT. 40 ETT requiring post retained restorations were included. These teeth were randomly allocated into 2 groups. Twenty teeth were restored using a glass fiber-reinforced post (FRP) and 20 others received stainless steel parapost (PP), each in combination with composite core buildups. Patients were observed at 1 and 6 months after post placement and cementation of porcelain fused to metal (PFM) crown. Marginal gap consideration, post retention, post fracture, root fracture, crown fracture, crown decementation and loss of restoration were part of the data recorded. All teeth were assessed clinically and radiographically. Fisher's exact test was used for categorical values while log-rank test was used for descriptive statistical analysis. One tooth in the PP group failed, secondary to decementation of the PFM crown giving a 2.5% overall failure while none in the FRP group failed. The survival rate of FRP was thus 100% while it was 97.5% in the PP group. This however was not statistically significant (log-rank test, P = 0.32). Glass FRPs performed better than the metallic post based on short-term clinical performance.

  6. Fibrous Glass Aerosols: A Literature Review

    DTIC Science & Technology

    1987-10-02

    mineral wool , which was a generic term for either slag wool or rock wool. Slag wool was produced by melting and ?iberrizng molten Iron ore, and was...important aspects. In a study by bumi et al, (20), the concentration of fibers exposed to mploye•s ot 16 fibrous glass or mineral wool plits was quantified...employees of 17 glass fiber or mineral wool plants, with at least 1 year’s exposure to fibers less than 3 um in dimter, between the years 1940 and 1963. Mean

  7. Flexure and impact properties of glass fiber reinforced nylon 6-polypropylene composites

    NASA Astrophysics Data System (ADS)

    Kusaseh, N. M.; Nuruzzaman, D. M.; Ismail, N. M.; Hamedon, Z.; Azhari, A.; Iqbal, A. K. M. A.

    2018-03-01

    In recent years, polymer composites are rapidly developing and replacing the metals or alloys in numerous engineering applications. These polymer composites are the topic of interests in industrial applications such as automotive and aerospace industries. In the present research study, glass fiber (GF) reinforced nylon 6 (PA6)-polypropylene (PP) composite specimens were prepared successfully using injection molding process. Test specimens of five different compositions such as, 70%PA6+30%PP, 65%PA6+30%PP+5%GF, 60%PA6+30%PP+10%GF, 55%PA6+30%PP+15%GF and 50%PA6+30%PP+20%GF were prepared. In the experiments, flexure and impact tests were carried out. The obtained results revealed that flexure and impact properties of the polymer composites were significantly influenced by the glass fiber content. Results showed that flexural strength is low for pure polymer blend and flexural strength of GF reinforced composite increases gradually with the increase in glass fiber content. Test results also revealed that the impact strength of 70%PA6+30%PP is the highest and 55%PA6+30%PP+15%GF composite shows moderate impact strength. On the other hand, 50%PA6+30%PP+20%GF composite shows low toughness or reduced impact strength.

  8. Reinforcement of Dental Methacrylate with Glass Fiber after Heated Silane Application

    PubMed Central

    Fonseca, Rodrigo Borges; de Paula, Marcella Silva; Favarão, Isabella Negro; Kasuya, Amanda Vessoni Barbosa; de Almeida, Letícia Nunes; Mendes, Gustavo Adolfo Martins; Carlo, Hugo Lemes

    2014-01-01

    This study evaluated the influence of silane heat treatment and glass fiber fabrication type, industrially treated (I) or pure (P), on flexural and compressive strength of methacrylate resin bars (BISGMA/TEGDMA, 50/50%). Six groups (n = 10) were created: I-sil: I/silanated; P-sil: P-silanated; I-sil/heat: I/silanated heated to 100°; P-sil/heat: P/silanated heated to 100°; (I: I/not silanated; and P: P/not silanated. Specimens were prepared for flexural strength (10 × 2 × 1 mm) and for compressive strength 9.5 × 5.5 × 3 mm) and tested at 0.5 mm/min. Statistical analysis demonstrated the following for flexural strength (P < 0.05): I-sil: 155.89 ± 45.27BC; P-sil: 155.89 ± 45.27BC; I-sil/heat: 130.20 ± 22.11C; P-sil/heat: 169.86 ± 50.29AB; I: 131.87 ± 15.86C. For compressive strength, the following are demonstrated: I-sil: 1367.25 ± 188.77ab; P-sil: 867.61 ± 102.76d; I-sil/heat: 1162.98 ± 222.07c; P-sil/heat: 1499.35 ± 339.06a; and I: 1245.78 ± 211.16bc. Due to the impossibility of incorporating the stipulated amount of fiber, P group was excluded. Glass fiber treatment with heated silane enhanced flexural and compressive strength of a reinforced dental methacrylate. PMID:24967361

  9. The thermally reversing window in ternary GexPxS1-2x glasses

    NASA Astrophysics Data System (ADS)

    Vempati, U.; Boolchand, P.

    2004-11-01

    GexPxS1-2x glasses in the compositional range 0.05 \\le x \\le 0.19 have been synthesized and examined in temperature modulated differential scanning calorimetry (MDSC) and Raman scattering experiments. Trends in the non-reversing enthalpy ΔHnr(x) near Tg show the term to almost vanish in the 0.090(5)0.135. In analogy to previous results on chalcogenide glasses, we identify compositions at x<0.09 to be elastically floppy, those in the 0.0900.135 to be stressed rigid. MDSC results also show that the ΔHnr term ages in the stressed-rigid and floppy phases but not in the intermediate phase. The intermediate phase is viewed to be a self-organized phase of a disordered network. It consists of at least four isostatically rigid local structures: corner-sharing GeS4, edge-sharing GeS2, pyramidal P(S1/2)3 and quasi-tetrahedral S = P(S1/2)3 units for which evidence comes from Raman scattering. The latter method also shows the existence of P4S7 and P4S10 molecules in the glasses segregated from the backbone. These aspects of structure contribute to an intermediate phase that is significantly narrower in width than in the corresponding selenide glasses.

  10. Fabrication of solar light induced Fe-TiO{sub 2} immobilized on glass-fiber and application for phenol photocatalytic degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shaohua, E-mail: linsh75@163.com; Zhang, Xiwang; Sun, Qinju

    2013-11-15

    Graphical abstract: - Highlights: • Fe-doped TiO{sub 2} immobilized on glass-fiber net were prepared by sol–gel method. • Fe inhibited the phase transition of TiO{sub 2} from anatase to rutile. • The optimal Fe doping dose was around 0.005 wt%. • The optimal calcination temperature was around 600 °C. - Abstract: Iron-doped anatase titanium dioxide catalysts coated on glass-fiber were successfully synthesized by a dip-coating sol–gel method. The prepared catalysts were characterized by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy to understand the synthesis mechanism, and their photocatalytic activities weremore » evaluated by photodegradation of phenol under simulated solar irradiation. EDX analysis confirmed the existence of iron in the immobilized catalysts. XRD suggested that the phase transition of the catalysts from anatase to rutile were restrained, and almost pure anatase TiO{sub 2} could retain even the calcination temperature reached 800 °C. The UV-Vis diffuse reflectance spectroscopy of the catalysts showed a red shift and increased photoabsorbance in the visible range for all the doped samples. Iron loading and calcination temperature have obvious influences on photocatalytic activity. In this study, the optimal doping dose and calcination temperature were around 0.005 wt% and 600 °C, respectively.« less

  11. Processing and damage recovery of intrinsic self-healing glass fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Sordo, Federica; Michaud, Véronique

    2016-08-01

    Glass fiber reinforced composites with a self-healing, supramolecular hybrid network matrix were produced using a modified vacuum assisted resin infusion moulding process adapted to high temperature processing. The quality and fiber volume fraction (50%) of the obtained materials were assessed through microscopy and matrix burn-off methods. The thermo-mechanical properties were quantified by means of dynamic mechanical analysis, revealing very high damping properties compared to traditional epoxy-based glass fiber reinforced composites. Self-healing properties were assessed by three-point bending tests. A high recovery of the flexural properties, around 72% for the elastic modulus and 65% of the maximum flexural stress, was achieved after a resting period of 24 h at room temperature. Recovery after low velocity impact events was also visually observed. Applications for this intrinsic and autonomic self-healing highly reinforced composite material point towards semi-structural applications where high damping and/or integrity recovery after impact are required.

  12. Electric Field-Assisted Orientation of Short Phosphate Glass Fibers on Stainless Steel for Biomedical Applications.

    PubMed

    Chen, Qiang; Jing, Jiajia; Qi, Hongfei; Ahmed, Ifty; Yang, Haiou; Liu, Xianhu; Lu, T L; Boccaccini, Aldo R

    2018-04-11

    Structural and compositional modifications of metallic implant surfaces are being actively investigated to achieve improved bone-to-implant bonding. In this study, a strategy to modify bulk metallic surfaces by electrophoretic deposition (EPD) of short phosphate glass fibers (sPGF) is presented. Random and aligned orientation of sPGF embedded in a poly(acrylic acid) matrix is achieved by vertical and horizontal EPD, respectively. The influence of EPD parameters on the degree of alignment is investigated to pave the way for the fabrication of highly aligned sPGF structures in large areas. Importantly, the oriented sPGF structure in the coating, owing to the synergistic effects of bioactive composition and fiber orientation, plays an important role in directional cell migration and enhanced proliferation. Moreover, gene expression of MC3T3-E1 cells cultured with different concentrations of sPGF is thoroughly assessed to elucidate the potential stimulating effect of sPGF on osteogenic differentiation. This study represents an innovative exploitation of EPD to develop textured surfaces by orientation of fibers in the macroscale, which shows great potential for directional functionalization of metallic implants.

  13. Optical and electrical characterizations of multifunctional silver phosphate glass and polymer-based optical fibers.

    PubMed

    Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès

    2017-03-03

    In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO 3 -WO 3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO 3 -WO 3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10 -3 and 10 -1  S·cm -1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording.

  14. Optical and electrical characterizations of multifunctional silver phosphate glass and polymer-based optical fibers

    PubMed Central

    Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès

    2017-01-01

    In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO3-WO3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO3-WO3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10−3 and 10−1 S·cm−1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording. PMID:28256608

  15. In vitro immersion studies of optimized electrospun bioglass 45S5 fibers for tissue engineering application

    NASA Astrophysics Data System (ADS)

    Durgalakshmi, D.; Balakumar, S.

    2015-06-01

    Bioactive-glass scaffolds are crucial in bone tissue engineering application since, they work as temporary templates for tissue regrowth and provides structural support to the cells. However, many issues remain unfolded with regard to their design. In this study, for the first time bioactive glass 45S5 fibers were synthesized using electrospinning technique. The electrospinning process parameters were optimized to obtain reproducible fibers. The effect of solvent concentration and polymer concentration on fiber formation was clearly studied. In vitro studies in simulated body fluid (SBF) were performed to investigate the bioactivity and mineralization of the scaffold by inducing the formation of hydroxyapatite (HA) crystals.

  16. Study to determine and analyze the strength of high modulus glass in epoxy-matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1974-01-01

    Glass composition research was conducted to produce a high modulus, high strength beryllium-free glass fiber. This program was built on the previous research for developing high modulus, high strength glass fibers which had a 5 weight percent beryllia content. The fibers resulting from the composition program were then used to produce fiber reinforced-epoxy resin composites which were compared with composites reinforced by commercial high modulus glass fibers, Thornel S graphite fiber, and hybrids where the external quarters were reinforced with Thornel S graphite fiber and the interior half with glass fiber as well as the reverse hybrid. The composites were given tensile strength, compressive strength, short-beam shear strength, creep and fatigue tests. Comments are included on the significance of the test data.

  17. Development of potassium ion conducting hollow glass fibers. [potassium sulfur battery

    NASA Technical Reports Server (NTRS)

    Tsang, F. Y.

    1974-01-01

    Potassium ion conducting glasses, chemically resistant to potassium, potassium sulfide and sulfur, were made and their possible utility as the membrane material for a potassium/sulfur battery was evaluated. At least one satisfactory candidate was found. It possesses an electrical resistance which makes it usable as a membrane in the form of a fine hollow fiber. It's chemical and electrochemical resistances are excellent. The other aspects of the possible potassium sulfur battery utilizing such fine hollow fibers, including the header (or tube sheet) and a cathode current collector were studied. Several cathode materials were found to be satisfactory. None of the tube sheet materials studied possessed all the desired properties. Multi-fiber cells had very limited life-time due to physical failure of fibers at the fiber/tube sheet junctions.

  18. Mace-like hierarchical MoS2/NiCo2S4 composites supported by carbon fiber paper: An efficient electrocatalyst for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Sun, Lan; Wang, Tao; Zhang, Long; Sun, Yunjin; Xu, Kewei; Dai, Zhengfei; Ma, Fei

    2018-02-01

    The rational design and preparation of earth-abundant, stable and efficient electrocatalysts for hydrogen production is currently the subject in extensive scientific and technological researches toward the future of a clean-energy society. Herein, a mace-like MoS2/NiCo2S4 hierarchical structure is designed and synthesized on carbon fiber paper via a facile hydrothermal method, and evaluated as electrocatalyst for hydrogen evolution reaction. In the MoS2/NiCo2S4/carbon fiber paper hierarchical structures, MoS2 nanosheets are dispersively distributed on the surface of NiCo2S4 nanowires, which provides an enlarged surface area, abundant interfaces and catalytic active sites. As for hydrogen evolution reaction, such MoS2/NiCo2S4/carbon fiber paper heterostructures give rise to a hydrogen evolution reaction catalytic current density of 10 mA cm-2 with a lower overpotential of 139 mV and a smaller Tafel slope of 37 mV·dec-1 than those of MoS2/carbon fiber paper and NiCo2S4/carbon fiber paper counterparts, exhibiting a prominent electrocatalytic performance. Moreover, the electrocatalytic properties change little after 5000 CV cycles and continual electrolysis for 12 h without obvious decay, respectively, demonstrating high durability and stability. The excellent hydrogen evolution reaction performances endow the hierarchical configuration MoS2/NiCo2S4/carbon fiber paper with promising alternative in HER and other related renewable energy fields.

  19. Studies on mechanical properties of graphene based hybrid composites reinforced with kenaf/glass fiber

    NASA Astrophysics Data System (ADS)

    Kumar, S. C. Ramesh; Shivanand, H. K.; Vidayasagar, H. N.; Nagabhushan, V.

    2018-04-01

    The polymer composites are developed with natural fibers and fillers as a alternate material for some of the engineering applications in the field of automobiles and domestic purposes are being investigated. The natural fiber composites such as banana, sisal, jute, coir, kenaf and hemp polymer composites appear more effective due to their lightweight, higher specific strength, biodegradable and cost is low. The main objective is to prepare the Kenaf/Glass fiber hybrid composite filled with graphene as nano filler and to investigate the mechanical properties of hybrid composites. The different types of hybrid composites laminates are fabricated without filler, 0.5, 1 & 1.5Wt % of graphene by using kenaf and glass fiber as reinforcing material with epoxy resin. The specimen were prepared as per the ASTM standards and results shows that the mixing of graphene in epoxy resin improves the mechanical properties of hybrid composites.

  20. A Theoretical Model for Estimation of Yield Strength of Fiber Metal Laminate

    NASA Astrophysics Data System (ADS)

    Bhat, Sunil; Nagesh, Suresh; Umesh, C. K.; Narayanan, S.

    2017-08-01

    The paper presents a theoretical model for estimation of yield strength of fiber metal laminate. Principles of elasticity and formulation of residual stress are employed to determine the stress state in metal layer of the laminate that is found to be higher than the stress applied over the laminate resulting in reduced yield strength of the laminate in comparison with that of the metal layer. The model is tested over 4A-3/2 Glare laminate comprising three thin aerospace 2014-T6 aluminum alloy layers alternately bonded adhesively with two prepregs, each prepreg built up of three uni-directional glass fiber layers laid in longitudinal and transverse directions. Laminates with prepregs of E-Glass and S-Glass fibers are investigated separately under uni-axial tension. Yield strengths of both the Glare variants are found to be less than that of aluminum alloy with use of S-Glass fiber resulting in higher laminate yield strength than with the use of E-Glass fiber. Results from finite element analysis and tensile tests conducted over the laminates substantiate the theoretical model.

  1. Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber

    PubMed Central

    Li, Wentao; Chen, Danping; Qinling, Zhou; Hu, Lili

    2015-01-01

    We have demonstrated a 45 μm core diameter Neodymium-doped all-solid silicate glass photonic crystal fiber laser with a single mode laser output. The structure parameters and modes information of the fiber are both demonstrated by theoretical calculations using Finite Difference Time Domain (FDTD) method and experimental measurements. Maximum 0.8 W output power limited by launched pump power has been generated in 1064 nm with laser beam quality factor M2 1.18. PMID:26205850

  2. Fiber glass prevents cracking of polyurethane foam insulation on cryogenic vessels

    NASA Technical Reports Server (NTRS)

    Forge, D. A.

    1968-01-01

    Fiber glass material, placed between polyurethane foam insulation and the outer surfaces of cryogenic vessels, retains its resilience at cryogenic temperatures and provides an expansion layer between the metal surfaces and the polyurethane foam, preventing cracking of the latter.

  3. Application of sandwich honeycomb carbon/glass fiber-honeycomb composite in the floor component of electric car

    NASA Astrophysics Data System (ADS)

    Sukmaji, I. C.; Wijang, W. R.; Andri, S.; Bambang, K.; Teguh, T.

    2017-01-01

    Nowadays composite is a superior material used in automotive component due to its outstanding mechanical behavior. The sandwich polypropylene honeycomb core with carbon/glass fiber composite skin (SHCG) as based material in a floor component of electric car application is investigated in the present research. In sandwich structure form, it can absorb noise better compare with the conventional material [1]. Also in present paper, Finite Element Analysis (FEA) of SHCG as based material for floor component of the electric car is analyzed. The composite sandwich is contained with a layer uniform carbon fiber and mixing non-uniform carbon-glass fiber in upper and lower skin. Between skins of SHCG are core polypropylene honeycomb that it have good flexibility to form following dies profile. The variables of volume fraction ratio of carbon/glass fiber in SHCG skin are 20/80%, 30/70%, and 50/50%. The specimen of SHCG is tested using the universal testing machine by three points bending method refers to ASTM C393 and ASTM C365. The cross point between tensile strength to the volume fraction the mixing carbon/glass line and ratio cost line are the searched material with good mechanical performance and reasonable cost. The point is 30/70 volume fraction of carbon/glass fiber. The result of the testing experiment is become input properties of model structure sandwich in FEA simulation. FEA simulation approach is conducted to find critical strength and factor of complex safety geometry against varied distributed passenger loads of a floor component the electric car. The passenger loads variable are 80, 100, 150, 200, 250 and 300 kg.

  4. Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 μm laser applications

    NASA Astrophysics Data System (ADS)

    Wang, Shunbin; Li, Chengzhi; Yao, Chuanfei; Jia, Shijie; Jia, Zhixu; Qin, Guanshi; Qin, Weiping

    2017-02-01

    Intense ∼1.2 μm fluorescence is observed in Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses under 915 nm laser diode excitation. The 1.2 μm emission can be ascribed to the transition 5I6→5I8 of Ho3+. With the introducing of BaF2, the content of OH in the glasses drops markedly, and the 1.2 μm emission intensity increases gradually as increasing the concentration percentage of BaF2. Furthermore, microstructured fibers based on the TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method, and a relative positive gain of ∼9.42 dB at 1175.3 nm is obtained in a 5 cm long fiber.

  5. Influence of ferrule preparation with or without glass fiber post on fracture resistance of endodontically treated teeth

    PubMed Central

    de LIMA, Alexandra Furtado; SPAZZIN, Aloísio Oro; GALAFASSI, Daniel; CORRER-SOBRINHO, Lourenço; CARLINI-JÚNIOR, Bruno

    2010-01-01

    Objective This study evaluated the effect of ferrule preparation (Fp) on the fracture resistance of endodontically treated teeth, restored with composite resin cores with or without glass fiber posts. Material and Methods Forty-four bovine teeth were sectioned 19 or 17 mm (2 mm ferrule) from the apex, endodontically treated and assigned to four groups (n = 11): Group 1: Fp and post; Group 2: Fp and without post; Group 3: without Fp and with post; Group 4: without Fp and without post. All specimens were restored with composite resin core and metal crown. Specimens were subjected to fracture resistance testing in a universal testing machine at a crosshead speed of 0.5 mm/min. The data were analyzed by two-way ANOVA and Tukey’s tests (α=0.05). Results The mean fracture resistance values were as follows: Group 1: 573.3 N; Group 2: 552.5 N; Group 3: 275.3 N; Group 4: 258.6 N. Significantly higher fracture resistance was found for the groups with Fp (p<0.001). Conclusion There was no statistically significant interaction between the "Fp" and "post" factors (p = 0.954). The ferrule preparation increased the fracture resistance of endodontically treated teeth. However, the use of glass fiber post showed no significant influence on the fracture resistance. PMID:20835570

  6. Separation of Water from Ultralow Sulfur Diesel Using Novel Polymer Nanofiber-Coated Glass Fiber Media.

    PubMed

    Rajgarhia, Stuti S; Jana, Sadhan C; Chase, George G

    2016-08-24

    Polymer nanofibers with interpenetrating network (IPN) morphology are used in this work for the development of composite, hydrophobic filter media in conjunction with glass fibers for removal of water droplets from ultralow sulfur diesel (ULSD). The nanofibers are produced from hydrophobic polyvinyl acetate (PVAc) and hydrophilic polyvinylpyrrolidone (PVP) by spinning the polymer solutions using gas jet fiber (GJF) method. The nanofibers coat the individual glass fibers due to polar-polar interactions during the spinning process and render the filter media highly hydrophobic with a water contact angle approaching 150°. The efficiency of the resultant filter media is evaluated in terms of separation of water droplets of average size 20 μm from the suspensions in ULSD.

  7. Effect of weight fraction of carbon black and number of plies of E-glass fiber to reflection loss of E-glass/ripoxy composite for radar absorbing structure (RAS)

    NASA Astrophysics Data System (ADS)

    Widyastuti, Ramadhan, Rizal; Ardhyananta, Hosta; Zainuri, Mochamad

    2013-09-01

    Nowadays, studies on investigating radar absorbing structure (RAS) using fiber reinforced polymeric (FRP) composite materials are becoming popular research field because the electromagnetic properties of FRP composites can be tailored effectively by just adding some electromagnetic powders, such as carbon black, ferrite, carbonyl iron, and etc., to the matrix of composites. The RAS works not only as a load bearing structure to hold the antenna system, but also has the important function of absorbing the in-band electromagnetic wave coming from the electromagnetic energy of tracking systems. In this study, E-glass fiber reinforced ripoxy resin composite was fabricated by blending the conductive carbon black (Ketjenblack EC300J) with the binder matrix of the composite material and maximizing the coefficient of absorption more than 90% (more than -10 dB) within the X-band frequency (8 - 12 GHz). It was measured by electrical conductivity (LCR meter) and vector network analyzer (VNA). Finally, the composite RAS with 0.02 weight fraction of carbon black and 4 plies of E-glass fiber showed thickness of 2.1 mm, electrical conductivity of 8.33 × 10-6 S/m, and maximum reflection loss of -27.123 dB, which can absorb more than 90% of incident EM wave throughout the entire X-band frequency range, has been developed.

  8. Low thermal flux glass-fiber tubing for cryogenic service.

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Pharo, T. J., Jr.; Phillips, J. M.

    1972-01-01

    Study of thin metallic liners which provide leak-free service in cryogenic propulsion plumbing systems and are overwrapped with a glass-fiber composite that provides strength and protection from handling damage. The composite tube is lightweight, strong, and has a very low thermal flux. The resultant reduced boiloff of stored cryogenic propellants yields a substantial weight savings for long-term missions (seven days or greater). Twelve styles of tubing ranging from 1/2 to 5 in. in diameter were fabricated and tested with excellent results for most of the concepts at operating temperatures from +70 to -423 F and operating pressures up to 3000 psi.

  9. An 8 cm long holmium-doped fiber saturable absorber for Q-switched fiber laser generation at 2-μm region

    NASA Astrophysics Data System (ADS)

    Rahman, M. F. A.; Dhar, A.; Das, S.; Dutta, D.; Paul, M. C.; Rusdi, M. F. M.; Latiff, A. A.; Dimyati, K.; Harun, S. W.

    2018-07-01

    We demonstrate a Q-switched all-fiber laser operating at 2-μm region by adding a piece of 8 cm long holmium doped fiber (HDF) as a fiber saturable absorber (SA) in Thulium doped fiber laser (TDFL) ring cavity. Doping of Ho ions into yttria-alumina silica glass was done through conventional Modified Chemical Vapor Deposition (MCVD) technique in conjunction with solution doping process. The fabricated HDF has a linear absorption of 3 dB with a core diameter and a numerical aperture of 10 μm and 0.18, respectively. A self-started Q-switching operation begins at 418 mW pump level and continually dominant until 564 mW pump level. As the pump power increases, stable pulse train presence from 30.61 kHz to 38.89 kHz while the pulse width reduces from 3.18 μs to 2.27 μs. Both maximum output power and maximum peak power are obtained at 5.05 mW and 57.2 mW, respectively, while the maximum pulse energy is calculated to be 129 nJ. The signal-to-noise ratio (SNR) of the fundamental frequency is 50 dB. Our work may contribute to the discovery of stable, robust, and economic SA for pulse fiber laser generation at 2-μm region.

  10. Fabry-Perot interferometer fiber tip sensor based on a glass microsphere glued at the etched end of multimode fiber

    NASA Astrophysics Data System (ADS)

    Chen, Weiping P.; Wang, Dongning N.; Xu, Ben; Wang, Zhaokun K.; Zhao, Chun-Liu

    2017-05-01

    We demonstrate an optical Fabry-Perot interferometer fiber tip sensor based on a glass microsphere glued at the etched end of a multimode fiber. The fiber device is miniature and robust, with a convenient reflection mode of operation, a high temperature sensitivity of 202.6 pm/°C within the range from 5°C to 90°C, a good refractive index sensitivity of ˜119 nm/RIU within the range from 1.331 to 1.38, and a gas pressure sensitivity of 0.19 dB/MPa.

  11. New Fiber Reinforced Waterless Concrete for Extraterrestrial Structural Applications

    NASA Technical Reports Server (NTRS)

    Toutanji, H.; Tucker, D.; Ethridge, E.

    2005-01-01

    Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction mate: iii an attractive alternative to conventional concrete as it does not require water For the purpose of this paper it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, brick and beam elements. Glass fibers produced from regolith were used as a reinforcement to improve the mechanical properties of the sulfur concrete. Glass fibers and glass rebar were produced by melting the lunar regolith simulant. Lunar regolith stimulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline 46100 high temperature MoSi2 furnace at melting temperatures of 1450 to 1600G. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The viability of sulfur concrete as a construction material for extraterrestrial application is presented. The mechanical properties of the glass fiber reinforced sulfur concrete were investigated.

  12. Transition metal dichalcogenide (WS2 and MoS2) saturable absorbers for Q-switched Er-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Li, Lu; Lv, Ruidong; Liu, Sicong; Wang, Xi; Wang, Yonggang; Chen, Zhendong; Wang, Jiang

    2018-05-01

    This report demonstrates a stable Q-switched Er-doped fiber laser with MoS2 (WS2)-based saturable absorber (SA) in the net normal dispersion regime. The SA is obtained by mixing MoS2 (WS2) nanosheets with polyvinyl alcohol (PVA) into polystyrene cells, and then evaporating them to form MoS2 (WS2)/PVA film. The modulation depth values for MoS2/PVA and WS2/PVA are measured to be 2.7% and 2.1% respectively. Employing the MoS2 (WS2)/PVA film in the Er-doped fiber laser cavity, stable Q-switching operation is achieved with central wavelength of 1560 nm. The shortest pulse durations of the two Q-switched fiber lasers are, respectively, 3.97 and 3.71 µs, and their maximum single pulse energies are measured to be 131.52 and 126.96 nJ. The experimental results clearly show that MoS2 (WS2) is a promising nonlinear material, and that improvements in Q-switching performance due to two SAs in the net normal dispersion regime might be helpful in the design of fiber lasers.

  13. Single-Frequency Narrow Linewidth 2 Micron Fiber Laser

    NASA Technical Reports Server (NTRS)

    Jiang, Shibin (Inventor); Spiegelberg, Christine (Inventor); Luo, Tao (Inventor)

    2006-01-01

    A compact single frequency, single-mode 2 .mu.m fiber laser with narrow linewidth, <100 kHz and preferably <100 kHz, is formed with a low phonon energy glass doped with triply ionized rare-earth thulium and/or holmium oxide and fiber gratings formed in sections of passive silica fiber and fused thereto. Formation of the gratings in passive silica fiber both facilitates splicing to other optical components and reduces noise thus improving linewidth. An increased doping concentration of 0.5 to 15 wt. % for thulium, holmium or mixtures thereof produces adequate gain, hence output power levels for fiber lengths less than 5 cm and preferably less than 3 cm to enable single-frequency operation.

  14. Special-purpose fiber type 475--toxicological assessment.

    PubMed

    Bernstein, D M

    2007-02-01

    Type 475 special-purpose glass fiber is rather unique among the family of synthetic mineral fibers. It is used not for insulation but for "high-end" filtration products designed for high and ultra-high purity filtration of air and liquids. The designation for these types of filters varies with country and includes HEPA, ULPA, EU 10-13, EN1822, and S3. In its evaluation, type 475 has been grouped together with E-glass another special-purpose fibre often with little distinction made in terms of its chemistry and corresponding toxicological response. The detailed review of the available toxicology data on type 475 glass fibers clearly shows that following inhalation of this fiber even at relatively high doses, which likely exceed that at which lung overload in the rat is known to occur, type 475 glass fibers are not fibrogenic and do not cause tumors. These data clearly show an important differentiation in potency between type 475 glass fibers and E-glass and support treating these two types of fibers independently and not equating them though the term "special-purpose fibers." Analysis of the intraperitoneal studies taking into account fibre dimensions shows that at 109 fibers injected, there was a 0.3 tumor incidence. While these studies indicate according to the European Commission (EC) classification criteria that 475 should not be fully exonerated as a carcinogen, the results of the inhalation study fully support classification in category 3. The IP results are more difficult to interpret, however, the IP study itself provides no toxicological basis for determining what range of dose-response should correspond to EU category 3 or 2. Following the EC classification criteria, the toxicological data clearly indicate that 475 fibers are appropriately classified in EC category 3.

  15. Finite Element Analysis of the Endodontically-treated Maxillary Premolars restored with Composite Resin along with Glass Fiber Insertion in Various Positions.

    PubMed

    Navimipour, Elmira Jafari; Firouzmandi, Maryam; Mirhashemi, Fatemeh Sadat

    2015-04-01

    This study evaluated the effect of three methods of glass fiber insertion on stress distribution pattern and cusp movement of the root-filled maxillary premolars using finite element method (FEM) analysis. A three-dimensional (3 D) FEM model of a sound upper premolar tooth and four models of root-filled upper premolars with mesiocclusodistal (MOD) cavities were molded and restored with: (1) Composite resin only (NF); (2) Composite resin along with a ribbon of glass fiber placed in the occlusal third (OF); (3) Composite resin along with a ribbon of glass fiber placed circumferentially in the cervical third (CF), and (4) Composite resin along with occlusal and circumferential fibers (OCF). A static vertical load was applied to calculate the stress distributions. Structural analysis program by Solidworks were used for FEM analysis. Von-Mises stress values and cusp movements induced by occlusal loading were evaluated. Maximum Von-Mises stress of enamel occurred in sound tooth, followed by NF, CF, OF and OCF. Maximum Von-Mises stress of dentin occurred in sound tooth, followed by OF, OCF, CF and NF. Stress distribution patterns of OF and OCF were similar. Maximum overall stress values were concentrated in NF. Although stress distribution patterns of NF and CF were found as similar, CF showed lower stress values. Palatal cusp movement was more than buccal cusp in all of the models. The results of our study indicated that while the circumferential fiber had little effect on overall stress concentration, it provided a more favorable stress distribution pattern in cervical region. The occlusal fiber reduced the average stress in the entire structure but did not reduce cuspal movement. Incorporating glass fiber in composite restorations may alter the stress state within the structure depending on fiber position.

  16. Tribological properties of glass fiber filled polytetrafluoroethylene sliding against stainless steel under dry and aqueous environments: enhanced tribological performance in sea water

    NASA Astrophysics Data System (ADS)

    Jebran Khan, Mohammad; Wani, M. F.; Gupta, Rajat

    2018-05-01

    The present study aims at investigating the tribological behavior of glass fiber filled PTFE on sliding against AISI 420 stainless steel in ambient air, distilled water and natural sea water. The friction and wear tests were carried out using a pin-on-disc configuration at room temperature on 25 wt% glass fiber filled PTFE at a normal load of 10 N. The glass fiber filled PTFE showed superior tribological performance in sea water compared to dry sliding and distilled water environment conditions. The lowest average coefficient of friction of 0.028 and lowest specific wear rate of 5.85 × 10‑6 mm3 Nm‑1 was observed under sea water environment. The worn surfaces were examined using Optical microscopy, SEM, EDS and Raman spectroscopy to reveal the wear mechanisms. It was revealed that the superior tribological performance of glass fiber filled PTFE in sea water is due to the formation of a lubricating film on the surface of glass fiber filled PTFE in sea water. The profilometric traces of the counterface after tribological tests were taken using an optical 3D surface profilometer to investigate the effect of indirect corrosive wear on the friction and wear of glass fiber filled PTFE under sea water environment.

  17. Composite resin reinforced with pre-tensioned glass fibers. Influence of prestressing on flexural properties.

    PubMed

    Schlichting, Luís Henrique; de Andrada, Mauro Amaral Caldeira; Vieira, Luiz Clóvis Cardoso; de Oliveira Barra, Guilherme Mariz; Magne, Pascal

    2010-02-01

    This investigation evaluated the flexural properties of two composite resins, and the influence of unidirectional glass fiber reinforcements, with and without pre-tensioning. Two composite resins (Q: Quixfil and A: Adoro) were used to fabricate 2 mm x 2 mm x 25 mm beams (N = 10), reinforced with two fiber bundles along the long axis of the beam and pre-tensioned under a load equivalent to 73.5% of its tensile strength (groups QPF and APF). In two other experimental groups, the bundles were similarly positioned but without pre-tension (groups QF and AF). Two more groups were included without fiber reinforcement (control groups Q and A). After 24h storage, specimens were subjected to a three-point flexural bending test to establish the flexural module, the deflection at initial failure and the flexural strength. Data were analyzed using a two-way analysis of variance (composite resin system and fiber reinforcement type) and the Tukey HSD post hoc tests (alpha = .05). The results showed that prestressing increased the flexural module of Adoro specimens (p<.001) but not Quixfil (p = .17). Prestressed beams reached greater deflection at initial failure than those conventionally reinforced (p<.001), namely .85-1.35 mm for Adoro and .66-.90 mm for Quixfil. Prestressing also significantly increased the flexural strength of beams (p<.001) in both Adoro and Quixfil groups, from 443.46 to 569.15 MPa and from 425.47 to 568.00 MPa, respectively. Pre-tensioning of unidirectional glass fibers increased both deflection until initial failure and flexural strength of Quixfil and Adoro composite resins, however, with limited effects on the flexural modulus. Copyright 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Holmium-doped fluorotellurite microstructured fibers for 2.1 μm lasing.

    PubMed

    Yao, Chuanfei; He, Chunfeng; Jia, Zhixu; Wang, Shunbin; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2015-10-15

    Holmium (Ho3+)-doped fluorotellurite microstructured fibers based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. By using a 1.992 μm fiber laser as the pump source, lasing at 2.077 μm is obtained from a 27 cm long Ho3+-doped fluorotellurite microstructured fiber. The maximum unsaturated power is about 161 mW and the corresponding slope efficiency is up to 67.4%. The influence of fiber length on lasing at 2.1 μm is also investigated. Our results show that Ho3+-doped fluorotellurite microstructured fibers are promising gain media for 2.1 μm laser applications.

  19. Glass fiber reinforced concrete for terrestrial photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Maxwell, H.

    1979-01-01

    The use of glass-fiber-reinforced concrete (GRC) as a low-cost structural substrate for terrestrial solar cell arrays is discussed. The properties and fabrication of glass-reinforced concrete structures are considered, and a preliminary design for a laminated solar cell assembly built on a GRC substrate is presented. A total cost for such a photovoltaic module, composed of a Korad acrylic plastic film front cover, an aluminum foil back cover, an ethylene/vinyl acetate pottant/adhesive and a cotton fabric electrical isolator in addition to the GRC substrate, of $9.42/sq m is projected, which is less than the $11.00/sq m cost goal set by the Department of Energy. Preliminary evaluations are concluded to have shown the design capabilities and cost effectiveness of GRC; however, its potential for automated mass production has yet to be evaluated.

  20. The effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resin: An in vitro study.

    PubMed

    Anasane, Nayana; Ahirrao, Yogesh; Chitnis, Deepa; Meshram, Suresh

    2013-03-01

    Denture fracture is an unresolved problem in complete denture prosthodontics. However, the repaired denture often experiences a refracture at the repaired site due to poor transverse strength. Hence, this study was conducted to evaluate the effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resins. A total of 135 specimens of heat polymerized polymethyl methacrylate resin of dimensions 64 × 10 × 2.5 mm were fabricated. Fifteen intact specimens served as the control and 120 test specimens were divided into four groups (30 specimens each), depending upon the joint surface contour (butt, bevel, rabbet and round), with two subgroups based on type of the repair. Half of the specimens were repaired with plain repair resin and the other half with glass fibers reinforced repair resin. Transverse strength of the specimens was determined using three-point bending test. The results were analyzed using one-way ANOVA and Tukey post-hoc test (α= 0.05). Transverse strength values for all repaired groups were significantly lower than those for the control group (P < 0.001) (88.77 MPa), with exception of round surface design repaired with glass fiber reinforced repair resin (89.92 MPa) which was significantly superior to the other joint surface contours (P < 0.001). Glass fiber reinforced resin significantly improved the repaired denture base resins as compared to the plain repair resin (P < 0.001). Specimens repaired with glass fiber reinforced resin and round surface design exhibited highest transverse strength; hence, it can be advocated for repair of denture base resins.

  1. Glass fiber reinforced polymer bars as top mat reinforcement for bridge decks.

    DOT National Transportation Integrated Search

    2002-01-01

    The objectives of this research were to characterize the material and bond properties of three commercially available GFRP (glass fiber reinforced polymer) reinforcing bars, and evaluate the effects of the material properties and the current ACI desi...

  2. Panel Discussion: The Future In Infrared Fibers

    NASA Astrophysics Data System (ADS)

    1982-12-01

    DeShazer: During this meeting, IR fibers have been viewed from two aspects - materials and applications. We have had an interesting mix of chemists and physicists, engineers and opticians attending the meeting because of the varied expertise needed to address these questions. While silica glasses are exclusively used for current fiber systems operating at wavelengths less than 2 μm, the material choice has not yet been made for IR fibers at the longer wavelengths. Papers were presented at this meeting on the possible choices, which can be grouped into four general headings, as we have done in the table: hollow waveguides, glasses, polycrystals, and crystals. For the 2 to 5 μm spectrum, the choice appears to be fluoride glass, although the exact glass composition needs to be determined for good fiber drawing properties. For wavelengths longer than 5 μm, however, there is no unanimous choice. Polycrystalline KRS-5 fiber has been the current selection for CO2 laser fiber systems at 10.6 μm, but it exhibits many drawbacks such as large scattering loss, short shelf-life and possible photosensitivity. Chalcogenide glasses, such as arsenic triselenide, have high absorption losses at 10.6 μm, in spite of much past effort to improve the material. Is there hope in producing a highly transparent glass at 10.6 μm? If not chalcogenide glasses, maybe chloride glasses will succeed for fibers at 10 μm. Single-crystal fibers promise low loss, but is it realistic to talk about making a single crystal fiber 10 km long?

  3. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    NASA Astrophysics Data System (ADS)

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  4. Synthesis and adsorption properties of hollow tubular alumina fibers

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, A. S.; Kazantsev, S. O.; Glazkova, E. A.

    2017-12-01

    In this study, composite glass fibers coated with alumina nanoplates and hollow tubular alumina fibers with a diameter of 400-500 nm are synthesized based on glass fiber templated hydrothermal strategy. Porous coatings on glass fibers and hollow fibers consist of cross-linked alumina nanoplates with the size of 100-200 nm and thickness of 2-5 nm. Their formation is attributed to the template-induced heterogeneous growth of alumina nanoplates on glass fibers of the B-06-F type. It is important that composite glass fibers and hollow tubular fibers have opposite surface charges and exhibit selective sorption characteristics towards anionic and cationic dyes.

  5. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  6. Experimental Study of the Flexural and Compression Performance of an Innovative Pultruded Glass-Fiber-Reinforced Polymer-Wood Composite Profile.

    PubMed

    Qi, Yujun; Xiong, Wei; Liu, Weiqing; Fang, Hai; Lu, Weidong

    2015-01-01

    The plate of a pultruded fiber-reinforced polymer or fiber-reinforced plastic (FRP) profile produced via a pultrusion process is likely to undergo local buckling and cracking along the fiber direction under an external load. In this study, we constructed a pultruded glass-fiber-reinforced polymer-light wood composite (PGWC) profile to explore its mechanical performance. A rectangular cross-sectional PGWC profile was fabricated with a paulownia wood core, alkali-free glass fiber filaments, and unsaturated phthalate resin. Three-point bending and short column axial compression tests were conducted. Then, the stress calculation for the PGWC profile in the bending and axial compression tests was performed using the Timoshenko beam theory and the composite component analysis method to derive the flexural and axial compression rigidity of the profile during the elastic stress stage. The flexural capacity for this type of PGWC profile is 3.3-fold the sum of the flexural capacities of the wood core and the glass-fiber-reinforced polymer (GFRP) shell. The equivalent flexural rigidity is 1.5-fold the summed flexural rigidity of the wood core and GFRP shell. The maximum axial compressive bearing capacity for this type of PGWC profile can reach 1.79-fold the sum of those of the wood core and GFRP shell, and its elastic flexural rigidity is 1.2-fold the sum of their rigidities. These results indicate that in PGWC profiles, GFRP and wood materials have a positive combined effect. This study produced a pultruded composite material product with excellent mechanical performance for application in structures that require a large bearing capacity.

  7. Improved laser damage threshold for chalcogenide glasses through surface microstructuring

    NASA Astrophysics Data System (ADS)

    Florea, Catalin; Sanghera, Jasbinder; Busse, Lynda; Shaw, Brandon; Aggarwal, Ishwar

    2011-03-01

    We demonstrate improved laser damage threshold of chalcogenide glasses with microstructured surfaces as compared to chalcogenide glasses provided with traditional antireflection coatings. The surface microstructuring is used to reduce Fresnel losses over large bandwidths in As2S3 glasses and fibers. The treated surfaces show almost a factor of two of improvement in the laser damage threshold when compared with untreated surfaces.

  8. MUTAGENICITY OF TEFLON-COATED GLASS FIBER FILTERS: A POTENTIAL PROBLEM AND SOLUTIONS

    EPA Science Inventory

    Teflon-coated glass fiber filters, used in studies of airborne particulate matter, were tested for mutagenic activity using the Salmonella/mammalian-microsome (Ames) assay. For each sample, eight blank filters were simultaneously extracted with dichloromethane (DCM), and the extr...

  9. Generating femtosecond optical pulses tunable from 2 to 3  μm with a silica-based all-fiber laser system.

    PubMed

    Anashkina, E A; Andrianov, A V; Yu Koptev, M; Muravyev, S V; Kim, A V

    2014-05-15

    Femtosecond pulses with broad tunability in the range of 2-3 μm are generated in a germanate-glass core silica-glass cladding fiber with a driving pulse at 2 μm produced by an all-fiber laser system consisting of an Er:fiber source at 1.6 μm, a Raman fiber shifter, and a Tm:fiber amplifier. We demonstrate optical pulses with a duration of the order of 100 fs that are the shortest ones reported in the 2.5-3 μm range obtained by fiber laser systems.

  10. GLASS FIBER REINFORCED PLASTICS,

    DTIC Science & Technology

    Contents: Fibrous glass fillers Binders used in the glass plastic industry Method of manufacturing glass plastics and glass plastic articles Properties of fiberglass Primary areas for use of glass fibre reinforced plastics

  11. Hybrid carbon-glass fiber/toughened epoxy thick composites subject to drop-weight and ballistic impacts

    NASA Astrophysics Data System (ADS)

    Sevkat, Ercan

    The goals of this study are to investigate the low velocity and ballistic impact response of thick-section hybrid fiber composites at room temperature. Plain-woven S2-Glass and IM7 Graphite fabrics are chosen as fiber materials reinforcing the SC-79 epoxy. Four different types of composites consisting of alternating layers of glass and graphite woven fabric sheets are considered. Tensile tests are conducted using 98 KN (22 kip) MTS testing machine equipped with environmental chamber. Low-velocity impact tests are conducted using an Instron-Dynatup 8250 impact test machine equipped with an environmental chamber. Ballistic impact tests are performed using helium pressured high-speed gas-gun. Tensile tests results were used to define the material behavior of the hybrid and non-hybrid composites in Finite Element modeling. The low velocity and ballistic impact tests showed that hybrid composites performance was somewhere between non-hybrid woven composites. Using woven glass fabrics as outer skin improved the impact performance of woven graphite composite. However hybrid composites are prone to delamination especially between dissimilar layers. The ballistic limit velocity V50 hybrid composites were higher that of woven graphite composite and lower than that of woven glass composite. Both destructive cross-sectional micrographs and nondestructive ultrasonic techniques are used to evaluate the damage created by impact. The Finite Element code LS-DYNA is chosen to perform numerical simulations of low velocity and ballistic impact on thick-section hybrid composites. The damage progression in these composites shows anisotropic nonlinearity. The material model to describe this behavior is not available in LS-DYNA material library. Initially, linear orthotropic material with damage (Chan-Chan Model) is employed to simulate some of the experimental results. Then, user-defined material subroutine is incorporated into LS-DYNA to simulate the nonlinear behavior. The

  12. An Hybrid Glass/hemp Fibers Solution Frp Pipes: Technical and Economic Advantages of Hand Lay up VS Light Rtm

    NASA Astrophysics Data System (ADS)

    Cicala, G.; Cristaldi, G.; Recca, G.; Ziegmann, G.; ElSabbagh, A.; Dickert, M.

    2008-08-01

    The aim of the present research was to investigate the replacement of glass fibers with hemp fibers for applications in the piping industry. The choice of hemp fibers was mainly related to the needs, expressed by some companies operating in this sector, for cost reduction without adversely reducing the performances of the pipes. Two processing techniques, namely hand lay up and light RTM, were evaluated. The pipe selected for the study was a curved fitting (90°) flanged at both ends. The fitting must withstand an internal pressure of 10 bar and the presence of acid aqueous solutions. The original lay-up used to build the pipe is a sequence of C-glass, glass mats and glass fabric. Commercial epoxy vinyl ester resin was used as thermoset matrix. Hemp fibers mats were selected as potential substitute of glass fibers mats because of their low cost and ready availability from different commercial sources. The data obtained from the mechanical characterization were used to define a favorable design of the pipe using hemp mats as internal layer. The proposed design for the fittings allowed for a cost reduction of about 24% and a weight saving of about 23% without any drawback in terms of the final performances. The light RTM techniques was developed on purpose for the manufacturing of the curved pipe. The comparison between hand lay up and light RTM evidenced a substantial cost reduction when light RTM was used.

  13. AN HYBRID GLASS/HEMP FIBERS SOLUTION FRP PIPES: TECHNICAL AND ECONOMIC ADVANTAGES OF HAND LAY UP VS LIGHT RTM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicala, G.; Cristaldi, G.; Recca, G.

    2008-08-28

    The aim of the present research was to investigate the replacement of glass fibers with hemp fibers for applications in the piping industry. The choice of hemp fibers was mainly related to the needs, expressed by some companies operating in this sector, for cost reduction without adversely reducing the performances of the pipes. Two processing techniques, namely hand lay up and light RTM, were evaluated. The pipe selected for the study was a curved fitting (90 deg.) flanged at both ends. The fitting must withstand an internal pressure of 10 bar and the presence of acid aqueous solutions. The originalmore » lay-up used to build the pipe is a sequence of C-glass, glass mats and glass fabric. Commercial epoxy vinyl ester resin was used as thermoset matrix.Hemp fibers mats were selected as potential substitute of glass fibers mats because of their low cost and ready availability from different commercial sources. The data obtained from the mechanical characterization were used to define a favorable design of the pipe using hemp mats as internal layer. The proposed design for the fittings allowed for a cost reduction of about 24% and a weight saving of about 23% without any drawback in terms of the final performances.The light RTM techniques was developed on purpose for the manufacturing of the curved pipe. The comparison between hand lay up and light RTM evidenced a substantial cost reduction when light RTM was used.« less

  14. Effect of antimony on the optical and physical properties of Sb-V2O5-TeO2 glasses

    NASA Astrophysics Data System (ADS)

    Souri, Dariush; Mohammadi, Mousa; Zaliani, Hamideh

    2014-11-01

    Ternary glass systems of the form xSb-(60- x) V2O5-40TeO2 (Sx glasses) with 0 ≤ x ≤ 15 (in mol. %) have been prepared by using the normal melt quenching technique. The optical absorption spectra of these glasses have been recorded within wavelength range of 190 — 1100 nm. The absorption spectrum fitting method was employed to obtain the energy band gap. In this method, only the measurement of absorbance spectrum of the glass is needed. The position of the absorption edge and therefore the optical band gap values were found to be depend on glass composition. Results show that the optical band gap is in the range 1.57 — 2.14 eV. For each sample, the width of the band tail was determined. The densities of present glasses were measured and the molar volumes were calculated. Also, some thermal properties such as glass transition temperature ( T g) and crystallization temperature (TCr) were obtained by using differential scanning calorimetry (DSC) technique, and from which the glass thermal stability S and glass forming tendency K gl were calculated. Results show that these glasses (specially for x ≥ 10 mol. %) have good stability and therefore good resistance against thermal shocks for technological applications in fiber devices. Also, T g values indicate the rigidity and packing of the samples increase with increasing the Sb concentration as a network modifier. [Figure not available: see fulltext.

  15. Experimental study of fiber-glass plastic work pieces contour milling

    NASA Astrophysics Data System (ADS)

    Trushin, N. N.; Lisitsin, V. N.

    2018-03-01

    The article represents the results of study of cut and feed speed influence on wear of monolithic hard alloy end milling cutter during cutting of foiled fiber-glass plastic sheets, used for printed-circuit boards’ production. The peculiarities and problems of cutting layered materials are described. The most effective feed and cut speed values are determined by cutter wear analysis.

  16. Single-Phase Rare-Earth Oxide/Aluminum Oxide Glasses

    NASA Technical Reports Server (NTRS)

    Weber, J. K. Richard; Abadie, John G.; Hixson, April D.; Nordine, Paul C.

    2006-01-01

    Glasses that comprise rare-earth oxides and aluminum oxide plus, optionally, lesser amounts of other oxides, have been invented. The other oxide(s) can include SiO2, B2O3, GeO2, and/or any of a variety of glass-forming oxides that have been used heretofore in making a variety of common and specialty glasses. The glasses of the invention can be manufactured in bulk single-phase forms to ensure near uniformity in optical and mechanical characteristics, as needed for such devices as optical amplifiers, lasers, and optical waveguides (including optical fibers). These glasses can also be formulated to have high indices of refraction, as needed in some of such devices.

  17. Irradiation conditions for fiber laser bonding of HAp-glass ceramics with bovine cortical bone.

    PubMed

    Tadano, Shigeru; Yamada, Satoshi; Kanaoka, Masaru

    2014-01-01

    Orthopedic implants are widely used to repair bones and to replace articulating joint surfaces. It is important to develop an instantaneous technique for the direct bonding of bone and implant materials. The aim of this study was to develop a technique for the laser bonding of bone with an implant material like ceramics. Ceramic specimens (10 mm diameter and 1 mm thickness) were sintered with hydroxyapatite and MgO-Al2O3-SiO2 glass powders mixed in 40:60 wt% proportions. A small hole was bored at the center of a ceramic specimen. The ceramic specimen was positioned onto a bovine bone specimen and a 5 mm diameter area of the ceramic specimen was irradiated using a fiber laser beam (1070-1080 nm wavelength). As a result, the bone and the ceramic specimens bonded strongly under the irradiation conditions of a 400 W laser power and a 1.0 s exposure time. The maximum shear strength was 5.3 ± 2.3 N. A bonding substance that penetrated deeply into the bone specimen was generated around the hole in the ceramic specimen. On using the fiber laser, the ceramic specimen instantaneously bonded to the bone specimen. Further, the irradiation conditions required for the bonding were investigated.

  18. Physical properties of glasses in the Ag2GeS3-AgBr system

    NASA Astrophysics Data System (ADS)

    Moroz, M. V.; Demchenko, P. Yu.; Prokhorenko, S. V.; Moroz, V. M.

    2013-08-01

    Glasses have been prepared by quenching melts in the Ag2GeS3-AgBr system in a range of 0-53 mol % AgBr. The concentration dependences of density, microhardness, glass transition temperatures, and crystallization of alloys have been established. The conductivity of glasses has been investigated by the dc probe method in a range of 240-420 K. The models of the drift motion of silver and halogen ions have been proposed.

  19. Compression properties and dissolution of bioactive glass S53P4 and n-butyl-2 cyanoacrylate tissue adhesive-composite.

    PubMed

    Sarin, Jussi; Hiltunen, Markus; Hupa, Leena; Pulkkinen, Jaakko; Vallittu, Pekka K

    2016-09-28

    Bioactive glass (BG)-containing fiber-reinforced composite implants, typically screw-retained, have started to be used clinically. In this study, we tested the mechanical strength of composites formed by a potential implant adhesive of n-butyl-2-cyanoacrylate glue and BG S53P4 particles. Water immersion for 3, 10 or 30 days had no adverse effect on the compression strength. When cyanoacrylate glue-BG-composites were subjected to simulated body fluid immersion, the average pH rose to 7.52 (SD 0.066) from the original value of 7.35 after 7 days, and this pH increment was smaller compared to BG particle-group or fibrin glue-BG-composite group. Based on these results n-butyl-2 cyanoacrylate glue, by potentially producing a strong adhesion, might be considered a possible alternative for fixation of BG S53P4 containing composite implants. However, the mechanical and solubility properties of the cyanoacrylate glue may not encourage the use of this tissue adhesive with BG particles.

  20. Silicone polymer waveguide bridge for Si to glass optical fibers

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin L.; Riegel, Nicholas J.; Middlebrook, Christopher T.

    2015-03-01

    Multimode step index polymer waveguides achieve high-speed, (<10 Gb/s) low bit-error-rates for onboard and embedded circuit applications. Using several multimode waveguides in parallel enables overall capacity to reach beyond 100 Gb/s, but the intrinsic bandwidth limitations due to intermodal dispersion limit the data transmission rates within multimode waveguides. Single mode waveguides, where intermodal dispersion is not present, have the potential to further improve data transmission rates. Single mode waveguide size is significantly less than their multimode counterparts allowing for greater density of channels leading to higher bandwidth capacity per layer. Challenges in implementation of embedded single mode waveguides within printed circuit boards involves mass production fabrication techniques to create precision dimensional waveguides, precision alignment tolerances necessary to launch a mode, and effective coupling between adjoining waveguides and devices. An emerging need in which single mode waveguides can be utilized is providing low loss fan out techniques and coupling between on-chip transceiver devices containing Si waveguide structures to traditional single mode optical fiber. A polymer waveguide bridge for Si to glass optical fibers can be implemented using silicone polymers at 1310 nm. Fabricated and measured prototype devices with modeling and simulation analysis are reported for a 12 member 1-D tapered PWG. Recommendations and designs are generated with performance factors such as numerical aperture and alignment tolerances.

  1. Broadband mid-infrared supercontinuum generation in novel As2Se3-As2Se2 S step-index fibers

    NASA Astrophysics Data System (ADS)

    Wang, Yingying; Dai, Shixun; Han, Xin; Zhang, Peiqing; Liu, Yongxing; Wang, Xunsi; Sun, Shaochao

    2018-03-01

    We experimentally demonstrate the mid-infrared supercontinuum generation in a chalcogenide step-index fiber consisting of an As2Se3 core and an As2Se2 S cladding. The fiber with the core diameter of 21 μm was fabricated through the rod-in-tube technique and fiber-drawing process. The effect of pump wavelength, fiber length, and pump power on the spectral bandwidth and output power of the supercontinuum spectra generated from the fiber pumped by the ultrashort pulses of ∼ 150 fs with a repetition rate of 1000 Hz was systematically investigated. When pumping a 12-cm-long fiber at a wavelength of 6 . 5 μm with 14 mW pump laser power, a broadband supercontinuum spanning from 2 . 0 μm to 12 . 7 μm with an output power of 300 μW was obtained.

  2. Study on the influence of design parameters on the damping property of glass fiber reinforced epoxy composite

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, A.; Nanda, B. K.

    2018-04-01

    Fiber reinforced composites are widely used in industrial applications due to their high strength, light weight and ease in manufacturing. In applications such as automotive, aerospace and structural parts, the components are subjected to unwanted vibrations which reduce their service life, accuracy as well as increases noise. Therefore, it is essential to avoid the detrimental effects of vibrations by enhancing their damping characteristics. The current research deals with estimating the damping properties of Glass fiber reinforced epoxy (GFRE) composites. Processing of the GFRE composites is carried out using hand-lay technique. Various design parameters such as number of glass fiber layers, orientation of fibers and weight ratio are varied while manufacturing GFRE composites. The effects of variation of these design parameters on damping property of GFRE composites are studied extensively.

  3. Enhanced 3  μm luminescence properties based on effective energy transfer Yb3+ : 2F5/2→Dy3+ : 6H5/2 in fluoaluminate glass modified by TeO2.

    PubMed

    Qi, Fangwei; Huang, Feifei; Wang, Tao; Tian, Ying; Lei, Ruoshan; Ye, Renguang; Zhang, Junjie; Zhang, Long; Xu, Shiqing

    2017-11-01

    Enhanced 3 μm luminescence of Dy 3+ based on the effective process of Yb 3+ :F 5/2 2→Dy 3+ :H 5/2 6 with a higher energy transfer coefficient of 7.36×10 -39   cm 6 /s in fluoaluminate glass modified by TeO 2 was obtained. The energy transfer efficiency from Yb 3+ to Dy 3+ in Dy 3+ /Yb 3+ codoped glass was as high as 80%, indicating the effective energy transfer of Yb 3+ . The higher temperature of the glass transition (T g ) and larger characteristic temperatures (ΔT,K gl ) revealed better thermal properties of the prepared glasses compared with the traditional fluoaluminate glasses, which is of great benefit to fiber drawing. The lower hydroxyl content (15.7 ppm) indicated better fluorescence properties of the glass. It was noted that the longer lifetime of 572 μs and higher emission cross section of 5.22×10 -21   cm 2 along with the bandwidth of 245 nm around 3 μm proved potential applications in mid-IR laser materials of the present glass.

  4. Effects of adding metals to MoS2 in a ytterbium doped Q-switched fiber laser

    NASA Astrophysics Data System (ADS)

    Khaleque, Abdul; Liu, Liming

    2018-03-01

    Molybdenum disulfide (MoS2) is widely used in lubricants, metallic alloys and in electronic and optical components. It is also used as saturable absorbers (SAs) in lasers (e.g. fiber lasers): a simple deposition of MoS2 on the fiber end can create a saturable absorber without the necessity of extensive alignment of the optical beam. In this article, we study the effects of adding different metals (Cr, Au, and Al) to MoS2 in a ytterbium (Yb)-doped Q-switched fiber laser. Experimental results show that the addition of a thin layer of gold and aluminium can reduce pulse durations to about 5.8 μs and 8.5 μs, respectively, compared with pure MoS2 with pulse duration of 12 μs. Experimental analysis of the combined metal and MoS2 based composite SAs can be useful in fiber laser applications where it may also find applications in medical, three dimensional (3D) active imaging and dental applications.

  5. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes.

    PubMed

    Zhang, Xiaoyuan; Cheng, Shaoan; Liang, Peng; Huang, Xia; Logan, Bruce E

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75 ± 1 W/m(3). Removing the separator decreased power by 8%. Adding a second cathode increased power to 154 ± 1 W/m(3). Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Fabrication of Fresnel micro lens array in borosilicate glass by F2-laser ablation for glass interposer application

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning; Fricke-Begemann, Thomas; Ihlemann, Jürgen

    2014-03-01

    The future need for more bandwidth forces the development of optical transmission solutions for rack-to-rack, boardto- board and chip-to-chip interconnects. The goals are significant reduction of power consumption, highest density and potential for bandwidth scalability to overcome the limitations of the systems today with mostly copper based interconnects. For system integration the enabling of thin glass as a substrate material for electro-optical components with integrated micro-optics for efficient light coupling to integrated optical waveguides or fibers is becoming important. Our glass based packaging approach merges micro-system packaging and glass integrated optics. This kind of packaging consists of a thin glass substrate with integrated micro lenses providing a platform for photonic component assembly and optical fiber or waveguide interconnection. Thin glass is commercially available in panel and wafer size and characterizes excellent optical and high frequency properties. That makes it perfect for microsystem packaging. A suitable micro lens approach has to be comparable with different commercial glasses and withstand post-processing like soldering. A benefit of using laser ablated Fresnel lenses is the planar integration capability in the substrate for highest integration density. In the paper we introduce our glass based packaging concept and the Fresnel lens design for different scenarios like chip-to-fiber, chip-to-optical-printed-circuit-board coupling. Based on the design the Fresnel lenses were fabricated by using a 157 nm fluorine laser ablation system.

  7. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification.

    PubMed

    Lin, Che-Hsin; Lee, Gwo-Bin; Fu, Lung-Ming; Chen, Shu-Hui

    2004-07-30

    This paper presents a novel micro-capillary electrophoresis (CE) chip with embedded optical fibers for the on-line detection of DNA samples. The optical fibers are pre-etched and then inserted directly into fiber channels incorporated within low-cost soda-lime glass substrates. The embedded optical fibers are precisely aligned with the microfluidic channels such that the induced fluorescence signals from labeled bio-samples can be detected. This arrangement avoids the requirement for delicate optical alignment procedures and equipment. Surface modification of the CE channels is accomplished by means of a simple and reliable organic-based spin-on-glass (SOG) method. The zeta potential distribution and the corresponding electroosmotic mobility of the fluid are simulated numerically for the modified and non-modified channel surfaces, and then both sets of results are verified experimentally. The present results indicate that the value of the zeta potential for a surface with an SOG coating is 19.3 times smaller than that of an untreated surface. A phiX-174 DNA marker fluid is used to evaluate the injection and separation performance of the developed micro-CE device. Furthermore, the long-term stability of the SOG-coated surface is also investigated. The experimental data reveal that the microchip device is capable of providing highly efficient separations of bio-molecules, and that the SOG layer retains its low zeta potential characteristics for at least 45 days. The present results confirm the effectiveness of the proposed micro-CE chip in performing the on-line detection of DNA samples, and indicate that the SOG process represents a simple and reliable solution for the surface modification of glass-based microchannels.

  8. Initial studies of a flexural member composed of glass-fiber reinforced polyester resin.

    DOT National Transportation Integrated Search

    1973-01-01

    An investigation was conducted of the structural behavior of a flexural member composed entirely of glass-fiber reinforced polyester resin. Three experimental girders were fabricated and load-tested in the laboratory. The physical characteristics of ...

  9. Experimental Study of the Flexural and Compression Performance of an Innovative Pultruded Glass-Fiber-Reinforced Polymer-Wood Composite Profile

    PubMed Central

    Qi, Yujun; Xiong, Wei; Liu, Weiqing; Fang, Hai; Lu, Weidong

    2015-01-01

    The plate of a pultruded fiber-reinforced polymer or fiber-reinforced plastic (FRP) profile produced via a pultrusion process is likely to undergo local buckling and cracking along the fiber direction under an external load. In this study, we constructed a pultruded glass-fiber-reinforced polymer-light wood composite (PGWC) profile to explore its mechanical performance. A rectangular cross-sectional PGWC profile was fabricated with a paulownia wood core, alkali-free glass fiber filaments, and unsaturated phthalate resin. Three-point bending and short column axial compression tests were conducted. Then, the stress calculation for the PGWC profile in the bending and axial compression tests was performed using the Timoshenko beam theory and the composite component analysis method to derive the flexural and axial compression rigidity of the profile during the elastic stress stage. The flexural capacity for this type of PGWC profile is 3.3-fold the sum of the flexural capacities of the wood core and the glass-fiber-reinforced polymer (GFRP) shell. The equivalent flexural rigidity is 1.5-fold the summed flexural rigidity of the wood core and GFRP shell. The maximum axial compressive bearing capacity for this type of PGWC profile can reach 1.79-fold the sum of those of the wood core and GFRP shell, and its elastic flexural rigidity is 1.2-fold the sum of their rigidities. These results indicate that in PGWC profiles, GFRP and wood materials have a positive combined effect. This study produced a pultruded composite material product with excellent mechanical performance for application in structures that require a large bearing capacity. PMID:26485431

  10. Experimental investigation on flexure and impact properties of injection molded polypropylene-nylon 6-glass fiber polymer composites

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, D. M.; Kusaseh, N. M.; Chowdhury, M. A.; Rahman, N. A. N. A.; Oumer, A. N.; Fatchurrohman, N.; Iqbal, A. K. M. A.; Ismail, N. M.

    2018-04-01

    In this research study, glass fiber (GF) reinforced polypropylene (PP)-nylon 6 (PA6) polymer blend composites were prepared using injection molding process. Specimens of four different compositions such as 80%PP+20%PA6, 80%PP+18%PA6+2%GF, 80%PP+16%PA6+4%GF and 80%PP+14%PA6+6%GF were prepared. In the injection molding process, suitable process parameters were selected depending on the type of composite specimen in producing defects free dog bone shaped specimens. Flexure and impact tests were carried out according to ASTM standard. The important flexure properties such as flexural modulus, flexural yield strength, flexural strength and flexural strain were investigated. The obtained results revealed that flexural modulus of 80%PP+20%PA6 polymer blend is the lowest and the polymer blend composite shows steadily improved modulus as the glass fiber content is increased. Results also showed that flexural strength of pure polymer blend is the lowest but it improves gradually when the glass fiber content is increased. Impact test results revealed that impact strength of 80%PP+20%PA6 polymer blend is the highest whereas all the composites show reduced impact strength or toughness. It is noticed that 80%PP+14%PA6+6%GF composite exhibits the lowest impact strength.

  11. Infrared wavelength dependence of leaky mode losses and steady state distribution in W-type glass optical fibers

    NASA Astrophysics Data System (ADS)

    Djordjevich, Alexandar; Simović, Ana; Savović, Svetislav; Drljača, Branko

    2018-07-01

    Infrared wavelength dependence of leaky mode losses and steady state distribution (SSD) in W-type glass optical fibers (doubly clad fibers with three layers) is investigated in this paper for parametrically varied depths and widths of the fiber's intermediate optical layer. This enables a tailoring of configuration of the W-type fiber to suit an application at hand. We have shown that the proposed W-type fiber has better transmission characteristics at longer infrared wavelengths.

  12. Intra-Laminar Fracture Toughness of Glass Fiber Reinforced Polymer By Using Theory, Experimentation and FEA

    NASA Astrophysics Data System (ADS)

    Firojkhan, Pathan; Tanpure, Kshitijit; Dawale, Ajinkya; Patil, Shital

    2018-04-01

    Fiber reinforced polymer (FRP) composites are widely use in aerospace, marine, auto-mobile and civil engineering applications because of their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance and potentially high durability. The purpose of this research is to experimentally investigate the mechanical and fracture properties of glass-fiber reinforced polyester composite material, 450 g/m 2 randomly distributed glass-fiber mat also known as woven strand mat with polyester resin as a matrix. The samples have been produced by the conventional hand layup process and the specimens were prepared as per the ASTM standards. The tensile test was performed on the composite specimens using Universal testing machine (UTM) which are used for the finite element simulation of composite Layered fracture model. The mechanical properties were evaluated from the stress vs. strain curve obtained from the test result. Later, fracture tests were performed on the CT specimen. In case of CT specimen the load vs. Displacement plot obtained from the experimental results was used to determine the fracture properties of the composite. The failure load of CT specimen using FEA is simulated which gives the Stress intensity factor by using FEA. Good agreement between the FEA and experimental results was observed.

  13. Deposition Of Thin-Film Sensors On Glass-Fiber/Epoxy Models

    NASA Technical Reports Server (NTRS)

    Tran, Sang Q.

    1995-01-01

    Direct-deposition process devised for fabrication of thin-film sensors on three-dimensional, curved surfaces of models made of stainless steel covered with glass-fiber/epoxy-matrix composite material. Models used under cryogenic conditions, and sensors used to detect on-line transitions between laminar and turbulent flows in wind tunnel environments. Sensors fabricated by process used at temperatures from minus 300 degrees F to 175 degrees F.

  14. Case Report: Analytical Electron Microscopy of Lung Granulomas Associated with Exposure to Coating Materials Carried by Glass Wool Fibers

    PubMed Central

    Ferreira, Angela S.; Moreira, Valéria B.; Castro, Marcos César S.; Soares, Porfírio J.; Algranti, Eduardo; Andrade, Leonardo R.

    2010-01-01

    Context Man-made vitreous fibers (MMVFs) are noncrystalline inorganic fibrous material used for thermal and acoustical insulation (e.g., rock wool, glass wool, glass microfibers, and refractory ceramic fibers). Neither epidemiologic studies of human exposure nor animal studies have shown a noticeable hazardous effect of glass wools on health. However, MMVFs have been anecdotally associated with granulomatous lung disease in several case reports. Case presentation Here, we describe the case of a patient with multiple bilateral nodular opacities who was exposed to glass wool fibers and coating materials for 7 years. Bronchoalveolar lavage fluid revealed an increased total cell count (predominantly macrophages) with numerous cytoplasmic particles. Lung biopsy showed peribronchiolar infiltration of lymphoid cells and many foreign-body–type granulomas. Alveolar macrophages had numerous round and elongated platelike particles inside the cytoplasm. X-ray microanalysis of these particles detected mainly oxygen/aluminum/silicon and oxygen/magnesium/silicon, compatible with kaolinite and talc, respectively. No elemental evidence for glass fibers was found in lung biopsy. Discussion The contribution of analytical electron microscopy applied in the lung biopsy was imperative to confirm the diagnosis of pneumoconiosis associated with a complex occupational exposure that included both MMVFs and coating materials. Relevance to clinical or professional practice This case study points out the possible participation of other components (coating materials), beyond MMVFs, in the etiology of pneumoconiosis. PMID:20123612

  15. Self-healing in single and multiple fiber(s) reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Woldesenbet, E.

    2010-06-01

    You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  16. Effect of glass fiber surface treatments on mechanical strength of epoxy based composite materials.

    PubMed

    Iglesias, J G; González-Benito, J; Aznar, A J; Bravo, J; Baselga, J

    2002-06-01

    Sizing glass fibers with silane coupling agents enhances the adhesion and the durability of the fiber/polymer matrix interface in composite materials. There are several tests to determine the interfacial strength between a fiber and resin, but all of them present difficulties in interpreting the results and/or sample preparation. In this study, we observed the influence of different aminosilanes fiber coatings on the resistance of epoxy-based composite materials using a very easy fractographic test. In addition, we tried a new fluorescence method to get information on a molecular level precisely at the interface. Strength was taken into account from two standpoints: (i) mechanical strength and (ii) the resistance to hydrolysis of the interface in oriented glass-reinforced epoxy-based composites. Three silanes: gamma-aminopropyltriethoxysilane, gamma-Aminopropylmethyldiethoxysilane, and gamma-Aminopropyldimethylethoxysilane were used to obtain different molecular structures at the interface. It was concluded that: (i) the more accessible amine groups are, the higher the interface rigidity is; (ii) an interpenetrating network mechanism seems to be the most important for adhesion and therefore to the interfacial strength; and (iii) the higher the degree of crosslinking in the silane coupling layer is, the higher the hydrolytic damage rate is.

  17. Blue upconversion in Yb3+/Tm3+ co-doped silica fiber based on glass phase-separation technology

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Chu, Yingbo; Chen, Zhangru; Xing, Yingbin; Hu, Xionwei; Li, Haiqing; Peng, Jinggang; Dai, Nengli; Li, Jinyan; Yang, Luyun

    2018-02-01

    Yb3+/Tm3+ co-doped silica fiber was prepared successfully by glass phase-separation technology. The measured refractive index profile indicated that the active fiber core had an excellent uniformity. The highest emission intensity was obtained in a sample with a Yb3+ concentration of 0.3 mol/L and a Tm3+ concentration of 0.1 mol/L. Under the excitation at 976 nm, intense blue upconversion emission of Tm3+ at 474 nm was observed due to energy transfer from Yb3+ to Tm3+. A three-photon process was responsible for the blue emission. Due to re-absorption resulted from the Tm3+:3H6→1G4 transition, the blue emission peak was red-shifted. It is suggested that the fiber preparation technology based on glass phase-separation technology can be a potential candidate for preparing active fibers with large core or complex fiber structure.

  18. Osteoconductive properties of two different bioactive glass forms (powder and fiber) combined with collagen

    NASA Astrophysics Data System (ADS)

    Magri, Angela Maria Paiva; Fernandes, Kelly Rossetti; Ueno, Fabio Roberto; Kido, Hueliton Wilian; da Silva, Antonio Carlos; Braga, Francisco José Correa; Granito, Renata Neves; Gabbai-Armelin, Paulo Roberto; Rennó, Ana Claudia Muniz

    2017-11-01

    Bioactive Glasses (BG) is a group of synthetic silica-based materials with the unique ability to bond to living bone and can be used in bone repair. Although the osteogenic potential of BG, this material may have not present sufficient osteoconductive and osteoinductive properties to allow bone regeneration, especially in compromised situations. In order to overcome this limitation, it was proposed the combination the BG in two forms (powder and fiber) combined with collagen type I (COL-1). The aim of this study was to evaluate the BG/COL-based materials in terms of morphological characteristics, physicochemical features and mineralization. Additionally, the second objective was to investigate and compare the osteoconductive properties of two different bioactive glass forms (powder and fiber) enriched or not with collagen using a tibial bone defect model in rats. For this, four different formulations (BG powder - BGp, BG powder enriched with collagen - BGp/Col, BG fibers - BGf and BGp fibers enriched with collagen - BGf/Col) were developed. The physicochemical and morphological modifications were analyzed by SEM, FTIR, calcium assay and pH measurement. For in vivo evaluations, histopathology, morphometrical and immunohistochemistry were performed in a tibial defect in rats. The FTIR analysis indicated that BGp and BGf maintained the characteristic peaks for this class of material. Furthermore, the calcium assay showed an increased Ca uptake in the BG fibers. The pH measurements revealed that BGp (with or without collagen) presented higher pH values compared to BGf. In addition, the histological analysis demonstrated no inflammation for all groups at the site of the injury, besides a faster material degradation and higher bone ingrowth for groups with collagen. The immunohistochemistry analysis demonstrated Runx-2 and Rank-L expression for all the groups. Those findings support that BGp with collagen can be a promising alternative for treating fracture of difficult

  19. Ho-doped Soft Glass Optical Fibers for Coherent Wavelength Sources Above 2 Micron

    DTIC Science & Technology

    2010-12-01

    following glasses were prepared in order to fabricate a single-mode Tm-Ho doped optical fibre. Their composition is in mol% and the rare earth oxides ...in this work was 99+%. The onset melting temperature was 750 ˚C and the duration of the process 2 hours. The melt was cast in a brass mould...preheated to 300 ˚C and annealed at Tg – 10 ˚C for 2 h. Glass melting was carried out in a Pt crucible inside a chamber furnace. Core glass was melted

  20. Dissolution of glass wool, rock wool and alkaline earth silicate wool: morphological and chemical changes in fibers.

    PubMed

    Campopiano, Antonella; Cannizzaro, Annapaola; Angelosanto, Federica; Astolfi, Maria Luisa; Ramires, Deborah; Olori, Angelo; Canepari, Silvia; Iavicoli, Sergio

    2014-10-01

    The behavior of alkaline earth silicate (AES) wool and of other biosoluble wools in saline solution simulating physiological fluids was compared with that of a traditional wool belonging to synthetic vitreous fibers. Morphological and size changes of fibers were studied by scanning electron microscopy (SEM). The elements extracted from fibers were analyzed by inductively coupled plasma atomic emission spectrometry. SEM analysis showed a larger reduction of length-weighted geometric mean fiber diameter at 4.5 pH than at 7.4 pH. At the 7.4 pH, AES wool showed a higher dissolution rate and a dissolution time less than a few days. Their dissolution was highly non-congruent with rapid leaching of calcium. Unlike rock wool, glass wool dissolved more rapidly at physiological pH than at acid pH. Dissolution of AES and biosoluble rock wool is accompanied by a noticeable change in morphology while by no change for glass wool. Biosoluble rock wool developed a leached surface with porous honeycomb structure. SEM analysis showed the dissolution for glass wool is mainly due to breakage transverse of fiber at pH 7.4. AES dissolution constant (Kdis) was the highest at pH 7.4, while at pH 4.5 only biosoluble rockwool 1 showed a higher Kdis. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Commercial Production of Heavy Metal Fluoride Glass Fiber in Space

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1998-01-01

    International Space Station Alpha (ISSA) will provide a platform not only for materials research but also a possible means to produce products in space which cannot be easily produced on the ground. Some products may even be superior to those now produced in unit gravity due to the lack of gravity induced convection effects. Our research with ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN glass) has shown that gravity does indeed play a major role in the crystallization behavior of this material. At the present time ZBLAN is being produced on earth in fiber optic form for use in surgical lasers and fiber optic lasers among other applications. High attenuation coefficients, however, have kept this material from being used in other applications such as long haul data transmission links. The high attenuation coefficients are due to impurities which can be removed through improved processing techniques and crystals which can only be removed or prevented from forming by processing in a reduced gravity environment.

  2. The influence of glass fibers on elongational viscosity studied by means of optical coherence tomography and X-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aigner, M., E-mail: michael.aigner@jku.at; Köpplmayr, T., E-mail: thomas.koepplmayr@jku.at, E-mail: Christian.lang@jku.at; Lang, C., E-mail: thomas.koepplmayr@jku.at, E-mail: Christian.lang@jku.at

    2014-05-15

    We report on the flow characteristics of glass-fiber-reinforced polymers in elongational rheometry. Unlike polymers with geometrically isotropic fillers, glass-fiber-reinforced polymers exhibit flow behavior and rheology that depend heavily on the orientation, the length distribution and the content of the fibers. One of the primary objectives of this study was to determine the effect of fiber orientation, concentration and distribution on the entrance pressure drop by means of optical coherence tomography (OCT), full-field optical coherence microscopy (FF-OCM), and X-ray computed tomography (X-CT). Both pressure drop and melt flow were analyzed using a special elongation die (Thermo Scientific X-Die [3]) for inlinemore » measurements. Samples with a variety of fiber volume fractions, fiber lengths and processing temperatures were measured.« less

  3. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    NASA Astrophysics Data System (ADS)

    Bouaricha, Leyla; Henni, Ahmed Djafar; Lancelot, Laurent

    2017-12-01

    A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand) with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°), and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%).

  4. Recycled Glass Fiber Reinforced Polymer Composites Incorporated in Mortar for Improved Mechanical Performance

    DOT National Transportation Integrated Search

    2017-12-11

    Glass fiber reinforced polymer (GFRP) recycled from retired wind turbines was implemented in mortar as a volumetric replacement of sand during the two phases of this study. In Phase I, the mechanically refined GFRP particle sizes were sieved for four...

  5. Crystallization behavior of the Li2S-P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer.

    PubMed

    Tsukasaki, Hirofumi; Mori, Yota; Otoyama, Misae; Yubuchi, So; Asano, Takamasa; Tanaka, Yoshinori; Ohno, Takahisa; Mori, Shigeo; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2018-04-18

    Sulfide-based all-solid-state lithium batteries are a next-generation power source composed of the inorganic solid electrolytes which are incombustible and have high ionic conductivity. Positive electrode composites comprising LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC) and 75Li 2 S·25P 2 S 5 (LPS) glass electrolytes exhibit excellent charge-discharge cycle performance and are promising candidates for realizing all-solid-state batteries. The thermal stabilities of NMC-LPS composites have been investigated by transmission electron microscopy (TEM), which indicated that an exothermal reaction could be attributed to the crystallization of the LPS glass. To further understand the origin of the exothermic reaction, in this study, the precipitated crystalline phase of LPS glass in the NMC-LPS composite was examined. In situ TEM observations revealed that the β-Li 3 PS 4 precipitated at approximately 200 °C, and then Li 4 P 2 S 6 and Li 2 S precipitated at approximately 400 °C. Because the Li 4 P 2 S 6 and Li 2 S crystalline phases do not precipitate in the single LPS glass, the interfacial contact between LPS and NMC has a significant influence on both the LPS crystallization behavior and the exothermal reaction in the NMC-LPS composites.

  6. The effect of surface modification of glass fiber on the performance of poly(lactic acid) composites: Graphene oxide vs. silane coupling agents

    NASA Astrophysics Data System (ADS)

    Jing, Mengfan; Che, Junjin; Xu, Shuman; Liu, Zhenwei; Fu, Qiang

    2018-03-01

    In this work, a comparison study was carried out to investigate the efficacy of glass fiber (GF) in reinforcing poly(lactic acid) (PLA) by using traditional silane coupling agents (GF-S) and novel graphene oxide (GF-GO) as surface modifiers. The crystallization behavior of the PLA matrix was investigated by differential scanning calorimetry. The mechanical performances and the thermomechanical properties of the composites were evaluated by uniaxial tensile testing and dynamic mechanical analysis, respectively. For neat GF without any treatment, the poor interfacial adhesion and the sharp shortening of the GF length result in the relatively poor mechanical performances of PLA/GF composites. However, the incorporation of GF-S significantly improves the mechanical strength and keeps relatively good toughness of the composites, while GF-GO exhibits excellent nucleation ability for PLA and could moderately increase the modulus of the composites. The thermomechanical properties of the composites are improved markedly resulting from the crystallinity increase. The different surface modification of glass fiber influences the crystallinity of matrix, the interfacial interaction and the length of fiber, which altogether affect the mechanical performances of the prepared PLA/GF composites.

  7. Pump and Signal Taper for Airclad Fibers

    DTIC Science & Technology

    2006-01-05

    as follows: Crystal Fibre A/S will develop a taper/coupler solution to interface between a new polarization maintaining/polarizing amplifier fiber ...MM) pump combiner with a high NA air-clad output. The input side of the combiner is 7 individual MM pump delivery solid all- glass fibers . The NA of...pump combiner. MOTIVATION FINAL REPORT ITEM 0002 In a typical standard fused fiber coupler a number of all- glass 0.22 NA pump

  8. Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber.

    PubMed

    Huang, Yizhong; Luo, Zhengqian; Li, Yingyue; Zhong, Min; Xu, Bin; Che, Kaijun; Xu, Huiying; Cai, Zhiping; Peng, Jian; Weng, Jian

    2014-10-20

    We propose and demonstrate a MoS2-based passively Q-switched Er-doped fiber laser with a wide tuning range of 1519.6-1567.7 nm. The few-layer MoS2 nano-platelets are prepared by the liquid-phase exfoliation method, and are then made into polymer-composite film to construct the fiber-compatible MoS2 saturable absorber (SA). It is measured at 1560 nm wavelength, that such MoS2 SA has the modulation depth of ∼ 2% and the saturable optical intensity of ∼ 10 MW/cm(2). By further inserting the filmy MoS2-SA into an Er-doped fiber laser, stable Q-switching operation with a 48.1 nm continuous tuning from S- to C-waveband is successfully achieved. The shortest pulse duration and the maximum pulse energy are 3.3 μs and 160 nJ, respectively. The repetition rate and the pulse duration under different operation conditions have been also characterized. To the best of our knowledge, it is the first demonstration of MoS2 Q-switched, widely-tunable fiber laser.

  9. Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber

    NASA Astrophysics Data System (ADS)

    Cao, Liming; Li, Xing; Zhang, Rui; Wu, Duanduan; Dai, Shixun; Peng, Jian; Weng, Jian; Nie, Qiuhua

    2018-03-01

    We have designed an all-fiber passive mode-locking thulium-doped fiber laser that uses molybdenum disulfide (MoS2) as a saturable absorber (SA) material. A free-standing few-layer MoS2-polyvinyl alcohol (PVA) film is fabricated by liquid phase exfoliation (LPE) and is then transferred onto the end face of a fiber connector. The excellent saturable absorption of the fabricated MoS2-based SA allows the laser to output soliton pulses at a pump power of 500 mW. Fundamental frequency mode-locking is realized at a repetition frequency of 13.9 MHz. The central wavelength is 1926 nm, the 3 dB spectral bandwidth is 2.86 nm and the pulse duration is 1.51 ps. Additionally, third-order harmonic mode-locking of the laser is also achieved. The pulse duration is 1.33 ps, which is slightly narrower than the fundamental frequency mode-locking bandwidth. The experimental results demonstrate that the few-layer MoS2-PVA SA is promising for use in 2 μm laser systems.

  10. Interfacial Studies of Refractory Glass-Ceramic Matrix/Advanced SiC fiber Reinforced Composites

    DTIC Science & Technology

    1991-04-30

    Prepared by J. J. Brennan ANNUAL REPORT Contract N0001 4-87-C-0699 for Department of the Navy Office of Naval Research Arlington, VA 22217 April 30, 1991...1 30 April1991 I Annual 1 Feb 1990 -1 Feb 1991 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS INTERFACIAL STUDIES OF REFRACTORY GLASS-CERAMIC MATRIX...composites were very similar for either Lox M Tyranno or NICALON fiber reinforcement. 14. SUBJECT TERMS IS. NUMBER OF PA~t; Crystalline SiC fibers

  11. 3D FEA of cemented glass fiber and cast posts with various dental cements in a maxillary central incisor.

    PubMed

    Madfa, Ahmed A; Al-Hamzi, Mohsen A; Al-Sanabani, Fadhel A; Al-Qudaimi, Nasr H; Yue, Xiao-Guang

    2015-01-01

    This study aimed to analyse and compare the stability of two dental posts cemented with four different luting agents by examining their shear stress transfer through the FEM. Eight three-dimensional finite element models of a maxillary central incisor restored with glass fiber and Ni-Cr alloy cast dental posts. Each dental post was luted with zinc phosphate, Panavia resin, super bond C&B resin and glass ionomer materials. Finite element models were constructed and oblique loading of 100 N was applied. The distribution of shear stress was investigated at posts and cement/dentine interfaces using ABAQUS/CAE software. The peak shear stress for glass fiber post models minimized approximately three to four times of those for Ni-Cr alloy cast post models. There was negligible difference in peak of shear stress when various cements were compared, irrespective of post materials. The shear stress had same trend for all cement materials. This study found that the glass fiber dental post reduced the shear stress concentration at interfacial of post and cement/dentine compared to Ni-Cr alloy cast dental post.

  12. Miscible blends of biobased poly(lactide) with poly(methyl methacrylate): Effects of chopped glass fiber incorporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousins, Dylan S.; Lowe, Corinne; Swan, Dana

    Poly(lactide) (PLA) and poly(methyl methacrylate) (PMMA) are melt compounded with chopped glass fiber using laboratory scale twin-screw extrusion. Physical properties are examined using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), tensile testing, impact testing, X-ray computed tomography (CT) scanning, and field emission scanning electron microscopy (FE-SEM). Molecular weight is determined using gel permeation chromatography (GPC). Miscibility of the blends is implied by the presence of a single glass transition temperature and homogeneous morphology. PLA/PMMA blends tend to show positive deviations from a simple linear mixing rule in their mechanical properties (e.g., tensile toughness, modulus, andmore » stress at break). The addition of 40 wt % glass fiber to the system dramatically increases physical properties. Across all blend compositions, the tensile modulus increases from roughly 3 GPa to roughly 10 GPa. Estimated heat distortion temperatures (HDTs) are also greatly enhanced; the pure PLA sample HDT increases from 75 degrees C to 135 degrees C. Fiber filled polymer blends represent a sustainable class of earth abundant materials which should prove useful across a range of applications.« less

  13. Fiber glass exposure and human respiratory system cancer risk: lack of evidence persists since 2001 IARC re-evaluation.

    PubMed

    Marsh, Gary M; Buchanich, Jeanine M; Youk, Ada O

    2011-06-01

    To determine whether IARC's 2001 decision to downgrade the classification of insulation glass wool from Group 2B to Group 3 remains valid in light of epidemiological evidence reported after 2001. We performed a systematic review of epidemiological evidence regarding respiratory cancer risks in relation to man-made vitreous fiber (MMVF) exposure before and after the 2001 IARC re-evaluation with focus on glass wool exposure and respiratory system cancer. Since 2001, three new community-based, case-control studies, two detailed analyses of existing cohort studies and two reviews/meta-analyses were published. These studies revealed no consistent evidence of an increased respiratory system cancer risk in relation to glass wool exposure. From our evaluation of the epidemiological evidence published since 2001, we conclude that IARC's 2001 decision to downgrade insulation glass wool from Group 2B to Group 3 remains valid. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Electrical conductivity studies in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Neimet, Yu. Yu.; Kranjčec, M.; Solomon, A. M.; Orliukas, A. F.; Kežionis, A.; Kazakevičius, E.; Šalkus, T.

    2014-01-01

    Compositional, frequency, and temperature studies of impedance and electrical conductivity in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites were performed. Frequency range from 10 Hz to 3 × 109 Hz and temperature interval 300-400 K were used for the measurements. Compositional dependences of electrical conductivity and activation energy are analyzed; the most substantial changes are observed with the transition from (Ag3AsS3)0.4(As2S3)0.6 glass to (Ag3AsS3)0.5(As2S3)0.5 composite. With increase of Ag3AsS3 content, the investigated materials are found to have crystalline inclusions and show the two-phase composite nature. Addition of Ag3AsS3 leads to the increase of electrical conductivity whereas the activation energy decreases.

  15. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite

    NASA Astrophysics Data System (ADS)

    V. R., Arun prakash; Rajadurai, A.

    2016-10-01

    In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee's disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved when surface modified fiber was reinforced along with hard hematite particles. Thermal conductivity of epoxy increased with increase of hematite content in epoxy matrix.

  16. Thermal performance of glass fiber reinforced intumescent fire retardant coating for structural applications

    NASA Astrophysics Data System (ADS)

    Ahmad, Faiz; Ullah, Sami; Aziz, Hammad; Omar, Nor Sharifah

    2015-07-01

    The results of influence of glass fiber addition into the basic intumescent coating formulation towards the enhancement of its thermal insulation properties are presented. The intumescent coatings were formulated from expandable graphite, ammonium polyphosphate, melamine, boric acid, bisphenol A epoxy resin BE-188, polyamide amine H-2310 hardener and fiberglass (FG) of length 3.0 mm. Eight intumescent formulations were developed and the samples were tested for their fire performance by burning them at 450°C, 650°C and 850°C in the furnace for two hours. The effects of each fire test at different temperatures; low and high temperature were evaluated. Scanning Electron Microscope, X-Ray Diffraction technique and Thermo Gravimetric Analysis were conducted on the samples to study the morphology, the chemical components of char and the residual weight of the coatings. The formulation, FG08 containing 7.0 wt% glass fiber provided better results with enhanced thermal insulation properties of the coatings.

  17. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin - An In Vitro Study.

    PubMed

    Murthy, H B Mallikarjuna; Shaik, Sharaz; Sachdeva, Harleen; Khare, Sumit; Haralur, Satheesh B; Roopa, K T

    2015-06-01

    The impact strength of denture base resin is of great concern and many approaches have been made to strengthen acrylic resin dentures. The objective of this study was to compare the impact strength of the denture base resin with and without reinforcement and to evaluate the impact strength of denture base resin when reinforced with stainless steel mesh, glass fiber, and polyethylene fibers in the woven form. The specimens (maxillary denture bases) were fabricated using a standard polyvinylsiloxane mold with conventional heat cured polymethyl methacrylate resin. The specimens were divided into four groups (n = 10). Group I specimens or control group were not reinforced. Group II specimens were reinforced with stainless steel mesh and Group III and Group IV specimens were reinforced with three percent by weight of glass fibers and polyethylene fibers in weave form respectively. All the specimens were immersed in water for 1-week before testing. The impact strength was measured with falling weight impact testing machine. One-way analysis of variance and Tukey's post-hoc test were used for statistical analysis. Highest impact strength values were exhibited by the specimens reinforced with polyethylene fibers followed by glass fibers, stainless steel mesh, and control group. Reinforcement of maxillary complete dentures showed a significant increase in impact strength when compared to unreinforced dentures. Polyethylene fibers exhibit better impact strength followed by glass fibers and stainless steel mesh. By using pre-impregnated glass and polyethylene fibers in woven form (prepregs) the impact strength of the denture bases can be increased effectively.

  18. Stress distribution on dentin-cement-post interface varying root canal and glass fiber post diameters. A three-dimensional finite element analysis based on micro-CT data

    PubMed Central

    LAZARI, Priscilla Cardoso; de OLIVEIRA, Rodrigo Caldeira Nunes; ANCHIETA, Rodolfo Bruniera; de ALMEIDA, Erika Oliveira; FREITAS JUNIOR, Amilcar Chagas; KINA, Sidney; ROCHA, Eduardo Passos

    2013-01-01

    Objective The aim of the present study was to analyze the influence of root canal and glass fiber post diameters on the biomechanical behavior of the dentin/cement/post interface of a root-filled tooth using 3D finite element analysis. Material and Methods Six models were built using micro-CT imaging data and SolidWorks 2007 software, varying the root canal (C) and the glass fiber post (P) diameters: C1P1-C=1 mm and P=1 mm; C2P1-C=2 mm and P=1 mm; C2P2-C=2 mm and P=2 mm; C3P1-C=3 mm and P=1 mm; C3P2-C=3 mm and P=2 mm; and C3P3-C=3 mm and P=3 mm. The numerical analysis was conducted with ANSYS Workbench 10.0. An oblique force (180 N at 45º) was applied to the palatal surface of the central incisor. The periodontal ligament surface was constrained on the three axes (x=y=z=0). Maximum principal stress (σmax) values were evaluated for the root dentin, cement layer, and glass fiber post. Results: The most evident stress was observed in the glass fiber post at C3P1 (323 MPa), and the maximum stress in the cement layer occurred at C1P1 (43.2 MPa). The stress on the root dentin was almost constant in all models with a peak in tension at C2P1 (64.5 MPa). Conclusion The greatest discrepancy between root canal and post diameters is favorable for stress concentration at the post surface. The dentin remaining after the various root canal preparations did not increase the stress levels on the root. PMID:24473716

  19. Experimental Investigation on Thermal Physical Properties of an Advanced Glass Fiber Composite Material

    NASA Astrophysics Data System (ADS)

    Guangfa, Gao; Yongchi, Li; Zheng, Jing; Shujie, Yuan

    Fiber reinforced composite materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced glass fiber reinforced composite material, a series of experiments for measuring thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.

  20. 2-.mu.m fiber amplified spontaneous emission (ASE) source

    NASA Technical Reports Server (NTRS)

    Jiang, Shibin (Inventor); Wu, Jianfeng (Inventor); Geng, Jihong (Inventor)

    2007-01-01

    A 2-.mu.m fiber Amplified Spontaneous Emission (ASE) source provides a wide emission bandwidth and improved spectral stability/purity for a given output power. The fiber ASE source is formed from a heavy metal oxide multicomponent glass selected from germanate, tellurite and bismuth oxides and doped with high concentrations, 0.5-15 wt. %, thulium oxides (Tm.sub.2O.sub.3) or 0.1-5 wt% holmium oxides (Ho.sub.2O.sub.3) or mixtures thereof. The high concentration of thulium dopants provide highly efficient pump absorption and high quantum efficiency. Co-doping of Tm and Ho can broaden the ASE spectrum.

  1. Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference.

    PubMed

    Cheng, Tonglei; Kanou, Yasuhire; Deng, Dinghuan; Xue, Xiaojie; Matsumoto, Morio; Misumi, Takashi; Suzuki, Takenobu; Ohishi, Yasutake

    2014-06-02

    A hybrid four-hole AsSe2-As2S5 microstructured optical fiber (MOF) with a large refractive index difference is fabricated by the rod-in-tube drawing technique. The core and the cladding are made from the AsSe2 glass and As2S5 glass, respectively. The propagation loss is ~1.8 dB/m and the nonlinear coefficient is ~2.03 × 10(4) km(-1)W(-1) at 2000 nm. Raman scattering is observed in the normal dispersion regime when the fiber is pumped by a 2 μm mode-locked picosecond fiber laser. Additionally, soliton is generated in the anomalous dispersion regime when the fiber is pumped by an optical parametric oscillator (OPO) at the pump wavelength of ~3000 nm.

  2. "Brick-and-Mortar" Nanostructured Interphase for Glass-Fiber-Reinforced Polymer Composites.

    PubMed

    De Luca, Francois; Sernicola, Giorgio; Shaffer, Milo S P; Bismarck, Alexander

    2018-02-28

    The fiber-matrix interface plays a critical role in determining composite mechanical properties. While a strong interface tends to provide high strength, a weak interface enables extensive debonding, leading to a high degree of energy absorption. Balancing these conflicting requirements by engineering composite interfaces to improve strength and toughness simultaneously still remains a great challenge. Here, a nanostructured fiber coating was realized to manifest the critical characteristics of natural nacre, at a reduced length scale, consistent with the surface curvature of fibers. The new interphase contains a high proportion (∼90 wt %) of well-aligned inorganic platelets embedded in a polymer; the window of suitable platelet dimensions is very narrow, with an optimized platelet width and thickness of about 130 and 13 nm, respectively. An anisotropic, nanostructured coating was uniformly and conformally deposited onto a large number of 9 μm diameter glass fibers, simultaneously, using self-limiting layer-by-layer assembly (LbL); this parallel approach demonstrates a promising strategy to exploit LbL methods at scale. The resulting nanocomposite interphase, primarily loaded in shear, provides new mechanisms for stress dissipation and plastic deformation. The energy released by fiber breakage in tension appear to spread and dissipate within the nanostructured interphase, accompanied by stable fiber slippage, while the interfacial strength was improved up to 30%.

  3. Mode coupling in 340 μm GeO2 doped core-silica clad optical fibers

    NASA Astrophysics Data System (ADS)

    Djordjevich, Alexandar; Savović, Svetislav

    2017-03-01

    The state of mode coupling in 340 μm GeO2 doped core-silica clad optical fibers is investigated in this article using the power flow equation. The coupling coefficient in this equation was first tuned such that the equation could correctly reconstruct previously reported measured output power distributions. It was found that the GeO2 doped core-silica clad optical fiber showed stronger mode coupling than both, glass and popular plastic optical fibers. Consequently, the equilibrium as well as steady state mode distributions were achieved at shorter fiber lengths in GeO2 doped core-silica clad optical fibers.

  4. Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: Design and analysis

    NASA Astrophysics Data System (ADS)

    Saini, Than Singh; Tiwari, Umesh Kumar; Sinha, Ravindra Kumar

    2017-08-01

    Recently, highly nonlinear Ga-Sb-S chalcogenide glasses have been reported for promising mid-infrared applications such as thermal imaging, nonlinear optics, and infrared lasers. However, the nonlinear optical fiber and waveguide geometries in Ga-Sb-S chalcogenide glasses have not been reported to date. In this paper, we numerically investigate the design of the dual zero dispersion engineered rib waveguide in Ga8Sb32S60 chalcogenide glass by employing MgF2 glass as a lower and upper cladding material. The waveguide structure possesses nonlinearity as high as 24 100 W-1 Km-1 and 14 000 W-1 Km-1 at 2050 and 2800 nm, respectively. The reported waveguide is able to generate a mid-infrared supercontinuum spectrum spanning from 1000 to 7800 nm when it pumped with 97 femtosecond laser pulses of a peak power of 1 kW at 2050 nm. We have also showed that the supercontinuum spectrum can be extended to the spectral range of 1000-9700 nm using pumping with 497 fs pulses of a peak power of 6.4 kW at 2800 nm. To the best of our knowledge, the proposed rib waveguide structure in Ga8Sb32S60 chalcogenide glass has been reported first time for nonlinear applications. Such a dispersion engineered rib waveguide structure has potential applications for the low-cost, power efficient, and compact on-chip mid-infrared supercontinuum sources and other nonlinear photonic devices.

  5. Fiber-optic thermometer application of thermal radiation from rare-earth end-doped SiO{sub 2} fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsumata, Toru, E-mail: katsumat@toyo.jp; Morita, Kentaro; Komuro, Shuji

    2014-08-15

    Visible light thermal radiation from SiO{sub 2} glass doped with Y, La, Ce, Pr, Nd, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu were studied for the fiber-optic thermometer application based on the temperature dependence of thermal radiation. Thermal radiations according to Planck's law of radiation are observed from the SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu at the temperature above 1100 K. Thermal radiations due to f-f transitions of rare-earth ions are observed from the SiO{sub 2} fibers doped with Nd, Dy, Ho, Er, Tm, and Yb at the temperature above 900more » K. Peak intensities of thermal radiations from rare-earth doped SiO{sub 2} fibers increase sensitively with temperature. Thermal activation energies of thermal radiations by f-f transitions seen in Nd, Dy, Ho, Er, Tm, and Yb doped SiO{sub 2} fibers are smaller than those from SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu. Thermal radiation due to highly efficient f-f transitions in Nd, Dy, Ho, Er, Tm, and Yb ions emits more easily than usual thermal radiation process. Thermal radiations from rare-earth doped SiO{sub 2} are potentially applicable for the fiber-optic thermometry above 900 K.« less

  6. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    NASA Astrophysics Data System (ADS)

    Jukola, H.; Nikkola, L.; Gomes, M. E.; Chiellini, F.; Tukiainen, M.; Kellomäki, M.; Chiellini, E.; Reis, R. L.; Ashammakhi, N.

    2008-02-01

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-ɛ-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 °C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 °C with the decomposition of starch and continued at 400 °C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

  7. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jukola, H.; Nikkola, L.; Tukiainen, M.

    2008-02-15

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-{epsilon}-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined usingmore » combustion tests. A strong endothermic peak indicating melting at about 56 deg. C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 deg. C with the decomposition of starch and continued at 400 deg. C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.« less

  8. Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.

    PubMed

    Peng, Mingying; Qiu, Jianrong; Chen, Danping; Meng, Xiangeng; Zhu, Congshan

    2005-09-05

    The broadband emission in the 1.2~1.6mum region from Li2O-Al2O3-ZnO-SiO2 ( LAZS ) glass codoped with 0.01mol.%Cr2O3 and 1.0mol.%Bi2O3 when pumped by the 808nm laser at room temperature is not initiated from Cr4+ ions, but from bismuth, which is remarkably different from the results reported by Batchelor et al. The broad ~1300nm emission from Bi2O3-containing LAZS glasses possesses a FWHM ( Full Width at Half Maximum ) more than 250nm and a fluorescent lifetime longer than 500mus when excited by the 808nm laser. These glasses might have the potential applications in the broadly tunable lasers and the broadband fiber amplifiers.

  9. Reinforcing effect of glass-fiber mesh on complete dentures in a test model with a simulated oral mucosa.

    PubMed

    Yu, Sang-Hui; Oh, Seunghan; Cho, Hye-Won; Bae, Ji-Myung

    2017-11-01

    Studies that evaluated the strength of complete dentures reinforced with glass-fiber mesh or metal mesh on a cast with a simulated oral mucosa are lacking. The purpose of this in vitro study was to compare the mechanical properties of maxillary complete dentures reinforced with glass-fiber mesh with those of metal mesh in a new test model, using a simulated oral mucosa. Complete dentures reinforced with 2 types of glass-fiber mesh, SES mesh (SES) and glass cloth (GC) and metal mesh (metal) were fabricated. Complete dentures without any reinforcement were prepared as a control (n=10). The complete dentures were located on a cast with a simulated oral mucosa, and a load was applied on the posterior artificial teeth bilaterally. The fracture load, elastic modulus, and toughness of a complete denture were measured using a universal testing machine at a crosshead speed of 5 mm/min. The fracture load and elastic modulus were analyzed using 1-way analysis of variance, and the toughness was analyzed with the Kruskal-Wallis test (α=.05). The Tukey multiple range test was used as a post hoc test. The fracture load and toughness of the SES group was significantly higher than that of the metal and control groups (P<.05) but not significantly different from that of the GC group. The elastic modulus of the metal group was significantly higher than that of the control group (P<.05), and no significant differences were observed in the SES and GC groups. Compared with the control group, the fracture load and toughness of the SES and GC groups were higher, while those of the metal group were not significantly different. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Ferrule and use thereof for cooling a melt spun hollow glass fiber as it emerges from a spinnerette

    DOEpatents

    Brown, William E.

    1977-01-01

    An improvement in the process of melt spinning thin walled, hollow fibers from relatively low melting glasses results if cooling of the emerging fiber is accomplished by use of a thin layer of gas to transfer heat from the fiber to a ferrule which fits closely to the spinnerette face and the individual fiber. The ferrule incorporates or is in contact with a heat sink and is slotted or segmented so that it may be brought into position around the moving fiber. Thinner walled, more uniform fibers may be spun when this method of cooling is employed.

  11. Bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber composite: biomechanical properties and biocompatibility

    PubMed Central

    Qiao, Bo; Li, Jidong; Zhu, Qingmao; Guo, Shuquan; Qi, Xiaotong; Li, Weichao; Wu, Jun; Liu, Yang; Jiang, Dianming

    2014-01-01

    An ideal bone plate for internal fixation of bone fractures should have good biomechanical properties and biocompatibility. In this study, we prepared a new nondegradable bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber (n-HA/PA66/GF) composite. A breakage area on the n-HA/PA66/GF plate surface was characterized by scanning electron microscopy. Its mechanical properties were investigated using bone-plate constructs and biocompatibility was evaluated in vitro using bone marrow-derived mesenchymal stem cells. The results confirmed that adhesion between the n-HA/PA66 matrix and the glass fibers was strong, with only a few fibers pulled out at the site of breakage. Fractures fixed by the n-HA/PA66/GF plate showed lower stiffness and had satisfactory strength compared with rigid fixation using a titanium plate. Moreover, the results with regard to mesenchymal stem cell morphology, MTT assay, Alizarin Red S staining, enzyme-linked immunosorbent assay, and reverse transcription polymerase chain reaction for alkaline phosphatase and osteocalcin showed that the n-HA/PA66/GF composite was suitable for attachment and proliferation of mesenchymal stem cells, and did not have a negative influence on matrix mineralization or osteogenic differentiation of mesenchymal stem cells. These observations indicate that the n-HA/PA66/GF plate has good biomechanical properties and biocompatibility, and may be considered a new option for internal fixation in orthopedic surgery. PMID:24669191

  12. Bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber composite: biomechanical properties and biocompatibility.

    PubMed

    Qiao, Bo; Li, Jidong; Zhu, Qingmao; Guo, Shuquan; Qi, Xiaotong; Li, Weichao; Wu, Jun; Liu, Yang; Jiang, Dianming

    2014-01-01

    An ideal bone plate for internal fixation of bone fractures should have good biomechanical properties and biocompatibility. In this study, we prepared a new nondegradable bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber (n-HA/PA66/GF) composite. A breakage area on the n-HA/PA66/GF plate surface was characterized by scanning electron microscopy. Its mechanical properties were investigated using bone-plate constructs and biocompatibility was evaluated in vitro using bone marrow-derived mesenchymal stem cells. The results confirmed that adhesion between the n-HA/PA66 matrix and the glass fibers was strong, with only a few fibers pulled out at the site of breakage. Fractures fixed by the n-HA/PA66/GF plate showed lower stiffness and had satisfactory strength compared with rigid fixation using a titanium plate. Moreover, the results with regard to mesenchymal stem cell morphology, MTT assay, Alizarin Red S staining, enzyme-linked immunosorbent assay, and reverse transcription polymerase chain reaction for alkaline phosphatase and osteocalcin showed that the n-HA/PA66/GF composite was suitable for attachment and proliferation of mesenchymal stem cells, and did not have a negative influence on matrix mineralization or osteogenic differentiation of mesenchymal stem cells. These observations indicate that the n-HA/PA66/GF plate has good biomechanical properties and biocompatibility, and may be considered a new option for internal fixation in orthopedic surgery.

  13. Analysis of the Light Transmission Ability of Reinforcing Glass Fibers Used in Polymer Composites.

    PubMed

    Hegedűs, Gergely; Sarkadi, Tamás; Czigány, Tibor

    2017-06-10

    This goal of our research was to show that E-glass fiber bundles used for reinforcing composites can be enabled to transmit light in a common resin without any special preparation (without removing the sizing). The power of the transmitted light was measured and the attenuation coefficient, which characterizes the fiber bundle, was determined. Although the attenuation coefficient depends on temperature and the wavelength of the light, it is independent of the power of incident light, the quality of coupling, and the length of the specimen. The refractive index of commercially available transparent resins was measured and it was proved that a resin with a refractive index lower than that of the fiber can be used to make a composite whose fibers are capable of transmitting light. The effects of temperature, compression of the fibers, and the shape of fiber ends on the power of transmitted light were examined. The measurement of emitted light can provide information about the health of the fibers. This can be the basis of a simple health monitoring system in the case of general-purpose composite structures.

  14. Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies

    DTIC Science & Technology

    2016-07-07

    technology of visible fiber laser, Pr-doped waterproof fluoro-aluminate glass fiber (Pr:WPFGF) laser. The significant achievements are as follows; 1...greater than 1-W and multi-color visible fiber laser oscillations, 2) visible laser pulse generation in a Pr-doped waterproof fluoride glass fiber ...for more high power operation, fabrication of a Pr-doped double-clad structured waterproof fluoride glass fiber with a single-mode beam. These results

  15. S-nitrosylation and S-glutathionylation of Cys134 on troponin I have opposing competitive actions on Ca2+ sensitivity in rat fast-twitch muscle fibers.

    PubMed

    Dutka, T L; Mollica, J P; Lamboley, C R; Weerakkody, V C; Greening, D W; Posterino, G S; Murphy, R M; Lamb, G D

    2017-03-01

    Nitric oxide is generated in skeletal muscle with activity and decreases Ca 2+ sensitivity of the contractile apparatus, putatively by S- nitrosylation of an unidentified protein. We investigated the mechanistic basis of this effect and its relationship to the oxidation-induced increase in Ca 2+ sensitivity in mammalian fast-twitch (FT) fibers mediated by S- glutathionylation of Cys134 on fast troponin I (TnI f ). Force-[Ca 2+ ] characteristics of the contractile apparatus in mechanically skinned fibers were assessed by direct activation with heavily Ca 2+ -buffered solutions. Treatment with S- nitrosylating agents, S- nitrosoglutathione (GSNO) or S- nitroso- N -acetyl-penicillamine (SNAP), decreased pCa 50 ( = -log 10 [Ca 2+ ] at half-maximal activation) by ~-0.07 pCa units in rat and human FT fibers without affecting maximum force, but had no effect on rat and human slow-twitch fibers or toad or chicken FT fibers, which all lack Cys134. The Ca 2+ sensitivity decrease was 1 ) fully reversed with dithiothreitol or reduced glutathione, 2 ) at least partially reversed with ascorbate, indicative of involvement of S-nitrosylation, and 3 ) irreversibly blocked by low concentration of the alkylating agent, N -ethylmaleimide (NEM). The biotin-switch assay showed that both GSNO and SNAP treatments caused S- nitrosylation of TnI f S- glutathionylation pretreatment blocked the effects of S- nitrosylation on Ca 2+ sensitivity, and vice-versa. S- nitrosylation pretreatment prevented NEM from irreversibly blocking S- glutathionylation of TnI f and its effects on Ca 2+ sensitivity, and likewise S- glutathionylation pretreatment prevented NEM block of S- nitrosylation. Following substitution of TnI f into rat slow-twitch fibers, S- nitrosylation treatment caused decreased Ca 2+ sensitivity. These findings demonstrate that S- nitrosylation and S- glutathionylation exert opposing effects on Ca 2+ sensitivity in mammalian FT muscle fibers, mediated by competitive actions on Cys134

  16. Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8  μm.

    PubMed

    Schäfer, C A; Uehara, H; Konishi, D; Hattori, S; Matsukuma, H; Murakami, M; Shimizu, S; Tokita, S

    2018-05-15

    A side-pump coupler made of fluoride fibers was fabricated and tested. The tested device had a coupling efficiency of 83% and was driven with an incident pump power of up to 83.5 W, demonstrating high-power operation. Stable laser output of 15 W at a wavelength of around 2.8 μm was achieved over 1 h when using an erbium-doped double-clad fiber as the active medium. To the best of our knowledge, this is the first time a fluoride-glass-fiber-based side-pump coupler has been developed. A test with two devices demonstrated further power scalability.

  17. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Thompson, E. R.

    1980-01-01

    High levels of mechanical performance in tension, flexure, fatigue, and creep loading situations of graphite fiber reinforced glass matrix composites are discussed. At test temperatures of up to 813 K it was found that the major limiting factor was the oxidative instability of the reinforcing graphite fibers. Particular points to note include the following: (1) a wide variety of graphite fibers were found to be comparable with the glass matrix composite fabrication process; (2) choice of fiber, to a large extent, controlled resultant composite performance; (3) composite fatigue performance was found to be excellent at both 300 K and 703 K; (4) composite creep and stress rupture at temperatures of up to 813 K was limited by the oxidative stability of the fiber; (5) exceptionally low values of composite thermal expansion coefficient were attributable to the dimensional stability of both matrix and fiber; and (6) component fabricability was demonstrated through the hot pressing of hot sections and brazing using glass and metal joining phases.

  18. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    DOT National Transportation Integrated Search

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  19. Reflective photoluminescence fiber temperature probe based on the CdSe/ZnS quantum dot thin film

    NASA Astrophysics Data System (ADS)

    Wang, Helin; Yang, Aijun; Chen, Zhongshi; Geng, Yan

    2014-08-01

    A reflective fiber temperature sensor based on the optical temperature dependent characteristics of a quantum dots (QDs) thin film is developed by depositing the CdSe/ZnS core/shell quantum dots on the SiO2 glass substrates. As the temperature is changed from 30 to 200°C, the peak wavelengths of PL spectra from the sensing head increase linearly with the temperature, while the peak intensity and the full width at half maximum (FWHM) of PL spectra vary exponentially according to the specific physical law. Using the obtained temperature-dependent peak-wavelength shift, the average resolution of the designed fiber temperature sensor can reach 0.12 nm/°C, while it reaches 0.056 nm/°C according to the FWHM of PL spectrum.

  20. Dynamic Shock Response of an S2 Glass/SC15 Epoxy Woven Fabric Composite Material System

    NASA Astrophysics Data System (ADS)

    Key, Christopher; Alexander, Scott; Harstad, Eric; Schumacher, Shane

    2017-06-01

    The use of S2 glass/SC15 epoxy woven fabric composite materials for blast and ballistic protection has been an area of on-going research over the past decade. In order to accurately model this material system within potential applications under extreme loading conditions, a well characterized and well understood anisotropic equation of state (EOS) is needed. This work details both an experimental program and associated analytical modelling efforts which aim to provide better physical understanding of the anisotropic EOS behavior of this material. Experimental testing focused on planar shock impact tests loading the composite to peak pressures of 15 GPa in both the through-thickness and on-fiber orientation. Test results highlighted the anisotropic response of the material and provided a basis by which the associated numeric micromechanical investigation was compared. Results of the combined experimental and numerical modelling investigation provided insights into not only the constituent material influence on the composite response but also the importance of the geometrical configuration of the plain weave microstructure and the stochastic significance of the microstructural configuration. Sandia National Laboratories is a multi-mission laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Toxic Effects of Man-Made Mineral Fibers with Particular Reference to Ceramic Fibers

    DTIC Science & Technology

    1987-09-01

    Mineral Wool , Rock Wool, Sarcoma, Slag Wool. BEST AVAILABLE COPY PREFACE This document presents information on the toxic effects of man-made mineral fibers...Naturally Synthetic Occurring Asbestos Others Man-Made OthersMineral Fibers Chrysotile Others Fibrous Ceramic Glass Crocidolite Mineral Wool Rock Slag...In recent years both ceramic fiber and mineral wool have been used to replace asbestos on board many U.S. Navy ships. In particular, material

  2. Failure monitoring of E-glass/vinylester composites using fiber grating acoustic sensor

    NASA Astrophysics Data System (ADS)

    Azmi, A. I.; Raju; Peng, G. D.

    2013-06-01

    This paper reports an application of an optical fiber sensor in a continuous and in situ failure testing of an E-glass/vinylester top hat stiffener (THS). The sensor head was constructed from a compact phase-shifted fiber Bragg grating (PS-FBG). The narrow transmission channel of the PS-FBG is highly sensitive to small perturbation, hence suitable to be used in acoustic emission (AE) assessment technique. The progressive failure of THS was tested under transverse loading to experimentally simulate the actual loading in practice. Our experimental tests have demonstrated, in good agreement with the commercial piezoelectric sensors, that the important failures information of the THS was successfully recorded by the simple intensity-type PS-FBG sensor.

  3. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.

    1977-01-01

    The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.

  4. GeS2–In2S3–CsI Chalcogenide Glasses Doped with Rare Earth Ions for Near- and Mid-IR Luminescence

    PubMed Central

    Li, Legang; Bian, Junyi; Jiao, Qing; Liu, Zijun; Dai, Shixun; Lin, Changgui

    2016-01-01

    Chalcogenide glass has been considered as a promising host for the potential laser gain and amplifier media operating in near- and mid-IR spectral region. In this work, the IR luminescence spectra of rare earth ions (Tm3+, Er3+, and Dy3+) doped 65GeS2–25In2S3–10CsI chalcogenide glasses were measured under the excitation of an 808 nm laser diode. To the best of our knowledge, it firstly provides the luminescence spectra of a full near- and mid-IR spectral range from 1 to 4 μm in rare earth ions doped chalcogenide glasses. The results of absorption spectra, luminescence spectra, and fluorescence decay curves were obtained in these samples with singly-, co- and triply-doping behaviors of Tm3+, Er3+, and Dy3+ ions. In order to search possible efficient IR emissions, the luminescence behavior was investigated specifically with the variation of doping behaviors and dopant ions, especially in the samples co- and triply-doped active ions. The results suggest that favorable near- and mid-IR luminescence of rare earth ions can be further modified in chalcogenide glasses through an elaborated design of doping behavior and optically active ions. PMID:27869231

  5. Novel radiation-resistant glass fiber/epoxy composite for cryogenic insulation system

    NASA Astrophysics Data System (ADS)

    Wu, Z. X.; Zhang, H.; Yang, H. H.; Chu, X. X.; Li, L. F.

    2010-08-01

    A new radiation-resistant epoxy resin system was developed that has low viscosity and long working time at 45 °C. The system consists of triglycidyl-p-aminophenol (TGPAP) epoxide, isopropylidenebisphenol bis[(2-glycidyloxy-3-n-butoxy)-1-propylether] (IPBE) epoxide and diethyl toluene diamine (DETD). Boron-free glass fiber composites of epoxy resin with different ratio of TGPAP/IPBE/DETD were prepared by vacuum press impregnation. The ratio of TGPAP/IPBE affected the working time and the viscosity at the impregnation. The mechanical properties of the composites at 300 K and at 77 K were measured before and after 60Co γ-ray irradiation of 1 MGy at ambient temperature. The γ-ray radiation scarcely affected the properties of the composites.

  6. Tensile strength of glass fiber posts submitted to different surface treatments.

    PubMed

    Faria, Maria Isabel A; Gomes, Érica Alves; Messias, Danielle Cristine; Silva Filho, João Manoel; Souza Filho, Celso Bernardo; Paulino, Silvana Maria

    2013-01-01

    The aim of this in vitro study was to evaluate the tensile strength of glass fiber posts submitted to different surface treatments. Forty-eight maxillary canines had their crowns sectioned and root canals endodontically treated. The roots were embedded in acrylic resin and distributed into 3 groups according to the surface treatment: Group I: the posts were treated with silane agent for 30 s and adhesive; Group II: the posts were cleaned with alcohol before treatment with silane agent and adhesive; Group III: the posts were submitted to conditioning with 37% phosphoric acid for 30 s before treatment with silane agent and adhesive. Each group was divided into 2 subgroups for adhesive polymerization or not before insertion into the canal: A - adhesive was not light cured and B - adhesive was light cured. All posts were cemented with Panavia F and the samples were subjected to tensile strength test in a universal testing machine at crosshead speed of 1 mm/min. Data were submitted to one-way ANOVA and Tukey's test at 5% significance level. There was statistically significant difference (p<0.01) only between group GIII-B and groups GI-A and GI-B. No significant difference was found among the other groups (p>0.05). It was concluded that the products used for cleaning the posts influenced the retention regardless of adhesive light curing.

  7. Study of sound-absorbing properties of glass-fiber reinforced materials used in engineering

    NASA Astrophysics Data System (ADS)

    Egorova, V. E.; Habibova, R. R.; Shafigullin, L. N.

    2017-09-01

    Modern engineering makes high demands to the noise level in the passenger compartment or cabin of KAMAZ. An effective means of dealing with noise is to use sound absorbing materials produced by the automotive industry. To increase sound-absorbing capacity of materials and structures using glass fibre reinforced polyurethane foams (PUF) obtained by the technology Fiber Composite Spraying.

  8. The Use of Glass-fibers Ribbon and Composite for Prosthetic Restoration of Missing Primary Teeth-Laboratory and Clinical Research

    PubMed Central

    Zilberman, Uri; Lasilla, Lippo

    2014-01-01

    Very few modalities can be used for restoring missing primary anterior teeth, although the impact of missing anterior teeth during early childhood can be harmful. In the permanent dentition the use of glass-fibers ribbon and composite materials are frequently used for restoring missing teeth with no or minimal preparation. The purpose of this study was to examine the possibility to use the glass-fibers ribbon (ever-Stick from GC Corporation, Japan) together with esthetic composite materials (G-aenial A1 from GC Corporation, Japan) for restoring anterior primary teeth and to determine the best methodology and bonding system to be used. The effect of etching time was analyzed using 20-80 sec on primary buccal enamel with SEM and the results showed that at least 60 second is necessary in order to remove the prismless layer and to affect the prismatic layer similar (as observed by SEM) to the 20 sec etching time on permanent enamel. Three bonding systems (SE Bond by Kurary, Japan, Scotchbond Universal by 3M/ESPE, Germany and G-aenial bond by GC Company, Japan) were compared for bonding the glass-fibers ribbon to the primary enamel and microtensile strength analyses were performed. Mean tensile strength ranged from 10.9 to 13 MPa with no statistically significant differences between all three systems. Based on the laboratory results it can be concluded that the glass-fibers ribbon together with the composite material can be used clinically to restore missing primary teeth for esthetic and functional reasons. Two clinical cases are presented that show favorable results. PMID:25553140

  9. Method for optical and mechanically coupling optical fibers

    DOEpatents

    Toeppen, John S.

    1996-01-01

    A method and apparatus for splicing optical fibers. A fluorescing solder glass frit having a melting point lower than the melting point of first and second optical fibers is prepared. The solder glass frit is then attached to the end of the first optical fiber and/or the end of the second optical fiber. The ends of the optical fibers are aligned and placed in close proximity to each other. The solder glass frit is then heated to a temperature which is lower than the melting temperature of the first and second optical fibers, but which is high enough to melt the solder glass frit. A force is applied to the first and second optical fibers pushing the ends of the fibers towards each other. As the solder glass flit becomes molten, the layer of molten solder glass is compressed into a thin layer between the first and second optical fibers. The thin compressed layer of molten solder glass is allowed to cool such that the first and second optical fibers are bonded to each other by the hardened layer of solder glass.

  10. Multi-layer porous fiber-reinforced composites for implants: in vitro calcium phosphate formation in the presence of bioactive glass.

    PubMed

    Nganga, Sara; Zhang, Di; Moritz, Niko; Vallittu, Pekka K; Hupa, Leena

    2012-11-01

    Glass-fiber-reinforced composites (FRCs), based on bifunctional methacrylate resin, have recently shown their potential for use as durable cranioplasty, orthopedic and oral implants. In this study we suggest a multi-component sandwich implant structure with (i) outer layers out of porous FRC, which interface the cortical bone, and (ii) inner layers encompassing bioactive glass granules, which interface with the cancellous bone. The capability of Bioglass(®) 45S5 granules (100-250μm) to induce calcium phosphate formation on the surface of the FRC was explored by immersing the porous FRC-Bioglass laminates in simulated body fluid (SBF) for up to 28d. In both static (agitated) and dynamic conditions, bioactive glass granules induced precipitation of calcium phosphate at the laminate surfaces as confirmed by scanning electron microscopy. The proposed dynamic flow system is useful for the in vitro simulation of bone-like apatite formation on various new porous implant designs containing bioactive glass and implant material degradation. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. High-Performance CuInS 2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergren, Matthew R.; Makarov, Nikolay S.; Ramasamy, Karthik

    Building-integrated sunlight harvesting utilizing laminated glass luminescent solar concentrators (LSCs) is proposed. By incorporating high quantum yield (>90%), NIR-emitting CuInS2/ZnS quantum dots into the polymer interlayer between two sheets of low-iron float glass, a record optical efficiency of 8.1% is demonstrated for a 10 cm x 10 cm device that transmits ~44% visible light. After completing prototypes by attaching silicon solar cells along the perimeter of the device, the electrical power conversion efficiency was certified at 2.2% with a black background and at 2.9% using a reflective substrate. This 'drop-in' LSC solution is particularly attractive because it fits within themore » existing glazing industry value chain with only modest changes to typical glazing products. Performance modeling predicts >1 GWh annual electricity production for a typical urban skyscraper in most major U.S. cities, enabling significant energy cost savings and potentially 'net-zero' buildings.« less

  12. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites

    PubMed Central

    Invernizzi, Marta; Natale, Gabriele; Levi, Marinella; Turri, Stefano; Griffini, Gianmarco

    2016-01-01

    Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components. PMID:28773704

  13. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites.

    PubMed

    Invernizzi, Marta; Natale, Gabriele; Levi, Marinella; Turri, Stefano; Griffini, Gianmarco

    2016-07-16

    Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  14. Selected Bibliography on Fiber-Reinforced Cement and Concrete. Supplement Number 2.

    DTIC Science & Technology

    1979-07-01

    A listing of 471 additional references with author index is given for fiber-reinforced cement and gypsum matrices, mortars, and concretes. Fiber types include steel, glass, plastic, asbestos, organic, carbon, and others. (Author)

  15. Effect of CNT addition on cure kinetics of glass fiber/epoxy composite

    NASA Astrophysics Data System (ADS)

    Fulmali, A. O.; Kattaguri, R.; Mahato, K. K.; Prusty, R. K.; Ray, B. C.

    2018-03-01

    In present time, developments in reinforced polymer composites have acquired preferential attention for high performance and high precision applications like aerospace, marine and transportation. Fibre reinforced polymer (FRP) composites are being substituted because of their low density, higher strength, stiffness, impact resistance, and improved corrosion resistance. Further laminated composites exhibit superior in-plane mechanical properties that are mostly governed by the fibers. However, laminated FRP composites suffer from poor out of plane properties in some applications. These properties can further be improved by the addition of Nano fillers like carbon nanotube (CNT), graphene and so on. Curing cycle plays a very important role in drawing out the optimum property of glass fiber/epoxy (GE) composite. It is expected that the cure kinetics can further be altered by addition of CNT due to its higher aspect ratio. The main objective of this work is to study the effect of CNT addition on cure kinetics of GE composite as multi-segment adsorption of polymer takes place on the CNT surface. In this study effects of curing parameters on mechanical properties and glass transition temperature of CNT embedded glass fiber/epoxy composite (CNT-GE) has been evaluated. For this study control GE and CNT-GE (with 0.1 wt. %) laminates were fabricated using hand lay-up technique followed by hot compression. The curing parameters that were considered in the present investigation were temperature (80°C, 110°C, and 140°C) and time (0.5 hr, 3 hr and 6 hr). For different combination of above mentioned temperature and time, samples of GE and CNT-GE composites were post cured. Mechanical properties were determined by flexural testing using 3 point bending fixture on INSTRON-5967 and thermal properties i.e. glass transition temperature (Tg) determined by Differential Scanning Calorimeter (DSC) to evaluate the effects of curing parameters. For CNT-GE samples, No much variation

  16. Effect of Glass Fiber Incorporation on Flexural Properties of Experimental Composites

    PubMed Central

    Fonseca, Rodrigo Borges; Marques, Aline Silva; Bernades, Karina de Oliveira; Carlo, Hugo Lemes; Naves, Lucas Zago

    2014-01-01

    This study evaluated the effect of fiber addiction in flexural properties of 30 wt% silica filled BisGMA resin (FR) or unfilled Bis-GMA (UR). Ten groups were created (N = 10) varying the resin (FR or UR) and quantity of glass fibers (wt%: 0, 10, 15, 20, and 30). Samples (10 × 2 × 1 mm) were submitted to flexural strength test following SEM examination. Data were analyzed by two-way ANOVA, Tukey, and Student t-test (α = 0.05). Results for flexural strength (MPa) were FR-groups: 0% (442.7 ± 140.6)C, 10% (772.8 ± 446.3)ABC, 15% (854.7 ± 297.3)AB, 20% (863.4 ± 418.0)A, 30% (459.5 ± 140.5)BC; UR-groups: 0% (187.7 ± 120.3)B, 10% (795.4 ± 688.1)B, 15% (1999.9 ± 1258.6)A, 20% (1911.5 ± 596.8)A, and 30% (2090.6 ± 656.7)A, and for flexural modulus (GPa) FR-groups: 0% (2065.63 ± 882.15)B, 10% (4479.06 ± 3019.82)AB, 15% (5694.89 ± 2790.3)A, 20% (6042.11 ± 3392.13)A, and 30% (2495.67 ± 1345.86)B; UR-groups: 0% (1090.08 ± 708.81)C, 10% (7032.13 ± 7864.53)BC, 15% (19331.57 ± 16759.12)AB, 20% (15726.03 ± 8035.09)AB, and 30% (29364.37 ± 13928.96)A. Fiber addiction in BisGMA resin increases flexural properties, and the interaction between resin and fibers seems better in the absence of inorganic fillers increasing flexural properties. PMID:25136595

  17. Effect of glass fiber incorporation on flexural properties of experimental composites.

    PubMed

    Fonseca, Rodrigo Borges; Marques, Aline Silva; Bernades, Karina de Oliveira; Carlo, Hugo Lemes; Naves, Lucas Zago

    2014-01-01

    This study evaluated the effect of fiber addiction in flexural properties of 30 wt% silica filled BisGMA resin (FR) or unfilled Bis-GMA (UR). Ten groups were created (N = 10) varying the resin (FR or UR) and quantity of glass fibers (wt%: 0, 10, 15, 20, and 30). Samples (10 × 2 × 1 mm) were submitted to flexural strength test following SEM examination. Data were analyzed by two-way ANOVA, Tukey, and Student t-test (α = 0.05). Results for flexural strength (MPa) were FR-groups: 0% (442.7 ± 140.6)(C), 10% (772.8 ± 446.3)(ABC), 15% (854.7 ± 297.3)(AB), 20% (863.4 ± 418.0)(A), 30% (459.5 ± 140.5)(BC); UR-groups: 0% (187.7 ± 120.3)(B), 10% (795.4 ± 688.1)(B), 15% (1999.9 ± 1258.6)(A), 20% (1911.5 ± 596.8)(A), and 30% (2090.6 ± 656.7)(A), and for flexural modulus (GPa) FR-groups: 0% (2065.63 ± 882.15)(B), 10% (4479.06 ± 3019.82)(AB), 15% (5694.89 ± 2790.3)(A), 20% (6042.11 ± 3392.13)(A), and 30% (2495.67 ± 1345.86)(B); UR-groups: 0% (1090.08 ± 708.81)(C), 10% (7032.13 ± 7864.53)(BC), 15% (19331.57 ± 16759.12)(AB), 20% (15726.03 ± 8035.09)(AB), and 30% (29364.37 ± 13928.96)(A). Fiber addiction in BisGMA resin increases flexural properties, and the interaction between resin and fibers seems better in the absence of inorganic fillers increasing flexural properties.

  18. Raman band intensities of tellurite glasses.

    PubMed

    Plotnichenko, V G; Sokolov, V O; Koltashev, V V; Dianov, E M; Grishin, I A; Churbanov, M F

    2005-05-15

    Raman spectra of TeO2-based glasses doped with WO3, ZnO, GeO2, TiO2, MoO3, and Sb2O3 are measured. The intensity of bands in the Raman spectra of MoO3-TeO2 and MoO3-WO3-TeO2 glasses is shown to be 80-95 times higher than that for silica glass. It is shown that these glasses can be considered as one of the most promising materials for Raman fiber amplifiers.

  19. Silica Glass Fibers : Modes Of Degradation And Thoughts On Protection

    NASA Astrophysics Data System (ADS)

    Kruger, Albert A.; Mularie, William M.

    1984-03-01

    The widely held explanation for mechanical failure of silicate glasses rests upon the existence of Griffith-flaw and the associated free-ion diffusion concept used to model crack growth. However, this theory has consistently failed to provide complete agreement with the experimental results known to those "schooled" in the poignant literature. This dilemma coupled with the reports of single-valued strengths in fibers cannot be rationalized by the modification of the intrinsic Griffith-flaw distribution to essentially a delta function (this violates entropy). It is for these reasons that the field-enhanced ion diffusion model has been introduced. The inclusion of a term for electrostatic potential in the solution of Fick's second law is shown to be consistent with the experimental results in the existing literature. The results of the work presented herein provide further support of the proposed model, and the implied consequences of chemical corrosion in glass which results in its subsequent failure.

  20. Analysis of the Light Transmission Ability of Reinforcing Glass Fibers Used in Polymer Composites

    PubMed Central

    Hegedűs, Gergely; Sarkadi, Tamás; Czigány, Tibor

    2017-01-01

    This goal of our research was to show that E-glass fiber bundles used for reinforcing composites can be enabled to transmit light in a common resin without any special preparation (without removing the sizing). The power of the transmitted light was measured and the attenuation coefficient, which characterizes the fiber bundle, was determined. Although the attenuation coefficient depends on temperature and the wavelength of the light, it is independent of the power of incident light, the quality of coupling, and the length of the specimen. The refractive index of commercially available transparent resins was measured and it was proved that a resin with a refractive index lower than that of the fiber can be used to make a composite whose fibers are capable of transmitting light. The effects of temperature, compression of the fibers, and the shape of fiber ends on the power of transmitted light were examined. The measurement of emitted light can provide information about the health of the fibers. This can be the basis of a simple health monitoring system in the case of general-purpose composite structures. PMID:28772996

  1. Glue-free assembly of glass fiber reinforced thermoplastics using laser light

    NASA Astrophysics Data System (ADS)

    Binetruy, C.; Clement, S.; Deleglise, M.; Franz, C.; Knapp, W.; Oumarou, M.; Renard, J.; Roesner, A.

    2011-05-01

    The use of laser light for bonding of continuous fiber reinforced thermoplastic composites (CFTPC) offers new possibilities to overcome the constraints of conventional joining technologies. Laser bonding is environmentally friendly as no chemical additive or glue is necessary. Accuracy and flexibility of the laser process as well as the quality of the weld seams provide benefits which are already used in many industrial applications. Laser transmission welding has already been introduced in manufacturing of short fiber thermoplastic composites. The laser replaces hot air in tapelaying systems for pre-preg carbon fiber placement. The paper provides an overview concerning the technical basics of the joining process and outline some material inherent characteristics to be considered when using continuous glass fiber reinforced composites The technical feasibility and the mechanical characterization of laser bonded CFTPC are demonstrated. The influence of the different layer configurations on the laser interaction with the material is investigated and the dependency on the mechanical strength of the weld seem is analyzed. The results show that the laser provides an alternative joining technique and offers new perspectives to assemble structural components emerging in automotive or aeronautical manufacturing. It overcomes the environmental and technical difficulties related to existing gluing processes.

  2. Intramolecular structural model for photoinduced plasticity in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Yannopoulos, S. N.

    2003-08-01

    Selected spectral features of Raman spectra of glassy As2S3 subjected to elongation stress and sub-band-gap light illumination are analyzed and compared with polarization-dependent information obtained from the bulk glass at room temperature and near the glass transition temperature. The data are suggestive of specific structural changes which involve the transformation of atomic arrangements from realgarlike As4S4 molecules, originally present in virgin (untreated) fibers, into planar orpimentlike clusters. Implications of these atomic rearrangements to the incipient photoinduced fluidity—the onset of plastic deformation—in As2S3 glass are discussed. Kinetics of photoinduced plastic changes is compared to that of Raman spectra changes, revealing a qualitative similar behavior. An approximate estimation of the relative contribution of intermolecular rearrangements and the intramolecular structural mechanism proposed in this paper has revealed that the latter is responsible for almost 30% of the photoinduced elongation of the fiber’s length at room temperature. The proposed mechanism can as well serve as rationale for understanding the photoinduced volume expansion observed in chalcogenide glasses.

  3. Investigating interfacial phenomena in polypropylene/glass fiber composites

    NASA Astrophysics Data System (ADS)

    Toke, Jeffrey Michael

    The adhesion in polypropylene (PP)/glass composites is low due to the non-polar, non-reactive characteristics of PP. When maleated PP (mPP) is added to the matrix, adhesion is improved. Understanding the mechanisms of this phenomenon is critical in maximizing the adhesion in PP/glass composites. The strength of adhesion in PP/glass composites was investigated using glass bead composites. A Near-IR spectroscopic technique was used to evaluate the chemical reactions in the interphase. Twelve different commercial grades of maleated PP (mPP) were tested. The range of maleic anydride (MAH) content was from 0.3 weight percent (wt%) to 2.4 wt%, with one sample at 10 wt%. These mPPs were blended with a commercial PP from Huntsman, P4C5Z-027 (PP), a 20 MFI (melt flow index) polymer with minimal additives, in concentrations ranging from 0 to 20 wt%. Bead composites of non-coated (NON) and gamma-APS-coated beads (APS) were made to compare the strength of the interphase in the composite systems. The bead volume fraction used was 25 volume percent (vol%). Three polymers with different MAH content and different viscosities were tested at 1, 5, 10 and 20 wt%. All of the mPPs were tested at 5 wt%. In general, the mPP composites all exhibited higher strength compared to the PP. Pukanszky's model for tensile strength was applied that included the strength of the unfilled matrix and the volume percent of the beads in a single factor, B. Comparison of all of the polymers at 5 wt% showed that there were four groupings of the mPPs. The polymers with MAH content greater than 1.5 wt% showed the strongest adhesion with B values of ˜2.5. All of these polymers had viscosities less than 100 Pa-s (180°C, 1 Hz angular frequency). The next group of polymers, with B ˜ 2, had MAH contents ranging from 0.8 to 1.2 wt%, with viscosities ranging from the 21 Pa-s to greater than 2300 Pa-s (180°C, 1 Hz angular frequency). The following group, with B ˜ 0.9, had anhydride concentrations of 0.6 and 0

  4. Influence of screw holes and gamma sterilization on properties of phosphate glass fiber-reinforced composite bone plates.

    PubMed

    Han, Na; Ahmed, Ifty; Parsons, Andrew J; Harper, Lee; Scotchford, Colin A; Scammell, Brigitte E; Rudd, Chris D

    2013-05-01

    Polymers prepared from polylactic acid (PLA) have found a multitude of uses as medical devices. For a material that degrades, the main advantage is that an implant would not necessitate a second surgical event for removal. In this study, fibers produced from a quaternary phosphate-based glass (PBG) in the system 50P2O5-40CaO-5Na2O-5Fe2O3 were used to reinforce PLA polymer. The purpose of this study was to assess the effect of screw holes in a range of PBG-reinforced PLA composites with varying fiber layup and volume fraction. The flexural properties obtained showed that the strength and modulus values increased with increasing fiber volume fraction; from 96 MPa to 320 MPa for strength and between 4 GPa and 24 GPa for modulus. Furthermore, utilizing a larger number of thinner unidirectional (UD) fiber prepreg layers provided a significant increase in mechanical properties, which was attributed to enhanced wet out and thus better fiber dispersion during production. The effect of gamma sterilization via flexural tests showed no statistically significant difference between the sterilized and nonsterilized samples, with the exception of the modulus values for samples with screw holes. Degradation profiles revealed that samples with screw holes degraded faster than those without screw holes due to an increased surface area for the plates with screw holes in PBS up to 30 days. Scanning electron microscope (SEM) analysis revealed fiber pullout before and after degradation. Compared with various fiber impregnation samples, with 25% volume fraction, 8 thinner unidirectional prepreg stacked samples had the shortest fiber pull-out lengths in comparison to the other samples investigated.

  5. Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser.

    PubMed

    Wang, Junli; Chen, Lei; Dou, Chenxi; Yan, Haiting; Meng, Lingjie; Wei, Zhiyi

    2018-06-01

    In this work, we fabricate the Mo 0.5 W 0.5 S 2 by microwave-assisted solvothermal method, and report the Q-switched Yb-doped fiber lasers (YDFL) using Mo 0.5 W 0.5 S 2 polymer film and tapered fiber as the saturable absorbers (SAs). The modulation depth and saturable intensity of the film SA are 5.63% and 6.82 MW cm -2 . The shortest pulse duration and the maximum single pulse energy are 1.22 μs and 148.8 nJ for the film SA, 1.46 μs and 339 nJ for the fiber-taper SA. To the best of our knowledge, this is the first report on the Q-switched YDFL using Mo 0.5 W 0.5 S 2 SAs.

  6. Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Junli; Chen, Lei; Dou, Chenxi; Yan, Haiting; Meng, Lingjie; Wei, Zhiyi

    2018-06-01

    In this work, we fabricate the Mo0.5W0.5S2 by microwave-assisted solvothermal method, and report the Q-switched Yb-doped fiber lasers (YDFL) using Mo0.5W0.5S2 polymer film and tapered fiber as the saturable absorbers (SAs). The modulation depth and saturable intensity of the film SA are 5.63% and 6.82 MW cm‑2. The shortest pulse duration and the maximum single pulse energy are 1.22 μs and 148.8 nJ for the film SA, 1.46 μs and 339 nJ for the fiber-taper SA. To the best of our knowledge, this is the first report on the Q-switched YDFL using Mo0.5W0.5S2 SAs.

  7. Method for optical and mechanically coupling optical fibers

    DOEpatents

    Toeppen, J.S.

    1996-10-01

    A method and apparatus are disclosed for splicing optical fibers. A fluorescing solder glass frit having a melting point lower than the melting point of first and second optical fibers is prepared. The solder glass frit is then attached to the end of the first optical fiber and/or the end of the second optical fiber. The ends of the optical fibers are aligned and placed in close proximity to each other. The solder glass frit is then heated to a temperature which is lower than the melting temperature of the first and second optical fibers, but which is high enough to melt the solder glass frit. A force is applied to the first and second optical fibers pushing the ends of the fibers towards each other. As the solder glass flit becomes molten, the layer of molten solder glass is compressed into a thin layer between the first and second optical fibers. The thin compressed layer of molten solder glass is allowed to cool such that the first and second optical fibers are bonded to each other by the hardened layer of solder glass. 6 figs.

  8. Characterization of the intermediate-range order in new superionic conducting AgI-Ag2S-AgPO3 glasses by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Kartini, E.; Kennedy, S. J.; Itoh, K.; Fukunaga, T.; Suminta, S.; Kamiyama, T.

    Superionic conducting glasses are of considerable technological interest because of their use in batteries, sensors, and displays. We have investigated the new ternary systems AgI-Ag2S-AgPO3 where the ratio AgI:Ag2S is 1:1. The system (AgI)x(Ag2S)x(AgPO3)1-2x, for a AgI+Ag2S fraction less than 82mol%, yields glasses. We have used a neutron-diffraction technique to obtain the total scattering structure factor S(Q) of this system at room temperature by using the HIT spectrometer at the High Energy Accelerator (KEK), Tsukuba, Japan. As for AgI-AgPO3 glasses, S(Q) shows a peak at anomalously low Q in the range from 0.6 to 0.9 Å-1. This peak is not observed in the corresponding glass Ag2S-AgPO3 or pure AgPO3. The peak depends strongly on the dopant salt. Its intensity increases as the amount of (AgI+Ag2S) increases and its position shifts to lower Q, while the number density of the glasses decreases with x. This peak can be associated with an intermediate structure of particles lying inside a continuous host with the characteristic length between 5 and 10 Å [1].

  9. Toughening Effect of Microscale Particles on the Tensile and Vibration Properties of S-Glass-Fiber-Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Erkliğ, A.; Bulut, M.; Fayzulla, B.

    2018-03-01

    The effect of borax, sewage sludge ash, silicon carbide, and perlite microparticles on the tensile, damping, and vibration characteristics of S-glass/epoxy composite laminates was examined Their damping and vibration properties were evaluated experimentally by using the dynamic modal analysis, identifying the response of the fundamental natural frequency to the type and weight content of the particulates. The results obtained showed that the introduction of specific amounts of such particulates into the matrix of S-glass/epoxy composite noticeably improved its mechanical properties.

  10. Fiber lasers and their applications [Invited].

    PubMed

    Shi, Wei; Fang, Qiang; Zhu, Xiushan; Norwood, R A; Peyghambarian, N

    2014-10-01

    Fiber lasers have seen progressive developments in terms of spectral coverage and linewidth, output power, pulse energy, and ultrashort pulse width since the first demonstration of a glass fiber laser in 1964. Their applications have extended into a variety of fields accordingly. In this paper, the milestones of glass fiber laser development are briefly reviewed and recent advances of high-power continuous wave, Q-switched, mode-locked, and single-frequency fiber lasers in the 1, 1.5, 2, and 3 μm regions and their applications in such areas as industry, medicine, research, defense, and security are addressed in detail.

  11. Hermetic fiber optic-to-metal connection technique

    DOEpatents

    Kramer, Daniel P.

    1992-09-01

    A glass-to-glass hermetic sealing technique is disclosed which can be used to splice lengths of glass fibers together. A solid glass preform is inserted into the cavity of a metal component which is then heated to melt the glass. An end of an optical fiber is then advanced into the molten glass and the entire structure cooled to solidify the glass in sealing engagement with the optical fiber end and the metal cavity. The surface of the re-solidified glass may be machined for mating engagement with another component to make a spliced fiber optic connection. The resultant structure has a helium leak rate of less than 1.times.10.sup.-8 cm.sup.3 /sec.

  12. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O).

    PubMed

    Saravanapavan, Priya; Jones, Julian R; Pryce, Russell S; Hench, Larry L

    2003-07-01

    Bioactive glasses react chemically with body fluids in a manner that is compatible with the repair processes of the tissues. This results in the formation of an interfacial bond between the glasses and living tissue. Bioactive glasses also stimulate bone-cell proliferation. This behavior is dependent on the chemical composition as well as the surface texture of the glasses. It has been recently reported that gel-derived monolith specimens in the binary SiO2 - CaO are bioactive over a similar molar range of SiO2 content as the previously studied ternary CaO-P2O5-SiO2 system. In this report, the preparation and bioactivity of the binary gel-glass powder with 70 mol % SiO2 is discussed and its bioactivity is compared with the melt-derived 45S5 (quaternary) Bioglass and sol-gel-derived 58S (ternary) bioactive gel-glass compositions. Dissolution kinetic parameters K(1) and K(2) were also computed based on the silicon release for all glass powders. It was shown that the simple two-component SiO2-CaO gel-glass powder is bioactive with comparable dissolution rates as the clinically used melt-derived 45S5 Bioglass powder and extensively studied sol-gel-derived 58S gel-glass powder. Copyright 2003 Wiley Periodicals, Inc.

  13. FeCoNi coated glass fibers in composite sheets for electromagnetic absorption and shielding behaviors

    NASA Astrophysics Data System (ADS)

    Lee, Joonsik; Jung, Byung Mun; Lee, Sang Bok; Lee, Sang Kwan; Kim, Ki Hyeon

    2017-09-01

    To evaluate the electromagnetic (EM) absorption and shield of magnetic composite sheet, we prepared the FeCoNi coated glass fibers filled in composite sheet. The FeCoNi was coated by electroless plating on glass fiber as a filler. The coated FeCoNi found that consist of mixtures of bcc and fcc phase. The magnetization and coercivity of coated FeCoNi are about 110 emu/g and 57 Oe, respectively. The permittivity and permeability of the FeCoNi composite sheet were about 21 and 1, respectively. Power absorption increased 95% with the increment of frequency up to 10 GHz. Inter-decoupling of this composite sheet showed maximum 30 dB at around 5.3 GHz, which is comparable to that of a conductive Cu foil. Shielding effectiveness (SE) was measured by using rectangular waveguide method. SE of composite obtained about 37 dB at X-band frequency region.

  14. Glass Fiber Reinforced Metal Pressure Vessel Design Guide

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1972-01-01

    The Engineering Guide presents curves and general equations for safelife design of lightweight glass fiber reinforced (GFR) metal pressure vessels operating under anticipated Space Shuttle service conditions. The high composite vessel weight efficiency is shown to be relatively insensitive to shape, providing increased flexibility to designers establishing spacecraft configurations. Spheres, oblate speroids, and cylinders constructed of GFR Inconel X-750, 2219-T62 aluminum, and cryoformed 301 stainless steel are covered; design parameters and performance efficiencies for each configuration are compared at ambient and cryogenic temperature for an operating pressure range of 690 to 2760 N/sq cm (1000 to 4000 psi). Design variables are presented as a function of metal shell operating to sizing (proof) stress ratios for use with fracture mechanics data generated under a separate task of this program.

  15. Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical Fibers

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; LaPointe, Michael R.

    2012-01-01

    Non ]oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non ]oxide glasses utilizing a magnetic field will be detailed.

  16. A simple phenomenological study of photodarkening in As2S3 glasses

    NASA Astrophysics Data System (ADS)

    Florea, Catalin; Busse, Lynda; Sanghera, Jasbinder; Shaw, Brandon; Aggarwal, Ishwar

    2012-06-01

    By using a simple photodarkening model we investigate the dynamics of photodarkening in As2S3 glasses under laser illumination. We find that, for illumination at 633 nm, the quantum efficiency of the photodarkening process is of about 4% and that the absorption cross-section of the dark centers is ˜2.2 times larger than that of the intrinsic structural units. The insights gained from the modeling are compared with the experimental results obtained when writing Bragg gratings using 633 nm, 594 nm and 568 nm laser light.

  17. Development of a Fire-Resistant Anti-Sweat Submarine Hull Insulation Based on Fiber Glass Materials.

    DTIC Science & Technology

    1983-09-01

    CHART NATIONAL BUREAU OF STANDARDS-1963-A6w " ;’’ ..J’ d’ ,.,, -,,,.. ,.- -,. . 11111, , .. b,, I - - -.. .,. , .. . ..°.. III. . . ,Lm’ Johns ... Manville Research & Development Center DEVELOPMENT OF A FIRE-RESISTANT ANTI-SWEAT SUBMARINE HULL INSULATION BASED ON FIBER *" GLASS MATERIALS Oct icrb iz Ic

  18. Quartz and E-glass fiber self-sensing composites

    NASA Astrophysics Data System (ADS)

    Zolfaghar, K.; Khan, N. A.; Brooks, David; Hayes, Simon A.; Liu, Tonguy; Roca, J.; Lander, J.; Fernando, Gerard F.

    1998-04-01

    This paper reports on developments in the field of self- sensing fiber reinforced composites. The reinforcing fibers have been surface treated to enable them to act as light guides for short distances. The reinforcing fiber light guides were embedded in carbon fiber reinforced epoxy prepregs and processed into composites. The resultant composite was termed the self-sensing composite as any damage to these fibers or its interface would result in the attenuation of the transmitted light. The self-sensing fibers were capable of detecting a 2 J impact.

  19. Mid-infrared emission and Judd-Ofelt analysis of Dy3+-doped infrared Ga-Sb-S and Ga-Sb-S-PbI2 chalcohalide glasses

    NASA Astrophysics Data System (ADS)

    Guo, Jixiao; Jiao, Qing; He, Xiaolong; Guo, Hansong; Tong, Jianghao; Zhang, Zhihang; Jiang, Fuchao; Wang, Guoxiang

    2018-03-01

    Dy3+-doped Ga-Sb-S and Ga-Sb-S-PbI2 chalcohalide glasses were prepared by traditional melt quenching method. The effect of halide PbI2 on the physical and optical properties of Dy3+ ions was investigated. The density and ionic concentration of the host sample increased with the introduction of PbI2 halides, whereas the refractive index at 1.55 μm decreased. The Judd-Ofelt parameters showed that Ω2 increased in PbI2-modified glass, whereas the Ω6 value showed the opposite tendency. Infrared emission spectrum also showed that the intensity increased with PbI2 addition, and considerable enhancement at 2.8 μm was observed in the mid-infrared region. The halide PbI2 promoted the reduction of phonon energy of the host and the improvement of the laser pump efficiency, which led to the construction of optimized infrared glass materials for optical applications.

  20. Effect of fiber diameter on flexural properties of fiber-reinforced composites.

    PubMed

    Rezvani, Mohammad Bagher; Atai, Mohammad; Hamze, Faeze

    2013-01-01

    Flexural strength (FS) is one of the most important properties of restorative dental materials which could be improved in fiber-reinforced composites (FRCs) by several methods including the incorporation of stronger reinforcing fibers. This study evaluates the influence of the glass fiber diameter on the FS and elastic modulus of FRCs at the same weight percentage. A mixture of 2,2-bis-[4-(methacryloxypropoxy)-phenyl]-propaneand triethyleneglycol dimethacrylate (60/40 by weight) was prepared as the matrix phase in which 0.5 wt. % camphorquinone and 0.5 wt. % N-N'-dimethylaminoethyl methacrylate were dissolved as photoinitiator system. Glass fibers with three different diameters (14, 19, and 26 μm) were impregnated with the matrix resin using a soft brush. The FRCs were inserted into a 2 × 2 × 25 mm3 mold and cured using a light curing unit with an intensity of ca. 600 mW/cm2 . The FS of the FRCs was measured in a three-point bending method. The elastic modulus was determined from the slope of the initial linear part of stress-strain curve. The fracture surface of the composites was observed using scanning electron microscopy to study the fiber-matrix interface. The results were analyzed and compared using one-way ANOVA and Tukey's post-hoc test. Although the FS increased as the diameter of fibers increased up to 19 μm (P < 0.05), no significant difference was observed between the composites containing fibers with diameters of 19 and 26 μm. The diameter of the fibers influences the mechanical properties of the FRCs.

  1. Enhanced light emission near 2.7 μm from Er-Nd co-doped germanate glass

    NASA Astrophysics Data System (ADS)

    Bai, Gongxun; Tao, Lili; Li, Kefeng; Hu, Lili; Tsang, Yuen Hong

    2013-04-01

    Laser glass gain medium that can convert low cost 808 nm diode laser into 2.7 μm has attracted considerable interest due to its potential application for medical surgery fiber laser system. In this study, enhanced 2.7 μm emission has been achieved in Er3+:germanate glass by co-doping with Nd3+ ions under the excitation of an 808 nm diode laser. In the co-doped sample, the experimental results show that the harmful visible emissions via up-conversion were effectively restricted. The reduction of 1.5 μm emission was also detected in the co-doped sample, which indicates significant de-excitation of 4I13/2 Er3+ ion through energy transfer and non-radiative decay in Nd3+ ions. In conclusion, the 2.7 μm emission enhancement achieved was due to the increased optical absorption of 808 nm, efficient energy transfer (ET) with efficiency of 81.73% between Er3+ and Nd3+ ions, and shortening the lifetime of the lower lasing level 4I13/2 Er3+ in the co-doped sample. Therefore, Er3+/Nd3+ co-doped germanate glass could be used to fabricate fiber optical gain media for 2.7 μm laser generation.

  2. Joining of aluminum sheet and glass fiber reinforced polymer using extruded pins

    NASA Astrophysics Data System (ADS)

    Conte, Romina; Buhl, Johannes; Ambrogio, Giuseppina; Bambach, Markus

    2018-05-01

    The present contribution proposes a new approach for joining sheet metal and fiber reinforced composites. The joining process draws upon a Friction Stir Forming (FSF) process, which is performed on the metal sheet to produce slender pins. These pins are used to pierce through the composite. Joining is complete by forming a locking head out of the part if the pin sticks out of the composite. Pins of different diameters and lengths were produced from EN AW-1050 material, which were joined to glass fiber reinforced polyamide-6. The strength of the joint has been experimentally tested in order to understand the effect of the process temperature on the pins strength and therefore on the joining. The results demonstrate the feasibility of this new technique, which uses no excess material.

  3. Structural comparison of Ag-Ge-S bulk glasses and thin films

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Jain, Mukul; Dunn, Porter; de Leo, Carter; Boolchand, Punit

    2007-03-01

    Ternary glasses of composition (GeS3)1-xAgx (x=0.1 and 0.2) are studied in form of bulk and thin films. Bulk glasses are synthesized and examined in Raman scattering and SEM. Raman scattering results of bulk glasses show that with increasing x, an increasing fraction of the Ag additive enters the base glass as Ag^+ with S^-anions serving to form thiogermanate species with one, two and three non-bridging S^- species. SEM measurements of the bulk glass show the material is intrinsically phase separated. White colored islands are observed distributed in a dark base. The EDS measurements show islands are Ag rich and the base is relatively Ag deficient. The Ag rich islands are expected to be mainly glassy phase Ag2S. Thin films of same compositions are fabricated using thermal evaporation. Films are evaporated following two different procedures to prevent the material from spitting. One method was preheating outgas and the other method was using tungsten mesh wrapped boats. The stoichiometry and molecular structure of films under each procedure are analyzed by Raman scattering and SEM to be compared with bulk glasses.

  4. Preparation, structural characterization, and in vitro cell studies of three-dimensional SiO2-CaO binary glass scaffolds built ofultra-small nanofibers.

    PubMed

    Luo, Honglin; Li, Wei; Ao, Haiyong; Li, Gen; Tu, Junpin; Xiong, Guangyao; Zhu, Yong; Wan, Yizao

    2017-07-01

    Three-dimensional (3D) nanofibrous scaffolds hold great promises in tissue engineering and regenerative medicine. In this work, for the first time, 3D SiO 2 -CaO binary glass nanofibrous scaffolds have been fabricated via a combined method of template-assisted sol-gel and calcination by using bacterial cellulose as the template. SEM with EDS, TEM, and AFM confirm that the molar ratio of Ca to Si and fiber diameter of the resultant SiO 2 -CaO nanofibers can be controlled by immersion time in the solution of tetraethyl orthosilicate and ethanol. The optimal immersion time was 6h which produced the SiO 2 -CaO binary glass containing 60at.% Si and 40at.% Ca (named 60S40C). The fiber diameter of 60S40C scaffold is as small as 29nm. In addition, the scaffold has highly porous 3D nanostructure with dominant mesopores at 10.6nm and macropores at 20μm as well as a large BET surface area (240.9m 2 g -1 ), which endow the 60S40C scaffold excellent biocompatibility and high ALP activity as revealed by cell studies using osteoblast cells. These results suggest that the 60S40C scaffold has great potential in bone tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Methods for evaluating tensile and compressive properties of plastic laminates reinforced with unwoven glass fibers

    Treesearch

    Karl Romstad

    1964-01-01

    Methods of obtaining strength and elastic properties of plastic laminates reinforced with unwoven glass fibers were evaluated using the criteria of the strength values obtained and the failure characteristics observed. Variables investigated were specimen configuration and the manner of supporting and loading the specimens. Results of this investigation indicate that...

  6. Performance of a bridge deck with glass fiber reinforced polymer bars as the top mat of reinforcement.

    DOT National Transportation Integrated Search

    2005-01-01

    The purpose of this research was to investigate the performance of glass fiber reinforced polymer (GFRP) bars as reinforcement for concrete decks. Today's rapid bridge deck deterioration is calling for a replacement for steel reinforcement. The advan...

  7. Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/58S Sol-Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering.

    PubMed

    Ding, Yaping; Li, Wei; Müller, Teresa; Schubert, Dirk W; Boccaccini, Aldo R; Yao, Qingqing; Roether, Judith A

    2016-07-13

    Electrospinning of biopolymer and inorganic substances is one of the efficient ways to combine various advantageous properties in one single fibrous structure with potential for tissue engineering applications. In the present study, to integrate the high stiffness of polyhydroxybutyrate (PHB), the flexibility of poly(ε-caprolactone) (PCL) and the bioactivity of 58S bioactive glass, PHB/PCL/58S sol-gel bioactive glass hybrid scaffolds were fabricated using combined electrospinning and sol-gel method. Physical features such as fiber diameter distribution, mechanical strength and Young's modulus were characterized thoroughly. FTIR analysis demonstrated the successful incorporation of 58S bioactive glass into the blend polymers, which greatly improved the hydrophilicity of PHB/PCL fibermats. The primary biological response of MG-63 osteoblast-like cells on the prepared fibrous scaffolds was evaluated, proving that the 58S glass sol containing hybrid scaffold were not only favorable to MG-63 cell adhesion but also slightly enhanced cell viability and significantly increased alkaline phosphate activity .

  8. Application of a Fiber Optic Distributed Strain Sensor System to Woven E-Glass Composite

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Lopatin, Craig

    2001-01-01

    A distributed strain sensing system utilizing a series of identically written Bragg gratings along an optical fiber is examined for potential application to Composite Armored Vehicle health monitoring. A vacuum assisted resin transfer molding process was used to fabricate a woven fabric E-glass/composite panel with an embedded fiber optic strain sensor. Test samples machined from the panel were mechanically tested in 4-point bending. Experimental results are presented that show the mechanical strain from foil strain gages comparing well to optical strain from the embedded sensors. Also, it was found that the distributed strain along the sample length was consistent with the loading configuration.

  9. Fluoride Glasses for Bulk Optical and Waveguide Applications

    DTIC Science & Technology

    1986-01-01

    optics or for ultra low-loss OWG fibers . A new glass family was discovered and explored under this research program. This new fluoride composition...optical fibers for infrared transmission can be met using this new glass . During the course of this study, the CLAP glasses were identified, patented...the work is to use such glasses for bulk IR optics or for ultra-low-loss OWG fibers , further characterization was required. It remained to establish

  10. Strength and fatigue of three glass fiber reinforced composite bridge decks with mechanical deck to stringer connections.

    DOT National Transportation Integrated Search

    2012-02-01

    Replacement of the steel grating deck on the lift span of the Morrison Bridge in Portland, OR, will utilize glass : fiber reinforced polymer (FRP) panels to address ongoing maintenance issues of the deteriorated existing deck, improve driver : safety...

  11. Effect of part thickness, glass fiber and crystallinity on light scattering during laser transmission welding of thermoplastics

    NASA Astrophysics Data System (ADS)

    Xu, Xin Feng; Parkinson, Alexander; Bates, Philip J.; Zak, Gene

    2015-12-01

    It is important to understand how laser energy scatters within the transparent component in order to predict and optimize the laser transmission welding process. This paper examines the influence of part thickness, glass fiber and crystallinity levels on the distribution of laser light after transmission through amorphous polycarbonate (PC) and semi-crystalline polymers such as polyamide 6 (PA6), polypropylene (PP), and polyethylene (PE). An experimental technique based on laser-scanned lines of progressively increasing power was used to assess the transmitted energy distribution. This distribution was characterized using a two-parameter model that captures scattered and un-scattered components of the laser beam. The results clearly show how the scattering is increased by increasing the numbers of interactions between laser light and phase boundaries either by increasing the particle concentration (i.e., glass fiber level and crystallinity) or increasing part thickness.

  12. SBIR-Long fluoride fiber

    NASA Astrophysics Data System (ADS)

    Jaeger, Raymond E.; Vacha, Lubos J.

    1987-08-01

    This report summarizes results obtained under a program aimed at developing new techniques for fabricating long lengths of heavy metal fluoride glass (HMFG) optical fiber. A new method for overcladding conventional HMFG preforms with a low melting oxide glass was developed, and improvements in the rotational casting method were made to increase preform length. The resulting composite glass canes consist of a fluoride glass overcoat layer to enhance strength and chemical durability. To show feasibility, prototype optical fiber preforms up to 1.6 cm in diameter with lengths of 22 cm were fabricated. These were drawn into optical fibers with lengths up to 900 meters.

  13. Tellurium based glasses for bio-sensing and space applications

    NASA Astrophysics Data System (ADS)

    Wilhelm, Allison Anne

    2009-12-01

    Te2As3Se5 (TAS) fibers are often used in bio-sensing applications requiring direct contact between the fiber and live cells. However, the toxicity and stability of chalcogenide glasses typically used in such bio-sensing applications are not well known. The stability and toxicity of TAS glass fibers were therefore examined. The surface of TAS fibers stored for up to three years in air were analyzed using X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MS), and atomic force microscopy (AFM). It is shown that an oxide layer develops on the surface of TAS fibers stored in air. This oxide layer is highly soluble in water and therefore easily removed. Additional studies using cyclic voltammetry show that the fresh TAS glass surface is insoluble in water for at least a few days, and attenuation measurements show that oxidation does not affect the transmission properties of the glass fibers. It was also determined that old, oxidized fibers pose a toxic threat to cells, while washed and new fibers show no toxic effect. Therefore, it is concluded that a soluble oxide layer forms on the surface of TAS fibers stored in air and that this layer has a toxic effect on cells in an aqueous environment. However, through etching, the oxide layer and the toxicity can be easily removed. In other applications of telluride glasses, such as the search for possible signs of life on exoplanets, a glass transmitting further into the IR is required in order to detect molecules, such as CO2. A new family of Tellurium based glasses from the Ge-Te-I ternary system has therefore been investigated for use in space and bio-sensing applications. A systematic series of compositions has been synthesized in order to explore the ternary phase diagram in an attempt to optimize the glass composition for the fiber drawing and molding process. The resulting glass transition temperature range lies between 139°C and 174°C, with DeltaT values between 64°C and 124

  14. Structural characterization and compositional dependence of the optical properties of Ge-Ga-La-S chalcohalide glass system

    NASA Astrophysics Data System (ADS)

    Li, Lini; Jiao, Qing; Lin, Changgui; Dai, Shixun; Nie, Qiuhua

    2018-04-01

    In this paper, chalcogenide glasses of 80GeS2sbnd (20sbnd x)Ga2S3sbnd xLa2S3 (x = 0, 1, 3, 5 mol%) were synthesized through the traditional melt-quenching technique. The effects of La2S3 addition on the thermal, optical, and structural properties of Gesbnd Gasbnd S glasses were investigated. Results showed that the synthesized glasses possessed considerably high glass transition temperature, improved glass forming ability, high refractive index, and excellent infrared transmittance. A redshift at the visible absorbing cut-off edge lower than 500 nm was observed with increasing of La2S3 content. Direct and indirect optical band gap values were calculated. SEM result suggested that this glass system owned better glass forming ability and uniformity. Raman spectral analysis indicated that the introduction of La2S3 induced the dissociation of Gesbnd Ge metal bonds and transformed the [S3Gesbnd GeS3] structure to GeS4 tetrahedrons. Consequently, the connectivity between tetrahedrons of the vitreous network was enhanced. This work suggests that La2S3 modified Ge-Gasbnd Lasbnd S glass is a promising material for infrared optical research.

  15. Volatiles in glasses from the HSDP2 drill core

    NASA Astrophysics Data System (ADS)

    Seaman, Caroline; Sherman, Sarah Bean; Garcia, Michael O.; Baker, Michael B.; Balta, Brian; Stolper, Edward

    2004-09-01

    H2O, CO2, S, Cl, and F concentrations are reported for 556 glasses from the submarine section of the 1999 phase of HSDP drilling in Hilo, Hawaii, providing a high-resolution record of magmatic volatiles over ˜200 kyr of a Hawaiian volcano's lifetime. Glasses range from undegassed to having lost significant volatiles at near-atmospheric pressure. Nearly all hyaloclastite glasses are degassed, compatible with formation from subaerial lavas that fragmented on entering the ocean and were transported by gravity flows down the volcano flank. Most pillows are undegassed, indicating submarine eruption. The shallowest pillows and most massive lavas are degassed, suggesting formation by subaerial flows that penetrated the shoreline and flowed some distance under water. Some pillow rim glasses have H2O and S contents indicating degassing but elevated CO2 contents that correlate with depth in the core; these tend to be more fractionated and could have formed by mixing of degassed, fractionated magmas with undegassed magmas during magma chamber overturn or by resorption of rising CO2-rich bubbles by degassed magmas. Intrusive glasses are undegassed and have CO2 contents similar to adjacent pillows, indicating intrusion shallow in the volcanic edifice. Cl correlates weakly with H2O and S, suggesting loss during low-pressure degassing, although most samples appear contaminated by seawater-derived components. F behaves as an involatile incompatible element. Fractionation trends were modeled using MELTS. Degassed glasses require fractionation at p? ≈ 5-10 bars. Undegassed low-SiO2 glasses require fractionation at p? ≈ 50 bars. Undegassed and partially degassed high-SiO2 glasses can be modeled by coupled crystallization and degassing. Eruption depths of undegassed pillows can be calculated from their volatile contents assuming vapor saturation. The amount of subsidence can be determined from the difference between this depth and the sample's depth in the core. Assuming

  16. Determination of sub-part-per-million levels of formaldehyde in air using active or passive sampling on 2,4-dinitrophenylhydrazine-coated glass fiber filters and high-performance liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, J.O.; Andersson, K.; Lindahl, R.

    1985-05-01

    Formaldehyde is sampled from air with the use of a standard miniature glass fiber filter impregnated with 2,4-dinitrophenylhydrazine and phosphoric acid. The formaldehyde hydrazone is desorbed from the filter with acetonitrile and determined by high-performance liquid chromatography using UV detection at 365 nm. Recovery of gas-phase-generated formaldehyde as hydrazone from a 13-mm impregnated filter is 80-100% in the range 0.3-30 ..mu..g of formaldehyde. This corresponds to 0.1-10 mg/m/sup 3/ in a 3-L air sample. When the filter sampling system is used in the active mode, air can be sampled at a rate of up to 1 L/min, affording an overallmore » sensitivity of about 1 ..mu..g/m/sup 3/ based on a 60-L air sample. Results are given from measurements of formaldehyde in indoor air. The DNP-coated filters were also evaluated for passive sampling. In this case 37-mm standard glass fibers were used and the sampling rate was 55-65 mL/min in two types of dosimeters. The diffusion samplers are especially useful for personal exposure monitoring in the work environment. 24 references, 2 figures, 4 tables.« less

  17. Optical evaluation on Nd3+-doped phosphate glasses for O-band amplification.

    PubMed

    Lei, Weihong; Chen, Baojie; Zhang, Xiangling; Pun, Edwin Yun Bun; Lin, Hai

    2011-02-20

    We have fabricated and characterized optically Nd3+-doped phosphate [Li2O-CaO-BaO-Al2O3-La2O3-P2O5 (LCBALP)] glasses for drawing single-mode glass fiber. The 4F3/2→4I13/2 transition emission from the Nd3+ is at the 1.327 μm wavelength with a full width at half-maximum of 43 nm, and the spontaneous transition probability and quantum efficiency are calculated to be 1836 s-1 and 52%, respectively. The maximum stimulated emission cross sections for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions are derived to be 1.82×10(-20) cm2 and 6.97×10(-21) cm2, respectively, and the theoretical gain coefficient at the 1.327 μm wavelength is evaluated to be 0.182 dB/cm when the fractional factor of the excited neodymium ions equals 0.6, which indicates that Nd3+-doped LCBALP phosphate glasses are potential candidates in developing O-band optical fiber amplifiers.

  18. Effects of High and Low Temperature on the Tensile Strength of Glass Fiber Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Kumarasamy, S.; Shukur Zainol Abidin, M.; Abu Bakar, M. N.; Nazida, M. S.; Mustafa, Z.; Anjang, A.

    2018-05-01

    In this paper, the tensile performance of glass fiber reinforced polymer (GFRP) composites at high and low temperature was experimentally evaluated. GFRP laminates were manufactured using the wet hand lay-up assisted by vacuum bag, which has resulted in average fibre volume fraction of 0.45. Using simultaneous heating/cooling and loading, glass fiber epoxy and polyester laminates were evaluated for their mechanical performance in static tensile loading. In the elevated temperature environment test, the tension mechanical properties; stress and modulus were reduced with increasing temperature from 25°C to 80°C. Results of low temperature environment from room temperature to a minimum temperature of -20°C, indicated that there is no considerable effect on the tensile strength, however a slight decrease of tensile modulus were observed on the GFRP laminates. The results obtained from the research highlight the structural survivability on tensile properties at low and high temperature of the GFRP laminates.

  19. Synthesis, characterization and processing of active rare earth-doped chalcohalide glasses

    NASA Astrophysics Data System (ADS)

    Debari, Roberto Mauro

    Applications for infrared-transmitting non-oxide glass fibers span a broad range of topics. They can be used in the military, the medical field, telecommunications, and even in agriculture. Rare earth ions are used as dopants in these glasses in order to stimulate emissions in the infrared spectral region. In order to extend the host glass transmission further into the infrared, selenium atoms were substituted for sulfur in the established Ge-S-I chalcohalide glass system and the fundamental properties of these latter glasses were explored. Over 30 different compositions in the Ge-Se-I glass system were investigated as to their thermal and optical properties. The resulting optimum host with a composition of Ge15Se80I5 has a broad transmission range from 0.7 mum to 17.0 mum and a high working range over 145°C. The host glass also exhibited a Tg of 125°C, making rotational casting of a cladding tube for rod-and-tube fiberization a possibility. The base glass was doped with 1000 to 4000 ppm/wt of erbium, dysprosium, or neodymium. When doped with Er3+-ions, absorptions at 1.54 mum and 3.42 mum were observed. Nd3+-doping resulted in an absorption peak near 4.24 mum and Dy3+ ions caused absorption at 1.30 mum. Fluorescence emissions were found for neodymium at 1.396 mum with a FWHM of 74 nm, and for dysprosium at 1.145 mum with a FWHM of 75 nm, at 1.360 mum with a FWHM of 98 rim and at 1.674 mum with a FWHM of 60 nm. High optical quality tubes of the host glass could be formed using rotational casting in silica ampoules. Glass tubes, 4 to 6 cm long with a 1 cm outer diameter and a tailored inner-hole diameter ranging from 0.4 to 0.6 cm could be synthesized by this process with excellent dimensional tolerances around the circumference as well as along the length. A preform of this size provided 25 continuous meters of unclad fiber with diameters ranging from 140 to 200 mum. A UV-curable acrylate cladding was applied via an external coating cup. An x-ray analysis of the

  20. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    PubMed

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.

  1. Fiber pulling apparatus modification

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Workman, Gary L.

    1992-01-01

    A reduced gravity fiber pulling apparatus (FPA) was constructed in order to study the effects of gravity on glass fiber formation. The apparatus was specifically designed and built for use on NASA's KC-135 aircraft. Four flights have been completed to date during which E-glass fiber was successfully produced in simulated zero, high, and lunar gravity environments. In addition simulated lunar soil samples were tested for their fiber producing properties using the FPA.

  2. Flexural fatigue of short glass fiber reinforced a blend of polyphenylene ether ketone and polyphenylene sulfide

    NASA Astrophysics Data System (ADS)

    Zhou, Jiang; D'Amore, Alberto; Yang, Yuming; He, Tianbai; Li, Binyao; Nicolais, Luigi

    1994-05-01

    Flexural fatigue tests were conducted on injection molded glass fiber reinforced a blend of polyphenylene ether ketone and polyphenylene sulfide composite using four-point bending with different stress ratios and different frequencies. The fatigue behavior of this material was described. The constructed S-N curves shift their trends obviously at the maximum cyclic stress being about 80% of the ultimate flexural strength. Examinations of failure surfaces for various loading conditions show that the fatigue failure mechanisms appear to be matrix yielding at high stresses and crack growth at low stresses. Analyses of the fatigue data at various stress ratios reveal that the data at low stress superimpose to form a single curve which is nearly linear when they are plotted as stress range versus number of cycles to failure in bilogarithmic axes, while the data at high stresses also converge to yield a single curve when they are plotted as ( S max S range)1/2 against specimen lifetimes ( S max is the maximum stress and S range is the stress range). These results show that for the studied material the main factor influencing the lifetime is the stress range at low stresses and the parameter ( S max S range)1/2 at high stresses. Comparison of fatigue data in the frequency range of 0.89 7.0 Hz was made, no significant effect of frequency on the fatigue behavior is found.

  3. Development of Ceramic Fibers for Reinforcement in Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, L. E.; Lent, W. E.; Teague, W. T.

    1961-01-01

    Refinements of the vertical arc fiberizing apparatus resulted in its ability to fiberize very different refractory glasses having wide ranges of properties. Although the apparatus, was originally designed as a laboratory research tool for the evaluation of many compositions daily, up to one quarter pound of fibers of a single composition could be produced in an 8-hour day. Fibers up to six and a half feet long were produced with the apparatus. Studies were conducted of two methods of fiberizing refractory glasses requiring rapid freezing from the melt. The first method consisted of fiberizing droplets of molten glass passing through an annular nozzle. The second method consisted of reconstructing the annular nozzle in. the shape of a horseshoe to achieve a shorter delay in blasting a molten droplet from the tip of a rod. Both methods were judged feasible for producing fibers of glasses requiring rapid freezing. The first method would be more amenable to volume fiber production. Studies of induction heating for fiber formation did not lead to its designation as a very efficient heating method. Problems. remain to be solved, in the design of a suitable susceptor for a higher heating rate, in protecting the susceptor from oxidation with an inert gas, in contamination of the melt from a refractory crucible, and in the protective radiation shielding of the induction concentrator coil. It is not considered practical to continue studies of this heating method. In the course of this program 151 refractory glass compositions were evaluated for fiber, forming characteristics. Of the various types of materials studied, the following showed promise in producing acceptable refractory fibers: sIlica- spinel (magnesium aluminate), silica- spinel-zirconia, silica-zirconia, silica-zinc spinel, aluminum phosphate glasses, and fluoride glasses. Compositions which did not produce acceptable fibers were high zirconia materials, barium spinels, and calcium aluminates. Improvements in

  4. Supersonic Panel Flutter Test Results for Flat Fiber-Glass Sandwich Panels with Foamed Cores

    NASA Technical Reports Server (NTRS)

    Tuovila, W. J.; Presnell, John G., Jr.

    1961-01-01

    Flutter tests have been made on flat panels having a 1/4 inch-thick plastic-foam core covered with thin fiber-glass laminates. The testing was done in the Langley Unitary Plan wind tunnel at Mach numbers from 1.76 t o 2.87. The flutter boundary for these panels was found to be near the flutter boundary of thin metal panels when compared on the basis of an equivalent panel stiffness. The results also demonstrated that the depth of the cavity behind the panel has a pronounced influence on flutter. Changing the cavity depth from 1 1/2 inches to 1/2 inch reduced the dynamic pressure at start of flutter by 40 percent. No flutter was obtained when the spacers on the back of the panel were against the bottom of the cavity.

  5. Mechanical Property Evaluation of Palm/Glass Sandwiched Fiber Reinforced Polymer Composite in Comparison with few natural composites

    NASA Astrophysics Data System (ADS)

    Raja Dhas, J. Edwin; Pradeep, P.

    2017-10-01

    Natural fibers available plenty can be used as reinforcements in development of eco friendly polymer composites. The less utilized palm leaf stalk fibers sandwiched with artificial glass fibers was researched in this work to have a better reinforcement in preparing a green composite. The commercially available polyester resin blend with coconut shell filler in nano form was used as matrix to sandwich these composites. Naturally available Fibers of palm leaf stalk, coconut leaf stalk, raffia and oil palm were extracted and treated with potassium permanganate solution which enhances the properties. For experimentation four different plates were fabricated using these fibers adopting hand lay-up method. These sandwiched composite plates are further machined to obtain ASTM standards Specimens which are mechanically tested as per standards. Experimental results reveal that the alkali treated palm leaf stalk fiber based polymer composite shows appreciable results than the others. Hence the developed composite can be recommended for fabrication of automobile parts.

  6. Free-volume Study in GeS2-Ga2S3-CsCl Chalcohalide Glasses Using Positron Annihilation Technique

    NASA Astrophysics Data System (ADS)

    Klym, H.; Ingram, A.; Shpotyuk, O.; Szatanik, R.

    Positron annihilation lifetime spectroscopy combined with Doppler broadening of annihilation radiation was applied to study free-volume entities in Ge-Ga-S glasses having different amount of CsCl additives. It is shown that the structural changes caused by CsCl additives can be adequately described by positron trapping modes determined within two-state model. The results testify in a favor of rather unchanged nature of corresponding free-volume voids responsible for positron trapping in the studied glasses, when mainly concentration of these traps is a subject to most significant changes with composition.

  7. Transmission of 2.5 Gbit/s Spectrum-sliced WDM System for 50 km Single-mode Fiber

    NASA Astrophysics Data System (ADS)

    Ahmed, Nasim; Aljunid, Sayed Alwee; Ahmad, R. Badlisha; Fadil, Hilal Adnan; Rashid, Mohd Abdur

    2011-06-01

    The transmission of a spectrum-sliced WDM channel at 2.5 Gbit/s for 50 km of single mode fiber using an system channel spacing only 0.4 nm is reported. We have investigated the system performance using NRZ modulation format. The proposed system is compared with conventional system. The system performance is characterized as the bit-error-rate (BER) received against the system bit rates. Simulation results show that the NRZ modulation format performs well for 2.5 Gbit/s system bit rates. Using this narrow channel spectrum-sliced technique, the total number of multiplexed channels can be increased greatly in WDM system. Therefore, 0.4 nm channel spacing spectrum-sliced WDM system is highly recommended for the long distance optical access networks, like the Metro Area Network (MAN), Fiber-to-the-Building (FTTB) and Fiber-to-the-Home (FTTH).

  8. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  9. Arc fusion splicing of photonic crystal fibers to standard single mode fibers

    NASA Astrophysics Data System (ADS)

    Borzycki, Krzysztof; Kobelke, Jens; Schuster, Kay; Wójcik, Jan

    2010-04-01

    Coupling a photonic crystal fiber (PCF) to measuring instruments or optical subsystems is often done by splicing it to short lengths of single mode fiber (SMF) used for interconnections, as SMF is standardized, widely available and compatible with most fiber optic components and measuring instruments. This paper presents procedures and results of loss measurements during fusion splicing of five PCFs tested at NIT laboratory within activities of COST Action 299 "FIDES". Investigated silica-based fibers had 80-200 μm cladding diameter and were designed as single mode. A standard splicing machine designed for telecom fibers was used, but splicing procedure and arc power were tailored to each PCF. Splice loss varied between 0.7 and 2.8 dB at 1550 nm. Splices protected with heat-shrinkable sleeves served well for gripping fibers during mechanical tests and survived temperature cycling from -30°C to +70°C with stable loss. Collapse of holes in the PCF was limited by reducing fusion time to 0.2-0.5 s; additional measures included reduction of discharge power and shifting SMF-PCF contact point away from the axis of electrodes. Unfortunately, short fusion time sometimes precluded proper smoothing of glass surface, leading to a trade-off between splice loss and strength.

  10. Hydroxyapatite and bioactive glass surfaces for fiber reinforced composite implants via surface ablation by Excimer laser.

    PubMed

    Kulkova, Julia; Moritz, Niko; Huhtinen, Hannu; Mattila, Riina; Donati, Ivan; Marsich, Eleonora; Paoletti, Sergio; Vallittu, Pekka K

    2017-11-01

    In skeletal reconstructions, composites, such as bisphenol-A-glycidyldimethacrylate resin reinforced with glass fibers, are potentially useful alternatives to metallic implants. Recently, we reported a novel method to prepare bioactive surfaces for these composites. Surface etching by Excimer laser was used to expose bioactive glass granules embedded in the resin. The purpose of this study was to analyze two types of bioactive surfaces created by this technique. The surfaces contained bioactive glass and hydroxyapatite granules. The selected processing parameters were adequate for the creation of the surfaces. However, the use of porous hydroxyapatite prevented the complete exposure the granules. In cell culture, for bioactive glass coatings, the pattern of proliferation of MG63 cells was comparable to that in the positive control group (Ti6Al4V) while inferior cell proliferation was observed on the surfaces containing hydroxyapatite granules. Scanning electron microscopy revealed osteointegration of implants with both types of surfaces. The technique is suitable for the exposure of solid bioactive glass granules. However, the long-term performance of the surfaces needs further assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Role of Fiber Length on Phagocytosis & Inflammatory Response

    NASA Astrophysics Data System (ADS)

    Turkevich, Leonid; Stark, Carahline; Champion, Julie

    2014-03-01

    Asbestos fibers have long been associated with lung cancer death. The inability of immune cells (e.g. macrophages) to effectively remove asbestos leads to chronic inflammation and disease. This study examines the role of fiber length on toxicity at the cellular level using model glass fibers. A major challenge is obtaining single diameter fibers but differing in length. Samples of 1 micron diameter fibers with different length distributions were prepared: short fibers (less than 15 microns) by aggressive crushing, and long fibers (longer than 15 microns) by successive sedimentation. Time-lapse video microscopy monitored the interaction of MH-S murine alveolar macrophages with the fibers: short fibers were easily internalized by the macrophages, but long fibers resisted internalization over many hours. Production of TNF- α (tumor necrosis factor alpha), a general inflammatory secreted cytokine, and Cox-2 (cyclo-oxygenase-2), an enzyme that produces radicals, each exhibited a dose-dependence that was greater for long than for short fibers. These results corroborate the importance of fiber length in both physical and biochemical cell response and support epidemiological observations of higher toxicity for longer fibers.

  12. Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves.

    PubMed

    Ning, Huiming; Li, Yuan; Hu, Ning; Cao, Yanping; Yan, Cheng; Azuma, Takesi; Peng, Xianghe; Wu, Liangke; Li, Jinhua; Li, Leilei

    2014-06-01

    The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m -2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%-73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.

  13. Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves

    PubMed Central

    Ning, Huiming; Li, Yuan; Hu, Ning; Cao, Yanping; Yan, Cheng; Azuma, Takesi; Peng, Xianghe; Wu, Liangke; Li, Jinhua; Li, Leilei

    2014-01-01

    The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m−2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%–73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates. PMID:27877680

  14. A micro S-shaped optical fiber temperature sensor based on dislocation fiber splice

    NASA Astrophysics Data System (ADS)

    Yan, Haitao; Li, Pengfei; Zhang, Haojie; Shen, Xiaoyue; Wang, Yongzhen

    2017-12-01

    We fabricated a simple, compact, and stable temperature sensor based on an S-shaped dislocated optical fiber. The dislocation optical fiber has two splice points, and we obtained the optimal parameters based on the theory and our experiment, such as the dislocation amount and length of the dislocation optical fiber. According to the relationship between the temperature and the peak wavelength shift, the temperature of the environment can be obtained. Then, we made this fiber a micro bending as S-shape between the two dislocation points, and the S-shaped micro bending part could release stress with the change in temperature and reduce the effect of stress on the temperature measurement. This structure could solve the problem of sensor distortion caused by the cross response of temperature and stress. We measured the S-shaped dislocation fiber sensor and the dislocation fiber without S-shape under the same environment and conditions, and the S-shaped dislocation fiber had the advantages of the stable reliability and good linearity.

  15. The third-order optical nonlinearities of Ge-Ga-Sb(In)-S chalcogenide glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Haitao, E-mail: guoht_001@opt.ac.cn; Chen, Hongyan; Hou, Chaoqi

    2011-05-15

    Research highlights: {yields} It is firstly demonstrated that the nonlinear refractive index n{sub 2} is dependent on the covalency of bonds in chalcogenide glass. {yields} Homopolar metallic bonds in chalcogenide glass have positive contribution to large nonlinear refractive index n{sub 2} also. {yields} The 80GeS{sub 2}.20Sb{sub 2}S{sub 3} glass would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths. -- Abstract: The third-order optical nonlinearities of 80GeS{sub 2}.(20 - x)Ga{sub 2}S{sub 3}.xY{sub 2}S{sub 3} (x = 0, 5, 10, 15, 20 and Y = Sb or In) chalcogenide glasses were investigatedmore » utilizing the Z-scan method at the wavelength of 800 nm and their linear optical properties and structure were also studied. By analyzing the compositional dependences and possible influencing factors including the linear refractive index, the concentration of lone electron pairs, the optical bandgap and the amount of weak covalent/homopolar bonds, it indicates that the electronic contribution in weak heteropolar covalent and homopolar metallic bonds is responsible for large nonlinear refractive index n{sub 2} in the chalcogenide glasses. These chalcogenide glasses have characteristics of environmentally friendship, wide transparency in the visible region, high nonlinear refractive index n{sub 2} and low nonlinear absorption coefficient {beta}, and would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths.« less

  16. Improved fiber retention by the use of fillers in graphite fiber/resin matrix composites

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Bowles, K. J.

    1980-01-01

    A variety of matrix fillers were tested for their ability to prevent loss of fiber from graphite fiber/PMR polyimide and graphite fiber/epoxy composites in a fire. The fillers tested included powders of boron, boron carbide lime glass, lead glass, and aluminum. Boron was the most effective and prevented any loss of graphite fiber during burning. Mechanical properties of composites containing boron filler were measured and compared to those of composites containing no filler.

  17. Lithium ion dynamics in Li2S+GeS2+GeO2 glasses studied using (7)Li NMR field-cycling relaxometry and line-shape analysis.

    PubMed

    Gabriel, Jan; Petrov, Oleg V; Kim, Youngsik; Martin, Steve W; Vogel, Michael

    2015-09-01

    We use (7)Li NMR to study the ionic jump motion in ternary 0.5Li2S+0.5[(1-x)GeS2+xGeO2] glassy lithium ion conductors. Exploring the "mixed glass former effect" in this system led to the assumption of a homogeneous and random variation of diffusion barriers in this system. We exploit that combining traditional line-shape analysis with novel field-cycling relaxometry, it is possible to measure the spectral density of the ionic jump motion in broad frequency and temperature ranges and, thus, to determine the distribution of activation energies. Two models are employed to parameterize the (7)Li NMR data, namely, the multi-exponential autocorrelation function model and the power-law waiting times model. Careful evaluation of both of these models indicates a broadly inhomogeneous energy landscape for both the single (x=0.0) and the mixed (x=0.1) network former glasses. The multi-exponential autocorrelation function model can be well described by a Gaussian distribution of activation barriers. Applicability of the methods used and their sensitivity to microscopic details of ionic motion are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. All-Glass Fiber Amplifier Pumped by Ultra-High Brightness Pumps

    DTIC Science & Technology

    2016-02-15

    coated triple-clad fibers, we are developing triple-clad Yb fiber with gold coating for improved thermal management. 2.1 Pump laser The two...amplifier results using gain fiber with metalized fiber coating . Keywords: Fiber laser , specialty fiber, pump laser , beam combining, fiber metal coating ... coating can exceed its long-term damage threshold. Such a concern obviously does not apply to a fiber with gold protective coating [14]. Thus in

  19. Alkaline resistant phosphate glasses and method of preparation and use thereof

    DOEpatents

    Brow, Richard K.; Reis, Signo T.; Velez, Mariano; Day, Delbert E.

    2010-01-26

    A substantially alkaline resistant calcium-iron-phosphate (CFP) glass and methods of making and using thereof. In one application, the CFP glass is drawn into a fiber and dispersed in cement to produce glass fiber reinforced concrete (GFRC) articles having the high compressive strength of concrete with the high impact, flexural and tensile strength associated with glass fibers.

  20. Glass Ceiling in Academic Administration in Turkey: 1990s versus 2000s

    ERIC Educational Resources Information Center

    Gunluk-Senesen, Gulay

    2009-01-01

    This paper assesses the glass ceiling for academics in the Turkish universities with reference to top administration positions: rectors and deans. Glass ceiling indicators show that the glass ceiling thickened from the 1990s to late 2000s. The findings are discussed against the background of the transformation in the Turkish universities in the…

  1. IR fiber temperature sensing system

    NASA Technical Reports Server (NTRS)

    Tran, D. C.; Levin, K. H.; Mossadegh, R.; Koontz, Steve

    1988-01-01

    Infrared fiber optic pyrometry has become a practical reality using improved strength fluoride glass fibers. The addition of a plastic coating and rugged cabling allows the fibers to be used in the field. A detailed theoretical model of the infrared fiber optic pyrometer (non-contact or radiative thermometer) has been derived and compared with data produced by a prototype fluoride glass fiber radiative thermometer. Excellent agreement was obtained between theory and experiment over a temperature range of 30 to 700 C.

  2. Proof testing a bridge deck design with glass fiber reinforced polymer bars as top mat of reinforcement.

    DOT National Transportation Integrated Search

    2003-01-01

    The primary objective of this project was to test a full-scale prototype of a bridge deck design containing glass fiber reinforced polymer (GFRP) bars as the top mat of reinforcement. The test deck mimics the design of the deck of one span of the new...

  3. Fabrication of bundle-structured tube-leaky optical fibers for infrared thermal imaging

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Katagiri, T.; Matsuura, Y.

    2017-02-01

    Bundled glass tubular fibers were fabricated by glass drawing technique for endoscopic infrared-thermal imaging. The bundle fibers were made of borosilicate glass and have a structure like a photonic crystal fiber having multiple hollow cores. Fabricated fibers have a length of 90 cm and each pixel sizes are less than 80 μm. By setting the thickness of glass wall to a quarter-wavelength optical thickness, light is confined in the air core as a leaky mode with a low loss owing to the interference effect of the thin glass wall and this type of hollow-core fibers is known as tube leaky fibers. The transmission losses of bundled fibers were firstly measured and it was found that bundled tube-leaky fibers have reasonably low transmission losses in spite of the small pixel size. Then thermal images were delivered by the bundled fibers combining with an InSb infrared camera. Considering applications with rigid endoscopes, an imaging system composed of a 30-cm long fiber bundle and a half-ball lens with a diameter of 2 mm was fabricated. By using this imaging system, a metal wire with a thickness of 200 μm was successfully observed and another test showed that the minimum detected temperature was 32.0 °C and the temperature resolution of the system was around 0.7 °C.

  4. Investigation of Fiber Waviness in a Thick Glass Composite Beam Using THz NDE

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.

    2008-01-01

    Fiber waviness in laminated composite material is introduced during manufacture because of uneven curing, resin shrinkage, or ply buckling caused by bending the composite lay-up into its final shape prior to curing. The resulting waviness has a detrimental effect on mechanical properties, therefore this condition is important to detect and characterize. Ultrasonic characterization methods are difficult to interpret because elastic wave propagation is highly dependent on ply orientation and material stresses. By comparison, the pulsed terahertz response of the composite is shown to provide clear indications of the fiber waviness. Pulsed Terahertz NDE is an electromagnetic inspection method that operates in the frequency range between 300 GHz and 3 THz. Its propagation is influenced by refractive index variations and interfaces. This work applies pulsed Terahertz NDE to the inspection of a thick composite beam with fiber waviness. The sample is a laminated glass composite material approximately 15mm thick with a 90-degree bend. Terahertz response from the planar section, away from the bend, is indicative of a homogeneous material with no major reflections from internal plies, while the multiple reflections at the bend area correspond to the fiber waviness. Results of these measurements are presented for the planar and bend areas.

  5. Preparation and thermal shock resistance of high emissivity molybdenum disilicide- aluminoborosilicate glass hybrid coating on fiber reinforced aerogel composite

    NASA Astrophysics Data System (ADS)

    Shao, Gaofeng; Lu, Yucao; Wu, Xiaodong; Wu, Jun; Cui, Sheng; Jiao, Jian; Shen, Xiaodong

    2017-09-01

    To develop a flexible reusable surface insulation for thermal protection system, MoSi2-aluminoborosilicate glass hybrid coatings have been prepared on Al2O3 fiber reinforced Al2O3-SiO2 aerogel composite by slurry dipping and rapid sintering method. The effect of MoSi2 content on radiative property and thermal shock behavior was investigated. The total emissivity values of all the coatings exceeded 0.85 in the wavelength of 0.8-2.5 μm. The M10 and M50 coatings were up to 0.9, which was due to the highest amorphous glass content of the M10 coating and the largest surface roughness of the M50 coating. The M30 coated composite showed the best thermal shock resistance with only 0.023% weight loss after 20 thermal shock cycles between 1473 K and room temperature, which was attributed to the similar thermal expansion coefficients between the coating and the substrate and the appropriate viscosity of aluminoborosilicate glass at 1473 K. The cracks resulted from CTE mismatch stress with different sizes formed and grew on the surface of M10, M40 and M50 coated samples, leading to the failure of the composites.

  6. A fiber optic temperature sensor based on the combination of epoxy and glass particles with different thermo-optic coefficients

    NASA Astrophysics Data System (ADS)

    Wildner, Wolfgang; Drummer, Dietmar

    2016-12-01

    This paper describes the development and function of an optical fiber temperature sensor made out of a compound of epoxy and optical glass particles. Because of the different thermo-optic coefficients of these materials, this compound exhibits a strong wavelength and temperature dependent optical transmission, and it therefore can be employed for fiber optic temperature measurements. The temperature at the sensor, which is integrated into a polymer optical fiber (POF), is evaluated by the ratio of the transmitted intensity of two different light-emitting diodes (LED) with a wavelength of 460 nm and 650 nm. The material characterization and influences of different sensor lengths and two particle sizes on the measurement result are discussed. The temperature dependency of the transmission increases with smaller particles and with increasing sensor length. With glass particles with a diameter of 43 μm and a sensor length of 9.8 mm, the intensity ratio of the two LEDs decreases by 60% within a temperature change from 10°C to 40°C.

  7. Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability.

    PubMed

    Silver, I A; Deas, J; Erecińska, M

    2001-01-01

    In a cell culture model of murine osteoblasts three particulate bioactive glasses were evaluated and compared to glass (either borosilicate or soda-lime-silica) particles with respect to their effect on metabolic activity, cell viability, changes in intracellular ion concentrations, proliferation and differentiation. 45S5 Bioglass caused extra- and intracellular alkalinization, a rise in [Ca2+]i and [K+]i, a small plasma membrane hyperpolarization, and an increase in lactate production. Glycolytic activity was also stimulated when cells were not in direct contact with 45S5 Bioglass particles but communicated with them only through the medium. Similarly, raising the pH of culture medium enhanced lactate synthesis. 45S5 Bioglass had no effect on osteoblast viability and, under most conditions, did not affect either proliferation or differentiation. Bioactive glasses 58S and 77S altered neither the ion levels nor enhanced metabolic activity. It is concluded that: (1) some bioactive glasses exhibit well-defined effects in osteoblasts in culture which are accessible to experimentation; (2) 45S5 Bioglass causes marked external and internal alkalinization which is, most likely, responsible for enhanced glycolysis and, hence, cellular ATP production; (3) changes in [H+] could contribute to alternations in concentrations of other intracellular ions; and (4) the rise in [Ca2+]i may influence activities of a number of intracellular enzymes and pathways. It is postulated that the beneficial effect of 45S5 on in vivo bone growth and repair may be due to some extent to alkalinization, which in turn increases collagen synthesis and crosslinking, and hydroxyapatite formation.

  8. Creep-induced residual stress strengthening in a Nicalon-fiber-reinforced BMAS-glass-ceramic-matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widjaja, S.; Jakus, K.; Ritter, J.E.

    The feasibility of inducing a compressive residual stress in the matrix of a Nicalon-fiber-reinforced BMAS-glass-ceramic-matrix composite through a creep-load transfer treatment was studied. Specimens were crept at 1100 C under constant tensile load to cause load transfer from the matrix to the fibers, then cooled under load. Upon removal of the load at room temperature, the matrix was put into compression by the elastic recovery of the fibers. This compressive residual stress in the matrix increased the room-temperature proportional limit stress of the composite. The increase in the proportional limit stress was found to be dependent upon the applied creepmore » stress, with an increase in creep stress resulting in an increase in the proportional limit stress. Acoustic emission results showed that the onset of significant matrix cracking correlated closely to the proportional limit stress. Changes in the state of residual stress in the matrix were supported by X-ray diffraction results. Fracture surfaces of all specimens exhibited fiber pullout behavior, indicating that the creep-load transfer process did not embrittle the fiber/matrix interface.« less

  9. Glass fibers and vapor phase components of cigarette smoke as cofactors in experimental respiratory tract carcinogenesis.

    PubMed

    Feron, V J; Kuper, C F; Spit, B J; Reuzel, P G; Woutersen, R A

    1985-01-01

    Syrian golden hamsters were given intratracheal instillations of glass fibers with or without BP suspended in saline, once a fortnight for 52 weeks; the experiment was terminated at week 85. No tumors of the respiratory tract were observed in hamsters treated with glass fibers alone. There was no indication that glass fibers enhanced the development of respiratory tract tumors induced by BP. In another study Syrian golden hamsters were exposed to fresh air or to a mixture of 4 major vapor phase components of cigarette smoke, viz. isoprene (800----700 ppm), methyl chloride (1000----900 ppm), methyl nitrite (200----190 ppm) and acetaldehyde (1400----1200 ppm) for a period of at most 23 months. Some of the animals were also given repeated intratracheal instillations of BP or norharman in saline. Laryngeal tumors were found in 7/31 male and 6/32 female hamsters exposed only to the vapor mixture, whereas no laryngeal tumors occurred in controls. The tumor response of the larynx most probably has to be ascribed entirely to the action of acetaldehyde. Simultaneous treatment with norharman or BP did not affect the tumor response of the larynx. Acetaldehyde may occur in the vapor phase of cigarette smoke at levels up to 2000 ppm. Chronic inhalation exposure of rats to acetaldehyde at levels of 0 (controls), 750, 1500 or 3000----1000 ppm resulted in a high incidence of nasal carcinomas, both squamous cell carcinomas of the respiratory epithelium and adenocarcinomas of the olfactory epithelium. It was discussed that acetaldehyde may significantly contribute to the induction of bronchogenic cancer by cigarette smoke in man. No evidence was obtained for a role of isoprene, methyl chloride or methyl nitrite in the induction of lung cancer by cigarette smoke.

  10. Method for Salmonella concentration from water at pH 3.5, using micro-fiber glass filters.

    PubMed Central

    Block, J C; Rolland, D

    1979-01-01

    A method is described for the concentration of Salmonella from water. As is done with enterovirus, Salmonella bacteria were concentrated from water in two steps: by pH 3.5 adsorption on and pH 9.5 elution from 8-micron porosity micro-fiber glass filter tubes. This method worked in less than 30 min, and Salmonella typhimurium was inactivated only slightly in spite of rapid pH variations (pH 3.5 to 9.5). It was demonstrated that the retention by the filters stems from two phenomena: a low retention in the micro-fiber glass labyrinth for small filtered volumes, and a high retention by adsorption at pH 3.5 for any filtered volume (experiments done with 15- and 80-liter samples). Addition in tap water of trivalent ions like Al3+ did not increase Salmonella adsorption. In most of the trials, Salmonella recovery varied from 42 to 93%. Preliminary field investigations indicate that enterovirus and Salmonella may both be concentrated from the same water sample by this procedure. PMID:39501

  11. Effects of Heat Flux, Oxygen Concentration and Glass Fiber Volume Fraction on Pyrolysate Mass Flux from Composite Solids

    NASA Technical Reports Server (NTRS)

    Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.

    2004-01-01

    Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30x30x10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/m2. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.

  12. CVD silicon carbide monofilament reinforced SrO-Al2O3-2SiO2 (SAS) glass-ceramic composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1995-01-01

    Unidirectional CVD SiC fiber-reinforced SrO.Al2O3.2SiO2 (SAS) glass-ceramic matrix composites have been fabricated by hot pressing at various combinations of temperature, pressure and time. Both carbon-rich surface coated SCS-6 and uncoated SCS-0 fibers were used as reinforcements. Almost fully dense composites have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix from x-ray diffraction. During three point flexure testing of composites, a test span to thickness ratio of approximately 25 or greater was necessary to avoid sample delamination. Strong and tough SCS-6/SAS composites having a first matrix crack stress of approximately 300 MPa and an ultimate bend strength of approximately 825 MPa were fabricated. No chemical reaction between the SCS-6 fibers and the SAS matrix was observed after high temperature processing. The uncoated SCS-0 fiber-reinforced SAS composites showed only limited improvement in strength over SAS monolithic. The SCS-0/SAS composite having a fiber volume fraction of 0.24 and hot pressed at 1400 deg C exhibited a first matrix cracking stress of approximately 231 +/- 20 MPa and ultimate strength of 265 +/- 17 MPa. From fiber push-out tests, the fiber/matrix interfacial debonding strength (tau(sub debond)) and frictional sliding stress (tau(sub friction)) in the SCS-6/SAS system were evaluated to be approximately 6.7 +/- 2.3 MPa and 4.3 +/- 0.6 MPa, respectively, indicating a weak interface. However, for the SCS-0/SAS composite, much higher values of approximately 17.5 +/- 2.7 MPa for tau(sub debond) and 11.3 +/- 1.6 MPa for tau(sub friction) respectively, were observed; some of the fibers were so strongly bonded to the matrix that they could not be pushed out. Examination of fracture surfaces revealed limited short pull-out length of SCS-0 fibers. The applicability of various micromechanical models for predicting the values of first matrix cracking stress and ultimate strength of these

  13. Altered Ca2+ signaling in skeletal muscle fibers of the R6/2 mouse, a model of Huntington’s disease

    PubMed Central

    Braubach, Peter; Orynbayev, Murat; Andronache, Zoita; Hering, Tanja; Landwehrmeyer, Georg Bernhard; Lindenberg, Katrin S.

    2014-01-01

    Huntington’s disease (HD) is caused by an expanded CAG trinucleotide repeat within the gene encoding the protein huntingtin. The resulting elongated glutamine (poly-Q) sequence of mutant huntingtin (mhtt) affects both central neurons and skeletal muscle. Recent reports suggest that ryanodine receptor–based Ca2+ signaling, which is crucial for skeletal muscle excitation–contraction coupling (ECC), is changed by mhtt in HD neurons. Consequently, we searched for alterations of ECC in muscle fibers of the R6/2 mouse, a mouse model of HD. We performed fluorometric recordings of action potentials (APs) and cellular Ca2+ transients on intact isolated toe muscle fibers (musculi interossei), and measured L-type Ca2+ inward currents on internally dialyzed fibers under voltage-clamp conditions. Both APs and AP-triggered Ca2+ transients showed slower kinetics in R6/2 fibers than in fibers from wild-type mice. Ca2+ removal from the myoplasm and Ca2+ release flux from the sarcoplasmic reticulum were characterized using a Ca2+ binding and transport model, which indicated a significant reduction in slow Ca2+ removal activity and Ca2+ release flux both after APs and under voltage-clamp conditions. In addition, the voltage-clamp experiments showed a highly significant decrease in L-type Ca2+ channel conductance. These results indicate profound changes of Ca2+ turnover in skeletal muscle of R6/2 mice and suggest that these changes may be associated with muscle pathology in HD. PMID:25348412

  14. High-temperature transverse fracture toughness of Nicalon-fiber-reinforced CAS-II glass-ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahraman, R.; Mandell, J.F.; Deibert, M.C.

    Cracking parallel to the fibers in off-axis plies is usually the initial form of damage in composite laminates. This cracking process has been associated with the (transverse) fracture toughness, defined by the critical strain energy release rate, G{sub Ic}. The measurement of G{sub Ic} provides basic information about the transverse crack resistance. In this study, the utility of the double torsion (DT) test technique to determine G{sub Ic} in a glass-ceramic matrix composite (Nicalon/CAS-II) at temperatures up to 1,000 C has been demonstrated. G{sub Ic} did decrease moderately with increasing temperature (as does the bulk matrix); however, no evidence ofmore » an interphase oxidizing effect on crack growth (parallel to the fibers) could be found. The inevitable misalignment of fibers in the material was not very efficient at bridging the crack in the DT specimens, in contrast to the significant matrix crack interactions with the fibers reported for other geometries such as double cantilever beam and flexure specimens.« less

  15. Micromechanical Fatigue Visco-Damage Model for Short Glass Fiber Reinforced Polyamide-66

    NASA Astrophysics Data System (ADS)

    Despringre, N.; Chemisky, Y.; Robert, G.; Meraghni, F.

    This work presents a micromechanical fatigue damage model developed for short glass fiber reinforced PA66. It has been developed to predict the high cycle fatigue behavior of PA66/GF30. The model is based on an extended Mori-Tanaka method which includes coated inclusions, matrix viscoelasticity and the evolution of micro-scale damage. The developed model accounts for the nonlinear matrix viscoelasticity and the reinforcement orientation. The description of the damage processes is based on the experimental investigation of damage mechanisms previously performed through in-situ SEM tests and X-ray micro-computed tomography observations. Damage chronologies have been proposed involving three different processes: interface debonding/coating, matrix micro-cracking and fiber breakages. Their occurrence strongly depends on the microstructure and the relative humidity. Each damage mechanism is introduced through an evolution law coupled to local stress fields. The developed model is implemented using a UMAT subroutine. Its experimental validation is achieved under stress or strain controlled fatigue tests.

  16. Fabrication of single crystal architecture in Sb-S-I glass: Transition from dot to line

    DOE PAGES

    Savytskii, Dmytro; Dierolf, Volkmar; Tamura, Nobumichi; ...

    2017-12-08

    We have investigated the occurrence of the sometimes observed grain boundaries, as initial seed is extended to form line in laser-fabricated single-crystal architecture in glass (SCAG). In particular, for Sb 2S 3 SCAG in Sb-S-I glass as a model system, grain boundaries are formed during the transition from laser-written initial seed dot to crystal line. Such grain boundaries during the growth of Sb 2S 3 crystals occur in 16SbI 3-84Sb 2S 3glass, whereas they are absent in Sb 2S 3 glass. We correlate this difference in tendency to form multiple grains with the relative glass forming ability i.e. the dynamicsmore » of nucleation and crystal growth as determined by differential scanning calorimetry (DSC). On the basis of this understanding, methods to minimize the appearance of grain boundaries in the transition region are suggested.« less

  17. Fabrication of single crystal architecture in Sb-S-I glass: Transition from dot to line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savytskii, Dmytro; Dierolf, Volkmar; Tamura, Nobumichi

    We have investigated the occurrence of the sometimes observed grain boundaries, as initial seed is extended to form line in laser-fabricated single-crystal architecture in glass (SCAG). In particular, for Sb 2S 3 SCAG in Sb-S-I glass as a model system, grain boundaries are formed during the transition from laser-written initial seed dot to crystal line. Such grain boundaries during the growth of Sb 2S 3 crystals occur in 16SbI 3-84Sb 2S 3glass, whereas they are absent in Sb 2S 3 glass. We correlate this difference in tendency to form multiple grains with the relative glass forming ability i.e. the dynamicsmore » of nucleation and crystal growth as determined by differential scanning calorimetry (DSC). On the basis of this understanding, methods to minimize the appearance of grain boundaries in the transition region are suggested.« less

  18. Determining and analyzing the strength and impact resistance of high modulus glass

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1972-01-01

    A number of new glass compositions have been prepared with increased emphasis on compositions without beryllia. Glass preparations have been much more broadly based and have included the eutectic glass fields, and the mullite-rare earth glass systems. Of the new glasses, the best non-toxic composition is UARL 472 with a bulk modulus of only 18.20 million psi. A second experimental glass, UARL 417, was chosen for research in making large quantities of fiber in monofilament form. Tests of these UARL 417 epoxy resin samples in comparison to similar composites made with the DuPont organic fiber, PRD-49-1, show that the UARL composites have a compressive strength 41/2 times higher and a specific compressive strength at least 21/2 times greater. Much of the research effort attempted to answer the question of why a given glass should have an impact strength superior to other glasses. No definitive answer to the question was found.

  19. Mechanical behavior of glass and Blackglas{reg_sign} ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stawovy, R.H.; Kampe, S.L.; Curtin, W.A.

    Room temperature tensile tests are reported on two low-cost ceramic matrix composite materials, comprised of matrices of Blackglas{reg_sign} and a proprietary glass composition each reinforced with Nicalon{reg_sign} SiC-based fibers. The measured mechanical behaviors, supplemented by post-fracture analysis of fiber pullout and fiber fracture mirrors, are compared in detail to the performance predicted theoretically. This allows for an assessment of the roles of the matrix, fiber strength, residual stresses, fiber geometry, and the fiber/matrix interfacial properties in determining mechanical response. The Blackglas{reg_sign} matrix cracks extensively during processing, and so the mechanical response is controlled by the deformation and fracture of themore » fiber bundle. The interfacial sliding resistance, {tau}, is determined to be {approx} 17 MPa and the in-situ (post-processed) fiber characteristic strength, {sigma}{sub c} is found to be {approx} 2.0 GPa, both similar to values reported in the literature for Nicalon{reg_sign}/CAS-glass systems. For the glass matrix, the unidirectional and cross-ply materials show marked differences in mechanical behavior. In the cross-ply composites, {tau} {approx} 14 MPa and {sigma}{sub c} {approx} 2.9 GPa; in the unidirectional variants, these values were 1.7 MPa and 1.6 GPa, respectively. With these data and other derived micromechanical parameters, the stress-strain and failure point of these materials was predicted using existing models, and excellent agreement with the experiments was obtained. These materials thus perform as expected given the in-situ fiber and interface properties. Notably, the cross-ply glass matrix composites exhibit high fiber strength retention and hence show tensile strengths that are better than other Nicalon{reg_sign}-based materials tested to date.« less

  20. Impact resistance of fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1982-01-01

    Stress-strain curves are obtained for a variety of glass fiber and carbon fiber reinforced plastics in dynamic tension, over the stress-strain range of 0.00087-2070/sec. The test method is of the one-bar block-to-bar type, using a rotating disk or a pendulum as the loading apparatus and yielding accurate stress-strain curves up to the breaking strain. In the case of glass fiber reinforced plastic, the tensile strength, strain to peak impact stress, total strain and total absorbed energy all increase significantly as the strain rate increases. By contrast, carbon fiber reinforced plastics show lower rates of increase with strain rate. It is recommended that hybrid composites incorporating the high strength and rigidity of carbon fiber reinforced plastic with the high impact absorption of glass fiber reinforced plastics be developed for use in structures subjected to impact loading.

  1. Shaping of Looped Miniaturized Chalcogenide Fiber Sensing Heads for Mid-Infrared Sensing

    PubMed Central

    Houizot, Patrick; Anne, Marie-Laure; Boussard-Plédel, Catherine; Loréal, Olivier; Tariel, Hugues; Lucas, Jacques; Bureau, Bruno

    2014-01-01

    Chalcogenide glass fibers are promising photonic tools to develop Fiber Evanescent Wave Spectroscopy (FEWS) optical sensors working in the mid-infrared region. Numerous pioneering works have already been carried out showing their efficiency, especially for bio-medical applications. Nevertheless, this technology remains confined to academic studies at the laboratory scale because chalcogenide glass fibers are difficult to shape to produce reliable, sensitive and compact sensors. In this paper, a new method for designing and fabricating a compact and robust sensing head with a selenide glass fiber is described. Compact looped sensing heads with diameter equal to 2 mm were thus shaped. This represents an outstanding achievement considering the brittleness of such uncoated fibers. FEWS experiments were implemented using alcoholic solutions as target samples showing that the sensitivity is higher than with the routinely used classical fiber. It is also shown that the best compromise in term of sensitivity is to fabricate a sensing head including two full loops. From a mechanical point of view, the breaking loads of the loop shaped head are also much higher than with classical fiber. Finally, this achievement paves the way for the use of mid-infrared technology during in situ and even in vivo medical operations. Indeed, is is now possible to slide a chalcogenide glass fiber in the operating channel of a standard 2.8 mm diameter catheter. PMID:25264953

  2. Ten year environmental test of glass fiber/epoxy pressure vessels

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1985-01-01

    By the beginning of the 1970's composite pressure vessels had received a significant amount of development effort, and applications were beginning to be investigated. One of the first applications grew out of NASA Johnson Space Center efforts to develop a superior emergency breathing system for firemen. While the new breathing system provided improved wearer comfort and an improved mask and regulator, the primary feature was low weight which was achieved by using a glass fiber reinforced aluminum pressure vessel. Part of the development effort was to evaluate the long term performance of the pressure vessel and as a consequence, some 30 bottles for a test program were procured. These bottles were then provided to NASA Lewis Research Center where they were maintained in an outdoor environment in a pressurized condition for a period of up to 10 yr. During this period, bottles were periodically subjected to cyclic and burst testing. There was no protective coating applied to the fiberglass/epoxy composite, and significant loss in strength did occur as a result of the environment. Similar bottles stored indoors showed little, if any, degradation. This report contains a description of the pressure vessels, a discussion of the test program, data for each bottle, and appropriate plots, comparisons, and conclusions.

  3. Setting kinetics and mechanical properties of flax fibre reinforced glass ionomer restorative materials

    PubMed Central

    Abou Neel, Ensanya Ali; Young, Anne M.

    2017-01-01

    Regardless of the excellent properties of glass ionomer cements, their poor mechanical properties limit their applications to non-load bearing areas. This study aimed to investigate the effect of incorporated short, chopped and randomly distributed flax fibers (0, 0.5, 1, 2.5, 5 and 25 wt%) on setting reaction kinetics, and mechanical and morphological properties of glass ionomer cements. Addition of flax fibers did not significantly affect the setting reaction extent. According to their content, flax fibers increased the compressive (from 148 to 250 MPa) and flexure strength (from 20 to 42 MPa). They also changed the brittle behavior of glass ionomer cements to a plastic one. They significantly reduced the compressive (from 3 to 1.3 GPa) and flexure modulus (from 19 to 14 GPa). Accordingly, flax fiber-modified glass ionomer cements could be potentially used in high-stress bearing areas. PMID:28808218

  4. Structural model of homogeneous As–S glasses derived from Raman spectroscopy and high-resolution XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovchak, R.; Shpotyuk, O.; Mccloy, J. S.

    2010-11-28

    The structure of homogeneous bulk As x S 100- x (25 ≤ x ≤ 42) glasses, prepared by the conventional rocking–melting–quenching method, was investigated using high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It is shown that the main building blocks of their glass networks are regular AsS 3/2 pyramids and sulfur chains. In the S-rich domain, the existence of quasi-tetrahedral (QT) S = As(S 1/2) 3 units is deduced from XPS data, but with a concentration not exceeding ~3–5% of total atomic sites. Therefore, QT units do not appear as primary building blocks of the glass backbone in thesemore » materials, and an optimally-constrained network may not be an appropriate description for glasses when x < 40. Finally, it is shown that, in contrast to Se-based glasses, the ‘chain-crossing’ model is only partially applicable to sulfide glasses.« less

  5. Variety of neutron sensors based on scintillating glass waveguides

    NASA Astrophysics Data System (ADS)

    Bliss, Mary; Craig, Richard A.

    1995-04-01

    Pacific Northwest Laboratory (PNL) has fabricated cerium-activated lithium silicate glass scintillating fiber waveguide neutron sensors via a hot-downdraw process. These fibers typically have a transmission length (e-1 length) of greater than 2 meters. The underlying physics of, the properties of, and selected devices incorporating these fibers are described. These fibers constitute an enabling technology for a wide variety of neutron sensors.

  6. Multiple visible emissions by means of up-conversion process in a microstructured tellurite glass optical fiber.

    PubMed

    Boetti, Nadia G; Lousteau, Joris; Negro, Davide; Mura, Emanuele; Scarpignato, Gerardo; Abrate, Silvio; Milanese, Daniel

    2012-02-27

    We present a microstructured fiber whose 9 µm diameter core consists in three concentric rings made of three active glasses having different rare earth oxide dopants, Yb3+/Er3+, Yb3+/Tm3+ and Yb3+/Pr3+, respectively. Morphological and optical characterization of the optical fiber are presented. The photoluminescence spectrum is investigated for different pumping conditions using a commercial 980 nm laser diode. Tuning of the RGB (or white light) emission is demonstrated not only by adjusting the pump power but also by using an optical iris as spatial filter which, thanks to the microstructured core, also acts as a spectral filter.

  7. Analysis of Nd3+:glass, solar-pumped, high-powr laser systems

    NASA Technical Reports Server (NTRS)

    Zapata, L. E.; Williams, M. D.

    1989-01-01

    The operating characteristics of Nd(3+):glass lasers energized by a solar concentrator were analyzed for the hosts YAG, silicate glass, and phosphate glass. The modeling is based on the slab zigzag laser geometry and assumes that chemical hardening methods for glass are successful in increasing glass hardness by a factor of 4. On this basis, it was found that a realistic 1-MW solar-pumped laser might be constructed from phosphate glass 4 sq m in area and 2 mm thick. If YAG were the host medium, a 1-MW solar-pumped laser need only be 0.5 sq m in area and 0.5 cm thick, which is already possible. In addition, Nd(3+) doped glass fibers were found to be excellent solar-pumped laser candidates. The small diameter of fibers eliminates thermal stress problems, and if their diameter is kept small (10 microns), they propagate a Gaussian single mode which can be expanded and transmitted long distances in space. Fiber lasers could then be used for communications in space or could be bundled and the individual beams summed or phase-matched for high-power operation.

  8. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Cheng, Xudong; Pan, Yuelei; Li, Congcong; Gong, Lunlun; Zhang, Heping

    2018-04-01

    In order to maintain the integrity, glass fiber (GF) reinforced silica aerogel composites were synthesized using methltrimethoxysilane (MTMS) and water glass co-precursor by freeze drying method. The composites were characterized by scanning electron microscopy, Brunauer-Emmett-Teller analysis, uniaxial compressive test, three-point bending test, thermal conductivity analysis, contact angle test, TG-DSC analysis. It was found that the molar ratio of MTMS/water glass could significantly affect the properties of composites. The bulk density and thermal conductivity first decreased and then increased with the increasing molar ratio. The composites showed remarkable mechanical strength and flexibility compared with pure silica aerogel. Moreover, when the molar ratio is 1.8, the composites showed high specific surface area (870.9 m2/g), high contact angle (150°), great thermal stability (560 °C) and low thermal conductivity (0.0248 W/m·K). These outstanding properties indicate that GF/aerogels have broad prospects in the field of thermal insulation.

  9. Development of electro-conductive silver phosphate-based glass optrodes for in vivo optogenetics

    NASA Astrophysics Data System (ADS)

    Desjardins, Mathieu; Roudjane, Mourad; Ledemi, Yannick; Gagnon-Turcotte, Gabriel; Maghsoudloo, Esmaeel; Filion, Guillaume; Gosselin, Benoit; Messaddeq, Younès.

    2018-02-01

    Multifunctional fibers are developed worldwide for enabling many new advanced applications. Among the multiple new functionalities that such fibers can offer according to their design, chemical composition and materials combination, the co-transmission of light and electrical signals is of first interest for sensing applications, in particular for optogenetics and electrophysiology. Multifunctional fibers offer an all-solid approach relying on new ionic conducting glasses for the design and manufacturing of next generation optrodes, which represents a tremendous upgrade compared to conventional techniques that requires the utilization of liquid electrolytes to carry the electrical signal generated by genetically encoded neuronal gated ion channels after optical excitation. After a systematic study conducted on different ion-conductive glass systems, silver phosphate-based glasses belonging to the AgI-AgPO3-WO3 and AgI-AgPO3-Ag2WO4 systems were found to be very promising materials for the target application. Several types of fibers, including single-core step-index fibers, multimaterial fibers made of inorganic and optical polymeric glasses have been then fabricated and characterized. Light transmission ranging from 400 to 1000 nm and electrical conductivity ranging from 10-3 and 10-1 S·cm-1 at room temperature (AC frequencies from 1 Hz to 1 MHz) were demonstrated with these fibers. Very sharp fiber tapers were then produced with high repeatability by using a CO2 laser optical setup, allowing a significant shrinking from the fiber (300 μm diameter) to the taper tip (25-30 μm diameter).

  10. In vitro and in vivo response after exposure to man-made mineral and asbestos insulation fibers.

    PubMed

    Pickrell, J A; Hill, J O; Carpenter, R L; Hahn, F F; Rebar, A H

    1983-08-01

    The relative in vitro and in vivo toxicity of several types of manufactured fibrous glass insulation and crocidolite asbestos was investigated to aid in selection of a suitable glass fiber for subsequent use in inhalation exposures. The in vitro cytotoxicity to pulmonary alveolar macrophages of small glass fibers from microfiber insulation (count median diameter (CMD) approximately 0.1-0.2 micrometer) was greater than that of the larger fibers from household insulation (CMD approximately 2.4 micrometers). To screen for in vivo pulmonary toxicity, 2-21 mg of glass or asbestos fibers were administered in divided doses to male Syrian hamsters by intratracheal instillation. Animals were sacrificed at 1, 3.5 and 11 months following initial administration of material. One type of glass microfiber [count median diameter (CMD) approximately 0.1 micrometer] caused deaths from pulmonary edema at early times after instillation. High levels of asbestos, a second glass microfiber (CMD approximately 0.2 micrometer) and one type of household insulation fiber (CMD 2.3 micrometers) all resulted in increase in total collagen and mild pulmonary fibrosis at later times after instillation, although microfiber insulation produced a greater response than household insulation. Asbestos insulation produced the greatest response. A five-day inhalation exposure to a high level of glass microfibers deposited in lung less than 10 percent of the lowest instilled amount which elicited indications of lung injury. This amount did not produce significant biological changes at 1 to 12 months after exposure.

  11. Fracture strength of endodontically treated molars transfixed horizontally by a fiber glass post.

    PubMed

    Beltrão, Maria Cecilia Gomes; Spohr, Ana Maria; Oshima, Hugo Mitsuo Silva; Mota, Eduardo Gonçalves; Burnett, Luiz Henrique

    2009-02-01

    To assess the effect of a horizontally transfixed fiber glass post placed between buccal and palatal surfaces, on the fracture strength of endodontically treated molar teeth with MOD cavities, either restored with resin-based composite, or not. 75 sound maxillary human third molars were extracted, embedded in acrylic resin blocks and randomly assigned to five groups (n=15). Group A (sound teeth), (control) and Groups B, C, D and E, which were subjected to the following procedures after endodontic treatment: GB--(MOD+Endo), GC--(MOD+Endo+Post), GD--MOD and composite restoration (MOD+Endo+CR), GE--(MOD+Endo+Post+CR). The specimens were stored in distilled water at 37 degrees C for 24 hours. Later, a compressive force was applied by means of a universal testing machine at 1 mm/minute speed, parallel to the long axis of the teeth until fracture occurred. The means of the results (N) followed by the same letter represent no statistical difference by ANOVA and Tukey (P<0.05): GA = 4289.8 (+/- 1128.9)a, GB = 549.6 (+/- 120.7)b, GC = 1474.8 (+/- 338.1)c, GD = 1224.7 (+/- 236.0)c, GE = 2645.4 (+/- 675.1)d. In the analysis of qualitative variables, there was a tendency to cusp fracture in all groups except for Group C. The fiber glass post transfixed horizontally in a MOD cavity significantly increased the fracture resistance of the teeth restored with resin composite.

  12. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.; Thompson, E. R.

    1978-01-01

    A composite that can be used at temperatures up to 875 K with mechanical properties equal or superior to graphite fiber reinforced epoxy composites is presented. The composite system consist of graphite fiber, uniaxially or biaxially, reinforced borosilicate glass. The mechanical and thermal properties of such a graphite fiber reinforced glass composite are described, and the system is shown to offer promise as a high performance structural material. Specific properties that were measured were: a modified borosilicate glass uniaxially reinforced by Hercules HMS graphite fiber has a three-point flexural strength of 1030 MPa, a four-point flexural strength of 964 MPa, an elastic modulus of 199 GPa and a failure strain of 0.0052. The preparation and properties of similar composites with Hercules HTS, Celanese DG-102, Thornel 300 and Thornel Pitch graphite fibers are also described.

  13. Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy.

    PubMed

    Park, Jae Hong; Yoon, Ki Young; Na, Hyungjoo; Kim, Yang Seon; Hwang, Jungho; Kim, Jongbaeg; Yoon, Young Hun

    2011-09-01

    We grew multi-walled carbon nanotubes (MWCNTs) on a glass fiber air filter using thermal chemical vapor deposition (CVD) after the filter was catalytically activated with a spark discharge. After the CNT deposition, filtration and antibacterial tests were performed with the filters. Potassium chloride (KCl) particles (<1 μm) were used as the test aerosol particles, and their number concentration was measured using a scanning mobility particle sizer. Antibacterial tests were performed using the colony counting method, and Escherichia coli (E. coli) was used as the test bacteria. The results showed that the CNT deposition increased the filtration efficiency of nano and submicron-sized particles, but did not increase the pressure drop across the filter. When a pristine glass fiber filter that had no CNTs was used, the particle filtration efficiencies at particle sizes under 30 nm and near 500 nm were 48.5% and 46.8%, respectively. However, the efficiencies increased to 64.3% and 60.2%, respectively, when the CNT-deposited filter was used. The reduction in the number of viable cells was determined by counting the colony forming units (CFU) of each test filter after contact with the cells. The pristine glass fiber filter was used as a control, and 83.7% of the E. coli were inactivated on the CNT-deposited filter. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Composite Laminate With Coefficient of Thermal Expansion Matching D263 Glass

    NASA Technical Reports Server (NTRS)

    Robinson, David; Rodini, Benjamin

    2012-01-01

    The International X-ray Observatory project seeks to make an X-ray telescope assembly with 14,000 flexible glass segments. The glass used is commercially available SCHOTT D263 glass. Thermal expansion causes the mirror to distort out of alignment. A housing material is needed that has a matching coefficient of thermal expansion (CTE) so that when temperatures change in the X-ray mirror assembly, the glass and housing pieces expand equally, thus reducing or eliminating distortion. Desirable characteristics of this material include a high stiffness/weight ratio, and low density. Some metal alloys show promise in matching the CTE of D263 glass, but their density is high compared to aluminum, and their stiffness/weight ratio is not favorable. A laminate made from carbon fiber reinforced plastic (CFRP) should provide more favorable characteristics, but there has not been any made with the CTE matching D263 Glass. It is common to create CFRP laminates of various CTEs by stacking layers of prepreg material at various angles. However, the CTE of D263 glass is 6.3 ppm/ C at 20 C, which is quite high, and actually unachievable solely with carbon fiber and resin. A composite laminate has been developed that has a coefficient of thermal expansion identical to that of SCHOTT D263 glass. The laminate is made of a combination of T300 carbon fiber, Eglass, and RS3C resin. The laminate has 50% uni-T300 plies and 50% uni-E-glass plies, with each fiber-layer type laid up in a quasi-isotropic laminate for a total of 16 plies. The fiber volume (percent of fiber compared to the resin) controls the CTE to a great extent. Tests have confirmed that a fiber volume around 48% gives a CTE of 6.3 ppm/ C. This is a fairly simple composite laminate, following well established industry procedures. The unique feature of this laminate is a somewhat unusual combination of carbon fiber with E-glass (fiberglass). The advantage is that the resulting CTE comes out to 6.3 ppm/ C at 20 C, which matches D

  15. Optical coherence transfer over 50-km spooled fiber with frequency instability of 2×10-17 at 1 s

    NASA Astrophysics Data System (ADS)

    Ma, Chao-Qun; Li-Fei, Wu; Jiang, Yan-Yi; Yu, Hong-Fu; Bi, Zhi-Yi; Ma, Long-Sheng

    2015-08-01

    We demonstrate coherent transfer of an ultra-stable optical frequency at 192.8 THz over 50-km spooled fiber. Random phase noise induced by environmental disturbance through fiber is detected and suppressed by feeding a correctional signal into an acousto-optic modulator. After being compensated, the fiber-induced frequency instability is 2×10-17 at 1-s averaging time and reaches 8×10-20 after 16 h. The noise floor of the compensation system could be as low as 2×10-18 at 1-s averaging time. Project supported by the National Natural Science Foundation of China (Grant Nos. 11127405, 11334002, and 11374102) and the National Basic Research Program of China (Grant No. 2012CB821302).

  16. In vivo evaluation of chemical biopersistence of man-made mineral fibers.

    PubMed Central

    Morgan, A

    1994-01-01

    Techniques developed at the Harwell Laboratory for the determination of the biopersistence of man-made mineral fibers (MMMF) in vivo are described. Results obtained with samples of glass fiber with a range of compositions, and with a sample of rockwool, are summarized. With glass fibers the rate of dissolution of fibers in vivo depends not only on their chemical composition, but also on their length. Certainly, for all fibers exceeding 10 microns in length, the longer the fiber the more rapidly it dissolves. This effect is attributed to differences in the microenvironments to which long and short fibers are exposed. Although this phenomenon appears to operate with all glass fibers, it may not apply to other types of MMMF that dissolve more readily in environments with low pH. Finally, the article examines the validity of the intratracheal method of administration for studying the biopersistence of MMMF in vivo and the use of the rat for this purpose. Images Figure 1. Figure 2. Figure 4. A Figure 4. B PMID:7882916

  17. Chiral fiber sensors

    NASA Astrophysics Data System (ADS)

    Kopp, Victor I.; Churikov, Victor M.; Singer, Jonathan; Neugroschl, Daniel; Genack, Azriel Z.

    2010-04-01

    We have fabricated a variety of chiral fiber sensors by twisting one or more standard or custom optical fibers with noncircular or nonconcentric core as they pass though a miniature oven. The resulting structures are as stable as the glass material and can be produced with helical pitch ranging from microns to hundreds of microns. The polarization selectivity of the chiral gratings is determined by the geometry of the fiber cross section. Single helix structures are polarization insensitive, while double helix gratings interact only with a single optical polarization component. Both single and double helix gratings may function as a fiber long period grating, coupling core and cladding modes or as a diffraction grating scattering light from the fiber core out of the fiber. The resulting dips in the transmission spectrum are sensitive to fiber elongation, twist and temperature, and (in the case of the long period gratings) to the refractive index of the surrounding medium. The suitability of chiral gratings for sensing temperature, elongation, twist and liquid levels will be discussed. Gratings made of radiation sensitive glass can be used to measure the cumulative radiation dose, while gratings made of radiation-hardened glass are suitable for stable sensing of the environment in nuclear power plants. Excellent temperature stability up to 900°C is found in pure silica chiral diffraction grating sensors.

  18. Tapered chalcogenide-tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Yang, Peilong; Zhang, Peiqing; Dai, Shixun; Wu, Yuehao; Wang, Xunsi; Tao, Guangming; Nie, Qiuhua

    2015-05-01

    Fibers exhibiting flattened and decreasing dispersion are important in nonlinear applications. Such fibers are difficult to design, particularly in soft glass. In this work, we develop a preliminary design of a highly nonlinear tapered hybrid microstructured optical fiber (TH-MOF) with chalcogenide glass core and tellurite glass microstructure cladding. We then numerically studied its dispersion, loss, and nonlinearity-related optical properties under fundamental mode systematically using the infinitesimal method. The designed TH-MOF exhibits low chromatic dispersion that is similar to a convex function with two zero-dispersion wavelengths and decreases with fiber length from 2 to 5 μm band. The potential use of the TH-MOF in nonlinear applications is demonstrated numerically by a supercontinuum spectrum of 20 dB bandwidth covering 1.96-4.76 μm generated in 2-cm-long TH-MOF using near 3.25-μm fs-laser pump.

  19. Dy{sup 3+}-doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Mingjie; Yang, Anping, E-mail: apyang@jsnu.edu.cn; Peng, Yuefeng

    2015-10-15

    Highlights: • Novel Ga–Sb–S chalcogenide glasses doped with Dy{sup 3+} ions were synthesized. • The glasses show good thermal stability and excellent infrared transparency. • The glasses show low phonon energy and intense mid-infrared emissions. • The mid-infrared emissions have high quantum efficiency. • The mid-infrared emissions have large stimulated emission cross sections. - Abstract: Novel Ga–Sb–S chalcogenide glasses doped with different amount of Dy{sup 3+} ions were prepared. Their thermal stability, optical properties, and mid-infrared (MIR) emission properties were investigated. The glasses show good thermal stability, excellent infrared transparency, very low phonon energy (∼306 cm{sup −1}), and intense emissionsmore » centered at 2.95, 3.59, 4.17 and 4.40 μm. Three Judd–Ofelt intensity parameters (Ω{sub 2} = 8.51 × 10{sup −20} cm{sup 2}, Ω{sub 4} = 2.09 × 10{sup −20} cm{sup 2}, and Ω{sub 6} = 1.60 × 10{sup −20} cm{sup 2}) are obtained, and the related radiative transition properties are evaluated. The high quantum efficiencies and large stimulated emission cross sections of the MIR emissions (88.10% and 1.11 × 10{sup −20} cm{sup 2} for 2.95 μm emission, 75.90% and 0.38 × 10{sup −20} cm{sup 2} for 4.40 μm emission, respectively) in the Dy{sup 3+}-doped Ga–Sb–S glasses make them promising gain materials for the MIR lasers.« less

  20. Glasses, ceramics, and composites from lunar materials

    NASA Technical Reports Server (NTRS)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.