Sample records for s3 proximal tubule

  1. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips

    NASA Astrophysics Data System (ADS)

    Homan, Kimberly A.; Kolesky, David B.; Skylar-Scott, Mark A.; Herrmann, Jessica; Obuobi, Humphrey; Moisan, Annie; Lewis, Jennifer A.

    2016-10-01

    Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand.

  2. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips

    PubMed Central

    Homan, Kimberly A.; Kolesky, David B.; Skylar-Scott, Mark A.; Herrmann, Jessica; Obuobi, Humphrey; Moisan, Annie; Lewis, Jennifer A.

    2016-01-01

    Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand. PMID:27725720

  3. Ontogeny of NHE8 in the rat proximal tubule

    PubMed Central

    Becker, Amy M.; Zhang, Jianning; Goyal, Sunita; Dwarakanath, Vangipuram; Aronson, Peter S.; Moe, Orson W.; Baum, Michel

    2014-01-01

    Proximal tubule bicarbonate reabsorption is primarily mediated via the Na+/H+ exchanger, identified as NHE3 in adults. Previous studies have demonstrated a maturational increase in rat proximal tubule NHE3 expression, with a paucity of NHE3 expression in neonates, despite significant Na+-dependent proton secretion. Recently, a novel Na+/H+ antiporter (NHE8) was identified and found to be expressed on the apical membrane of the proximal tubule. To determine whether NHE8 may be the antiporter responsible for proton secretion in neonates, the present study characterized the developmental expression of NHE8 in rat proximal tubules. RNA blots and real-time RT-PCR demonstrated no developmental difference in the mRNA of renal NHE8. Immunoblots, however, demonstrated peak protein abundance of NHE8 in brush border membrane vesicles of 7- and 14-day-old compared with adult rats. In contrast, the level of NHE8 expression in total cortical membrane protein was higher in adults than in neonates. Immunohistochemistry confirmed the presence of NHE8 on the apical membrane of the proximal tubules of neonatal and adult rats. These data demonstrate that NHE8 does undergo maturational changes on the apical membrane of the rat proximal tubule and may account for the Na+-dependent proton flux in neonatal proximal tubules. PMID:17429030

  4. 3D Proximal Tubule Tissues Recapitulate Key Aspects of Renal Physiology to Enable Nephrotoxicity Testing

    PubMed Central

    King, Shelby M.; Higgins, J. William; Nino, Celina R.; Smith, Timothy R.; Paffenroth, Elizabeth H.; Fairbairn, Casey E.; Docuyanan, Abigail; Shah, Vishal D.; Chen, Alice E.; Presnell, Sharon C.; Nguyen, Deborah G.

    2017-01-01

    Due to its exposure to high concentrations of xenobiotics, the kidney proximal tubule is a primary site of nephrotoxicity and resulting attrition in the drug development pipeline. Current pre-clinical methods using 2D cell cultures and animal models are unable to fully recapitulate clinical drug responses due to limited in vitro functional lifespan, or species-specific differences. Using Organovo's proprietary 3D bioprinting platform, we have developed a fully cellular human in vitro model of the proximal tubule interstitial interface comprising renal fibroblasts, endothelial cells, and primary human renal proximal tubule epithelial cells to enable more accurate prediction of tissue-level clinical outcomes. Histological characterization demonstrated formation of extensive microvascular networks supported by endogenous extracellular matrix deposition. The epithelial cells of the 3D proximal tubule tissues demonstrated tight junction formation and expression of renal uptake and efflux transporters; the polarized localization and function of P-gp and SGLT2 were confirmed. Treatment of 3D proximal tubule tissues with the nephrotoxin cisplatin induced loss of tissue viability and epithelial cells in a dose-dependent fashion, and cimetidine rescued these effects, confirming the role of the OCT2 transporter in cisplatin-induced nephrotoxicity. The tissues also demonstrated a fibrotic response to TGFβ as assessed by an increase in gene expression associated with human fibrosis and histological verification of excess extracellular matrix deposition. Together, these results suggest that the bioprinted 3D proximal tubule model can serve as a test bed for the mechanistic assessment of human nephrotoxicity and the development of pathogenic states involving epithelial-interstitial interactions, making them an important adjunct to animal studies. PMID:28337147

  5. Diadenosine polyphosphate-stimulated gluconeogenesis in isolated rat proximal tubules.

    PubMed Central

    Edgecombe, M; Craddock, H S; Smith, D C; McLennan, A G; Fisher, M J

    1997-01-01

    Diadenosine polyphosphates released into the extracellular environment influence a variety of metabolic and other cellular activities in a wide range of target tissues. Here we have studied the impact of these novel nucleotides on gluconeogenesis in isolated rat proximal tubules. Gluconeogenesis was stimulated following exposure of isolated proximal tubules to a range of adenine-containing nucleotides including ADP, ATP, Ap3A, Ap4A, Ap5A and Ap6A. The concentration-dependence of ATP-, Ap3A- and Ap4A-mediated stimulation of gluconeogenesis was similar and was consistent with a role for these agents in the physiological control of renal metabolism. Nucleotide-stimulated gluconeogenesis was diminished in the presence of agents that interfere with phospholipase C activation or intracellular Ca2+ metabolism, indicative of a role for polyphosphoinositide-mediated Ca2+ mobilization in the mechanism of action of ATP, Ap3A and Ap4A. The characteristics of binding of [2-3H]Ap4A to renal plasma-membrane preparations suggest that Ap4A mediates its effects on proximal tubule gluconeogenesis via interaction with P2y-like purinoceptor(s) also recognized by extracellular ATP. PMID:9163337

  6. Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.

    PubMed

    Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya

    2015-12-01

    Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Local pH domains regulate NHE3-mediated Na+ reabsorption in the renal proximal tubule

    PubMed Central

    Burford, James L.; McDonough, Alicia A.; Holstein-Rathlou, Niels-Henrik; Peti-Peterdi, Janos

    2014-01-01

    The proximal tubule Na+/H+ exchanger 3 (NHE3), located in the apical dense microvilli (brush border), plays a major role in the reabsorption of NaCl and water in the renal proximal tubule. In response to a rise in blood pressure NHE3 redistributes in the plane of the plasma membrane to the base of the brush border, where NHE3 activity is reduced. This NHE3 redistribution is assumed to provoke pressure natriuresis; however, it is unclear how NHE3 redistribution per se reduces NHE3 activity. To investigate if the distribution of NHE3 in the brush border can change the reabsorption rate, we constructed a spatiotemporal mathematical model of NHE3-mediated Na+ reabsorption across a proximal tubule cell and compared the model results with in vivo experiments in rats. The model predicts that when NHE3 is localized exclusively at the base of the brush border, it creates local pH microdomains that reduce NHE3 activity by >30%. We tested the model's prediction experimentally: the rat kidney cortex was loaded with the pH-sensitive fluorescent dye BCECF, and cells of the proximal tubule were imaged in vivo using confocal fluorescence microscopy before and after an increase of blood pressure by ∼50 mmHg. The experimental results supported the model by demonstrating that a rise of blood pressure induces the development of pH microdomains near the bottom of the brush border. These local changes in pH reduce NHE3 activity, which may explain the pressure natriuresis response to NHE3 redistribution. PMID:25298526

  8. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition

    PubMed Central

    Vallon, Volker; Edwards, Aurélie

    2015-01-01

    The objective of this study was to investigate how physiological, pharmacological, and pathological conditions that alter sodium reabsorption (TNa) in the proximal tubule affect oxygen consumption (QO2) and Na+ transport efficiency (TNa/QO2). To do so, we expanded a mathematical model of solute transport in the proximal tubule of the rat kidney. The model represents compliant S1, S2, and S3 segments and accounts for their specific apical and basolateral transporters. Sodium is reabsorbed transcellularly, via apical Na+/H+ exchangers (NHE) and Na+-glucose (SGLT) cotransporters, and paracellularly. Our results suggest that TNa/QO2 is 80% higher in S3 than in S1–S2 segments, due to the greater contribution of the passive paracellular pathway to TNa in the former segment. Inhibition of NHE or Na-K-ATPase reduced TNa and QO2, as well as Na+ transport efficiency. SGLT2 inhibition also reduced proximal tubular TNa but increased QO2; these effects were relatively more pronounced in the S3 vs. the S1–S2 segments. Diabetes increased TNa and QO2 and reduced TNa/QO2, owing mostly to hyperfiltration. Since SGLT2 inhibition lowers diabetic hyperfiltration, the net effect on TNa, QO2, and Na+ transport efficiency in the proximal tubule will largely depend on the individual extent to which glomerular filtration rate is lowered. PMID:25855513

  9. Inducible nitric oxide synthase and apoptosis in murine proximal tubule epithelial cells.

    PubMed

    Tiwari, Manish M; Messer, Kurt J; Mayeux, Philip R

    2006-06-01

    Since inducible nitric oxide synthase (iNOS) and proximal tubule injury are known to be critical determinants of lipopolysaccharide (LPS)-induced renal failure, the role of nitric oxide (NO) in proximal tubule cell apoptosis was examined. An 18-h treatment with a combination of LPS (5 microg/ml) and interferon-gamma (IFN-gamma, 100 units/ml) synergistically induced iNOS and produced a 20-fold increase in NO generation in the TKPTS murine proximal tubule cell line. NO generation by LPS + IFN-gamma was blocked by a specific iNOS blocker, L-N6-(1-iminoethyl)-lysine (L-NIL, 1 mM). To assess the role of iNOS-derived NO in proximal tubule cell apoptosis, annexin V- and propidium iodide-labeled cells were analyzed by flow cytometry. Neither the induction of iNOS nor its inhibition produced significant apoptotic cell death in TKPTS cells. Two exogenous NO donors were used to examine the role of NO more directly in proximal tubule apoptosis. Although both sodium nitroprusside (SNP), an iron-containing, nitrosonium cation donor, and S-nitroso-N-acetylpenicillamine (SNAP), a noniron-containing, NO generator, produced a concentration-dependent increase in NO generation, only SNP increased apoptotic cell death in TKPTS cells (5.9 +/- 0.7% in control cells vs. 21.6 +/- 3.8% in SNP [500 microM]-treated cells; n = 4-9; p < 0.01). SNP-mediated tubule cell apoptosis was not dependent on the activation of caspases or p53 but was possibly related to the generation of reactive oxygen species by SNP. Thus, in TKPTS cells induction of iNOS and generation of NO by LPS does not lead to tubular epithelial cell death.

  10. Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria-related plasma membrane protein rBAT/SLC3A1.

    PubMed

    Nagamori, Shushi; Wiriyasermkul, Pattama; Guarch, Meritxell Espino; Okuyama, Hirohisa; Nakagomi, Saya; Tadagaki, Kenjiro; Nishinaka, Yumiko; Bodoy, Susanna; Takafuji, Kazuaki; Okuda, Suguru; Kurokawa, Junko; Ohgaki, Ryuichi; Nunes, Virginia; Palacín, Manuel; Kanai, Yoshikatsu

    2016-01-19

    Heterodimeric amino acid transporters play crucial roles in epithelial transport, as well as in cellular nutrition. Among them, the heterodimer of a membrane protein b(0,+)AT/SLC7A9 and its auxiliary subunit rBAT/SLC3A1 is responsible for cystine reabsorption in renal proximal tubules. The mutations in either subunit cause cystinuria, an inherited amino aciduria with impaired renal reabsorption of cystine and dibasic amino acids. However, an unsolved paradox is that rBAT is highly expressed in the S3 segment, the late proximal tubules, whereas b(0,+)AT expression is highest in the S1 segment, the early proximal tubules, so that the presence of an unknown partner of rBAT in the S3 segment has been proposed. In this study, by means of coimmunoprecipitation followed by mass spectrometry, we have found that a membrane protein AGT1/SLC7A13 is the second partner of rBAT. AGT1 is localized in the apical membrane of the S3 segment, where it forms a heterodimer with rBAT. Depletion of rBAT in mice eliminates the expression of AGT1 in the renal apical membrane. We have reconstituted the purified AGT1-rBAT heterodimer into proteoliposomes and showed that AGT1 transports cystine, aspartate, and glutamate. In the apical membrane of the S3 segment, AGT1 is suggested to locate itself in close proximity to sodium-dependent acidic amino acid transporter EAAC1 for efficient functional coupling. EAAC1 is proposed to take up aspartate and glutamate released into luminal fluid by AGT1 due to its countertransport so that preventing the urinary loss of aspartate and glutamate. Taken all together, AGT1 is the long-postulated second cystine transporter in the S3 segment of proximal tubules and a possible candidate to be involved in isolated cystinuria.

  11. Drug transporter expression profiling in a three-dimensional kidney proximal tubule in vitro nephrotoxicity model.

    PubMed

    Diekjürgen, Dorina; Grainger, David W

    2018-05-09

    Given currently poor toxicity translational predictions for drug candidates, improved mechanistic understanding underlying nephrotoxicity and drug renal clearance is needed to improve drug development and safety screening. Therefore, better relevant and well-characterized in vitro screening models are required to reliably predict human nephrotoxicity. Because kidney proximal tubules are central to active drug uptake and secretion processes and therefore to nephrotoxicity, this study acquired regio-specific expression data from recently reported primary proximal tubule three-dimensional (3D) hyaluronic acid gel culture and non-gel embedded cultured murine proximal tubule suspensions used in nephrotoxicity assays. Quantitative assessment of the mRNA expression of 21 known kidney tubule markers and important proximal tubule transporters with known roles in drug transport was obtained. Asserting superior gene expression levels over current commonly used two-dimensional (2D) kidney cell culture lines was the study objective. Hence, we compare previously published gel-based 3D proximal tubule fragment culture and their non-gel suspensions for up to 1 week. We demonstrate that 3D tubule culture exhibits superior gene expression levels and profiles compared to published commonly used 2D kidney cell lines (Caki-1 and HK-2) in plastic plate monocultures. Additionally, nearly all tested genes retain mRNA expression after 7 days in both proximal tubule cultures, a limitation of 2D cell culture lines. Importantly, gel presence is shown not to interfere with the gene expression assay. Western blots confirm protein expression of OAT1 and 3 and OCT2. Functional transport assays confirm their respective transporter functions in vitro. Overall, results validate retention of essential toxicity-relevant transporters in this published 3D proximal tubule model over conventional 2D kidney cell cultures, producing opportunities for more reliable, sensitive, and comprehensive drug

  12. Uptake of leptin and albumin via separate pathways in proximal tubule cells.

    PubMed

    Briffa, Jessica F; Grinfeld, Esther; Poronnik, Philip; McAinch, Andrew J; Hryciw, Deanne H

    2016-10-01

    The adipokine leptin and oncotic protein albumin are endocytosed in the proximal tubule via the scavenger receptor megalin. Leptin reduces megalin expression and activates cell signalling pathways that upregulate fibrotic protein expression. The aim of this study was to investigate if leptin uptake in proximal tubule cells was via the albumin-megalin endocytic complex. In immortalised proximal tubule Opossum kidney cells (OK) fluorescent leptin and albumin co-localised following 5min exposure, however there was no co-localisation at 10, 20 and 30min exposure. In OK cells, acute exposure to leptin for 2h did not alter NHE3, ClC-5, NHERF1 and NHERF2 mRNA. However, acute leptin exposure increased NHERF2 protein expression in proximal tubule cells. In OK cells, immunoprecipitation experimentation indicated leptin did not bind to ClC-5. Leptin uptake in OK cells was enhanced by bafilomycin and ammonium chloride treatment, demonstrating that uptake was not dependent on lysosomal pH. Thus, it is likely that two pools of megalin exist in proximal tubule cells to facilitate separate uptake of leptin and albumin by endocytosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Impaired organic ion transport in proximal tubules of rats with Heymann nephritis.

    PubMed

    Park, E K; Hong, S K; Goldinger, J; Andres, G; Noble, B

    1985-10-01

    Organic ion transport across the basolateral membrane of proximal tubules was measured by means of the tissue slice technique in each of the four different stages of Heymann nephritis. Impairment of both organic anion and cation transport was detected early in Stage 2, and became more severe in Stage 3 of Heymann nephritis. The decreased transport function was associated with extensive damage to proximal tubule cells, including loss of brush border microvilli and basal infoldings. Despite these abnormalities of structure and function, oxygen consumption of proximal tubule cells remained essentially normal. Partial recovery of organic cation transport was noted late in Heymann nephritis (Stage 4). Recovery of the cation transport function was associated with a partial restoration of brush border microvilli and basal infoldings to proximal tubule cells. However, organic anion transport remained depressed throughout the entire course of disease. Impairment of organic ion transport in rats with Heymann nephritis appeared to result from damage to basolateral membrane transport elements rather than general deterioration of the metabolic machinery of proximal tubule cells. Decreased organic cation transport appeared to be the consequence of a reduction in the number of carrier sites, a phenomenon that could have resulted from decreased membrane surface area. However, the depression of organic anion transport was associated with decreased substrate affinity of the anion carrier, indicating that qualitative, rather than quantitative changes, were primarily responsible for that defect. Specific antibody-mediated damage to the anion transport elements in basolateral membranes of proximal tubules is postulated to occur in Heymann nephritis.

  14. Tight junctions of the proximal tubule and their channel proteins.

    PubMed

    Fromm, Michael; Piontek, Jörg; Rosenthal, Rita; Günzel, Dorothee; Krug, Susanne M

    2017-08-01

    The renal proximal tubule achieves the majority of renal water and solute reabsorption with the help of paracellular channels which lead through the tight junction. The proteins forming such channels in the proximal tubule are claudin-2, claudin-10a, and possibly claudin-17. Claudin-2 forms paracellular channels selective for small cations like Na + and K + . Independently of each other, claudin-10a and claudin-17 form anion-selective channels. The claudins form the paracellular "pore pathway" and are integrated, together with purely sealing claudins and other tight junction proteins, in the belt of tight junction strands surrounding the tubular epithelial cells. In most species, the proximal tubular tight junction consists of only 1-2 (pars convoluta) to 3-5 (pars recta) horizontal strands. Even so, they seal the tubule very effectively against leak passage of nutrients and larger molecules. Remarkably, claudin-2 channels are also permeable to water so that 20-25% of proximal water absorption may occur paracellularly. Although the exact structure of the claudin-2 channel is still unknown, it is clear that Na + and water share the same pore. Already solved claudin crystal structures reveal a characteristic β-sheet, comprising β-strands from both extracellular loops, which is anchored to a left-handed four-transmembrane helix bundle. This allowed homology modeling of channel-forming claudins present in the proximal tubule. The surface of cation- and anion-selective claudins differ in electrostatic potentials in the area of the proposed ion channel, resulting in the opposite charge selectivity of these claudins. Presently, while models of the molecular structure of the claudin-based oligomeric channels have been proposed, its full understanding has only started.

  15. Basolateral phosphate transport in renal proximal-tubule-like OK cells.

    PubMed

    Barac-Nieto, M; Alfred, M; Spitzer, A

    2002-09-01

    It is generally assumed that phosphate (Pi) effluxes from proximal tubule cells by passive diffusion across the basolateral (BL) membrane. We explored the mechanism of BL Pi efflux in proximal tubule-like OK cells grown on permeable filters and then loaded with 32P. BL efflux of 32P was significantly stimulated (P < 0.05) by exposing the BL side of the monolayer to 12.5 mM Pi, to 10 mM citrate, or by acid-loading the cells, and was inhibited by exposure to 0.05 mM Pi or 25 mM HCO3; by contrast, BL exposure to high (8.4) pH, 40 mM K+, 140 mM Na gluconate (replacing NaCl), 10 mM lactate, 10 mM succinate, or 10 mM glutamate did not affect BL 32P efflux. These data are consistent with BL Pi efflux from proximal tubule-like cells occurring, in part, via an electro-neutral sodium-sensitive anion transporter capable of exchanging two moles of intracellular acidic H2PO4- for each mole of extracellular basic HPO4= or for citrate.

  16. The small molecule probe PT-Yellow labels the renal proximal tubules in zebrafish.

    PubMed

    Sander, Veronika; Patke, Shantanu; Sahu, Srikanta; Teoh, Chai Lean; Peng, Zhenzhen; Chang, Young-Tae; Davidson, Alan J

    2015-01-01

    We report the development of a small fluorescent molecule, BDNCA3-D2, herein referred to as PT-Yellow. Soaking zebrafish embryos in PT-Yellow or intraperitoneal injection into adults results in non-toxic in vivo fluorescent labeling of the renal proximal tubules, the major site of blood filtrate reabsorption and a common target of injury in acute kidney injury. We demonstrate the applicability of this new compound as a rapid and simple readout for zebrafish kidney filtration and proximal tubule reabsorption function.

  17. Phosphoproteomic analysis of AT1 receptor-mediated signaling responses in proximal tubules of angiotensin II-induced hypertensive rats.

    PubMed

    Li, Xiao C; Zhuo, Jia L

    2011-09-01

    The signaling mechanisms underlying the effects of angiotensin II in proximal tubules of the kidney are not completely understood. Here we measured signal protein phosphorylation in isolated proximal tubules using pathway-specific proteomic analysis in rats continuously infused with pressor or non-pressor doses of angiotensin II over a 2-week period. Of the 38 phosphoproteins profiled, 14 were significantly altered by the pressor dose. This included increased phosphorylation of the protein kinase C isoenzymes, PKCα and PKCβII, and the glycogen synthase kinases, GSK3α and GSK3β. Phosphorylation of the cAMP-response element binding protein 1 and PKCδ were decreased, whereas PKCɛ remained unchanged. By contrast, the phosphorylation of only seven proteins was altered by the non-pressor dose, which increased that of PKCα, PKCδ, and GSKα. Phosphorylation of MAP kinases, ERK1/2, was not increased in proximal tubules in vivo by the pressor dose, but was in proximal tubule cells in vitro. Infusion of the pressor dose decreased, whereas the non-pressor dose of angiotensin II increased the phosphorylation of the sodium and hydrogen exchanger 3 (NHE-3) in membrane fractions of proximal tubules. Losartan largely blocked the signaling responses induced by the pressor dose. Thus, PKCα and PKCβII, GSK3α and GSK3β, and cAMP-dependent signaling pathways may have important roles in regulating proximal tubular sodium and fluid transport in Ang II-induced hypertensive rats.

  18. The effect of big endothelin-1 in the proximal tubule of the rat kidney

    PubMed Central

    Beara-Lasić, Lada; Knotek, Mladen; Čejvan, Kenan; Jakšić, Ozren; Lasić, Zoran; Skorić, Boško; Brkljačić, Vera; Banfić, Hrvoje

    1997-01-01

    An obligatory step in the biosynthesis of endothelin-1 (ET-1) is the conversion of its inactive precursor, big ET-1, into the mature form by the action of specific, phosphoramidon-sensitive, endothelin converting enzyme(s) (ECE). Disparate effects of big ET-1 and ET-1 on renal tubule function suggest that big ET-1 might directly influence renal tubule function. Therefore, the role of the enzymatic conversion of big ET-1 into ET-1 in eliciting the functional response (generation of 1,2-diacylglycerol) to big ET-1 was studied in the rat proximal tubules.In renal cortical slices incubated with big ET-1, pretreatment with phosphoramidon (an ECE inhibitor) reduced tissue immunoreactive ET-1 to a level similar to that of cortical tissue not exposed to big ET-1. This confirms the presence and effectiveness of ECE inhibition by phosphoramidon.In freshly isolated proximal tubule cells, big ET-1 stimulated the generation of 1,2-diacylglycerol (DAG) in a time- and dose-dependent manner. Neither phosphoramidon nor chymostatin, a chymase inhibitor, influenced the generation of DAG evoked by big ET-1.Big ET-1-dependent synthesis of DAG was found in the brush-border membrane. It was unaffected by BQ123, an ETA receptor antagonist, but was blocked by bosentan, an ETA,B-nonselective endothelin receptor antagonist.These results suggest that the proximal tubule is a site for the direct effect of big ET-1 in the rat kidney. The effect of big ET-1 is confined to the brush-border membrane of the proximal tubule, which may be the site of big ET-1-sensitive receptors. PMID:9051300

  19. Electrochemical forces for chloride transport in the proximal tubules of the rat kidney.

    PubMed

    Sohtell, M

    1978-08-01

    The electrochemical forces for chloride transport in the proximal tubule of the rat kidney were studied using micropuncture techniques. Electrical transmembrane potentials were recorded in randomly punctured tubules with Ling-Gerhard electrodes. Chloride activities in the luminal, cellular and interstitial compartments were measured with ion selective micro-electrodes. Electrical potential measurements between cell to interstitium and lumen to interstitium were -72.1 +/- 2.6 mV and +0.5 +/- 1.4 mV (mean +/- S.D.) respectively. The calculated chloride concentrations for lumen, cell and interstitium were 133.0 +/- 10.3 mM, 8.5 +/- 1.0 mM and 99.1 +/- 3.2 mM (mean +/- S.D.) respectively. The net electrochemical forces, qualitatively, offer a passive chloride ion pathway through the tubular wall and a chloride equilibrium over the luminal membrane seems to exist.

  20. Reduced Insulin Receptor Expression Enhances Proximal Tubule Gluconeogenesis.

    PubMed

    Pandey, Gaurav; Shankar, Kripa; Makhija, Ekta; Gaikwad, Anil; Ecelbarger, Carolyn; Mandhani, Anil; Srivastava, Aneesh; Tiwari, Swasti

    2017-02-01

    Reduced insulin receptor protein levels have been reported in the kidney cortex from diabetic humans and animals. We recently reported that, targeted deletion of insulin receptor (IR) from proximal tubules (PT) resulted in hyperglycemia in non-obese mice. To elucidate the mechanism, we examined human proximal tubule cells (hPTC) and C57BL/6 mice fed with high-fat diet (HFD, 60% fat for 20 weeks). Immunoblotting revealed a significantly lower protein level of IR in HFD compare to normal chow diet (NCD). Furthermore, a blunted rise in p-AKT 308 levels in the kidney cortex of HFD mice was observed in response to acute insulin (0.75 IU/kg body weight, i.p) relative to NCD n = 8/group, P < 0.05). Moreover, we found significantly higher transcript levels of phosphoenolpyruvate carboxykinase (PEPCK, a key gluconeogenic enzyme) in the kidney cortex from HFD, relative to mice on NCD. The higher level of PEPCK in HFD was confirmed by immunoblotting. However, no significant differences were observed in cortical glucose-6-phosphatase (G6Pase) or fructose-1,6, bisphosphosphatase (FBPase) enzyme transcript levels. Furthermore, we demonstrated insulin inhibited glucose production in hPTC treated with cyclic AMP and dexamethasone (cAMP/DEXA) to stimulate gluconeogenesis. Transcript levels of the gluconeogenic enzyme PEPCK were significantly increased in cAMP/DEXA-stimulated hPTC cells (n = 3, P < 0.05), and insulin attenuated this upregulation Furthermore, the effect of insulin on cAMP/DEXA-induced gluconeogenesis and PEPCK induction was significantly attenuated in IR (siRNA) silenced hPTC (n = 3, P < 0.05). Overall the above data indicate a direct role for IR expression as a determinant of PT-gluconeogenesis. Thus reduced insulin signaling of the proximal tubule may contribute to hyperglycemia in the metabolic syndrome via elevated gluconeogenesis. J. Cell. Biochem. 118: 276-285, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Akt recruits Dab2 to albumin endocytosis in the proximal tubule.

    PubMed

    Koral, Kelly; Li, Hui; Ganesh, Nandita; Birnbaum, Morris J; Hallows, Kenneth R; Erkan, Elif

    2014-12-15

    Proximal tubule epithelial cells have a highly sophisticated endocytic machinery to retrieve the albumin in the glomerular filtrate. The megalin-cubilin complex and the endocytic adaptor disabled-2 (Dab2) play a pivotal role in albumin endocytosis. We previously demonstrated that protein kinase B (Akt) regulates albumin endocytosis in the proximal tubule through an interaction with Dab2. Here, we examined the nature of Akt-Dab2 interaction. The pleckstrin homology (PH) and catalytic domains (CD) of Akt interacted with the proline-rich domain (PRD) of Dab2 based on yeast-two hybrid (Y2H) experiments. Pull-down experiments utilizing the truncated constructs of Dab2 demonstrated that the initial 11 amino acids of Dab2-PRD were sufficient to mediate the interaction between Akt and Dab2. Endocytosis experiments utilizing Akt1- and Akt2-silencing RNA revealed that both Akt1 and Akt2 mediate albumin endocytosis in proximal tubule epithelial cells; therefore, Akt1 and Akt2 may play a compensatory role in albumin endocytosis. Furthermore, both Akt isoforms phosphorylated Dab2 at Ser residues 448 and 449. Ser-to-Ala mutations of these Dab2 residues inhibited albumin endocytosis and resulted in a shift in location of Dab2 from the peripheral to the perinuclear area, suggesting the physiological relevance of these phosphorylation sites in albumin endocytosis. We conclude that both Akt1 and Akt2 are involved in albumin endocytosis, and phosphorylation of Dab2 by Akt induces albumin endocytosis in proximal tubule epithelial cells. Further delineation of how Akt affects expression/phosphorylation of endocytic adaptors and receptors will enhance our understanding of the molecular network triggered by albumin overload in the proximal tubule. Copyright © 2014 the American Physiological Society.

  2. Basolateral choline transport in isolated rabbit renal proximal tubules.

    PubMed

    Dantzler, W H; Evans, K K; Wright, S H

    1998-11-01

    Choline can undergo both net secretion and net reabsorption by renal proximal tubules, but at physiological plasma levels net reabsorption occurs. During this process, choline enters the cells at the luminal side down an electrochemical gradient via a specific transporter with a high affinity for choline. It appeared likely that choline was then transported out of the cells against an electrochemical gradient at the basolateral membrane by countertransport for another organic cation. This possibility was examined by studying net transepithelial reabsorption and basolateral uptake and efflux of [14C]choline in isolated S2 segments of rabbit renal proximal tubules. Basolateral uptake, which was inhibited by other organic cations such as tetraethylammonium (TEA), appeared to occur by the standard organic cation transport pathway. However, the addition of TEA to the bathing medium not only failed to trans-stimulate net transepithelial reabsorption and basolateral efflux of [14C]choline but it actually inhibited transepithelial reabsorption by @60%. The results do not support the presence of a countertransport step for choline against an electrochemical gradient at the basolateral membrane. Instead, they suggest that choline crosses this membrane by some form of carrier-mediated diffusion even during the reabsorptive process.

  3. Angiotensin II stimulates calcineurin activity in proximal tubule epithelia through AT-1 receptor-mediated tyrosine phosphorylation of the PLC-gamma1 isoform.

    PubMed

    Lea, Janice P; Jin, Shao G; Roberts, Brian R; Shuler, Michael S; Marrero, Mario B; Tumlin, James A

    2002-07-01

    Angiotensin II (AngII) contributes to the maintenance of extracellular fluid volume by regulating sodium transport in the nephron. In nonepithelial cells, activation of phospholipase C (PLC) by AT-1 receptors stimulates the generation of 1,4,5-trisphosphate (IP(3)) and the release of intracellular calcium. Calcineurin, a serine-threonine phosphatase, is activated by calcium and calmodulin, and both PLC and calcineurin have been linked to sodium transport in the proximal tubule. An examination of whether AngII activates calcineurin in a model of proximal tubule epithelia (LLC-PK1 cells) was performed; AngII increased calcineurin activity within 30 s. An examination of whether AngII activates PLC in proximal tubule epithelia was also performed after first showing that all three families of PLC isoforms are present in LLC-PK1 cells. Application of AngII increased IP(3) generation by 60% within 15 s, which coincided with AngII-induced tyrosine phosphorylation of the PLC-gamma1 isoform also observed at 15 s. AngII-induced tyrosine phosphorylation was blocked by the AT-1 receptor antagonist, Losartan. Subsequently, an inhibitor of tyrosine phosphorylation blocked the AngII-induced activation of calcineurin, as did coincubation with an inhibitor of PLC activity and with an antagonist of the AT-1 receptor. It is therefore concluded that AngII stimulates calcineurin phosphatase activity in proximal tubule epithelial cells through a mechanism involving AT-1 receptor-mediated tyrosine phosphorylation of the PLC isoform.

  4. SGLT2 Inhibitors: Glucotoxicity and Tumorigenesis Downstream the Renal Proximal Tubule?

    PubMed

    Bertinat, Romina; Nualart, Francisco; Yáñez, Alejandro J

    2016-08-01

    At present, diabetes mellitus is the main cause of end-stage renal disease. Effective glycaemic management is the most powerful tool to delay the establishment of diabetic complications, such as diabetic kidney disease. Together with reducing blood glucose levels, new anti-diabetic agents are expected not only to control the progression but also to restore known defects of the diabetic kidney. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are promising anti-diabetic agents that reduce hyperglycaemia by impairing glucose reabsorption in proximal tubule of the kidney and increasing glucosuria. SGLT2 inhibitors have shown to reduce glucotoxicity in isolated proximal tubule cells and also to attenuate expression of markers of overall kidney damage in experimental animal models of diabetes, but the actual renoprotective effect for downstream nephron segments is still unknown and deserves further attention. Here, we briefly discuss possible undesired effects of enhanced glucosuria and albuminuria in nephron segments beyond the proximal tubule after SGLT2 inhibitor treatment, offering new lines of research to further understand the renoprotective action of these anti-diabetic agents. Strategies blocking glucose reabsorption by renal proximal tubule epithelial cells (RPTEC) may be protective for RPTEC, but downstream nephron segments will still be exposed to high glucose and albumin levels through the luminal face. The actual effect of constant enhanced glucosuria over distal nephron segments remains to be established. J. Cell. Physiol. 231: 1635-1637, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. Far infrared radiation promotes rabbit renal proximal tubule cell proliferation and functional characteristics, and protects against cisplatin-induced nephrotoxicity.

    PubMed

    Chiang, I-Ni; Pu, Yeong-Shiau; Huang, Chao-Yuan; Young, Tai-Horng

    2017-01-01

    Far infrared radiation, a subdivision of the electromagnetic spectrum, is beneficial for long-term tissue healing, anti-inflammatory effects, growth promotion, sleep modulation, acceleration of microcirculation, and pain relief. We investigated if far infrared radiation is beneficial for renal proximal tubule cell cultivation and renal tissue engineering. We observed the effects of far infrared radiation on renal proximal tubules cells, including its effects on cell proliferation, gene and protein expression, and viability. We also examined the protective effects of far infrared radiation against cisplatin, a nephrotoxic agent, using the human proximal tubule cell line HK-2. We found that daily exposure to far infrared radiation for 30 min significantly increased rabbit renal proximal tubule cell proliferation in vitro, as assessed by MTT assay. Far infrared radiation was not only beneficial to renal proximal tubule cell proliferation, it also increased the expression of ATPase Na+/K+ subunit alpha 1 and glucose transporter 1, as determined by western blotting. Using quantitative polymerase chain reaction, we found that far infrared radiation enhanced CDK5R1, GNAS, NPPB, and TEK expression. In the proximal tubule cell line HK-2, far infrared radiation protected against cisplatin-mediated nephrotoxicity by reducing apoptosis. Renal proximal tubule cell cultivation with far infrared radiation exposure resulted in better cell proliferation, significantly higher ATPase Na+/K+ subunit alpha 1 and glucose transporter 1 expression, and significantly enhanced expression of CDK5R1, GNAS, NPPB, and TEK. These results suggest that far infrared radiation improves cell proliferation and differentiation. In HK-2 cells, far infrared radiation mediated protective effects against cisplatin-induced nephrotoxicity by reducing apoptosis, as indicated by flow cytometry and caspase-3 assay.

  6. Cyclophilin B expression in renal proximal tubules of hypertensive rats.

    PubMed

    Kainer, D B; Doris, P A

    2000-04-01

    Rat cyclophilin-like protein (Cy-LP) is a candidate hypertension gene initially identified by differential hybridization and implicated in renal mechanisms of salt retention and high blood pressure. We report the molecular characterization of rat cyclophilin B (CypB) and demonstrate, through sequence analysis and an allele-specific polymerase chain reaction primer assay, that CypB but not Cy-LP is expressed in rat kidney. CypB is an endoplasmic reticulum-localized prolyl-isomerase that interacts with elongation initiation factor 2-beta, an important regulator of protein translation and a central component of the endoplasmic reticulum stress response to hypoxia or ATP depletion. Active renal transport of sodium is increased in the spontaneously hypertensive rat (SHR), and there is evidence that this coincides with hypoxia and ATP depletion in the renal cortex. In the present studies we have examined expression of CypB in rat proximal tubules, which contributes to the increased renal sodium reabsorption in this model of hypertension. We report that CypB transcript abundance is significantly elevated in proximal convoluted tubules from SHR compared with the control Wistar-Kyoto strain. This upregulation occurs in weanling animals and precedes the development of hypertension, indicating that it is not a simple response to hypertension in SHR. Further, CypB expression is also higher in a proximal tubule cell line derived from SHR compared with a similar line derived from Wistar-Kyoto rats, indicating that this difference is genetically determined. No sequence differences were observed in the CypB cDNA from these 2 strains. These observations suggest that a genetically determined alteration in proximal tubules from SHR occurs that leads to increased expression of CypB. In view of evidence linking CypB to the regulation of elongation initiation factor-2, the upregulation of CypB may result from metabolic stress.

  7. Grouper tshβ Promoter-Driven Transgenic Zebrafish Marks Proximal Kidney Tubule Development

    PubMed Central

    Wang, Yang; Sun, Zhi-Hui; Zhou, Li; Li, Zhi; Gui, Jian-Fang

    2014-01-01

    Kidney tubule plays a critical role in recovering or secreting solutes, but the detailed morphogenesis remains unclear. Our previous studies have found that grouper tshβ (gtshβ) is also expressed in kidney, however, the distribution significance is still unknown. To understand the gtshβ role and kidney tubule morphogenesis, here, we have generated a transgenic zebrafish line Tg(gtshβ:GFP) with green fluorescent protein driven by the gtshβ promoter. Similar to the endogenous tshβ in zebrafish or in grouper, the gtshβ promoter-driven GFP is expressed in pituitary and kidney, and the developing details of proximal kidney tubule are marked in the transgenic zebrafish line. The gfp initially transcribes at 16 hours post fertilization (hpf) above the dorsal mesentery, and partially co-localizes with pronephric tubular markers slc20a1a and cdh17. Significantly, the GFP specifically localizes in proximal pronephric segments during embryogenesis and resides at kidney duct epithelium in adult fish. To test whether the gtshβ promoter-driven GFP may serve as a readout signal of the tubular development, we have treated the embryos with retinoic acid signaing (RA) reagents, in which exogenous RA addition results in a distal extension of the proximal segments, while RA inhibition induces a weakness and shortness of the proximal segments. Therefore, this transgenic line provides a useful tool for genetic or chemical analysis of kidney tubule. PMID:24905828

  8. Nonequilibrium thermodynamic model of the rat proximal tubule epithelium.

    PubMed Central

    Weinstein, A M

    1983-01-01

    The rat proximal tubule epithelium is represented as well-stirred, compliant cellular and paracellular compartments bounded by mucosal and serosal bathing solutions. With a uniform pCO2 throughout the epithelium, the model variables include the concentrations of Na, K, Cl, HCO3, H2PO4, HPO4, and H, as well as hydrostatic pressure and electrical potential. Except for a metabolically driven Na-K exchanger at the basolateral cell membrane, all membrane transport within the epithelium is passive and is represented by the linear equations of nonequilibrium thermodynamics. In particular, this includes the cotransport of Na-Cl and Na-H2PO4 and countertransport of Na-H at the apical cell membrane. Experimental constraints on the choice of ionic conductivities are satisfied by allowing K-Cl cotransport at the basolateral membrane. The model equations include those for mass balance of the nonreacting species, as well as chemical equilibrium for the acidification reactions. Time-dependent terms are retained to permit the study of transient phenomena. In the steady state the energy dissipation is computed and verified equal to the sum of input from the Na-K exchanger plus the Gibbs free energy of mass addition to the system. The parameter dependence of coupled water transport is studied and shown to be consistent with the predictions of previous analytical models of the lateral intercellular space. Water transport in the presence of an end-proximal (HCO3-depleted) luminal solution is investigated. Here the lower permeability and higher reflection coefficient of HCO3 enhance net sodium and water transport. Due to enhanced flux across the tight junction, this process may permit proximal tubule Na transport to proceed with diminished energy dissipation. PMID:6652211

  9. Proximal tubule hydrogen ion transport processes in diuretic-induced metabolic alkalosis.

    PubMed

    Blumenthal, S S; Ware, R A; Kleinman, J G

    1985-07-01

    Transport systems involved in proximal tubule HCO-3 reabsorption were examined in disaggregated renal cortical tubules from rabbits with metabolic alkalosis. The acid-base disorder was induced by first treating the animals with furosemide, and then maintaining them on low Cl--high HCO-3 diets. On this regimen, the rabbits had increases in blood pH and total CO2 values and decreases in serum K+ concentrations. Urine Cl- concentrations were less than 15 mEq/L in all cases. Na+-H+ exchange was evaluated by incubating tubules in rotenone in an Na+-free medium to deplete them of Na+ and adenosine triphosphate. Then the tubules were resuspended in media containing 65 or 12.5 mEq/L Na+ at either pH 7.1 or pH 7.6. The rise in cell pH estimated by dimethadione distribution was taken as a measure of Na+-H+ exchanger activity. At the high incubation pH, Na+-H+ exchanger activity appeared to be the same in tubules taken from alkalotic rabbits compared with those prepared from normal rabbits. At the low incubation pH, the activity of this transport system appeared to be depressed by 40% to 50% in alkalosis, with kinetics that suggested a decreased Vmax for the exchanger. Na+-independent H+ transport, presumably reflecting activity of an H+-adenosine triphosphatase, was evaluated by preincubating tubules in a Na+-free medium in the presence of ouabain, and then sequentially exposing them to and removing them from a solution containing 20 mmol/L NH4Cl.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Urinary and proximal tubule acidification during reduction of renal blood flow in the rat.

    PubMed Central

    Jaramillo-Juárez, F; Aires, M M; Malnic, G

    1990-01-01

    1. The effects of reduction in renal blood flow (RBF) on urinary acidification and proximal tubule H+ ion secretion were studied after partial aortic clamping in rats. 2. Acute reduction of the renal perfusion pressure (from 109 +/- 3.88 to 77.4 +/- 1.05 mmHg) decreased both inulin and PAH (p-aminohippurate) clearances to about one-third of their control values. Absolute levels of urinary sodium excretion also decreased markedly, but fractional sodium excretion did not change significantly. 3. Urine pH and bicarbonate levels were not affected, but titratable acidity increased significantly from 0.12 +/- 0.011 to 0.25 +/- 0.042 muequiv min-1 ml-1 glomerular filtration rate (GFR). During aortic clamping, cortical PCO2 as determined by means of Severinghaus microelectrodes was reduced by a mean value of 7.0 +/- 1.5 mmHg. 4. Proximal tubule acidification kinetics were studied by stationary microperfusion techniques in which the time course of pH changes was monitored by pH microelectrodes. Steady-state pH fell from a mean control value of 6.77 +/- 0.03 to 6.65 +/- 0.02, and stationary bicarbonate concentrations from 4.70 +/- 0.27 to 2.84 +/- 0.18 mM. Acidification half-time decreased from 5.07 +/- 0.30 to 4.39 +/- 0.19 s, and net bicarbonate reabsorption increased from 1.63 +/- 0.14 to 1.99 +/- 0.12 nmol cm-2 s-1, these changes being statistically significant. 5. The experiments demonstrate that both overall acid excretion and proximal acid secretion are not compromised by a large decrease of RBF to about one-third of the control value; titratable acid excretion and proximal net bicarbonate reabsorption were even moderately increased under these conditions. PMID:2348400

  11. Depression of fractional sodium reabsorption by the proximal tubule of the dog without sodium diuresis

    PubMed Central

    Howards, Stuart S.; Davis, Bernard B.; Knox, Franklyn G.; Wright, Fred S.; Berliner, Robert W.

    1968-01-01

    The effect of infusions of hyperoncotic solutions on fractional sodium reabsorption by the proximal tubule of the dog was studied by the recollection micropuncture method. Tubule fluid to plasma inulin concentration ratios were measured for identified proximal tubule segments before and after infusion of 25% albumin or dextran solutions. Results were compared with changes in fractional reabsorption during saline diuresis. Plasma volume increased 66% ± SE 5.8 after infusion of albumin solution and 94% ± SE 8.2 after infusion of dextran solution. Fractional sodium reabosorption by the proximal tubule was depressed after infusion of both of these hyperoncotic solutions. Nevertheless, changes in sodium excretion after infusion of albumin and dextran were small. In contrast, after infusions of isotonic sodium chloride solution, which increased plasma volume 61% ± SE 5.8, a decrease in fractional reabsorption of 50.7% ± SE 7.2 was associated with large changes in sodium excretion. PMID:5658588

  12. Compensatory Renal Hypertrophy and the Uptake of Cysteine S-Conjugates of Hg2+ in Isolated S2 Proximal Tubular Segments.

    PubMed

    Bridges, Christy C; Barfuss, Delon W; Joshee, Lucy; Zalups, Rudolfs K

    2016-12-01

    Chronic kidney disease is characterized by a progressive and permanent loss of functioning nephrons. In order to compensate for this loss, the remaining functional nephrons undergo significant structural and functional changes. We hypothesize that luminal uptake of inorganic mercury (Hg 2+ ), as a conjugate of cysteine (Cys; Cys-S-Hg-S-Cys), is enhanced in S2 segments of proximal tubules from the remnant kidney of uninephrectomized (NPX) rabbits. To test this hypothesis, we measured uptake and accumulation of Cys-S-Hg-S-Cys in isolated perfused S2 segments of proximal tubules from normal (control) and NPX rabbits. The remnant kidney in NPX rabbits undergoes significant hypertrophy during the initial 3 weeks following surgery. Tubules isolated from NPX rabbits were significantly larger in diameter and volume than those from control rabbits. Moreover, real-time PCR analyses of proximal tubules indicated that the expression of selected membrane transporters was greater in kidneys of NPX animals than in kidneys of control animals. When S2 segments from control and NPX rabbits were perfused with cystine or Cys-S-Hg-S-Cys, we found that the rates of luminal disappearance and tubular accumulation of Hg 2+  were greater in tubules from NPX animals. These increases were inhibited by the addition of various amino acids to the perfusate. Taken together, our data suggest that hypertrophic changes in proximal tubules lead to an enhanced ability of these tubules to take up and accumulate Hg 2 . © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Expression of Cyt-c-Mediated Mitochondrial Apoptosis-Related Proteins in Rat Renal Proximal Tubules during Development.

    PubMed

    Song, Xiao-Feng; Tian, He; Zhang, Ping; Zhang, Zhen-Xing

    2017-01-01

    Apoptosis regulates embryogenesis, organ metamorphosis and tissue homeostasis. Mitochondrial signaling is an apoptotic pathway, in which Cyt-c and Apaf-1 are transformed into an apoptosome, which activates procaspase-9 and triggers apoptosis. This study evaluated Cyt-c, Apaf-1 and caspase-9 expression during renal development. Kidneys from embryonic (E) 16-, 18-, and 20-day-old fetuses and postnatal (P) 1-, 3-, 5-, 7-, 14-, and 21-day-old pups were obtained. Immunohistochemical analysis, dual-labeled immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) technique assay and Western blot were performed in addition to histological analysis. Immunohistochemistry showed that Cyt-c was strongly expressed in proximal and distal tubules (DTs) at all time points. Caspase-9 and Apaf-1 were strongly expressed in proximal tubules (PTs) but only weakly expressed in DTs. Dual-labeled immunofluorescence showed that most tubules expressed both Cyt-c and Apaf-1, except for some tubules that only expressed Cyt-c. The TUNEL assay showed a greater percentage of apoptotic cells in PTs compared to DTs. Apaf-1 and cleaved caspase-9 protein expression gradually increased during the embryonic period and peaked during the early postnatal period but apparently declined from P7. Cyt-c protein expression was weak during the embryonic period but obviously increased after P1. This study showed that PTs are more sensitive to apoptosis than DTs during rat renal development, even though both tubule segments contain a large number of mitochondria. Furthermore, Cyt-c-mediated mitochondrial apoptosis-related proteins play an important role in PTs during the early postnatal kidney development. © 2016 S. Karger AG, Basel.

  14. Effect of Changes in Hydrostatic Pressure in Peritubular Capillaries on the Permeability of the Proximal Tubule

    PubMed Central

    Hayslett, John P.

    1973-01-01

    The effect of increased hydrostatic pressure in the peritubular vessels on net sodium reabsorption from the proximal tubule was examined in the Necturus. An increase in the pressure gradient of 2.0 cm H2O across the wall of the proximal tubule, produced by ligation of the postcaval vein was associated with a marked reduction in net reabsorption and an increased back flux of water and electrolytes. This change was accompanied by a slight, but significant drop in the transepithelial electrical potential but not by an alteration in the steady-state chemical gradient. These studies highlight the importance of changes in the permeability characteristics of the proximal tubule on net sodium transport. Images PMID:4703221

  15. A microperfusion study of sucrose movement across the rat proximal tubule during renal vein constriction

    PubMed Central

    Bank, Norman; Yarger, William E.; Aynedjian, Hagop S.

    1971-01-01

    Constriction of the renal vein has been shown to inhibit net sodium and water reabsorption by the rat proximal tubule. The mechanism is unknown but might be the result of inhibition of the active sodium pump induced by changes in the interstitial fluid compartment of the kidney, or to enhanced passive backflux of sodium and water into the cell or directly into the tubular lumen. Since passive movement of solutes across epithelial membranes is determined in part by the permeability characteristics of the epithelium, an increase in the permeability of the proximal tubule during venous constriction would suggest that enhanced passive flux is involved in the inhibition of reabsorption. In the present experiments, isolated segments of rat proximal convoluted tubules were microperfused in vivo with saline while the animals were receiving 14C-labeled sucrose intravenously. In normal control animals, no sucrose was detected in the majority of the collected tubular perfusates. In rats with renal vein constriction (RVC), however, sucrose consistently appeared in the tubular perfusates. The rate of inflow of sucrose correlated with the length of the perfused segment, estimated by fractional water reabsorption. In another group of animals with renal vein constriction, inulin-14C was given intravenously and the proximal tubules similarly microperfused. Inulin did not appear in the majority of collected perfusates in these animals. These observations indicate that a physiological alteration in the permeability of the proximal tubule occurs during RVC. Such an increase in permeability is consistent with the view that enhanced passive extracellular back-flux plays a role in the reduction of net sodium and water reabsorption in this experimental condition. PMID:5540167

  16. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Senyan; Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201; Yao, Yunyi

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity withmore » the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.« less

  17. Phosphorylation of rat kidney Na-K pump at Ser938 is required for rapid angiotensin II-dependent stimulation of activity and trafficking in proximal tubule cells

    PubMed Central

    Massey, Katherine J.; Li, Quanwen; Rossi, Noreen F.; Keezer, Susan M.; Mattingly, Raymond R.

    2015-01-01

    How angiotensin (ANG) II acutely stimulates the Na-K pump in proximal tubules is only partially understood, limiting insight into how ANG II increases blood pressure. First, we tested whether ANG II increases the number of pumps in plasma membranes of native rat proximal tubules under conditions of rapid activation. We found that exposure to 100 pM ANG II for 2 min, which was previously shown to increase affinity of the Na-K pump for Na and stimulate activity threefold, increased the amount of the Na-K pump in plasma membranes of native tubules by 33%. Second, we tested whether previously observed increases in phosphorylation of the Na-K pump at Ser938 were part of the stimulatory mechanism. These experiments were carried out in opossum kidney cells, cultured proximal tubules stably coexpressing the ANG type 1 (AT1) receptor, and either wild-type or a S938A mutant of rat kidney Na-K pump under conditions found by others to stimulate activity. We found that 10 min of incubation in 10 pM ANG II stimulated activity of wild-type pumps from 2.3 to 3.5 nmol K·mg protein−1·min−1 and increased the amount of the pump in the plasma membrane by 80% but had no effect on cells expressing the S938A mutant. We conclude that acute stimulation of Na-K pump activity in native rat proximal tubules includes increased trafficking to the plasma membrane and that phosphorylation at Ser938 is part of the mechanism by which ANG II directly stimulates activity and trafficking of the rat kidney Na-K pump in opossum kidney cells. PMID:26582472

  18. Renal proximal tubule function is preserved in Cftrtm2camΔF508 cystic fibrosis mice

    PubMed Central

    Kibble, J D; Balloch, K J D; Neal, A M; Hill, C; White, S; Robson, L; Green, R; Taylor, C J

    2001-01-01

    Changes in proximal tubule function have been reported in cystic fibrosis patients. The aim of this study was to investigate proximal tubule function in the Cftrtm2camΔF508 cystic fibrosis (CF) mouse model. A range of techniques were used including renal clearance studies, in situ microperfusion, RT-PCR and whole-cell patch clamping. Renal Na+ clearance was similar in wild-type (1.4 ± 0.3 μl min−1, number of animals, N= 12) and CF mice (1.6 ± 0.4 μl min−1, N= 7) under control conditions. Acute extracellular volume expansion resulted in significant natriuresis in wild-type (7.0 ± 0.8 μl min−1, N= 8) and CF mice (9.3 ± 1.4 μl min−1, N= 9); no difference between genotypes was observed. In situ microperfusion revealed that fluid absorptive rate (Jv) was similar under control conditions between wild-type (2.2 ± 0.4 nl mm−1 min−1, n= 10) and CF mice (1.9 ± 0.3 nl mm−1 min−1, n= 11). Addition of a forskolin-dibutyryl cAMP (db-cAMP) cocktail to the perfusate caused no significant change in Jv in either wild-type (2.6 ± 0.7 nl mm−1 min−1, n= 10) or Cftrtm2camΔF508 mice (2.0 ± 0.5 nl mm−1 min−1, n= 10). CFTR expression was confirmed in samples of outer cortex using RT-PCR. However, no evidence for functional CFTR was obtained when outer cortical cells were stimulated with protein kinase A or forskolin-db-cAMP using whole-cell patch clamping. In conclusion, no functional deficit in proximal tubule function was found in Cftrtm2camΔF508 mice. This may be a consequence of a lack of whole-cell cAMP-dependent Cl− conductance in mouse proximal tubule cells. PMID:11306663

  19. SGLT2 mediates glucose reabsorption in the early proximal tubule.

    PubMed

    Vallon, Volker; Platt, Kenneth A; Cunard, Robyn; Schroth, Jana; Whaley, Jean; Thomson, Scott C; Koepsell, Hermann; Rieg, Timo

    2011-01-01

    Mutations in the gene encoding for the Na(+)-glucose co-transporter SGLT2 (SLC5A2) associate with familial renal glucosuria, but the role of SGLT2 in the kidney is incompletely understood. Here, we determined the localization of SGLT2 in the mouse kidney and generated and characterized SGLT2-deficient mice. In wild-type (WT) mice, immunohistochemistry localized SGLT2 to the brush border membrane of the early proximal tubule. Sglt2(-/-) mice had glucosuria, polyuria, and increased food and fluid intake without differences in plasma glucose concentrations, GFR, or urinary excretion of other proximal tubular substrates (including amino acids) compared with WT mice. SGLT2 deficiency did not associate with volume depletion, suggested by similar body weight, BP, and hematocrit; however, plasma renin concentrations were modestly higher and plasma aldosterone levels were lower in Sglt2(-/-) mice. Whole-kidney clearance studies showed that fractional glucose reabsorption was significantly lower in Sglt2(-/-) mice compared with WT mice and varied in Sglt2(-/-) mice between 10 and 60%, inversely with the amount of filtered glucose. Free-flow micropuncture revealed that for early proximal collections, 78 ± 6% of the filtered glucose was reabsorbed in WT mice compared with no reabsorption in Sglt2(-/-) mice. For late proximal collections, fractional glucose reabsorption was 93 ± 1% in WT and 21 ± 6% in Sglt2(-/-) mice, respectively. These results demonstrate that SGLT2 mediates glucose reabsorption in the early proximal tubule and most of the glucose reabsorption by the kidney, overall. This mouse model mimics and explains the glucosuric phenotype of individuals carrying SLC5A2 mutations.

  20. The Leptospira outer membrane protein LipL32 induces tubulointerstitial nephritis-mediated gene expression in mouse proximal tubule cells.

    PubMed

    Yang, Chih-Wei; Wu, Mai-Szu; Pan, Ming-Jeng; Hsieh, Wang-Ju; Vandewalle, Alain; Huang, Chiu-Ching

    2002-08-01

    Tubulointerstitial nephritis is a main renal manifestation caused by pathogenic leptospira that accumulate mostly in the proximal tubules, thereby inducing tubular injury and tubulointerstitial nephritis. To elucidate the role of leptospira outer membrane proteins in tubulointerstitial nephritis, outer membrane proteins from pathogenic Leptospira shermani and nonpathogenic Leptospira patoc extracted by Triton X-114 were administered to cultured mouse proximal tubule cells. A dose-dependent increase of monocyte chemoattractant protein-1 (MCP-1), RANTES, nitrite, and tumor necrosis factor-alpha (TNF-alpha) in the culture supernatant was observed 48 h after incubating Leptospira shermani outer membrane proteins with mouse proximal tubule cells. RT competitive-PCR experiments showed that Leptospira shermani outer membrane proteins (0.2 microg/ml) increased the expression of MCP-1, nitric oxide synthase (iNOS), RANTES, and TNF-alpha mRNA by 3.0-, 9.4-, 2.5-, and 2.5-fold, respectively, when compared with untreated cells. Outer membrane proteins extract from avirulent Leptospira patoc did not induce significant effects. The pathogenic outer membrane proteins extract contain a major component of a 32-kD lipoprotein (LipL32), which is absent in the nonpathogenic leptospira outer membrane. An antibody raised against LipL32 prevented the stimulatory effect of Leptospira shermani outer membrane proteins extract on MCP-1 and iNOS mRNA expression in cultured proximal tubule cells, whereas recombinant LipL32 significantly stimulated the expression of MCP-1 and iNOS mRNAs and augmented nuclear binding of nuclear factor-kappaB (NF-kappaB) and AP-1 transcription factors in proximal tubule cells. An antibody raised against LipL32 also blunted the effects induced by the recombinant LipL32. This study demonstrates that LipL32 is a major component of pathogenic leptospira outer membrane proteins involved in the pathogenesis of tubulointerstitial nephritis.

  1. Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption.

    PubMed Central

    Preisig, P A; Ives, H E; Cragoe, E J; Alpern, R J; Rector, F C

    1987-01-01

    Amiloride and the more potent amiloride analog, 5-(N-t-butyl) amiloride (t-butylamiloride), were used to examine the role of the Na+/H+ antiporter in bicarbonate absorption in the in vivo microperfused rat proximal convoluted tubule. Bicarbonate absorption was inhibited 29, 46, and 47% by 0.9 mM or 4.3 mM amiloride, or 1 mM t-butylamiloride, respectively. Sensitivity of the Na+/H+ antiporter to these compounds in vivo was examined using fluorescent measurements of intracellular pH with (2', 7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein (BCECF). Amiloride and t-butylamiloride were shown to be as potent against the antiporter in vivo as in brush border membrane vesicles. A model of proximal tubule bicarbonate absorption was used to correct for changes in the luminal profiles for pH and inhibitor concentration, and for changes in luminal flow rate in the various series. We conclude that the majority of apical membrane proton secretion involved in transepithelial bicarbonate absorption is mediated by the Na+-dependent, amiloride-sensitive Na+H+ antiporter. However, a second mechanism of proton secretion contributes significantly to bicarbonate absorption. This mechanism is Na+-independent and amiloride-insensitive. PMID:2888788

  2. Characterization of injury in isolated rat proximal tubules during cold incubation and rewarming.

    PubMed

    Bienholz, Anja; Walter, Björn; Pless-Petig, Gesine; Guberina, Hana; Kribben, Andreas; Witzke, Oliver; Rauen, Ursula

    2017-01-01

    Organ shortage leads to an increased utilization of marginal organs which are particularly sensitive to storage-associated damage. Cold incubation and rewarming-induced injury is iron-dependent in many cell types. In addition, a chloride-dependent component of injury has been described. This work examines the injury induced by cold incubation and rewarming in isolated rat renal proximal tubules. The tissue storage solution TiProtec® and a chloride-poor modification, each with and without iron chelators, were used for cold incubation. Incubation was performed 4°C for up to 168 h, followed by rewarming in an extracellular buffer (3 h at 37°C). After 48, 120 and 168 h of cold incubation LDH release was lower in solutions containing iron chelators. After rewarming, injury increased especially after cold incubation in chelator-free solutions. Without addition of iron chelators LDH release showed a tendency to be higher in chloride-poor solutions. Following rewarming after 48 h of cold incubation lipid peroxidation was significantly decreased and metabolic activity was tendentially better in tubules incubated with iron chelators. Morphological alterations included mitochondrial swelling and fragmentation being partially reversible during rewarming. ATP content was better preserved in chloride-rich solutions. During rewarming, there was a further decline of ATP content in the so far best conditions and minor alterations under the other conditions, while oxygen consumption was not significantly different compared to non-stored control tubules. Results show an iron-dependent component of preservation injury during cold incubation and rewarming in rat proximal renal tubules and reveal a benefit of chloride for the maintenance of tubular energy state during cold incubation.

  3. Characterization of injury in isolated rat proximal tubules during cold incubation and rewarming

    PubMed Central

    Bienholz, Anja; Walter, Björn; Pless-Petig, Gesine; Guberina, Hana; Kribben, Andreas; Witzke, Oliver; Rauen, Ursula

    2017-01-01

    Organ shortage leads to an increased utilization of marginal organs which are particularly sensitive to storage-associated damage. Cold incubation and rewarming-induced injury is iron-dependent in many cell types. In addition, a chloride-dependent component of injury has been described. This work examines the injury induced by cold incubation and rewarming in isolated rat renal proximal tubules. The tissue storage solution TiProtec® and a chloride-poor modification, each with and without iron chelators, were used for cold incubation. Incubation was performed 4°C for up to 168 h, followed by rewarming in an extracellular buffer (3 h at 37°C). After 48, 120 and 168 h of cold incubation LDH release was lower in solutions containing iron chelators. After rewarming, injury increased especially after cold incubation in chelator-free solutions. Without addition of iron chelators LDH release showed a tendency to be higher in chloride-poor solutions. Following rewarming after 48 h of cold incubation lipid peroxidation was significantly decreased and metabolic activity was tendentially better in tubules incubated with iron chelators. Morphological alterations included mitochondrial swelling and fragmentation being partially reversible during rewarming. ATP content was better preserved in chloride-rich solutions. During rewarming, there was a further decline of ATP content in the so far best conditions and minor alterations under the other conditions, while oxygen consumption was not significantly different compared to non-stored control tubules. Results show an iron-dependent component of preservation injury during cold incubation and rewarming in rat proximal renal tubules and reveal a benefit of chloride for the maintenance of tubular energy state during cold incubation. PMID:28672023

  4. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury

    PubMed Central

    WEINBERG, JOEL M.; VENKATACHALAM, MANJERI A.; ROESER, NANCY F.; SAIKUMAR, POTHANA; DONG, ZHENG; SENTER, RUTH A.; NISSIM, ITZHAK

    2010-01-01

    We have further examined the mechanisms for a severe mitochondrial energetic deficit, deenergization, and impaired respiration in complex I that develop in kidney proximal tubules during hypoxia-reoxygenation, and their prevention and reversal by supplementation with α-ketoglutarate (α-KG) + aspartate. The abnormalities preceded the mitochondrial permeability transition and cytochrome c loss. Anaerobic metabolism of α-KG + aspartate generated ATP and maintained mitochondrial membrane potential. Other citric-acid cycle intermediates that can promote anaerobic metabolism (malate and fumarate) were also effective singly or in combination with α-KG. Succinate, the end product of these anaerobic pathways that can bypass complex I, was not protective when provided only during hypoxia. However, during reoxygenation, succinate also rescued the tubules, and its benefit, like that of α-KG + malate, persisted after the extra substrate was withdrawn. Thus proximal tubules can be salvaged from hypoxia-reoxygenation mitochondrial injury by both anaerobic metabolism of citric-acid cycle intermediates and aerobic metabolism of succinate. These results bear on the understanding of a fundamental mode of mitochondrial dysfunction during tubule injury and on strategies to prevent and reverse it. PMID:11053054

  5. Proximal tubule glutamine synthetase expression is necessary for the normal response to dietary protein restriction.

    PubMed

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E; Verlander, Jill W; Weiner, I David

    2017-07-01

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion changes in parallel during changes in dietary protein intake. Dietary protein restriction decreases endogenous acid production and decreases urinary ammonia excretion, a major component of net acid excretion. Glutamine synthetase (GS) catalyzes the reaction of [Formula: see text] and glutamate, which regenerates the essential amino acid glutamine and decreases net ammonia generation. Because renal proximal tubule GS expression increases during dietary protein restriction, this could contribute to the decreased ammonia excretion. The purpose of the current study was to determine the role of proximal tubule GS in the renal response to protein restriction. We generated mice with proximal tubule-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Cre-negative (Control) and PT-GS-KO mice in metabolic cages were provided 20% protein diet for 2 days and were then changed to low-protein (6%) diet for the next 7 days. Additional PT-GS-KO mice were maintained on 20% protein diet. Dietary protein restriction caused a rapid decrease in urinary ammonia excretion in both genotypes, but PT-GS-KO blunted this adaptive response significantly. This occurred despite no significant genotype-dependent differences in urinary pH or in serum electrolytes. There were no significant differences between Control and PT-GS-KO mice in expression of multiple other proteins involved in renal ammonia handling. We conclude that proximal tubule GS expression is necessary for the appropriate decrease in ammonia excretion during dietary protein restriction.

  6. Proximal tubule-dominant transfer of AT(1a) receptors induces blood pressure responses to intracellular angiotensin II in AT(1a) receptor-deficient mice.

    PubMed

    Li, Xiao C; Zhuo, Jia L

    2013-04-15

    The role of intracellular ANG II in proximal tubules of the kidney remains poorly understood. We tested the hypothesis that proximal tubule-dominant transfer of AT(1a) receptors in the cortex mediates intracellular ANG II-induced blood pressure responses in AT(1a) receptor-deficient (Agtr1a-/-) mice. A GFP-tagged AT(1a) receptor, AT(1a)R/GFP, and an enhanced cyan fluorescent intracellular ANG II fusion protein, ECFP/ANG II, were expressed in proximal tubules of Agtr1a-/- mouse kidneys via the adenoviral transfer using a sodium and glucose cotransporter 2 promoter. Transfer of AT(1a)R/GFP alone or with ECFP/ANG II induced proximal tubule-dominant expression of AT(1a)R/GFP and/or ECFP/ANG II with a peak response at 2 wk. No significant AT(1a)R/GFP and/or ECFP/ANG II expression was observed in the glomeruli, medulla, or extrarenal tissues. Transfer of AT(1a)R/GFP alone, but not ECFP/ANG II, increased systolic blood pressure by 12 ± 2 mmHg by day 14 (n = 9, P < 0.01). However, cotransfer of AT(1a)R/GFP with ECFP/ANG II increased blood pressure by 18 ± 2 mmHg (n = 12, P < 0.01). Twenty-four hour urinary sodium excretion was decreased by day 7 with proximal tubule-dominant transfer of AT(1a)R/GFP alone (P < 0.01) or with AT(1a)R/GFP and ECFP/ANG II cotransfer (P < 0.01). These responses were associated with twofold increases in phosphorylated ERK1/2, lysate, and membrane NHE-3 proteins in freshly isolated proximal tubules (P < 0.01). By contrast, transfer of control CMV-GFP (a recombinant human adenovirus type 5 expresses enhanced green fluorescent protein under the control of a cytomegalovirus (CMV) promoter), ECFP/ANG II, or a scrambled control ECFP/ANG IIc alone in proximal tubules had no effect on all indices. These results suggest that AT(1a) receptors and intracellular ANG II in proximal tubules of the kidney play an important physiological role in blood pressure regulation.

  7. Uric acid upregulates the adiponectin-adiponectin receptor 1 pathway in renal proximal tubule epithelial cells

    PubMed Central

    Yang, Qingmei; Fu, Chensheng; Xiao, Jing; Ye, Zhibin

    2018-01-01

    Adiponectin (APN) is a protein hormone that is primarily derived from adipocytes. It can also be secreted by renal cells. Hypoadiponectinemia has been documented in patients with hyperuricemia, however, whether soluble uric acid (SUA) regulates the expression of APN and APN receptor 1 (AdipoR1) in renal proximal tubule epithelial cells (PTECs) remains to be elucidated. The present study investigated the expression of APN and AdipoR1 in cultured PTECs that were exposed to SUA through immunofluorescence and western blot analysis. In addition, Sprague-Dawley rats with oxonic acid-induced hyperuricemia (HUA) with or without febuxostat treatment were employed as an animal model to measure 24 h urine protein, serum creatinine, urea nitrogen, uric acid and homeostasis model assessment of insulin resistance. Renal pathology was evaluated using hematoxylin and eosin and immunohistochemical staining. APN and AdipoR1 expression in the renal cortex were evaluated by western blotting. The results demonstrated that, in PTECs, the expression of APN and AdipoR1 was constant and increased upon SUA exposure. Similar observations were made within the proximal renal tubules of rats, and the oxonic acid-induced increases in APN and AdipoR1 were offset by febuxostat treatment. Furthermore, SUA-treated PTECs exhibited an increase in the expression of NLR family pyrin domain-containing (NLRP) 3, which was dose-dependent. NLRP3 expression was also significantly increased in the renal cortex of HUA rats compared with control and febuxostat-treated rats. In conclusion, SUA enhanced the expression of APN and AdipoR1 in PTECs, which was associated with an increase in NLRP3 expression. The APN-AdipoR1 pathway was demonstrated to have an important role in in vitro and in vivo models of renal proximal tubule inflammatory injury. Therefore, this pathway may be a potential therapy target in urate nephropathy. PMID:29359786

  8. Calcium sensitivity of dicarboxylate transport in cultured proximal tubule cells

    PubMed Central

    Schiro, Faith R.; Pajor, Ana M.; Hamm, L. Lee

    2011-01-01

    Urinary citrate is an important inhibitor of calcium nephrolithiasis and is primarily determined by proximal tubule reabsorption. The major transporter to reabsorb citrate is Na+-dicarboxylate cotransporter (NaDC1), which transports dicarboxylates, including the divalent form of citrate. We previously found that opossum kidney (OK) proximal tubule cells variably express either divalent or trivalent citrate transport, depending on extracellular calcium. The present studies were performed to delineate the mechanism of the effect of calcium on citrate and succinate transport in these cells. Transport was measured using isotope uptake assays. In some studies, NaDC1 transport was studied in Xenopus oocytes, expressing either the rabbit or opossum ortholog. In the OK cell culture model, lowering extracellular calcium increased both citrate and succinate transport by more than twofold; the effect was specific in that glucose transport was not altered. Citrate and succinate were found to reciprocally inhibit transport at low extracellular calcium (<60 μM), but not at normal calcium (1.2 mM); this mutual inhibition is consistent with dicarboxylate transport. The inhibition varied progressively at intermediate levels of extracellular calcium. In addition to changing the relative magnitude and interaction of citrate and succinate transport, decreasing calcium also increased the affinity of the transport process for various other dicarboxylates. Also, the affinity for succinate, at low concentrations of substrate, was increased by calcium removal. In contrast, in oocytes expressing NaDC1, calcium did not have a similar effect on transport, indicating that NaDC1 could not likely account for the findings in OK cells. In summary, extracellular calcium regulates constitutive citrate and succinate transport in OK proximal tubule cells, probably via a novel transport process that is not NaDC1. The calcium effect on citrate transport parallels in vivo studies that demonstrate the

  9. Bicarbonate absorption stimulates active calcium absorption in the rat proximal tubule.

    PubMed Central

    Bomsztyk, K; Calalb, M B

    1988-01-01

    To evaluate the effect of luminal bicarbonate on calcium reabsorption, rat proximal tubules were perfused in vivo. Perfusion solution contained mannitol to reduce water flux to zero. Total Ca concentration was measured by atomic absorption spectrometry, Ca ion concentration in the tubule lumen (CaL2+) and the peritubular capillary (CaP2+), and luminal pH (pHL) with ion-selective microelectrodes and transepithelial voltage (VTE) with conventional microelectrodes. When tubules were perfused with buffer-free Cl-containing solution, net Ca absorption (JCa) averaged 3.33 pmol/min. Even though VTE was 1.64 mV lumen-positive, CaL2+, 1.05 mM, did not fall below the concentration in the capillary blood, 1.07 mM. When 27 mM of Cl was replaced with HCO3, there was luminal fluid acidification. Despite a decrease in VTE and CaL2+, JCa increased to 7.13 pmol/min, indicating that the enhanced JCa could not be accounted for by the reduced electrochemical gradient, delta CCa. When acetazolamide or an analogue of amiloride was added to the HCO3 solution, JCa was not different from the buffer-free solution, suggesting that HCO3-stimulated JCa may be linked to acidification. To further test this hypothesis, we used 27 mM Hepes as the luminal buffer. With Hepes there was luminal fluid acidification and JCa was not different from the buffer-free solution but delta CCa was significantly reduced, indicating enhanced active calcium transport. We conclude from the results of the present study that HCO3 stimulates active Ca absorption, a process that may be linked to acidification-mediated HCO3 absorption. PMID:3366902

  10. A protein with anion exchange properties found in the kidney proximal tubule.

    PubMed

    Soleimani, M; Bizal, G L; Anderson, C C

    1993-09-01

    One important mechanism for reabsorption of chloride in the kidney proximal tubule involves anion exchange of chloride for a base. Anion exchange transport systems in general demonstrate sensitivity to inhibition by disulfonic stilbenes, probenecid, furosemide, and the arginyl amino group modifier phenylglyoxal. Using disulfonic stilbene affinity chromatography, we have identified and partially purified a protein with anion exchanger properties in luminal membrane vesicles isolated from rabbit kidney cortex. This protein has a molecular weight of 162 kD. The binding of the 162 kD protein to the stilbene affinity matrix is inhibited by disulfonic stilbenes, probenecid, furosemide, and phenylglyoxal. Reconstitution of the proteins eluted from the affinity matrix into liposomes demonstrates anion exchange activity as assayed by radiolabeled chloride influx. Deletion of the 162 kD protein from the eluted mixture by probenecid diminishes the anion exchanger activity in the reconstituted liposomes. Further purification of the disulfonic stilbene column eluant by Econo-Pac Q ion exchange chromatography resulted in significant enrichment in 162 kD protein abundance and also anion exchange activity in reconstituted liposomes. The results of the above experiments strongly suggest that the 162 kD protein is an anion exchanger. Insight into the functional and molecular characteristics of this protein should provide important information about the mechanism(s) of chloride reabsorption in the kidney proximal tubule.

  11. N-domain angiotensin-I converting enzyme is expressed in immortalized mesangial, proximal tubule and collecting duct cells.

    PubMed

    Mei Wang, Pamella Huey; Andrade, Maria Claudina; Quinto, Beata Marie Redublo; Di Marco, Giovana; Mortara, Renato Arruda; Vio, Carlos P; Casarini, Dulce Elena

    2015-01-01

    Somatic ACE (sACE) is found in glomerulus, proximal tubule and excreted in urine. We hypothesized that N-domain ACE can also be found at these sites. ACE profile was analyzed in mesangial (IMC), proximal (LLC-PK1), distal tubule (MDCK) and collecting duct (IMCD) cells. Cell lysate and culture medium were submitted to gel filtration chromatography, which separated two peaks with ACE activity from cells and medium, except from distal tubule. The first had a high molecular weight and the second, a lower one (65 kDa; N-domain ACE). We focused on N-domain ACE purification and characterization from LLC-PK1. Total LLC-PK1 N-domain ACE purification was achieved by ion-exchange chromatography, which presented only one peak with ACE activity, denominated ACE(int2A). ACE(int2A) activity was influenced by pH, NaCl and temperature. The purified enzyme was inhibited by Captopril and hydrolyzed AngI, Ang1-7 and AcSDKP. Its ability to hydrolyze AcSDKP characterized it as an N-domain ACE. ACE(int2A) also presented high amino acid sequence homology with the N-terminal part of sACE from mouse, rat, human and rabbit. The presence of secreted and intracellular N-domain ACE and sACE in IMC, LLC-PK1 and IMCD cells confirmed our studies along the nephron. We identified, purified and characterized N-domain ACE from LLC-PK1. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Partitioning-Defective 1a/b Depletion Impairs Glomerular and Proximal Tubule Development.

    PubMed

    Akchurin, Oleh; Du, Zhongfang; Ramkellawan, Nadira; Dalal, Vidhi; Han, Seung Hyeok; Pullman, James; Müsch, Anne; Susztak, Katalin; Reidy, Kimberly J

    2016-12-01

    The kidney is a highly polarized epithelial organ that develops from undifferentiated mesenchyme, although the mechanisms that regulate the development of renal epithelial polarity are incompletely understood. Partitioning-defective 1 (Par1) proteins have been implicated in cell polarity and epithelial morphogenesis; however, the role of these proteins in the developing kidney has not been established. Therefore, we studied the contribution of Par1a/b to renal epithelial development. We examined the renal phenotype of newborn compound mutant mice carrying only one allele of Par1a or Par1b. Loss of three out of four Par1a/b alleles resulted in severe renal hypoplasia, associated with impaired ureteric bud branching. Compared with kidneys of newborn control littermates, kidneys of newborn mutant mice exhibited dilated proximal tubules and immature glomeruli, and the renal proximal tubular epithelia lacked proper localization of adhesion complexes. Furthermore, Par1a/b mutants expressed low levels of renal Notch ligand Jag1, activated Notch2, and Notch effecter Hes1. Together, these data demonstrate that Par1a/b has a key role in glomerular and proximal tubule development, likely via modulation of Notch signaling. Copyright © 2016 by the American Society of Nephrology.

  13. A Telomerase Immortalized Human Proximal Tubule Cell Line with a Truncation Mutation (Q4004X) in Polycystin-1

    PubMed Central

    Herbert, Brittney-Shea; Grimes, Brenda R.; Xu, Wei Min; Werner, Michael; Ward, Christopher; Rossetti, Sandro; Harris, Peter; Bello-Reuss, Elsa; Ward, Heather H.; Miller, Caroline; Gattone, Vincent H.; Phillips, Carrie L.; Wandinger-Ness, Angela; Bacallao, Robert L.

    2013-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is associated with a variety of cellular phenotypes in renal epithelial cells. Cystic epithelia are secretory as opposed to absorptive, have higher proliferation rates in cell culture and have some characteristics of epithelial to mesenchymal transitions [1], [2]. In this communication we describe a telomerase immortalized cell line that expresses proximal tubule markers and is derived from renal cysts of an ADPKD kidney. These cells have a single detectable truncating mutation (Q4004X) in polycystin-1. These cells make normal appearing but shorter cilia and fail to assemble polycystin-1 in the cilia, and less uncleaved polycystin-1 in membrane fractions. This cell line has been maintained in continuous passage for over 35 passages without going into senescence. Nephron segment specific markers suggest a proximal tubule origin for these cells and the cell line will be useful to study mechanistic details of cyst formation in proximal tubule cells. PMID:23383103

  14. Distinct mechanisms underlie adaptation of proximal tubule Na+/H+ exchanger isoform 3 in response to chronic metabolic and respiratory acidosis.

    PubMed

    Silva, Pedro Henrique Imenez; Girardi, Adriana Castello Costa; Neri, Elida Adalgisa; Rebouças, Nancy Amaral

    2012-04-01

    The Na(+/)H(+) exchanger isoform 3 (NHE3) is essential for HCO(3)(-) reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO(3)(-) concentration in the cell culture medium and respiratory acidosis by increasing CO(2) tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 ± 0.02) and severe (6.95 ± 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 ± 0.03) and severe (6.86 ± 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.

  15. Functional similarities between pleura and the renal proximal tubule--membrane and cellular considerations.

    PubMed

    Gourgoulianis, Konstantinos I; Hatzoglou, Chryssi; Molyvdas, Paschalis-Adam

    2005-01-01

    The small amount of liquid that, under physiological conditions, is presented in the pleural cavity has been the focus of extensive research for more than a century. However, there are still unanswered questions and considerable controversies about the nature of the forces governing its movement into and out of the pleural cavity. Early in the 20th century has been proposed that pleural fluid turnover is simple based on the balance between hydraulic and colloid osmotic pressures existing across the pleural membranes. This original hypothesis has not been validated by data accumulating over the last 20 years. Pleural tissues and renal proximal tubules present high water permeability, small transepithelial electrical resistance (22.02 Omega cm2) and the same cation transportation such as Na+ channels, Na+-K+ ATPase channels, and Na+-H+ exchanger. In contrast to previous conflicting theories concerning pleura fluid movement, the same functional characteristics suggest the hypothesis that physiology of pleura is similar to proximal tubules.

  16. Podocyturia parallels proximal tubule dysfunction in type 2 diabetes mellitus patients independently of albuminuria and renal function decline: A cross-sectional study.

    PubMed

    Petrica, Ligia; Vlad, Mihaela; Vlad, Adrian; Gluhovschi, Gheorghe; Gadalean, Florica; Dumitrascu, Victor; Popescu, Roxana; Gluhovschi, Cristina; Matusz, Petru; Velciov, Silvia; Bob, Flaviu; Ursoniu, Sorin; Vlad, Daliborca

    2017-09-01

    Detection of podocytes in the urine of patients with type 2 diabetes may indicate severe injury to the podocytes. In the course of type 2 diabetes the proximal tubule is involved in urinary albumin processing. We studied the significance of podocyturia in relation with proximal tubule dysfunction in type 2 diabetes. A total of 86 patients with type 2 diabetes (34-normoalbuminuria; 30-microalbuminuria; 22-macroalbuminuria) and 28 healthy subjects were enrolled in the study and assessed concerning urinary podocytes, podocyte-associated molecules, and biomarkers of proximal tubule dysfunction. Urinary podocytes were examined in cell cultures by utilizing monoclonal antibodies against podocalyxin and synaptopodin. Podocytes were detected in the urine of 10% of the healthy controls, 24% of the normoalbuminuric, 40% of the microalbuminuric, and 82% of the macroalbuminuric patients. In multivariate logistic regression analysis, urinary podocytes correlated with urinary albumin:creatinine ratio (p=0.006), urinary nephrin/creat (p=0.001), urinary vascular endothelial growth factor/creat (p=0.001), urinary kidney injury molecule-1/creat (p=0.003), cystatin C (p=0.001), urinary advanced glycation end-products (p=0.002), eGFR (p=0.001). In patients with type 2 diabetes podocyturia parallels proximal tubule dysfunction independently of albuminuria and renal function decline. Advanced glycation end-products may impact the podocytes and the proximal tubule. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. Evidence for sodium coupled chloride/bicarbonate exchange.

    PubMed Central

    Sasaki, S; Yoshiyama, N

    1988-01-01

    The existence of chloride/bicarbonate exchange across the basolateral membrane and its physiologic significance were examined in rabbit proximal tubules. S2 segments of the proximal straight tubule were perfused in vitro and changes in intracellular pH (pHi) and chloride activity (aCli) were monitored by double-barreled microelectrodes. Total peritubular chloride replacement with gluconate increased pHi by 0.8, and this change was inhibited by a pretreatment with an anion transport inhibitor, SITS. Peritubular bicarbonate reduction increased aCli, and most of this increase was lost when ambient sodium was totally removed. The reduction rates of pHi induced by a peritubular bicarbonate reduction or sodium removal were attenuated by 20% by withdrawal of ambient chloride. SITS application to the bath in the control condition quickly increased pHi, but did not change aCli. However, the aCli slightly decreased in response to SITS when the basolateral bicarbonate efflux was increased by reducing peritubular bicarbonate concentration. It is concluded that sodium coupled chloride/bicarbonate exchange is present in parallel with sodium-bicarbonate cotransport in the basolateral membrane of the rabbit proximal tubule, and it contributes to the basolateral bicarbonate and chloride transport. PMID:2450891

  18. Visualization of Calcium Dynamics in Kidney Proximal Tubules

    PubMed Central

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Csohány, Rózsa; Prókai, Ágnes; Kis-Petik, Katalin; Szabó, Attila; Bősze, Zsuzsanna; Bender, Balázs; Tóvári, József; Enyedi, Ágnes; Orbán, Tamás I.

    2015-01-01

    Intrarenal changes in cytoplasmic calcium levels have a key role in determining pathologic and pharmacologic responses in major kidney diseases. However, cell-specific delivery of calcium-sensitive probes in vivo remains problematic. We generated a transgenic rat stably expressing the green fluorescent protein-calmodulin–based genetically encoded calcium indicator (GCaMP2) predominantly in the kidney proximal tubules. The transposon-based method used allowed the generation of homozygous transgenic rats containing one copy of the transgene per allele with a defined insertion pattern, without genetic or phenotypic alterations. We applied in vitro confocal and in vivo two-photon microscopy to examine basal calcium levels and ligand- and drug-induced alterations in these levels in proximal tubular epithelial cells. Notably, renal ischemia induced a transient increase in cellular calcium, and reperfusion resulted in a secondary calcium load, which was significantly decreased by systemic administration of specific blockers of the angiotensin receptor and the Na-Ca exchanger. The parallel examination of in vivo cellular calcium dynamics and renal circulation by fluorescent probes opens new possibilities for physiologic and pharmacologic investigations. PMID:25788535

  19. NMR-based urine analysis in rats: prediction of proximal tubule kidney toxicity and phospholipidosis.

    PubMed

    Lienemann, Kai; Plötz, Thomas; Pestel, Sabine

    2008-01-01

    The aim of safety pharmacology is early detection of compound-induced side-effects. NMR-based urine analysis followed by multivariate data analysis (metabonomics) identifies efficiently differences between toxic and non-toxic compounds; but in most cases multiple administrations of the test compound are necessary. We tested the feasibility of detecting proximal tubule kidney toxicity and phospholipidosis with metabonomics techniques after single compound administration as an early safety pharmacology approach. Rats were treated orally, intravenously, inhalatively or intraperitoneally with different test compounds. Urine was collected at 0-8 h and 8-24 h after compound administration, and (1)H NMR-patterns were recorded from the samples. Variation of post-processing and feature extraction methods led to different views on the data. Support Vector Machines were trained on these different data sets and then aggregated as experts in an Ensemble. Finally, validity was monitored with a cross-validation study using a training, validation, and test data set. Proximal tubule kidney toxicity could be predicted with reasonable total classification accuracy (85%), specificity (88%) and sensitivity (78%). In comparison to alternative histological studies, results were obtained quicker, compound need was reduced, and very importantly fewer animals were needed. In contrast, the induction of phospholipidosis by the test compounds could not be predicted using NMR-based urine analysis or the previously published biomarker PAG. NMR-based urine analysis was shown to effectively predict proximal tubule kidney toxicity after single compound administration in rats. Thus, this experimental design allows early detection of toxicity risks with relatively low amounts of compound in a reasonably short period of time.

  20. External solution driving forces for isotonic fluid absorption in proximal tubules.

    PubMed

    Andreoli, T E; Schafer, J A

    1979-02-01

    We have explored evidence that suggests that lateral intercellular spaces is the mammalian proximal nephron do not serve as a hypertonic "central compartment" driving volume absorption. A primary consideration is the very low transepithelial resistance of this tissue as demonstrated by several laboratories. By making the reasonable assumption that passive ion permeation occurs via a paracellular route, we have concluded that the diffusion resistance of the spaces in insufficient to allow the development of a significant compositional difference between the spaces and the peritubular medium. This conclusion led us to look for potential osmotic gradients existing between the luminal and peritubular solutions. From the perfusion rate dependence of osmotic volume flow in the absence of active transport in isolated convoluted and straight proximal tubules, we calculated that both segments have very high hydraulic conductances, on the order of 3,000-5,000 micron/sec. Consequently, slight differences in the effective osmolality of the external solutions are sufficient to explain net volume absorption both in vivo and in vitro. We have provided evidence for two such driving forces. First, the development of asymmetrical anion concentration differences along the length of the proximal nephron due to preferential reabsorption of HCO-3 provides a driving force if the reflection coefficient for HCO-3 exceeds that for Cl-. Second, slight luminal hypotonicity may develop as a consequence of active solute absorption. Although both mechanisms probably occur simultaneously in vivo, we consider the former to be quantitatively the most important.

  1. Novel Hg2+-Induced Nephropathy in Rats and Mice Lacking Mrp2: Evidence of Axial Heterogeneity in the Handling of Hg2+ Along the Proximal Tubule

    PubMed Central

    Zalups, Rudolfs K.; Joshee, Lucy; Bridges, Christy C.

    2014-01-01

    The role of the multi-resistance protein 2 (Mrp2) in the nephropathy induced by inorganic mercuric mercury (Hg2+) was studied in rats (TR−) and mice (Mrp2−/−), which lack functional Mrp2, and control animals. Animals were exposed to nephrotoxic doses of HgCl2. Forty-eight or 24 hours after exposure, tissues were harvested and analyzed for Hg content and markers of injury. Histological analyses revealed that the proximal tubular segments affected pathologically by Hg2+ were significantly different between Mrp2-deficient animals and controls. In the absence of Mrp2, cellular injury localized almost exclusively in proximal tubular segments in the subcapsular (S1) to midcortical regions (early S2) of the kidney. In control animals, cellular death occurred mainly in the proximal tubular segments in the inner cortex (late S2) and outer stripe of the outer medulla (S3). These differences in renal pathology indicate that axial heterogeneity exists along the proximal tubule with respect to how mercuric ions are handled. Total renal and hepatic accumulation of mercury was also greater in animals lacking Mrp2 than in controls, indicating that Mrp2 normally plays a significant role in eliminating mercuric ions from within proximal tubular cells and hepatocytes. Analyses of plasma creatinine, BUN, and renal expression of Kim-1 and Ngal tend to support the severity of the nephropathies detected histologically. Collectively, our findings indicate that a fraction of mercuric ions is normally secreted by Mrp2 in early portions of proximal tubules into the lumen and then is absorbed downstream in straight portions, where mercuric species typically induce toxic effects. PMID:25145654

  2. Discerning the role of mechanosensors in regulating proximal tubule function

    PubMed Central

    Weisz, Ora A.

    2015-01-01

    All cells in the body experience external mechanical forces such as shear stress and stretch. These forces are sensed by specialized structures in the cell known as mechanosensors. Cells lining the proximal tubule (PT) of the kidney are continuously exposed to variations in flow rates of the glomerular ultrafiltrate, which manifest as changes in axial shear stress and radial stretch. Studies suggest that these cells respond acutely to variations in flow by modulating their ion transport and endocytic functions to maintain glomerulotubular balance. Conceptually, changes in the axial shear stress in the PT could be sensed by three known structures, namely, the microvilli, the glycocalyx, and primary cilia. The orthogonal component of the force produced by flow exhibits as radial stretch and can cause expansion of the tubule. Forces of stretch are transduced by integrins, by stretch-activated channels, and by cell-cell contacts. This review summarizes our current understanding of flow sensing in PT epithelia, discusses challenges in dissecting the role of individual flow sensors in the mechanosensitive responses, and identifies potential areas of opportunity for new study. PMID:26662200

  3. High glucose induces apoptosis via upregulation of Bim expression in proximal tubule epithelial cells.

    PubMed

    Zhang, Xiao-Qian; Dong, Jian-Jun; Cai, Tian; Shen, Xue; Zhou, Xiao-Jun; Liao, Lin

    2017-04-11

    Diabetic nephropathy is the primary cause of end-stage renal disease. Apoptosis of tubule epithelial cells is a major feature of diabetic nephropathy. The mechanisms of high glucose (HG) induced apoptosis are not fully understood. Here we demonstrated that, HG induced apoptosis via upregulating the expression of proapoptotic Bcl-2 homology domain 3 (BH3)-only protein Bim protein, but not bring a significant change in the baseline level of autophagy in HK2 cells. The increase of Bim expression was caused by the ugregulation of transcription factors, FOXO1 and FOXO3a. Bim expression initiates BAX/BAK-mediated mitochondria-dependent apoptosis. Silence of Bim by siRNA in HK2 cells prevented HG-induced apoptosis and also sensitized HK2 cells to autophagy during HG treatment. The autophagy inhibitor 3-MA increased the injury in Bim knockdown HK2 cells by retriggering apoptosis. The above results suggest a Bim-independent apoptosis pathway in HK2 cells, which normally could be inhibited by autophagy. Overall, our results indicate that HG induces apoptosis via up-regulation of Bim expression in proximal tubule epithelial cells.

  4. Expression of kidney injury molecule-1 (Kim-1) in relation to necrosis and apoptosis during the early stages of Cd-induced proximal tubule injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prozialeck, Walter C.; Edwards, Joshua R.; Lamar, Peter C.

    2009-08-01

    Cadmium (Cd) is a nephrotoxic industrial and environmental pollutant that causes a generalized dysfunction of the proximal tubule. Kim-1 is a transmembrane glycoprotein that is normally not detectable in non-injured kidney, but is up-regulated and shed into the urine during the early stages of Cd-induced proximal tubule injury. The objective of the present study was to examine the relationship between the Cd-induced increase in Kim-1 expression and the onset of necrotic and apoptotic cell death in the proximal tubule. Adult male Sprague-Dawley rats were treated with 0.6 mg (5.36 {mu}mol) Cd/kg, subcutaneously, 5 days per week for up to 12more » weeks. Urine samples were analyzed for levels of Kim-1 and the enzymatic markers of cell death, lactate dehydrogenase (LDH) and alpha-glutathione-S-transferase ({alpha}-GST). In addition, necrotic cells were specifically labeled by perfusing the kidneys in situ with ethidium homodimer using a procedure that has been recently developed and validated in the Prozialeck laboratory. Cryosections of the kidneys were also processed for the immunofluorescent visualization of Kim-1 and the identification of apoptotic cells by TUNEL labeling. Results showed that significant levels of Kim-1 began to appear in the urine after 6 weeks of Cd treatment, whereas the levels of total protein, {alpha}-GST and LDH were not increased until 8-12 weeks. Results of immunofluorescence labeling studies showed that after 6 weeks and 12 weeks, Kim-1 was expressed in the epithelial cells of the proximal tubule, but that there was no increase in the number of necrotic cells, and only a modest increase in the number of apoptotic cells at 12 weeks. These results indicate that the Cd-induced increase in Kim-1 expression occurs before the onset of necrosis and at a point where there is only a modest level of apoptosis in the proximal tubule.« less

  5. The proximal straight tubule (PST) basolateral cell membrane water channel: selectivity characteristics.

    PubMed

    Gutiérrez, A M; González, E; Echevarría, M; Hernández, C S; Whittembury, G

    1995-02-01

    Proximal straight tubules (PST) were dissected from rabbit kidneys, held by crimping pipettes in a chamber and bathed in a buffered isosmotic (295 mOsm/kg) solution containing 200 mM mannitol (MBS). Changes in tubule diameter were monitored on line with an inverted microscope, TV camera and image processor. The PST were then challenged for 20 sec with MBS made 35 mOsm/kg hyperosmotic by addition of either NaCl, KCl, mannitol (M), glycerol (G), ethylene glycol (E), glycine (g), urea (U), acetamide (A) or formamide (F). With NaCl, KCl, M, G, E, g, U, and A, tubules shrunk osmometrically within 0.5 sec and remained shrunk for as long as 20 sec without recovering their original volume (sometimes A showed some recovery). PST barely shrunk with F and quickly recovered their original volume. The permeability coefficients were 0 microns/sec (NaCl, M, g, E and U), 1 micron/sec (A), 84 microns/sec (F) and 0.02 micron/sec (G). The reflection coefficients sigma = 1.0 (NaCl, KCl, M, G, E, g and U), 0.95 (A) and 0.62 (F). Similar sigma values were obtained by substituting 200 mOsm/kg M in MBS by either NaCl, KCl, G, E, g, U, a or F. The olive oil/water partition coefficients are 5 (M), 15 (U), 85 (A) and 75 (F) (all x 10(-5)). Thus, part of F permeates the cell membrane through the lipid bilayer. The probing molecules van der Waals diameters are 7.4 x 8.2 x 12.0 (M), 3.6 x 5.2 x 5.4 (U), 3.8 x 5.2 x 5.4 (A) and (3.4 x 4.5 x 5.4 (F) A.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process

    PubMed Central

    1985-01-01

    In order to examine the mechanism of basolateral membrane H+/OH-/HCO-3 transport, a method was developed for the measurement of cell pH in the vivo doubly microperfused rat proximal convoluted tubule. A pH- sensitive fluorescein derivative, (2',7')-bis(carboxyethyl)-(5,6)- carboxyfluorescein, was loaded into cells and relative changes in fluorescence at two excitation wavelengths were followed. Calibration was accomplished using nigericin with high extracellular potassium concentrations. When luminal and peritubular fluids were pH 7.32, cell pH was 7.14 +/- 0.01. Decreasing peritubular pH from 7.32 to 6.63 caused cell pH to decrease from 7.16 +/- 0.02 to 6.90 +/- 0.03. This effect occurred at an initial rate of 2.4 +/- 0.3 pH units/min, and was inhibited by 0.5 mM SITS. Lowering the peritubular sodium concentration from 147 to 25 meq/liter caused cell pH to decrease from 7.20 +/- 0.03 to 6.99 +/- 0.01. The effect of peritubular sodium concentration on cell pH was inhibited by 0.5 mM SITS, but was unaffected by 1 mM amiloride. In addition, when peritubular pH was decreased in the total absence of luminal and peritubular sodium, the rate of cell acidification was 0.2 +/- 0.1 pH units/min, a greater than 90% decrease from that in the presence of sodium. Cell depolarization achieved by increasing the peritubular potassium concentration caused cell pH to increase, an effect that was blocked by peritubular barium or luminal and peritubular sodium removal. Lowering the peritubular chloride concentration from 128 to 0 meq/liter did not affect cell pH. These results suggest the existence of an electrogenic, sodium-coupled H+/OH- /HCO-3 transport mechanism on the basolateral membrane of the rat proximal convoluted tubule. PMID:2999293

  7. Accumulation of nonesterified fatty acids causes the sustained energetic deficit in kidney proximal tubules after hypoxia-reoxygenation.

    PubMed

    Feldkamp, Thorsten; Kribben, Andreas; Roeser, Nancy F; Senter, Ruth A; Weinberg, Joel M

    2006-02-01

    Kidney proximal tubules exhibit decreased ATP and reduced, but not absent, mitochondrial membrane potential (Deltapsi(m)) during reoxygenation after severe hypoxia. This energetic deficit, which plays a pivotal role in overall cellular recovery, cannot be explained by loss of mitochondrial membrane integrity, decreased electron transport, or compromised F1F0-ATPase and adenine nucleotide translocase activities. Addition of oleate to permeabilized tubules produced concentration-dependent decreases of Deltapsi(m) measured by safranin O uptake (threshold for oleate = 0.25 microM, 1.6 nmol/mg protein; maximal effect = 4 microM, 26 nmol/mg) that were reversed by delipidated BSA (dBSA). Cell nonesterified fatty acid (NEFA) levels increased from <1 to 17.4 nmol/mg protein during 60- min hypoxia and remained elevated at 7.6 nmol/mg after 60 min reoxygenation, at which time ATP had recovered to only 10% of control values. Safranin O uptake in reoxygenated tubules, which was decreased 85% after 60-min hypoxia, was normalized by dBSA, which improved ATP synthesis as well. dBSA also almost completely normalized Deltapsi(m) when the duration of hypoxia was increased to 120 min. In intact tubules, the protective substrate combination of alpha-ketoglutarate + malate (alpha-KG/MAL) increased ATP three- to fourfold, limited NEFA accumulation during hypoxia by 50%, and lowered NEFA during reoxygenation. Notably, dBSA also improved ATP recovery when added to intact tubules during reoxygenation and was additive to the effect of alpha-KG/MAL. We conclude that NEFA overload is the primary cause of energetic failure of reoxygenated proximal tubules and lowering NEFA substantially contributes to the benefit from supplementation with alpha-KG/MAL.

  8. Bicarbonate absorption by rabbit cortical collecting tubules in vitro.

    PubMed

    McKinney, T D; Burg, M B

    1978-02-01

    The rate of transport of bicarbonate was studied in isolated perfused rabbit cortical collecting tubules that were absorbing bicarbonate in vitro. Acetazolamide completely inhibited bicarbonate absorption, as was previously observed with isolated proximal tubules. Therefore, carbonic anhydrase probably is important for bicarbonate absorption in both the proximal tubules and collecting tubules. Inhibition of sodium transport by ouabain or elimination of its transport by completely removing the sodium did not cause a decrease in bicarbonate absorption by the collecting tubules. We previously found that inhibition of sodium transport caused a great decrease in bicarbonate absorption by proximal tubules. Therefore, absorption of bicarbonate is not directly related to sodium transport in collecting tubules, but it probably is related to sodium transport in isolated perfused rabbit proximal tubules. Amiloride inhibited bicarbonate absorption by the collecting tubules consistent with previous observations that the drug inhibits urinary acidification. Although amiloride also inhibits sodium transport and reduces the transepithelial voltage across the collecting tubules, the effect of the drug on bicarbonate transport apparently is independent of the other effects.

  9. Estrogen directly and specifically downregulates NaPi-IIa through the activation of both estrogen receptor isoforms (ERα and ERβ) in rat kidney proximal tubule.

    PubMed

    Burris, Dara; Webster, Rose; Sheriff, Sulaiman; Faroqui, Rashma; Levi, Moshe; Hawse, John R; Amlal, Hassane

    2015-03-15

    We have previously demonstrated that estrogen (E2) downregulates phosphate transporter NaPi-IIa and causes phosphaturia and hypophosphatemia in ovariectomized rats. In the present study, we examined whether E2 directly targets NaPi-IIa in the proximal tubule (PT) and studied the respective roles of estrogen receptor isoforms (ERα and ERβ) in the downregulation of NaPi-IIa using both in vivo and an in vitro expression systems. We found that estrogen specifically downregulates NaPi-IIa but not NaPi-IIc or Pit2 in the kidney cortex. Proximal tubules incubated in a "shake" suspension with E2 for 24 h exhibited a dose-dependent decrease in NaPi-IIa protein abundance. Results from OVX rats treated with specific agonists for either ERα [4,4',4″;-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol, PPT] or ERβ [4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol, DPN] or both (PPT + DPN), indicated that only the latter caused a sharp downregulation of NaPi-IIa, along with significant phosphaturia and hypophosphatemia. Lastly, heterologous expression studies demonstrated that estrogen downregulated NaPi-IIa only in U20S cells expressing both ERα and ERβ, but not in cells expressing either receptor alone. In conclusion, these studies demonstrate that rat PT cells express both ERα and ERβ and that E2 induces phosphaturia by directly and specifically targeting NaPi-IIa in the PT cells. This effect is mediated via a mechanism involving coactivation of both ERα and ERβ, which likely form a functional heterodimer complex in the rat kidney proximal tubule. Copyright © 2015 the American Physiological Society.

  10. Estrogen directly and specifically downregulates NaPi-IIa through the activation of both estrogen receptor isoforms (ERα and ERβ) in rat kidney proximal tubule

    PubMed Central

    Burris, Dara; Webster, Rose; Sheriff, Sulaiman; Faroqui, Rashma; Levi, Moshe; Hawse, John R.

    2015-01-01

    We have previously demonstrated that estrogen (E2) downregulates phosphate transporter NaPi-IIa and causes phosphaturia and hypophosphatemia in ovariectomized rats. In the present study, we examined whether E2 directly targets NaPi-IIa in the proximal tubule (PT) and studied the respective roles of estrogen receptor isoforms (ERα and ERβ) in the downregulation of NaPi-IIa using both in vivo and an in vitro expression systems. We found that estrogen specifically downregulates NaPi-IIa but not NaPi-IIc or Pit2 in the kidney cortex. Proximal tubules incubated in a “shake” suspension with E2 for 24 h exhibited a dose-dependent decrease in NaPi-IIa protein abundance. Results from OVX rats treated with specific agonists for either ERα [4,4′,4″;-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol, PPT] or ERβ [4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol, DPN] or both (PPT + DPN), indicated that only the latter caused a sharp downregulation of NaPi-IIa, along with significant phosphaturia and hypophosphatemia. Lastly, heterologous expression studies demonstrated that estrogen downregulated NaPi-IIa only in U20S cells expressing both ERα and ERβ, but not in cells expressing either receptor alone. In conclusion, these studies demonstrate that rat PT cells express both ERα and ERβ and that E2 induces phosphaturia by directly and specifically targeting NaPi-IIa in the PT cells. This effect is mediated via a mechanism involving coactivation of both ERα and ERβ, which likely form a functional heterodimer complex in the rat kidney proximal tubule. PMID:25608964

  11. Mechanisms of Cadmium-Induced Proximal Tubule Injury: New Insights with Implications for Biomonitoring and Therapeutic Interventions

    PubMed Central

    Edwards, Joshua R.

    2012-01-01

    Cadmium is an important industrial agent and environmental pollutant that is a major cause of kidney disease. With chronic exposure, cadmium accumulates in the epithelial cells of the proximal tubule, resulting in a generalized reabsorptive dysfunction characterized by polyuria and low-molecular-weight proteinuria. The traditional view has been that as cadmium accumulates in proximal tubule cells, it produces a variety of relatively nonspecific toxic effects that result in the death of renal epithelial cells through necrotic or apoptotic mechanisms. However, a growing volume of evidence suggests that rather than merely being a consequence of cell death, the early stages of cadmium-induced proximal tubule injury may involve much more specific changes in cell-cell adhesion, cellular signaling pathways, and autophagic responses that occur well before the onset of necrosis or apoptosis. In this commentary, we summarize these recent findings, and we offer our own perspectives as to how they relate to the toxic actions of cadmium in the kidney. In addition, we highlight recent findings, suggesting that it may be possible to detect the early stages of cadmium toxicity through the use of improved biomarkers. Finally, some of the therapeutic implications of these findings will be considered. Because cadmium is, in many respects, a model cumulative nephrotoxicant, these insights may have broader implications regarding the general mechanisms through which a variety of drugs and toxic chemicals damage the kidney. PMID:22669569

  12. The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules.

    PubMed

    Goralski, Kerry B; Lou, Ganlu; Prowse, Matthew T; Gorboulev, Valentin; Volk, Christopher; Koepsell, Hermann; Sitar, Daniel S

    2002-12-01

    In renal proximal tubules, the organic cation transporters rOCT1 and rOCT2 are supposed to mediate the first step in organic cation secretion. We investigated whether previously described differences in amantadine and tetraethylammonium (TEA) uptake into isolated renal proximal tubules could be explained by differences in their transport by rOCT1 and rOCT2. By expressing rOCT1 and rOCT2 in Xenopus oocytes and HEK 293 cells, we demonstrated that both transporters translocated amantadine. In Xenopus oocytes, the inhibitory potency of several rOCT1/2 inhibitors was similar for amantadine compared to TEA uptake and supports amantadine transport by rOCT1 and rOCT2. In proximal tubules, procainamide, quinine, cyanine(863), choline, and guanidine in concentrations that inhibit rOCT1/2-mediated TEA or amantadine uptake in Xenopus oocytes exhibited no effect on amantadine uptake. At variance, these inhibitors blocked TEA uptake into proximal tubules. Amantadine and TEA transport were sensitive to modulation by 25 mM bicarbonate. The effect of bicarbonate on organic cation transport was dependent on substrate (amantadine or TEA), cell system (oocytes, HEK 293 cells, or proximal tubules), and transporter (rOCT1 or rOCT2). In proximal tubules, only amantadine uptake was stimulated by bicarbonate. The data suggested that rat renal proximal tubules contain an organic cation transporter in addition to rOCT1 and rOCT2 that mediates amantadine uptake and requires bicarbonate for optimal function. TEA uptake by the basolateral membrane may be mediated mainly by rOCT1 and rOCT2, but these transporters may be in a different functional or regulatory state when expressed in cells or oocytes compared with expression in vivo.

  13. Localization of the Calcium Regulated Citrate Transport Process in Proximal Tubule Cells

    PubMed Central

    Hering-Smith, Kathleen S.; Mao, Weibo; Schiro, Faith R.; Coleman-Barnett, Joycelynn; Pajor, Ana M.; Hamm, L. Lee

    2014-01-01

    Urinary citrate is an important inhibitor of calcium stone formation. Most of citrate reabsorption in the proximal tubule is thought to occur via a dicarboxylate transporter NaDC1 located in the apical membrane. OK cells, an established opossum kidney proximal tubule cell line, transport citrate but the characteristics change with extracellular calcium such that low calcium solutions stimulate total citrate transport as well as increase the apparent affinity for transport. The present studies address several fundamental properties of this novel process: the polarity of the transport process, the location of the calcium-sensitivity and whether NaDC1 is present in OK cells. OK cells grown on permeable supports exhibited apical > basolateral citrate transport. Apical transport of both citrate and succinate was sensitive to extracellular calcium whereas basolateral transport was not. Apical calcium, rather than basolateral, was the predominant determinant of changes in transport. Also 2,3-dimethylsuccinate, previously identified as an inhibitor of basolateral dicarboxylate transport, inhibited apical citrate uptake. Although the calcium-sensitive transport process in OK cells is functionally not typical NaDC1, NaDC1 is present in OK cells by Western blot and PCR. By immunolocalization studies, NaDC1 was predominantly located in discrete apical membrane or subapical areas. However by biotinylation, apical NaDC1 decreases in the apical membrane with lowering calcium. In sum, OK cells express a calcium-sensitive/regulated dicarboxylate process at the apical membrane which responds to variations in apical calcium. Despite the functional differences of this process compared to NaDC1, NaDC1 is present in these cells, but predominantly in subapical vesicles. PMID:24652587

  14. Mechanism of increased clearance of glycated albumin by proximal tubule cells

    PubMed Central

    Wagner, Mark C.; Myslinski, Jered; Pratap, Shiv; Flores, Brittany; Rhodes, George; Campos-Bilderback, Silvia B.; Sandoval, Ruben M.; Kumar, Sudhanshu; Patel, Monika; Ashish

    2016-01-01

    Serum albumin is the most abundant plasma protein and has a long half-life due to neonatal Fc receptor (FcRn)-mediated transcytosis by many cell types, including proximal tubule cells of the kidney. Albumin also interacts with, and is modified by, many small and large molecules. Therefore, the focus of the present study was to address the impact of specific known biological albumin modifications on albumin-FcRn binding and cellular handling. Binding at pH 6.0 and 7.4 was performed since FcRn binds albumin strongly at acidic pH and releases it after transcytosis at physiological pH. Equilibrium dissociation constants were measured using microscale thermophoresis. Since studies have shown that glycated albumin is excreted in the urine at a higher rate than unmodified albumin, we studied glucose and methylgloxal modified albumins (21 days). All had reduced affinity to FcRn at pH 6.0, suggesting these albumins would not be returned to the circulation via the transcytotic pathway. To address why modified albumin has reduced affinity, we analyzed the structure of the modified albumins using small-angle X-ray scattering. This analysis showed significant structural changes occurring to albumin with glycation, particularly in the FcRn-binding region, which could explain the reduced affinity to FcRn. These results offer an explanation for enhanced proximal tubule-mediated sorting and clearance of abnormal albumins. PMID:26887834

  15. Substrate modulation of fatty acid effects on energization and respiration of kidney proximal tubules during hypoxia/reoxygenation.

    PubMed

    Bienholz, Anja; Al-Taweel, Ahmad; Roeser, Nancy F; Kribben, Andreas; Feldkamp, Thorsten; Weinberg, Joel M

    2014-01-01

    Kidney proximal tubules subjected to hypoxia/reoxygenation develop a nonesterified fatty acid-induced energetic deficit characterized by persistent partial mitochondrial deenergization that can be prevented and reversed by citric acid cycle substrates. To further assess the role of competition between fatty acids and substrates on inner membrane substrate carriers in the deenergization and the contribution to deenergization of fatty acid effects on respiratory function, digitonin-permeabilized rabbit and mouse tubules were studied using either addition of exogenous oleate after control normoxic incubation or increases of endogenous fatty acids produced by hypoxia/reoxygenation. The results demonstrated major effects of matrix oxaloacetate accumulation on succinate-supported energization and respiration and their modification by fatty acids. Improvements of energization in the presence of fatty acids by glutamate were shown to result predominantly from lowering matrix oxaloacetate rather than from amelioration of transmembrane cycling of fatty acids and uncoupling. Mouse tubules had 2.5 fold higher rates of succinate utilization, which resulted in stronger effects of oxaloacetate accumulation than rabbit tubules. Hypoxia/reoxygenation induced respiratory inhibition that was more severe for complex I-dependent substrates. Fatty acids themselves did not acutely contribute to this respiratory inhibition, but lowering them during 60 min. reoxygenation to allow recovery of ATP during that period alleviated it. These data clarify the basis for the nonesterified fatty acid-induced mitochondrial energetic deficit in kidney proximal tubules that impairs structural and functional recovery and provide insight into interactions that need to be considered in the design of substrate-based interventions to improve mitochondrial function.

  16. Cadherin Expression, Vectorial Active Transport, and Metallothionein Isoform 3 Mediated EMT/MET Responses in Cultured Primary and Immortalized Human Proximal Tubule Cells

    PubMed Central

    Slusser, Andrea; Bathula, Chandra S.; Sens, Donald A.; Somji, Seema; Sens, Mary Ann; Zhou, Xu Dong; Garrett, Scott H.

    2015-01-01

    Background Cultures of human proximal tubule cells have been widely utilized to study the role of EMT in renal disease. The goal of this study was to define the role of growth media composition on classic EMT responses, define the expression of E- and N-cadherin, and define the functional epitope of MT-3 that mediates MET in HK-2 cells. Methods Immunohistochemistry, microdissection, real-time PCR, western blotting, and ELISA were used to define the expression of E- and N-cadherin mRNA and protein in HK-2 and HPT cell cultures. Site-directed mutagenesis, stable transfection, measurement of transepithelial resistance and dome formation were used to define the unique amino acid sequence of MT-3 associated with MET in HK-2 cells. Results It was shown that both E- and N-cadherin mRNA and protein are expressed in the human renal proximal tubule. It was shown, based on the pattern of cadherin expression, connexin expression, vectorial active transport, and transepithelial resistance, that the HK-2 cell line has already undergone many of the early features associated with EMT. It was shown that the unique, six amino acid, C-terminal sequence of MT-3 is required for MT-3 to induce MET in HK-2 cells. Conclusions The results show that the HK-2 cell line can be an effective model to study later stages in the conversion of the renal epithelial cell to a mesenchymal cell. The HK-2 cell line, transfected with MT-3, may be an effective model to study the process of MET. The study implicates the unique C-terminal sequence of MT-3 in the conversion of HK-2 cells to display an enhanced epithelial phenotype. PMID:25803827

  17. Podocyte-derived microparticles promote proximal tubule fibrotic signaling via p38 MAPK and CD36

    PubMed Central

    Munkonda, Mercedes N.; Akbari, Shareef; Landry, Chloe; Sun, Suzy; Xiao, Fengxia; Turner, Maddison; Holterman, Chet E.; Nasrallah, Rania; Hébert, Richard L.; Kennedy, Christopher R. J.; Burger, Dylan

    2018-01-01

    ABSTRACT Tubulointerstitial fibrosis is a hallmark of advanced diabetic kidney disease that is linked to a decline in renal function, however the pathogenic mechanisms are poorly understood. Microparticles (MPs) are 100–1000 nm vesicles shed from injured cells that are implicated in intercellular signalling. Our lab recently observed the formation of MPs from podocytes and their release into urine of animal models of type 1 and 2 diabetes and in humans with type 1 diabetes. The purpose of the present study was to examine the role of podocyte MPs in tubular epithelial cell fibrotic responses. MPs were isolated from the media of differentiated, untreated human podocytes (hPODs) and administered to cultured human proximal tubule epithelial cells (PTECs). Treatment with podocyte MPs increased p38 and Smad3 phosphorylation and expression of the extracellular matrix (ECM) proteins fibronectin and collagen type IV. MP-induced responses were attenuated by co-treatment with the p38 inhibitor SB202190. A transforming growth factor beta (TGF-β) receptor inhibitor (LY2109761) blocked MP-induced Smad3 phosphorylation and ECM protein expression but not p38 phosphorylation suggesting that these responses occurred downstream of p38. Finally, blockade of the class B scavenger receptor CD36 completely abrogated MP-mediated p38 phosphorylation, downstream Smad3 activation and fibronectin/collagen type IV induction. Taken together our results suggest that podocyte MPs interact with proximal tubule cells and induce pro-fibrotic responses. Such interactions may contribute to the development of tubular fibrosis in glomerular disease. PMID:29435202

  18. Serum-free culture of rat proximal tubule cells with enhanced function on chitosan.

    PubMed

    Chang, Shao-Hsuan; Chiang, I-Ni; Chen, Yi-Hsin; Young, Tai-Horng

    2013-11-01

    The proximal tubule performs a variety of important renal functions and is the major site for nutrient reabsorption. The purpose of this study is to culture rat renal proximal tubule cells (PTCs) on chitosan without serum to maintain a transcellular pathway to transport water and ions effectively without loss of highly differentiated cell function. The effect of chitosan, which is structurally similar to glycosaminoglycans, in the absence of serum on the primary cultured PTCs was compared that of collagen with or without serum. Two days after seeding, more tubule fragments and higher PTC viability were observed on chitosan than on collagen with or without serum. Proliferation marker Ki-67 immunostaining and phosphorylated extracellular-regulated kinase (ERK) expression results displayed similar proliferation capability of PTCs established on chitosan without serum and collagen with 2% fetal bovine serum after 4 days of incubation. When grown to confluence, PTCs formed a monolayer with well-organized tight junctions and formation of domes on chitosan without serum. Moreover, evaluation of the transepithelial electrical resistance showed that both chitosan and serum were involved in the modification of water and ion transport in confluent cells. By showing the direct suppression of PTC growth and dome formation treated with heparinase, we demonstrated that the interaction between cell surface heparin sulfate proteoglycan and chitosan played an important role in PTC proliferation and differentiation. A successful primary culture of PTCs has now been produced on chitosan in serum-free culture condition, which offers potential applications for chitosan in renal tissue engineering. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Proteomic profiling and pathway analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis

    PubMed Central

    Schauer, Kevin L.; Freund, Dana M.; Prenni, Jessica E.

    2013-01-01

    Metabolic acidosis is a relatively common pathological condition that is defined as a decrease in blood pH and bicarbonate concentration. The renal proximal convoluted tubule responds to this condition by increasing the extraction of plasma glutamine and activating ammoniagenesis and gluconeogenesis. The combined processes increase the excretion of acid and produce bicarbonate ions that are added to the blood to partially restore acid-base homeostasis. Only a few cytosolic proteins, such as phosphoenolpyruvate carboxykinase, have been determined to play a role in the renal response to metabolic acidosis. Therefore, further analysis was performed to better characterize the response of the cytosolic proteome. Proximal convoluted tubule cells were isolated from rat kidney cortex at various times after onset of acidosis and fractionated to separate the soluble cytosolic proteins from the remainder of the cellular components. The cytosolic proteins were analyzed using two-dimensional liquid chromatography and tandem mass spectrometry (MS/MS). Spectral counting along with average MS/MS total ion current were used to quantify temporal changes in relative protein abundance. In all, 461 proteins were confidently identified, of which 24 exhibited statistically significant changes in abundance. To validate these techniques, several of the observed abundance changes were confirmed by Western blotting. Data from the cytosolic fractions were then combined with previous proteomic data, and pathway analyses were performed to identify the primary pathways that are activated or inhibited in the proximal convoluted tubule during the onset of metabolic acidosis. PMID:23804448

  20. In vivo study of transepithelial potential difference (TEPD) in proximal convoluted tubules of rat kidney by synchronization modulation electric field.

    PubMed

    Clausell, Mathis; Fang, Zhihui; Chen, Wei

    2014-07-01

    Synchronization modulation (SM) electric field has been shown to effectively activate function of Na(+)/K(+) pumps in various cells and tissues, including skeletal muscle cells, cardiomyocyte, monolayer of cultured cell line, and peripheral blood vessels. We are now reporting the in vivo studies in application of the SM electric field to kidney of living rats. The field-induced changes in the transepithelial potential difference (TEPD) or the lumen potential from the proximal convoluted tubules were monitored. The results showed that a short time (20 s) application of the SM electric field can significantly increase the magnitude of TEPD from 1-2 mV to about 20 mV. The TEPD is an active potential representing the transport current of the Na/K pumps in epithelial wall of renal tubules. This study showed that SM electric field can increase TEPD by activation of the pump molecules. Considering renal tubules, many active transporters are driven by the Na(+) concentration gradient built by the Na(+)/K(+) pumps, activation of the pump functions and increase in the magnitude of TEPD imply that the SM electric field may improve reabsorption functions of the renal tubules.

  1. Acute renal proximal tubule alterations during induced metabolic crises in a mouse model of glutaric aciduria type 1.

    PubMed

    Thies, Bastian; Meyer-Schwesinger, Catherine; Lamp, Jessica; Schweizer, Michaela; Koeller, David M; Ullrich, Kurt; Braulke, Thomas; Mühlhausen, Chris

    2013-10-01

    The metabolic disorder glutaric aciduria type 1 (GA1) is caused by deficiency of the mitochondrial glutaryl-CoA dehydrogenase (GCDH), leading to accumulation of the pathologic metabolites glutaric acid (GA) and 3-hydroxyglutaric acid (3OHGA) in blood, urine and tissues. Affected patients are prone to metabolic crises developing during catabolic conditions, with an irreversible destruction of striatal neurons and a subsequent dystonic-dyskinetic movement disorder. The pathogenetic mechanisms mediated by GA and 3OHGA have not been fully characterized. Recently, we have shown that GA and 3OHGA are translocated through membranes via sodium-dependent dicarboxylate cotransporter (NaC) 3, and organic anion transporters (OATs) 1 and 4. Here, we show that induced metabolic crises in Gcdh(-/-) mice lead to an altered renal expression pattern of NaC3 and OATs, and the subsequent intracellular GA and 3OHGA accumulation. Furthermore, OAT1 transporters are mislocalized to the apical membrane during metabolic crises accompanied by a pronounced thinning of proximal tubule brush border membranes. Moreover, mitochondrial swelling and increased excretion of low molecular weight proteins indicate functional tubulopathy. As the data clearly demonstrate renal proximal tubule alterations in this GA1 mouse model during induced metabolic crises, we propose careful evaluation of renal function in GA1 patients, particularly during acute crises. Further studies are needed to investigate if these findings can be confirmed in humans, especially in the long-term outcome of affected patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Proximal tubule sphingosine kinase-1 has a critical role in A1 adenosine receptor-mediated renal protection from ischemia

    PubMed Central

    Park, Sang Won; Kim, Mihwa; Kim, Joo Yun; Brown, Kevin M.; Haase, Volker H.; D’Agati, Vivette D.; Lee, H. Thomas

    2012-01-01

    Renal ischemia reperfusion injury is a major cause of acute kidney injury. We previously found that renal A1 adenosine receptor (A1AR) activation attenuated multiple cell death pathways including necrosis, apoptosis and inflammation. Here, we tested whether induction of cytoprotective sphingosine kinase (SK)-1 and sphingosine-1 phosphate (S1P) synthesis might be the mechanism of protection. A selective A1AR agonist (CCPA) increased the synthesis of S1P and selectively induced SK-1 in mouse kidney and HK-2 cells. This agonist failed to protect SK1-knockout but protected SK2-knockout mice against renal ischemia reperfusion injury indicating a critical role of SK1 in A1AR-mediated renal protection. Inhibition of SK prevented A1AR-mediated defense against necrosis and apoptosis in HK-2 cells. A selective S1P1R antagonist (W146) and global in vivo gene knockdown of S1P1Rs with small interfering RNA completely abolished the renal protection provided by CCPA. Mice selectively deficient in renal proximal tubule S1P1Rs (S1P1Rflox/flox PEPCKCre/−) were not protected against renal ischemia reperfusion injury by CCPA. Mechanistically, CCPA increased nuclear translocation of hypoxia inducible factor-1α in HK-2 cells and selective hypoxia inducible factor-1α inhibition blocked A1AR-mediated induction of SK1. Thus, proximal tubule SK-1 has a critical role in A1AR-mediated protection against renal ischemia reperfusion injury. PMID:22695326

  3. Silver ion (Ag+)-induced increases in cell membrane K+ and Na+ permeability in the renal proximal tubule: reversal by thiol reagents.

    PubMed

    Kone, B C; Kaleta, M; Gullans, S R

    1988-04-01

    The initial mechanisms of injury to the proximal tubule following exposure to nephrotoxic heavy metals are not well established. We studied the immediate effects of silver (Ag+) on K+ transport and respiration with extracellular K+ and O2 electrodes in suspensions of renal cortical tubules. Addition of silver nitrate (AgNO3) to tubules suspended in bicarbonate Ringer's solution caused a rapid, dose-dependent net K+ efflux (Km = 10(-4) M, Vmax = 379 nmol K+/min/mg protein) which was not inhibited by furosemide, barium chloride, quinine, tetraethylammonium, or tolbutamide. An increase in the ouabain-sensitive oxygen consumption rate (QO2) (13.9 +/- 1.1 to 25.7 +/- 4.4 nmol O2/min/mg, P less than 0.001), was observed 19 sec after the K+ efflux induced by AgNO3 (10(-4) M), suggesting a delayed increase in Na+ entry into the cell. Ouabain-insensitive QO2, nystatin-stimulated QO2, and CCCP-uncoupled QO2 were not significantly affected, indicating preserved function of the Na+,K+-ATPase and mitochondria. External addition of the thiol reagents dithiothreitol (1 mM) and reduced glutathione (1 mM) prevented and/or immediately reversed the effects on K+ transport and QO2. We conclude that Ag+ causes early changes in the permeability of the cell membrane to K+ and then to Na+ at concentrations that do not limit Na+,K+-ATPase activity or mitochondrial function. These alterations are likely the result of a reversible interaction of Ag+ with sulfhydryl groups of cell membrane proteins and may represent initial cytotoxic effects common to other sulfhydryl-reactive heavy metals on the proximal tubule.

  4. A Microperfusion Study of Bicarbonate Accumulation in the Proximal Tubule of the Rat Kidney*

    PubMed Central

    Bank, Norman; Aynedjian, Hagop S.

    1967-01-01

    In order to determine whether HCO3- gains access to the proximal tubular lumen from a source other than the glomerular filtrate, we carried out microperfusion experiments on isolated segments of rat proximal tubules in vivo. The perfusion fluid was essentially free of HCO3- and of a composition that prevented net absorption of sodium and water. It was found that when plasma HCO3- concentration and CO2 tension (PCO2) were normal, the HCO3- concentration in the collected perfusate rose to about 3 mEq per L. Inhibition of renal carbonic anhydrase did not produce an appreciable change in this value in normal rats, but when the enzyme was inhibited in acutely alkalotic rats, a mean concentration of 15 mEq per L was recovered in the perfusate. Addition of HCO3- to the tubular lumen might occur by either intraluminal generation of HCO3- from CO2 and OH- or by influx of ionic bicarbonate from the plasma or tubular cells. Because of the marked increase in HCO3- found when intraluminal carbonic anhydrase was inhibited, generation of new HCO3- from CO2 and OH- seems unlikely. We conclude, therefore, that influx of ionic bicarbonate occurred, either across the luminal membrane or through extracellular aqueous channels. These observations suggest that the proximal epithelium has a finite degree of permeability to HCO3- and that influx of this ion may be a component of the over-all handling of HCO3- by the kidney. PMID:4959907

  5. Mitochondrial aquaporin-8 in renal proximal tubule cells: evidence for a role in the response to metabolic acidosis.

    PubMed

    Molinas, Sara M; Trumper, Laura; Marinelli, Raúl A

    2012-08-01

    Mitochondrial ammonia synthesis in proximal tubules and its urinary excretion are key components of the renal response to maintain acid-base balance during metabolic acidosis. Since aquaporin-8 (AQP8) facilitates transport of ammonia and is localized in inner mitochondrial membrane (IMM) of renal proximal cells, we hypothesized that AQP8-facilitated mitochondrial ammonia transport in these cells plays a role in the response to acidosis. We evaluated whether mitochondrial AQP8 (mtAQP8) knockdown by RNA interference is able to impair ammonia excretion in the human renal proximal tubule cell line, HK-2. By RT-PCR and immunoblotting, we found that AQP8 is expressed in these cells and is localized in IMM. HK-2 cells were transfected with short-interfering RNA targeting human AQP8. After 48 h, the levels of mtAQP8 protein decreased by 53% (P < 0.05). mtAQP8 knockdown decreased the rate of ammonia released into culture medium in cells grown at pH 7.4 (-31%, P < 0.05) as well as in cells exposed to acid (-90%, P < 0.05). We also evaluated mtAQP8 protein expression in HK-2 cells exposed to acidic medium. After 48 h, upregulation of mtAQP8 (+74%, P < 0.05) was observed, together with higher ammonia excretion rate (+73%, P < 0.05). In vivo studies in NH(4)Cl-loaded rats showed that mtAQP8 protein expression was also upregulated after 7 days of acidosis in renal cortex (+51%, P < 0.05). These data suggest that mtAQP8 plays an important role in the adaptive response of proximal tubule to acidosis possibly facilitating mitochondrial ammonia transport.

  6. Mechanism of bicarbonate exit across basolateral membrane of rabbit proximal straight tubule.

    PubMed

    Sasaki, S; Shiigai, T; Yoshiyama, N; Takeuchi, J

    1987-01-01

    To clarify the mechanism(s) of HCO3- (or related base) transport across the basolateral membrane, rabbit proximal straight tubules were perfused in vitro, and intracellular pH (pHi) and Na+ activity (aiNa) were measured by double-barreled ion-selective microelectrodes. Lowering bath HCO3- from 25 to 5 mM at constant PCO2 depolarized basolateral membrane potential (Vbl), and reduced pHi. Most of these changes were inhibited by adding 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) to the bath. Total replacement of bath Na+ with choline also depolarized Vbl and reduced pHi, and these changes were also inhibited by SITS. Reduction in aiNa was observed when bath HCO3- was lowered. Taken together, these findings suggest that HCO3- exists the basolateral membrane with Na+ and negative charge. Calculation of the electrochemical driving forces suggests that the stoichiometry of HCO3-/Na+ must be larger than two for maintaining HCO3- efflux. Total replacement of bath Cl- with isethionate depolarized Vbl gradually and increased pHi slightly, implying the existence of a Cl(-)-related HCO3- exit mechanism. The rate of decrease in pHi induced by lowering bath HCO3- was slightly reduced (20%) by the absence of bath Cl-. Therefore, the importance of Cl(-)-related HCO3- transport is small relative to total basolateral HCO3- exit. Accordingly, these data suggest that most of HCO3- exits the basolateral membrane through the rheogenic Na+/HCO3- cotransport mechanism with a stoichiometry of HCO3-/Na+ of more than two.

  7. Polarity and transport properties of rabbit kidney proximal tubule cells on collagen IV-coated porous membranes.

    PubMed

    Genestie, I; Morin, J P; Vannier, B; Lorenzon, G

    1995-07-01

    A high degree of functional polarity has been obtained in primary cultures of rabbit kidney proximal tubule cells grown on collagen IV-coated porous membranes. Tight confluency was attained 6 days after seeding and maintained for at least 6 more days, as shown by analysis of paracellular inulin diffusion. From day 6 onward, L-lactate, ammonia, and D-glucose concentration gradient and a pH difference of approximately 1 unit developed between the two nutrient medium compartments. Confluent monolayers expressed organic ion transport properties higher than those formerly reported for other cell models. Transcellular transport of 20 microM tetraethylammonium was directed from basal to apical compartment and was specifically inhibited by mepiperphenidol (1 mM). Unidirectional transport of 2.4 microM p-aminohippurate also occurred from basal to apical compartment, was saturable, and specifically inhibited by probenecid (1 mM). These results suggest that rabbit kidney proximal tubule cells, cultured under the experimental conditions described here, may be a useful model for the in vitro study of highly polarized renal transport processes.

  8. Uriniferous tubule: structural and functional organization.

    PubMed

    Christensen, Erik Ilsø; Wagner, Carsten A; Kaissling, Brigitte

    2012-04-01

    The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology. © 2012 American Physiological Society. Compr Physiol 2:933-996, 2012.

  9. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells

    PubMed Central

    Coffey, Sam; Costacou, Tina; Orchard, Trevor; Erkan, Elif

    2015-01-01

    Diabetes mellitus (DM) has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA) has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt) in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160) and cytoplasmic tail of megalin. Mice with type 1 DM (T1D) displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications) study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN) at an earlier stage. PMID:26465605

  10. Uromodulin retention in thick ascending limb of Henle's loop affects SCD1 in neighboring proximal tubule: renal transcriptome studies in mouse models of uromodulin-associated kidney disease.

    PubMed

    Horsch, Marion; Beckers, Johannes; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; Rathkolb, Birgit; Wolf, Eckhard; Aigner, Bernhard; Kemter, Elisabeth

    2014-01-01

    Uromodulin-associated kidney disease (UAKD) is a hereditary progressive renal disease which can lead to renal failure and requires renal replacement therapy. UAKD belongs to the endoplasmic reticulum storage diseases due to maturation defect of mutant uromodulin and its retention in the enlarged endoplasmic reticulum in the cells of the thick ascending limb of Henle's loop (TALH). Dysfunction of TALH represents the key pathogenic mechanism of UAKD causing the clinical symptoms of this disease. However, the molecular alterations underlying UAKD are not well understood. In this study, transcriptome profiling of whole kidneys of two mouse models of UAKD, UmodA227T and UmodC93F, was performed. Genes differentially abundant in UAKD affected kidneys of both Umod mutant lines at different disease stages were identified and verified by RT-qPCR. Additionally, differential protein abundances of SCD1 and ANGPTL7 were validated by immunohistochemistry and Western blot analysis. ANGPTL7 expression was down-regulated in TALH cells of Umod mutant mice which is the site of the mutant uromodulin maturation defect. SCD1 was expressed selectively in the S3 segment of proximal tubule cells, and SCD1 abundance was increased in UAKD affected kidneys. This finding demonstrates that a cross talk between two functionally distinct tubular segments of the kidney, the TALH segment and the S3 segment of proximal tubule, exists.

  11. Regulation of the mitochondrial permeability transition in kidney proximal tubules and its alteration during hypoxia-reoxygenation

    PubMed Central

    Feldkamp, Thorsten; Park, Jeong Soon; Pasupulati, Ratna; Amora, Daniela; Roeser, Nancy F.; Venkatachalam, M. A.

    2009-01-01

    Development of the mitochondrial permeability transition (MPT) can importantly contribute to lethal cell injury from both necrosis and apoptosis, but its role varies considerably with both the type of cell and type of injury, and it can be strongly opposed by the normally abundant endogenous metabolites ADP and Mg2+. To better characterize the MPT in kidney proximal tubule cells and assess its contribution to injury to them, we have refined and validated approaches to follow the process in whole kidney proximal tubules and studied its regulation in normoxic tubules and after hypoxia-reoxygenation (H/R). Physiological levels of ADP and Mg2+ greatly decreased sensitivity to the MPT. Inhibition of cyclophilin D by cyclosporine A (CsA) effectively opposed the MPT only in the presence of ADP and/or Mg2+. Nonesterified fatty acids (NEFA) had a large role in the decreased resistance to the MPT seen after H/R irrespective of the available substrate or the presence of ADP, Mg2+, or CsA, but removal of NEFA was less effective at restoring normal resistance to the MPT in the presence of electron transport complex I-dependent substrates than with succinate. The data indicate that the NEFA accumulation that occurs during both hypoxia in vitro and ischemic acute kidney injury in vivo is a critical sensitizing factor for the MPT that overcomes the antagonistic effect of endogenous metabolites and cyclophilin D inhibition, particularly in the presence of complex I-dependent substrates, which predominate in vivo. PMID:19741014

  12. Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells.

    PubMed

    Navarro-Moreno, L G; Quintanar-Escorza, M A; González, S; Mondragón, R; Cerbón-Solorzáno, J; Valdés, J; Calderón-Salinas, J V

    2009-10-01

    Lead intoxication is a worldwide health problem which frequently affects the kidney. In this work, we studied the effects of chronic lead intoxication (500 ppm of Pb in drinking water during seven months) on the structure, function and biochemical properties of rat proximal tubule cells. Lead-exposed animals showed increased lead concentration in kidney, reduction of calcium and amino acids uptake, oxidative damage and glucosuria, proteinuria, hematuria and reduced urinary pH. These biochemical and physiological alterations were related to striking morphological modifications in the structure of tubule epithelial cells and in the morphology of their mitochondria, nuclei, lysosomes, basal and apical membranes. Interestingly, in addition to the nuclei, inclusion bodies were found in the cytoplasm and in mitochondria. The epithelial cell structure modifications included an early loss of the apical microvillae, followed by a decrement of the luminal space and the respective apposition and proximity of apical membranes, resulting in the formation of atypical intercellular contacts and adhesion structures. Similar but less marked alterations were observed in subacute lead intoxication as well. Our work contributes in the understanding of the physiopathology of lead intoxication on the structure of renal tubular epithelial cell-cell contacts in vivo.

  13. Differential patterns of injury to the proximal tubule of renal cortical slices following in vitro exposure to mercuric chloride, potassium dichromate, or hypoxic conditions.

    PubMed

    Ruegg, C E; Gandolfi, A J; Nagle, R B; Brendel, K

    1987-09-15

    The innate susceptibility of renal cell types to these agents was investigated using precision-cut rabbit renal cortical slices made perpendicular to the cortical-papillary axis. Slices were incubated in DME/F12 medium containing 10 microM, 100 microM, or 1 mM concentrations of either metal for 12 hr or in Krebs-Hepes buffer gassed with nitrogen (100%) for 0.75 to 5 hr of hypoxic exposure. To simulate postischemic reperfusion, some slices were transferred to vessels gassed with oxygen after an initial hypoxic period. Mercuric chloride (100 microM) exposure resulted in damage to the straight regions of proximal tubules by 12 hr leaving convoluted regions unaffected. Hypoxia (2.25 hr) and potassium dichromate (100 microM for 12 hr) both caused injury to the convoluted proximal tubules without affecting straight proximal tubular regions. Mercury concentrations of 10 microM and 1 mM had no effect or injured all cell types within the slice, respectively. Similar results were observed for hypoxic periods less than 1.5 hr or greater than 3 hr of exposure. Potassium dichromate had no measurable affect at 10 microM, but at 1 mM focal lesions were observed after 4 hr of exposure, and by 12 hr all cell types within the slice were affected. Intracellular potassium content normalized to DNA correlated well, but always preceded the pathological lesions observed. These results demonstrate that injury to specific regions of the proximal tubule by these agents relates to an innate susceptibility of the intoxicated cell type independent of physiologic feedback or blood delivery patterns proposed as mechanisms of selective injury from in vivo studies.

  14. Activation of an ATP-dependent K(+) conductance in Xenopus oocytes by expression of adenylate kinase cloned from renal proximal tubules.

    PubMed

    Brochiero, E; Coady, M J; Klein, H; Laprade, R; Lapointe, J Y

    2001-02-09

    In rabbit proximal convoluted tubules, an ATP-sensitive K(+) (K(ATP)) channel has been shown to be involved in membrane cross-talk, i.e. the coupling (most likely mediated through intracellular ATP) between transepithelial Na(+) transport and basolateral K(+) conductance. This K(+) conductance is inhibited by taurine. We sought to isolate this K(+) channel by expression cloning in Xenopus oocytes. Injection of renal cortex mRNA into oocytes induced a K(+) conductance, largely inhibited by extracellular Ba(2+) and intracellular taurine. Using this functional test, we isolated from our proximal tubule cDNA library a unique clone, which induced a large K(+) current which was Ba(2+)-, taurine- and glibenclamide-sensitive. Surprisingly, this clone is not a K(+) channel but an adenylate kinase protein (AK3), known to convert NTP+AMP into NDP+ADP (N could be G, I or A). AK3 expression resulted in a large ATP decrease and activation of the whole-cell currents including a previously unknown, endogenous K(+) current. To verify whether ATP decrease was responsible for the current activation, we demonstrated that inhibition of glycolysis greatly reduces oocyte ATP levels and increases an inwardly rectifying K(+) current. The possible involvement of AK in the K(ATP) channel's regulation provides a means of explaining their observed activity in cytosolic environments characterized by high ATP concentrations.

  15. Primary proximal tubule injury leads to epithelial cell cycle arrest, fibrosis, vascular rarefaction, and glomerulosclerosis

    PubMed Central

    Bonventre, Joseph V

    2014-01-01

    Tubular injury has a major etiological role in fibrosis. For many years, this relationship has been dominated by the perception that epithelial cells are transformed into myofibroblasts that proliferate and generate fibrotic matrix—the so-called epithelial-to-mesenchymal transition. Here we focus on mechanisms by which injury to the tubule results in fibrosis because of paracrine mechanisms. Specific injury to the proximal tubule results in inflammation, reversible injury, and adaptive repair if the insult is mild, self-limited in time, and occurs in a background of a normal kidney. Repeated injury, in contrast, leads to maladaptive repair with sustained tubule injury, chronic inflammation, proliferation of interstitial myofibroblasts, vascular rarefaction, interstitial fibrosis, and glomerular sclerosis. During the maladaptive repair process after the renal insult, many tubular cells become arrested in the G2/M phase of the cell cycle. This results in activation of the DNA repair response with the resultant synthesis and secretion of pro-fibrotic factors. Pharmacologic interventions that enhance the movement through G2/M or facilitate apoptosis of cells that otherwise would be blocked in G2/M may reduce the development of fibrosis after kidney injury and reduce the progression of chronic kidney disease. PMID:26310195

  16. Proximal Nephron

    PubMed Central

    Zhuo, Jia L.; Li, Xiao C.

    2013-01-01

    The kidney plays a fundamental role in maintaining body salt and fluid balance and blood pressure homeostasis through the actions of its proximal and distal tubular segments of nephrons. However, proximal tubules are well recognized to exert a more prominent role than distal counterparts. Proximal tubules are responsible for reabsorbing approximately 65% of filtered load and most, if not all, of filtered amino acids, glucose, solutes, and low molecular weight proteins. Proximal tubules also play a key role in regulating acid-base balance by reabsorbing approximately 80% of filtered bicarbonate. The purpose of this review article is to provide a comprehensive overview of new insights and perspectives into current understanding of proximal tubules of nephrons, with an emphasis on the ultrastructure, molecular biology, cellular and integrative physiology, and the underlying signaling transduction mechanisms. The review is divided into three closely related sections. The first section focuses on the classification of nephrons and recent perspectives on the potential role of nephron numbers in human health and diseases. The second section reviews recent research on the structural and biochemical basis of proximal tubular function. The final section provides a comprehensive overview of new insights and perspectives in the physiological regulation of proximal tubular transport by vasoactive hormones. In the latter section, attention is particularly paid to new insights and perspectives learnt from recent cloning of transporters, development of transgenic animals with knockout or knockin of a particular gene of interest, and mapping of signaling pathways using microarrays and/or physiological proteomic approaches. PMID:23897681

  17. Lipids in the proximal convoluted tubule of the cat kidney and the reabsorption of cholesterol.

    PubMed

    Bargmann, W; Krisch, B; Leonhardt, H

    1977-02-14

    Lipid deposits in the cat kidney are mainly located in the epithelium of the proximal tubuli contorti, particularly in the pars contorta. As the amount of fatty acids in the blood of renal arteries is higher than in renal veins, the lipid inclusions are likely to be formed in the proximal convoluted tubule. Whether fat occurring in the urine has been released from the nephron epithelium and the mode of this release remains obscure. The structural equivalent of lipid extrusion into the tubules has not been observed. Components of the tubular lipids include triglycerides, phosphoglycerides and cholesterol. The results of the digitonin-cholesterol reaction favour the assumption that cholesterol is eliminated in the glomeruli and pinocytotically reabsorbed by the brush border cells, this process possibly serving recycling of this compound. The dilated basal labyrinth and intercellular space contain perpendicularly oriented lipid accumulations that reach the basal lamina. The ultrastructure of the lipid storing cells of pars contorta reacting positively for phosphoglyceride and cholesterol is characterised mainly by bodies with marginal plates. As far as can be judged from their morphology, these bodies are interpreted as large peroxisomes. A special feature of the pars recta are dumbbell shaped bodies and elongated or cup-like mitochondria concentrically surrounding cytoplasmic areas, as well as a well-developed smooth ER. In what way the organelles of the brush border cells are involved in catabolic and anabolic processes as far as renal lipid metabolism is concerned remains to be answered.

  18. Transport of water in proximal kidney tubules from whole tubules to single channels: length and section of the selectivity filter of aquaporin-1.

    PubMed

    Whittembury, G; González, E; Hernández, C S; Gutiérrez, A M; Echevarría, M

    1997-06-27

    Proximal straight tubule (PST) were dissected from rabbit kidneys, held with crimping pipettes in a chamber bathed in a buffered mannitol isosmotic solution (MBS, 295 mOsm/kg). Tubule cell volume changes with time (dV/Adt) after steps in MBS osmolality (delta Cs) were monitored on line with an inverted microscope, a TV camera and an image processor. Reflection coefficients sigma and osmotic permeability coefficients, Pos, for several solutes were measured using two methods. Method 1: sigma was calculated from the delta Csiso of impermeant and permeant solutes at which (dV/Adt)t-->0 = 0 (i.e., by a null point method). It is denoted as sigma 1. sigma 1 = 1.00 for mannitol (M), raffinose (R), sucrose (S), glycerol (G), acetamide (A) and urea (U). With formamide (F), sigma 1, Formamide = 0.62 +/- 0.05. These findings confirm our previous value of dp = 4.5 A for the diameter of the selectivity filter of the basolateral PST cell membrane water channel AQP1. Method 2: PST were exposed for 20 s to MBS made hyperosmotic by addition of a delta Cs of 35 mOsm/kg of R, S, M, G, A and U. Cells shrunk within 500 ms of t = 0 to their osmometric volume and remained shrunk for the 20 s of the osmotic challenge. Pos was measured from the shrinking curves. P(os) = 3000 +/- 25 microns/s with R, S, M, G, A and U. Method 2 also allowed to calculate sigma, denoted as sigma 2. sigma 2 = 1.00 for R, S, M, G, A and U. By contrast, the shrinking curve produced by a delta Cs of 35 mOsm/kg F was 1/5th to 1/6th slower and smaller (i.e., subosmometric) than that produced by a delta Cs of 35 mOsm/kg R, S, M, G, A and U. Furthermore, with F cells did not remain shrunk but recovered their original volume within 3 s. P(os) (measured with F) is denoted as P(os)*, P(os)* = 480 +/- 30 microns/s. sigma 2, Formamide = 0.16 +/- 0.01. Use of sigma 1, sigma 2 and P(os)* values in Hill's equations for the bimodal theory of osmosis leads to n = 2-9. Where n is the number of water molecules single filling

  19. pH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+cells: a versatile in vitro model to study renal proximal tubule metabolism and function

    PubMed Central

    Curthoys, Norman P.

    2014-01-01

    Ammoniagenesis and gluconeogenesis are prominent metabolic features of the renal proximal convoluted tubule that contribute to maintenance of systemic acid-base homeostasis. Molecular analysis of the mechanisms that mediate the coordinate regulation of the two pathways required development of a cell line that recapitulates these features in vitro. By adapting porcine renal epithelial LLC-PK1 cells to essentially glucose-free medium, a gluconeogenic subline, termed LLC-PK1-FBPase+ cells, was isolated. LLC-PK1-FBPase+ cells grow in the absence of hexoses and pentoses and exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase. The cells also express significant levels of the key gluconeogenic enzymes, fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus the altered phenotype of LLC-PK1-FBPase+ cells is pleiotropic. Most importantly, when transferred to medium that mimics a pronounced metabolic acidosis (9 mM HCO3−, pH 6.9), the LLC-PK1-FBPase+ cells exhibit a gradual increase in NH4+ ion production, accompanied by increases in glutaminase and cytosolic PEPCK mRNA levels and proteins. Therefore, the LLC-PK1-FBPase+ cells retained in culture many of the metabolic pathways and pH-responsive adaptations characteristic of renal proximal tubules. The molecular mechanisms that mediate enhanced expression of the glutaminase and PEPCK in LLC-PK1-FBPase+ cells have been extensively reviewed. The present review describes novel properties of this unique cell line and summarizes the molecular mechanisms that have been defined more recently using LLC-PK1-FBPase+ cells to model the renal proximal tubule. It also identifies future studies that could be performed using these cells. PMID:24808535

  20. Secretory NaCl and volume flow in renal tubules.

    PubMed

    Beyenbach, K W

    1986-05-01

    This review attempts to give a retrospective survey of the available evidence concerning the secretion of NaCl and fluid in renal tubules of the vertebrate kidney. In the absence of glomerular filtration, epithelial secretory mechanisms, which to this date have not been elucidated, are responsible for the renal excretion of NaCl and water in aglomerular fish. However, proximal tubules isolated from glomerular fish kidneys of the flounder, killifish, and the shark also have the capacity to secrete NaCl and fluid. In shark proximal tubules, fluid secretion appears to be driven via secondary active transport of Cl. In another marine vertebrate, the sea snake, secretion of Na (presumably NaCl) and fluid is observed in freshwater-adapted and water-loaded animals. Proximal tubules of mammals can be made to secrete NaCl in vitro together with secretion of aryl acids. An epithelial cell line derived from dog kidney exhibits secondary active secretion of Cl when stimulated with catecholamines. Tubular secretion of NaCl and fluid may serve a variety of renal functions, all of which are considered here. The occurrence of NaCl and fluid secretion in glomerular proximal tubules of teleosts, elasmobranchs, and reptiles and in mammalian renal tissue cultures suggests that the genetic potential for NaCl secretion is present in every vertebrate kidney.

  1. Sodium, phosphate, glucose, bicarbonate, and alanine interactions in the isolated proximal convoluted tubule of the rabbit kidney.

    PubMed

    Dennis, V W; Brazy, P C

    1978-08-01

    Interactions among the transport systems involved with sodium, bicarbonate, glucose, phosphate, and alanine absorption in isolated segments of the rabbit proximal convoluted tubule were examined with radioisotopic techniques to measure glucose, phosphate, and fluid absorption rates. The composition of the perfusate and bath varied from normal, physiological fluids to fluids deficient in a single solute. The deletion of glucose from the perfusate increased the lumen-to-bath flux of phosphate from 5.51 +/- 1.15 to 8.32 +/- 1.34 pmol/mm-min (P less than 0.01). Similar changes occurred when glucose transport was inhibited by phlorizin 10 micron in the perfusate, The deletion of alanine from the perfusate increased the lumen-to-bath flux of phosphate from 6.55 +/- 1.08 to 9.00 +/- 1.30 pmol/mm-min (P less than 0.01) but did not affect glucose transport significantly, 80.1 +/- 10.1 vs. 72.5 +/- 5.4 pmol/mm-min. Replacement of intraluminal sodium with choline, elimination of potassium from the bath, and removal of bicarbonate from the lumen and bath each reduced glucose, phosphate, and fluid absorption. These data indicate that the proximal absorptive processes for glucose and for phosphate include elements that are dependent upon some function of sodium transport. Additionally, the effects on phosphate transport of deleting glucose or alanine occur independent of any changes in net sodium transport and are opposite the effects of deleting bicarbonate. These differences may relate to the observations that the transport of glucose and alanine is electrogenic while that of bicarbonate is not. Regardless of possible mechanisms, the data demonstrate that important changes in the absorption rates of different solutes handled significantly by the proximal convoluted tubule may occur in response to changes in specific components of proximal sodium transport.

  2. Sodium, phosphate, glucose, bicarbonate, and alanine interactions in the isolated proximal convoluted tubule of the rabbit kidney.

    PubMed Central

    Dennis, V W; Brazy, P C

    1978-01-01

    Interactions among the transport systems involved with sodium, bicarbonate, glucose, phosphate, and alanine absorption in isolated segments of the rabbit proximal convoluted tubule were examined with radioisotopic techniques to measure glucose, phosphate, and fluid absorption rates. The composition of the perfusate and bath varied from normal, physiological fluids to fluids deficient in a single solute. The deletion of glucose from the perfusate increased the lumen-to-bath flux of phosphate from 5.51 +/- 1.15 to 8.32 +/- 1.34 pmol/mm-min (P less than 0.01). Similar changes occurred when glucose transport was inhibited by phlorizin 10 micron in the perfusate, The deletion of alanine from the perfusate increased the lumen-to-bath flux of phosphate from 6.55 +/- 1.08 to 9.00 +/- 1.30 pmol/mm-min (P less than 0.01) but did not affect glucose transport significantly, 80.1 +/- 10.1 vs. 72.5 +/- 5.4 pmol/mm-min. Replacement of intraluminal sodium with choline, elimination of potassium from the bath, and removal of bicarbonate from the lumen and bath each reduced glucose, phosphate, and fluid absorption. These data indicate that the proximal absorptive processes for glucose and for phosphate include elements that are dependent upon some function of sodium transport. Additionally, the effects on phosphate transport of deleting glucose or alanine occur independent of any changes in net sodium transport and are opposite the effects of deleting bicarbonate. These differences may relate to the observations that the transport of glucose and alanine is electrogenic while that of bicarbonate is not. Regardless of possible mechanisms, the data demonstrate that important changes in the absorption rates of different solutes handled significantly by the proximal convoluted tubule may occur in response to changes in specific components of proximal sodium transport. PMID:670399

  3. Proximal tubule proteins are significantly elevated in bladder urine of patients with ureteropelvic junction obstruction and may represent novel biomarkers: A pilot study.

    PubMed

    Gerber, Claire; Harel, Miriam; Lynch, Miranda L; Herbst, Katherine W; Ferrer, Fernando A; Shapiro, Linda H

    2016-04-01

    Ureteropelvic junction obstruction (UPJO) is the major cause of hydronephrosis in children and may lead to renal injury and early renal dysfunction. However, diagnosis of the degree of obstruction and severity of renal injury relies on invasive and often inconclusive renal scans. Biomarkers from voided urine that detect early renal injury are highly desirable because of their noninvasive collection and their potential to assist in earlier and more reliable diagnosis of the severity of obstruction. Early in response to UPJO, increased intrarenal pressure directly impacts the proximal tubule brush border. We hypothesize that single-pass, apically expressed proximal tubule brush border proteins will be shed into the urine early and rapidly and will be reliable noninvasive urinary biomarkers, providing the tools for a more reliable stratification of UPJO patients. We performed a prospective cohort study at Connecticut Children's Medical Center. Bladder urine samples from 12 UPJO patients were obtained prior to surgical intervention. Control urine samples were collected from healthy pediatric patients presenting with primary nocturnal enuresis. We determined levels of NGAL, KIM-1 (previously identified biomarkers), CD10, CD13, and CD26 (potentially novel biomarkers) by ELISA in control and experimental urine samples. Urinary creatinine levels were used to normalize the urinary protein levels measured by ELISA. Each of the proximal tubule proteins outperformed the previously published biomarkers. No differences in urinary NGAL and KIM-1 levels were observed between control and obstructed patients (p = 0.932 and p = 0.799, respectively). However, levels of CD10, CD13, and CD26 were significantly higher in the voided urine of obstructed individuals when compared with controls (p = 0.002, p = 0.024, and p = 0.007, respectively) (Figure). Targeted identification of reliable, noninvasive biomarkers of renal injury is critical to aid in diagnosing patients at risk, guiding

  4. Electrophysiology of sodium-coupled transport in proximal renal tubules.

    PubMed

    Lang, F; Messner, G; Rehwald, W

    1986-06-01

    Effects of sodium-coupled transport on intracellular electrolytes and electrical properties of proximal renal tubule cells are described in this review. Simultaneous with addition of substrate for sodium-coupled transport to luminal perfusates, both cell membranes depolarize. The luminal cell membrane depolarizes due to opening of sodium-cotransport pathways. The depolarization of the peritubular cell membrane during sodium-coupled transport is primarily due to a circular current reentering the lumen via the paracellular pathway. The depolarization leads to a transient decrease of basolateral potassium conductance that in turn amplifies the depolarization. However, within 5-10 min of continued exposure to substrate, potassium conductance increases again, and peritubular cell membrane repolarizes. During depolarization the driving force of peritubular bicarbonate exit is reduced. As a result net alkalinization of the cell prevails despite an increase of intracellular sodium activity, which reduces the driving force for the sodium-hydrogen ion exchanger and would thus have been expected to acidify the cell. No evidence is obtained for regulatory inhibition of sodium-coupled transport by intracellular sodium or calcium. Rather, luminal cotransport is altered by the change of driving forces.

  5. Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury

    PubMed Central

    Zarjou, Abolfazl; Bolisetty, Subhashini; Joseph, Reny; Traylor, Amie; Apostolov, Eugene O.; Arosio, Paolo; Balla, Jozsef; Verlander, Jill; Darshan, Deepak; Kuhn, Lukas C.; Agarwal, Anupam

    2013-01-01

    Ferritin plays a central role in iron metabolism and is made of 24 subunits of 2 types: heavy chain and light chain. The ferritin heavy chain (FtH) has ferroxidase activity that is required for iron incorporation and limiting toxicity. The purpose of this study was to investigate the role of FtH in acute kidney injury (AKI) and renal iron handling by using proximal tubule–specific FtH-knockout mice (FtHPT–/– mice). FtHPT–/– mice had significant mortality, worse structural and functional renal injury, and increased levels of apoptosis in rhabdomyolysis and cisplatin-induced AKI, despite significantly higher expression of heme oxygenase-1, an antioxidant and cytoprotective enzyme. While expression of divalent metal transporter-1 was unaffected, expression of ferroportin (FPN) was significantly lower under both basal and rhabdomyolysis-induced AKI in FtHPT–/– mice. Apical localization of FPN was disrupted after AKI to a diffuse cytosolic and basolateral pattern. FtH, regardless of iron content and ferroxidase activity, induced FPN. Interestingly, urinary levels of the iron acceptor proteins neutrophil gelatinase–associated lipocalin, hemopexin, and transferrin were increased in FtHPT–/– mice after AKI. These results underscore the protective role of FtH and reveal the critical role of proximal tubule FtH in iron trafficking in AKI. PMID:24018561

  6. Development of a living membrane comprising a functional human renal proximal tubule cell monolayer on polyethersulfone polymeric membrane.

    PubMed

    Schophuizen, Carolien M S; De Napoli, Ilaria E; Jansen, Jitske; Teixeira, Sandra; Wilmer, Martijn J; Hoenderop, Joost G J; Van den Heuvel, Lambert P W; Masereeuw, Rosalinde; Stamatialis, Dimitrios

    2015-03-01

    The need for improved renal replacement therapies has stimulated innovative research for the development of a cell-based renal assist device. A key requirement for such a device is the formation of a "living membrane", consisting of a tight kidney cell monolayer with preserved functional organic ion transporters on a suitable artificial membrane surface. In this work, we applied a unique conditionally immortalized proximal tubule epithelial cell (ciPTEC) line with an optimized coating strategy on polyethersulfone (PES) membranes to develop a living membrane with a functional proximal tubule epithelial cell layer. PES membranes were coated with combinations of 3,4-dihydroxy-l-phenylalanine and human collagen IV (Coll IV). The optimal coating time and concentrations were determined to achieve retention of vital blood components while preserving high water transport and optimal ciPTEC adhesion. The ciPTEC monolayers obtained were examined through immunocytochemistry to detect zona occludens 1 tight junction proteins. Reproducible monolayers were formed when using a combination of 2 mg ml(-1) 3,4-dihydroxy-l-phenylalanine (4 min coating, 1h dissolution) and 25 μg ml(-1) Coll IV (4 min coating). The successful transport of (14)C-creatinine through the developed living membrane system was used as an indication for organic cation transporter functionality. The addition of metformin or cimetidine significantly reduced the creatinine transepithelial flux, indicating active creatinine uptake in ciPTECs, most likely mediated by the organic cation transporter, OCT2 (SLC22A2). In conclusion, this study shows the successful development of a living membrane consisting of a reproducible ciPTEC monolayer on PES membranes, an important step towards the development of a bioartificial kidney. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Detection and measurement of tubulitis in renal allograft rejection

    NASA Astrophysics Data System (ADS)

    Hiller, John B.; Chen, Qi; Jin, Jesse S.; Wang, Yung; Yong, James L. C.

    1997-04-01

    Tubulitis is one of the most reliable signs of acute renal allograft rejection. It occurs when mononuclear cells are localized between the lining tubular epithelial cells with or without disruption of the tubular basement membrane. It has been found that tubulitis takes place predominantly in the regions of the distal convoluted tubules and the cortical collecting system. The image processing tasks are to find the tubule boundaries and to find the relative location of the lymphocytes and epithelial cells and tubule boundaries. The requirement for accuracy applies to determining the relative locations of the lymphocytes and the tubule boundaries. This paper will show how the different sizes and grey values of the lymphocytes and epithelial cells simplify their identification and location. Difficulties in finding the tubule boundaries image processing will be illustrated. It will be shown how proximate location of epithelial cells and the tubule boundary leads to distortion in determination of the calculated boundary. However, in tubulitis the lymphocytes and the tubule boundaries are proximate.In these cases the tubule boundary is adequately resolved and the image processing is satisfactory to determining relativity in location. An adaptive non-linear anisotropic diffusion process is presented for image filtering and segmentation. Multi-layer analysis is used to extract lymphocytes and tubulitis from images. This paper will discuss grading of tissue using the Banff system. The ability to use computer to use computer processing will be argued as obviating problems of reproducability of values for this classification. This paper will also feature discussion of alternative approaches to image processing and provide an assessment of their capability for improving the identification of the tubule boundaries.

  8. A pharmacologically-based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarró, Eduard, E-mail: eduard.sarro@vhir.org; Renal Physiopathology, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute; Jacobs-Cachá, Conxita, E-mail: conxita.jacobs@vhir.org

    2012-01-15

    Mechanisms of cyclosporine A (CsA)-induced nephrotoxicity were generally thought to be hemodynamic in origin; however, there is now accumulating evidence of a direct tubular effect. Although genomic and proteomic experiments by our group and others provided overall information on genes and proteins up- or down-regulated by CsA in proximal tubule cells (PTC), a comprehensive view of events occurring after CsA exposure remains to be described. For this purpose, we applied a pharmacologic approach based on the use of known activities of a large panel of potentially protective compounds and evaluated their efficacy in preventing CsA toxicity in cultured mouse PTC.more » Our results show that compounds that blocked protein synthesis and apoptosis, together with the CK2 inhibitor DMAT and the PI3K inhibitor apigenin, were the most efficient in preventing CsA toxicity. We also identified GSK3, MMPs and PKC pathways as potential targets to prevent CsA damage. Additionally, heparinase-I and MAPK inhibitors afforded partial but significant protection. Interestingly, antioxidants and calcium metabolism-related compounds were unable to ameliorate CsA-induced cytotoxicity. Subsequent experiments allowed us to clarify the hierarchical relationship of targeted pathways after CsA treatment, with ER stress identified as an early effector of CsA toxicity, which leads to ROS generation, phenotypical changes and cell death. In summary, this work presents a novel experimental approach to characterizing cellular responses to cytotoxics while pointing to new targets to prevent CsA-induced toxicity in proximal tubule cells. Highlights: ► We used a novel pharmacological approach to elucidate cyclosporine (CsA) toxicity. ► The ability of a broad range of compounds to prevent CsA toxicity was evaluated. ► CsA toxicity was monitored using LDH release assay and PARP cleavage. ► Protein synthesis, PI3K, GSK3, MMP, PKC and caspase inhibitors prevented CsA toxicity. ► We also

  9. Human kidney proximal tubule cells are vulnerable to the effects of Rauwolfia serpentina.

    PubMed

    Mossoba, Miriam E; Flynn, Thomas J; Vohra, Sanah; Wiesenfeld, Paddy L; Sprando, Robert L

    2015-12-01

    Rauwolfia serpentina (or Snake root plant) is a botanical dietary supplement marketed in the USA for maintaining blood pressure. Very few studies have addressed the safety of this herb, despite its wide availability to consumers. Its reported pleiotropic effects underscore the necessity for evaluating its safety. We used a human kidney cell line to investigate the possible negative effects of R. serpentina on the renal system in vitro, with a specific focus on the renal proximal tubules. We evaluated cellular and mitochondrial toxicity, along with a variety of other kidney-specific toxicology biomarkers. We found that R. serpentina was capable of producing highly detrimental effects in our in vitro renal cell system. These results suggest more studies are needed to investigate the safety of this dietary supplement in both kidney and other target organ systems.

  10. Increased functional load on mouse kidney proximal tubule epithelial cells causes changes in nucleolar 3-D architecture.

    PubMed

    Chelidze, P V; Dzidziguri, D V; Tumanishvili, G D

    1998-05-01

    Ultrastructural 3-D analysis of nucleolar architecture and Ag-NOR protein distribution in mouse kidney-cortex proximal-tubule epithelium has been performed. A principal scheme of structural changes of the nucleolus and organization of its components during the intensification of pre-rRNA synthesis (dynamic model of a nucleolus) based on computer spatial modelling has been advanced. According to the nucleolar composition, three groups of cells, which differ from each other by rRNA synthesis, are defined in normal kidney. Most nephron proximal-section cells (about 52%) are characterized by lower activity of RNA synthesis. Such kind of cells are defined as group I (nucleolar diameter 0.7-1.5 microm) and always contain resting, ring-shaped or close to ring-shaped dense nucleoli, which have 2 or 3 fibrillar centers. Nucleoli of group II cells (about 37%, nucleolar diameter 1.5-2.5 microm) have a higher level of activity, contain 4-7 fibrillar centers, and their structural organization is close to reticulated forms due to the first indications of vacuolar network (identified as prereticulated nucleoli). The most active cells of group III (about 11%, nucleolar diameter 2.5-3.5 microm) include cells with typical reticulated nucleoli with a well expressed vacuolar network and numerous fibrillar centers (18-22). Increased functional load of the epithelium caused by unilateral nephrectomy and diuretic (4-chlor-H [2-furylmethyl] 5-sulphamyl-antranic acid) injection changed the proportion of the different cell groups: group I decreased (about 25%), whereas groups II and III increased (about 8% and 17%, respectively). The increase of nucleolar activity first causes a deformation of the individual fibrillar centers as well as complication and growth of their surface. Further, a progressive fragmentation of the fibrillar centers and the growth of their total volume is observed. The complication and growth of the total volume of Ag-positive zones is another indication of the

  11. Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics.

    PubMed

    Wilmes, Anja; Bielow, Chris; Ranninger, Christina; Bellwon, Patricia; Aschauer, Lydia; Limonciel, Alice; Chassaigne, Hubert; Kristl, Theresa; Aiche, Stephan; Huber, Christian G; Guillou, Claude; Hewitt, Philipp; Leonard, Martin O; Dekant, Wolfgang; Bois, Frederic; Jennings, Paul

    2015-12-25

    Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to biokinetics to identify cell stress response pathways induced by cisplatin. The human renal proximal tubular cell line RPTEC/TERT1 was treated with sub-cytotoxic concentrations of cisplatin (0.5 and 2 μM) in a daily repeat dose treating regime for up to 14 days. Biokinetic analysis showed that cisplatin was taken up from the basolateral compartment, transported to the apical compartment, and accumulated in cells over time. This is in line with basolateral uptake of cisplatin via organic cation transporter 2 and bioactivation via gamma-glutamyl transpeptidase located on the apical side of proximal tubular cells. Cisplatin affected several pathways including, p53 signalling, Nrf2 mediated oxidative stress response, mitochondrial processes, mTOR and AMPK signalling. In addition, we identified novel pathways changed by cisplatin, including eIF2 signalling, actin nucleation via the ARP/WASP complex and regulation of cell polarization. In conclusion, using an integrated omic approach together with biokinetics we have identified both novel and established mechanisms of cisplatin toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. 'Special K' and a Loss of Cell-To-Cell Adhesion in Proximal Tubule-Derived Epithelial Cells: Modulation of the Adherens Junction Complex by Ketamine

    PubMed Central

    Hills, Claire E.; Jin, Tianrong; Siamantouras, Eleftherios; Liu, Issac K-K; Jefferson, Kieran P.; Squires, Paul E.

    2013-01-01

    Ketamine, a mild hallucinogenic class C drug, is the fastest growing ‘party drug’ used by 16–24 year olds in the UK. As the recreational use of Ketamine increases we are beginning to see the signs of major renal and bladder complications. To date however, we know nothing of a role for Ketamine in modulating both structure and function of the human renal proximal tubule. In the current study we have used an established model cell line for human epithelial cells of the proximal tubule (HK2) to demonstrate that Ketamine evokes early changes in expression of proteins central to the adherens junction complex. Furthermore we use AFM single-cell force spectroscopy to assess if these changes functionally uncouple cells of the proximal tubule ahead of any overt loss in epithelial cell function. Our data suggests that Ketamine (24–48 hrs) produces gross changes in cell morphology and cytoskeletal architecture towards a fibrotic phenotype. These physical changes matched the concentration-dependent (0.1–1 mg/mL) cytotoxic effect of Ketamine and reflect a loss in expression of the key adherens junction proteins epithelial (E)- and neural (N)-cadherin and β-catenin. Down-regulation of protein expression does not involve the pro-fibrotic cytokine TGFβ, nor is it regulated by the usual increase in expression of Slug or Snail, the transcriptional regulators for E-cadherin. However, the loss in E-cadherin can be partially rescued pharmacologically by blocking p38 MAPK using SB203580. These data provide compelling evidence that Ketamine alters epithelial cell-to-cell adhesion and cell-coupling in the proximal kidney via a non-classical pro-fibrotic mechanism and the data provides the first indication that this illicit substance can have major implications on renal function. Understanding Ketamine-induced renal pathology may identify targets for future therapeutic intervention. PMID:24009666

  13. A 2D model of axial symmetry for proximal tubule of an average human nephron: indicative results of diffusion, convection and absorption processes

    NASA Astrophysics Data System (ADS)

    Insfrán, J. F.; Ubal, S.; Di Paolo, y. J.

    2016-04-01

    A simplified model of a proximal convoluted tubule of an average human nephron is presented. The model considers the 2D axisymmetric flow of the luminal solution exchanging matter with the tubule walls and the peritubular fluid by means of 0D models for the epithelial cells. The tubule radius is considered to vary along the conduit due to the trans-epithelial pressure difference. The fate of more than ten typical solutes is tracked down by the model. The Navier-Stokes and Reaction-Diffusion-Advection equations (considering the electro-neutrality principle) are solved in the lumen, giving a detailed picture of the velocity, pressure and concentration fields, along with trans-membrane fluxes and tubule deformation, via coupling with the 0D model for the tubule wall. The calculations are carried out numerically by means of the finite element method. The results obtained show good agreement with those published by other authors using models that ignore the diffusive transport and disregard a detailed calculation of velocity, pressure and concentrations. This work should be seen as a first approach towards the development of a more comprehensive model of the filtration process taking place in the kidneys, which ultimately helps in devising a device that can mimic/complement the renal function.

  14. Inhibition property of green tea extract in relation to reserpine-induced ribosomal strips of rough endoplasmic reticulum (rER) of the rat kidney proximal tubule cells.

    PubMed

    Abdel-Majeed, Safer; Mohammad, Afzal; Shaima, Al-Bloushi; Mohammad, Rafique; Mousa, Shaker A

    2009-12-01

    The aim of this study was to evaluate the effect of green tea in inhibiting and reversing the nephrotoxicity of reserpine--a potent oxidative stress inducer--which induced cellular kidney damage. Serum biochemical parameters, antioxidant enzyme levels, thiobarbituric acid reactive substances (TBARS) and serum transaminases (glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT)) values and histopathology were systematically evaluated. Reserpine exposure led to increase the oxidative stress and organ injury was significantly observed through biochemical parameters and ultrastructural evaluation. Sprague-Dawely (S.D.) rats were intraperitonealy administered reserpine to induce oxidative kidney damage. Experimental rats were given green tea extract according to the protocol given below. Sixty rats were randomly divided into six groups, with 10 rats in each group. Reserpine was found to cause kidney proximal tubule damage, such as stripping and clustering of ribosomes from the rough endoplasmic reticulum (rER) and demolishing of mitochondrial christae with elevated level of oxidative stress markers, such as TBARS. While the ultrastructural study showed a revival of kidney proximal tubule cells as a result of the administration of green tea extract to rats. We suggest that green tea might elevate antioxidant defense system, clean up free radicals, lessen oxidative damages and protect kidney against reserpine-induced toxicity and thus had a potential protective effect.

  15. Elevated ventricular wall stress disrupts cardiomyocyte t-tubule structure and calcium homeostasis.

    PubMed

    Frisk, Michael; Ruud, Marianne; Espe, Emil K S; Aronsen, Jan Magnus; Røe, Åsmund T; Zhang, Lili; Norseng, Per Andreas; Sejersted, Ole M; Christensen, Geir A; Sjaastad, Ivar; Louch, William E

    2016-10-01

    Invaginations of the cellular membrane called t-tubules are essential for maintaining efficient excitation-contraction coupling in ventricular cardiomyocytes. Disruption of t-tubule structure during heart failure has been linked to dyssynchronous, slowed Ca(2+) release and reduced power of the heartbeat. The underlying mechanism is, however, unknown. We presently investigated whether elevated ventricular wall stress triggers remodelling of t-tubule structure and function. MRI and blood pressure measurements were employed to examine regional wall stress across the left ventricle of sham-operated and failing, post-infarction rat hearts. In failing hearts, elevated left ventricular diastolic pressure and ventricular dilation resulted in markedly increased wall stress, particularly in the thin-walled region proximal to the infarct. High wall stress in this proximal zone was associated with reduced expression of the dyadic anchor junctophilin-2 and disrupted cardiomyocyte t-tubular structure. Indeed, local wall stress measurements predicted t-tubule density across sham and failing hearts. Elevated wall stress and disrupted cardiomyocyte structure in the proximal zone were also associated with desynchronized Ca(2+) release in cardiomyocytes and markedly reduced local contractility in vivo. A causative role of wall stress in promoting t-tubule remodelling was established by applying stretch to papillary muscles ex vivo under culture conditions. Loads comparable to wall stress levels observed in vivo in the proximal zone reduced expression of junctophilin-2 and promoted t-tubule loss. Elevated wall stress reduces junctophilin-2 expression and disrupts t-tubule integrity, Ca(2+) release, and contractile function. These findings provide new insight into the role of wall stress in promoting heart failure progression. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  16. ZIP8 expression in human proximal tubule cells, human urothelial cells transformed by Cd+2 and As+3 and in specimens of normal human urothelium and urothelial cancer

    PubMed Central

    2012-01-01

    Background ZIP8 functions endogenously as a Zn+2/HCO3- symporter that can also bring cadmium (Cd+2) into the cell. It has also been proposed that ZIP8 participates in Cd-induced testicular necrosis and renal disease. In this study real-time PCR, western analysis, immunostaining and fluorescent localization were used to define the expression of ZIP8 in human kidney, cultured human proximal tubule (HPT) cells, normal and malignant human urothelium and Cd+2 and arsenite (As+3) transformed urothelial cells. Results It was shown that in the renal system both the non-glycosylated and glycosylated form of ZIP8 was expressed in the proximal tubule cells with localization of ZIP8 to the cytoplasm and cell membrane; findings in line with previous studies on ZIP8. The studies in the bladder were the first to show that ZIP8 was expressed in normal urothelium and that ZIP8 could be localized to the paranuclear region. Studies in the UROtsa cell line confirmed a paranuclear localization of ZIP8, however addition of growth medium to the cells increased the expression of the protein in the UROtsa cells. In archival human samples of the normal urothelium, the expression of ZIP8 was variable in intensity whereas in urothelial cancers ZIP8 was expressed in 13 of 14 samples, with one high grade invasive urothelial cancer showing no expression. The expression of ZIP8 was similar in the Cd+2 and As+3 transformed UROtsa cell lines and their tumor transplants. Conclusion This is the first study which shows that ZIP8 is expressed in the normal urothelium and in bladder cancer. In addition the normal UROtsa cell line and its transformed counterparts show similar expression of ZIP8 compared to the normal urothelium and the urothelial cancers suggesting that the UROtsa cell line could serve as a model system to study the expression of ZIP8 in bladder disease. PMID:22550998

  17. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism

    PubMed Central

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Lamers, Wouter H.; Chaudhry, Farrukh A.; Verlander, Jill W.

    2016-01-01

    Glutamine synthetase (GS) catalyzes the recycling of NH4+ with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na+-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression. PMID:27009341

  18. Dietary Fructose Enhances the Ability of Low Concentrations of Angiotensin II to Stimulate Proximal Tubule Na+ Reabsorption

    PubMed Central

    Gonzalez-Vicente, Agustin; Cabral, Pablo D.; Hong, Nancy J.; Asirwatham, Jessica; Yang, Nianxin; Berthiaume, Jessica M.; Dominici, Fernando P.; Garvin, Jeffrey L.

    2017-01-01

    Fructose-enriched diets cause salt-sensitive hypertension. Proximal tubules (PTs) reabsorb 70% of the water and salt filtered through the glomerulus. Angiotensin II (Ang II) regulates this process. Normally, dietary salt reduces Ang II allowing the kidney to excrete more salt, thereby preventing hypertension. We hypothesized that fructose-enriched diets enhance the ability of low concentrations of Ang II to stimulate PT transport. We measured the effects of a low concentration of Ang II (10−12 mol/L) on transport-related oxygen consumption (QO2), and Na/K-ATPase and Na/H-exchange (NHE) activities and expression in PTs from rats consuming tap water (Control) or 20% fructose (FRUC). In FRUC-treated PTs, Ang II increased QO2 by 14.9 ± 1.3 nmol/mg/min (p < 0.01) but had no effect in Controls. FRUC elevated NHE3 expression by 19 ± 3% (p < 0.004) but not Na/K-ATPase expression. Ang II stimulated NHE activity in FRUC PT (Δ + 0.7 ± 0.1 Arbitrary Fluorescent units (AFU)/s, p < 0.01) but not in Controls. Na/K-ATPase activity was not affected. The PKC inhibitor Gö6976 blocked the ability of FRUC to augment the actions of Ang II. FRUC did not alter the inhibitory effect of dopamine on NHE activity. We conclude that dietary fructose increases the ability of low concentrations of Ang II to stimulate PT Na reabsorption via effects on NHE. PMID:28813008

  19. Fluid reabsorption in proximal convoluted tubules of mice with gene deletions of claudin-2 and/or aquaporin1

    PubMed Central

    Huang, Yuning; Mizel, Diane

    2013-01-01

    Deletions of claudin-2 (Cldn2) and aquaporin1 (AQP1) reduce proximal fluid reabsorption (PFR) by about 30% and 50%, respectively. Experiments were done to replicate these observations and to determine in AQP1/claudin-2 double knockout mice (DKO) if the effects of deletions of these established water pores are additive. PFR was determined in inactin/ketamine-anesthetized mice by free-flow micropuncture using single-nephron I125-iothalamate (io) clearance. Animal means of PFR [% of glomerular filtration rate (GFR)] derived from TF/Piothalamate ratios in 12 mice in each of four groups [wild type (WT), Cldn2−/−, AQP1−/−, and DKO) were 45.8 ± 0.85 (51 tubules), 35.4 ± 1 (54 tubules; P < 0.01 vs. WT), 36.8 ± 1 (63 tubules; P < 0.05 vs. WT), and 33.9 ± 1.4 (69 tubules; P < 0.01 vs. WT). Kidney and single-nephron GFRs (SNGFR) were significantly reduced in all mutant strains. The direct relationship between PFR and SNGFR was maintained in mutant mice, but the slope of this relationship was reduced in the absence of Cldn2 and/or AQP1. Transtubular osmotic pressure differences were not different between WT and Cldn2−/− mice, but markedly increased in DKO. In conclusion, the deletion of Cldn2, AQP1, or of both Cldn2 and AQP1 reduces PFR by 22.7%, 19.6%, and 26%, respectively. Our data are consistent with an up to 25% paracellular contribution to PFR. The reduced osmotic water permeability caused by absence of AQP1 augments luminal hypotonicity. Aided by a fall in filtered load, the capacity of non-AQP1-dependent transcellular reabsorption is sufficient to maintain PFR without AQP1 and claudin-2 at 75% of control. PMID:24049145

  20. Effects of advanced glycation end products on ezrin-dependent functions in LLC-PK1 proximal tubule cells.

    PubMed

    Bach, Leon A; Gallicchio, Marisa A; McRobert, E Anne; Tikoo, Anjali; Cooper, Mark E

    2005-06-01

    We have recently shown that advanced glycation products (AGEs) bind to the ERM (ezrin, radixin, moesin) family of proteins. ERM proteins act as cross-linkers between cell membrane proteins and the actin cytoskeleton. They are also involved in signal transduction pathways. They therefore have a critical role in normal cell processes, including modulation of cell shape, adhesion, and motility. We postulate that AGEs may contribute to diabetic complications by disrupting ERM function. In support of this hypothesis, AGEs inhibit ezrin-dependent tubulogenesis of proximal tubule cells. Phosphorylation is an important activating mechanism for ERM proteins, and AGEs inhibit ezrin phosphorylation mediated by the epidermal growth factor receptor.

  1. Proximal Tubules Have the Capacity to Regulate Uptake of Albumin.

    PubMed

    Wagner, Mark C; Campos-Bilderback, Silvia B; Chowdhury, Mahboob; Flores, Brittany; Lai, Xianyin; Myslinski, Jered; Pandit, Sweekar; Sandoval, Ruben M; Wean, Sarah E; Wei, Yuan; Satlin, Lisa M; Wiggins, Roger C; Witzmann, Frank A; Molitoris, Bruce A

    2016-02-01

    Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level. Copyright © 2016 by the American Society of Nephrology.

  2. Proximal Tubules Have the Capacity to Regulate Uptake of Albumin

    PubMed Central

    Wagner, Mark C.; Campos-Bilderback, Silvia B.; Chowdhury, Mahboob; Flores, Brittany; Lai, Xianyin; Myslinski, Jered; Pandit, Sweekar; Sandoval, Ruben M.; Wean, Sarah E.; Wei, Yuan; Satlin, Lisa M.; Wiggins, Roger C.; Witzmann, Frank A.

    2016-01-01

    Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level. PMID:26054544

  3. Atgl gene deletion predisposes to proximal tubule damage by impairing the fatty acid metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wen; Zhang, Qiong; Cheng, Shiwu

    Fibrosis is the final common pathway of chronic kidney disease (CKD). Normal lipid metabolism is integral to renal physiology, and disturbances of renal lipid metabolism are increasingly being linked with CKD, including the fibrosis. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis. In the present study, we used Atgl{sup −/−} mice to investigate whether ATGL played a role in the regulation of proximal convoluted tubule (PCT) lipid metabolism and renal fibrosis development. ATGL deficiency led to lipid vacuolation of PCT and tubulointerstitial fibrosis, accompanied by massive albuminuria and decreased creatinine clearance rate (Ccr). In vitro experiments indicated that inhibitionmore » of ATGL in proximal tubular cell line HK-2 promoted intracellular lipid deposition, reactive oxygen species (ROS) accumulation and cell apoptosis. Both in vitro and in vivo experiments showed that ATGL inhibition decreased the renal peroxisome proliferator-activated receptorα(PPARα) expression, which implied the suppressed lipid metabolism. The antioxidant N-acetylcysteine (NAC) could partially reverse the effect of ROS accumulation and cell apoptosis, but could not restore the PPARαdecrease. These data raise the possibility that ATGL deficiency could impair the renal fatty acid metabolism though inhibiting PPARαexpression, which may lead to lipid deposition and cell apoptosis of PCT, and finally contribute to the renal fibrosis and dysfunction. - Highlights: • Atgl{sup −/−} mice develop tubulointerstitial damage and renal dysfunction. • ATGL deficiency results in lipid accumulation and apoptosis of proximal tubular cells. • ROS scavenger alleviates the ATGL-knockdown mediated lipid accumulation and apoptosis. • PPARαdown-regulation is the reason of ROS elevating in ATGL-knockdown HK-2 cells.« less

  4. In vitro studies with renal proximal tubule cells show direct cytotoxicity of Androctonus australis hector scorpion venom triggered by oxidative stress, caspase activation and apoptosis

    PubMed Central

    Saidani, Chanez; Hammoudi-Triki, Djelila; Laraba-Djebari, Fatima; Taub, Mary

    2016-01-01

    Scorpion envenomation injures a number of organs, including the kidney. Mechanisms proposed to explain the renal tubule injury include direct effects of venom on tubule epithelial cells, as well as indirect effects of the autonomic nervous system, and inflammation. Here, we report direct effects of Androctonus australis hector (Aah) scorpion venom on the viability of Renal Proximal Tubule (RPT) cells in vitro, unlike distal tubule and collecting duct cells. Extensive NucGreen nuclear staining was observed in immortalized rabbit RPT cells following treatment with Aah venom, consistent with cytotoxicity. The involvement of oxidative stress is supported by the observations that 1) anti-oxidants mitigated the Aah venom-induced decrease in the number of viable RPT cells, and 2) Aah venom-treated RPT cells were intensively stained with the CellROX® Deep Red reagent, an indicator of Reactive Oxygen Species (ROS). Relevance to normal RPT cells is supported by the red fluorescence observed in Aah venom treated primary rabbit RPT cell cultures following their incubation with the Flica reagent (indicative of caspase activation and apoptosis), and the green fluorescence of Sytox Green (indicative of dead cells). PMID:27470530

  5. The Endocytic Receptor Megalin and its Associated Proteins in Proximal Tubule Epithelial Cells

    PubMed Central

    De, Shankhajit; Kuwahara, Shoji; Saito, Akihiko

    2014-01-01

    Receptor-mediated endocytosis in renal proximal tubule epithelial cells (PTECs) is important for the reabsorption and metabolization of proteins and other substances, including carrier-bound vitamins and trace elements, in glomerular filtrates. Impairment of this endocytic process results in the loss of such substances and development of proteinuria, which is an important clinical indicator of kidney diseases and is also a risk marker for cardiovascular disease. Megalin, a member of the low-density lipoprotein receptor gene family, is a multiligand receptor expressed in the apical membrane of PTECs and plays a central role in the endocytic process. Megalin interacts with various intracellular adaptor proteins for intracellular trafficking and cooperatively functions with other membrane molecules, including the cubilin-amnionless complex. Evidence suggests that megalin and the cubilin-amnionless complex are involved in the uptake of toxic substances into PTECs, which leads to the development of kidney disease. Studies of megalin and its associated molecules will be useful for future development of novel strategies for the diagnosis and treatment of kidney diseases. PMID:25019425

  6. Basolateral membrane Na/base cotransport is dependent on CO2/HCO3 in the proximal convoluted tubule

    PubMed Central

    1987-01-01

    The mechanism of basolateral membrane base transport was examined in the in vitro microperfused rabbit proximal convoluted tubule (PCT) in the absence and presence of ambient CO2/HCO3- by means of the microfluorometric measurement of cell pH. The buffer capacity of the cells measured using rapid NH3 washout was 42.8 +/- 5.6 mmol.liter-1.pH unit-1 in the absence and 84.6 +/- 7.3 mmol.liter-1.pH unit-1 in the presence of CO2/HCO3-. In the presence of CO2/HCO3-, lowering peritubular pH from 7.4 to 6.8 acidified the cell by 0.30 pH units and lowering peritubular Na from 147 to 0 mM acidified the cell by 0.25 pH units. Both effects were inhibited by peritubular 4-acetamido-4'- isothiocyanostilbene-2,2'-disulfonate (SITS). In the absence of exogenous CO2/HCO3-, lowering peritubular pH from 7.4 to 6.8 acidified the cell by 0.25 pH units and lowering peritubular Na from 147 to 0 mM decreased cell pH by 0.20 pH units. Lowering bath pH from 7.4 to 6.8 induced a proton flux of 643 +/- 51 pmol.mm-1.min-1 in the presence of exogenous CO2/HCO3- and 223 +/- 27 pmol.mm-1.min-1 in its absence. Lowering bath Na from 147 to 0 mM induced proton fluxes of 596 +/- 77 pmol.mm-1.min-1 in its absence. The cell acidification induced by lowering bath pH or bath Na in the absence of CO2/HCO3- was inhibited by peritubular SITS or by acetazolamide, whereas peritubular amiloride had no effect. In the absence of exogenous CO2/HCO3-, cyanide blocked the cell acidification induced by bath Na removal, but was without effect in the presence of exogenous CO2/HCO3-. We reached the following conclusions. (a) The basolateral Na/base n greater than 1 cotransporter in the rabbit PCT has an absolute requirement for CO2/HCO3-. (b) In spite of this CO2 dependence, in the absence of exogenous CO2/HCO3-, metabolically produced CO2/HCO3- is sufficient to keep the transporter running at 30% of its control rate in the presence of ambient CO2/HCO3- . (c) There is no apparent amiloride-sensitive Na/H antiporter on

  7. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.

    PubMed

    Chichger, Havovi; Cleasby, Mark E; Srai, Surjit K; Unwin, Robert J; Debnam, Edward S; Marks, Joanne

    2016-06-01

    What is the central question of this study? Although SGLT2 inhibitors represent a promising treatment for patients suffering from diabetic nephropathy, the influence of metabolic disruption on the expression and function of glucose transporters is largely unknown. What is the main finding and its importance? In vivo models of metabolic disruption (Goto-Kakizaki type II diabetic rat and junk-food diet) demonstrate increased expression of SGLT1, SGLT2 and GLUT2 in the proximal tubule brush border. In the type II diabetic model, this is accompanied by increased SGLT- and GLUT-mediated glucose uptake. A fasted model of metabolic disruption (high-fat diet) demonstrated increased GLUT2 expression only. The differential alterations of glucose transporters in response to varying metabolic stress offer insight into the therapeutic value of inhibitors. SGLT2 inhibitors are now in clinical use to reduce hyperglycaemia in type II diabetes. However, renal glucose reabsorption across the brush border membrane (BBM) is not completely understood in diabetes. Increased consumption of a Western diet is strongly linked to type II diabetes. This study aimed to investigate the adaptations that occur in renal glucose transporters in response to experimental models of diet-induced insulin resistance. The study used Goto-Kakizaki type II diabetic rats and normal rats rendered insulin resistant using junk-food or high-fat diets. Levels of protein kinase C-βI (PKC-βI), GLUT2, SGLT1 and SGLT2 were determined by Western blotting of purified renal BBM. GLUT- and SGLT-mediated d-[(3) H]glucose uptake by BBM vesicles was measured in the presence and absence of the SGLT inhibitor phlorizin. GLUT- and SGLT-mediated glucose transport was elevated in type II diabetic rats, accompanied by increased expression of GLUT2, its upstream regulator PKC-βI and SGLT1 protein. Junk-food and high-fat diet feeding also caused higher membrane expression of GLUT2 and its upstream regulator PKC

  8. In vitro studies with renal proximal tubule cells show direct cytotoxicity of Androctonus australis hector scorpion venom triggered by oxidative stress, caspase activation and apoptosis.

    PubMed

    Saidani, Chanez; Hammoudi-Triki, Djelila; Laraba-Djebari, Fatima; Taub, Mary

    2016-09-15

    Scorpion envenomation injures a number of organs, including the kidney. Mechanisms proposed to explain the renal tubule injury include direct effects of venom on tubule epithelial cells, as well as indirect effects of the autonomic nervous system, and inflammation. Here, we report direct effects of Androctonus australis hector (Aah) scorpion venom on the viability of Renal Proximal Tubule (RPT) cells in vitro, unlike distal tubule and collecting duct cells. Extensive NucGreen nuclear staining was observed in immortalized rabbit RPT cells following treatment with Aah venom, consistent with cytotoxicity. The involvement of oxidative stress is supported by the observations that 1) anti-oxidants mitigated the Aah venom-induced decrease in the number of viable RPT cells, and 2) Aah venom-treated RPT cells were intensively stained with the CellROX(®) Deep Red reagent, an indicator of Reactive Oxygen Species (ROS). Relevance to normal RPT cells is supported by the red fluorescence observed in Aah venom treated primary rabbit RPT cell cultures following their incubation with the Flica reagent (indicative of caspase activation and apoptosis), and the green fluorescence of Sytox Green (indicative of dead cells). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Changes in gene expression in human renal proximal tubule cells exposed to low concentrations of S-(1,2-dichlorovinyl)-L-cysteine, a metabolite of trichloroethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lock, Edward A.; Barth, Jeremy L.; Argraves, Scott W.

    2006-10-15

    Epidemiology studies suggest that there may be a weak association between high level exposure to trichloroethylene (TCE) and renal tubule cell carcinoma. Laboratory animal studies have shown an increased incidence of renal tubule carcinoma in male rats but not mice. TCE can undergo metabolism via glutathione (GSH) conjugation to form metabolites that are known to be nephrotoxic. The GSH conjugate, S-(1,2-dichlorovinyl)glutathione (DCVG), is processed further to the cysteine conjugate, S-(1,2-dichlorovinyl)-L-cysteine (DCVC), which is the penultimate nephrotoxic species. We have cultured human renal tubule cells (HRPTC) in serum-free medium under a variety of different culture conditions and observed growth, respiratory controlmore » and glucose transport over a 20 day period in medium containing low glucose. Cell death was time- and concentration-dependent, with the EC{sub 5} for DCVG being about 3 {mu}M and for DCVC about 7.5 {mu}M over 10 days. Exposure of HRPTC to sub-cytotoxic doses of DCVC (0.1 {mu}M and 1 {mu}M for 10 days) led to a small number of changes in gene expression, as determined by transcript profiling with Affymetrix human genome chips. Using the criterion of a mean 2-fold change over control for the four samples examined, 3 genes at 0.1 {mu}M DCVC increased, namely, adenosine kinase, zinc finger protein X-linked and an enzyme with lyase activity. At 1 {mu}M DCVC, two genes showed a >2-fold decrease, N-acetyltransferase 8 and complement factor H. At a lower stringency (1.5-fold change), a total of 63 probe sets were altered at 0.1 {mu}M DCVC and 45 at 1 {mu}M DCVC. Genes associated with stress, apoptosis, cell proliferation and repair and DCVC metabolism were altered, as were a small number of genes that did not appear to be associated with the known mode of action of DCVC. Some of these genes may serve as molecular markers of TCE exposure and effects in the human kidney.« less

  10. Interactive toxicity of inorganic mercury and trichloroethylene in rat and human proximal tubules: Effects on apoptosis, necrosis, and glutathione status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lash, Lawrence H.; Putt, David A.; Hueni, Sarah E.

    Simultaneous or prior exposure to one chemical may alter the concurrent or subsequent response to another chemical, often in unexpected ways. This is particularly true when the two chemicals share common mechanisms of action. The present study uses the paradigm of prior exposure to study the interactive toxicity between inorganic mercury (Hg{sup 2+}) and trichloroethylene (TRI) or its metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) in rat and human proximal tubule. Pretreatment of rats with a subtoxic dose of Hg{sup 2+} increased expression of glutathione S-transferase-{alpha}1 (GST{alpha}1) but decreased expression of GST{alpha}2, increased activities of several GSH-dependent enzymes, and increased GSH conjugation of TRI.more » Primary cultures of rat proximal tubular (rPT) cells exhibited both necrosis and apoptosis after incubation with Hg{sup 2+}. Pretreatment of human proximal tubular (hPT) cells with Hg{sup 2+} caused little or no changes in GST expression or activities of GSH-dependent enzymes, decreased apoptosis induced by TRI or DCVC, but increased necrosis induced by DCVC. In contrast, pretreatment of hPT cells with TRI or DCVC protected from Hg{sup 2+} by decreasing necrosis and increasing apoptosis. Thus, whereas pretreatment of hPT cells with Hg{sup 2+} exacerbated cellular injury due to TRI or DCVC by shifting the response from apoptosis to necrosis, pretreatment of hPT cells with either TRI or DCVC protected from Hg{sup 2+}-induced cytotoxicity by shifting the response from necrosis to apoptosis. These results demonstrate that by altering processes related to GSH status, susceptibilities of rPT and hPT cells to acute injury from Hg{sup 2+}, TRI, or DCVC are markedly altered by prior exposures.« less

  11. Role of NF-κB in oxidative stress-induced defective dopamine D1 receptor signaling in the renal proximal tubules of Sprague Dawley rats

    PubMed Central

    Fardoun, Riham Zein; Asghar, Mohammad; Lokhandwala, Mustafa

    2009-01-01

    Dopamine promotes sodium excretion, in part, via activation of D1 receptors in renal proximal tubules (PT) and subsequent inhibition of Na, K-ATPase. Recently, we have reported that oxidative stress causes D1 receptors-G-protein uncoupling via mechanisms involving Protein Kinase C (PKC) and G-protein Coupled Receptor Kinase 2 (GRK2) in the primary culture of renal PT of Sprague Dawley (SD) rats. There are reports suggesting that redox-sensitive nuclear transcription factor, NF-κB, is activated in conditions associated with oxidative stress. This study was designed to identify the role of NF-κB in oxidative stress–induced defective renal D1 receptor –G-protein coupling and function. Treatment of the PT with hydrogen peroxide (H2O2, 50 μM/20 min) induced the nuclear translocation of NF-κB, increased PKC activity, and triggered the translocation of GRK2 to the proximal tubular membranes. This was accompanied by hyperphosphorylation of D1 receptors and defective D1 receptor-G-protein coupling. The functional consequence of these changes was decreased D1 receptor activation-mediated inhibition of Na, K-ATPase activity. Interestingly, pre-treatment with pyrrolidine dithiocarbamate (PDTC, 25 μM/10min), an NF-κB inhibitor, blocked the H2O2-induced nuclear translocation of NF-κB, increase in PKC activity, as well as GRK2 translocation and hyperphosphorylation of D1 receptors in the proximal tubular membranes. Furthermore, PDTC restored D1 receptor G-protein coupling and D1 receptor agonist-mediated inhibition of the Na, KATPase activity. Therefore, we suggest that oxidative stress causes nuclear translocation of NF-κB in the renal proximal tubules, which contributes to defective D1-receptor-G-protein coupling and function via mechanism involving PKC, membranous translocation of GRK 2, and subsequent phosphorylation of dopamine D1 receptors. PMID:17320758

  12. Short term exposure to elevated levels of leptin reduces proximal tubule cell metabolic activity.

    PubMed

    Briffa, Jessica F; Grinfeld, Esther; McAinch, Andrew J; Poronnik, Philip; Hryciw, Deanne H

    2014-01-25

    Leptin plays a pathophysiological role in the kidney, however, its acute effects on the proximal tubule cells (PTCs) are unknown. In opossum kidney (OK) cells in vitro, Western blot analysis identified that exposure to leptin increases the phosphorylation of the mitogen-activated protein kinase (MAPK) p44/42 and the mammalian target of rapamycin (mTOR). Importantly leptin (0.05, 0.10, 0.25 and 0.50 μg/ml) significantly reduced the metabolic activity of PTCs, and significantly decreased protein content per cell. Investigation of the role of p44/42 and mTOR on metabolic activity and protein content per cell, demonstrated that in the presence of MAPK inhibitor U0126 and mTOR inhibitor Ku-63794, that the mTOR pathway is responsible for the reduction in PTC metabolic activity in response to leptin. However, p44/42 and mTOR play no role the reduced protein content per cell in OKs exposed to leptin. Therefore, leptin modulates metabolic activity in PTCs via an mTOR regulated pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Inhibition of Na+−H+ exchange impairs receptor-mediated albumin endocytosis in renal proximal tubule-derived epithelial cells from opossum

    PubMed Central

    Gekle, Michael; Drumm, Karina; Mildenberger, Sigrid; Freudinger, Ruth; Gaßner, Birgit; Silbernagl, Stefan

    1999-01-01

    Receptor-mediated endocytosis is an important mechanism for transport of macromolecules and regulation of cell-surface receptor expression. In renal proximal tubules, receptor-mediated endocytosis mediates the reabsorption of filtered albumin. Acidification of the endocytic compartments is essential because it interferes with ligand-receptor dissociation, vesicle trafficking, fusion events and coat formation. Here we show that the activity of Na+−H+ exchanger isoform 3 (NHE3) is important for proper receptor-mediated endocytosis of albumin and endosomal pH homeostasis in a renal proximal tubular cell line (opossum kidney cells) which expresses NHE3 only. Depending on their inhibitory potency with respect to NHE3 and their lipophilicity, the NHE inhibitors EIPA, amiloride and HOE694 differentially reduced albumin endocytosis. The hydrophilic inhibitor HOE642 had no effect. Inhibition of NHE3 led to an alkalinization of early endosomes and to an acidification of the cytoplasm, indicating that Na+−H+ exchange contributes to the acidification of the early endosomal compartment due to the existence of a sufficient Na+ gradient across the endosomal membrane. Exclusive acidification of the cytoplasm with propionic acid or by removal of Na+ induced a significantly smaller reduction in endocytosis than that induced by inhibition of Na+−H+ exchange. Analysis of the inhibitory profiles indicates that in early endosomes and endocytic vesicles NHE3 is of major importance, whereas plasma membrane NHE3 plays a minor role. Thus, NHE3-mediated acidification along the first part of the endocytic pathway plays an important role in receptor-mediated endocytosis. Furthermore, the involvement of NHE3 offers new ways to explain the regulation of receptor-mediated endocytosis. PMID:10545138

  14. Effects of a human recombinant alkaline phosphatase during impaired mitochondrial function in human renal proximal tubule epithelial cells.

    PubMed

    Peters, Esther; Schirris, Tom; van Asbeck, Alexander H; Gerretsen, Jelle; Eymael, Jennifer; Ashikov, Angel; Adjobo-Hermans, Merel J W; Russel, Frans; Pickkers, Peter; Masereeuw, Rosalinde

    2017-02-05

    Sepsis-associated acute kidney injury is a multifactorial syndrome in which inflammation and renal microcirculatory dysfunction play a profound role. Subsequently, renal tubule mitochondria reprioritize cellular functions to prevent further damage. Here, we investigated the putative protective effects of human recombinant alkaline phosphatase (recAP) during inhibition of mitochondrial respiration in conditionally immortalized human proximal tubule epithelial cells (ciPTEC). Full inhibition of mitochondrial oxygen consumption was obtained after 24h antimycin A treatment, which did not affect cell viability. While recAP did not affect the antimycin A-induced decreased oxygen consumption and increased hypoxia-inducible factor-1α or adrenomedullin gene expression levels, the antimycin A-induced increase of pro-inflammatory cytokines IL-6 and IL-8 was attenuated. Antimycin A tended to induce the release of detrimental purines ATP and ADP, which reached statistical significance when antimycin A was co-incubated with lipopolysaccharide, and were completely converted into cytoprotective adenosine by recAP. As the adenosine A 2A receptor was up-regulated after antimycin A exposure, an adenosine A 2A receptor knockout ciPTEC cell line was generated in which recAP still provided protection. Together, recAP did not affect oxygen consumption but attenuated the inflammatory response during impaired mitochondrial function, an effect suggested to be mediated by dephosphorylating ATP and ADP into adenosine. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Passive driving forces of proximal tubular fluid and bicarbonate transport: gradient dependence of H+ secretion.

    PubMed

    Chan, Y L; Malnic, G; Giebisch, G

    1983-11-01

    The effect of oncotic pressure changes on fluid (Jv) and net bicarbonate transport (JHCO-3) and the transepithelial bicarbonate permeability (PHCO-3) were measured by an improved luminal and capillary microperfusion method that allows paired experiments on the same tubule. Rat proximal tubules were pump-perfused and Jv and [HCO-3] measured with [14C]inulin and a pH glass electrode. Raising peritubular protein (0-8-15 g/100 ml bovine serum albumin) stimulated Jv and HCO-3 reabsorption. The response to oncotic pressure changes was asymmetrical since changes of the luminal protein concentration had no significant effects. Whereas transepithelial solvent drag effects on HCO-3 must be minimal, peritubular protein most likely stimulates translocation of fluid and bicarbonate from intercellular spaces into peritubular capillaries. PHCO-3 was measured from HCO-3 net flux along a lumen-to-capillary-directed electrochemical potential gradient. In these experiments active H+ transport and Jv were minimized by 10(-4) M acetazolamide and luminal raffinose. PHCO-3 was 1.77 X 10(-5) cm X s-1 and was unaffected by increasing luminal flow rate from 10 to 45 nl X min-1. Since bicarbonate backflux is only a small fraction of physiological rates of JHCO-3, net transport alterations at varying [HCO-3] in the lumen must be due to changes in active HCO-3 (H+) transport. Thus, active H+ ion secretion across the luminal membrane of the proximal tubule is gradient dependent.

  16. Paracellular transport and energy utilization in the renal tubule.

    PubMed

    Yu, Alan S L

    2017-09-01

    Paracellular transport across the tight junction is a general mechanism for transepithelial transport of solutes in epithelia, including the renal tubule. However, why paracellular transport evolved, given the existence of a highly versatile system for transcellular transport, is unknown. Recent studies have identified the paracellular channel, claudin-2, that is responsible for paracellular reabsorption of sodium in the proximal renal tubule. Knockout of claudin-2 in mice impairs proximal sodium and fluid reabsorption but is compensated by upregulation of sodium reabsorption in the loop of Henle. This occurs at the expense of increased renal oxygen consumption, hypoxia of the outer medulla and increased susceptibility to ischemic kidney injury. Paracellular transport can be viewed as a mechanism to exploit the potential energy in existing electrochemical gradients to drive passive transepithelial transport without consuming additional energy. In this way, it enhances the efficiency of energy utilization by transporting epithelia.

  17. Uptake of gentamicin by separated, viable renal tubules from rabbits.

    PubMed

    Barza, M; Murray, T; Hamburger, R J

    1980-04-01

    The proximal renal tubules have a marked affinity for gentamicin; they also are the major site of nephrotoxicity caused by this drug. The uptake of radiolabeled gentamicin in separated, viable renal tubules prepared by enzymatic digestion of rabbit kidneys was studied. The preparations showed rapid initial uptake of gentamicin followed by continued slower uptake. Accumulation was not affected by pH, but was significantly inhibited by ouabain, dinitrophenol, anoxia, and hypothermia in the absence of evident cellular damage. At gentamicin concentrations of greater than 50 microgram/ml in the medium, there was competition for drug uptake. Gentamicin efflux in tubules that were taken from a medium containing antibiotic and placed into antibiotic-free fluid was slow and incomplete. From these data it appears that gentamicin uptake by separated renal tubules occurs by a process that requires metabolic energy; thereafter, the drug resides in a poorly exchangeable cellular pool.

  18. Aniso Tubule

    NASA Image and Video Library

    2015-04-03

    ISS043E087335 (04/03/2015) --- ESA (European Space Agency) astronaut Samantha Cristoforetti works to retrieve samples for the Aniso Tubule experiment from the Cell Biology Experiment Facility (CBEF) on Apr. 3, 2015. Aniso Tubule examines growth modifications of Arabidopsis hypocotyls in space. Scientists will analyze the changes in dynamics of cortical microtubules and microtubule associated proteins with a fluorescence microscope.

  19. Coenzyme Q10 protects renal proximal tubule cells against nicotine-induced apoptosis through induction of p66shc-dependent antioxidant responses.

    PubMed

    Arany, Istvan; Carter, Anthony; Hall, Samuel; Fulop, Tibor; Dixit, Mehul

    2017-02-01

    Chronic nicotine exposure (via smoking, E-cigarettes) increases oxidative stress in the kidney that sensitizes it to additional injury in experimental models and in the renal patient. The pro-apoptotic p66 shc protein-via serine36 phosphorylation that facilitates its mitochondrial translocation and therein cytochrome c binding-generates oxidative stress that leads to injury of renal proximal tubule cells during chronic nicotine exposure. Coenzyme Q10-a clinically safe antioxidant-has been used against nicotine/smoke extract-associated oxidative stress in various non-renal cells. This study explored the anti-oxidant/anti-apoptotic effect of Coenzyme Q10 on nicotine-induced oxidative stress and its impact on p66shc in cultured rat renal proximal tubule cells (NRK52E). We studied the anti-oxidant effect of 10 µM Coenzyme Q10 using various mutants of the p66shc gene and also determined the induction of selected anti-oxidant entities (antioxidant response element, promoter of the manganese superoxide dismutase gene) in reporter luciferase assay during oxidative stress induced by 200 µM nicotine. Our studies revealed that Coenzyme Q10 strongly inhibits nicotine-mediated production of reactive oxygen species and consequent apoptosis that requires serine36 phosphorylation but not mitochondrial translocation/cytochrome c binding of p66 shc . While both nicotine and Coenzyme Q10 stimulates the p66shc promoter, only nicotine exposure results in mitochondrial translocation of p66 shc . In contrast, the Coenzyme Q10-stimulated and non-mitochondrial p66 shc activates the anti-oxidant manganese superoxide dismutase promoter via the antioxidant response elements and hence, rescues cells from nicotine-induced oxidative stress and consequent apoptosis.

  20. Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. II. Exclusion of HCO3(-)-effects on other ion permeabilities and of coupled electroneutral HCO3(-)-transport.

    PubMed

    Burckhardt, B C; Cassola, A C; Frömter, E

    1984-05-01

    Cell membrane potentials of rat kidney proximal tubules were measured in response to peritubular ion substitutions in vivo with conventional and Cl- sensitive microelectrodes in order to test possible alternative explanations of the bicarbonate dependent cell potential transients reported in the preceding paper. Significant direct effects of bicarbonate on peritubular K+, Na+, and Cl- conductances could be largely excluded by blocking K+ permeability with Ba2+ and replacing all Na+ and Cl- by choline or respectively SO4(2-) isethionate, or gluconate. Under those conditions the cell membrane response to HCO3- was essentially preserved. In addition it was observed that peritubular Cl- conductance is negligibly small, that Cl-/HCO3- exchange - if present at all - is insignificant, and that rheogenic HCO3- flow with coupling to Na+ flow is also absent or insignificant. A transient disturbance of the Na+ pump or a transient unspecific increase of the membrane permeability was also excluded by experiments with ouabain and by the observation that SITS (4-acetamido-4'-isothiocyano-2,2' disulphonic stilbene) blocked the HCO3- response instantaneously. The data strongly support the notion that the potential changes in response to peritubular HCO3- concentration changes arise from passive rheogenic bicarbonate transfer across the peritubular cell membrane, and hence that this membrane has a high conductance for bicarbonate buffer.

  1. Physiological roles of claudins in kidney tubule paracellular transport.

    PubMed

    Muto, Shigeaki

    2017-01-01

    The paracellular pathways in renal tubular epithelia such as the proximal tubules, which reabsorb the largest fraction of filtered solutes and water and are leaky epithelia, are important routes for transepithelial transport of solutes and water. Movement occurs passively via an extracellular route through the tight junction between cells. The characteristics of paracellular transport vary among different nephron segments with leaky or tighter epithelia. Claudins expressed at tight junctions form pores and barriers for paracellular transport. Claudins are from a multigene family, comprising at least 27 members in mammals. Multiple claudins are expressed at tight junctions of individual nephron segments in a nephron segment-specific manner. Over the last decade, there have been advances in our understanding of the structure and functions of claudins. This paper is a review of our current knowledge of claudins, with special emphasis on their physiological roles in proximal tubule paracellular solute and water transport. Copyright © 2017 the American Physiological Society.

  2. Missense mutation T485S alters NBCe1-A electrogenicity causing proximal renal tubular acidosis

    PubMed Central

    Shao, Xuesi M.; Kao, Liyo; Azimov, Rustam; Weinstein, Alan M.; Newman, Debra; Liu, Weixin; Kurtz, Ira

    2013-01-01

    Mutations in SLC4A4, the gene encoding the electrogenic Na+-HCO3− cotransporter NBCe1, cause severe proximal renal tubular acidosis (pRTA), growth retardation, decreased IQ, and eye and teeth abnormalities. Among the known NBCe1 mutations, the disease-causing mechanism of the T485S (NBCe1-A numbering) mutation is intriguing because the substituted amino acid, serine, is structurally and chemically similar to threonine. In this study, we performed intracellular pH and whole cell patch-clamp measurements to investigate the base transport and electrogenic properties of NBCe1-A-T485S in mammalian HEK 293 cells. Our results demonstrated that Ser substitution of Thr485 decreased base transport by ∼50%, and importantly, converted NBCe1-A from an electrogenic to an electroneutral transporter. Aqueous accessibility analysis using sulfhydryl reactive reagents indicated that Thr485 likely resides in an NBCe1-A ion interaction site. This critical location is also supported by the finding that G486R (a pRTA causing mutation) alters the position of Thr485 in NBCe1-A thereby impairing its transport function. By using NO3− as a surrogate ion for CO32−, our result indicated that NBCe1-A mediates electrogenic Na+-CO32− cotransport when functioning with a 1:2 charge transport stoichiometry. In contrast, electroneutral NBCe1-T485S is unable to transport NO3−, compatible with the hypothesis that it mediates Na+-HCO3− cotransport. In patients, NBCe1-A-T485S is predicted to transport Na+-HCO3− in the reverse direction from blood into proximal tubule cells thereby impairing transepithelial HCO3− absorption, possibly representing a new pathogenic mechanism for generating human pRTA. PMID:23636456

  3. Human proximal tubule epithelial cells cultured on hollow fibers: living membranes that actively transport organic cations

    PubMed Central

    Jansen, J.; De Napoli, I. E; Fedecostante, M.; Schophuizen, C. M. S.; Chevtchik, N. V.; Wilmer, M. J.; van Asbeck, A. H.; Croes, H. J.; Pertijs, J. C.; Wetzels, J. F. M.; Hilbrands, L. B.; van den Heuvel, L. P.; Hoenderop, J. G.; Stamatialis, D.; Masereeuw, R.

    2015-01-01

    The bioartificial kidney (BAK) aims at improving dialysis by developing ‘living membranes’ for cells-aided removal of uremic metabolites. Here, unique human conditionally immortalized proximal tubule epithelial cell (ciPTEC) monolayers were cultured on biofunctionalized MicroPES (polyethersulfone) hollow fiber membranes (HFM) and functionally tested using microfluidics. Tight monolayer formation was demonstrated by abundant zonula occludens-1 (ZO-1) protein expression along the tight junctions of matured ciPTEC on HFM. A clear barrier function of the monolayer was confirmed by limited diffusion of FITC-inulin. The activity of the organic cation transporter 2 (OCT2) in ciPTEC was evaluated in real-time using a perfusion system by confocal microscopy using 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) as a fluorescent substrate. Initial ASP+ uptake was inhibited by a cationic uremic metabolites mixture and by the histamine H2-receptor antagonist, cimetidine. In conclusion, a ‘living membrane’ of renal epithelial cells on MicroPES HFM with demonstrated active organic cation transport was successfully established as a first step in BAK engineering. PMID:26567716

  4. Proapoptotic effect of a micropollutant (tris-(2-chloroethyl)-phosphate) at environmental level in primary cultured renal proximal tubule cells.

    PubMed

    Ren, Xianghao; Han, Ho Jae; Lee, Yu Jin; Lee, Sang Hun; Ng, How Yong; Chae, Kyu-Jung; Kim, In S

    2012-12-01

    Being a typical micropollutant, tris-(2-chloroethyl)-phosphate (TCEP) is often found in aquatic environments. However, the potential effects of TCEP at environmental concentrations on apoptotic mechanisms are mostly unknown. Thus, the purpose of this study is to investigate the apoptotic regulatory protein expression of TCEP at environmental concentration in primary cultured renal proximal tubule cells (PTCs). The results show that TCEP at 0.01 and 1 mg L(-1) significantly increased the phosphorylation of c-Jun-NH2-terminal kinase (JNK) (135.5 and 138.0% of the control, respectively), and significantly decreased the expression of Bcl-2 and cIAP-2 at all tested concentrations, except for a slight decrease of Bcl-2 at 0.01 mg L(-1). In addition, TCEP significantly increased the expression of caspase-3 at all three concentrations (132.6, 172.6 and 167.9% of the control, respectively) and caspase-9 at 1 and 10 mg L(-1) (128.3 and 144.5% of the control, respectively). Furthermore, TCEP increased the apoptotic cell population in a flow cytometry analysis. In conclusion, environmental TCEP might have a dose-dependent proapoptotic effect with a decrease of DNA synthesis and cell number in primary cultured renal PTCs.

  5. 3D variations in human crown dentin tubule orientation: a phase-contrast microtomography study.

    PubMed

    Zaslansky, Paul; Zabler, Simon; Fratzl, Peter

    2010-01-01

    Tubules dominate the microstructure of dentin, and in crowns of human teeth they are surrounded by thick mineralized peritubular cuffs of high stiffness. Here we examine the three-dimensional (3D) arrangement of tubules in relation to enamel on the buccal and lingual aspects of intact premolars and molars. Specifically we investigate the angular orientation of tubules relative to the plane of the junction of dentin with enamel (DEJ) by means of wet, non-destructive and high-resolution phase-contrast (coherent) tomography. Enamel capped dentin samples (n=16), cut from the buccal and lingual surfaces of upper and lower premolar and molar teeth, were imaged in water by high-resolution synchrotron-based phase-contrast X-ray radiography. Reconstructed 3D virtual images were co-aligned with respect to the DEJ plane. The average tubule orientation was determined at increasing distances from the DEJ, based on integrated projections onto orthogonal virtual planes. The angle and curl of the tubules were determined every 100 microm to a depth of 1.4mm beneath the DEJ. Most tubules do not extend at right angles from the DEJ. Even when they do, tubules always change their orientations substantially within the first half-millimeter zone beneath the DEJ, both on the buccal and lingual aspects of premolar and molar teeth. Tubules also tend to curl and twist within this zone. Student t-tests indicate that lower teeth seem to have greater tilts in the tubule orientations relative to the DEJ normal with an average angle of 42 degrees (+/-2.0 degrees), whereas upper teeth exhibit a smaller change of orientation, with an average of 32 degrees (+/-2.1 degrees). Tubules are a central characteristic of dentin, with important implications on how it is arranged and what the properties are. Knowing about the path that tubules follow is important for various reasons, ranging form improving control over restorative procedures to understanding or simulating the mechanical properties of teeth

  6. Antenatal betamethasone attenuates the angiotensin-(1-7)-Mas receptor-nitric oxide axis in isolated proximal tubule cells.

    PubMed

    Su, Yixin; Bi, Jianli; Pulgar, Victor M; Chappell, Mark C; Rose, James C

    2017-06-01

    We previously reported a sex-specific effect of antenatal treatment with betamethasone (Beta) on sodium (Na + ) excretion in adult sheep whereby treated males but not females had an attenuated natriuretic response to angiotensin-(1-7) [Ang-(1-7)]. The present study determined the Na + uptake and nitric oxide (NO) response to low-dose Ang-(1-7) (1 pM) in renal proximal tubule cells (RPTC) from adult male and female sheep antenatally exposed to Beta or vehicle. Data were expressed as percentage of basal uptake or area under the curve for Na + or percentage of control for NO. Male Beta RPTC exhibited greater Na + uptake than male vehicle cells (433 ± 28 vs. 330 ± 26%; P < 0.05); however, Beta exposure had no effect on Na + uptake in the female cells (255 ± 16 vs. 255 ± 14%; P > 0.05). Ang-(1-7) significantly inhibited Na + uptake in RPTC from vehicle male (214 ± 11%) and from both vehicle (190 ± 14%) and Beta (209 ± 11%) females but failed to attenuate Na + uptake in Beta male cells. Beta exposure also abolished stimulation of NO by Ang-(1-7) in male but not female RPTC. Both the Na + and NO responses to Ang-(1-7) were blocked by Mas receptor antagonist d-Ala 7 -Ang-(1-7). We conclude that the tubular Ang-(1-7)-Mas-NO pathway is attenuated in males and not females by antenatal Beta exposure. Moreover, since primary cultures of RPTC retain both the sex and Beta-induced phenotype of the adult kidney in vivo they appear to be an appropriate cell model to examine the effects of fetal programming on Na + handling by the renal tubules. Copyright © 2017 the American Physiological Society.

  7. Evaluation of “Dream Herb,” Calea zacatechichi, for Nephrotoxicity Using Human Kidney Proximal Tubule Cells

    PubMed Central

    Flynn, Thomas J.; Vohra, Sanah; Wiesenfeld, Paddy; Sprando, Robert L.

    2016-01-01

    A recent surge in the use of dietary supplements, including herbal remedies, necessitates investigations into their safety profiles. “Dream herb,” Calea zacatechichi, has long been used in traditional folk medicine for a variety of purposes and is currently being marketed in the US for medicinal purposes, including diabetes treatment. Despite the inherent vulnerability of the renal system to xenobiotic toxicity, there is a lack of safety studies on the nephrotoxic potential of this herb. Additionally, the high frequency of diabetes-associated kidney disease makes safety screening of C. zacatechichi for safety especially important. We exposed human proximal tubule HK-2 cells to increasing doses of this herb alongside known toxicant and protectant control compounds to examine potential toxicity effects of C. zacatechichi relative to control compounds. We evaluated both cellular and mitochondrial functional changes related to toxicity of this dietary supplement and found that even at low doses evidence of cellular toxicity was significant. Moreover, these findings correlated with significantly elevated levels of nephrotoxicity biomarkers, lending further support for the need to further scrutinize the safety of this herbal dietary supplement. PMID:27703475

  8. Segmental sodium reabsorption by the renal tubule in prenatally programmed hypertension in the rat.

    PubMed

    Alwasel, Saleh H; Ashton, Nick

    2012-02-01

    Hypertension and renal dysfunction can be programmed in the rat by prenatal exposure to a low-protein (LP) diet. Expression of the renal thick ascending limb (TAL) sodium transporter NKCC2 is up-regulated, which has been predicted to result in greater sodium reabsorption. However, we have shown that LP rats excrete more not less sodium. The aim of this study was to determine whether the increased abundance of sodium:potassium:chloride (Na(+):K(+):2Cl(-)) co-transporter (NKCC2) leads to enhanced sodium uptake by the TAL. Pregnant Wistar rats were fed a control (18%) or LP (9%) diet. Amiloride (AM), bendroflumethiazide (BF), and furosemide (FUR) were administered acutely to male offspring at 4 weeks of age. Fractional excretion of sodium (FE(Na)) was significantly greater in vehicle-infused LP rats (3.0 ± 0.3%) compared with controls (1.7 ± 0.5, P < 0.01). FE(Na) by the LP proximal tubule did not differ from controls, whereas FE(Na) by the distal tubule was significantly greater (P < 0.01). These differences were abolished by the administration of AM + BF (equivalent to the outflow from the TAL) and AM + BF + FUR (equivalent to the outflow from the proximal tubule), suggesting that the increase in NKCC2 expression was not functional. However, during acute salt loading, the LP rat pressure natriuresis curve was shifted rightward, implying that raised systemic blood pressure is required to match urinary sodium excretion with dietary intake. These data suggest that renal sodium handling is impaired in the LP rat but that this is not due to increased NKCC2 expression.

  9. Hazard evaluation of chemicals that cause accumulation of alpha 2u-globulin, hyaline droplet nephropathy, and tubule neoplasia in the kidneys of male rats.

    PubMed Central

    Hard, G C; Rodgers, I S; Baetcke, K P; Richards, W L; McGaughy, R E; Valcovic, L R

    1993-01-01

    This review paper examines the relationship between chemicals inducing excessive accumulation of alpha 2u-globulin (alpha 2u-g) (CIGA) in hyaline droplets in male rat kidneys and the subsequent development of nephrotoxicity and renal tubule neoplasia in the male rat. This dose-responsive hyaline droplet accumulation distinguishes CIGA carcinogens from classical renal carcinogens. CIGA carcinogens also do not appear to react with DNA and are generally negative in short-term tests for genotoxicity, CIGA or their metabolites bind specifically, but reversibly, to male rat alpha 2u-g. The resulting complex appears to be more resistant to hydrolytic degradation in the proximal tubule than native, unbound alpha 2u-g. Single cell necrosis of the tubule epithelium, with associated granular cast formation and papillary mineralization, is followed by sustained regenerative tubule cell proliferation, foci of tubule hyperplasia in the convoluted proximal tubules, and renal tubule tumors. Although structurally similar proteins have been detected in other species, including humans, renal lesions characteristic of alpha 2u-g nephropathy have not been observed. Epidemiologic investigation has not specifically examined the CIGA hypothesis for humans. Based on cancer bioassays, hormone manipulation studies, investigations in an alpha 2u-g-deficient strain of rat, and other laboratory data, an increased proliferative response caused by chemically induced cytotoxicity appears to play a role in the development of renal tubule tumors in male rats. Thus, it is reasonable to suggest that the renal effects induced in male rats by chemicals causing alpha 2u-g accumulation are unlikely to occur in humans. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. FIGURE 10. FIGURE 11. FIGURE 12. FIGURE 13. PMID:7686485

  10. AT1 receptor-mediated uptake of angiotensin II and NHE-3 expression in proximal tubule cells through a microtubule-dependent endocytic pathway.

    PubMed

    Li, Xiao C; Hopfer, Ulrich; Zhuo, Jia L

    2009-11-01

    Angiotensin II (ANG II) is taken up by proximal tubule (PT) cells via AT1 (AT1a) receptor-mediated endocytosis, but the underlying cellular mechanisms remain poorly understood. The present study tested the hypothesis that the microtubule- rather than the clathrin-dependent endocytic pathway regulates AT1-mediated uptake of ANG II and ANG II-induced sodium and hydrogen exchanger-3 (NHE-3) expression in PT cells. The expression of AT1 receptors, clathrin light (LC) and heavy chain (HC) proteins, and type 1 microtubule-associated proteins (MAPs; MAP-1A and MAP-1B) in PT cells were knocked down by their respective small interfering (si) RNAs before AT1-mediated FITC-ANG II uptake and ANG II-induced NHE-3 expression were studied. AT1 siRNAs inhibited AT1 expression and blocked ANG II-induced NHE-3 expression in PT cells, as expected (P < 0.01). Clathrin LC or HC siRNAs knocked down their respective proteins by approximately 90% with a peak response at 24 h, and blocked the clathrin-dependent uptake of Alexa Fluor 594-transferrin (P < 0.01). However, neither LC nor HC siRNAs inhibited AT1-mediated uptake of FITC-ANG II or affected ANG II-induced NHE-3 expression. MAP-1A or MAP-1B siRNAs markedly knocked down MAP-1A or MAP-1B proteins in a time-dependent manner with peak inhibitions at 48 h (>76.8%, P < 0.01). MAP protein knockdown resulted in approximately 52% decreases in AT1-mediated FITC-ANG II uptake and approximately 66% decreases in ANG II-induced NHE-3 expression (P < 0.01). These effects were associated with threefold decreases in ANG II-induced MAP kinases ERK 1/2 activation (P < 0.01), but not with altered AT1 expression or clathrin-dependent transferrin uptake. Both losartan and AT1a receptor deletion in mouse PT cells completely abolished the effects of MAP-1A knockdown on ANG II-induced NHE-3 expression and activation of MAP kinases ERK1/2. Our findings suggest that the alternative microtubule-dependent endocytic pathway, rather than the canonical clathrin

  11. 5-Lypoxygenase products are involved in renal tubulointerstitial injury induced by albumin overload in proximal tubules in mice.

    PubMed

    Landgraf, Sharon Schilling; Silva, Leandro Souza; Peruchetti, Diogo Barros; Sirtoli, Gabriela Modenesi; Moraes-Santos, Felipe; Portella, Viviane Gomes; Silva-Filho, João Luiz; Pinheiro, Carla Silva; Abreu, Thiago Pereira; Takiya, Christina Maeda; Benjamin, Claudia Farias; Pinheiro, Ana Acacia Sá; Canetti, Claudio; Caruso-Neves, Celso

    2014-01-01

    The role of albumin overload in proximal tubules (PT) in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs) in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type) and 5-lipoxygenase-deficient mice (5-LO(-/-)). The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO(-/-) mice. The levels of urinary protein observed in the 5-LO(-/-) mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO(-/-) mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL)-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO(-/-) mice. However, 5-LO(-/-) mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload.

  12. 5-Lypoxygenase Products Are Involved in Renal Tubulointerstitial Injury Induced by Albumin Overload in Proximal Tubules in Mice

    PubMed Central

    Landgraf, Sharon Schilling; Silva, Leandro Souza; Peruchetti, Diogo Barros; Sirtoli, Gabriela Modenesi; Moraes-Santos, Felipe; Portella, Viviane Gomes; Silva-Filho, João Luiz; Pinheiro, Carla Silva; Abreu, Thiago Pereira; Takiya, Christina Maeda; Benjamin, Claudia Farias; Pinheiro, Ana Acacia Sá; Canetti, Claudio; Caruso-Neves, Celso

    2014-01-01

    The role of albumin overload in proximal tubules (PT) in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs) in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type) and 5-lipoxygenase-deficient mice (5-LO–/–). The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO–/– mice. The levels of urinary protein observed in the 5-LO–/– mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO–/– mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL)-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO–/– mice. However, 5-LO–/– mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload. PMID:25302946

  13. Gap junctions in Malpighian tubules of Aedes aegypti.

    PubMed

    Weng, Xing-He; Piermarini, Peter M; Yamahiro, Atsuko; Yu, Ming-Jiun; Aneshansley, Daniel J; Beyenbach, Klaus W

    2008-02-01

    We present electrical, physiological and molecular evidence for substantial electrical coupling of epithelial cells in Malpighian tubules via gap junctions. Current was injected into one principal cell of the isolated Malpighian tubule and membrane voltage deflections were measured in that cell and in two neighboring principal cells. By short-circuiting the transepithelial voltage with the diuretic peptide leucokinin-VIII we largely eliminated electrical coupling of principal cells through the tubule lumen, thereby allowing coupling through gap junctions to be analyzed. The analysis of an equivalent electrical circuit of the tubule yielded an average gap-junction resistance (R(gj)) of 431 kOmega between two cells. This resistance would stem from 6190 open gap-junctional channels, assuming the high single gap-junction conductance of 375 pS found in vertebrate tissues. The addition of the calcium ionophore A23187 (2 micromol l(-1)) to the peritubular Ringer bath containing 1.7 mmol l(-1) Ca(2+) did not affect the gap-junction resistance, but metabolic inhibition of the tubule with dinitrophenol (0.5 mmol l(-1)) increased the gap-junction resistance 66-fold, suggesting the regulation of gap junctions by ATP. Lucifer Yellow injected into a principal cell did not appear in neighboring principal cells. Thus, gap junctions allow the passage of current but not Lucifer Yellow. Using RT-PCR we found evidence for the expression of innexins 1, 2, 3 and 7 (named after their homologues in Drosophila) in Malpighian tubules. The physiological demonstration of gap junctions and the molecular evidence for innexin in Malpighian tubules of Aedes aegypti call for the double cable model of the tubule, which will improve the measurement and the interpretation of electrophysiological data collected from Malpighian tubules.

  14. Effect of acute acid-base disturbances on ErbB1/2 tyrosine phosphorylation in rabbit renal proximal tubules.

    PubMed

    Skelton, Lara A; Boron, Walter F

    2013-12-15

    The renal proximal tubule (PT) is a major site for maintaining whole body pH homeostasis and is responsible for reabsorbing ∼80% of filtered HCO3(-), the major plasma buffer, into the blood. The PT adapts its rate of HCO3(-) reabsorption (JHCO3(-)) in response to acute acid-base disturbances. Our laboratory previously showed that single isolated perfused PTs adapt JHCO3(-) in response to isolated changes in basolateral (i.e., blood side) CO2 and HCO3(-) concentrations but, surprisingly, not to pH. The response to CO2 concentration can be blocked by the ErbB family tyrosine kinase inhibitor PD-168393. In the present study, we exposed enriched rabbit PT suspensions to five acute acid-base disturbances for 5 and 20 min using a panel of phosphotyrosine (pY)-specific antibodies to determine the influence of each disturbance on pan-pY, ErbB1-specific pY (four sites), and ErbB2-specific pY (two sites). We found that each acid-base treatment generated a distinct temporal pY pattern. For example, the summated responses of the individual ErbB1/2-pY sites to each disturbance showed that metabolic acidosis (normal CO2 concentration and reduced HCO3(-) concentration) produced a transient summated pY decrease (5 vs. 20 min), whereas metabolic alkalosis produced a transient increase. Respiratory acidosis (normal HCO3(-) concentration and elevated CO2 concentration) had little effect on summated pY at 5 min but produced an elevation at 20 min, whereas respiratory alkalosis produced a reduction at 20 min. Our data show that ErbB1 and ErbB2 in the PT respond to acute acid-base disturbances, consistent with the hypothesis that they are part of the signaling cascade.

  15. Effect of acute acid-base disturbances on ErbB1/2 tyrosine phosphorylation in rabbit renal proximal tubules

    PubMed Central

    Skelton, Lara A.

    2013-01-01

    The renal proximal tubule (PT) is a major site for maintaining whole body pH homeostasis and is responsible for reabsorbing ∼80% of filtered HCO3−, the major plasma buffer, into the blood. The PT adapts its rate of HCO3− reabsorption (JHCO3−) in response to acute acid-base disturbances. Our laboratory previously showed that single isolated perfused PTs adapt JHCO3− in response to isolated changes in basolateral (i.e., blood side) CO2 and HCO3− concentrations but, surprisingly, not to pH. The response to CO2 concentration can be blocked by the ErbB family tyrosine kinase inhibitor PD-168393. In the present study, we exposed enriched rabbit PT suspensions to five acute acid-base disturbances for 5 and 20 min using a panel of phosphotyrosine (pY)-specific antibodies to determine the influence of each disturbance on pan-pY, ErbB1-specific pY (four sites), and ErbB2-specific pY (two sites). We found that each acid-base treatment generated a distinct temporal pY pattern. For example, the summated responses of the individual ErbB1/2-pY sites to each disturbance showed that metabolic acidosis (normal CO2 concentration and reduced HCO3− concentration) produced a transient summated pY decrease (5 vs. 20 min), whereas metabolic alkalosis produced a transient increase. Respiratory acidosis (normal HCO3− concentration and elevated CO2 concentration) had little effect on summated pY at 5 min but produced an elevation at 20 min, whereas respiratory alkalosis produced a reduction at 20 min. Our data show that ErbB1 and ErbB2 in the PT respond to acute acid-base disturbances, consistent with the hypothesis that they are part of the signaling cascade. PMID:24133121

  16. Azilsartan Improves Salt Sensitivity by Modulating the Proximal Tubular Na+-H+ Exchanger-3 in Mice.

    PubMed

    Hatanaka, Masaki; Kaimori, Jun-Ya; Yamamoto, Satoko; Matsui, Isao; Hamano, Takayuki; Takabatake, Yoshitsugu; Ecelbarger, Carolyn M; Takahara, Shiro; Isaka, Yoshitaka; Rakugi, Hiromi

    2016-01-01

    A potent angiotensin II type-1 receptor blocker, azilsartan, has been reported to reduce blood pressure more effectively than candesartan. Interestingly, azilsartan can also restore the circadian rhythm of blood pressure. We hypothesized that azilsartan could also improve salt sensitivity; thus, we examined the effect of azilsartan on sodium handling in renal tubules. Subtotal nephrectomized C57BL/6 mice received azilsartan (1.0 mg/kg/day), candesartan (0.3 mg/kg/day), or vehicle via the oral route in conjunction with a normal- (0.3%) or high-salt (8.0%) diet. Two weeks later, the azilsartan group showed significantly lower blood pressure during the light period than the candesartan and vehicle groups (azilsartan: 103.1 ± 1.0; candesartan: 111.7 ± 2.7; vehicle: 125.5 ± 2.5 mmHg; P < 0.05; azilsartan or candesartan vs. vehicle). The azilsartan group also showed higher urinary fractional excretion of sodium during the dark period than the candesartan and vehicle groups (azilsartan: 21.37 ± 3.69%; candesartan: 14.17 ± 1.42%; vehicle: 13.85 ± 5.30%; P < 0.05 azilsartan vs. candesartan or vehicle). A pressure-natriuresis curve demonstrated that azilsartan treatment restored salt sensitivity. Immunofluorescence and western blotting showed lower levels of Na+-H+ exchanger-3 (NHE3) protein (the major sodium transporter in renal proximal tubules) in the azilsartan group, but not in the candesartan or vehicle groups. However, azilsartan did not affect NHE3 transcription levels. Interestingly, we did not observe increased expression of downstream sodium transporters, which would have compensated for the increased flow of sodium and water due to non-absorption by NHE3. We also confirmed the mechanism stated above using cultured opossum kidney proximal tubular cells. Results revealed that a proteasomal inhibitor (but not a lysosomal inhibitor) blocked the azilsartan-induced decrease in NHE3 protein expression, suggesting that azilsartan increases NHE3 ubiquitination. In

  17. Azilsartan Improves Salt Sensitivity by Modulating the Proximal Tubular Na+-H+ Exchanger-3 in Mice

    PubMed Central

    Hatanaka, Masaki; Kaimori, Jun-Ya; Yamamoto, Satoko; Matsui, Isao; Hamano, Takayuki; Takabatake, Yoshitsugu; Ecelbarger, Carolyn M.; Takahara, Shiro; Isaka, Yoshitaka; Rakugi, Hiromi

    2016-01-01

    A potent angiotensin II type-1 receptor blocker, azilsartan, has been reported to reduce blood pressure more effectively than candesartan. Interestingly, azilsartan can also restore the circadian rhythm of blood pressure. We hypothesized that azilsartan could also improve salt sensitivity; thus, we examined the effect of azilsartan on sodium handling in renal tubules. Subtotal nephrectomized C57BL/6 mice received azilsartan (1.0 mg/kg/day), candesartan (0.3 mg/kg/day), or vehicle via the oral route in conjunction with a normal- (0.3%) or high-salt (8.0%) diet. Two weeks later, the azilsartan group showed significantly lower blood pressure during the light period than the candesartan and vehicle groups (azilsartan: 103.1 ± 1.0; candesartan: 111.7 ± 2.7; vehicle: 125.5 ± 2.5 mmHg; P < 0.05; azilsartan or candesartan vs. vehicle). The azilsartan group also showed higher urinary fractional excretion of sodium during the dark period than the candesartan and vehicle groups (azilsartan: 21.37 ± 3.69%; candesartan: 14.17 ± 1.42%; vehicle: 13.85 ± 5.30%; P < 0.05 azilsartan vs. candesartan or vehicle). A pressure—natriuresis curve demonstrated that azilsartan treatment restored salt sensitivity. Immunofluorescence and western blotting showed lower levels of Na+-H+ exchanger-3 (NHE3) protein (the major sodium transporter in renal proximal tubules) in the azilsartan group, but not in the candesartan or vehicle groups. However, azilsartan did not affect NHE3 transcription levels. Interestingly, we did not observe increased expression of downstream sodium transporters, which would have compensated for the increased flow of sodium and water due to non-absorption by NHE3. We also confirmed the mechanism stated above using cultured opossum kidney proximal tubular cells. Results revealed that a proteasomal inhibitor (but not a lysosomal inhibitor) blocked the azilsartan-induced decrease in NHE3 protein expression, suggesting that azilsartan increases NHE3 ubiquitination. In

  18. Dysferlin mediates membrane tubulation and links T-tubule biogenesis to muscular dystrophy.

    PubMed

    Hofhuis, Julia; Bersch, Kristina; Büssenschütt, Ronja; Drzymalski, Marzena; Liebetanz, David; Nikolaev, Viacheslav O; Wagner, Stefan; Maier, Lars S; Gärtner, Jutta; Klinge, Lars; Thoms, Sven

    2017-03-01

    The multi-C2 domain protein dysferlin localizes to the plasma membrane and the T-tubule system in skeletal muscle; however, its physiological mode of action is unknown. Mutations in the DYSF gene lead to autosomal recessive limb-girdle muscular dystrophy type 2B and Miyoshi myopathy. Here, we show that dysferlin has membrane tubulating capacity and that it shapes the T-tubule system. Dysferlin tubulates liposomes, generates a T-tubule-like membrane system in non-muscle cells, and links the recruitment of phosphatidylinositol 4,5-bisphosphate to the biogenesis of the T-tubule system. Pathogenic mutant forms interfere with all of these functions, indicating that muscular wasting and dystrophy are caused by the dysferlin mutants' inability to form a functional T-tubule membrane system. © 2017. Published by The Company of Biologists Ltd.

  19. Dual Regulation of Gluconeogenesis by Insulin and Glucose in the Proximal Tubules of the Kidney.

    PubMed

    Sasaki, Motohiro; Sasako, Takayoshi; Kubota, Naoto; Sakurai, Yoshitaka; Takamoto, Iseki; Kubota, Tetsuya; Inagi, Reiko; Seki, George; Goto, Moritaka; Ueki, Kohjiro; Nangaku, Masaomi; Jomori, Takahito; Kadowaki, Takashi

    2017-09-01

    Growing attention has been focused on the roles of the proximal tubules (PTs) of the kidney in glucose metabolism, including the mechanism of regulation of gluconeogenesis. In this study, we found that PT-specific insulin receptor substrate 1/2 double-knockout mice, established by using the newly generated sodium-glucose cotransporter 2 (SGLT2)-Cre transgenic mice, exhibited impaired insulin signaling and upregulated gluconeogenic gene expression and renal gluconeogenesis, resulting in systemic insulin resistance. In contrast, in streptozotocin-treated mice, although insulin action was impaired in the PTs, the gluconeogenic gene expression was unexpectedly downregulated in the renal cortex, which was restored by administration of an SGLT1/2 inhibitor. In the HK-2 cells, the gluconeogenic gene expression was suppressed by insulin, accompanied by phosphorylation and inactivation of forkhead box transcription factor 1 (FoxO1). In contrast, glucose deacetylated peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), a coactivator of FoxO1, via sirtuin 1, suppressing the gluconeogenic gene expression, which was reversed by inhibition of glucose reabsorption. These data suggest that both insulin signaling and glucose reabsorption suppress the gluconeogenic gene expression by inactivation of FoxO1 and PGC1α, respectively, providing insight into novel mechanisms underlying the regulation of gluconeogenesis in the PTs. © 2017 by the American Diabetes Association.

  20. Proximal bicarbonate absorption independent of Na+-H+ exchange: effect of bicarbonate load.

    PubMed

    Bank, N; Aynedjian, H S; Mutz, B F

    1989-04-01

    To study proximal tubule bicarbonate absorption that is not due to the neutral Na+-H+ antiporter, mid to late proximal convolutions of the rat kidney were microperfused in vivo with a sodium-free choline solution containing 10(-3) M amiloride. The average sodium concentration resulting from sodium influx was 12 mM. At such low intraluminal [Na+], 10(-3) M amiloride should have inhibited the Na+-H+ antiporter by greater than 95%. When 25 mM HCO3- was in the perfusion fluid, measured total CO2 absorption was 100 pmol.mm-1.min-1. When luminal [HCO3-] was raised to 50 mM, and blood [HCO3-] was also raised to approximately 50 mM to avoid a transepithelial HCO3- concentration gradient, total CO2 absorption increased to greater than 300 pmol.mm-1.min-1. Thus raising intraluminal HCO3- concentration caused a marked increase in total CO2 absorption even though intraluminal [Na+] was low and amiloride was present. Control perfusions containing 140 mM Na+ yielded total CO2 absorption that was approximately 100 pmol.mm-1.min-1 higher than with the respective sodium-free perfusion solutions. In additional experiments, either DCCD or NEM was added to sodium-free perfusion solutions to inhibit H+-ATPase. These inhibitors reduced Na+-H+ independent total CO2 absorption markedly. Our observations suggest that under physiological acid-base conditions, sodium-independent H+ secretion can account for approximately 50% of total HCO3- absorption in mid to late proximal convolutions. This mechanism is stimulated by an increase in ambient HCO(-3) concentration to a degree that might account for the load-dependency of proximal HCO(-3) absorption in these segments of the proximal tubule.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. [Study on the role of the tubule in renal vasoconstriction induced by cyclosporine].

    PubMed

    Camaño Páez, S; Lázaro Fernández, A; Callejas Martínez, R; Lázaro Manero, J A; Castilla Barba, M; Martín-Vasallo, P; Martínez Escandell, A; Tejedor Jorge, A

    2008-01-01

    Cyclosporine (CyA) has proved to induce cell apoptosis on cultured proximal tubule cells. However, there is no much data about the in vivo functional consequences of this injury or the long time observed CyA-induced renal vasoconstriction. In a swine model of subacute CyA nephrotoxicity (10 mg/ Kg. dx 15 days), we performed a right nephrectomy, followed by left renal artery, vein and ureter catheterisati8n. After inducing water diuresis, three clearance periods of 15 minutes were performed before and after a furosemide 1 mg/kg infusion. Plasma and urine electrolytes, blood gas, acid excretion, plasma renin activity and aldosterone concentration, GFR, RPF, RBF, intra-renal vascular resistances, glomerular filtration pressure, distal Cl- delivery, water clearance and TTKG were measured or estimated on 7 control and 7 treated animals. Right kidney was processed for NaKATPase activity and immunostaining. Treated animals presented detaching proximal cells, luminal blebbing and loss of tight junctions. Cortical but not medullar sodium pump was internalised and partially inactive. Treated animals showed much lower fractional excretions of Na+, with significantly higher distal fractional reabsorption of Cl. Distal shift in fluid load resulted in a significant rise in renal O2 consumption, and modifications in the global renal estequiometry of Na+ transport/O2 uptake. Several consequences followed this situation: preglomerular resistances increased 3 times with only minor changes in postglomerular resistances and renal blood and plasma flow were significantly reduced. Furosemide partially reversed these effects. A slight increase in fractional filtration prevented GFR differences to become statistically significant. subacute CyA treatment even al doses not modifying GFR, may cause proximal tubule Na+ transport impairment, resulting in increased rates of distal delivery and absorption of fluid load. Renal uptake of O2 may be increased and tubule glomerular feedback should be

  2. Urinary Excretion of Tetrodotoxin Modeled in a Porcine Renal Proximal Tubule Epithelial Cell Line, LLC-PK₁.

    PubMed

    Matsumoto, Takuya; Ishizaki, Yui; Mochizuki, Keika; Aoyagi, Mitsuru; Mitoma, Yoshiharu; Ishizaki, Shoichiro; Nagashima, Yuji

    2017-07-17

    This study examined the urinary excretion of tetrodotoxin (TTX) modeled in a porcine renal proximal tubule epithelial cell line, LLC-PK₁. Time course profiles of TTX excretion and reabsorption across the cell monolayers at 37 °C showed that the amount of TTX transported increased linearly for 60 min. However, at 4 °C, the amount of TTX transported was approximately 20% of the value at 37 °C. These results indicate that TTX transport is both a transcellular and carrier-mediated process. Using a transport inhibition assay in which cell monolayers were incubated with 50 µM TTX and 5 mM of a transport inhibitor at 37 °C for 30 min, urinary excretion was significantly reduced by probenecid, tetraethylammonium (TEA), l-carnitine, and cimetidine, slightly reduced by p -aminohippuric acid (PAH), and unaffected by 1-methyl-4-phenylpyridinium (MPP+), oxaliplatin, and cefalexin. Renal reabsorption was significantly reduced by PAH, but was unaffected by probenecid, TEA and l-carnitine. These findings indicate that TTX is primarily excreted by organic cation transporters (OCTs) and organic cation/carnitine transporters (OCTNs), partially transported by organic anion transporters (OATs) and multidrug resistance-associated proteins (MRPs), and negligibly transported by multidrug and toxic compound extrusion transporters (MATEs).

  3. Phosphatidic acid induces EHD3-containing membrane tubulation and is required for receptor recycling.

    PubMed

    Henmi, Yuji; Oe, Natsuko; Kono, Nozomu; Taguchi, Tomohiko; Takei, Kohji; Tanabe, Kenji

    2016-03-01

    EHD3 is localized on the tubular structures of early endosomes, and it regulates their trafficking pathway. However, the regulatory mechanism of EHD3-containing tubular structures remains poorly understood. An in vitro liposome co-sedimentation assay revealed that EHD3 interacted with phosphatidic acid through its helical domain and this interaction induced liposomal tubulations. Additionally, inhibiting phosphatidic acid synthesis with diacylglycerol kinase inhibitor or lysophosphatidic acid acyltransferase inhibitor significantly reduced the number of EHD3-containing tubules and impaired their trafficking from early endosomes. These results suggest that EHD3 and phosphatidic acid cooperatively regulate membrane deformation and trafficking from early endosomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Postnatal establishment of allelic Gαs silencing as a plausible explanation for delayed onset of parathyroid hormone-resistance due to heterozygous Gαs disruption

    PubMed Central

    Turan, Serap; Fernandez-Rebollo, Eduardo; Aydin, Cumhur; Zoto, Teuta; Reyes, Monica; Bounoutas, George; Chen, Min; Weinstein, Lee S.; Erben, Reinhold G.; Marshansky, Vladimir; Bastepe, Murat

    2013-01-01

    Pseudohypoparathyroidism type-Ia (PHP-Ia), characterized by renal proximal tubular resistance to parathyroid hormone (PTH), results from maternal mutations of GNAS that lead to loss of Gαs activity. Gαs expression is paternally silenced in the renal proximal tubule, and this genomic event is critical for the development of PTH-resistance, as patients display impaired hormone action only if the mutation is inherited maternally. The primary clinical finding of PHP-Ia is hypocalcemia, which can lead to various neuromuscular defects including seizures. PHP-Ia patients frequently do not present with hypocalcemia until after infancy, but it has remained uncertain whether PTH-resistance occurs in a delayed fashion. Analyzing reported cases of PHP-Ia with documented GNAS mutations and mice heterozygous for disruption of Gnas, we herein determined that the manifestation of PTH-resistance caused by the maternal loss of Gαs, i.e. hypocalcemia and elevated serum PTH, occurs after early postnatal life. To investigate whether this delay could reflect gradual development of paternal Gαs silencing, we then analyzed renal proximal tubules isolated by laser capture microdissection from mice with either maternal or paternal disruption of Gnas. Our results revealed that, whereas expression of Gαs mRNA in this tissue is predominantly from the maternal Gnas allele at weaning (three-weeks postnatal) and in adulthood, the contributions of the maternal and paternal Gnas alleles to Gαs mRNA expression are equal at postnatal day 3. In contrast, we found that paternal Gαs expression is already markedly repressed in brown adipose tissue at birth. Thus, the mechanisms silencing the paternal Gαs allele in renal proximal tubules are not operational during early postnatal development, and this finding correlates well with the latency of PTH-resistance in patients with PHP-Ia. PMID:23956044

  5. Histone deacetylase inhibitors protect against cisplatin-induced acute kidney injury by activating autophagy in proximal tubular cells.

    PubMed

    Liu, Jing; Livingston, Man J; Dong, Guie; Tang, Chengyuan; Su, Yunchao; Wu, Guangyu; Yin, Xiao-Ming; Dong, Zheng

    2018-02-23

    Histone deacetylase inhibitors (HDACi) have therapeutic effects in models of various renal diseases including acute kidney injury (AKI); however, the underlying mechanism remains unclear. Here we demonstrate that two widely tested HDACi (suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA)) protect the kidneys in cisplatin-induced AKI by enhancing autophagy. In cultured renal proximal tubular cells, SAHA and TSA enhanced autophagy during cisplatin treatment. We further verified the protective effect of TSA against cisplatin-induced apoptosis in these cells. Notably, inhibition of autophagy by chloroquine or by autophagy gene 7 (Atg7) ablation diminished the protective effect of TSA. In mice, TSA increased autophagy in renal proximal tubules and protected against cisplatin-induced AKI. The in vivo effect of TSA was also abolished by chloroquine and by Atg7 knockout specifically from renal proximal tubules. Mechanistically, TSA stimulated AMPK and inactivated mTOR during cisplatin treatment of proximal tubule cells and kidneys in mice. Together, these results suggest that HDACi may protect kidneys by activating autophagy in proximal tubular cells.

  6. Role of ARF6 in internalization of metal-binding proteins, metallothionein and transferrin, and cadmium-metallothionein toxicity in kidney proximal tubule cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Natascha A.; Lee, Wing-Kee; Abouhamed, Marouan

    2008-07-01

    Filtered metal-protein complexes, such as cadmium-metallothionein-1 (CdMT-1) or transferrin (Tf) are apically endocytosed partly via megalin/cubilin by kidney proximal tubule (PT) cells where CdMT-1 internalization causes apoptosis. Small GTPase ARF (ADP-ribosylation factor) proteins regulate endocytosis and vesicular trafficking. We investigated roles of ARF6, which has been shown to be involved in internalization of ligands and endocytic trafficking in PT cells, following MT-1/CdMT-1 and Tf uptake by PT cells. WKPT-0293 Cl.2 cells derived from rat PT S1 segment were transfected with hemagglutinin-tagged wild-type (ARF6-WT) or dominant negative (ARF6-T27N) forms of ARF6. Using immunofluorescence, endogenous ARF6 was associated with the plasma membranemore » (PM) as well as juxtanuclear and co-localized with Rab5a and Rab11 involved in early and recycling endosomal trafficking. Immunofluorescence staining of megalin showed reduced surface labelling in ARF6 dominant negative (ARF6-DN) cells. Intracellular Alexa Fluor 546-conjugated MT-1 uptake was reduced in ARF6-DN cells and CdMT-1 (14.8 {mu}M for 24 h) toxicity was significantly attenuated from 27.3 {+-} 3.9% in ARF6-WT to 11.1 {+-} 4.0% in ARF6-DN cells (n = 6, P < 0.02). Moreover, reduced Alexa Fluor 546-conjugated Tf uptake was observed in ARF-DN cells (75.0 {+-} 4.6% versus 3.9 {+-} 3.9% of ARF6-WT cells, n = 3, P < 0.01) and/or remained near the PM (89.3 {+-} 5. 6% versus 45.2 {+-} 14.3% of ARF6-WT cells, n = 3, P < 0.05). In conclusion, the data support roles for ARF6 in receptor-mediated endocytosis and trafficking of MT-1/Tf to endosomes/lysosomes and CdMT-1 toxicity of PT cells.« less

  7. Radial elasticity of self-assembled lipid tubules.

    PubMed

    Zhao, Yue; Tamhane, Karan; Zhang, Xuejun; An, Linan; Fang, Jiyu

    2008-07-01

    Self-assembled lipid tubules with crystalline bilayer walls represent useful supramolecular architectures which hold promise as vehicles for the controlled release of preloaded drugs and templates for the synthesis of one-dimensional inorganic materials. We study the local elasticity of lipid tubules of 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine by radial atomic force microscope indentation, coupled with finite element analysis. A reduced stiffness is found to extend a distance of approximately 600 nm from the ends of lipid tubules. The middle section of lipid tubules is homogeneous in terms of their radial elasticity with a Young's modulus of approximately 703 MPa. The inhomogeneous radial elasticity likely arises from the variation of lipid packing density near the tubule ends.

  8. Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing.

    PubMed

    Gao, Shan; Hein, San; Dagnæs-Hansen, Frederik; Weyer, Kathrin; Yang, Chuanxu; Nielsen, Rikke; Christensen, Erik I; Fenton, Robert A; Kjems, Jørgen

    2014-01-01

    RNAi-based strategies provide a great therapeutic potential for treatment of various human diseases including kidney disorders, but face the challenge of in vivo delivery and specific targeting. The chitosan delivery system has previously been shown to target siRNA specifically to the kidneys in mice when administered intravenously. Here we confirm by 2D and 3D bioimaging that chitosan formulated siRNA is retained in the kidney for more than 48 hours where it accumulates in proximal tubule epithelial cells (PTECs), a process that was strongly dependent on the molecular weight of chitosan. Chitosan/siRNA nanoparticles, administered to chimeric mice with conditional knockout of the megalin gene, distributed almost exclusively in cells that expressed megalin, implying that the chitosan/siRNA particle uptake was mediated by a megalin-dependent endocytotic pathway. Knockdown of the water channel aquaporin 1 (AQP1) by up to 50% in PTECs was achieved utilizing the systemic i.v. delivery of chitosan/AQP1 siRNA in mice. In conclusion, specific targeting PTECs with the chitosan nanoparticle system may prove to be a useful strategy for knockdown of specific genes in PTECs, and provides a potential therapeutic strategy for treating various kidney diseases.

  9. Megalin-Mediated Specific Uptake of Chitosan/siRNA Nanoparticles in Mouse Kidney Proximal Tubule Epithelial Cells Enables AQP1 Gene Silencing

    PubMed Central

    Gao, Shan; Hein, San; Dagnæs-Hansen, Frederik; Weyer, Kathrin; Yang, Chuanxu; Nielsen, Rikke; Christensen, Erik I; Fenton, Robert A; Kjems, Jørgen

    2014-01-01

    RNAi-based strategies provide a great therapeutic potential for treatment of various human diseases including kidney disorders, but face the challenge of in vivo delivery and specific targeting. The chitosan delivery system has previously been shown to target siRNA specifically to the kidneys in mice when administered intravenously. Here we confirm by 2D and 3D bioimaging that chitosan formulated siRNA is retained in the kidney for more than 48 hours where it accumulates in proximal tubule epithelial cells (PTECs), a process that was strongly dependent on the molecular weight of chitosan. Chitosan/siRNA nanoparticles, administered to chimeric mice with conditional knockout of the megalin gene, distributed almost exclusively in cells that expressed megalin, implying that the chitosan/siRNA particle uptake was mediated by a megalin-dependent endocytotic pathway. Knockdown of the water channel aquaporin 1 (AQP1) by up to 50% in PTECs was achieved utilizing the systemic i.v. delivery of chitosan/AQP1 siRNA in mice. In conclusion, specific targeting PTECs with the chitosan nanoparticle system may prove to be a useful strategy for knockdown of specific genes in PTECs, and provides a potential therapeutic strategy for treating various kidney diseases. PMID:25157280

  10. HK2 Proximal Tubule Epithelial Cells Synthesize and Secrete Plasma Proteins Predominantly Through the Apical Surface.

    PubMed

    Zhao, Ke-Wei; Murray, Elsa J Brochmann; Murray, Samuel S

    2017-04-01

    Renal proximal tubule epithelial cells (PTECs) are known to reabsorb salts and small plasma proteins filtered through Bowman's capsule. Following acute kidney injury, PTECs assume some characteristics of hepatocytes in producing various plasma proteins. We now demonstrate that even at a resting state, a PTEC cell line, HK2 expresses mRNAs for and synthesizes and secretes plasma proteins in a complex with complement C3, an α 2 -macroglobulin family chaperone, including albumin, transferrin, α 1 -antitrypsin, α 1 -antichymotrypsin, α 2 -HS-glycoprotein, ceruloplasmin, haptoglobin, C1-inhibitor, secreted phosphoprotein-24, and insulin-like growth factor-1. When grown on transwell inserts, HK2 cells predominantly secrete (∼90%) plasma proteins into the apical side and a smaller fraction into the basolateral side as determined by ELISA assays. When cultured in the presence of exogenous cytokines such as IL1β, IL6, TNFα, BMP2, or TGFβ1, HK2 cell mRNA expressions for plasma proteins were variably affected whereas basolateral secretions were elevated to or in excess of those of the apical level. In addition, HK2 cells produce proTGFβ1 with its intact N-terminal latency associated peptide and latent-TGF-β-binding proteins. The complex cannot be dissociated under conditions of SDS, heating, and electrophoresis. Moreover, HK2 cells maintain their ability to quickly uptake exogenously added serum proteins from the culture medium, as if they are recognized differently by the endocytic receptors. These results provide new insight into the hepatization of PTECs. In addition to their unique uptake of plasma proteins and salts from the filtrate, they are a source of urinary proteins under normal conditions as wells as in chronic and acute kidney diseases. J. Cell. Biochem. 118: 924-933, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Effectiveness of various toothpastes on dentine tubule occlusion.

    PubMed

    Arnold, W H; Prange, M; Naumova, E A

    2015-04-01

    Dentine hypersensitivity is an increasing problem in dentistry. Several products are available that claim to occlude open dentine tubules and to reduce dentine hypersensitivity. The aim of this study was to investigate the effectiveness of several different products on dentine tubule occlusion using qualitative and quantitative methods. Dentine discs were prepared from extracted human premolars and molars. The dentine discs were brushed with 6 different experimental toothpastes, 1 positive control toothpaste and 1 negative control without toothpaste; the brushing simulated a total brushing time of 1 year. Half of the discs were etched with lemon juice after toothpaste application. Standardized scanning electron microphotographs were taken and converted into binary black and white images. The black pixels, which represented the open dentine tubules, were counted and statistically evaluated. Then, half of the dentine discs were broken, and the occlusion of the dentine tubules was investigated using energy dispersive X-ray spectroscopy (EDS). The number of open dentine tubules decreased significantly after brushing with 5 of the 6 tested toothpastes. A significant effect was observed after acid erosion for 3 of the 6 tested toothpastes. EDS revealed partly closed dentine tubules after brushing with 3 toothpastes; however, no partly closed dentine tubules were observed after acid erosion. Some toothpastes are capable of partial dentine tubule occlusion. This occlusion is unstable and can be removed with acid erosion. Desensitizing toothpastes are the most common products that are used against dentine hypersensitivity, and these toothpastes affect dentine tubule occlusion. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Nephron proximal tubule patterning and corpuscles of Stannius formation are regulated by the sim1a transcription factor and retinoic acid in zebrafish.

    PubMed

    Cheng, Christina N; Wingert, Rebecca A

    2015-03-01

    The mechanisms that establish nephron segments are poorly understood. The zebrafish embryonic kidney, or pronephros, is a simplified yet conserved genetic model to study this renal development process because its nephrons contain segments akin to other vertebrates, including the proximal convoluted and straight tubules (PCT, PST). The zebrafish pronephros is also associated with the corpuscles of Stannius (CS), endocrine glands that regulate calcium and phosphate homeostasis, but whose ontogeny from renal progenitors is largely mysterious. Initial patterning of zebrafish renal progenitors in the intermediate mesoderm (IM) involves the formation of rostral and caudal domains, the former being reliant on retinoic acid (RA) signaling, and the latter being repressed by elevated RA levels. Here, using expression profiling to gain new insights into nephrogenesis, we discovered that the gene single minded family bHLH transcription factor 1a (sim1a) is dynamically expressed in the renal progenitors-first marking the caudal domain, then becoming restricted to the proximal segments, and finally exhibiting specific CS expression. In loss of function studies, sim1a knockdown expanded the PCT and abrogated both the PST and CS populations. Conversely, overexpression of sim1a modestly expanded the PST and CS, while it reduced the PCT. These results show that sim1a activity is necessary and partially sufficient to induce PST and CS fates, and suggest that sim1a may inhibit PCT fate and/or negotiate the PCT/PST boundary. Interestingly, the sim1a expression domain in renal progenitors is responsive to altered levels of RA, suggesting that RA regulates sim1a, directly or indirectly, during nephrogenesis. sim1a deficient embryos treated with exogenous RA formed nephrons that were predominantly composed of PCT segments, but lacked the enlarged PST observed in RA treated wild-types, indicating that RA is not sufficient to rescue the PST in the absence of sim1a expression. Alternately

  13. Neurogenic regulation of proximal bicarbonate and chloride reabsorption.

    PubMed

    Cogan, M G

    1986-01-01

    Although a change in renal nerve activity is known to alter proximal reabsorption, it is unclear whether reabsorption of NaHCO3 or NaCl or both are affected. Sprague-Dawley rats (n = 10) were studied using free-flow micropuncture techniques during euvolemia and following acute ipsilateral denervation. Glomerular filtration rate and single nephron glomerular filtration rate were stable. Absolute proximal bicarbonate reabsorption fell following denervation (933 +/- 40 to 817 +/- 30 pmol/min) with a parallel reduction in chloride reabsorption (1,643 +/- 116 to 1,341 +/- 129 peq/min). Urinary sodium, potassium, bicarbonate, and chloride excretion all increased significantly. To further assess the physiological significance of neurogenic modulation of proximal transport, other rats (n = 6) were subjected to acute unilateral nephrectomy (AUN). There is evidence that AUN induces a contralateral natriuresis (renorenal reflex) at least partially by causing inhibition of efferent renal nerve traffic. AUN caused significant changes in proximal NaHCO3 and NaCl reabsorption as well as in whole kidney electrolyte excretion in the same pattern as had denervation. Prior denervation of the remaining kidney prevented the proximal and whole kidney response to AUN (n = 6). In conclusion, depression of renal nerve activity inhibits both NaHCO3 and NaCl reabsorption in the rat superficial proximal convoluted tubule. The data are consistent with the hypothesis that changes in renal nerve activity modify whole kidney electrolyte excretion under physiological conditions at least partially by regulating proximal transport.

  14. Tubular Obstruction Leads to Progressive Proximal Tubular Injury and Atubular Glomeruli in Polycystic Kidney Disease

    PubMed Central

    Galarreta, Carolina I.; Grantham, Jared J.; Forbes, Michael S.; Maser, Robin L.; Wallace, Darren P.; Chevalier, Robert L.

    2015-01-01

    In polycystic kidney disease (PKD), renal parenchyma is destroyed by cysts, hypothesized to obstruct nephrons. A signature of unilateral ureteral obstruction, proximal tubular atrophy leads to formation of atubular glomeruli. To determine whether this process occurs in PKD, kidneys from pcy mice (moderately progressive PKD), kidneys from cpk mice (rapidly progressive PKD), and human autosomal dominant PKD were examined in early and late stages. Integrity of the glomerulotubular junction and proximal tubular mass were determined in sections stained with Lotus tetragonolobus lectin. Development of proximal tubular atrophy and atubular glomeruli was determined in serial sections of individual glomeruli. In pcy mice, most glomerulotubular junctions were normal at 20 weeks, but by 30 weeks, 56% were atrophic and 25% of glomeruli were atubular; glomerulotubular junction integrity decreased with increasing cyst area (r = 0.83, P < 0.05). In cpk mice, all glomerulotubular junctions were normal at 10 days, but by 19 days, 26% had become abnormal. In early-stage autosomal dominant PKD kidneys, 50% of glomeruli were atubular or attached to atrophic tubules; in advanced disease, 100% were abnormal. Thus, proximal tubular injury in cystic kidneys closely parallels that observed with ureteral obstruction. These findings support the hypothesis that, in renal cystic disorders, cyst-dependent obstruction of medullary and cortical tubules initiates a process culminating in widespread destruction of proximal convoluted tubules at the glomerulotubular junction. PMID:24815352

  15. Characterisation of human tubular cell monolayers as a model of proximal tubular xenobiotic handling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Colin D.A.; Sayer, Rachel; Windass, Amy S.

    2008-12-15

    The aim of this study was to determine whether primary human tubular cell monolayers could provide a powerful tool with which to investigate the renal proximal tubular handling of xenobiotics. Human proximal and distal tubule/collecting duct cells were grown as monolayers on permeable filter supports. After 10 days in culture, proximal tubule cells remained differentiated and expressed a wide palette of transporters at the mRNA level including NaPi-IIa, SGLT1, SGLT2, OCT2, OCTN2, OAT1, OAT3, OAT4, MDR1, MRP2 and BCRP. At the protein level, the expression of a subset of transporters including NaPi-IIa, OAT1 and OAT3 was demonstrated using immunohistochemistry. Analysismore » of the expression of the ATP binding cassette efflux pumps MDR1, MRP2 and BCRP confirmed their apical membrane localisation. At the functional level, tubule cell monolayers retain the necessary machinery to mediate the net secretion of the prototypic substrates; PAH and creatinine. PAH secretion across the monolayer consisted of the uptake of PAH across the basolateral membrane by OAT1 and OAT3 and the apical exit of PAH by a probenecid and MK571-sensitive route consistent with actions of MRP2 or MRP4. Creatinine secretion was by OCT2-mediated uptake at the basolateral membrane and via MDR1 at the apical membrane. Functional expression of MDR1 and BCRP at the apical membrane was also demonstrated using a Hoechst 33342 dye. Similarly, measurement of calcein efflux demonstrated the functional expression of MRP2 at the apical membrane of cell monolayers. In conclusion, human tubular cell monolayers provide a powerful tool to investigate renal xenobiotic handling.« less

  16. Antidiuretic hormone resistance in the neonatal cortical collecting tubule is mediated in part by elevated phosphodiesterase activity

    PubMed Central

    Quigley, Raymond; Chakravarty, Sumana; Baum, Michel

    2014-01-01

    Neonates cannot concentrate their urine to the same degree as adults. One of the key factors in concentrating the urine is the renal collecting duct osmotic water permeability (Pf) response to antidiuretic hormone (ADH). Neonatal cortical collecting ducts have a blunted Pf response to ADH compared with adult tubules (Pf: 119.0 ± 12.5 vs. 260.1 ± 29.5 µm/s, P < 0.05). We found that the phosphodiesterase activity in the neonatal collecting ducts was higher than that in the adult collecting ducts (3,970 ± 510 vs. 2,440 ± 220 cpm·µg tubular protein−1·20 min−1, P < 0.05). After pretreatment of in vitro microperfused tubules with the nonspecific phosphodiesterase inhibitor IBMX (10−6 M in the bath), the Pf response to ADH in neonatal collecting ducts was 271.4 ± 51.7 µm/s, which was identical to that of the adult collecting duct [315.3 ± 31.3 µm/s, P = not significant (NS)]. Rolipram, a specific type IV phosphodiesterase inhibitor, lowered the elevated phosphodiesterase activity in the neonatal tubules to that in the adult tubules (2,460 ± 210 vs. 2,160 ± 230 cpm·µg tubular protein−1·20 min−1, P = NS). Neonatal tubules pretreated with rolipram (10−5 M) in the bath also had a Pf response to ADH that was comparable to that of the adult tubules (258.2 ± 17.0 vs. 271.4 ± 32.6 µm/s, P = NS). Thus the elevated phosphodiesterase activity in the neonatal tubules appears to be due to an increase in type IV phosphodiesterase activity. Hence, one of the key factors in the decreased ability of neonates to concentrate their urine is overactivity of phosphodiesterase in the cortical collecting duct that blunts the neonatal collecting duct Pf response to ADH. PMID:14644747

  17. Dentinal tubules revealed with X-ray tensor tomography.

    PubMed

    Jud, Christoph; Schaff, Florian; Zanette, Irene; Wolf, Johannes; Fehringer, Andreas; Pfeiffer, Franz

    2016-09-01

    Dentin is a mineralized material making up most of the tooth bulk. A system of microtubules, so called dentinal tubules, transverses it radially from the pulp chamber to the outside. This highly oriented structure leads to anisotropic mechanical properties directly connected to the tubules orientation and density: the ultimate tensile strength as well as the fracture toughness and the shear strength are largest perpendicular to dentinal tubules. Consequently, the fatigue strength depends on the direction of dentinal tubules, too. However, none of the existing techniques used to investigate teeth provide access to orientation and density of dentinal tubules for an entire specimen in a non-destructive way. In this paper, we measure a third molar human tooth both with conventional micro-CT and X-ray tensor tomography (XTT). While the achievable resolution in micro-CT is too low to directly resolve the dentinal tubules, we provide strong evidence that the direction and density of dentinal tubules can be indirectly measured by XTT, which exploits small-angle X-ray scattering to retrieve a 3D map of scattering tensors. We show that the mean directions of scattering structures correlate to the orientation of dentinal tubules and that the mean effective scattering strength provides an estimation of the relative density of dentinal tubules. Thus, this method could be applied to investigate the connection between tubule orientation and fatigue or tensile properties of teeth for a full sample without cutting one, non-representative peace of tooth out of the full sample. Copyright © 2016 The Academy of Dental Materials. All rights reserved.

  18. Increased Fatty Acid Oxidation in Differentiated Proximal Tubular Cells Surviving a Reversible Episode of Acute Kidney Injury.

    PubMed

    Bataille, Aurélien; Galichon, Pierre; Chelghoum, Nadjim; Oumoussa, Badreddine Mohand; Ziliotis, Marie-Julia; Sadia, Iman; Vandermeersch, Sophie; Simon-Tillaux, Noémie; Legouis, David; Cohen, Raphaël; Xu-Dubois, Yi-Chun; Commereuc, Morgane; Rondeau, Eric; Le Crom, Stéphane; Hertig, Alexandre

    2018-06-19

    Fatty acid oxidation (FAO), the main source of energy produced by tubular epithelial cells in the kidney, was found to be defective in tubulo-interstitial samples dissected out in kidney biopsies from patients with chronic kidney disease (CKD). Experimental data indicated that this decrease was a strong determinant of renal fibrogenesis, hence a focus for therapeutic interventions. Nevertheless, whether persistently differentiated renal tubules, surviving in a pro-fibrotic environment, also suffer from a decrease in FAO, is currently unknown. To address this question, we isolated proximal tubules captured ex vivo on the basis of the expression of an intact brush border antigen (Prominin-1) in C57BL6/J mice subjected to a controlled, two-hit model of renal fibrosis (reversible ischemic acute kidney injury (AKI) or sham surgery, followed by angiotensin 2 administration). A transcriptomic high throughput sequencing was performed on total mRNA from these cells, and on whole kidneys. In contrast to mice subjected to sham surgery, mice with a history of AKI displayed histologically more renal fibrosis when exposed to angiotensin 2. High throughput RNA sequencing, principal component analysis and clustering showed marked consistency within experimental groups. As expected, FAO transcripts were decreased in whole fibrotic kidneys. Surprisingly, however, up- rather than down-regulation of metabolic pathways (oxidative phosphorylation, fatty acid metabolism, glycolysis, and PPAR signalling pathway) was a hallmark of the differentiated tubules captured from fibrotic kidneys. Immunofluorescence co-staining analysis confirmed that the expression of FAO enzymes was dependent of tubular trophicity. These data suggest that in differentiated proximal tubules energetic hyperactivity is promoted concurrently with organ fibrogenesis. © 2018 The Author(s). Published by S. Karger AG, Basel.

  19. Antenatal glucocorticoid treatment alters Na+ uptake in renal proximal tubule cells from adult offspring in a sex-specific manner.

    PubMed

    Su, Yixin; Bi, Jianli; Pulgar, Victor M; Figueroa, Jorge; Chappell, Mark; Rose, James C

    2015-06-01

    We have shown a sex-specific effect of fetal programming on Na(+) excretion in adult sheep. The site of this effect in the kidney is unknown. Therefore, we tested the hypothesis that renal proximal tubule cells (RPTCs) from adult male sheep exposed to betamethasone (Beta) before birth have greater Na(+) uptake than do RPTCs from vehicle-exposed male sheep and that RPTCs from female sheep similarly exposed are not influenced by antenatal Beta. In isolated RPTCs from 1- to 1.5-yr-old male and female sheep, we measured Na(+) uptake under basal conditions and after stimulation with ANG II. To gain insight into the mechanisms involved, we also measured nitric oxide (NO) levels, ANG II receptor mRNA levels, and expression of Na(+)/H(+) exchanger 3. Basal Na(+) uptake increased more in cells from Beta-exposed male sheep than in cells from vehicle-exposed male sheep (400% vs. 300%, P < 0.00001). ANG II-stimulated Na(+) uptake was also greater in cells from Beta-exposed males. Beta exposure did not increase Na(+) uptake by RPTCs from female sheep. NO production was suppressed more by ANG II in RPTCs from Beta-exposed males than in RPTCs from either vehicle-exposed male or female sheep. Our data suggest that one site of the sex-specific effect of Beta-induced fetal programming in the kidney is the RPTC and that the enhanced Na(+) uptake induced by antenatal Beta in male RPTCs may be related to the suppression of NO in these cells. Copyright © 2015 the American Physiological Society.

  20. An angiotensin-(1–7) peptidase in the kidney cortex, proximal tubules, and human HK-2 epithelial cells that is distinct from insulin-degrading enzyme

    PubMed Central

    Wilson, Bryan A.; Cruz-Diaz, Nildris; Marshall, Allyson C.; Pirro, Nancy T.; Su, Yixin; Gwathmey, TanYa M.; Rose, James C.

    2015-01-01

    Angiotensin 1–7 [ANG-(1–7)] is expressed within the kidney and exhibits renoprotective actions that antagonize the inflammatory, fibrotic, and pro-oxidant effects of ANG II. We previously identified an peptidase that preferentially metabolized ANG-(1–7) to ANG-(1–4) in the brain medulla and cerebrospinal fluid (CSF) of sheep (Marshall AC, Pirro NT, Rose JC, Diz DI, Chappell MC. J Neurochem 130: 313–323, 2014); thus the present study established the expression of the peptidase in the kidney. Utilizing a sensitive HPLC-based approach, we demonstrate a peptidase activity that hydrolyzed ANG-(1–7) to ANG-(1–4) in the sheep cortex, isolated tubules, and human HK-2 renal epithelial cells. The peptidase was markedly sensitive to the metallopeptidase inhibitor JMV-390; human HK-2 cells expressed subnanomolar sensitivity (IC50 = 0.5 nM) and the highest specific activity (123 ± 5 fmol·min−1·mg−1) compared with the tubules (96 ± 12 fmol·min−1·mg−1) and cortex (107 ± 9 fmol·min−1·mg−1). The peptidase was purified 41-fold from HK-2 cells; the activity was sensitive to JMV-390, the chelator o-phenanthroline, and the mercury-containing compound p-chloromercuribenzoic acid (PCMB), but not to selective inhibitors against neprilysin, neurolysin and thimet oligopeptidase. Both ANG-(1–7) and its endogenous analog [Ala1]-ANG-(1–7) (alamandine) were preferentially hydrolyzed by the peptidase compared with ANG II, [Asp1]-ANG II, ANG I, and ANG-(1–12). Although the ANG-(1–7) peptidase and insulin-degrading enzyme (IDE) share similar inhibitor characteristics of a metallothiolendopeptidase, we demonstrate marked differences in substrate specificity, which suggest these peptidases are distinct. We conclude that an ANG-(1–7) peptidase is expressed within the renal proximal tubule and may play a potential role in the renal renin-angiotensin system to regulate ANG-(1–7) tone. PMID:25568136

  1. Solo and keratin filaments regulate epithelial tubule morphology.

    PubMed

    Nishimura, Ryosuke; Kato, Kagayaki; Fujiwara, Sachiko; Ohashi, Kazumasa; Mizuno, Kensaku

    2018-04-28

    Epithelial tubules, consisting of the epithelial cell sheet with a central lumen, are the basic structure of many organs. Mechanical forces play an important role in epithelial tubulogenesis; however, little is known about the mechanisms controlling the mechanical forces during epithelial tubule morphogenesis. Solo (also known as ARHGEF40) is a RhoA-targeting guanine-nucleotide exchange factor that is involved in mechanical force-induced RhoA activation and stress fiber formation. Solo binds to keratin-8/keratin-18 (K8/K18) filaments, and this interaction plays a crucial role in mechanotransduction. In this study, we examined the roles of Solo and K8/K18 filaments in epithelial tubulogenesis using MDCK cells cultured in 3D collagen gels. Knockdown of either Solo or K18 resulted in rounder tubules with increased lumen size, indicating that Solo and K8/K18 filaments play critical roles in forming the elongated morphology of epithelial tubules. Moreover, knockdown of Solo or K18 decreased the level of diphosphorylated myosin light chain (a marker of contractile force) at the luminal and outer surfaces of tubules, suggesting that Solo and K8/K18 filaments are involved in the generation of the myosin II-mediated contractile force during epithelial tubule morphogenesis. In addition, K18 filaments were normally oriented along the long axis of the tubule, but knockdown of Solo perturbed their orientation. These results suggest that Solo plays crucial roles in forming the elongated morphology of epithelial tubules and in regulating myosin II activity and K18 filament organization during epithelial tubule formation.

  2. Structure of the kidney of Bufo arenarum: intermediate segment, distal tubule and collecting tubule.

    PubMed

    Farías, Alejandro; Hermida, Gladys Noemí; Fiorito, Luisa Eleonora

    2003-04-01

    The ultrastructure of the intermediate segment (IS), distal tubule and collecting tubule (CT) of the south american toad Bufo arenarum, was studied by light and transmission electron microscopy. The IS is composed of cubical ciliated cells which propel the urine along the renal tubule. The distal tubule is divided into two portions: the early distal tubule (EDT) and the late distal tubule (LDT). The EDT is characterized by only one type of cells with well developed basolateral interdigitations and numerous elongated mitochondria, which are oriented normal to the basal surface. The "macula densa--like" is a specialized zone of the EDT in contact with the vascular pole, where cells are more tightly packed than in the rest of the tubule. The LDT shows two types of cells called dark and light cells according to the appearance of their cytoplasm. Dark cells have microplicae and few but long microvilli at their luminal surface, and abundant mitochondria in their cytoplasm. Light cells show basal and lateral infoldings and few mitochondria. The CT, which is composed of dark and light cells, exhibits an enlarged lumen with an undulated surface and dilated spaces between neighbouring cells. This work is a contribution to the knowledge of the kidney of B. arenarum; frequently used as an experimental model for physiological and biochemical studies.

  3. Lengths of nephron tubule segments and collecting ducts in the CD-1 mouse kidney: an ontogeny study.

    PubMed

    Walton, Sarah L; Moritz, Karen M; Bertram, John F; Singh, Reetu R

    2016-11-01

    The kidney continues to mature postnatally, with significant elongation of nephron tubules and collecting ducts to maintain fluid/electrolyte homeostasis. The aim of this project was to develop methodology to estimate lengths of specific segments of nephron tubules and collecting ducts in the CD-1 mouse kidney using a combination of immunohistochemistry and design-based stereology (vertical uniform random sections with cycloid arc test system). Lengths of tubules were determined at postnatal day 21 (P21) and 2 and 12 mo of age and also in mice fed a high-salt diet throughout adulthood. Immunohistochemistry was performed to identify individual tubule segments [aquaporin-1, proximal tubules (PT) and thin descending limbs of Henle (TDLH); uromodulin, distal tubules (DT); aquaporin-2, collecting ducts (CD)]. All tubular segments increased significantly in length between P21 and 2 mo of age (PT, 602% increase; DT, 200% increase; TDLH, 35% increase; CD, 53% increase). However, between 2 and 12 mo, a significant increase in length was only observed for PT (76% increase in length). At 12 mo of age, kidneys of mice on a high-salt diet demonstrated a 27% greater length of the TDLH, but no significant change in length was detected for PT, DT, and CD compared with the normal-salt group. Our study demonstrates an efficient method of estimating lengths of specific segments of the renal tubular system. This technique can be applied to examine structure of the renal tubules in combination with the number of glomeruli in the kidney in models of altered renal phenotype. Copyright © 2016 the American Physiological Society.

  4. T-tubule disease: Relationship between t-tubule organization and regional contractile performance in human dilated cardiomyopathy.

    PubMed

    Crossman, David J; Young, Alistair A; Ruygrok, Peter N; Nason, Guy P; Baddelely, David; Soeller, Christian; Cannell, Mark B

    2015-07-01

    Evidence from animal models suggest that t-tubule changes may play an important role in the contractile deficit associated with heart failure. However samples are usually taken at random with no regard as to regional variability present in failing hearts which leads to uncertainty in the relationship between contractile performance and possible t-tubule derangement. Regional contraction in human hearts was measured by tagged cine MRI and model fitting. At transplant, failing hearts were biopsy sampled in identified regions and immunocytochemistry was used to label t-tubules and sarcomeric z-lines. Computer image analysis was used to assess 5 different unbiased measures of t-tubule structure/organization. In regions of failing hearts that showed good contractile performance, t-tubule organization was similar to that seen in normal hearts, with worsening structure correlating with the loss of regional contractile performance. Statistical analysis showed that t-tubule direction was most highly correlated with local contractile performance, followed by the amplitude of the sarcomeric peak in the Fourier transform of the t-tubule image. Other area based measures were less well correlated. We conclude that regional contractile performance in failing human hearts is strongly correlated with the local t-tubule organization. Cluster tree analysis with a functional definition of failing contraction strength allowed a pathological definition of 't-tubule disease'. The regional variability in contractile performance and cellular structure is a confounding issue for analysis of samples taken from failing human hearts, although this may be overcome with regional analysis by using tagged cMRI and biopsy mapping. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Lack of formic acid production in rat hepatocytes and human renal proximal tubule cells exposed to chloral hydrate or trichloroacetic acid

    PubMed Central

    Lock, Edward A; Reed, Celia J; McMillan, JoEllyn M; Oatis, John R; Schnellmann, Rick G

    2007-01-01

    The industrial solvent trichloroethylene (TCE) and its major metabolites have been shown to cause formic aciduria in male rats. We have examined whether chloral hydrate (CH) and trichloroacetic acid (TCA), known metabolites of TCE, produce an increase in formic acid in vitro in cultures of rat hepatocytes or human renal proximal tubule cells (HRPTC). The metabolism and cytotoxicity of CH was also examined to establish that the cells were metabolically active and not compromised by toxicity. Rat hepatocytes and HRPTC were cultured in serum-free medium and then treated with 0.33mM CH for 3 days or 0.03–3mM CH for 10 days respectively and formic acid production, metabolism to trichloroethanol (TCE-OH) and TCA and cytotoxicity determined. No increase in formic acid production in rat hepatocytes or HRPTC exposed to CH was observed over and above that due to chemical degradation, neither was formic acid production observed in rat hepatocytes exposed to TCA. HRPTC metabolised CH to TCE-OH and TCA with a 12-fold greater capacity to form TCE-OH versus TCA. Rat hepatocytes exhibited a 1.6-fold and 3-fold greater capacity than HRPTC to form TCE-OH and TCA respectively. CH and TCA were not cytotoxic to rat hepatocytes at concentrations up to 3mM/day for 3 days. With HRPTC, one sample showed no cytotoxicity to CH at concentrations up to 3mM/day for 10 days, while in another cytotoxicity was seen at 1mM/day for 3 days. In summary, increased formic acid production was not observed in rat hepatocytes or HRPTC exposed to TCE metabolites, suggesting that the in vivo response cannot be modelled in vitro. CH was toxic to HRPTC at millimolar concentrations/day over 10 days, while glutathione derived metabolites of TCE were toxic at micromolar concentrations/day over 10 days (Lock et al., 2006) supporting the view that glutathione derived metabolites are likely to be responsible for nephrotoxicity. PMID:17161896

  6. Urinary biomarkers in hexachloro-1:3-butadiene-induced acute kidney injury in the female Hanover Wistar rat; correlation of α-glutathione S-transferase, albumin and kidney injury molecule-1 with histopathology and gene expression.

    PubMed

    Swain, Aubrey; Turton, John; Scudamore, Cheryl L; Pereira, Ines; Viswanathan, Neeti; Smyth, Rosemary; Munday, Michael; McClure, Fiona; Gandhi, Mitul; Sondh, Surjit; York, Malcolm

    2011-05-01

    Hexachloro-1:3-butadiene (HCBD) causes kidney injury specific to the pars recta of the proximal tubule. In the present studies, injury to the nephron was characterized at 24 h following a single dose of HCBD, using a range of quantitative urinary measurements, renal histopathology and gene expression. Multiplexed renal biomarker measurements were performed using both the Meso Scale Discovery (MSD) and Rules Based Medicine platforms. In a second study, rats were treated with a single nephrotoxic dose of HCBD and the time course release of a range of traditional and newer urinary biomarkers was followed over a 25 day period. Urinary albumin (a marker of both proximal tubular function and glomerular integrity) and α-glutathione S-transferase (α-GST, a proximal tubular cell marker of cytoplasmic leakage) showed the largest fold change at 24 h (day 1) after dosing. Most other markers measured on either the MSD or RBM platforms peaked on day 1 or 2 post-dosing, whereas levels of kidney injury molecule-1 (KIM-1), a marker of tubular regeneration, peaked on day 3/4. Therefore, in rat proximal tubular nephrotoxicity, the measurement of urinary albumin, α-GST and KIM-1 is recommended as they potentially provide useful information about the function, degree of damage and repair of the proximal tubule. Gene expression data provided useful confirmatory information regarding exposure of the kidney and liver to HCBD, and the response of these tissues to HCBD in terms of metabolism, oxidative stress, inflammation, and regeneration and repair. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter.

    PubMed

    Schophuizen, Carolien M S; Wilmer, Martijn J; Jansen, Jitske; Gustavsson, Lena; Hilgendorf, Constanze; Hoenderop, Joost G J; van den Heuvel, Lambert P; Masereeuw, Rosalinde

    2013-12-01

    Several organic cations, such as guanidino compounds and polyamines, have been found to accumulate in plasma of patients with kidney failure due to inadequate renal clearance. Here, we studied the interaction of cationic uremic toxins with renal organic cation transport in a conditionally immortalized human proximal tubule epithelial cell line (ciPTEC). Transporter activity was measured and validated in cell suspensions by studying uptake of the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP(+)). Subsequently, the inhibitory potencies of the cationic uremic toxins, cadaverine, putrescine, spermine and spermidine (polyamines), acrolein (polyamine breakdown product), guanidine, and methylguanidine (guanidino compounds) were determined. Concentration-dependent inhibition of ASP(+) uptake by TPA, cimetidine, quinidine, and metformin confirmed functional endogenous organic cation transporter 2 (OCT2) expression in ciPTEC. All uremic toxins tested inhibited ASP(+) uptake, of which acrolein required the lowest concentration to provoke a half-maximal inhibition (IC50 = 44 ± 2 μM). A Dixon plot was constructed for acrolein using three independent inhibition curves with 10, 20, or 30 μM ASP(+), which demonstrated competitive or mixed type of interaction (K i = 93 ± 16 μM). Exposing the cells to a mixture of cationic uremic toxins resulted in a more potent and biphasic inhibitory response curve, indicating complex interactions between the toxins and ASP(+) uptake. In conclusion, ciPTEC proves a suitable model to study cationic xenobiotic interactions. Inhibition of cellular uptake transport was demonstrated for several uremic toxins, which might indicate a possible role in kidney disease progression during uremia.

  8. Effect of acute acid-base disturbances on the phosphorylation of phospholipase C-γ1 and Erk1/2 in the renal proximal tubule

    PubMed Central

    Skelton, Lara A; Boron, Walter F

    2015-01-01

    The renal proximal tubule (PT) plays a major role in whole-body pH homeostasis by secreting H+ into the tubule lumen. Previous work demonstrated that PTs respond to basolateral changes in [CO2] and [] by appropriately altering H+ secretion—responses blocked by the ErbB inhibitor PD168393, or by eliminating signaling through AT1 angiotensin receptors. In the present study, we analyze phosphorylation of three downstream targets of both ErbBs and AT1: phospholipase C-γ1 (PLC-γ1), extracellular-regulated kinase 1 (Erk1), and Erk2. We expose rabbit PT suspensions for 5 and 20 min to our control (Ctrl) condition (5% CO2, 22 mmol/L , pH 7.40) or one of several conditions that mimic acid-base disturbances. We found that each disturbance produces characteristic phosphorylation patterns in the three enzymes. For example, respiratory acidosis (elevated [CO2], normal []) at 20 min decreases PLC-γ1 phosphorylation at tyrosine-783 (relative to Ctrl). Metabolic acidosis (normal [CO2], decreased []) for 5 min increases Erk1 phosphorylation (p-Erk1) but not p-Erk2, whereas metabolic alkalosis (normal [CO2], elevated []) for 5 min decreases p-Erk1 and p-Erk2. In the presence of CO2/, PD168393 blocks only two of eight induced decreases in phosphorylation. In two cases in which disturbances have no remarkable effects on phosphorylation, PD168393 unmasks decreases and in two others, increases. These drug effects provide insight into the roles of PD168393-sensitive kinases. Our results indicate that PLC-γ1.pY783, p-Erk1, and p-Erk2 in the PT change in characteristic ways in response to acute acid-base disturbances, and thus presumably contribute to the transduction of acid-base signals. PMID:25780091

  9. Proximal tubulopathies associated with monoclonal light chains: the spectrum of clinicopathologic manifestations and molecular pathogenesis.

    PubMed

    Herrera, Guillermo A

    2014-10-01

    Lesions associated with monoclonal light and heavy chains display a variety of glomerular, tubular interstitial, and vascular manifestations. While some of the entities are well recognized, including light and heavy chain deposition diseases, AL (light chain) and AH (heavy chain) amyloidosis, and light chain ("myeloma") cast nephropathy, other lesions centered on proximal tubules are much less accurately identified, properly diagnosed, and adequately understood in terms of pathogenesis and molecular mechanisms involved. These proximal tubule-centered lesions are typically associated with monoclonal light chains and have not been reported in patients with circulating monoclonal heavy chains. To determine the incidence of proximal tubulopathies in a series of patients with monoclonal light chain-related renal lesions and characterize them with an emphasis on clinical correlations and elucidation of molecular mechanisms involved in their pathogenesis. A study of 5410 renal biopsies with careful evaluation of light microscopic, immunofluorescence, and electron microscopic findings was conducted to identify these monoclonal light/heavy chain-related lesions. In selected cases, ultrastructural immunolabeling was performed to better illustrate and understand molecular mechanisms involved or to resolve specific diagnostic difficulties. In all, 2.5% of the biopsies were diagnosed as demonstrating renal pathology associated with monoclonal light or heavy chains. Of these, approximately 46% were classified as proximal tubule-centered lesions, also referred to as monoclonal light chain-associated proximal tubulopathies. These proximal tubulopathies were divided into 4 groups defined by characteristic immunomorphologic manifestations associated with specific clinical settings. These are important lesions whose recognition in the different clinical settings is extremely important for patients' clinical management, therapeutic purposes, and prognosis. These entities have been

  10. Action of ANP on the nongenomic dose-dependent biphasic effect of aldosterone on NHE1 in proximal S3 segment.

    PubMed

    Braga-Sobrinho, C; Leite-Dellova, D C A; Mello-Aires, M

    2012-02-01

    The rapid (2 min) nongenomic effects of aldosterone (ALDO) and/or spironolactone (MR antagonist), RU 486 (GR antagonist), atrial natriuretic peptide (ANP) and dimethyl-BAPTA (BAPTA) on the intracellular pH recovery rate (pHirr) via NHE1 (basolateral Na⁺/H⁺ exchanger isoform), after the acid load induced by NH₄Cl, and on the cytosolic free calcium concentration ([Ca²⁺](i)) were investigated in the proximal S3 segment isolated from rats, by the probes BCECF-AM and FLUO-4-AM, respectively. The basal pHi was 7.15±0.008 and the basal pHirr was 0.195±0.012 pH units/min (number of tubules/number of tubular areas=16/96). Our results confirmed the rapid biphasic effect of ALDO on NHE1: ALDO (10⁻¹² M) increases the pHirr to approximately 59% of control value, and ALDO (10⁻⁶ M) decreases it to approximately 49%. Spironolactone did not change these effects, but RU 486 inhibited the stimulatory effect and maintained the inhibitory effect. ANP (10⁻⁶ M) or BAPTA (5×10⁻⁵ M) alone had no significant effect on NHE1 but prevented both effects of ALDO on this exchanger. The basal [Ca²⁺](i) was 104±3 nM (15), and ALDO (10⁻¹² or 10⁻⁶ M) increased the basal [Ca²⁺](i) to approximately 50% or 124%, respectively. RU 486, ANP and BAPTA decreased the [Ca²⁺](i) and inhibited the stimulatory effect of both doses of ALDO. The results suggest the involvement of GR on the nongenomic effects of ALDO and indicate a pHirr-regulating role for [Ca²⁺](i) that is mediated by NHE1, stimulated/impaired by ALDO, and affected by ANP or BAPTA with ALDO. The observed nongenomic hormonal interaction in the S3 segment may represent a rapid and physiologically relevant regulatory mechanism in the intact animal under conditions of volume alterations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Carbonic anhydrase II binds to and increases the activity of the epithelial sodium-proton exchanger, NHE3

    PubMed Central

    Krishnan, Devishree; Liu, Lei; Wiebe, Shane A.; Casey, Joseph R.; Cordat, Emmanuelle; Alexander, R. Todd

    2016-01-01

    Two-thirds of sodium filtered by the renal glomerulus is reabsorbed from the proximal tubule via a sodium/proton exchanger isoform 3 (NHE3)-dependent mechanism. Since sodium and bicarbonate reabsorption are coupled, we postulated that the molecules involved in their reabsorption [NHE3 and carbonic anhydrase II (CAII)] might physically and functionally interact. Consistent with this, CAII and NHE3 were closely associated in a renal proximal tubular cell culture model as revealed by a proximity ligation assay. Direct physical interaction was confirmed in solid-phase binding assays with immobilized CAII and C-terminal NHE3 glutathione-S-transferase fusion constructs. To assess the effect of CAII on NHE3 function, we expressed NHE3 in a proximal tubule cell line and measured NHE3 activity as the rate of intracellular pH recovery, following an acid load. NHE3-expressing cells had a significantly greater rate of intracellular pH recovery than controls. Inhibition of endogenous CAII activity with acetazolamide significantly decreased NHE3 activity, indicating that CAII activates NHE3. To ascertain whether CAII binding per se activates NHE3, we expressed NHE3 with wild-type CAII, a catalytically inactive CAII mutant (CAII-V143Y), or a mutant unable to bind other transporters (CAII-HEX). NHE3 activity increased upon wild-type CAII coexpression, but not in the presence of the CAII V143Y or HEX mutant. Together these studies support an association between CAII and NHE3 that alters the transporter’s activity. PMID:26041446

  12. In Vitro Evaluation of Dentin Tubule Occlusion for Novel Calcium Lactate Phosphate (CLP) Paste

    PubMed Central

    Yang, Jen-Chang; Hu, Hsin-Tai; Lee, Sheng-Yang; Hsieh, Sung-Chih; Huang, Pei-Chi; Ma, Chen-Feng; Ji, Dian-Yu; Chang, Liang-Yu; Teng, Nai-Chia

    2017-01-01

    Introduction: The objective of this in vitro study is to evaluate the effective and long-term occlusion of dentinal tubules using a novel calcium lactate phosphate (CLP) based desensitizing agent. Methods: Dentin disks (n = 9) were pre-etched using 1 M lactic acid for 30 s and individually treated with Colgate® Pro-Relief™ paste, CLP paste, and double distilled water (ddH2O) by a rubber-cupped handpiece. Dentin disks were analyzed under optical micrographs for pre-treatment, directly after treatment, and 14 days post-treatment. One-way ANOVA and post-hoc Tukey’s test were used to determine whether there were any statistically significant differences in dentinal tubule diameter. Results: A significant decrease occurred in the mean tubule diameter for dentin disks treated with CLP paste. A decrease was observed from 3.52 ± 0.83 µm to 2.62 ± 0.42 µm right after treatment, further decreasing to 1.71 ± 0.45 µm after immersion in artificial saliva for 14 days (p < 0.05). Conclusions: The results suggest that the CLP based desensitizing paste has remineralization properties and provides instant and lasting effectiveness in dentinal tubule occlusion. PMID:28772594

  13. Self-(Un)rolling Biopolymer Microstructures: Rings, Tubules, and Helical Tubules from the Same Material.

    PubMed

    Ye, Chunhong; Nikolov, Svetoslav V; Calabrese, Rossella; Dindar, Amir; Alexeev, Alexander; Kippelen, Bernard; Kaplan, David L; Tsukruk, Vladimir V

    2015-07-13

    We have demonstrated the facile formation of reversible and fast self-rolling biopolymer microstructures from sandwiched active-passive, silk-on-silk materials. Both experimental and modeling results confirmed that the shape of individual sheets effectively controls biaxial stresses within these sheets, which can self-roll into distinct 3D structures including microscopic rings, tubules, and helical tubules. This is a unique example of tailoring self-rolled 3D geometries through shape design without changing the inner morphology of active bimorph biomaterials. In contrast to traditional organic-soluble synthetic materials, we utilized a biocompatible and biodegradable biopolymer that underwent a facile aqueous layer-by-layer (LbL) assembly process for the fabrication of 2D films. The resulting films can undergo reversible pH-triggered rolling/unrolling, with a variety of 3D structures forming from biopolymer structures that have identical morphology and composition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Distal Renal Tubules Are Deficient in Aggresome Formation and Autophagy upon Aldosterone Administration

    PubMed Central

    Cheema, Muhammad Umar; Damkier, Helle Hasager; Nielsen, Jakob; Poulsen, Ebbe Toftgaard; Enghild, Jan J.; Fenton, Robert A.; Praetorius, Jeppe

    2014-01-01

    Prolonged elevations of plasma aldosterone levels are associated with renal pathogenesis. We hypothesized that renal distress could be imposed by an augmented aldosterone-induced protein turnover challenging cellular protein degradation systems of the renal tubular cells. Cellular accumulation of specific protein aggregates in rat kidneys was assessed after 7 days of aldosterone administration. Aldosterone induced intracellular accumulation of 60 s ribosomal protein L22 in protein aggregates, specifically in the distal convoluted tubules. The mineralocorticoid receptor inhibitor spironolactone abolished aldosterone-induced accumulation of these aggregates. The aldosterone-induced protein aggregates also contained proteasome 20 s subunits. The partial de-ubiquitinase ataxin-3 was not localized to the distal renal tubule protein aggregates, and the aggregates only modestly colocalized with aggresome transfer proteins dynactin p62 and histone deacetylase 6. Intracellular protein aggregation in distal renal tubules did not lead to development of classical juxta-nuclear aggresomes or to autophagosome formation. Finally, aldosterone treatment induced foci in renal cortex of epithelial vimentin expression and a loss of E-cadherin expression, as signs of cellular stress. The cellular changes occurred within high, but physiological aldosterone concentrations. We conclude that aldosterone induces protein accumulation in distal renal tubules; these aggregates are not cleared by autophagy that may lead to early renal tubular damage. PMID:25000288

  15. Proximal Tubular Cannabinoid-1 Receptor Regulates Obesity-Induced CKD.

    PubMed

    Udi, Shiran; Hinden, Liad; Earley, Brian; Drori, Adi; Reuveni, Noa; Hadar, Rivka; Cinar, Resat; Nemirovski, Alina; Tam, Joseph

    2017-12-01

    Obesity-related structural and functional changes in the kidney develop early in the course of obesity and occur independently of hypertension, diabetes, and dyslipidemia. Activating the renal cannabinoid-1 receptor (CB 1 R) induces nephropathy, whereas CB 1 R blockade improves kidney function. Whether these effects are mediated via a specific cell type within the kidney remains unknown. Here, we show that specific deletion of CB 1 R in the renal proximal tubule cells did not protect the mice from obesity, but markedly attenuated the obesity-induced lipid accumulation in the kidney and renal dysfunction, injury, inflammation, and fibrosis. These effects associated with increased activation of liver kinase B1 and the energy sensor AMP-activated protein kinase, as well as enhanced fatty acid β -oxidation. Collectively, these findings indicate that renal proximal tubule cell CB 1 R contributes to the pathogenesis of obesity-induced renal lipotoxicity and nephropathy by regulating the liver kinase B1/AMP-activated protein kinase signaling pathway. Copyright © 2017 by the American Society of Nephrology.

  16. Polymorphic organization of the endoplasmic reticulum of the Malpighian tubule. Evidence for a transcellular route.

    PubMed

    Berthelet, F; Beaudry-Lonergan, M; Linares, H; Whittembury, G; Bergeron, M

    1987-01-01

    Isosmotic fluid absorption carried out by many mammalian epithelia appears to be similar to the isosmotic secretion of insect epithelia such as the Malpighian tubules, which are responsible for urine formation and osmoregulation. We have studied by electron microscopy (80 kV) the three-dimensional characteristics of organelles in the Malpighian tubules of Rhodnius prolixus using thick sections (0.3-0.5 microns) and uranyl and lead impregnation. The ER presents a different organization in the upper (distal) and lower (proximal) segments of the Malpighian tubule. In distal secretory segment, the ER forms a network made of chains of vesicles having irregular shapes (ca. 0.06 micron in diameter) connected to each other by canaliculi while in the lower absorptive segment, the ER is made of parallel saccules arranged in stacks or whorls in the central region of the cytoplasm. In both segments, the ER network extends throughout the cytoplasm from the basolateral infoldings to the apex between the many mitochondria present in these two areas. A unique feature of these cells, revealed by thick sections, is the presence in each microvillus of either a mitochondrion or an ER canaliculus in continuity with the ER network. The ER does not seem to have any specific association with mitochondria or other organelles. As in the mammalian nephron, this ER organization is most likely related to specific segmental functions and adds support to its potential role as a transcellular epithelial route.

  17. Transport of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine, a metabolite of trichloroethylene, by mouse multidrug resistance associated protein 2 (Mrp2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsirulnikov, Kirill; Abuladze, Natalia; Koag, Myong-Chul

    2010-04-15

    N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (Ac-DCVC) and S-(1,2-dichlorovinyl)-L-cysteine (DCVC) are the glutathione conjugation pathway metabolites of a common industrial contaminant and potent nephrotoxicant trichloroethylene (TCE). Ac-DCVC and DCVC are accumulated in the renal proximal tubule where they may be secreted into the urine by an unknown apical transporter(s). In this study, we explored the hypothesis that the apical transport of Ac-DCVC and/or DCVC may be mediated by the multidrug resistance associated protein 2 (Mrp2, ABCC2), which is known to mediate proximal tubular apical ATP-dependent transport of glutathione and numerous xenobiotics and endogenous substances conjugated with glutathione. Transport experiments using membrane vesicles prepared from mousemore » proximal tubule derived cells expressing mouse Mrp2 utilizing ATPase assay and direct measurements of Ac-DCVC/DCVC using liquid chromatography/tandem mass-spectrometry (LC/MS/MS) demonstrated that mouse Mrp2 mediates ATP-dependent transport of Ac-DCVC. Expression of mouse Mrp2 antisense mRNA significantly inhibited the vectorial basolateral to apical transport of Ac-DCVC but not DCVC in mouse proximal tubule derived cells endogenously expressing mouse Mrp2. The results suggest that Mrp2 may be involved in the renal secretion of Ac-DCVC.« less

  18. Morphology of the kidney of adult bowfin, Amia calva, with emphasis on "renal chloride cells" in the tubule.

    PubMed

    Youson, J H; Butler, D G

    1988-05-01

    The nephron of adult bowfin, Amia calva, was described using light and electron microscopic techniques. The kidney of the bowfin possesses an abundant supply of renal corpuscles with each consisting of a glomerulus and a Bowman's capsule of visceral (podocyte) and parietal layers. No juxtaglomerular apparatus is present. The epithelium of the tubule is continuous with the parietal epithelium and is divisible in descending order into neck, first proximal, second proximal, first distal, second distal, and collecting segments. The tubules drain into a complex system of collecting ducts that ultimately unite with the main excretory duct, the archinephric duct. Mucous cells are the dominant cell throughout the entire ductular system. Nephrostomes are dispersed along the kidney capsule. The neck segment has a ciliated epithelium, and while both proximal segments possess a prominent brush border, the fine structure of the first implies involvement in protein absorption and the second in the transport and reabsorption of solutes. The cells of the first distal segment are characterized by deep infolding of the plasma membrane and a rich supply of mitochondria suggesting the presence of a mechanism for ion transport. The second distal segment is composed of cells resembling the chloride cells of fishes and these cells are present in progressively decreasing numbers in the collecting segment and duct system so that only a few are present in the epithelium of the archinephric duct. The "renal chloride cells" possess an abundant network of smooth tubules and numerous mitochondria with a rich supply of cristae. Glycogen is also a conspicuous component of these cells. The presence of "renal chloride cells" in this freshwater holostean, in other relatively primitive freshwater teleosts, and in larval and adult lampreys is discussed with reference to both phylogeny and the need for a special mechanism for renal ion conservation through absorption.

  19. A test of the hypothesis that oxalate secretion produces proximal tubule crystallization in primary hyperoxaluria type I

    PubMed Central

    Evan, Andrew P.; Coe, Fredric L.; Lingeman, James E.; Krambeck, Amy; Sommers, Andre; Phillips, Carrie L.; Milliner, Dawn

    2013-01-01

    The sequence of events by which primary hyperoxaluria type 1 (PH1) causes renal failure is unclear. We hypothesize that proximal tubule (PT) is vulnerable because oxalate secretion raises calcium oxalate (CaOx) supersaturation (SS) there, leading to crystal formation and cellular injury. We studied cortical and papillary biopsies from two PH1 patients with preserved renal function, and seven native kidneys removed from four patients at the time of transplant, after short-term (2) or longer term (2) dialysis. In these patients, and another five PH1 patients without renal failure, we calculated oxalate secretion, and estimated PT CaOx SS. Plasma oxalate was elevated in all PH1 patients and inverse to creatinine clearance. Renal secretion of oxalate was present in all PH1 but rare in controls. PT CaOx SS was >1 in all nonpyridoxine-responsive PH1 before transplant and most marked in patients who developed end stage renal disease (ESRD). PT from PH1 with preserved renal function had birefringent crystals, confirming the presence of CaOx SS, but had no evidence of cortical inflammation or scarring by histopathology or hyaluronan staining. PH1 with short ESRD showed CaOx deposition and hyaluronan staining particularly at the corticomedullary junction in distal PT while cortical collecting ducts were spared. Longer ESRD showed widespread cortical CaOx, and in both groups papillary tissue had marked intratubular CaOx deposits and fibrosis. CaOx SS in PT causes CaOx crystal formation, and CaOx deposition in distal PT appears to be associated with ESRD. Minimizing PT CaOx SS may be important for preserving renal function in PH1. PMID:24089413

  20. Intracellular sodium modulates the state of protein kinase C phosphorylation of rat proximal tubule Na+,K+-ATPase.

    PubMed

    Ibarra, F R; Cheng, S X Jun; Agrén, M; Svensson, L-B; Aizman, O; Aperia, A

    2002-06-01

    The natriuretic hormone dopamine and the antinatriuretic hormone noradrenaline, acting on alpha-adrenergic receptors, have been shown to bidirectionally modulate the activity of renal tubular Na+,K+-adenosine triphosphate (ATPase). Here we have examined whether intracellular sodium concentration influences the effects of these bidirectional forces on the state of phosphorylation of Na+,K+-ATPase. Proximal tubules dissected from rat kidney were incubated with dopamine or the alpha-adrenergic agonist, oxymetazoline, and transiently permeabilized in a medium where sodium concentration ranged between 5 and 70 mM. The variations of sodium concentration in the medium had a proportional effect on intracellular sodium. Dopamine and protein kinase C (PKC) phosphorylate the catalytic subunit of rat Na+,K+-ATPase on the Ser23 residue. The level of PKC induced Na+,K+-ATPase phosphorylation was determined using an antibody that only recognizes Na+,K+-ATPase, which is not phosphorylated on its PKC site. Under basal conditions Na+,K+-ATPase was predominantly in its phosphorylated state. When intracellular sodium was increased, Na+,K+-ATPase was predominantly in its dephosphorylated state. Phosphorylation of Na+,K+-ATPase by dopamine was most pronounced when intracellular sodium was high, and dephosphorylation by oxymetazoline was most pronounced when intracellular sodium was low. The oxymetazoline effect was mimicked by the calcium ionophore A23187. An inhibitor of the calcium-dependent protein phosphatase, calcineurin, increased the state of Na+,K+-ATPase phosphorylation. The results imply that phosphorylation of renal Na+,K+-ATPase activity is modulated by the level of intracellular sodium and that this effect involves PKC and calcium signalling pathways. The findings may have implication for the regulation of salt excretion and sodium homeostasis.

  1. Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie-restricted mice.

    PubMed

    Calvo-Rubio, Miguel; Burón, M Isabel; López-Lluch, Guillermo; Navas, Plácido; de Cabo, Rafael; Ramsey, Jon J; Villalba, José M; González-Reyes, José A

    2016-06-01

    Calorie restriction (CR) has been repeatedly shown to prevent cancer, diabetes, hypertension, and other age-related diseases in a wide range of animals, including non-human primates and humans. In rodents, CR also increases lifespan and is a powerful tool for studying the aging process. Recently, it has been reported in mice that dietary fat plays an important role in determining lifespan extension with 40% CR. In these conditions, animals fed lard as dietary fat showed an increased longevity compared with mice fed soybean or fish oils. In this paper, we study the effect of these dietary fats on structural and physiological parameters of kidney from mice maintained on 40% CR for 6 and 18 months. Analyses were performed using quantitative electron microcopy techniques and protein expression in Western blots. CR mitigated most of the analyzed age-related parameters in kidney, such as glomerular basement membrane thickness, mitochondrial mass in convoluted proximal tubules and autophagic markers in renal homogenates. The lard group showed improved preservation of several renal structures with aging when compared to the other CR diet groups. These results indicate that dietary fat modulates renal structure and function in CR mice and plays an essential role in the determination of health span in rodents. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. Geographic Proximity of Waterpipe Smoking Establishments to Colleges in the U.S.

    PubMed Central

    Kates, Frederick R.; Salloum, Ramzi G.; Thrasher, James F.; Islam, Farahnaz; Fleischer, Nancy L.; Maziak, Wasim

    2015-01-01

    Introduction Waterpipe tobacco smoking is prevalent among college students in the U.S. and increasing in popularity. Waterpipe smoking establishments are almost completely unregulated and limited information exists documenting the expansion of this industry. The objective of this study was to identify U.S.-based waterpipe establishments and measure their proximity to colleges/universities. Methods Waterpipe establishments and their addresses were compiled using five Internet-based directories during 2014 and analyzed in 2015. Addresses were geocoded and overlaid on a U.S. map of accredited colleges/universities. Proximity of colleges/universities to the nearest waterpipe establishment was measured in 3-mile increments. Multinomial logistic regression was used to model the factors associated with proximity of waterpipe establishments to colleges/universities. Results A total of 1,690 waterpipe establishments and 1,454 colleges/universities were included in the study. Overall, 554 colleges/universities (38.1%) were within 3 miles of a waterpipe establishment. Proximity of waterpipe establishments to colleges/universities was associated with higher full-time student enrollment. Public colleges/universities and those with a smoke-free campus policy were at lower odds of having waterpipe establishments within 3 miles of their campuses. Conclusions Waterpipe smoking establishments are more likely to be located near large colleges/universities. This study should inform initiatives aimed at reducing retail tobacco establishment exemptions. PMID:26346294

  3. Antagonistic actions of renal dopamine and 5-hydroxytryptamine: increase in Na+, K(+)-ATPase activity in renal proximal tubules via activation of 5-HT1A receptors.

    PubMed Central

    Soares-da-Silva, P.; Pinto-do-O, P. C.; Bertorello, A. M.

    1996-01-01

    1. 5-Hydroxytryptamine (5-HT) is antinatriuretic. Since this effect of 5-HT is not accomplished by changes in glomerular haemodynamics, we have examined in this study whether 5-HT may influence sodium excretion by affecting the Na+, K(+)-ATPase activity in renal cortical tubules. 2. Na+, K(+)-ATPase activity was determined as the rate of [32P]-ATP hydrolysis in renal cortical tubules in suspension. Basal Na+, K(+)-ATPase activity in renal tubules was 4.8 +/- 0.4 mumol Pi mg-1 protein h-1 (n = 8). The 5-HT1A receptor agonist, (+/-)-8-hydroxy-2-(di-n-propylamino) tetraline (8-OH-DPAT) (10 to 3000 nM) induced a concentration-dependent increase (P < 0.05) in Na+, K(+)-ATPase activity with an EC50 value of 355 nM (95% confidence limits: 178, 708). Maximal stimulation elicited by 3000 nM of 8-OH-DPAT was antagonized by the selective 5-HT1A receptor antagonist, (+)-WAY 100135 10 to 1000 nM) with an IC50 value of 20 nM (14, 29); 0.3 microM (+)-WAY 100135 completely abolished (P < 0.01) the stimulatory effect of 8-OH-DPAT. The stimulatory effect of 8-OH-DPAT was found to be time-dependent (15 +/- 2% and 66 +/- 7% increase at 2.5 and 5.0 min, respectively). The 5-HT2 receptor agonist alpha-methyl-5-HT (100 to 3000 nM) did not induce any significant changes in Na+, K(+)-ATPase activity (5.0 +/- 1.5 mumol Pi mg-1 protein h-1; n = 4). 3. The stimulatory effect 8-OH-DPAT was absent when homogenates were used. Stimulation occurred at a Vmax concentration (70 mM) of sodium supporting the notion that stimulation occurs independently of increasing sodium permeability. 4. The inhibitory effect of dopamine (P < 0.05) on Na+, K(+)-ATPase activity was blunted by co-incubation with 8-OH-DPAT (0.5 microM). 5. It is concluded that activation of 5-HT1A receptors increases Na+, K(+)-ATPase activity in renal cortical tubules; this effect may represent an important cellular mechanism, at the tubule level, responsible for the antinatriuretic effect of 5-HT. Images Figure 4 PMID:8882616

  4. Magnetic properties of permalloy-coated organic tubules

    NASA Astrophysics Data System (ADS)

    Krebs, J. J.; Rubinstein, M.; Lubitz, P.; Harford, M. Z.; Baral, S.; Shashidar, R.; Ho, Y. S.; Chow, G. M.; Qadri, S.

    1991-11-01

    An initial investigation is presented of the ferromagnetic properties of a novel type of magnetic composite, viz., permalloy-coated submicron diameter hollow cylinders or tubules. The tubules form spontaneously from an organic material, a diacetylenic phosopholipid, and were used as templates on which the ferromagnetic material was deposited by electroless deposition. The permalloy-coated tubules were dispersed in an epoxy matrix to measure the magnetization and ferromagnetic resonance (FMR) properties of individual tubules. The nature of the magnetic anisotropy and the FMR spectra observed confirmed that the tubules are well aligned by a magnetic field during the epoxy curing. The FMR spectra are interpreted in terms of a powder pattern distribution of thin-film spectra consistent with the large diameter-to-thickness ratio.

  5. Effect of rMnSOD on Sodium Reabsorption in Renal Proximal Tubule in Ochratoxin A-Treated Rats.

    PubMed

    Damiano, Sara; Puzio, Maria V; Squillacioti, Caterina; Mirabella, Nicola; Zona, Enrica; Mancini, Aldo; Borrelli, Antonella; Astarita, Carlo; Boffo, Silvia; Giordano, Antonio; Avallone, Luigi; Florio, Salvatore; Ciarcia, Roberto

    2018-01-01

    Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium that represent toxic real threat for human beings and animal health. In this study we evaluated the effect of a new recombinant mitochondrial manganese containing superoxide dismutase (rMnSOD) on oxidative stress and on the alterations of fluid reabsorption in renal proximal tubule (PT) as possible causes of OTA nephrotoxicity. Finally, we have measured the concentration of O 2 - in the kidney through dihydroethidium assay (DHE) and nitric oxide (NO) concentration through nitrites and nitrates assay. Male Sprague Dawley rats weighing 120-150 g were treated for 14 days by gavage, as follows: Control group, 12 rats received a corresponding amount of saline solution (including 10% DMSO); rMnSOD group, 12 rats treated with rMnSOD (10 µg/kg bw); OTA group, 12 rats treated with OTA (0.5 mg/kg bw) dissolved in 10% DMSO and then scaled to required volume with corn oil; rMnSOD + OTA, 12 rats treated with rMnSOD (10 µg/kg bw) plus OTA (0.5 mg/kg bw). Our results have shown that rMnSOD restores the alteration of reabsorption in PT in rats treated with OTA plus rMnSOD, probably through the response to pressure natriuresis, where nitric oxide plays a key role. Moreover, rMnSOD prevents the nephrotoxicity induced by OTA probably restoring the balance between superoxide and NO that is most probably the cause of hypertension and renal functional alterations through the inhibition of NO synthase. In conclusion these data provide important information for understanding of mechanism of toxic action of OTA. J. Cell. Biochem. 119: 424-430, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Sorting Nexin 1 Loss Results in D5 Dopamine Receptor Dysfunction in Human Renal Proximal Tubule Cells and Hypertension in Mice*

    PubMed Central

    Villar, Van Anthony M.; Jones, John Edward; Armando, Ines; Asico, Laureano D.; Escano, Crisanto S.; Lee, Hewang; Wang, Xiaoyan; Yang, Yu; Pascua-Crusan, Annabelle M.; Palmes-Saloma, Cynthia P.; Felder, Robin A.; Jose, Pedro A.

    2013-01-01

    The peripheral dopaminergic system plays a crucial role in blood pressure regulation through its actions on renal hemodynamics and epithelial ion transport. The dopamine D5 receptor (D5R) interacts with sorting nexin 1 (SNX1), a protein involved in receptor retrieval from the trans-Golgi network. In this report, we elucidated the spatial, temporal, and functional significance of this interaction in human renal proximal tubule cells and HEK293 cells stably expressing human D5R and in mice. Silencing of SNX1 expression via RNAi resulted in the failure of D5R to internalize and bind GTP, blunting of the agonist-induced increase in cAMP production and decrease in sodium transport, and up-regulation of angiotensin II receptor expression, of which expression was previously shown to be negatively regulated by D5R. Moreover, siRNA-mediated depletion of renal SNX1 in C57BL/6J and BALB/cJ mice resulted in increased blood pressure and blunted natriuretic response to agonist in salt-loaded BALB/cJ mice. These data demonstrate a crucial role for SNX1 in D5R trafficking and that SNX1 depletion results in D5R dysfunction and thus may represent a novel mechanism for the pathogenesis of essential hypertension. PMID:23152498

  7. Effects of vasopressin on the isolated perfused human collecting tubule.

    PubMed

    Yanagawa, N; Trizna, W; Bar-Khayim, Y; Fine, L G

    1981-05-01

    Cortical collecting tubules (CCT) were dissected from the surviving normal tissue of human kidneys removed at operation for either carcinoma or calculus. These CCT's were perfused in vitro shortly after the nephrectomy was performed. Transtubular potential differences in different tubules varied from +3.2 to -2.0 mV and were reduced towards zero by lowering the temperature or by adding ouabain to the bath. In the absence of vasopressin, tubules were essentially impermeable to water with extremely low net water fluxes even in the presence of a transtubular osmotic gradient. Addition of vasopressin to the bath caused the transtubular osmotic water permeability coefficient to increase to values of 125, 175, and 155 X 10(-4) cm/sec in three tubules thus studied. These results demonstrate close similarities between the human CCT and the more extensively studied rabbit CCT.

  8. High-resolution imaging of selenium in kidneys: a localized selenium pool associated with glutathione peroxidase 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinouski, M.; Kehr, S.; Finney, L.

    2012-04-17

    Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA{sup [Ser]Sec} and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts ofmore » the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.« less

  9. Distribution of hydrogen sulfide (H₂S)-producing enzymes and the roles of the H₂S donor sodium hydrosulfide in diabetic nephropathy.

    PubMed

    Yamamoto, Junichiro; Sato, Waichi; Kosugi, Tomoki; Yamamoto, Tokunori; Kimura, Toshihide; Taniguchi, Shigeki; Kojima, Hiroshi; Maruyama, Shoichi; Imai, Enyu; Matsuo, Seiichi; Yuzawa, Yukio; Niki, Ichiro

    2013-02-01

    Hydrogen sulfide (H(2)S) has recently been found to play beneficial roles in ameliorating several diseases, including hypertension, atherosclerosis and cardiac/renal ischemia-reperfusion injuries. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), the main enzymes in the transsulfuration pathway, catalyze H(2)S production in mammalian tissues. However, the distributions and precise roles of these enzymes in the kidney have not yet been identified. The present study examined the localization of both enzymes in the normal kidney and the effect of the H(2)S donor sodium hydrosulfide (NaHS) in the renal peritubular capillary (PTC) under conditions of diabetic nephropathy, using pancreatic β-cell-specific calmodulin-overexpressing transgenic mice as a model of diabetes. In the normal kidney, we detected expression of both CBS and CSE in the brush border and cytoplasm of the proximal tubules, but not in the glomeruli, distal tubules and vascular endothelial cells of renal PTCs. Administration of NaHS increased PTC diameter and blood flow. We further evaluated whether biosynthesis of H(2)S was altered in a spontaneous diabetic model that developed renal lesions similar to human diabetic nephropathy. CSE expression was markedly reduced under diabetic conditions, whereas CBS expression was unaffected. Progressive diabetic nephropathy showed vasoconstriction and a loss of blood flow in PTCs that was ameliorated by NaHS treatment. These findings suggest that CSE expression in the proximal tubules may also regulate tubulointerstitial microcirculation via H(2)S production. H(2)S may represent a target of treatment to prevent progression of ischemic injury in diabetic nephropathy.

  10. Molecular size and origin do not influence the harmful side effects of hydroxyethyl starch on human proximal tubule cells (HK-2) in vitro.

    PubMed

    Bruno, Raphael R; Neuhaus, Winfried; Roewer, Norbert; Wunder, Christian; Schick, Martin A

    2014-09-01

    Recently, clinical trials revealed renal impairment induced by hydroxyethyl starch (HES) in septic patients. In prior studies, we managed to demonstrate that HES accumulated in renal proximal tubule cells (PTCs). The related pathomechanism has not yet been discovered. To validate our hypothesis that the HES molecule itself is harmful, regardless of its molecule size or origin, we conducted a comprehensive study to elucidate the influences of different HES preparations on PTC viability in vitro. Cell viability of human PTC was measured with a cytotoxicity assay, quantifying the reduction of tetrazolium salt to colored formazan. Experiments were performed by assessing the influence of different carrier solutions of HES (balanced, nonbalanced, culture medium), different average molecular weights (70, 130, 200 kDa), different origins (potato or corn derived), and various durations of incubation (2-21 hours). Furthermore, HES 130/0.4 was fractionated by ultrafiltration, and the impact on cell viability of average single-size fractions with <3, 3 to 10, 10 to 30, 30 to 50, 50 to 100, and >100 kDa was investigated. We also tested the possible synergistic effects of inflammation induced by tumor necrosis factor-α. All tested HES solutions, regardless of origin or carrier matrix, decreased cell viability in an equivalent, dose-dependent manner. Coincubation with tumor necrosis factor-α did not reduce HES-induced reduction of cell viability. Minor differences were detected comparing 70, 130, and 200 kDa preparations. Analysis of fractionated HES revealed that each fraction decreased cell viability. Even small HES molecules (10-30 kDa) were significantly deleterious. For the first time, we were able to show that only the total mass of HES molecules applied is responsible for the harmful impact on renal PTC in vitro. Neither molecular size nor their origin showed any relevance.

  11. Polyunsaturated Fatty Acids in Lipid Bilayers and Tubules

    NASA Astrophysics Data System (ADS)

    Hirst, Linda S.; Yuan, Jing; Pramudya, Yohannes; Nguyen, Lam T.

    2007-03-01

    Omega-3 polyunsaturated fatty acids (PUFAs) are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, typical molecules include DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) which have been the focus of considerable attention in recent years. We are interested in the phase behavior of these molecules in the lipid bilayer. The addition of lipid molecules with polyunsaturated chains has a clear effect on the fluidity and curvature of the membrane and we investigate the effects the addition of polyunsaturated lipids on bilayer structure and tubule formation. Self-assembled cylindrical lipid tubules have attracted considerable attention because of their interesting structures and potential technological applications. Using x-ray diffraction techniques, Atomic Force Microscopy and confocal fluorescence imaging, both symmetric and mixed chain lipids were incorporated into model membranes and the effects on bilayer structure and tubule formation investigated.

  12. Acquired Fanconi syndrome with proximal tubular cytoplasmic fibrillary inclusions of λ light chain restriction.

    PubMed

    Yao, Ying; Wang, Su-Xia; Zhang, You-Kang; Wang, Yan; Liu, Li; Liu, Gang

    2014-01-01

    Light chain proximal tubulopathy is a rarely reported entity associated with plasma cell dyscrasia that classically manifests as acquired Fanconi syndrome and is characterized by the presence of κ-restricted crystals in the proximal tubular cytoplasm. We herein present a case of multiple myeloma with Fanconi syndrome and acute kidney injury due to light chain proximal tubulopathy with light chain cast nephropathy. Prominent phagolysosomes and numerous irregularly shaped inclusions with a fibrillary matrix in the cytoplasm of the proximal tubules were identified on electron microscopy. A monotypic light chain of the λ type was detected in the distal tubular casts, proximal tubular cytoplasmic lysosomes and fibrillary inclusions on immunofluorescence and immune electron microscopy. This case underscores the importance of conducting careful ultrastructural investigations and immunocytologic examinations of light chains for detecting and diagnosing light chain proximal tubulopathy.

  13. Evaluation of desensitizing agents on dentin permeability and dentinal tubule occlusion: an in vitro study.

    PubMed

    Oberg, Carolina; Pochapski, Marcia Thais; Farago, Paulo Vitor; Granado, Carlos Jose Fernandes; Pilatti, Gibson Luiz; Santos, Fabio Andre

    2009-01-01

    One hundred twelve specimens from bovine incisors were divided into eight groups: Group 1 (treated with 10% strontium chloride gel), Group 2 (treated with 2% sodium fluoride gel), Group 3 (treated with 2% stannous fluoride gel), Group 4 (treated with 5% potassium nitrate gel), Group 5 (treated with 10% potassium nitrate gel), Group 6 (treated with 3% potassium oxalate gel), Group 7 (treated with hydroxyethylcellulose gel), and Group 8 (which received no treatment). Dentinal tubules were exposed after 0.5 mm of deep abrasion using a carbide bur and EDTA gel application. After each treatment, dentin permeability, tubule occlusion, and chemical elements on dentin were analyzed. There was a significant difference among groups in dentin permeability (p < 0.05 ANOVA). Groups 4, 5, and 6 showed the lowest values, while Groups 1, 7, and 8 exhibited the highest. Groups 1, 2, 3, 7, and 8 showed open dentinal tubules, Groups 4 and 5 had partial tubule occlusion, and most of the tubules in Group 6 were obliterated. Energy-dispersive x-rays revealed similar chemical characteristics among the experimental agents used, with traces of strontium, fluoride, sodium, and potassium. Within the limits of the study, 3% potassium oxalate gel showed the best results in terms of dentin permeability and dentinal tubule occlusion.

  14. High-Resolution Imaging of Selenium in Kidneys: A Localized Selenium Pool Associated with Glutathione Peroxidase 3

    PubMed Central

    Malinouski, Mikalai; Kehr, Sebastian; Finney, Lydia; Vogt, Stefan; Carlson, Bradley A.; Seravalli, Javier; Jin, Richard; Handy, Diane E.; Park, Thomas J.; Loscalzo, Joseph; Hatfield, Dolph L.

    2012-01-01

    Abstract Aim: Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Results: Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA[Ser]Sec and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. Innovation: We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. Conclusion: XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution. Antioxid. Redox Signal. 16, 185–192. PMID:21854231

  15. Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis.

    PubMed

    Li, Huiyan; Peng, Xuan; Wang, Yating; Cao, Shirong; Xiong, Liping; Fan, Jinjin; Wang, Yihan; Zhuang, Shougang; Yu, Xueqing; Mao, Haiping

    2016-09-01

    Macroautophagy/autophagy protects against cellular stress. Renal sublethal injury-triggered tubular epithelial cell cycle arrest at G2/M is associated with interstitial fibrosis. However, the role of autophagy in renal fibrosis is elusive. Here, we hypothesized that autophagy activity in tubular epithelial cells is pivotal for inhibition of cell cycle G2/M arrest and subsequent fibrogenic response. In both renal epithelial cells stimulated by angiotensin II (AGT II) and the murine kidney after unilateral ureteral obstruction (UUO), we observed that occurrence of autophagy preceded increased production of COL1 (collagen, type I). Pharmacological enhancement of autophagy by rapamycin suppressed COL1 accumulation and renal fibrosis. In contrast, genetic ablation of autophagy by proximal tubular epithelial cell-specific deletion of Atg5, with reduction of the LC3-II protein level and degradation of SQSTM1/p62, showed marked cell cycle arrest at the G2/M phase, robust COL1 deposition, and severe interstitial fibrosis in a UUO model, as compared with wild-type mice. In vitro, AGT II exposure triggered autophagy preferentially in the G1/S phase, and increased COL1 expression in the G2/M phase in renal epithelial cells. Stimulation of Atg5-deficient primary proximal tubular cells with AGT II also resulted in elevated G2/M arrest and COL1 production. Pharmacological or genetic inhibition of autophagy increased AGT II-mediated G2/M arrest. Enhanced expression of ATG5, but not the autophagy-deficient ATG5 mutant K130R, rescued the G2/M arrest, suggesting the regulation of cell cycle progression by ATG5 is autophagy dependent. In conclusion, Atg5-mediated autophagy in proximal epithelial cells is a critical host-defense mechanism that prevents renal fibrosis by blocking G2/M arrest.

  16. (2S)-2-(3-(1-Carboxy-5-(4-211At-Astatobenzamido)Pentyl)Ureido)-Pentanedioic Acid for PSMA-Targeted α-Particle Radiopharmaceutical Therapy

    PubMed Central

    Kiess, Ana P.; Minn, Il; Vaidyanathan, Ganesan; Hobbs, Robert F.; Josefsson, Anders; Shen, Colette; Brummet, Mary; Chen, Ying; Choi, Jaeyeon; Koumarianou, Eftychia; Baidoo, Kwamena; Brechbiel, Martin W.; Mease, Ronnie C.; Sgouros, George; Zalutsky, Michael R.

    2016-01-01

    Alpha-particle emitters have a high linear energy transfer and short range, offering the potential for treating micrometastases while sparing normal tissues. We developed a urea-based, 211At-labeled small molecule targeting prostate-specific membrane antigen (PSMA) for the treatment of micrometastases due to prostate cancer (PC). Methods: PSMA-targeted (2S)-2-(3-(1-carboxy-5-(4-211At-astatobenzamido)pentyl)ureido)-pentanedioic acid (211At-6) was synthesized. Cellular uptake and clonogenic survival were tested in PSMA-positive (PSMA+) PC3 PIP and PSMA-negative (PSMA−) PC3 flu human PC cells after 211At-6 treatment. The antitumor efficacy of 211At-6 was evaluated in mice bearing PSMA+ PC3 PIP and PSMA– PC3 flu flank xenografts at a 740-kBq dose and in mice bearing PSMA+, luciferase-expressing PC3-ML micrometastases. Biodistribution was determined in mice bearing PSMA+ PC3 PIP and PSMA– PC3 flu flank xenografts. Suborgan distribution was evaluated using α-camera images, and microscale dosimetry was modeled. Long-term toxicity was assessed in mice for 12 mo. Results: 211At-6 treatment resulted in PSMA-specific cellular uptake and decreased clonogenic survival in PSMA+ PC3 PIP cells and caused significant tumor growth delay in PSMA+ PC3 PIP flank tumors. Significantly improved survival was achieved in the newly developed PSMA+ micrometastatic PC model. Biodistribution showed uptake of 211At-6 in PSMA+ PC3 PIP tumors and in kidneys. Microscale kidney dosimetry based on α-camera images and a nephron model revealed hot spots in the proximal renal tubules. Long-term toxicity studies confirmed that the dose-limiting toxicity was late radiation nephropathy. Conclusion: PSMA-targeted 211At-6 α-particle radiotherapy yielded significantly improved survival in mice bearing PC micrometastases after systemic administration. 211At-6 also showed uptake in renal proximal tubules resulting in late nephrotoxicity, highlighting the importance of long-term toxicity studies and

  17. Distinct Requirements for Vacuolar Protein Sorting 34 Downstream Effector Phosphatidylinositol 3-Phosphate 5-Kinase in Podocytes Versus Proximal Tubular Cells

    PubMed Central

    Venkatareddy, Madhusudan; Verma, Rakesh; Kalinowski, Anne; Patel, Sanjeevkumar R.; Shisheva, Assia

    2016-01-01

    The mechanisms by which the glomerular filtration barrier prevents the loss of large macromolecules and simultaneously, maintains the filter remain poorly understood. Recent studies proposed that podocytes have an active role in both the endocytosis of filtered macromolecules and the maintenance of the filtration barrier. Deletion of a key endosomal trafficking regulator, the class 3 phosphatidylinositol (PtdIns) 3-kinase vacuolar protein sorting 34 (Vps34), in podocytes results in aberrant endosomal membrane morphology and podocyte dysfunction. We recently showed that the vacuolation phenotype in cultured Vps34–deficient podocytes is caused by the absence of a substrate for the Vps34 downstream effector PtdIns 3-phosphate 5-kinase (PIKfyve), which phosphorylates Vps34-generated PtdIns(3)P to produce PtdIns (3,5)P2. PIKfyve perturbation and PtdIns(3,5)P2 reduction result in massive membrane vacuolation along the endosomal system, but the cell-specific functions of PIKfyve in vivo remain unclear. We show here that the genetic deletion of PIKfyve in endocytically active proximal tubular cells resulted in the development of large cytoplasmic vacuoles caused by arrested endocytic traffic progression at a late-endosome stage. In contrast, deletion of PIKfyve in glomerular podocytes did not significantly alter the endosomal morphology, even in age 18-month-old mice. However, on culturing, the PIKfyve-deleted podocytes developed massive cytoplasmic vacuoles. In summary, these data suggest that glomerular podocytes and proximal tubules have different requirements for PIKfyve function, likely related to distinct in vivo needs for endocytic flux. PMID:26825532

  18. Effect of theobromine-containing toothpaste on dentin tubule occlusion in situ.

    PubMed

    Amaechi, Bennett T; Mathews, Sapna M; Mensinkai, Poornima K

    2015-01-01

    Dentin hypersensitivity (DH) is treated by either occlusion of dentin tubules or nerve desensitization. This in situ study compared dentin tubules occlusion by theobromine-containing dentifrices with (Theodent-classic-F®, TCF) and without (Theodent-classic®, TC) fluoride with 1,500 ppm fluoride toothpaste, Colgate®-Regular (Fluoride) and Novamin®-containing toothpaste, Sensodyne®-5000-Nupro (Novamin®). Each subject wore four intraoral appliances bearing dentin blocks while using one of four test dentifrices (n = 20/dentifrice) twice daily for 7 days. The four appliances were removed successively after 1, 2, 3, and 7 days. Treated blocks and their control (untreated) blocks were examined with scanning electron microscopy (SEM). Effects were compared statistically (ANOVA/Tukey's) based on percentage of surface area covered by deposited precipitate layer (%DPL) and percentage of fully open (%FOT), partially occluded (%POT), and completely occluded (%COT) tubules in each block calculated relative to the number of tubules in their control blocks. SEM observation indicated an increased %COT and %DPL over time. After 1 and 2 days, %COT was comparable with TC and TCF, and significantly (p < 0.05) higher compared with Novamin® and Fluoride. Following 3 and 7 days, %COT was comparable among TC, TCF, and Novamin®, but remained significantly lower in Fluoride. At any time, %DPL was significantly (p < 0.05) higher in TC, TCF, and Novamin® compared with Fluoride. Theobromine-containing toothpastes with and without fluoride have equal potential in occluding dentin tubules within a shorter time period than Novamin®-containing toothpaste; however, the three demonstrated equal potential after 1 week, but not the fluoride toothpaste. Theobromine-containing toothpaste promoted dentin tubule occlusion thus shows potential to relief DH.

  19. Microorganism penetration in dentinal tubules of instrumented and retreated root canal walls. In vitro SEM study.

    PubMed

    Al-Nazhan, Saad; Al-Sulaiman, Alaa; Al-Rasheed, Fellwa; Alnajjar, Fatimah; Al-Abdulwahab, Bander; Al-Badah, Abdulhakeem

    2014-11-01

    This in vitro study aimed to investigate the ability of Candida albicans (C. albicans) and Enterococcus faecalis (E. faecalis) to penetrate dentinal tubules of instrumented and retreated root canal surface of split human teeth. Sixty intact extracted human single-rooted teeth were divided into 4 groups, negative control, positive control without canal instrumentation, instrumented, and retreated. Root canals in the instrumented group were enlarged with endodontic instruments, while root canals in the retreated group were enlarged, filled, and then removed the canal filling materials. The teeth were split longitudinally after canal preparation in 3 groups except the negative control group. The teeth were inoculated with both microorganisms separately and in combination. Teeth specimens were examined by scanning electron microscopy (SEM), and the depth of penetration into the dentinal tubules was assessed using the SMILE view software (JEOL Ltd). Penetration of C. albicans and E. faecalis into the dentinal tubules was observed in all 3 groups, although penetration was partially restricted by dentin debris of tubules in the instrumented group and remnants of canal filling materials in the retreated group. In all 3 groups, E. faecalis penetrated deeper into the dentinal tubules by way of cell division than C. albicans which built colonies and penetrated by means of hyphae. Microorganisms can easily penetrate dentinal tubules of root canals with different appearance based on the microorganism size and status of dentinal tubules.

  20. Calcium Oxalate Accumulation in Malpighian Tubules of Silkworm (Bombyx mori)

    NASA Astrophysics Data System (ADS)

    Wyman, Aaron J.; Webb, Mary Alice

    2007-04-01

    Silkworm provides an ideal model system for study of calcium oxalate crystallization in kidney-like organs, called Malpighian tubules. During their growth and development, silkworm larvae accumulate massive amounts of calcium oxalate crystals in their Malpighian tubules with no apparent harm to the organism. This manuscript reports studies of crystal structure in the tubules along with analyses identifying molecular constituents of tubule exudate.

  1. Dentin hypersensitivity treatment by CO2 laser: the influence of the density of dentin tubules and laser-beam incidence

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; Gabay, Shimon; van der Meulen, Freerk W.; van Gemert, Martin J. C.; Miron, Mariana I.; Mavrantoni, Androniki

    1997-12-01

    Dentin hypersensitivity is considered to be a consequence of the presence of open dentin tubules on the exposed dentin surface. Various methods and materials used in the treatment of this disease are directed to achieve a tubule's occlusion. The purpose of this study was to evaluate under scanning electron microscopy and clinical method the sealing effects of CO2 laser on dentin tubules of human teeth without any damages of the surrounding tissues. Samples of freshly extracted noncarious 3rd molars were used. The teeth were randomly divided in to two groups A and B. The samples of group A were exposed to laser beam in cervical area, directed parallel to their dentin tubules. The teeth of group B were sectioned through a hypothetical carious lesion and lased perpendicularly or obliquely of the dentin tubules. The CO2 laser, at 10.6 micrometers wavelength, was operated only in pulse mode and provided 6.25 - 350 mJ in a burst of 25 pulses each of 250 microsecond(s) time duration with a 2 ms time interval between successive pulses (repetition rate up to 500 mH). Melting of dentin surface and partial closure of exposed dentin tubules were found for all specimens at 6.25 to 31.25 mJ energy. Our results indicated that using CO2 laser in a parallel orientation of laser beam with dentin tubules, the dentin sensitivity can be reduced without any damages of pulp vitality.

  2. Activation of D4 dopamine receptor decreases AT1 angiotensin II receptor expression in rat renal proximal tubule cells

    PubMed Central

    Chen, Ken; Deng, Kun; Wang, Xiaoyan; Wang, Zhen; Zheng, Shuo; Ren, Hongmei; He, Duofen; Han, Yu; Asico, Laureano D.; Jose, Pedro A.; Zeng, Chunyu

    2014-01-01

    The dopaminergic and renin angiotensin systems interact to regulate blood pressure. Disruption of the D4 dopamine receptor gene in mice produces hypertension that is associated with increased renal AT1 receptor expression. We hypothesize that the D4 receptor can inhibit AT1 receptor expression and function in renal proximal tubules (RPTs) cells from Wistar-Kyoto (WKY) rats but the D4 receptor regulation of AT1 receptor is aberrant in RPT cells from spontaneously hypertensive rats (SHRs). The D4 receptor agonist, PD168077, decreased AT1 receptor protein expression in a time and concentration-dependent manner in WKY cells. By contrast, in SHR cells, PD168077 increased AT1 receptor protein expression. The inhibitory effect of D4 receptor on AT1 receptor expression in WKY cells was blocked by a calcium channel blocker, nicardipine, or calcium-free medium, indicating that calcium is involved in the D4 receptor-mediated signaling pathway. Angiotensin II increased Na+-K+ ATPase activity in WKY cells. Pretreatment with PD168077 decreased the stimulatory effect of angiotensin II on Na+-K+ ATPase activity in WKY cells. In SHR cells, the inhibitory effect of D4 receptor on angiotensin II-mediated stimulation of Na+-K+ ATPase activity was aberrant; pretreatment with PD168077 augmented the stimulatory effect of AT1 receptor on Na+-K+ ATPase activity in SHR cells. This was confirmed in vivo; pre-treatment with PD128077 for one week augmented the anti-hypertensive and natriuretic effect of losartan in SHRs but not in WKY rats. We suggest that an aberrant interaction between D4 and AT1 receptors may play a role in the abnormal regulation of sodium excretion in hypertension. PMID:25368031

  3. Effects of tooth-brushing force with a desensitising dentifrice on dentine tubule patency and surface roughness.

    PubMed

    Mullan, F; Paraskar, S; Bartlett, D W; Olley, R C

    2017-05-01

    To investigate the effects of a 5% NovaMin containing dentifrice on dentine tubule patency and surface roughness at 100g and 400g tooth brush abrasion forces. 75 polished human dentine samples were prepared and randomly allocated into one of five groups; control (1), Na 2 PFO 3 100g abrasion force (2), NovaMin 100g (3), Na 2 PFO 3 400g (4) and NovaMin 400g (5). The control group underwent two 2-min cycles of artificial saliva (AS), one 2-min erosion cycle; the rest underwent two toothbrush abrasion cycles in an AS/dentifrice slurry and one 2-min erosion cycle. All samples were imaged at baseline and post intervention using Tandem Scanning Microscopy and Profilometry to analyse tubule patency and roughness. Mean tubule patency increased significantly between baseline and post intervention in groups 1,2 and 4 and decreased significantly post intervention in groups 3 and 5 (p<0.01). Post intervention, there were statistically significant differences in mean patent tubules between NovaMin and the Na 2 PFO 3 and control groups (p<0.001). Surface roughness increased for all groups between baseline and post interventions (P<0.001); mean (SD) roughness increases for groups 1, 2, 3, 4 and 5 were 0.14 (0.05) μm, 0.18 (0.04) μm, 0.16 (0.06) μm, 0.19 (0.07) μm and 0.21 (0.02) μm respectively. Differences between group 1 and 5 were significant (p<0.01). Brushing with NovaMin resulted in significant dentine tubule occlusion at 100g and 400g, but brushing with Na 2 PFO 3 resulted in increased tubule patency. Surface roughness increased significantly at 400g brushing with NovaMin. There was no correlation between tubule patency and surface roughness. A NovaMin desensitising dentifrice resulted in tubule occlusion even at high brushing forces. There was minimal increase in surface roughness at the lower (100g) brushing force. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Palladium nanotubes formed by lipid tubule templating and their application in ethanol electrocatalysis.

    PubMed

    Wang, Yinan; Ma, Shenghua; Su, Yingchun; Han, Xiaojun

    2015-04-13

    Palladium nanotubes were fabricated by using lipid tubules as templates for the first time in a controlled manner. The positively charged lipid 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) was doped into lipid tubules to adsorb PdCl4 (2-) on the tubule surfaces for further reduction. The lipid tubule formation was optimized by studying the growing dynamics and ethanol/water ratio. The DOTAP-doped tubules showed pH stability from 0 to 14, which makes them ideal templates for metal plating. The Pd nanotubes are open-ended with a tunable wall thickness. They exhibited good electrocatalytic performance in ethanol. Their electrochemically active surface areas were 6.5, 10.6, and 83.2 m(2)  g(-1) for Pd nanotubes with 77, 101, and 150 nm wall thickness, respectively. These Pd nanotubes have great potential in fuel cells. The method demonstrated also opens up a way to synthesize hollow metal nanotubes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cyclophilin B Interacts with Sodium-Potassium ATPase and Is Required for Pump Activity in Proximal Tubule Cells of the Kidney

    PubMed Central

    Suñé, Guillermo; Sarró, Eduard; Puigmulé, Marta; López-Hellín, Joan; Zufferey, Madeleine; Pertel, Thomas; Luban, Jeremy; Meseguer, Anna

    2010-01-01

    Cyclophilins (Cyps), the intracellular receptors for Cyclosporine A (CsA), are responsible for peptidyl-prolyl cis-trans isomerisation and for chaperoning several membrane proteins. Those functions are inhibited upon CsA binding. Albeit its great benefits as immunosuppressant, the use of CsA has been limited by undesirable nephrotoxic effects, including sodium retention, hypertension, hyperkalemia, interstial fibrosis and progressive renal failure in transplant recipients. In this report, we focused on the identification of novel CypB-interacting proteins to understand the role of CypB in kidney function and, in turn, to gain further insight into the molecular mechanisms of CsA-induced toxicity. By means of yeast two-hybrid screens with human kidney cDNA, we discovered a novel interaction between CypB and the membrane Na/K-ATPase β1 subunit protein (Na/K-β1) that was confirmed by pull-down, co-immunoprecipitation and confocal microscopy, in proximal tubule-derived HK-2 cells. The Na/K-ATPase pump, a key plasma membrane transporter, is responsible for maintenance of electrical Na+ and K+ gradients across the membrane. We showed that CypB silencing produced similar effects on Na/K-ATPase activity than CsA treatment in HK-2 cells. It was also observed an enrichment of both alpha and beta subunits in the ER, what suggested a possible failure on the maturation and routing of the pump from this compartment towards the plasma membrane. These data indicate that CypB through its interaction with Na/K-β1 might regulate maturation and trafficking of the pump through the secretory pathway, offering new insights into the relationship between cyclophilins and the nephrotoxic effects of CsA. PMID:21085665

  6. Cyclophilin B interacts with sodium-potassium ATPase and is required for pump activity in proximal tubule cells of the kidney.

    PubMed

    Suñé, Guillermo; Sarró, Eduard; Puigmulé, Marta; López-Hellín, Joan; Zufferey, Madeleine; Pertel, Thomas; Luban, Jeremy; Meseguer, Anna

    2010-11-10

    Cyclophilins (Cyps), the intracellular receptors for Cyclosporine A (CsA), are responsible for peptidyl-prolyl cis-trans isomerisation and for chaperoning several membrane proteins. Those functions are inhibited upon CsA binding. Albeit its great benefits as immunosuppressant, the use of CsA has been limited by undesirable nephrotoxic effects, including sodium retention, hypertension, hyperkalemia, interstial fibrosis and progressive renal failure in transplant recipients. In this report, we focused on the identification of novel CypB-interacting proteins to understand the role of CypB in kidney function and, in turn, to gain further insight into the molecular mechanisms of CsA-induced toxicity. By means of yeast two-hybrid screens with human kidney cDNA, we discovered a novel interaction between CypB and the membrane Na/K-ATPase β1 subunit protein (Na/K-β1) that was confirmed by pull-down, co-immunoprecipitation and confocal microscopy, in proximal tubule-derived HK-2 cells. The Na/K-ATPase pump, a key plasma membrane transporter, is responsible for maintenance of electrical Na+ and K+ gradients across the membrane. We showed that CypB silencing produced similar effects on Na/K-ATPase activity than CsA treatment in HK-2 cells. It was also observed an enrichment of both alpha and beta subunits in the ER, what suggested a possible failure on the maturation and routing of the pump from this compartment towards the plasma membrane. These data indicate that CypB through its interaction with Na/K-β1 might regulate maturation and trafficking of the pump through the secretory pathway, offering new insights into the relationship between cyclophilins and the nephrotoxic effects of CsA.

  7. Sodium bicarbonate cotransporter NBCe2 gene variants increase sodium and bicarbonate transport in human renal proximal tubule cells.

    PubMed

    Gildea, John J; Xu, Peng; Kemp, Brandon A; Carlson, Julia M; Tran, Hanh T; Bigler Wang, Dora; Langouët-Astrié, Christophe J; McGrath, Helen E; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2018-01-01

    Salt sensitivity of blood pressure affects >30% of the hypertensive and >15% of the normotensive population. Variants of the electrogenic sodium bicarbonate cotransporter NBCe2 gene, SLC4A5, are associated with increased blood pressure in several ethnic groups. SLC4A5 variants are also highly associated with salt sensitivity, independent of hypertension. However, little is known about how NBCe2 contributes to salt sensitivity, although NBCe2 regulates renal tubular sodium bicarbonate transport. We hypothesized that SLC4A5 rs10177833 and rs7571842 increase NBCe2 expression and human renal proximal tubule cell (hRPTC) sodium transport and may be a cause of salt sensitivity of blood pressure. To characterize the hRPTC ion transport of wild-type (WT) and homozygous variants (HV) of SLC4A5. The expressions of NBCe2 mRNA and protein were not different between hRPTCs carrying WT or HV SLC4A5 before or after dopaminergic or angiotensin (II and III) stimulation. However, luminal to basolateral sodium transport, NHE3 protein, and Cl-/HCO3- exchanger activity in hRPTCs were higher in HV than WT SLC4A5. Increasing intracellular sodium enhanced the apical location of NBCe2 in HV hRPTCs (4.24±0.35% to 11.06±1.72% (P<0.05, N = 3, 2-way ANOVA, Holm-Sidak test)) as determined by Total Internal Reflection Fluorescence Microscopy (TIRFM). In hRPTCs isolated from kidney tissue, increasing intracellular sodium enhanced bicarbonate-dependent pH recovery rate and increased NBCe2 mRNA and protein expressions to a greater extent in HV than WT SLC4A5 (+38.00±6.23% vs HV normal salt (P<0.01, N = 4, 2-way ANOVA, Holm-Sidak test)). In hRPTCs isolated from freshly voided urine, bicarbonate-dependent pH recovery was also faster in those from salt-sensitive and carriers of HV SLC4A5 than from salt-resistant and carriers of WT SLC4A5. The faster NBCe2-specific bicarbonate-dependent pH recovery rate in HV SCL4A5 was normalized by SLC4A5- but not SLC4A4-shRNA. The binding of purified hepatocyte

  8. Lipid tubules Formed by Flow-Controlled Hydration

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Hirst, Linda S.

    2007-03-01

    Self-assembled cylindrical tubules from lipid molecules have attracted considerable attention because of their interesting supramolecular structures and technological applications. Schnur et al. [1] reported the formation of tubular microstructures from a series of diacetylenic phospholipids after liposomes were cooled through their chain melting transition. After that, several methods have been developed to fabricate such unique microstructures mainly by means of deforming preformed Giant unilamellar vesicles. Here we present a simple strategy to construct lipid microtubules through a flow-controlled lipid hydration. Fluorescent microscopy and Confocal Laser Microscopy were used to visualize the formation and the structure of the lipid tubules. Tubules were found to develop following the direction of the dynamic flow with highly parallel alignment. At high flow speeds, partial cross-linking of the lipid tubules was observed. To demonstrate the generality of this method, different types of phospholipids, such as Phosphatidic Acid (PA), Phosphatidylserine (PS), Phosphatidylethanolamine (PE), and Phosphatidylglycerol (PG) were investigated. [1] J.M. Schnur et al, Science, 264, 945 (1994).

  9. A critical synopsis: Continuous growth of proximal tubular kidney epithelial cells in hormone-supplemented serum-free medium

    NASA Technical Reports Server (NTRS)

    Chuman, L. M.; FINE; COHEN; Saier, M. H.

    1985-01-01

    The kidney forms urine and reabsorbs electrolytes and water. Kidney cell lines and hormone supplemented serum free medium were used for growth. The hormones were insulin, transferrin, vasopressin, cholesterol, prostaglandins, hydrocortisone, and triidothyronine. Epithelial cell lines are polar and form hemicysts. The Madin-Darby canine kidney(MDCK) cell line used is distal tubulelike. LLC-PK sub 1 cells are derived from pig kidneys and have the properties of different kidney segments. The LLC-PK sub 1 cells with proximal tubule properties were maintained in hormone-supplemented serum free medium. Seven factors (the aforementioned homrones and selenium) were needed for growth. Hormone-defined medium supported LLC-PK sub 1 cell growth, allowed transport (as seen by hemicyst formation), and influenced cell morphology. Vasopressin (used for growth and morphology) could be partially replaced by isobutylmethylxanthine or dibutyryl cAMP. The defined medium was used to isolate rabbit proximal tubule kidney epithelial cells free of fibroblasts.

  10. Mechanisms of calcium sequestration by isolated Malpighian tubules of the house cricket Acheta domesticus.

    PubMed

    Browne, Austin; O'Donnell, Michael J

    2018-01-01

    Hemolymph calcium homeostasis in insects is achieved by the Malpighian tubules, primarily by sequestering excess Ca 2+ within internal calcium stores (Ca-rich granules) most often located within type I (principal) tubule cells. Using both the scanning ion-selective electrode technique and the Ramsay secretion assay this study provides the first measurements of basolateral and transepithelial Ca 2+ fluxes across the Malpighian tubules of an Orthopteran insect, the house cricket Acheta domesticus. Ca 2+ transport was specific to midtubule segments, where 97% of the Ca 2+ entering the tubule is sequestered within intracellular calcium stores and the remaining 3% is secreted into the lumen. Antagonists of voltage-gated (L-type) calcium channels decreased Ca 2+ influx ≥fivefold in adenosine 3',5'-cyclic monophosphate (cAMP)-stimulated tubules, suggesting basolateral Ca 2+ influx is facilitated by voltage-gated Ca 2+ channels. Increasing fluid secretion through manipulation of intracellular levels of cAMP or Ca 2+ had opposite effects on tubule Ca 2+ transport. The adenylyl cyclase-cAMP-PKA pathway promotes Ca 2+ sequestration whereas both 5-hydroxytryptamine and thapsigargin inhibited sequestration. Our results suggest that the midtubules of Acheta domesticus are dynamic calcium stores, which maintain hemolymph calcium concentration by manipulating rates of Ca 2+ sequestration through stimulatory (cAMP) and inhibitory (Ca 2+ ) regulatory pathways. © 2017 Wiley Periodicals, Inc.

  11. Microorganism penetration in dentinal tubules of instrumented and retreated root canal walls. In vitro SEM study

    PubMed Central

    Al-Sulaiman, Alaa; Al-Rasheed, Fellwa; Alnajjar, Fatimah; Al-Abdulwahab, Bander; Al-Badah, Abdulhakeem

    2014-01-01

    Objectives This in vitro study aimed to investigate the ability of Candida albicans (C. albicans) and Enterococcus faecalis (E. faecalis) to penetrate dentinal tubules of instrumented and retreated root canal surface of split human teeth. Materials and Methods Sixty intact extracted human single-rooted teeth were divided into 4 groups, negative control, positive control without canal instrumentation, instrumented, and retreated. Root canals in the instrumented group were enlarged with endodontic instruments, while root canals in the retreated group were enlarged, filled, and then removed the canal filling materials. The teeth were split longitudinally after canal preparation in 3 groups except the negative control group. The teeth were inoculated with both microorganisms separately and in combination. Teeth specimens were examined by scanning electron microscopy (SEM), and the depth of penetration into the dentinal tubules was assessed using the SMILE view software (JEOL Ltd). Results Penetration of C. albicans and E. faecalis into the dentinal tubules was observed in all 3 groups, although penetration was partially restricted by dentin debris of tubules in the instrumented group and remnants of canal filling materials in the retreated group. In all 3 groups, E. faecalis penetrated deeper into the dentinal tubules by way of cell division than C. albicans which built colonies and penetrated by means of hyphae. Conclusions Microorganisms can easily penetrate dentinal tubules of root canals with different appearance based on the microorganism size and status of dentinal tubules. PMID:25383343

  12. Ischemia/Reperfusion Model Impairs Endocannabinoid Signaling and Na+/K+ ATPase Expression and Activity in Kidney Proximal Tubule Cells.

    PubMed

    Sampaio, Luzia S; Iannotti, Fabio A; Veneziani, Luciana; Borelli-Tôrres, Rosa T; De Maio, Fabrizia; Piscitelli, Fabiana; Reis, Ricardo A M; Di Marzo, Vincenzo; Einicker-Lamas, Marcelo

    2018-06-08

    LLC-PK1 cells, an immortalized epithelial cell line derived from pig renal proximal tubules, express all the major players of the endocannabinoid system (ECS) such as CB1, CB2 and TRPV1 receptor, as well as the main enzymes involved in the biosynthesis and degradation of the major endocannabinoids named 2-arachidonoylglycerol, 2-AG and anandamide, AEA. Here we investigated whether the damages caused by ischemic insult either in vitro using LLC-PK1 cells exposed to antimycin A (an inductor of ATP-depletion) or in vivo using Wistar rats in a classic renal ischemia and reperfusion (IR) protocol, lead to changes in AEA and 2-AG levels, as well as altered expression of genes from the main enzymes involved in the regulation of the ECS. Our data show that the mRNA levels of CB1 receptor gene were downregulated, while the transcript levels of monoacylglycerol lipase (MAGL), the main 2-AG degradative enzyme, are upregulated in LLC-PK1 cells after IR model. Accordingly, IR was accompanied by a significant reduction in the levels of 2-AG and AEA, as well as of the two endocannabinoid related molecules, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in LLC-PK1 cells. In kidney cortex homogenates, the AEA levels were selectively significantly decreased. In addition, we found that both the in vitro and in vivo model of IR caused a reduction in the expression and activity of the Na + /K + ATPase. These changes were reversed by the CB1/CB2 agonist WIN55,212, in a CB1-receptor dependent manner on LLC-PK1 IR model. In conclusion, the ECS and Na + /K + ATPase are down-regulated following IR model in LLC-PK1 cells and rat kidney. We suggest that CB1 agonists might represent a potential strategy to reverse the consequences of IR injury in kidney tissues. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia-reperfusion injury.

    PubMed

    Funk, Jason A; Schnellmann, Rick G

    2013-12-01

    Kidney ischemia-reperfusion (I/R) injury elicits cellular injury in the proximal tubule, and mitochondrial dysfunction is a pathological consequence of I/R. Promoting mitochondrial biogenesis (MB) as a repair mechanism after injury may offer a unique strategy to restore both mitochondrial and organ function. Rats subjected to bilateral renal pedicle ligation for 22 min were treated once daily with the SIRT1 activator SRT1720 (5mg/kg) starting 24h after reperfusion until 72h-144 h. SIRT1 expression was elevated in the renal cortex of rats after I/R+vehicle treatment (IRV), but was associated with less nuclear localization. SIRT1 expression was even further augmented and nuclear localization was restored in the kidneys of rats after I/R+SRT1720 treatment (IRS). PGC-1α was elevated at 72 h-144 h in IRV and IRS kidneys; however, SRT1720 treatment induced deacetylation of PGC-1α, a marker of activation. Mitochondrial proteins ATP synthase β, COX I, and NDUFB8, as well as mitochondrial respiration, were diminished 24h-144 h in IRV rats, but were partially or fully restored in IRS rats. Urinary kidney injury molecule-1 (KIM-1) was persistently elevated in both IRV and IRS rats; however, KIM-1 tissue expression was attenuated in IRS rats. Additionally, sustained loss of Na(+),K(+)-ATPase expression and basolateral localization and elevated vimentin in IRV rats was normalized in IRS rats, suggesting restoration of a differentiated, polarized tubule epithelium. The results suggest that SRT1720 treatment expedited recovery of mitochondrial protein expression and function by enhancing MB, which was associated with faster proximal tubule repair. Targeting MB may offer unique therapeutic strategy following ischemic injury. © 2013. Published by Elsevier Inc. All rights reserved.

  14. Distal tubule bicarbonate reabsorption in NH4Cl acidotic rats.

    PubMed

    Vandorpe, D H; Levine, D Z

    1989-08-01

    NH4Cl acidosis--a common experimental model of hyperchloremic metabolic acidosis--elicits complex intrarenal responses whereby the fall in plasma bicarbonate concentration can be restored to normal after the initial acid load. Using the technique of in vivo micropuncture of surface distal tubules of the rat kidney, we attempted to further define controlling mechanisms underlying the enhanced bicarbonate reabsorption in this setting. Specifically, we wished to determine the dependence of distal tubule bicarbonate reabsorption (JtCO2) on sodium transport, water reabsorption, and carbonic anhydrase activity. Surface distal tubules of Sprague-Dawley rats made acidotic by ammonium chloride gavage (arterial blood pH: 7.15 +/- 0.01, [HCO3]: 14.8 +/- 0.5 mM) were perfused in vivo at 8 and 24 nL/min with 4 different isoosmotic, 25 mM bicarbonate solutions: Group 1 was perfused with 60 mM Na, Group 2 with 60 mM choline, Group 3 with 60 mM choline + 3 x 10(-4) M amiloride, and Group 4 with 60 mM Na + 10(-3) M acetazolamide. At 8 nL/min, significant bicarbonate reabsorption occurred with all perfusates. JtCO2 was 65 +/- 4, 59 +/- 5, 58 +/- 6, and 40 +/- 4 pmol.min-1.mm-1, in Groups 1, 2, 3, and 4, respectively. However, JtCO2 in Group 4 was significantly less than that in Groups 1 and 2 (p less than 0.01 and p less than 0.05, respectively). Amiloride added to the low sodium perfusate did not reduce bicarbonate reabsorption. We conclude that bicarbonate reabsorption in distal tubules of acidotic rats is acetazolamide-sensitive and is not significantly sustained by sodium or water movements.

  15. Inversin relays Frizzled-8 signals to promote proximal pronephros development

    PubMed Central

    Lienkamp, Soeren; Ganner, Athina; Boehlke, Christopher; Schmidt, Thorsten; Arnold, Sebastian J.; Schäfer, Tobias; Romaker, Daniel; Schuler, Julia; Hoff, Sylvia; Powelske, Christian; Eifler, Annekathrin; Krönig, Corinna; Bullerkotte, Axel; Nitschke, Roland; Kuehn, E. Wolfgang; Kim, Emily; Burkhardt, Hans; Brox, Thomas; Ronneberger, Olaf; Gloy, Joachim; Walz, Gerd

    2010-01-01

    Mutations of inversin cause type II nephronophthisis, an infantile autosomal recessive disease characterized by cystic kidney disease and developmental defects. Inversin regulates Wnt signaling and is required for convergent extension movements during early embryogenesis. We now show that Inversin is essential for Xenopus pronephros formation, involving two distinct and opposing forms of cell movements. Knockdown of Inversin abrogated both proximal pronephros extension and distal tubule differentiation, phenotypes similar to that of Xenopus deficient in Frizzled-8. Exogenous Inversin rescued the pronephric defects caused by lack of Frizzled-8, indicating that Inversin acts downstream of Frizzled-8 in pronephros morphogenesis. Depletion of Inversin prevents the recruitment of Dishevelled in response to Frizzled-8 and impeded the accumulation of Dishevelled at the apical membrane of tubular epithelial cells in vivo. Thus, defective tubule morphogenesis seems to contribute to the renal pathology observed in patients with nephronophthisis type II. PMID:21059920

  16. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia–reperfusion injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funk, Jason A., E-mail: funkj@musc.edu; Schnellmann, Rick G., E-mail: schnell@musc.edu; Ralph H. Johnson VA Medical Center, Charleston, SC 29401

    Kidney ischemia–reperfusion (I/R) injury elicits cellular injury in the proximal tubule, and mitochondrial dysfunction is a pathological consequence of I/R. Promoting mitochondrial biogenesis (MB) as a repair mechanism after injury may offer a unique strategy to restore both mitochondrial and organ function. Rats subjected to bilateral renal pedicle ligation for 22 min were treated once daily with the SIRT1 activator SRT1720 (5 mg/kg) starting 24 h after reperfusion until 72 h–144 h. SIRT1 expression was elevated in the renal cortex of rats after I/R + vehicle treatment (IRV), but was associated with less nuclear localization. SIRT1 expression was even furthermore » augmented and nuclear localization was restored in the kidneys of rats after I/R + SRT1720 treatment (IRS). PGC-1α was elevated at 72 h–144 h in IRV and IRS kidneys; however, SRT1720 treatment induced deacetylation of PGC-1α, a marker of activation. Mitochondrial proteins ATP synthase β, COX I, and NDUFB8, as well as mitochondrial respiration, were diminished 24 h–144 h in IRV rats, but were partially or fully restored in IRS rats. Urinary kidney injury molecule-1 (KIM-1) was persistently elevated in both IRV and IRS rats; however, KIM-1 tissue expression was attenuated in IRS rats. Additionally, sustained loss of Na{sup +},K{sup +}–ATPase expression and basolateral localization and elevated vimentin in IRV rats was normalized in IRS rats, suggesting restoration of a differentiated, polarized tubule epithelium. The results suggest that SRT1720 treatment expedited recovery of mitochondrial protein expression and function by enhancing MB, which was associated with faster proximal tubule repair. Targeting MB may offer unique therapeutic strategy following ischemic injury. - Highlights: • We examined recovery of mitochondrial and renal function after ischemia–reperfusion. • SRT1720 treatment after I/R induced mitochondrial biogenesis via SIRT1/PGC-1α. • Recovery of mitochondrial

  17. Urinary podocyte-associated mRNA levels correlate with proximal tubule dysfunction in early diabetic nephropathy of type 2 diabetes mellitus.

    PubMed

    Petrica, Ligia; Ursoniu, Sorin; Gadalean, Florica; Vlad, Adrian; Gluhovschi, Gheorghe; Dumitrascu, Victor; Vlad, Daliborca; Gluhovschi, Cristina; Velciov, Silvia; Bob, Flaviu; Matusz, Petru; Milas, Oana; Secara, Alina; Simulescu, Anca; Popescu, Roxana

    2017-01-01

    The study assessed mRNA expression of podocyte-associated molecules in urinary sediments of patients with type 2 diabetes mellitus (DM) in relation to urinary podocytes, biomarkers of podocyte injury and of proximal tubule (PT) dysfunction. A total of 76 patients with type 2 DM and 20 healthy subjects were enrolled in a cross-sectional study, and assessed concerning urinary podocytes, urinary mRNA of podocyte-associated genes, urinary biomarkers of podocyte damage and of PT dysfunction. We found significant differences between urinary mRNA of podocyte-associated molecules in relation with albuminuria stage. In multivariable regression analysis, urinary mRNA of nephrin, podocin, alpha-actinin-4, CD2-associated protein, glomerular epithelial protein 1 (GLEPP1), ADAM 10, and NFκB correlated directly with urinary podocytes, albuminuria, urinary alpha 1 -microglobulin, urinary kidney-injury molecule-1, nephrinuria, urinary vascular endothelial growth factor, urinary advanced glycation end-products (AGE), and indirectly with eGFR (p < 0.0001, R 2  = 0.808; p < 0.0001, R 2  = 0.825; p < 0.0001, R 2  = 0.805; p < 0.0001, R 2  = 0.663; p < 0.0001, R 2  = 0.726; p < 0.0001, R 2  = 0.720; p < 0.0001, R 2  = 0.724). In patients with type 2 DM there is an association between urinary mRNA of podocyte-associated molecules, biomarkers of podocyte damage, and of PT dysfunction. GLEPP1, ADAM10, and NFκB may be considered additional candidate molecules indicative of early diabetic nephropathy. AGE could be involved in this association.

  18. Bicarbonate secretion by rabbit cortical collecting tubules in vitro.

    PubMed

    McKinney, T D; Burg, M B

    1978-06-01

    We previously reported that rabbit renal cortical collecting tubules can secrete bicarbonate in vitro (i.e., there can be net transport from bath to lumen, causing the concentration in the lumen to increase). Net bicarbonate secretion was observed most often when rabbits had been pretreated with NaHCO(3) and were excreting alkaline urine before being killed for experiments. The purpose of the present studies was to elucidate the mechanism involved by testing the effects of ion substitutions and drugs on collecting tubules that were secreting bicarbonate. Acetazolamide inhibited net bicarbonate secretion, suggesting that the process is dependent upon carbonic anhydrase. Net bicarbonate secretion also decreased when sodium in the perfusate and bath was replaced by choline, but not when chloride was replaced by nitrate or methylsulfate. Ouabain had no significant effect. Amiloride caused net bicarbonate secretion to increase. The rate of net secretion did not correlate with transepithelial voltage. The results are compared to those in turtle urinary bladders that also secrete bicarbonate. There are no direct contradictions between the results in the two tissues, i.e., in turtle bladders acetazolamide also inhibited bicarbonate secretion and ouabain had no effect. Nevertheless, it seems unlikely that net secretion of bicarbonate by collecting tubules involves specific exchange for chloride, as has been proposed for turtle bladders, because replacement of chloride by other anions did not inhibit bicarbonate secretion by collecting tubules. It was previously shown that the collecting tubules in vitro also may absorb bicarbonate, especially when the rabbits have been treated with NH(4)Cl and are excreting acid urine before being killed. The effects of drugs on net bicarbonate secretion found in the present studies are compared to their previously reported effects on net bicarbonate absorption and the possibility is discussed that bicarbonate absorption and secretion are

  19. Bicarbonate Secretion by Rabbit Cortical Collecting Tubules in Vitro

    PubMed Central

    McKinney, Thurman D.; Burg, Maurice B.

    1978-01-01

    We previously reported that rabbit renal cortical collecting tubules can secrete bicarbonate in vitro (i.e., there can be net transport from bath to lumen, causing the concentration in the lumen to increase). Net bicarbonate secretion was observed most often when rabbits had been pretreated with NaHCO3 and were excreting alkaline urine before being killed for experiments. The purpose of the present studies was to elucidate the mechanism involved by testing the effects of ion substitutions and drugs on collecting tubules that were secreting bicarbonate. Acetazolamide inhibited net bicarbonate secretion, suggesting that the process is dependent upon carbonic anhydrase. Net bicarbonate secretion also decreased when sodium in the perfusate and bath was replaced by choline, but not when chloride was replaced by nitrate or methylsulfate. Ouabain had no significant effect. Amiloride caused net bicarbonate secretion to increase. The rate of net secretion did not correlate with transepithelial voltage. The results are compared to those in turtle urinary bladders that also secrete bicarbonate. There are no direct contradictions between the results in the two tissues, i.e., in turtle bladders acetazolamide also inhibited bicarbonate secretion and ouabain had no effect. Nevertheless, it seems unlikely that net secretion of bicarbonate by collecting tubules involves specific exchange for chloride, as has been proposed for turtle bladders, because replacement of chloride by other anions did not inhibit bicarbonate secretion by collecting tubules. It was previously shown that the collecting tubules in vitro also may absorb bicarbonate, especially when the rabbits have been treated with NH4Cl and are excreting acid urine before being killed. The effects of drugs on net bicarbonate secretion found in the present studies are compared to their previously reported effects on net bicarbonate absorption and the possibility is discussed that bicarbonate absorption and secretion are

  20. Absence of renal enlargement in fructose-fed proximal-tubule-select insulin receptor (IR), insulin-like-growth factor receptor (IGF1R) double knockout mice.

    PubMed

    Li, Lijun; Byrd, Marcus; Doh, Kwame; Dixon, Patrice D; Lee, Hwal; Tiwari, Swasti; Ecelbarger, Carolyn M

    2016-12-01

    The major site of fructose metabolism in the kidney is the proximal tubule (PT). To test whether insulin and/or IGF1 signaling in the PT is involved in renal structural/functional responses to dietary fructose, we bred mice with dual knockout (KO) of the insulin receptor (IR) and the IGF1 receptor (IGF1R) in PT by Cre-lox recombination, using a γ-glutamyl transferase promoter. KO mice had slightly (~10%) reduced body and kidney weights, as well as, a reduction in mean protein-to-DNA ratio in kidney cortex suggesting smaller cell size. Under control diet, IR and IGF1R protein band densities were 30-50% (P < 0.05) lower than WT, and the relative difference was greater in male animals. Male, but not female KO, also had significantly reduced band densities for Akt (protein kinase B), phosphorylated Akt T308 and IR Y 1162/1163 A high-fructose diet (1-month) led to a significant increase in kidney weight in WT males (12%), but not in KO males or in either genotype of female mice. Kidney enlargement in the WT males was accompanied by a small, insignificant fall in protein-to-DNA ratio, supporting hyperplasia rather than hypertrophy. Fructose feeding of male WT mice led to significantly higher sodium bicarbonate exchanger (NBCe1), sodium hydrogen exchanger (NHE3), sodium phosphate co-transporter (NaPi-2), and transforming growth factor-β (TGF-β) abundances, as compared to male KO, suggesting elevated transport capacity and an early feature of fibrosis may have accompanied the renal enlargement. Overall, IR and/or IGF1R appear to have a role in PT cell size and enlargement in response to high-fructose diet. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Pathologic Remodeling of Endoneurial Tubules in Human Neuromas.

    PubMed

    Karsy, Michael; Palmer, Cheryl A; Mahan, Mark A

    2018-01-18

    Laminins are extracellular matrix proteins that participate in endoneurial tubule formation and are important in the regeneration of nerves after injury. They act as scaffolds to guide nerves to distal targets and play a key role in neurite outgrowth. Because there is evidence that laminin architecture affects nerve regeneration, we evaluated endoneurial tubules by examining the laminin structure in clinical samples from patients with nerve injuries. In a retrospective review of eight nerve injury cases, we evaluated nerve histology in relation to clinical history and injury type. The immunohistochemical delineation of the laminin structure in relationship with the neuroma type was performed. Five cases of upper-trunk stretch injuries-four from childbirth injury and one from a motorcycle accident-and three cases of nerve laceration leading to neuroma formation were examined. In the upper-trunk stretch injuries, avulsed nerves demonstrated no neuroma formation with a linear laminin architecture and a regular Schwann cell arrangement, but increased fibrous tissue deposition. For neuromas-in-continuity after a stretch injury, laminin immunohistochemistry demonstrated a double-lumen laminin tubule, with encapsulation of the Schwann cells and axonal processes. Nerve laceration leading to stump neuroma formation had a similar double-lumen laminin tubule, but less severe fibrosis. In nerve injuries with regenerative capacity, endoneurial tubules become pathologically disorganized. A double-lumen endoneurial tubule of unclear significance develops. The consistency of this pattern potentially suggests a reproducible pathophysiologic process. Further exploration of this pathophysiologic healing may provide insight into the failure of programmed peripheral nerve regeneration after injury.

  2. Pathologic Remodeling of Endoneurial Tubules in Human Neuromas

    PubMed Central

    Karsy, Michael; Palmer, Cheryl A

    2018-01-01

    Background: Laminins are extracellular matrix proteins that participate in endoneurial tubule formation and are important in the regeneration of nerves after injury. They act as scaffolds to guide nerves to distal targets and play a key role in neurite outgrowth. Because there is evidence that laminin architecture affects nerve regeneration, we evaluated endoneurial tubules by examining the laminin structure in clinical samples from patients with nerve injuries. Methods: In a retrospective review of eight nerve injury cases, we evaluated nerve histology in relation to clinical history and injury type. The immunohistochemical delineation of the laminin structure in relationship with the neuroma type was performed. Results: Five cases of upper-trunk stretch injuries—four from childbirth injury and one from a motorcycle accident—and three cases of nerve laceration leading to neuroma formation were examined. In the upper-trunk stretch injuries, avulsed nerves demonstrated no neuroma formation with a linear laminin architecture and a regular Schwann cell arrangement, but increased fibrous tissue deposition. For neuromas-in-continuity after a stretch injury, laminin immunohistochemistry demonstrated a double-lumen laminin tubule, with encapsulation of the Schwann cells and axonal processes. Nerve laceration leading to stump neuroma formation had a similar double-lumen laminin tubule, but less severe fibrosis. Conclusions: In nerve injuries with regenerative capacity, endoneurial tubules become pathologically disorganized. A double-lumen endoneurial tubule of unclear significance develops. The consistency of this pattern potentially suggests a reproducible pathophysiologic process. Further exploration of this pathophysiologic healing may provide insight into the failure of programmed peripheral nerve regeneration after injury. PMID:29560300

  3. [Renal handling of beta2 microglobulin. Its significance in carriers of adolescent nephronophthisis (NPH3)].

    PubMed

    Fernández, Carmen; Araque, Carolina; Méndez, Jorge; Angulo, Luisa; Fargier, Bernardo

    2007-06-01

    The adolescent nephronophthisis (NPH3) is a variant of the nephronophthisis. In Venezuela, one to three patients have been registered each year, all of them belonging to the same family tree. The objective of this study was to evaluate the function of the proximal convoluted tubule in NPHP3 carriers; using the beta2M as biological marker. Eight carriers, 7 heterozygotes and 1 homozygote, with normal renal function were compared with a 10 healthy subjects (control group). Serum beta2 microglobulin (beta2M), urinary beta2M, the quotient urinary beta2M/urinary creatinine and the beta2M fractional excretion were determinated. The filtered beta2M and the percentage of reabsortion were calculated. We observed an increase in the plasmatic concentration of beta2M but not related with a decrease of the glomerular filtration. The urinary beta2M, the beta2M/urinary creatinine relation and the fractional excretion of beta2M were normal. The filtered load of beta2M was elevated without increase in the excretion or percentage of reabsortion. We conclude that in our group of NPH3 carriers, functional changes in the proximal convoluted tubule, when measured by urinary excretion of beta2M, were absent. This finding suggests the existence of other mechanism of uptake or degradation of the substance in the proximal convoluted tubule, which have yet to be elucidated.

  4. Perturbation of the quinone-binding site of complex II alters the electronic properties of the proximal [3Fe-4S] iron-sulfur cluster.

    PubMed

    Ruprecht, Jonathan; Iwata, So; Rothery, Richard A; Weiner, Joel H; Maklashina, Elena; Cecchini, Gary

    2011-04-08

    Succinate-ubiquinone oxidoreductase (SQR) and menaquinol-fumarate oxidoreductase (QFR) from Escherichia coli are members of the complex II family of enzymes. SQR and QFR catalyze similar reactions with quinones; however, SQR preferentially reacts with higher potential ubiquinones, and QFR preferentially reacts with lower potential naphthoquinones. Both enzymes have a single functional quinone-binding site proximal to a [3Fe-4S] iron-sulfur cluster. A difference between SQR and QFR is that the redox potential of the [3Fe-4S] cluster in SQR is 140 mV higher than that found in QFR. This may reflect the character of the different quinones with which the two enzymes preferentially react. To investigate how the environment around the [3Fe-4S] cluster affects its redox properties and catalysis with quinones, a conserved amino acid proximal to the cluster was mutated in both enzymes. It was found that substitution of SdhB His-207 by threonine (as found in QFR) resulted in a 70-mV lowering of the redox potential of the cluster as measured by EPR. The converse substitution in QFR raised the redox potential of the cluster. X-ray structural analysis suggests that placing a charged residue near the [3Fe-4S] cluster is a primary reason for the alteration in redox potential with the hydrogen bonding environment having a lesser effect. Steady state enzyme kinetic characterization of the mutant enzymes shows that the redox properties of the [3Fe-4S] cluster have only a minor effect on catalysis.

  5. 38 CFR 3.310 - Disabilities that are proximately due to, or aggravated by, service-connected disease or injury.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (Authority: 38 U.S.C. 1110 and 1131) (c) Cardiovascular disease. Ischemic heart disease or other... proximately due to, or aggravated by, service-connected disease or injury. 3.310 Section 3.310 Pensions... are proximately due to, or aggravated by, service-connected disease or injury. (a) General. Except as...

  6. 38 CFR 3.310 - Disabilities that are proximately due to, or aggravated by, service-connected disease or injury.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (Authority: 38 U.S.C. 1110 and 1131) (c) Cardiovascular disease. Ischemic heart disease or other... proximately due to, or aggravated by, service-connected disease or injury. 3.310 Section 3.310 Pensions... are proximately due to, or aggravated by, service-connected disease or injury. (a) General. Except as...

  7. Mathematical study on robust tissue pattern formation in growing epididymal tubule.

    PubMed

    Hirashima, Tsuyoshi

    2016-10-21

    Tissue pattern formation during development is a reproducible morphogenetic process organized by a series of kinetic cellular activities, leading to the building of functional and stable organs. Recent studies focusing on mechanical aspects have revealed physical mechanisms on how the cellular activities contribute to the formation of reproducible tissue patterns; however, the understanding for what factors achieve the reproducibility of such patterning and how it occurs is far from complete. Here, I focus on a tube pattern formation during murine epididymal development, and show that two factors influencing physical design for the patterning, the proliferative zone within the tubule and the viscosity of tissues surrounding to the tubule, control the reproducibility of epididymal tubule pattern, using a mathematical model based on experimental data. Extensive numerical simulation of the simple mathematical model revealed that a spatially localized proliferative zone within the tubule, observed in experiments, results in more reproducible tubule pattern. Moreover, I found that the viscosity of tissues surrounding to the tubule imposes a trade-off regarding pattern reproducibility and spatial accuracy relating to the region where the tubule pattern is formed. This indicates an existence of optimality in material properties of tissues for the robust patterning of epididymal tubule. The results obtained by numerical analysis based on experimental observations provide a general insight on how physical design realizes robust tissue pattern formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A two-hit mechanism for sepsis-induced impairment of renal tubule function

    PubMed Central

    Watts, Bruns A.; George, Thampi; Sherwood, Edward R.

    2013-01-01

    Renal insufficiency is a common and severe complication of sepsis, and the development of kidney dysfunction increases morbidity and mortality in septic patients. Sepsis is associated with a variety of defects in renal tubule function, but the underlying mechanisms are incompletely understood. We used a cecal ligation and puncture (CLP) model to examine mechanisms by which sepsis influences the transport function of the medullary thick ascending limb (MTAL). MTALs from sham and CLP mice were studied in vitro 18 h after surgery. The results show that sepsis impairs the ability of the MTAL to absorb HCO3− through two distinct mechanisms. First, sepsis induces an adaptive decrease in the intrinsic capacity of the tubules to absorb HCO3−. This effect is associated with an increase in ERK phosphorylation in MTAL cells and is prevented by pretreatment of CLP mice with a MEK/ERK inhibitor. The CLP-induced reduction in intrinsic HCO3− absorption rate appears to involve loss of function of basolateral Na+/H+ exchange. Second, sepsis enhances the ability of LPS to inhibit HCO3− absorption, mediated through upregulation of Toll-like receptor 4 (TLR4)-ERK signaling in the basolateral membrane. The two inhibitory mechanisms are additive and thus can function in a two-hit capacity to impair renal tubule function in sepsis. Both effects depend on ERK and are eliminated by interventions that prevent ERK activation. Thus the TLR4 and ERK signaling pathways represent potential therapeutic targets to treat or prevent sepsis-induced renal tubule dysfunction. PMID:23324175

  9. Piecewise-Constant-Model-Based Interior Tomography Applied to Dentin Tubules

    DOE PAGES

    He, Peng; Wei, Biao; Wang, Steve; ...

    2013-01-01

    Dentin is a hierarchically structured biomineralized composite material, and dentin’s tubules are difficult to study in situ. Nano-CT provides the requisite resolution, but the field of view typically contains only a few tubules. Using a plate-like specimen allows reconstruction of a volume containing specific tubules from a number of truncated projections typically collected over an angular range of about 140°, which is practically accessible. Classical computed tomography (CT) theory cannot exactly reconstruct an object only from truncated projections, needless to say a limited angular range. Recently, interior tomography was developed to reconstruct a region-of-interest (ROI) from truncated data in amore » theoretically exact fashion via the total variation (TV) minimization under the condition that the ROI is piecewise constant. In this paper, we employ a TV minimization interior tomography algorithm to reconstruct interior microstructures in dentin from truncated projections over a limited angular range. Compared to the filtered backprojection (FBP) reconstruction, our reconstruction method reduces noise and suppresses artifacts. Volume rendering confirms the merits of our method in terms of preserving the interior microstructure of the dentin specimen.« less

  10. Andreev Reflection in an s-Type Superconductor Proximized 3D Topological Insulator.

    PubMed

    Tikhonov, E S; Shovkun, D V; Snelder, M; Stehno, M P; Huang, Y; Golden, M S; Golubov, A A; Brinkman, A; Khrapai, V S

    2016-09-30

    We investigate transport and shot noise in lateral normal-metal-3D topological-insulator-superconductor contacts, where the 3D topological insulator (TI) is based on Bi. In the normal state, the devices are in the elastic diffusive transport regime, as demonstrated by a nearly universal value of the shot noise Fano factor F_{N}≈1/3 in magnetic field and in a reference normal-metal contact. In the absence of magnetic field, we identify the Andreev reflection (AR) regime, which gives rise to the effective charge doubling in shot noise measurements. Surprisingly, the Fano factor F_{AR}≈0.22±0.02 is considerably reduced in the AR regime compared to F_{N}, in contrast to previous AR experiments in normal metals and semiconductors. We suggest that this effect is related to a finite thermal conduction of the proximized, superconducting TI owing to a residual density of states at low energies.

  11. Dynamic tubulation of mitochondria drives mitochondrial network formation.

    PubMed

    Wang, Chong; Du, Wanqing; Su, Qian Peter; Zhu, Mingli; Feng, Peiyuan; Li, Ying; Zhou, Yichen; Mi, Na; Zhu, Yueyao; Jiang, Dong; Zhang, Senyan; Zhang, Zerui; Sun, Yujie; Yu, Li

    2015-10-01

    Mitochondria form networks. Formation of mitochondrial networks is important for maintaining mitochondrial DNA integrity and interchanging mitochondrial material, whereas disruption of the mitochondrial network affects mitochondrial functions. According to the current view, mitochondrial networks are formed by fusion of individual mitochondria. Here, we report a new mechanism for formation of mitochondrial networks through KIF5B-mediated dynamic tubulation of mitochondria. We found that KIF5B pulls thin, highly dynamic tubules out of mitochondria. Fusion of these dynamic tubules, which is mediated by mitofusins, gives rise to the mitochondrial network. We further demonstrated that dynamic tubulation and fusion is sufficient for mitochondrial network formation, by reconstituting mitochondrial networks in vitro using purified fusion-competent mitochondria, recombinant KIF5B, and polymerized microtubules. Interestingly, KIF5B only controls network formation in the peripheral zone of the cell, indicating that the mitochondrial network is divided into subzones, which may be constructed by different mechanisms. Our data not only uncover an essential mechanism for mitochondrial network formation, but also reveal that different parts of the mitochondrial network are formed by different mechanisms.

  12. Metal accumulation and nephron heterogeneity in mercuric chloride-induced acute renal failure.

    PubMed

    Wilks, M F; Gregg, N J; Bach, P H

    1994-01-01

    The present study was designed to assess the effects of mercury on glomerular integrity during the early phase of acute renal failure. The silver amplification method showed distribution of mercury in midcortical and juxtamedullary glomeruli and on the brush border of the S2 segment of the proximal tubule 15 min after treatment. At 30 min, there was a decrease in glomerular staining and increased mercury in the proximal tubule. After 3 hr, mercury was no longer detectable in glomeruli but was widespread in the lumen of the proximal tubule. By 24 hr, mercury was prominent in all proximal tubular segments throughout the cortex. The presence of mercury in glomeruli was not related to hemodynamic changes, as there was no evidence for blood redistribution toward juxtamedullary glomeruli as assessed by the filling of the microvascular system with Monastral Blue B. The reduced activity of horseradish peroxidase (administered i.v. 90 sec and 10 min before sacrifice) in juxtamedullary glomeruli 30 min after mercury administration suggests a decreased uptake of horseradish peroxidase or an increased glomerular protein filtration. These data support glomerular filtration as the predominant excretory route for mercury, highlight the marked nephron heterogeneity in the distribution of this metal, and show that impairment of glomerular integrity occurs before necrosis of the proximal tubules and acute renal failure.

  13. Regional distribution of T-tubule density in left and right atria in dogs.

    PubMed

    Arora, Rishi; Aistrup, Gary L; Supple, Stephen; Frank, Caleb; Singh, Jasleen; Tai, Shannon; Zhao, Anne; Chicos, Laura; Marszalec, William; Guo, Ang; Song, Long-Sheng; Wasserstrom, J Andrew

    2017-02-01

    The peculiarities of transverse tubule (T-tubule) morphology and distribution in the atrium-and how they contribute to excitation-contraction coupling-are just beginning to be understood. The objectives of this study were to determine T-tubule density in the intact, live right and left atria in a large animal and to determine intraregional differences in T-tubule organization within each atrium. Using confocal microscopy, T-tubules were imaged in both atria in intact, Langendorf-perfused normal dog hearts loaded with di-4-ANEPPS. T-tubules were imaged in large populations of myocytes from the endocardial surface of each atrium. Computerized data analysis was performed using a new MatLab (Mathworks, Natick, MA) routine, AutoTT. There was a large percentage of myocytes that had no T-tubules in both atria with a higher percentage in the right atrium (25.1%) than in the left atrium (12.5%) (P < .02). The density of transverse and longitudinal T-tubule elements was low in cells that did contain T-tubules, but there were no significant differences in density between the left atrial appendage, the pulmonary vein-posterior left atrium, the right atrial appendage, and the right atrial free wall. In contrast, there were significant differences in sarcomere spacing and cell width between different regions of the atria. There is a sparse T-tubule network in atrial myocytes throughout both dog atria, with significant numbers of myocytes in both atria-the right atrium more so than the left atrium-having no T-tubules at all. These regional differences in T-tubule distribution, along with differences in cell width and sarcomere spacing, may have implications for the emergence of substrate for atrial fibrillation. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  14. The food contaminant and nephrotoxin ochratoxin A enhances Wnt1 inducible signaling protein 1 and tumor necrosis factor-α expression in human primary proximal tubule cells.

    PubMed

    Hennemeier, Isabell; Humpf, Hans-Ulrich; Gekle, Michael; Schwerdt, Gerald

    2012-09-01

    The underlying molecular mechanisms of nanomolar ochratoxin A (OTA) concentrations, especially those on pathophysiological relevant gene expression in target tissue and underlying signaling mechanisms are unknown. qPCR arrays showed that 14 days exposure of human primary proximal tubule cells to 10 nM OTA influences the expression of genes that are related to inflammation, malignant transformation, and epithelial-to-mesenchymal transition. Wnt1 inducible signaling protein 1 (WISP1), an oncogenic, and profibrotic growth factor, turned out to be the gene with the strongest upregulation. Its expression, and that of TNF-α, an important inflammatory mediator, was further investigated in human renal cells and in primary human lung fibroblasts. OTA-induced upregulation of WISP1 and TNF-α occurs only in renal cells. Inhibition of ERK1/2 activation reverses the effect of OTA on WISP1 and TNF-α expression. Wnt or other signaling pathways were not involved. Upregulation of WISP1 and TNF-α occured independently of each other. Long-term exposure of human kidney cells with OTA concentrations expectable in renal tissue due to average dietary intake leads in an ERK1/2-dependent manner to pathogenetic alterations of gene expression, notably WISP1 and TNF-α. Renal long-term risk by OTA is actually not excludable and argues for low but rational safety levels. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Phospholipase D2 Is Involved in the Formation of Golgi Tubules and ArfGAP1 Recruitment

    PubMed Central

    Martínez-Martínez, Narcisa; Martínez-Alonso, Emma; Ballesta, José; Martínez-Menárguez, José A.

    2014-01-01

    Lipids and lipid-modifying enzymes play a key role in the biogenesis, maintenance and fission of transport carriers in the secretory and endocytic pathways. In the present study we demonstrate that phosphatidic acid generated by phospholipase D2 (PLD2) is involved in the formation of Golgi tubules. The main evidence to support this is: 1) inhibitors of phosphatidic acid formation and PLD2 depletion inhibit the formation of tubules containing resident enzymes and regulators of intra-Golgi transport in a low temperature (15°C) model of Golgi tubulation but do not affect brefeldin A-induced tubules, 2) inhibition of PLD2 enzymatic activity and PLD2 depletion in cells cultured under physiological conditions (37°C) induce the formation of tubules specifically containing Golgi matrix proteins, and, 3) over-expression of PLD2 induces the formation of a tubular network. In addition, it was found that the generation of this lipid by the isoenzyme is necessary for ArfGAP1 recruitment to Golgi membranes. These results suggest that both proteins are involved in the molecular mechanisms which drive the formation of different types of Golgi tubules. PMID:25354038

  16. Underdominant KCC3b R31I association with blood sodium concentration in domestic sheep suggests role in oligomer function

    USDA-ARS?s Scientific Manuscript database

    KCC3 and KCC1 are potassium chloride transporters with partially overlapping function, and KCC3 knockout mice exhibit hypertension. Two KCC3 isoforms differ by alternate promoters and first coding exons: KCC3a is widely expressed, and KCC3b is highly expressed in kidney proximal convoluted tubule. W...

  17. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules

    PubMed Central

    Lawrence, Marlon G.; Altenburg, Michael K.; Sanford, Ryan; Willett, Julian D.; Bleasdale, Benjamin; Ballou, Byron; Wilder, Jennifer; Li, Feng; Miner, Jeffrey H.; Berg, Ulla B.; Smithies, Oliver

    2017-01-01

    How the kidney prevents urinary excretion of plasma proteins continues to be debated. Here, using unfixed whole-mount mouse kidneys, we show that fluorescent-tagged proteins and neutral dextrans permeate into the glomerular basement membrane (GBM), in general agreement with Ogston's 1958 equation describing how permeation into gels is related to molecular size. Electron-microscopic analyses of kidneys fixed seconds to hours after injecting gold-tagged albumin, negatively charged gold nanoparticles, and stable oligoclusters of gold nanoparticles show that permeation into the lamina densa of the GBM is size-sensitive. Nanoparticles comparable in size with IgG dimers do not permeate into it. IgG monomer-sized particles permeate to some extent. Albumin-sized particles permeate extensively into the lamina densa. Particles traversing the lamina densa tend to accumulate upstream of the podocyte glycocalyx that spans the slit, but none are observed upstream of the slit diaphragm. At low concentrations, ovalbumin-sized nanoparticles reach the primary filtrate, are captured by proximal tubule cells, and are endocytosed. At higher concentrations, tubular capture is saturated, and they reach the urine. In mouse models of Pierson’s or Alport’s proteinuric syndromes resulting from defects in GBM structural proteins (laminin β2 or collagen α3 IV), the GBM is irregularly swollen, the lamina densa is absent, and permeation is increased. Our observations indicate that size-dependent permeation into the lamina densa of the GBM and the podocyte glycocalyx, together with saturable tubular capture, determines which macromolecules reach the urine without the need to invoke direct size selection by the slit diaphragm. PMID:28246329

  18. Parathyroid hormone inhibition of Na{sup +}/H{sup +} exchanger 3 transcription: Intracellular signaling pathways and transcription factor expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neri, Elida Adalgisa; Bezerra, Camila Nogueira Alves, E-mail: camilab@icb.usp.br; Queiroz-Leite, Gabriella Duarte

    2015-06-12

    The main transport mechanism of reabsorption of sodium bicarbonate and fluid in the renal proximal tubules involves Na{sup +}/H{sup +} exchanger 3 (NHE3), which is acutely and chronically downregulated by parathyroid hormone (PTH). Although PTH is known to exert an inhibitory effect on NHE3 expression and transcription, the molecular mechanisms involved remain unclear. Here, we demonstrated that, in opossum kidney proximal tubule (OKP) cells, PTH-induced inhibition of Nhe3 gene promoter occurs even in the core promoter that controls expression of the reporter gene. We found that inhibition of the protein kinase A (PKA) and Janus kinase/signal transducer and activator ofmore » transcription (JAK/STAT) pathways transformed PTH from an inhibitor of promoter activity into an activator of that same activity, as did point mutations in the EGR1, Sp1, and Sp3 binding consensus elements in the promoter. In nuclear extracts of PTH-treated OKP cells, we also observed increased expression of EGR1 mRNA and of some Sp3 isoforms. Electrophoretic mobility shift assay showed a supershift of the −61 to −42-bp probe with an anti-EGR1 antibody in PTH-treated cells, suggesting that EGR1 binding is relevant for the inhibitory activity of PTH. We conclude that PTH-induced inhibition of NHE3 transcription is related to higher EGR1 expression; to EGR1 binding to the proximal and core promoters; and to PKA and JAK/STAT pathway activation. This mechanism might be responsible, at least in part, for lower NHE3 expression and sodium reabsorption in renal proximal tubules in the presence of high PTH levels. - Highlights: • PTH regulation of Nhe3 promoter depends on EGR1 binding. • EGR1, PKA and JAK/STAT are involved in PTH inhibition of the Nhe3 promoter. • PTH alters expression of EGR1 and Sp3. • PTH inhibits the Nhe3 promoter by regulating PKA and JAK/STAT signaling.« less

  19. Recrystallization of tubules from natural lotus (Nelumbo nucifera) wax on a Au(111) surface

    PubMed Central

    Wandelt, Klaus

    2011-01-01

    Summary We present here the first results on the self-assembly of tubules of natural wax from lotus leaves on a single crystal Au(111) surface. A comparison of the tubule growth on Au(111) to that on HOPG is discussed. Although the tubule formation on both Au(111) and HOPG takes place on an intermediate wax film which should mask the substrate properties, the tubule orientations differ. In contrast to a vertical tubule orientation on HOPG, the tubules lie flat on Au(111). Taking into account the physical properties of HOPG and Au(111), we put forward a hypothesis which can explain the different tubule orientations on both substrates. PMID:21977438

  20. Penetration of sub-micron particles into dentinal tubules using ultrasonic cavitation.

    PubMed

    Vyas, N; Sammons, R L; Pikramenou, Z; Palin, W M; Dehghani, H; Walmsley, A D

    2017-01-01

    Functionalised silica sub-micron particles are being investigated as a method of delivering antimicrobials and remineralisation agents into dentinal tubules. However, their methods of application are not optimised, resulting in shallow penetration and aggregation. The aim of this study is to investigate the impact of cavitation occurring around ultrasonic scalers for enhancing particle penetration into dentinal tubules. Dentine slices were prepared from premolar teeth. Silica sub-micron particles were prepared in water or acetone. Cavitation from an ultrasonic scaler (Satelec P5 Newtron, Acteon, France) was applied to dentine slices immersed inside the sub-micron particle solutions. Samples were imaged with scanning electron microscopy (SEM) to assess tubule occlusion and particle penetration. Qualitative observations of SEM images showed some tubule occlusion. The particles could penetrate inside the tubules up to 60μm when there was no cavitation and up to ∼180μm when there was cavitation. The cavitation bubbles produced from an ultrasonic scaler may be used to deliver sub-micron particles into dentine. This method has the potential to deliver such particles deeper into the dentinal tubules. Cavitation from a clinical ultrasonic scaler may enhance penetration of sub-micron particles into dentinal tubules. This can aid in the development of novel methods for delivering therapeutic clinical materials for hypersensitivity relief and treatment of dentinal caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Cystogenesis and elongated primary cilia in Tsc1-deficient distal convoluted tubules

    PubMed Central

    Armour, Eric A.; Carson, Robert P.

    2012-01-01

    Tuberous sclerosis complex (TSC) is a multiorgan hamartomatous disease caused by loss of function mutations of either the TSC1 or TSC2 genes. Neurological symptoms of TSC predominate in younger patients, but renal pathologies are a serious aspect of the disease in older children and adults. To study TSC pathogenesis in the kidney, we inactivated the mouse Tsc1 gene in the distal convoluted tubules (DCT). At young ages, Tsc1 conditional knockout (CKO) mice have enlarged kidneys and mild cystogenesis with increased mammalian target of rapamycin complex (mTORC)1 but decreased mTORC2 signaling. Treatment with the mTORC1 inhibitor rapamycin reduces kidney size and cystogenesis. Rapamycin withdrawal led to massive cystogenesis involving both distal as well as proximal tubules. To assess the contribution of decreased mTORC2 signaling in kidney pathogenesis, we also generated Rictor CKO mice. These animals did not have any detectable kidney pathology. Finally, we examined primary cilia in the DCT. Cilia were longer in Tsc1 CKO mice, and rapamycin treatment returned cilia length to normal. Rictor CKO mice had normal cilia in the DCT. Overall, our findings suggest that loss of the Tsc1 gene in the DCT is sufficient for renal cystogenesis. This cytogenesis appears to be mTORC1 but not mTORC2 dependent. Intriguingly, the mechanism may be cell autonomous as well as non-cell autonomous and possibly involves the length and function of primary cilia. PMID:22674026

  2. Cystogenesis and elongated primary cilia in Tsc1-deficient distal convoluted tubules.

    PubMed

    Armour, Eric A; Carson, Robert P; Ess, Kevin C

    2012-08-15

    Tuberous sclerosis complex (TSC) is a multiorgan hamartomatous disease caused by loss of function mutations of either the TSC1 or TSC2 genes. Neurological symptoms of TSC predominate in younger patients, but renal pathologies are a serious aspect of the disease in older children and adults. To study TSC pathogenesis in the kidney, we inactivated the mouse Tsc1 gene in the distal convoluted tubules (DCT). At young ages, Tsc1 conditional knockout (CKO) mice have enlarged kidneys and mild cystogenesis with increased mammalian target of rapamycin complex (mTORC)1 but decreased mTORC2 signaling. Treatment with the mTORC1 inhibitor rapamycin reduces kidney size and cystogenesis. Rapamycin withdrawal led to massive cystogenesis involving both distal as well as proximal tubules. To assess the contribution of decreased mTORC2 signaling in kidney pathogenesis, we also generated Rictor CKO mice. These animals did not have any detectable kidney pathology. Finally, we examined primary cilia in the DCT. Cilia were longer in Tsc1 CKO mice, and rapamycin treatment returned cilia length to normal. Rictor CKO mice had normal cilia in the DCT. Overall, our findings suggest that loss of the Tsc1 gene in the DCT is sufficient for renal cystogenesis. This cytogenesis appears to be mTORC1 but not mTORC2 dependent. Intriguingly, the mechanism may be cell autonomous as well as non-cell autonomous and possibly involves the length and function of primary cilia.

  3. Two inwardly rectifying potassium channels, Irk1 and Irk2, play redundant roles in Drosophila renal tubule function

    PubMed Central

    Wu, Yipin; Baum, Michel; Huang, Chou-Long

    2015-01-01

    Inwardly rectifying potassium channels play essential roles in renal physiology across phyla. Barium-sensitive K+ conductances are found on the basolateral membrane of a variety of insect Malpighian (renal) tubules, including Drosophila melanogaster. We found that barium decreases the lumen-positive transepithelial potential difference in isolated perfused Drosophila tubules and decreases fluid secretion and transepithelial K+ flux. In those insect species in which it has been studied, transcripts from multiple genes encoding inwardly rectifying K+ channels are expressed in the renal (Malpighian) tubule. In Drosophila melanogaster, this includes transcripts of the Irk1, Irk2, and Irk3 genes. The role of each of these gene products in renal tubule function is unknown. We found that simultaneous knockdown of Irk1 and Irk2 in the principal cell of the fly tubule decreases transepithelial K+ flux, with no additive effect of Irk3 knockdown, and decreases barium sensitivity of transepithelial K+ flux by ∼50%. Knockdown of any of the three inwardly rectifying K+ channels individually has no effect, nor does knocking down Irk3 simultaneously with Irk1 or Irk2. Irk1/Irk2 principal cell double-knockdown tubules remain sensitive to the kaliuretic effect of cAMP. Inhibition of the Na+/K+-ATPase with ouabain and Irk1/Irk2 double knockdown have additive effects on K+ flux, and 75% of transepithelial K+ transport is due to Irk1/Irk2 or ouabain-sensitive pathways. In conclusion, Irk1 and Irk2 play redundant roles in transepithelial ion transport in the Drosophila melanogaster renal tubule and are additive to Na+/K+-ATPase-dependent pathways. PMID:26224687

  4. The Adult Drosophila Malpighian Tubules Are Maintained by Pluripotent Stem Cells

    PubMed Central

    Singh, Shree Ram; Liu, Wei; Hou, Steven X.

    2007-01-01

    Summary All animals must excrete the waste products of metabolism. Excretion is performed by the kidney in vertebrates and by the Malpighian tubules in Drosophila. The mammalian kidney has an inherent ability for recovery and regeneration following ischemic injury. Stem cells and progenitor cells have been proposed to be responsible for repair and regeneration of injured renal tissue. In Drosophila, the Malpighian tubules are thought to be very stable, and no stem cells have been identified. We have identified pluripotent stem cells in the region of lower tubules and ureters of the Malpighian tubules. Using lineage tracing and molecular marker labeling, we demonstrated that several differentiated cells in the Malpighian tubules arise from the stem cells and an autocrine JAK-STAT signaling regulates the stem cells' self-renewal. Identifying adult kidney stem cells in Drosophila may provide important clues for understanding mammalian kidney repair and regeneration during injury. PMID:18371350

  5. Isolation and characterization of distinct domains of sarcolemma and T-tubules from rat skeletal muscle.

    PubMed

    Muñoz, P; Rosemblatt, M; Testar, X; Palacín, M; Zorzano, A

    1995-04-01

    1. Several cell-surface domains of sarcolemma and T-tubule from skeletal-muscle fibre were isolated and characterized. 2. A protocol of subcellular fractionation was set up that involved the sequential low- and high-speed homogenization of rat skeletal muscle followed by KCl washing, Ca2+ loading and sucrose-density-gradient centrifugation. This protocol led to the separation of cell-surface membranes from membranes enriched in sarcoplasmic reticulum and intracellular GLUT4-containing vesicles. 3. Agglutination of cell-surface membranes using wheat-germ agglutinin allowed the isolation of three distinct cell-surface membrane domains: sarcolemmal fraction 1 (SM1), sarcolemmal fraction 2 (SM2) and a T-tubule fraction enriched in protein tt28 and the alpha 2-component of dihydropyridine receptor. 4. Fractions SM1 and SM2 represented distinct sarcolemmal subcompartments based on different compositions of biochemical markers: SM2 was characterized by high levels of beta 1-integrin and dystrophin, and SM1 was enriched in beta 1-integrin but lacked dystrophin. 5. The caveolae-associated molecule caveolin was very abundant in SM1, SM2 and T-tubules, suggesting the presence of caveolae or caveolin-rich domains in these cell-surface membrane domains. In contrast, clathrin heavy chain was abundant in SM1 and T-tubules, but only trace levels were detected in SM2. 6. Immunoadsorption of T-tubule vesicles with antibodies against protein tt28 and against GLUT4 revealed the presence of GLUT4 in T-tubules under basal conditions and it also allowed the identification of two distinct pools of T-tubules showing different contents of tt28 and dihydropyridine receptors. 7. Our data on distribution of clathrin and dystrophin reveal the existence of subcompartments in sarcolemma from muscle fibre, featuring selective mutually exclusive components. T-tubules contain caveolin and clathrin suggesting that they contain caveolin- and clathrin-rich domains. Furthermore, evidence for the

  6. Comparing the effectiveness of four desensitizing toothpastes on dentinal tubule occlusion: A scanning electron microscope analysis.

    PubMed

    Jena, Amit; Kala, Soumik; Shashirekha, Govind

    2017-01-01

    Dentin hypersensitivity (DH) is a sudden short sharp pain best explained by hydrodynamic theory. Several agents are available throughout the market that can treat DH either by blocking the nerves that helps in conducting pain or by blocking the open dentinal tubules. The aim of the present study was to compare the tubule occluding efficacy of four different desensitizing dentifrices under scanning electron microscope (SEM). Sixty-two dentin blocks measuring 5 mm × 5 mm × 3 mm were obtained from extracted human molar teeth and were randomly divided into five groups: Group 1 - no treatment (control, n = 2); Group 2 - Pepsodent Pro-sensitive relief and repair ( n = 15); Group 3 - Sensodyne repair and protect ( n = 15); Group 4 - Remin Pro ( n = 15); Group 5 - Test toothpaste containing 15% nano-hydroxyapatite (n-HA) crystals ( n = 15). The specimens were brushed for 2 min/day for 14 days and stored in artificial saliva. After final brushing, specimens were gold sputtered and viewed under SEM at ×2000 magnification. Results obtained were statistically analyzed using nonparametric Kruskal-Wallis test and least significant difference post hoc test. All test groups showed significant increase in dentin tubule occlusion as compared to control group. The highest percentage of tubules occluded was shown by Group 4 and Group 5 which was significantly different from other groups ( P ≤ 0.05), and there was no significant difference in tubule occlusion among them. Newer desensitizing dentifrices containing 15% n-HA and Remin Pro can provide effective tubule occlusion and thereby reduce the pain and discomfort caused by DH.

  7. Numerical analysis of the effect of T-tubule location on calcium transient in ventricular myocytes.

    PubMed

    George, Uduak Z; Wang, Jun; Yu, Zeyun

    2014-01-01

    Intracellular calcium (Ca2+) signaling in cardiac myocytes is vital for proper functioning of the heart. Understanding the intracellular Ca2+ dynamics would give an insight into the functions of normal and diseased hearts. In the current study, spatiotemporal Ca2+ dynamics is investigated in ventricular myocytes by considering Ca2+ release and re-uptake via sarcolemma and transverse tubules (T-tubules), Ca2+ diffusion and buffering in the cytosol, and the blockade of Ca2+ activities associated with the sarcoplasmic reticulum. This study is carried out using a three dimensional (3D) geometric model of a branch of T-tubule extracted from the electron microscopy (EM) images of a partial ventricular myocyte. Mathematical modeling is done by using a system of partial differential equations involving Ca2+, buffers, and membrane channels. Numerical simulation results suggest that a lack of T-tubule structure at the vicinity of the cell surface could increase the peak time of Ca2+ concentration in myocytes. The results also show that T-tubules and mobile buffers play an important role in the regulation of Ca2+ transient in ventricular myocytes.

  8. The Role of “Leakage” of Tubular Fluid in Anuria Due to Mercury Poisoning*

    PubMed Central

    Bank, Norman; Mutz, Bertrand F.; Aynedjian, Hagop S.

    1967-01-01

    The role of “leakage” of tubular fluid in anuria produced by mercury poisoning was studied in rats by micropuncture techniques. After an initial brisk diuresis, almost all animals were completely anuric 24 hours after HgCl2 injection. Lissamine green injected intravenously in the early stage of anuria appeared in the beginning of the proximal tubule, but the color became progressively lighter as the dye traversed the proximal convolutions. The dye was barely visible in the terminal segments of the proximal tubule; it did not appear at all in the distal tubules. These observations suggest that the proximal epithelium had become abnormally permeable to Lissamine green. Tubular fluid to plasma inulin (TF/PIn) ratios and inulin clearance were measured in individual nephrons at three sites: early proximal tubule, late proximal tubule, and distal tubule. It was found that TF/PIn ratios were abnormally low in the late proximal and distal tubules. Inulin clearance was normal at the beginning of the proximal tubule but fell by more than 60% by the late proximal convolutions. Thus, the proximal tubule had also become permeable to inulin. We conclude from these observations that anuria in mercury poisoning can occur in the presence of a normal glomerular filtration rate. The absence of urine flow appears to be due to complete absorption of the filtrate through an excessively permeable tubular epithelium. The driving force affecting this fluid absorption is probably the colloid oncotic pressure of the peritubular capillary blood. Images PMID:6025476

  9. IgA-kappa type multiple myeloma affecting proximal and distal renal tubules.

    PubMed

    Minemura, K; Ichikawa, K; Itoh, N; Suzuki, N; Hara, M; Shigematsu, S; Kobayashi, H; Hiramatsu, K; Hashizume, K

    2001-09-01

    A 45-year-old male was admitted because of chest pain, lumbago, and bilateral ankle pain. Examination disclosed hypophosphatemic osteomalacia, acquired Fanconi syndrome, and abnormalities in distal nephron such as distal renal tubular acidosis and renal diabetes insipidus. Further exploration revealed IgA kappa multiple myeloma excreting urinary Bence Jones protein (kappa-light chain). Renal biopsy revealed thick basement membranes and elec-tron-dense crystals in proximal tubular epithelial cells. Immunofluorescent studies revealed deposition of kappa-light chain in renal tubular epithelial cells that caused the renal tubular damage. Although the osteomalacia was relieved by medical treatment, the urinary Bence Jones protein and the renal tubular defects were not improved by the chemotherapy for the myeloma. The patient died of exacerbation of multiple myeloma at 50 years of age.

  10. Evaluation of dentin tubule occlusion after laser irradiation and desensitizing agent application.

    PubMed

    Kim, Min-Ho; Kim, Ryan Jin-Young; Lee, Woo-Cheol; Lee, In-Bog

    2015-10-01

    To evaluate the effects of lasers (Nd:YAG and Er:YAG) and of topical desensitizing agents on dentin tubule occlusion by measuring real-time dentin fluid flow (DFF). 32 molars were prepared with V-shape cavity at the cervical area, acid-etched, water rinsed, blotted dry, and treated with (1) Nd:YAG laser; (2) Er:YAG laser; (3) SuperSeal, a desensitizing agent; (4) ClinproXT, a resin-modified glass-ionomer (RMGI) varnish (n = 8 each). A real-time fluid flow measuring instrument (nano-Flow) was used to measure the DFF throughout the procedures. The DFF rates before and after the treatment were compared. Moreover, the surface topography of dentin tubules after each desensitizing method was examined using SEM. DFF varied among the groups. The DFF rate was significantly reduced after laser irradiation/application of the desensitizing agents (P < 0.05). ClinproXT showed the greatest reduction of DFF rate (71.9%), followed by the SuperSeal (34.8%) and laser groups (P< 0.05). However, there was no significant difference between the Nd:YAG (24.1%) and Er:YAG (20.6%) groups (P > 0.05). In SEM images, narrowed dentin tubules were observed in both lased groups and SuperSeal group. In the ClinproXT group, the occluded dentin tubules by the RMGI covering were observed.

  11. Cassini/CIRS Observations of Saturn’s Polar Vortices from Proximal Orbit Observations

    NASA Astrophysics Data System (ADS)

    Achterberg, Richard; Bjoraker, Gordon L.; Hesman, Brigette E.; Flasar, F. Michael

    2017-10-01

    The proximal orbit phase of the Cassini mission, with periapses inside the inner edge of the rings, has allowed observations of Saturn’s atmosphere with unprecedented spatial resolution. During the periapse periods on 26 April and 29 June 2017, the Composite Infrared Spectrometer (CIRS) performed scans over both the north and south poles with a spatial resolution better than 0.2° of latitude, over a factor of 4 better resolution than previous observations. A further observation of the south pole is planned on 20 Aug 2017.Previous thermal infrared observations of Saturn’s poles [1,2] showed a compact hot spot in the upper troposphere at each pole, roughly coincident with the hurricane-like polar vortex seen in visible imaging [3]. Preliminary results from the proximal orbit scans of the north pole, near summer solstice, show that in the upper troposphere, the meridional temperature gradient increases sharply at about 89°N, with the temperature increasing by ~5K between 89°N and the pole, with the temperature gradient persisting all the way to the pole within the spatial resolution of the observation. In the northern stratosphere, the polar hot spot is broader than in the troposphere, extending to ~86°N at 4 mbar, and disappearing into the general meridional gradient at 1 mbar.[1] G. S. Orton and P. A. Yanamadra-Fisher, Science 307, 696[2] L. N. Fletcher et al., Science, 319, 79[3] U. A. Dyudina et al., Icarus, 202, 240.

  12. Wetting-mediated collective tubulation and pearling in confined vesicular drops of DDAB solutions.

    PubMed

    Haidara, Hamidou

    2014-12-21

    Whether driven by external mechanical stresses (shear flow) or induced by membrane-active peptides and/or proteins, the collective growth of tubules in membranous fluids has seldom been reported. The pearling destabilization of these membranous tubules which requires an activation of the shape distortion, often induced by optical tweezers, membrane-active biomolecules or an electrical field, has also rarely been observed under mild experimental conditions. Here we report such events of collective tubulation and pearling destabilization in sessile drops of a didodecyl-dimethylammonium bromide (DDAB) vesicular solution that are confined by a surrounding oil medium. Based on the wetting dynamics and the features of the tubulation process, we show that the growth of the tubules here relies on a mechanism of "pinning-induced pulling" from the retracting drop, rather than the classical hydrodynamic fingering instability. We show that the whole tubulation process is driven by a strong coupling between the bulk properties of the ternary (DAAB/water/oil) system and the dynamics of wetting. Finally, we discuss the pearling destabilization of these tubules under vanishing static interface tension and quite mild tensile force arising from their pulling. We show that under those mild conditions, shape disturbances readily grow, either as pearling waves moving toward the drop-reservoir or as Rayleigh-type peristaltic modulations. Besides revealing singular non-Rayleigh pearling modes, this work also brings new insights into the flow dynamics in membranous tubules anchored to an infinite reservoir.

  13. Fine structure of the transitional zone of the rat seminiferous tubule.

    PubMed

    Nykänen, M

    1979-05-25

    An electron microscopic study was made on the structure of the testicular transitional zone (TZ) in the adult rat. The TZ proper consists of modified Sertoli cellss, with only a few spermatogonia and macrophages, surrounding distally a very narrow lumen. The TZ Sertoli cells have nuclei with a somewhat coarser matrix and more peripheral heterochromatin than Sertoli cell nuclei of the nearby seminiferous tubules, and the electron density of the cytoplasm varies from cell to cell. Smooth endoplasmic reticulum is abundant, but usually there are also scattered ribosomal rosettes and an occasional profile of rough endoplasmic reticulum. Microtubules are very numerous in the columnar portion of the cell, and laminar structures seemingly joining the cell surfaces are sometimes seen. Lipid droplets and lysosmal structures are frequent cellular components in proximal TZ Sertoli cells. Empty intracellular vacuoles are abundant, sometimes arranged around areas of smooth endoplasmic reticulum. Occasionally, membrane-limited fine granules and vacuoles are seen within Sertoli cells and also in the TZ lumen, suggesting a possible secretory activity by these cells. The apical processes of the Sertoli cells form large vacuolar structures, and in the basal parts of the epithelium vacuoles with capillary-like appearance are frequently seen. Phagocytosis of germinal cells by the Sertoli cells occurs in the proximal region of the TZ. Round waste bodies in contact with the Sertoli cell apices protruding into the tubulus rectus, are also common. The tunica propria of the TZ is thickened and somewhat wrinkled, and in the proximal region the myoid cell layer loses its continuity and is replaced by fibroblasts. The epithelium of the tubulus rectus adjacent to the TZ consists of several overlapping epithelial cells. The typical junctional complexes between TZ Sertoli cells appear to be impermeable to the lanthanum tracer.

  14. Salinity alters snakeskin and mesh transcript abundance and permeability in midgut and Malpighian tubules of larval mosquito, Aedes aegypti.

    PubMed

    Jonusaite, Sima; Donini, Andrew; Kelly, Scott P

    2017-03-01

    This study examined the distribution and localization of the septate junction (SJ) proteins snakeskin (Ssk) and mesh in osmoregulatory organs of larval mosquito (Aedes aegypti), as well as their response to altered environmental salt levels. Ssk and mesh transcripts and immunoreactivity were detected in tissues of endodermal origin such as the midgut and Malpighian tubules of A. aegypti larvae, but not in ectodermally derived hindgut and anal papillae. Immunolocalization of Ssk and mesh in the midgut and Malpighian tubules indicated that both proteins are concentrated at regions of cell-cell contact between epithelial cells. Transcript abundance of ssk and mesh was higher in the midgut and Malpighian tubules of brackish water (BW, 30% SW) reared A. aegypti larvae when compared with freshwater (FW) reared animals. Therefore, [ 3 H]polyethylene glycol (MW 400Da, PEG-400) flux was examined across isolated midgut and Malpighian tubule preparations as a measure of their paracellular permeability. It was found that PEG-400 flux was greater across the midgut of BW versus FW larvae while the Malpighian tubules of BW-reared larvae had reduced PEG-400 permeability in conjunction with increased Cl - secretion compared to FW animals. Taken together, data suggest that Ssk and mesh are found in smooth SJs (sSJs) of larval A. aegypti and that their abundance alters in association with changes in epithelial permeability when larvae reside in water of differing salt content. This latter observation suggests that Ssk and mesh play a role in the homeostatic control of salt and water balance in larval A. aegypti. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Kinetics of solvent supported tubule formation of Lotus (Nelumbo nucifera) wax on highly oriented pyrolytic graphite (HOPG) investigated by atomic force microscopy

    PubMed Central

    Koch, Kerstin; Barthlott, Wilhelm; Wandelt, Klaus

    2018-01-01

    The time dependence of the formation of lotus wax tubules after recrystallization from various chloroform-based solutions on an HOPG surface at room temperature was studied by atomic force microscopy (magnetic AC mode) taking series of consecutive images of the formation process. The growth of the tubules oriented in an upright fashion follows a sequential rodlet→ring→tubule behavior. The influence of a number of factors, e.g., different wax concentration in chloroform, the additional presence of water, or salts [(NH4)2SO4, NH4NO3] or a mixture of salt/water in the solution on the growth rate and orientation of the tubules is also investigated. Different wax concentrations were found to have no effect on the growth rate or the orientation of tubules in none of the solutions. The presence of water, however, considerably increased the growth rate of tubule formation, while the presence of salt was again found to have no effect on growth rate or orientation of tubules. PMID:29515959

  16. Modelling Malpighian tubule crystals within the predatory soil mite Pergamasus longicornis (Mesostigmata: Parasitidae).

    PubMed

    Bowman, Clive E

    2017-05-01

    gross level the contents of the rectal vesicle are mechanically voided by the physical mechanism of overall gut expansion altering the effective idiosomal volume available during prey ingestion. A complete cycle of feeding, digestion, egestion and excretion is approximately 9 days. Hunger/starvation likely commences at 10 days after the start of feeding. Up to 15 days may be needed to completely clear the idiosoma of excretory material. Nomograms for predicting the likely feeding time of mites from observations of idiosomal guanine in field samples indicate that as few as 5-6 mites scoring positive for Malpighian tubule guanine out of 20 infers a high probability that the typical time from start of feeding in a population sample was about 6 days (range 3-8 days) ago.

  17. Organization of tubules in the human caput epididymidis and the ultrastructure of their epithelia.

    PubMed

    Yeung, C H; Cooper, T G; Bergmann, M; Schulze, H

    1991-07-01

    The structure of the human caput epididymidis was examined by gross morphological and light and electron microscopic techniques. There were at least seven types of tubules, each characterized by a different epithelium. These tubules were connected with one another by at least eight types of junctions to form a network. Most of the caput epididymidis was composed of efferent ducts. Within these, five types of tubules, each with a different ciliated epithelium, were found in different regions; and four types of junctions between the efferent ducts and the epididymal tubule were observed. The efferent ducts left the testis, initially as parallel straight tubules containing both ciliated and non-ciliated cells in an epithelium of irregular height. Each efferent duct then coiled tortuously into lobules that folded over one another. These efferent ducts then branched out as thin tubules to join a network of dark tubules which were lined by a regular epithelium containing prominently vacuolated, non-ciliated cells. These tubules anastomosed via common cavities characterized by a ciliated cuboidal epithelium and sometimes joined tubules exhibiting a non-vacuolated ciliated epithelium. The latter, as well as typical efferent ducts, made connection with the epididymis proper in both end-to-end and end-to-side junctions. In the more distal junctions with the epididymis, the efferent ducts joined to a transitional epididymal ductule before joining to the side of the epididymis proper. Post-junctional epithelia in the beginning of the epididymis occasionally contained patches of cells characteristic of efferent ducts. Tall cells with long stereocilia constituted a discontinuous "initial segment"-like region of the epididymis. This is the most detailed study so far of the epithelia and the tubule organization in the caput epididymidis of any species, and most of the results are reported for the first time for the human. Although the pattern of the tubule network resembles that

  18. Frustrated proximity effects between s and s± superconductors

    NASA Astrophysics Data System (ADS)

    Stanev, Valentin; Koshelev, Alexei E.

    2011-03-01

    The nature of the superconducting order parameter (OP) in iron pnictides and chalcogenides is a hotly debated issue. It was theoretically proposed that the OP has opposite signs on the hole and the electron bands, i.e., it belongs to the unconventional class of s +/- (or extended s)-wave. There are, however, very few experiments that can directly distinguish this state from the ordinary s-wave OP. One way to address this problem is to study the proximity effects in a sandwich composed of conventional and iron pnictide superconductors (SC). If the pnictides indeed have the s +/- OP this system is intrinsically frustrated. In the case of strong frustration, a time-reversal symmetry-breaking (TRSB) SC state emerges, in which the OP phases in different bands are tilted at an angle, different from π , and controlled by the coupling strength. Observation of such state in the iron-based SC materials would give definite evidence for the s +/- OP. We present a microscopic, fully self-consistent approach to this problem, based on Usadel equations. We have studied the conditions for existence of the TRSB state and its experimental signatures.

  19. Histological and three dimensional organizations of lymphoid tubules in normal lymphoid organ of Penaeus monodon.

    PubMed

    Duangsuwan, Pornsawan; Phoungpetchara, Ittipon; Tinikul, Yotsawan; Poljaroen, Jaruwan; Wanichanon, Chaitip; Sobhon, Prasert

    2008-04-01

    The normal lymphoid organ of Penaeus monodon (which tested negative for WSSV and YHV) was composed of two parts: lymphoid tubules and interstitial spaces, which were permeated with haemal sinuses filled with large numbers of haemocytes. There were three permanent types of cells present in the wall of lymphoid tubules: endothelial, stromal and capsular cells. Haemocytes penetrated the endothelium of the lymphoid tubule's wall to reside among the fixed cells. The outermost layer of the lymphoid tubule was covered by a network of fibers embedded in a PAS-positive extracellular matrix, which corresponded to a basket-like network that covered all the lymphoid tubules as visualized by a scanning electron microscope (SEM). Argyrophilic reticular fibers surrounded haemal sinuses and lymphoid tubules. Together they formed the scaffold that supported the lymphoid tubule. Using vascular cast and SEM, the three dimensional structure of the subgastric artery that supplies each lobe of the lymphoid organ was reconstructed. This artery branched into highly convoluted and blind-ending terminal capillaries, each forming the lumen of a lymphoid tubule around which haemocytes and other cells aggregated to form a cuff-like wall. Stromal cells which form part of the tubular scaffold were immunostained for vimentin. Examination of the whole-mounted lymphoid organ, immunostained for vimentin, by confocal microscopy exhibited the highly branching and convoluted lymphoid tubules matching the pattern of the vascular cast observed in SEM.

  20. Aging Selectively Modulates Vitamin C Transporter Expression Patterns in the Kidney.

    PubMed

    Forman, Katherine; Martínez, Fernando; Cifuentes, Manuel; Bertinat, Romina; Salazar, Katterine; Nualart, Francisco

    2017-09-01

    In the kidney, vitamin C is reabsorbed from the glomerular ultrafiltrate by sodium-vitamin C cotransporter isoform 1 (SVCT1) located in the brush border membrane of the proximal tubules. Although we know that vitamin C levels decrease with age, the adaptive physiological mechanisms used by the kidney for vitamin C reabsorption during aging remain unknown. In this study, we used an animal model of accelerated senescence (SAMP8 mice) to define the morphological alterations and aging-induced changes in the expression of vitamin C transporters in renal tissue. Aging induced significant morphological changes, such as periglomerular lymphocytic infiltrate and glomerular congestion, in the kidneys of SAMP8 mice, although no increase in collagen deposits was observed using 2-photon microscopy analysis and second harmonic generation. The most characteristic histological alteration was the dilation of intracellular spaces in the basolateral region of proximal tubule epithelial cells. Furthermore, a combination of laser microdissection, qRT-PCR, and immunohistochemical analyses allowed us to determine that SVCT1 expression specifically increased in the proximal tubules from the outer strip of the outer medulla (segment S3) and cortex (segment S2) during aging and that these tubules also express GLUT1. We conclude that aging modulates vitamin C transporter expression and that renal over-expression of SVCT1 enhances vitamin C reabsorption in aged animals that may synthesize less vitamin C. J. Cell. Physiol. 232: 2418-2426, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene

    PubMed Central

    Irving, Roy M.; Pinkerton, Marie E.; Elfarra, Adnan A.

    2012-01-01

    N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NA-DCVC) has been detected in the urine of humans exposed to trichloroethylene and its related sulfoxide, N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (NA-DCVCS), has been detected as hemoglobin adducts in blood of rats dosed with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) or S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS). Because the in vivo nephrotoxicity of NA-DCVCS was unknown, in this study, male Sprague-Dawley rats were dosed (i.p.) with 230 µmol/kg b.w. NA-DCVCS or its potential precursors, DCVCS or NA-DCVC. At 24 h post treatment, rats given NA-DCVC or NA-DCVCS exhibited kidney lesions and effects on renal function distinct from those caused by DCVCS. NA-DCVC and NA-DCVCS primarily affected the cortico-medullary proximal tubules (S2–S3 segments) while DCVCS primarily affected the outer cortical proximal tubules (S1–S2 segments). When NA-DCVCS or DCVCS was incubated with GSH in phosphate buffer pH 7.4 at 37°C, the corresponding glutathione conjugates were detected, but NA-DCVC was not reactive with GSH. Because NA-DCVCS exhibited a longer half-life than DCVCS and addition of rat liver cytosol enhanced GSH conjugate formation, catalysis of GSH conjugate formation by the liver could explain the lower toxicity of NA-DCVCS in comparison with DCVCS. Collectively, these results provide clear evidence that NA-DCVCS formation could play a significant role in DCVC, NA-DCVC, and trichloroethylene nephrotoxicity. They also suggest a role for hepatic metabolism in the mechanism of NA-DCVC nephrotoxicity. PMID:23253325

  2. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene.

    PubMed

    Irving, Roy M; Pinkerton, Marie E; Elfarra, Adnan A

    2013-02-15

    N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NA-DCVC) has been detected in the urine of humans exposed to trichloroethylene and its related sulfoxide, N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (NA-DCVCS), has been detected as hemoglobin adducts in blood of rats dosed with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) or S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS). Because the in vivo nephrotoxicity of NA-DCVCS was unknown, in this study, male Sprague-Dawley rats were dosed (i.p.) with 230 μmol/kg b.w. NA-DCVCS or its potential precursors, DCVCS or NA-DCVC. At 24 h post treatment, rats given NA-DCVC or NA-DCVCS exhibited kidney lesions and effects on renal function distinct from those caused by DCVCS. NA-DCVC and NA-DCVCS primarily affected the cortico-medullary proximal tubules (S(2)-S(3) segments) while DCVCS primarily affected the outer cortical proximal tubules (S(1)-S(2) segments). When NA-DCVCS or DCVCS was incubated with GSH in phosphate buffer pH 7.4 at 37°C, the corresponding glutathione conjugates were detected, but NA-DCVC was not reactive with GSH. Because NA-DCVCS exhibited a longer half-life than DCVCS and addition of rat liver cytosol enhanced GSH conjugate formation, catalysis of GSH conjugate formation by the liver could explain the lower toxicity of NA-DCVCS in comparison with DCVCS. Collectively, these results provide clear evidence that NA-DCVCS formation could play a significant role in DCVC, NA-DCVC, and trichloroethylene nephrotoxicity. They also suggest a role for hepatic metabolism in the mechanism of NA-DCVC nephrotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. [Study on the assay of proximal tubular antigen in urine and serum with an anti-human renal monoclonal antibody].

    PubMed

    Taniai, K

    1991-10-01

    Monoclonal antibodies (Mabs) were produced by immunizing mice with human kidney microsomal antigen. Mab-B1 recognized brushborder (B1-Ag) in proximal tubules. Using Mab-B1, B1-Ag was assayed in the urine and serum of renal disease patients by sandwich ELISA. The subjects included normal control (Nor), minimal change nephrotic syndrome (MCNS), IgA nephropathy (IgA), membranous nephropathy (MN), membranoproliferative glomerulonephritis (MPGN), and chronic renal failure (CRF) (s-Cr greater than 2 mg/dl). Urinary B1-Ag demonstrated significant increases in the IgA (p less than 0.001), MN (p less than 0.001), MPGN (p less than 0.001) and CRF (p less than 0.01) groups as compared to the Nor group. There was no significant increase in the MCNS group. In the CRF group, B1-Ag in urine showed a significant increase in the progressive CRF group with delta s-Cr greater than 1.0 mg/dl/month as compared to the stationary CRF group with delta s-Cr less than 1.0 mg/dl/month. No correlation was observed between urinary B1-Ag and proteinuria, hematuria, s-Cr, s-BMG and u-NAG. The above findings suggested that the assay of urinary B1-Ag was useful as a new parameter in detecting the site and degree of proximal tubular damage.

  4. Human Papillomavirus 16 Infection Induces VAP-Dependent Endosomal Tubulation.

    PubMed

    Siddiqa, Abida; Massimi, Paola; Pim, David; Broniarczyk, Justyna; Banks, Lawrence

    2018-03-15

    Human papillomavirus (HPV) infection involves complex interactions with the endocytic transport machinery, which ultimately facilitates the entry of the incoming viral genomes into the trans -Golgi network (TGN) and their subsequent nuclear entry during mitosis. The endosomal pathway is a highly dynamic intracellular transport system, which consists of vesicular compartments and tubular extensions, although it is currently unclear whether incoming viruses specifically alter the endocytic machinery. In this study, using MICAL-L1 as a marker for tubulating endosomes, we show that incoming HPV-16 virions induce a profound alteration in global levels of endocytic tubulation. In addition, we also show a critical requirement for the endoplasmic reticulum (ER)-anchored protein VAP in this process. VAP plays an essential role in actin nucleation and endosome-to-Golgi transport. Indeed, the loss of VAP results in a dramatic decrease in the level of endosomal tubulation induced by incoming HPV-16 virions. This is also accompanied by a marked reduction in virus infectivity. In VAP knockdown cells, we see that the defect in virus trafficking occurs after capsid disassembly but prior to localization at the trans -Golgi network, with the incoming virion-transduced DNA accumulating in Vps29/TGN46-positive hybrid vesicles. Taken together, these studies demonstrate that infection with HPV-16 virions induces marked alterations of endocytic transport pathways, some of which are VAP dependent and required for the endosome-to-Golgi transport of the incoming viral L2/DNA complex. IMPORTANCE Human papillomavirus infectious entry involves multiple interactions with the endocytic transport machinery. In this study, we show that incoming HPV-16 virions induce a dramatic increase in endocytic tubulation. This tubulation requires ER-associated VAP, which plays a critical role in ensuring the delivery of cargoes from the endocytic compartments to the trans -Golgi network. Indeed, the loss of

  5. Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron

    PubMed Central

    Vallon, Volker; Edwards, Aurélie

    2016-01-01

    Diabetes increases the reabsorption of Na+ (TNa) and glucose via the sodium-glucose cotransporter SGLT2 in the early proximal tubule (S1-S2 segments) of the renal cortex. SGLT2 inhibitors enhance glucose excretion and lower hyperglycemia in diabetes. We aimed to investigate how diabetes and SGLT2 inhibition affect TNa and sodium transport-dependent oxygen consumption QO2active along the whole nephron. To do so, we developed a mathematical model of water and solute transport from the Bowman space to the papillary tip of a superficial nephron of the rat kidney. Model simulations indicate that, in the nondiabetic kidney, acute and chronic SGLT2 inhibition enhances active TNa in all nephron segments, thereby raising QO2active by 5–12% in the cortex and medulla. Diabetes increases overall TNa and QO2active by ∼50 and 100%, mainly because it enhances glomerular filtration rate (GFR) and transport load. In diabetes, acute and chronic SGLT2 inhibition lowers QO2active in the cortex by ∼30%, due to GFR reduction that lowers proximal tubule active TNa, but raises QO2active in the medulla by ∼7%. In the medulla specifically, chronic SGLT2 inhibition is predicted to increase QO2active by 26% in late proximal tubules (S3 segments), by 2% in medullary thick ascending limbs (mTAL), and by 9 and 21% in outer and inner medullary collecting ducts (OMCD and IMCD), respectively. Additional blockade of SGLT1 in S3 segments enhances glucose excretion, reduces QO2active by 33% in S3 segments, and raises QO2active by <1% in mTAL, OMCD, and IMCD. In summary, the model predicts that SGLT2 blockade in diabetes lowers cortical QO2active and raises medullary QO2active, particularly in S3 segments. PMID:26764207

  6. Outer Retinal Tubulation in Degenerative Retinal Disorders

    PubMed Central

    Goldberg, Naomi R.; Greenberg, Jonathan P.; Laud, Ketan; Tsang, Stephen; Freund, K. Bailey

    2013-01-01

    Objective To demonstrate outer retinal tubulation (ORT) in various degenerative retinal disorders. Methods This was a retrospective review of the multimodal imaging of 29 eyes of 15 patients with various retinal dystrophies and inflammatory maculopathies manifesting ORT. The morphologic features of ORT and its evolution over time were analyzed using spectral-domain optical coherence tomography (SD-OCT) data. Results Outer retinal tubulation was identified as round or ovoid structures with hyper-reflective borders in pattern dystrophy (6 eyes), acute zonal occult outer retinopathy (5 eyes), retinitis pigmentosa (4 eyes), Stargardt disease (4 eyes), gyrate atrophy (2 eyes), choroideremia (2 eyes), and various other degenerative conditions. These structures appeared to develop from the invagination of photoreceptors at the junction of intact and atrophic outer retina. During follow-up, the number and distribution of ORT largely remained stable. As zones of atrophy enlarged, the frequency of ORT appeared to increase. The ORT structures were found in fewer than 10% of patients with retinitis pigmentosa, Stargardt, or pattern dystrophy. Conclusion Outer retinal tubulation is found in various degenerative retinal disorders that share in common damage to the outer retina and/or retinal pigment epithelium. The presence of ORT may be in an indicator of underlying disease stage and severity. PMID:23676993

  7. The sodium-bicarbonate cotransporter NBCe2 (slc4a5) expressed in human renal proximal tubules shows increased apical expression under high-salt conditions.

    PubMed

    Gildea, John J; Xu, Peng; Carlson, Julia M; Gaglione, Robert T; Bigler Wang, Dora; Kemp, Brandon A; Reyes, Camellia M; McGrath, Helen E; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2015-12-01

    The electrogenic sodium bicarbonate cotransporter (NBCe2) is encoded by SLC4A5, variants of which have been associated with salt sensitivity of blood pressure, which affects 25% of the adult population. NBCe2 is thought to mediate sodium bicarbonate cotransport primarily in the renal collecting duct, but NBCe2 mRNA is also found in the rodent renal proximal tubule (RPT). The protein expression or function of NBCe2 has not been demonstrated in the human RPT. We validated an NBCe2 antibody by shRNA and Western blot analysis, as well as overexpression of an epitope-tagged NBCe2 construct in both RPT cells (RPTCs) and human embryonic kidney 293 (HEK293) cells. Using this validated NBCe2 antibody, we found NBCe2 protein expression in the RPT of fresh and frozen human kidney slices, RPTCs isolated from human urine, and isolated RPTC apical membrane. Under basal conditions, NBCe2 was primarily found in the Golgi, while NBCe1 was primarily found at the basolateral membrane. Following an acute short-term increase in intracellular sodium, NBCe2 expression was increased at the apical membrane in cultured slices of human kidney and polarized, immortalized RPTCs. Sodium bicarbonate transport was increased by monensin and overexpression of NBCe2, decreased by NBCe2 shRNA, but not by NBCe1 shRNA, and blocked by 2,2'-(1,2-ethenediyl)bis[5-isothiocyanato-benzenesulfonic acid]. NBCe2 could be important in apical sodium and bicarbonate cotransport under high-salt conditions; the implication of the ex vivo studies to the in vivo situation when salt intake is increased remains unclear. Therefore, future studies will examine the role of NBCe2 in mediating increased renal sodium transport in humans whose blood pressures are elevated by an increase in sodium intake. Copyright © 2015 the American Physiological Society.

  8. Myosin VI and branched actin filaments mediate membrane constriction and fission of melanosomal tubule carriers.

    PubMed

    Ripoll, Léa; Heiligenstein, Xavier; Hurbain, Ilse; Domingues, Lia; Figon, Florent; Petersen, Karl J; Dennis, Megan K; Houdusse, Anne; Marks, Michael S; Raposo, Graça; Delevoye, Cédric

    2018-06-06

    Vesicular and tubular transport intermediates regulate organellar cargo dynamics. Transport carrier release involves local and profound membrane remodeling before fission. Pinching the neck of a budding tubule or vesicle requires mechanical forces, likely exerted by the action of molecular motors on the cytoskeleton. Here, we show that myosin VI, together with branched actin filaments, constricts the membrane of tubular carriers that are then released from melanosomes, the pigment containing lysosome-related organelles of melanocytes. By combining superresolution fluorescence microscopy, correlative light and electron microscopy, and biochemical analyses, we find that myosin VI motor activity mediates severing by constricting the neck of the tubule at specific melanosomal subdomains. Pinching of the tubules involves the cooperation of the myosin adaptor optineurin and the activity of actin nucleation machineries, including the WASH and Arp2/3 complexes. The fission and release of these tubules allows for the export of components from melanosomes, such as the SNARE VAMP7, and promotes melanosome maturation and transfer to keratinocytes. Our data reveal a new myosin VI- and actin-dependent membrane fission mechanism required for organelle function. © 2018 Ripoll et al.

  9. Regulation of K transport in a mathematical model of the cortical collecting tubule.

    PubMed

    Strieter, J; Weinstein, A M; Giebisch, G; Stephenson, J L

    1992-12-01

    The effect of luminal flow rate and peritubular pH on Na and K transport is investigated in a mathematical model of the rabbit cortical collecting tubule. The model is used to simulate a 0.4-cm segment of tubule comprised of principal cell, alpha- and beta-intercalated cells, and lateral interspace. Calculations produce luminal profiles of Na, K, Cl, HCO3, and phosphate, as well as of electrical potential and pH. Parameter sets are developed that permit representation of both unstimulated and deoxycorticosterone acetate-stimulated tubules. A series of simulations is performed in which initial luminal flow rate is varied over the range of values between 0.1 and 30 nl/min. A marked flow-dependent enhancement of Na reabsorption and K secretion is seen, especially at lower flows, while Cl and HCO3 transport remain relatively constant. In experimental studies, it has been observed that metabolic alkalosis stimulates and metabolic acidosis inhibits K secretion, while leaving Na transport relatively unaffected [B. A. Stanton and G. Giebisch. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F544-F551, 1982; K. Tabei, S. Muto, Y. Ando, Y. Sakairi, and Y. Asano. J. Am. Soc. Nephrol. 1: 693, 1990; and K. Tabei, S. Muto, H. Furuya, and Y. Asano. J. Am. Soc. Nephrol. 2: 752, 1991]. Model calculations indicate that, when ion permeabilities are fixed and not dependent on pH, the impact of peritubular HCO3 on K secretion cannot be simulated. When junctional Cl permeability decreases with increasing interspace pH (E. M. Wright and J. M. Diamond. Biochim. Biophys. Acta 163: 57-74, 1968) in the model, there is a marked stimulation of K secretion with alkalosis and inhibition with acidosis. Furthermore, inclusion of a pH-dependent apical Na permeability [L. G. Palmer and G. Frindt. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F333-F339, 1987] that increases with increasing principal cell pH significantly reduces the change in Na+ reabsorption seen with the p

  10. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes

    PubMed Central

    Maher, Geoffrey J.; McGowan, Simon J.; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O. M.

    2016-01-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39–90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones. PMID:26858415

  11. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes.

    PubMed

    Maher, Geoffrey J; McGowan, Simon J; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O M

    2016-03-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39-90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones.

  12. Jellyfish stinging is driven by the moving front of the nematocyst's tubule

    NASA Astrophysics Data System (ADS)

    Shavit, Uri; Park, Sinwook; Piriatinskiy, Gadi; Yossifon, Gilad; Lotan, Tamar

    2017-11-01

    Nematocysts are ultra-fast stinging organelles that are utilized by the Cnidaria phylum for prey capture, defense and locomotion. They consist of a capsule and a tubule and exert high pressure and acceleration to penetrate the target organism. Previous studies report that the ejection and elongation of the tubule are driven by a buildup of osmotic potential in the capsule. We question this explanation using a microfluidic system that controls the osmotic potential by directing the tubule through oil, where no osmotic potential can develop, while keeping the capsule in water. It was found that the time needed for elongation through oil is orders of magnitude larger than through water. Our mathematical model shows that the p γGlu concentration in the tubule is higher than in the capsule and the internal pressure that develops there serves as the elongation driving force. These findings imply that modifications of the environment along the tubule route have the potential to slow down the process and reduce its impact. This may shed light on prey defense strategies, human protection against jellyfish stinging, the use of nematocysts for drug delivery and exploration of osmotic based methods for nanotubes production and elongation.

  13. Regulatory Forum Opinion Piece*: Dispelling Confusing Pathology Terminology: Recognition and Interpretation of Selected Rodent Renal Tubule Lesions.

    PubMed

    Seely, John Curtis; Frazier, Kendall S

    2015-06-01

    Renal tubule lesions often prove troublesome for toxicologic pathologists because of the diverse nature and interrelated cell types within the kidney and the presence of spontaneous lesions with overlapping morphologies similar to those induced by renal toxicants. Although there are a number of guidance documents available citing straightforward diagnostic criteria of tubule lesions for the pathologist to refer to, most are presented without further advice on the when to or to the why and the why not of diagnosing one lesion over another. Documents presenting diagnostic perspectives and recommendations derived from an author's experience are limited since guidance documents are generally based on descriptive observations. In this Regulatory Forum opinion piece, the authors attempt to dispel confusing renal tubule lesion terminology in laboratory animal species by suggesting histological advice on the recognition and interpretation of these complex entities. © 2015 by The Author(s).

  14. Exploring the human mesenchymal stem cell tubule communication network through electron microscopy.

    PubMed

    Valente, Sabrina; Rossi, Roberta; Resta, Leonardo; Pasquinelli, Gianandrea

    2015-04-01

    Cells use several mechanisms to transfer information to other cells. In this study, we describe micro/nanotubular connections and exosome-like tubule fragments in multipotent mesenchymal stem cells (MSCs) from human arteries. Scanning and transmission electron microscopy allowed characterization of sinusoidal microtubular projections (700 nm average size, 200 µm average length, with bulging mitochondria and actin microfilaments); short, uniform, variously shaped nanotubular projections (100 nm, bidirectional communication); and tubule fragments (50 nm). This is the first study demonstrating that MSCs from human arteries constitutively interact through an articulate and dynamic tubule network allowing long-range cell to cell communication.

  15. Dentinal tubules occluded by bioactive glass-containing toothpaste exhibit high resistance toward acidic soft drink challenge.

    PubMed

    Bakri, M M; Hossain, M Z; Razak, F A; Saqina, Z H; Misroni, A A; Ab-Murat, N; Kitagawa, J; Saub, R B

    2017-06-01

    Dentine hypersensitivity is a common problem attributed by patent dentinal tubules. Ingredients incorporated in toothpastes aim to occlude patent dentinal tubules to minimize the dentine hypersensitivity. However, frequent consumption of acidic soft drinks may reverse the dentinal tubules' occlusion. In this in vitro study, the efficacy of dentinal tubules occluded by commercially available toothpastes to withstand different durations of an acidic soft drink challenge was investigated. One hundred and twenty dentine discs were divided into three groups. The discs from each group were brushed with toothpaste containing bioactive glass, arginine and control toothpaste. Each group was then divided into four subgroups and exposed to acidic soft drink over four different time durations. The scoring and the percentage of occluded dentinal tubules by Novamin-containing toothpaste was significantly better compared with arginine or the control toothpaste. Acidic soft drink challenge reduced the extent of dentinal tubules occlusion along with time. Dentinal tubules occluded by Novamin-containing toothpaste withstand the acidic challenge comparatively for a longer period. The findings demonstrated that occlusion of dentinal tubules is more efficient by the bioactive glass-containing toothpaste and thus may contribute to its better resistance to acidic soft drink challenge. © 2016 Australian Dental Association.

  16. Annexin IV (Xanx-4) has a functional role in the formation of pronephric tubules.

    PubMed

    Seville, Rachel A; Nijjar, Sarbjit; Barnett, Mark W; Massé, Karine; Jones, Elizabeth A

    2002-04-01

    Vertebrate kidney organogenesis is characterised by the successive formation of the pronephros, the mesonephros and the metanephros. The pronephros is the first to form and is the functional embryonic kidney of lower vertebrates; although it is vestigial in higher vertebrates, it is a necessary precursor for the other kidney types. The Xenopus pronephros is a simple paired organ; each nephron consists of a single large glomus, one set of tubules and a single duct. The simple organisation of the pronephros and the amenability of Xenopus laevis embryos to manipulation make the Xenopus pronephros an attractive system in which to study organogenesis. It has been shown that pronephric tubules can be induced to form in presumptive ectodermal tissue by treatment with RA and activin. We have used this system in a subtractive hybridisation screen that resulted in the cloning of Xenopus laevis annexin IV (Xanx-4). Xanx-4 transcripts are specifically located to the developing pronephric tubules, and the protein to the luminal surface of these tubules. Temporal expression shows zygotic transcription is upregulated at the time of pronephric tubule specification and persists throughout pronephric development. The temporal and spatial expression pattern of Xanx-4 suggests it may have a role in pronephric tubule development. Overexpression of Xanx-4 yields no apparent phenotype, but Xanx-4 depletion, using morpholinos, produces a shortened, enlarged tubule phenotype. The phenotype observed can be rescued by co-injection of Xanx-4 mRNA. Although the function of annexins is not yet clear, studies have suggested a role for annexins in a number of cellular processes. Annexin IV has been shown to have an inhibitory role in the regulation of epithelial calcium-activated chloride ion conductance. The enlarged pronephric tubule phenotype observed may be attributed to incorrect modulation of exocytosis, membrane plasticity or ion channels and/or water homeostasis. In this study, we

  17. Regulation of renal amino acid transporters during metabolic acidosis.

    PubMed

    Moret, Caroline; Dave, Mital H; Schulz, Nicole; Jiang, Jean X; Verrey, Francois; Wagner, Carsten A

    2007-02-01

    The kidney plays a major role in acid-base homeostasis by adapting the excretion of acid equivalents to dietary intake and metabolism. Urinary acid excretion is mediated by the secretion of protons and titratable acids, particularly ammonia. NH(3) is synthesized in proximal tubule cells from glutamine taken up via specific amino acid transporters. We tested whether kidney amino acid transporters are regulated in mice in which metabolic acidosis was induced with NH(4)Cl. Blood gas and urine analysis confirmed metabolic acidosis. Real-time RT-PCR was performed to quantify the mRNAs of 16 amino acid transporters. The mRNA of phosphoenolpyruvate carboxykinase (PEPCK) was quantified as positive control for the regulation and that of GAPDH, as internal standard. In acidosis, the mRNA of kidney system N amino acid transporter SNAT3 (SLC38A3/SN1) showed a strong induction similar to that of PEPCK, whereas all other tested mRNAs encoding glutamine or glutamate transporters were unchanged or reduced in abundance. At the protein level, Western blotting and immunohistochemistry demonstrated an increased abundance of SNAT3 and reduced expression of the basolateral cationic amino acid/neutral amino acid exchanger subunit y(+)-LAT1 (SLC7A7). SNAT3 was localized to the basolateral membrane of the late proximal tubule S3 segment in control animals, whereas its expression was extended to the earlier S2 segment of the proximal tubule during acidosis. Our results suggest that the selective regulation of SNAT3 and y(+)LAT1 expression may serve a major role in the renal adaptation to acid secretion and thus for systemic acid-base balance.

  18. Evidence for involvement of nonesterified fatty acid-induced protonophoric uncoupling during mitochondrial dysfunction caused by hypoxia and reoxygenation

    PubMed Central

    Feldkamp, Thorsten; Weinberg, Joel M.; Hörbelt, Markus; Von Kropff, Christina; Witzke, Oliver; Nürnberger, Jens; Kribben, Andreas

    2009-01-01

    Background. Proximal tubules subjected to hypoxia in vitro under conditions relevant to ischaemia in vivo develop an energetic deficit that is not corrected even after full reoxygenation. We have provided evidence that accumulation of nonesterified fatty acids (NEFA) is the primary reason for this energetic deficit. In this study, we have further investigated the mechanism for the NEFA-induced energetic deficit. Methods. Mitochondrial membrane potential (Δψ) was measured in digitonin-permeabilized, freshly isolated proximal tubules by safranin O uptake. Addition of the potassium/proton exchanger nigericin enables the determination of the mitochondrial proton motive force (Δp) and the proton gradient (ΔpH). ATP was measured luminometrically and NEFA colorimetrically. Results. Tubule ATP content was depleted after hypoxia and recovered incompletely, even after full reoxygenation. Mitochondrial safranin O uptake was decreased in proximal tubules after hypoxia and reoxygenation (H/R). This decrease was attenuated by delipidated bovine serum albumin (dBSA) or citrate. Addition of nigericin increased safranin O uptake of mitochondria in normoxic proximal tubules, but not in proximal tubules after H/R. Addition of dBSA restored the effect of nigericin to increase mitochondrial safranin O uptake. Addition of the NEFA oleate had the same impact on mitochondrial safranin O uptake as subjecting proximal tubules to H/R. Conclusion. The mechanism of the NEFA-induced energetic deficit in freshly isolated rat proximal tubules induced by H/R is characterized by impaired ATP production after full reoxygenation, impaired recovery of Δψ and Δp, abrogation of ΔpH and sensitivity to citrate, consistent with involvement of the tricarboxylate carrier. The data support the concept that protonophoric uncoupling by NEFA movement on anion carriers plays a critical role in proximal tubule mitochochondrial dysfunction after H/R. PMID:18678559

  19. A scanning electron microscopic evaluation of in vitro dentinal tubules penetration by selected anaerobic bacteria.

    PubMed

    Siqueira, J F; De Uzeda, M; Fonseca, M E

    1996-06-01

    In vitro root canal dentinal tubule invasion by selected anaerobic bacteria commonly isolated from endodontic infections was evaluated. Dentinal cylinders obtained from bovine incisors were inoculated with bacteria, and microbial penetration into tubules was demonstrated by scanning electron microscopy. The results indicated that all bacterial strains tested were able to penetrate into dentinal tubules, but to different extents.

  20. Culturing immobilized plant cells for the TUBUL space experiments on the DELTA and 12S Missions

    NASA Astrophysics Data System (ADS)

    Sieberer, Björn J.; Emons, Anne Mie C.; Vos, Jan W.

    2007-09-01

    For the TUBUL experiments during the DELTA mission in April 2004 and 12S mission in March/April 2006 on board the Soyuz capsule and the International Space Station we developed a method to culture and chemically fix plant suspension culture cells. The aim of the ten day experiment was to investigate the effect of microgravity on single plant cells. Fully automated experiment cassettes (Plunger Box Units) were developed by Centre for Concepts in Mechatronics (Nuenen, the Netherlands). Tobacco BY- 2 cells were immobilized in a semi- solid agarose matrix that was reinforced by a nylon mesh. This assembly allowed liquid medium refreshment, oxygen supply and chemical fixation, including a post- fixative wash. The method was optimized for post- flight analysis of cell structure, shape and size, cell division, and the microtubule cytoskeleton. The viability of cells in the agarose matrix was similar to cells grown in liquid medium under laboratory conditions, only the stationary growth phase was reached six days later.

  1. Dentine tubule infection and endodontic therapy implications.

    PubMed

    Oguntebi, B R

    1994-07-01

    A critical review of the literature suggests that the microenvironment of dentinal tubules appears to favour the selection of relatively few bacterial types irrespective of the aetiology of the infection process; coronal dental caries or pulpar necrosis. These bacteria may constitute an important reservoir from which root canal infection and reinfection may occur following pulp necrosis or during and after endodontic treatment. Previous studies of this microflora have utilized microbiological culture techniques which need to be supplemented by those that allow in situ demonstration as well as identification of the bacteria. Newer treatment strategies that are designed to eliminate this microflora must include agents that can penetrate the dentinal tubules and destroy these microorganisms, since they are located in an area beyond the host defence mechanisms where they cannot be reached by systemically administered antimicrobial agents.

  2. Expandable proximal femoral nail versus gamma proximal femoral nail for the treatment of AO/OTA 31A1-3 fractures.

    PubMed

    Michael, Drexler; Yaniv, Warschawski; Tal, Frenkel Rutenberg; Kessler Evan, G; Eyal, Amar; Nimrod, Snir; Ehud, Rath; Gilad, Eizenberg; Ely, Steinberg L

    2016-02-01

    The gamma-proximal femoral nail (GPFN) and the expandable proximal femoral nail (EPFN) are two commonly used intramedullary devices for the treatment of AO 31A1-3 proximal femur fractures. The aim of this study was to compare outcomes and complication rates in patients treated by both devices. A total of 299 patients (149 in the GPFN group and 150 in the EPFN group, average age 83.6 years) were treated for AO 31A1-3 proximal femur fractures in our institution between July 2008 and February 2013. Time from presentation to surgery, level of experience of the surgeon, operative time, amount of blood loss and number of blood transfusions were recorded. Postoperative radiological variables, including peg/screw location, tip to apex distance and orthopaedic complications, as, malunion, nonunion, surgical wound infection rates, cutouts, periprosthetic fractures and the incidence of non-orthopaedic complications. Functional results were estimated using the modified Harris Hip Score, and quality of life was queried by the SF-36 questionnaire. The GPFN and the EPFN fixation methods were similar in terms of functional outcomes, complication rates and quality of life assessments. More patients (107 vs. 73) from the GPFN group were operated within 48 h from presentation (44.8 h vs. 49.9 h for the EPFN group, p=0.351), and their surgery duration and hospitalisation were significantly longer (18.5 days vs. 26 days, respectively, p<0.001). The GPFN patients were frequently operated by junior surgeons: 90% (135) while 50.6% (76) of the EPFN operations were performed by senior doctors. Other intraoperative measures were similar between groups. Cutout was the most common complication affecting 6.7% of the GPFN group and 3.3% of the EPFN group (p=0.182). Good clinical outcomes and low complication rates in the GPFN and the EPFN groups indicate essentially equivalent safety and reliability on the part of both devices for the treatment of proximal femoral fractures. Copyright © 2015

  3. Efficacy of 4 Irrigation Protocols in Killing Bacteria Colonized in Dentinal Tubules Examined by a Novel Confocal Laser Scanning Microscope Analysis

    PubMed Central

    Azim, Adham A.; Aksel, Hacer; Zhuang, Tingting; Mashtare, Terry; Babu, Jegdish P.; Huang, George T.-J.

    2016-01-01

    Introduction The aim of this study was to determine the efficiency of 4 irrigation systems in eliminating bacteria in root canals, particularly in dentinal tubules. Methods Roots of human teeth were prepared to 25/04, autoclaved, and inoculated with Enterococcus faecalis for 3 weeks. Canals were then disinfected by (1) standard needle irrigation, (2) sonically agitating with EndoActivator, (3) XP Endo finisher, or (4) erbium:yttrium aluminum garnet laser (PIPS) (15 roots/group). The bacterial reduction in the canal was determined by MTT assays. For measuring live versus dead bacteria in the dentinal tubules (4 teeth/group), teeth were split open and stained with LIVE/DEAD BackLight. Coronal, middle, and apical thirds of the canal dentin were scanned by using a confocal laser scanning microscope (CLSM) to determine the ratio of dead/total bacteria in the dentinal tubules at various depths. Results All 4 irrigation protocols significantly eliminated bacteria in the canal, ranging from 89.6% to 98.2% reduction (P < .001). XP Endo had the greatest bacterial reduction compared with other 3 techniques (P < .05). CLSM analysis showed that XP Endo had the highest level of dead bacteria in the coronal, middle, and apical segments at 50-μm depth. On the other hand, PIPS had the greatest bacterial killing efficiency at the 150-μm depth in all 3 root segments. Conclusions XP Endo appears to be more efficient than other 3 techniques in disinfecting the main canal space and up to 50 μm deep into the dentinal tubules. PIPS appears to be most effective in killing the bacteria deep in the dentinal tubules. PMID:27130334

  4. ULTRASTRUCTURAL STUDIES OF VASOPRESSIN EFFECT ON ISOLATED PERFUSED RENAL COLLECTING TUBULES OF THE RABBIT

    PubMed Central

    Ganote, Charles E.; Grantham, Jared J.; Moses, Harold L.; Burg, Maurice B.; Orloff, Jack

    1968-01-01

    Isolated cortical collecting tubules from rabbit kidney were studied during perfusion with solutions made either isotonic or hypotonic to the external bathing medium. Examination of living tubules revealed a reversible increase in thickness of the cellular layer, prominence of lateral cell membranes, and formation of intracellular vacuoles during periods of vasopressin-induced osmotic water transport. Examination in the electron microscope revealed that vasopressin induced no changes in cell structure in collecting tubules in the absence of an osmotic difference and significant bulk water flow across the tubule wall. In contrast, tubules fixed during vasopressin-induced periods of high osmotic water transport showed prominent dilatation of lateral intercellular spaces, bulging of apical cell membranes into the tubular lumen, and formation of intracellular vacuoles. It is concluded that the ultrastructural changes are secondary to transepithelial bulk water flow and not to a direct effect of vasopressin on the cells, and that vasopressin induces osmotic flow by increasing water permeability of the luminal cell membrane. The lateral intercellular spaces may be part of the pathway for osmotically induced transepithelial bulk water flow. PMID:4867134

  5. The role of polyester interstitium and aldosterone during structural development of renal tubules in serum-free medium.

    PubMed

    Minuth, Will W; Denk, Lucia; Hu, Kanghong

    2007-10-01

    Little knowledge is available regarding the development of renal stem/progenitor cells into functional parenchyme. To investigate the environmental mechanisms during this maturation process, we elaborated an advanced culture technique to follow renal tubule development. Embryonic stem/progenitor cells derived from neonatal rabbit kidney were placed in a perfusion culture container at the interphase of an artificial polyester interstitium. Tissue culture was carried out in IMDM without serum or protein supplementation and without coating with extracellular matrix proteins. Development of tubules was registered histochemically on cryosections labeled with soybean agglutinin (SBA) and tissue-specific antibodies. The experiments revealed that the development of renal tubules depends exclusively on the administration of aldosterone. The use of 1x10(-7) M aldosterone for 13 days generated numerous SBA-labeled tubules, while no tubules developed in the absence of the steroid hormone. To obtain further information about the action of the hormone on the cognate receptor, molecular precursors of the aldosterone synthesis pathway were tested. Surprisingly, application of cholesterol, pregnenolone, progesterone, 11-deoxycorticosterone (DOCA) and corticosterone failed to form numerous tubules. Only 11-DOCA and progesterone induced a few tubules, which were barely SBA-labeled. Furthermore, application of aldosterone antagonists such as 1x10(-4) M spironolactone and 1x10(-4) M canrenoate completely inhibited the development of tubules. We conclude that specifically aldosterone promotes the development of tubules via the mineralocorticoid receptor whereas its precursors have no effect.

  6. Osmosis in Cortical Collecting Tubules

    PubMed Central

    Schafer, James A.; Patlak, Clifford S.; Andreoli, Thomas E.

    1974-01-01

    This paper reports a theoretical analysis of osmotic transients and an experimental evaluation both of rapid time resolution of lumen to bath osmosis and of bidirectional steady-state osmosis in isolated rabbit cortical collecting tubules exposed to antidiuretic hormone (ADH). For the case of a membrane in series with unstirred layers, there may be considerable differences between initial and steady-state osmotic flows (i.e., the osmotic transient phenomenon), because the solute concentrations at the interfaces between membrane and unstirred layers may vary with time. A numerical solution of the equation of continuity provided a means for computing these time-dependent values, and, accordingly, the variation of osmotic flow with time for a given set of parameters including: Pf (cm s–1), the osmotic water permeability coefficient, the bulk phase solute concentrations, the unstirred layer thickness on either side of the membrane, and the fractional areas available for volume flow in the unstirred layers. The analyses provide a quantitative frame of reference for evaluating osmotic transients observed in epithelia in series with asymmetrical unstirred layers and indicate that, for such epithelia, Pf determinations from steady-state osmotic flows may result in gross underestimates of osmotic water permeability. In earlier studies, we suggested that the discrepancy between the ADH-dependent values of Pf and PDDw (cm s–1, diffusional water permeability coefficient) was the consequence of cellular constraints to diffusion. In the present experiments, no transients were detectable 20–30 s after initiating ADH-dependent lumen to bath osmosis; and steady-state ADH-dependent osmotic flows from bath to lumen and lumen to bath were linear and symmetrical. An evaluation of these data in terms of the analytical model indicates: First, cellular constraints to diffusion in cortical collecting tubules could be rationalized in terms of a 25-fold reduction in the area of the

  7. 38 CFR 3.310 - Disabilities that are proximately due to, or aggravated by, service-connected disease or injury.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (Authority: 38 U.S.C. 1110 and 1131) (c) Cardiovascular disease. Ischemic heart disease or other cardiovascular disease developing in a veteran who has a service-connected amputation of one lower extremity at... proximately due to, or aggravated by, service-connected disease or injury. 3.310 Section 3.310 Pensions...

  8. Changes in deciduous and permanent dentinal tubules diameter after several conditioning protocols: In vitro study.

    PubMed

    de Los Angeles Moyaho-Bernal, María; Contreras-Bulnes, Rosalía; Rodríguez-Vilchis, Laura Emma; Rubio-Rosas, Efraín

    2018-05-08

    Innovators conditioning protocols are emerged in permanent dentin, however for deciduous dentin the information is limited; the aim of this study was to evaluate in vitro diameter of deciduous and permanent dentinal tubules after several conditioning protocols. Eighty dentin samples were distributed in sixteen groups (n = 5 p/g) and dentin surface was conditioned as follow: G1D/G1P acid etching; G2D/G2P, self-etch adhesive; G3D/G3P, G4D/G4P, Er: YAG laser irradiation at 200 mJ-25.5 J/cm 2 and 300 mJ-38.2 J/cm 2 , at 10 Hz under water spray respectively; G5D/G5P, G6D/G6P, G7D/G7P, and G8D/G8P were irradiated under the same energy densities followed phosphoric acid or self-etch adhesive conditioning. The sample dentin of deciduous and permanent teeth was analyzed with scanning electron microscopy and tubule diameter was evaluated by Image Tools Scandium program. Data were subjected to one-way analysis ANOVA to compare among groups with a level of significance at p ≤ .05. For deciduous dentin, diameters were from 1.52 ± 0.32 µm in G3D to 3.88 ± 0.37 µm in G1D; narrowest and widest diameter, respectively (p < .000). While permanent dentin tubules exhibited diameters from 1.16 ± 0.16/1.19 ± 0.12 µm in G7P/G8P to 2.76 ± 0.28 µm in G6P; narrowest and widest diameter, respectively (p < .000). All dentin conditioning protocols produced more open dentin tubules (diameter size) in deciduous dentin than permanent, specific conditioning protocols are required for each tissue (deciduous or permanent dentin), since same protocol produced stronger effects on primary dentin, which is important for dental clinical success in children and adolescents. © 2018 Wiley Periodicals, Inc.

  9. Kinetic Measurements of Di- and Tripeptide and Peptidomimetic Drug Transport in Different Kidney Regions Using the Fluorescent Membrane Potential-Sensitive Dye, DiS-C3-(3).

    PubMed

    Alghamdi, Othman A; King, Nicola; Jones, Graham L; Moens, Pierre D J

    2017-12-01

    Tri- and dipeptides are transported in the kidney by PEPT1 and PEPT2 isoforms. The aim of this study was to investigate differences in transport kinetics between renal brush border (BBMV) and outer medulla (OMMV) membrane vesicles (where PEPT1 and PEPT2 are sequentially available) for a range of di- and tripeptides and peptidomimetic drugs. This was accomplished through the use of the potential-sensitive fluorescent dye 3,3'-dipropylthiacarbocyanine iodide [DiS-C 3 -(3)]. BBMV and OMMV were prepared from the rat kidney using standard techniques. The presence of PEPT1 in BBMV and PEPT2 in OMMV was confirmed using Western blotting. Fluorescence changes were measured when extravesicular medium at pH 6.6 containing 0-1 mM substrates was added to a cuvette containing vesicles pre-equilibrated at pH 7.4 and 2.71 μM DiS-C 3 -(3). An increase in fluorescence intensity occurred upon substrate addition reflecting the expected positive change in membrane potential difference. Of the range of substrates studied, OMMV manifested the highest affinity to cefadroxil and valacyclovir (K m 4.3 ± 1.2 and 11.7 ± 3.2 µM, respectively) compared to other substrates, whilst the BBMV showed a higher affinity to Gly-His (K m 15.4 ± 3.1 µM) compared to other substrates. In addition, OMMV showed higher affinity and capacity to Gly-Gln (K m 47.1 ± 9.8 µM, 55.5 ± 2.8 ΔF/s/mg protein) than BBMV (K m 78.1 ± 13.3 µM and 35.5 ± 1.7 ΔF/s/mg protein, respectively). In conclusion, this study successfully separated the expression of PEPT1 and PEPT2 into different vesicle preparations inferring their activity in different regions of the renal proximal tubule.

  10. Sulphonylurea drugs reduce hypoxic damage in the isolated perfused rat kidney.

    PubMed

    Engbersen, R; Moons, M M; Wouterse, A C; Dijkman, H B; Kramers, C; Smits, P; Russel, F G

    2000-08-01

    Sulphonylurea drugs have been shown to protect against hypoxic damage in isolated proximal tubules of the kidney. In the present study we investigated whether these drugs can protect against hypoxic damage in a whole kidney preparation. Tolbutamide (200 microM) and glibenclamide (10 microM) were applied to the isolated perfused rat kidney prior to changing the gassing from oxygen to nitrogen for 30 min. Hypoxic perfusions resulted in an increased fractional excretion of glucose (FE % glucose 14.3+/-1.5 for hypoxic perfusions vs 4.9+/-1.6 for normoxic perfusions, mean +/- s.e. mean, P<0.05), which could be completely restored by 200 microM tolbutamide (5.7+/-0.4 for tolbutamide vs 14.3+/-1.5 for untreated hypoxic kidneys, P<0.01). Furthermore, tolbutamide reduced the total amount of LDH excreted in the urine (220+/-100 mU for tolbutamide vs. 1220+/-160 mU for untreated hypoxic kidneys, P<0.01). Comparable results were obtained with glibenclamide (10 microM). In agreement with the effect on functional parameters, ultrastructural analysis of proximal tubules showed increased brush border preservation in tolbutamide treated kidneys compared to untreated hypoxic kidneys. We conclude that glibenclamide and tolbutamide are both able to reduce hypoxic damage to proximal tubules in the isolated perfused rat kidney when applied in the appropriate concentrations.

  11. Minicollagen-15, a novel minicollagen isolated from Hydra, forms tubule structures in nematocysts.

    PubMed

    Adamczyk, Patrizia; Meier, Sebastian; Gross, Thomas; Hobmayer, Bert; Grzesiek, Stephan; Bächinger, Hans Peter; Holstein, Thomas W; Ozbek, Suat

    2008-02-29

    Minicollagens constitute a family of unusually short collagen molecules isolated from cnidarians. They are restricted to the nematocyst, a cylindrical explosive organelle serving in defense and capture of prey. The nematocyst capsule contains a long tubule inside of its matrix, which is expelled and everted during an ultrafast discharge process. Here, we report the cloning and characterization of a novel minicollagen in Hydra, designated minicollagen-15 (NCol-15). NCol-15, like NCol-3 and NCol-4, shows deviations from the canonical cysteine pattern in its terminal cysteine-rich domains (CRDs). Minicollagens share common domain architectures with a central collagen sequence flanked by polyproline stretches and short N- and C-terminal CRDs. The CRDs are involved in the formation of a highly resistant cysteine network, which constitutes the basic structure of the nematocyst capsule. Unlike NCol-1, which is part of the capsule wall, NCol-15 is localized to tubules, arguing for a functional differentiation of minicollagens within the nematocyst architecture. NMR analysis of the altered C-terminal CRD of NCol-15 showed a novel disulfide-linked structure within the cysteine-containing region exhibiting similar folding kinetics and stability as the canonical CRDs. Our data provide evidence for evolutionary diversification among minicollagens, which probably facilitated alterations in the morphology of the nematocyst wall and tubule.

  12. Sildenafil ameliorates left ventricular T-tubule remodeling in a pressure overload-induced murine heart failure model

    PubMed Central

    Huang, Chun-kai; Chen, Bi-yi; Guo, Ang; Chen, Rong; Zhu, Yan-qi; Kutschke, William; Hong, Jiang; Song, Long-sheng

    2016-01-01

    Aim: Sildenafil, a phosphodiesterase 5 (PDE5) inhibitor, has been shown to exert beneficial effects in heart failure. The purpose of this study was to test whether sildenafil suppressed transverse-tubule (T-tubule) remodeling in left ventricular (LV) failure and thereby providing the therapeutic benefits. Methods: A pressure overload-induced murine heart failure model was established in mice by thoracic aortic banding (TAB). One day after TAB, the mice received sildenafil (100 mg·kg−1·d−1, sc) or saline for 5 weeks. At the end of treatment, echocardiography was used to examine LV function. Then the intact hearts were dissected out and placed in Langendorff-perfusion chamber for in situ confocal imaging of T-tubule ultrastructure from epicardial myocytes. Results: TAB surgery resulted in heart failure accompanied by remarkable T-tubule remodeling. Sildenafil treatment significantly attenuated TAB-induced cardiac hypertrophy and congestive heart failure, improved LV contractile function, and preserved T-tubule integrity in LV cardiomyocytes. But sildenafil treatment did not significantly affect the chamber dilation. The integrity of LV T-tubule structure was correlated with cardiac hypertrophy (R2=0.74, P<0.01) and global LV function (R2=0.47, P<0.01). Conclusion: Sildenafil effectively ameliorates LV T-tubule remodeling in TAB mice, revealing a novel mechanism underlying the therapeutic benefits of sildenafil in heart failure. PMID:26972492

  13. In vitro dentin tubule occlusion and remineralization competence of various toothpastes.

    PubMed

    Farooq, Imran; Moheet, Imran Alam; AlShwaimi, Emad

    2015-09-01

    The purpose of this study was to evaluate dentin tubule occlusion and remineralization competence of various toothpastes containing fluoride, bioactive glass (BG), and hydroxyapatite (HAP) as active ingredients. Sixty dentin discs that were etched with ethylene-diamine-tetraacetic acid (EDTA) were randomly divided into nine groups. The first five groups containing eight dentin discs corresponded to subsequent brushing experiments: control, distilled water, fluoride toothpaste, BG toothpaste, and HAP toothpaste. Scanning electron microscopy (SEM) was used to demonstrate tubule occlusion after 7 days of simulated brushing (twice a day for 2min), which was followed by a citric acid challenge. The discs were stored in freshly prepared artificial saliva (AS) after every brushing cycle. The remaining four groups that contained five discs each received the following treatment: discs kept in distilled water (control), discs kept in a mixture of AS (pH 7.2) and 2g fluoride toothpaste, discs kept in a mixture of AS and 2g BG toothpaste, and discs kept in a mixture of AS and 2g HAP toothpaste. These discs were left in the mixture for one week at 37°C and were then examined under SEM. The pH of the leftover mixture was analyzed using a pH meter. The Wilcoxon signed-rank test was used to identify any statistically significant differences (p<0.05). All toothpastes demonstrated tubule occlusion after simulated brushing experiments. However, after the citric acid challenge, particles of fluoride toothpaste were completely washed away from the tubules whereas HAP and BG toothpastes demonstrated tremendous resistance to the acid challenge. After immersion of the discs in the mixture of AS and toothpaste, HAP and BG toothpastes again showed superior tubule occlusion in comparison to the other groups, but the highest pH increase was observed for fluoride toothpaste after mixing the toothpastes in AS. The results of this study demonstrate that the highest tubule occlusion competence

  14. α-Ketoglutarate regulates acid-base balance through an intrarenal paracrine mechanism

    PubMed Central

    Tokonami, Natsuko; Morla, Luciana; Centeno, Gabriel; Mordasini, David; Ramakrishnan, Suresh Krishna; Nikolaeva, Svetlana; Wagner, Carsten A.; Bonny, Olivier; Houillier, Pascal; Doucet, Alain; Firsov, Dmitri

    2013-01-01

    Paracrine communication between different parts of the renal tubule is increasingly recognized as an important determinant of renal function. Previous studies have shown that changes in dietary acid-base load can reverse the direction of apical α-ketoglutarate (αKG) transport in the proximal tubule and Henle’s loop from reabsorption (acid load) to secretion (base load). Here we show that the resulting changes in the luminal concentrations of αKG are sensed by the αKG receptor OXGR1 expressed in the type B and non-A–non-B intercalated cells of the connecting tubule (CNT) and the cortical collecting duct (CCD). The addition of 1 mM αKG to the tubular lumen strongly stimulated Cl–-dependent HCO3– secretion and electroneutral transepithelial NaCl reabsorption in microperfused CCDs of wild-type mice but not Oxgr1–/– mice. Analysis of alkali-loaded mice revealed a significantly reduced ability of Oxgr1–/– mice to maintain acid-base balance. Collectively, these results demonstrate that OXGR1 is involved in the adaptive regulation of HCO3– secretion and NaCl reabsorption in the CNT/CCD under acid-base stress and establish αKG as a paracrine mediator involved in the functional coordination of the proximal and the distal parts of the renal tubule. PMID:23934124

  15. Roles of CD34+ cells and ALK5 signaling in the reconstruction of seminiferous tubule-like structures in 3-D re-aggregate culture of dissociated cells from neonatal mouse testes.

    PubMed

    Abe, Shin-Ichi; Abe, Kazuko; Zhang, Jidong; Harada, Tomoaki; Mizumoto, Go; Oshikawa, Hiroki; Akiyama, Haruhiko; Shimamura, Kenji

    2017-01-01

    Tissue reconstruction in vitro can provide, if successful, a refined and simple system to analyze the underlying mechanisms that drive the morphogenesis and maintain the ordered structure. We have recently succeeded in reconstruction of seminiferous cord-like and tubule-like structures using 3-D re-aggregate culture of dissociated testicular cells. In testis formation, endothelial cells that migrated from mesonephroi to embryonic gonads have been shown to be critical for development of testis cords, but how endothelial cells contribute to testis cord formation remains unknown. To decipher the roles of endothelial and peritubular cells in the reconstruction of cord-like and tubule-like structures, we investigated the behavior of CD34+ endothelial and p75+ cells, and peritubular myoid cells (PTMCs) in 3-D re-aggregate cultures of testicular cells. The results showed that these 3 types of cells had the capacity of re-aggregation on their own and with each other, and of segregation into 3 layers in a re-aggregate, which were very similar to interstitial and peritubular tissues in vivo. Observation of behaviors of fluorescent Sertoli cells and other non-fluorescent types of cells using testes from Sox9-EGFP transgenic mice showed dynamic cell movement and segregation in re-aggregate cultures. Cultures of testicular cells deprived of interstitial and peritubular cells resulted in dysmorphic structures, but re-addition of them restored tubule-like structures. Purified CD34+ cells in culture differentiated into p75+ cells and PTMCs. These results indicate that CD34+ cells differentiate into p75+ cells, which then differentiate into PTMCs. TGFβ signaling inhibitors, SB431542 and ALK5i, disturbed the reconstruction of cord-like and tubule-like structures, and the latter compromised re-construction of interstitial-like and peritubular-like structures, as well as the proliferation of CD34+, p75+, PTMCs, and Sertoli cells, and their movement and differentiation. These results

  16. Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia.

    PubMed

    Majumdar, A; Lun, K; Brand, M; Drummond, I A

    2000-05-01

    Pax genes are important developmental regulators and function at multiple stages of vertebrate kidney organogenesis. In this report, we have used the zebrafish pax2.1 mutant no isthmus to investigate the role for pax2.1 in development of the pronephros. We demonstrate a requirement for pax2.1 in multiple aspects of pronephric development including tubule and duct epithelial differentiation and cloaca morphogenesis. Morphological analysis demonstrates that noi(- )larvae specifically lack pronephric tubules while glomerular cell differentiation is unaffected. In addition, pax2.1 expression in the lateral cells of the pronephric primordium is required to restrict the domains of Wilms' tumor suppressor (wt1) and vascular endothelial growth factor (VEGF) gene expression to medial podocyte progenitors. Ectopic podocyte-specific marker expression in pronephric duct cells correlates with loss of expression of the pronephric tubule and duct-specific markers mAb 3G8 and a Na(+)/K(+) ATPase (&agr;)1 subunit. The results suggest that the failure in pronephric tubule differentiation in noi arises from a patterning defect during differentiation of the pronephric primordium and that mutually inhibitory regulatory interactions play an important role in defining the boundary between glomerular and tubule progenitors in the forming nephron.

  17. A Role for Tubular Necroptosis in Cisplatin-Induced AKI

    PubMed Central

    Xu, Yanfang; Ma, Huabin; Shao, Jing; Wu, Jianfeng; Zhou, Linying; Zhang, Zhirong; Wang, Yuze; Huang, Zhe; Ren, Junming; Liu, Suhuan; Chen, Xiangmei

    2015-01-01

    Cell death and inflammation in the proximal tubules are the hallmarks of cisplatin-induced AKI, but the mechanisms underlying these effects have not been fully elucidated. Here, we investigated whether necroptosis, a type of programmed necrosis, has a role in cisplatin-induced AKI. We found that inhibition of any of the core components of the necroptotic pathway—receptor-interacting protein 1 (RIP1), RIP3, or mixed lineage kinase domain-like protein (MLKL)—by gene knockout or a chemical inhibitor diminished cisplatin-induced proximal tubule damage in mice. Similar results were obtained in cultured proximal tubular cells. Furthermore, necroptosis of cultured cells could be induced by cisplatin or by a combination of cytokines (TNF-α, TNF-related weak inducer of apoptosis, and IFN-γ) that were upregulated in proximal tubules of cisplatin-treated mice. However, cisplatin induced an increase in RIP1 and RIP3 expression in cultured tubular cells in the absence of cytokine release. Correspondingly, overexpression of RIP1 or RIP3 enhanced cisplatin-induced necroptosis in vitro. Notably, inflammatory cytokine upregulation in cisplatin-treated mice was partially diminished in RIP3- or MLKL-deficient mice, suggesting a positive feedback loop involving these genes and inflammatory cytokines that promotes necroptosis progression. Thus, our data demonstrate that necroptosis is a major mechanism of proximal tubular cell death in cisplatin-induced nephrotoxic AKI. PMID:25788533

  18. Effect of Nd:YAG Laser Irradiation on the Number of Open Dentinal Tubules and Their Diameter with and without Smear of Graphite: An in Vitro Study

    PubMed Central

    Maleki-pour, Mohammad Reza; Birang, Reza; Khoshayand, Maryam; Naghsh, Narges

    2015-01-01

    Introduction: Dentin hypersensitivity (DH) is characterized by tooth pain arising from exposure of dental roots. In this study the efficiency of neodymium yttrium-aluminum-garnet (Nd:YAG) laser in association with graphite on dentinal surface changes as the alternative to the treatment of DH was evaluated. Methods: Sixteen noncarious human third molars were collected and sectioned into 5 parts from cementoenamel junction (CEJ) to the furcation area. The prepared samples were randomly assigned into five groups (Gs) of each 16: Control (G1), treated by Nd:YAG laser at 0.5 W (G2), irradiation of Nd:YAG with a 0.25 W output power(G3), smeared with graphite and then using Nd:YAG laser at output powers of 0.5 W (G4) and 0.25 W (G5). For all groups the parameters were 15 Hz, 60 s, at two stages and with a right angle irradiation. The number and diameter of dentinal tubules (DT) were compared and analyzed by SPSS software, One way ANOVA and Post hoc LSD tests. Results:The number of open dentinal tubules varied significantly between all groups except among G1 with G3 and G2 with G5. Multiple comparison tests also exhibited significant differences regarding the diameter of tubules between the groups two by two except among G2 with G5. Conclusion: Nd:YAG laser used at 0.25 W and 0.5 W with application of graphite smear was able to reduce the number and diameter of dentinal tubules. PMID:25699166

  19. Length Is Associated with Pain: Jellyfish with Painful Sting Have Longer Nematocyst Tubules than Harmless Jellyfish.

    PubMed

    Kitatani, Ryuju; Yamada, Mayu; Kamio, Michiya; Nagai, Hiroshi

    2015-01-01

    A large number of humans are stung by jellyfish all over the world. The stings cause acute pain followed by persistent pain and local inflammation. Harmful jellyfish species typically cause strong pain, whereas harmless jellyfish cause subtle or no pain. Jellyfish sting humans by injecting a tubule, contained in the nematocyst, the stinging organ of jellyfish. The tubule penetrates into the skin leading to venom injection. The detailed morphology of the nematocyst tubule and molecular structure of the venom in the nematocyst has been reported; however, the mechanism responsible for the difference in pain that is caused by harmful and harmless jellyfish sting has not yet been explored or explained. Therefore, we hypothesized that differences in the length of the nematocyst tubule leads to different degrees of epithelial damage. The initial acute pain might be generated by penetration of the tubule, which stimulates pain receptor neurons, whilst persistent pain might be caused by injection of venom into the epithelium. To test this hypothesis we compared the lengths of discharged nematocyst tubules from harmful and harmless jellyfish species and evaluated their ability to penetrate human skin. The results showed that the harmful jellyfish species, Chrysaora pacifica, Carybdea brevipedalia, and Chironex yamaguchii, causing moderate to severe pain, have nematocyst tubules longer than 200 μm, compared with a jellyfish species that cause little or no pain, Aurelia aurita. The majority of the tubules of harmful jellyfishes, C. yamaguchii and C. brevipedalia, were sufficiently long to penetrate the human epidermis and physically stimulate the free nerve endings of Aδ pain receptor fibers around plexuses to cause acute pain and inject the venom into the human skin epithelium to cause persistent pain and inflammation.

  20. Relationship between cell volume and ion transport in the early distal tubule of the Amphiuma kidney.

    PubMed

    Guggino, W B; Oberleithner, H; Giebisch, G

    1985-07-01

    The roles of apical and basolateral transport mechanisms in the regulation of cell volume and the hydraulic water permeabilities (Lp) of the individual cell membranes of the Amphiuma early distal tubule (diluting segment) were evaluated using video and optical techniques as well as conventional and Cl-sensitive microelectrodes. The Lp of the apical cell membrane calculated per square centimeter of tubule is less than 3% that of the basolateral cell membrane. Calculated per square centimeter of membrane, the Lp of the apical cell membrane is less than 40% that of the basolateral cell membrane. Thus, two factors are responsible for the asymmetry in the Lp of the early distal tubule: an intrinsic difference in the Lp per square centimeter of membrane area, and a difference in the surface areas of the apical and basolateral cell membranes. Early distal tubule cells do not regulate volume after a reduction in bath osmolality. This cell swelling occurs without a change in the intracellular Cl content or the basolateral cell membrane potential. In contrast, reducing the osmolality of the basolateral solution in the presence of luminal furosemide diminishes the magnitude of the increase in cell volume to a value below that predicted from the change in osmolality. This osmotic swelling is associated with a reduction in the intracellular Cl content. Hence, early distal tubule cells can lose solute in response to osmotic swelling, but only after the apical Na/K/Cl transporter is blocked. Inhibition of basolateral Na/K ATPase with ouabain results in severe cell swelling. This swelling in response to ouabain can be inhibited by the prior application of furosemide, which suggests that the swelling is due to the continued entry of solutes, primarily through the apical cotransport pathway.

  1. Relationship between cell volume and ion transport in the early distal tubule of the Amphiuma kidney

    PubMed Central

    1985-01-01

    The roles of apical and basolateral transport mechanisms in the regulation of cell volume and the hydraulic water permeabilities (Lp) of the individual cell membranes of the Amphiuma early distal tubule (diluting segment) were evaluated using video and optical techniques as well as conventional and Cl-sensitive microelectrodes. The Lp of the apical cell membrane calculated per square centimeter of tubule is less than 3% that of the basolateral cell membrane. Calculated per square centimeter of membrane, the Lp of the apical cell membrane is less than 40% that of the basolateral cell membrane. Thus, two factors are responsible for the asymmetry in the Lp of the early distal tubule: an intrinsic difference in the Lp per square centimeter of membrane area, and a difference in the surface areas of the apical and basolateral cell membranes. Early distal tubule cells do not regulate volume after a reduction in bath osmolality. This cell swelling occurs without a change in the intracellular Cl content or the basolateral cell membrane potential. In contrast, reducing the osmolality of the basolateral solution in the presence of luminal furosemide diminishes the magnitude of the increase in cell volume to a value below that predicted from the change in osmolality. This osmotic swelling is associated with a reduction in the intracellular Cl content. Hence, early distal tubule cells can lose solute in response to osmotic swelling, but only after the apical Na/K/Cl transporter is blocked. Inhibition of basolateral Na/K ATPase with ouabain results in severe cell swelling. This swelling in response to ouabain can be inhibited by the prior application of furosemide, which suggests that the swelling is due to the continued entry of solutes, primarily through the apical cotransport pathway. PMID:2411847

  2. Detection of abnormal extracellular matrix in the interstitium of regenerating renal tubules.

    PubMed

    Minuth, Will W; Denk, Lucia

    2014-12-15

    Stem/progenitor cells are promising candidates for the regeneration of parenchyma in acute and chronic renal failure. However, recent data exhibit that survival of stem/progenitor cells after implantation in diseased renal parenchyma is restricted. To elaborate basic parameters improving survival, cell seeding was simulated under advanced in vitro conditions. After isolation, renal stem/progenitor cells were mounted in a polyester interstitium for perfusion culture. During generation of tubules, chemically defined CO2 Independent Medium or Leibovitz's L-15 Medium was applied. Specimens were then fixed for transmission electron microscopy to analyze morphological features in generated tubules. Fixation in conventional glutaraldehyde (GA) solution shows development of tubules each exhibiting a polarized epithelium, an intact basal lamina and an inconspicuous interstitium. In contrast, special fixation of specimens in GA solution containing cupromeronic blue, ruthenium red or tannic acid unveils previously not visible extracellular matrix. Control experiments elucidate that a comparable extracellular matrix is not present in the interstitium of the matured kidney. Thus, generation of renal tubules in combination with advanced fixation of specimens for electron microscopy demonstrates that development of abnormal features in the newly developed interstitium has to be considered, when repair of renal parenchyma is performed by implantation of stem/progenitor cells.

  3. Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy.

    PubMed

    Fujita, Naonobu; Huang, Wilson; Lin, Tzu-Han; Groulx, Jean-Francois; Jean, Steve; Nguyen, Jen; Kuchitsu, Yoshihiko; Koyama-Honda, Ikuko; Mizushima, Noboru; Fukuda, Mitsunori; Kiger, Amy A

    2017-01-07

    Transverse (T)-tubules make-up a specialized network of tubulated muscle cell membranes involved in excitation-contraction coupling for power of contraction. Little is known about how T-tubules maintain highly organized structures and contacts throughout the contractile system despite the ongoing muscle remodeling that occurs with muscle atrophy, damage and aging. We uncovered an essential role for autophagy in T-tubule remodeling with genetic screens of a developmentally regulated remodeling program in Drosophila abdominal muscles. Here, we show that autophagy is both upregulated with and required for progression through T-tubule disassembly stages. Along with known mediators of autophagosome-lysosome fusion, our screens uncovered an unexpected shared role for Rab2 with a broadly conserved function in autophagic clearance. Rab2 localizes to autophagosomes and binds to HOPS complex members, suggesting a direct role in autophagosome tethering/fusion. Together, the high membrane flux with muscle remodeling permits unprecedented analysis both of T-tubule dynamics and fundamental trafficking mechanisms.

  4. Evidence for Leydig cell dysfunction in rats with seminiferous tubule damage.

    PubMed

    Rich, K A; Kerr, J B; de Kretser, D M

    1979-02-01

    To study the effects of seminiferous tubule damage on Leydig cell function and morphology, rats were treated by fetal irradiation (to induce Sertoli cell-only syndrome, SCO), 3 months administration of hydroxyurea (HU), or chronic feeding of a vitamin A-deficient diet (VAD). Leydig cell function was assessed by the measurement of serum LH and testosterone and the response of serum testosterone to hCG stimulation, while morphology was studied by electron microscopy after perfusion fixation. Serum LH was significantly elevated in each experimental group, while basal serum testosterone was significantly lower only in SCO rats. In all treatment groups, the serum testosterone response to hCG was significantly decreased when measureed as the area under the response curve. Despite a decreased response to hCG, the Leydig cells were larger than normal and showed striking increases in quantities of smooth endoplasmic reticulum, mitochondria and Golgi complex. Leydig cell dysfunction has been demonstrated in animals with varying degrees of seminiferous tubule damage, but paradoxically the cytological features of the Leydig cells were indicative of hypertrophy.

  5. Tubulation of class II MHC compartments is microtubule dependent and involves multiple endolysosomal membrane proteins in primary dendritic cells.

    PubMed

    Vyas, Jatin M; Kim, You-Me; Artavanis-Tsakonas, Katerina; Love, J Christopher; Van der Veen, Annemarthe G; Ploegh, Hidde L

    2007-06-01

    Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP.

  6. A Molecular Mechanism to Regulate Lysosome Motility for Lysosome Positioning and Tubulation

    PubMed Central

    Li, Xinran; Rydzewski, Nicholas; Hider, Ahmad; Zhang, Xiaoli; Yang, Junsheng; Wang, Wuyang; Gao, Qiong; Cheng, Xiping; Xu, Haoxing

    2016-01-01

    To mediate the degradation of bio-macromolecules, lysosomes must traffic towards cargo-carrying vesicles for subsequent membrane fusion or fission. Mutations of the lysosomal Ca2+ channel TRPML1 cause lysosome storage disease (LSD) characterized by disordered lysosomal membrane trafficking in cells. Here we show that TRPML1 activity is required to promote Ca2+-dependent centripetal movement of lysosomes towards the perinuclear region, where autophagosomes accumulate, upon autophagy induction. ALG-2, an EF-hand-containing protein, serves as a lysosomal Ca2+ sensor that associates physically with the minus-end directed dynactin-dynein motor, while PI(3,5)P2, a lysosome-localized phosphoinositide, acts upstream of TRPML1. Furthermore, the PI(3,5)P2-TRPML1-ALG-2-dynein signaling is necessary for lysosome tubulation and reformation. In contrast, the TRPML1 pathway is not required for the perinuclear accumulation of lysosomes observed in many LSDs, which is instead likely caused by secondary cholesterol accumulation that constitutively activates Rab7-RILP-dependent retrograde transport. Collectively, Ca2+ release from lysosomes provides an on-demand mechanism regulating lysosome motility, positioning, and tubulation. PMID:26950892

  7. Protein kinase C-ε activation induces mitochondrial dysfunction and fragmentation in renal proximal tubules

    PubMed Central

    Bakajsova, Diana; Samarel, Allen M.

    2011-01-01

    PKC-ε activation mediates protection from ischemia-reperfusion injury in the myocardium. Mitochondria are a subcellular target of these protective mechanisms of PKC-ε. Previously, we have shown that PKC-ε activation is involved in mitochondrial dysfunction in oxidant-injured renal proximal tubular cells (RPTC; Nowak G, Bakajsova D, Clifton GL Am J Physiol Renal Physiol 286: F307–F316, 2004). The goal of this study was to examine the role of PKC-ε activation in mitochondrial dysfunction and to identify mitochondrial targets of PKC-ε in RPTC. The constitutively active and inactive mutants of PKC-ε were overexpressed in primary cultures of RPTC using the adenoviral technique. Increases in active PKC-ε levels were accompanied by PKC-ε translocation to mitochondria. Sustained PKC-ε activation resulted in decreases in state 3 respiration, electron transport rate, ATP production, ATP content, and activities of complexes I and IV and F0F1-ATPase. Furthermore, PKC-ε activation increased mitochondrial membrane potential and oxidant production and induced mitochondrial fragmentation and RPTC death. Accumulation of the dynamin-related protein in mitochondria preceded mitochondrial fragmentation. Antioxidants blocked PKC-ε-induced increases in the oxidant production but did not prevent mitochondrial fragmentation and cell death. The inactive PKC-ε mutant had no effect on mitochondrial functions, morphology, oxidant production, and RPTC viability. We conclude that active PKC-ε targets complexes I and IV and F0F1-ATPase in RPTC. PKC-ε activation mediates mitochondrial dysfunction, hyperpolarization, and fragmentation. It also induces oxidant generation and cell death, but oxidative stress is not the mechanism of RPTC death. These results show that in contrast to protective effects of PKC-ε activation in cardiomyocytes, sustained PKC-ε activation is detrimental to mitochondrial function and viability in RPTC. PMID:21289057

  8. Masonry structures built with fictile tubules: Experimental and numerical analyses

    NASA Astrophysics Data System (ADS)

    Tiberti, Simone; Scuro, Carmelo; Codispoti, Rosamaria; Olivito, Renato S.; Milani, Gabriele

    2017-11-01

    Masonry structures with fictile tubules were a distinctive building technique of the Mediterranean area. This technique dates back to Roman and early Christian times, used to build vaulted constructions and domes with various geometrical forms by virtue of their modular structure. In the present work, experimental tests were carried out to identify the mechanical properties of hollow clay fictile tubules and a possible reinforcing technique for existing buildings employing such elements. The experimental results were then validated by devising and analyzing numerical models with the FE software Abaqus, also aimed at investigating the structural behavior of an arch via linear and nonlinear static analyses.

  9. Antibacterial properties of silver nanoparticles as a root canal irrigant against Enterococcus faecalis biofilm and infected dentinal tubules.

    PubMed

    Rodrigues, C T; de Andrade, F B; de Vasconcelos, L R S M; Midena, R Z; Pereira, T C; Kuga, M C; Duarte, M A H; Bernardineli, N

    2018-02-03

    To evaluate the antimicrobial action of an irrigant containing silver nanoparticles in an aqueous vehicle (AgNp), sodium hypochlorite and chlorhexidine against Enterococcus faecalis biofilm and infected dentinal tubules. Bovine dentine blocks were used for E. faecalis biofilm development for 21 days and irrigated with 94 ppm AgNp solution, 2.5% NaOCl and 2% chlorhexidine for 5, 15 and 30 min. For infection of dentinal tubules with E. faecalis, dentine specimens from bovine incisors were submitted to a contamination protocol over 5 days, with eight centrifugation cycles on every alternate day, and irrigated with the same solutions and time intervals used for the biofilm. The specimens were stained with the Live/Dead technique and evaluated using a confocal laser scanning microscope (CLSM). The bioImage_L software was used for measurement of the total biovolume of biofilm in μm 3 and percentage of viable bacteria (green cells) in biofilm and in dentinal tubules found after the irrigation. Statistical analyses were performed using Kruskal-Wallis and Dunn's tests for quantification of viable cells in biofilm, the Friedman test for comparisons of viable bacteria in dentinal tubules in different areas of the root canal and the Mann-Whitney U-test to compare the action of the irrigants between the two methods (P < 0.05). The AgNp solution eliminated fewer bacteria, but was able to dissolve more biofilm compared with chlorhexidine (P < 0.05). NaOCl had the greatest antimicrobial activity and biofilm dissolution capacity. AgNp solution had less antimicrobial action in infected dentinal tubules compared with NaOCl (P < 0.05). The AgNp solution after 5 min was more effective in eliminating planktonic bacteria in dentinal tubules than in biofilm, but at 30 min fewer viable bacteria were observed in the biofilm compared with intratubular dentine (P < 0.05). AgNp irrigant was not as effective against E. faecalis compared to solutions commonly used in root canal

  10. Acquired proximal renal tubulopathy in dogs exposed to a common dried chicken treat: retrospective study of 108 cases (2007-2009).

    PubMed

    Thompson, M F; Fleeman, L M; Kessell, A E; Steenhard, L A; Foster, S F

    2013-09-01

    Proximal renal tubulopathy was reported in Australian dogs with markedly increased frequency from September 2007. Two veterinarian-completed surveys were launched in response to an increased incidence of acquired proximal renal tubulopathy in dogs. The selection criterion for inclusion was glucosuria with blood glucose < 10 mmol/L. Data collected included signalment, presenting signs, history of feeding treats, results of urinalysis and blood tests, treatment and time to resolution of clinical signs. A total of 108 affected dogs were studied. All had been fed the same brand of dried chicken treats, made in China, for a median of 12 weeks (range, 0.3-78 weeks). Small breeds (< 10 kg) accounted for 88% of cases. Common presenting signs included polyuria/polydipsia (76%), lethargy (73%), inappetence (65%) and vomiting (54%). Common biochemical findings included euglycaemia (74%; 71/96), hypoglycaemia (23%; 22/96), acidosis (77%; 20/26), hypokalaemia (45%; 38/84), hypophosphataemia (37%; 28/75) and azotaemia (27%; 23/85). In addition to discontinuation of treats, 64 dogs received medical treatment, including intravenous fluids (52%) and oral electrolyte, amino acid or vitamin supplements. Six dogs died or were euthanased. Two dogs were necropsied. Histopathological findings consisted of proximal tubular necrosis accompanied by regeneration. Time to resolution of clinical signs in 35 survivors available for follow-up was < 2 weeks (n = 8), 2-4 weeks (n = 2), 5-7 weeks (n = 5) and 2-6 months (n = 10). Of the 108 dogs with acquired proximal renal tubulopathy contemporaneous with chicken treat consumption, most survived but many required aggressive supportive care. The treats likely contained a toxin targeting the proximal renal tubules. Diet history and urinalysis were vital for diagnosis. © 2013 Australian Veterinary Association.

  11. Protective effects of L-type fatty acid-binding protein (L-FABP) in proximal tubular cells against glomerular injury in anti-GBM antibody-mediated glomerulonephritis.

    PubMed

    Kanaguchi, Yasuhiko; Suzuki, Yusuke; Osaki, Ken; Sugaya, Takeshi; Horikoshi, Satoshi; Tomino, Yasuhiko

    2011-11-01

    In glomerulonephritis (GN), an overload of free fatty acids (FFA) bound to albumin in urinary protein may induce oxidative stress in the proximal tubules. Human liver-type fatty acid-binding protein (hL-FABP) expressed in human proximal tubules, but not rodents, participates in intracellular FFA metabolism and exerts anti-oxidative effects on the progression of tubulointerstitial damage. We examined whether tubular enhancement of this anti-oxidative action modulates the progression of glomerular damage in immune-mediated GN in hL-FABP chromosomal gene transgenic (Tg) mice. Anti-glomerular basement membrane antibody-induced glomerulonephritis (anti-GBM GN) was induced in Tg and wild-type mice (WT). Proteinuria, histopathology, polymorphonuclear (PMN) influx, expression of tubulointerstitial markers for oxidative stress 4-hydroxy-2-Nonenal (HNE) and fibrosis (α-smooth muscle actin), proximal tubular damage (Kim-1), Peroxisome Proliferator-Activated Receptor γ (PPAR γ) and inflammatory cytokines [Monocyte Chemotactic Protein-1, tumor necrosis factor-alpha (TNF-α) and Transforming growth factor beta (TGF-β)] were analyzed. The mice were also treated with an angiotensin type II receptor blocker (ARB). The urinary protein level in Tg mice decreased significantly during the acute phase (~Day 5). Tg mice survived for a significantly longer time than WT mice, with an attenuation of tubulointerstitial damage score and expression of each tubulointerstitial damage marker observed at Day 7. Expression of inflammatory cytokines on Day 7 was higher in WT mice than Tg mice and correlated strongly with PPARγ expression in WT mice, but not in Tg mice. Interestingly, Tg mice showed insufficient PMN influx at 3 and 6 h, with simultaneous elevation of urinary L-FABP and reduction in HNE expression. The two strains of mice showed different types of glomerular damage, with mild mesangial proliferation in Tg mice and severe endothelial swelling with vascular thrombosis in WT mice

  12. Blocking rpS6 Phosphorylation Exacerbates Tsc1 Deletion–Induced Kidney Growth

    PubMed Central

    Wu, Huijuan; Chen, Jianchun; Xu, Jinxian; Dong, Zheng; Meyuhas, Oded

    2016-01-01

    The molecular mechanisms underlying renal growth and renal growth–induced nephron damage remain poorly understood. Here, we report that in murine models, deletion of the tuberous sclerosis complex protein 1 (Tsc1) in renal proximal tubules induced strikingly enlarged kidneys, with minimal cystogenesis and occasional microscopic tumorigenesis. Signaling studies revealed hyperphosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and increased phosphorylation of ribosomal protein S6 (rpS6) in activated renal tubules. Notably, knockin of a nonphosphorylatable rpS6 in these Tsc1-mutant mice exacerbated cystogenesis and caused drastic nephron damage and renal fibrosis, leading to kidney failure and a premature death rate of 67% by 9 weeks of age. In contrast, Tsc1 single-mutant mice were all alive and had far fewer renal cysts at this age. Mechanistic studies revealed persistent activation of mammalian target of rapamycin complex 1 (mTORC1) signaling causing hyperphosphorylation and consequent accumulation of 4E-BP1, along with greater cell proliferation, in the renal tubules of Tsc1 and rpS6 double-mutant mice. Furthermore, pharmacologic treatment of Tsc1 single-mutant mice with rapamycin reduced hyperphosphorylation and accumulation of 4E-BP1 but also inhibited phosphorylation of rpS6. Rapamycin also exacerbated cystic and fibrotic lesions and impaired kidney function in these mice, consequently leading to a premature death rate of 40% within 2 weeks of treatment, despite destroying tumors and decreasing kidney size. These findings indicate that Tsc1 prevents aberrant renal growth and tumorigenesis by inhibiting mTORC1 signaling, whereas phosphorylated rpS6 suppresses cystogenesis and fibrosis in Tsc1-deleted kidneys. PMID:26296742

  13. Studies on the structure of the boundary tissue of the white rat seminiferous tubules.

    PubMed

    Cieciura, L

    1988-01-01

    The studies on boundary tissue of the white rat seminiferous tubules with light and electron microscopy were carried out. The wall of the tubules consists of four layers: two cellular and two amorphous ones. In cellular external sheath the characteristic intercellular fissures a network of hexagonal meshes were seen resembling the honey-combs.

  14. Efficacy of 4 Irrigation Protocols in Killing Bacteria Colonized in Dentinal Tubules Examined by a Novel Confocal Laser Scanning Microscope Analysis.

    PubMed

    Azim, Adham A; Aksel, Hacer; Zhuang, Tingting; Mashtare, Terry; Babu, Jegdish P; Huang, George T-J

    2016-06-01

    The aim of this study was to determine the efficiency of 4 irrigation systems in eliminating bacteria in root canals, particularly in dentinal tubules. Roots of human teeth were prepared to 25/04, autoclaved, and inoculated with Enterococcus faecalis for 3 weeks. Canals were then disinfected by (1) standard needle irrigation, (2) sonically agitating with EndoActivator, (3) XP Endo finisher, or (4) erbium:yttrium aluminum garnet laser (PIPS) (15 roots/group). The bacterial reduction in the canal was determined by MTT assays. For measuring live versus dead bacteria in the dentinal tubules (4 teeth/group), teeth were split open and stained with LIVE/DEAD BackLight. Coronal, middle, and apical thirds of the canal dentin were scanned by using a confocal laser scanning microscope (CLSM) to determine the ratio of dead/total bacteria in the dentinal tubules at various depths. All 4 irrigation protocols significantly eliminated bacteria in the canal, ranging from 89.6% to 98.2% reduction (P < .001). XP Endo had the greatest bacterial reduction compared with other 3 techniques (P < .05). CLSM analysis showed that XP Endo had the highest level of dead bacteria in the coronal, middle, and apical segments at 50-μm depth. On the other hand, PIPS had the greatest bacterial killing efficiency at the 150-μm depth in all 3 root segments. XP Endo appears to be more efficient than other 3 techniques in disinfecting the main canal space and up to 50 μm deep into the dentinal tubules. PIPS appears to be most effective in killing the bacteria deep in the dentinal tubules. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Selective Insulin Resistance in the Kidney

    PubMed Central

    Horita, Shoko; Nakamura, Motonobu; Suzuki, Masashi; Satoh, Nobuhiko; Suzuki, Atsushi; Seki, George

    2016-01-01

    Insulin resistance has been characterized as attenuation of insulin sensitivity at target organs and tissues, such as muscle and fat tissues and the liver. The insulin signaling cascade is divided into major pathways such as the PI3K/Akt pathway and the MAPK/MEK pathway. In insulin resistance, however, these pathways are not equally impaired. For example, in the liver, inhibition of gluconeogenesis by the insulin receptor substrate (IRS) 2 pathway is impaired, while lipogenesis by the IRS1 pathway is preserved, thus causing hyperglycemia and hyperlipidemia. It has been recently suggested that selective impairment of insulin signaling cascades in insulin resistance also occurs in the kidney. In the renal proximal tubule, insulin signaling via IRS1 is inhibited, while insulin signaling via IRS2 is preserved. Insulin signaling via IRS2 continues to stimulate sodium reabsorption in the proximal tubule and causes sodium retention, edema, and hypertension. IRS1 signaling deficiency in the proximal tubule may impair IRS1-mediated inhibition of gluconeogenesis, which could induce hyperglycemia by preserving glucose production. In the glomerulus, the impairment of IRS1 signaling deteriorates the structure and function of podocyte and endothelial cells, possibly causing diabetic nephropathy. This paper mainly describes selective insulin resistance in the kidney, focusing on the proximal tubule. PMID:27247938

  16. Angiotensin II AT2 receptor decreases AT1 receptor expression and function via nitric oxide/cGMP/Sp1 in renal proximal tubule cells from Wistar–Kyoto rats

    PubMed Central

    Yang, Jian; Chen, Caiyu; Ren, Hongmei; Han, Yu; He, Duofen; Zhou, Lin; Hopfer, Ulrich; Jose, Pedro A.; Zeng, Chunyu

    2013-01-01

    Background The renin–angiotensin (Ang) system controls blood pressure, in part, by regulating renal tubular sodium transport. In the kidney, activation of the angiotensin II type 1 (AT1) receptor increases renal sodium reabsorption, whereas the angiotensin II type 2 (AT2) receptor produces the opposite effect. We hypothesized that the AT2 receptor regulates AT1 receptor expression and function in the kidney. Methods and results In immortalized renal proximal tubule (RPT) cells from Wistar–Kyoto rats, CGP42112, an AT2 receptor agonist, decreased AT1 receptor mRNA and protein expression (P < 0.05), as assessed by reverse transcriptase-polymerase chain reaction and immunoblotting. The inhibitory effect of the AT2 receptor on AT1 receptor expression was blocked by the AT2 receptor antagonist, PD123319 (10−6 mol/l), the nitric oxide synthase inhibitor Nw-nitro-l-arginine methyl ester (10−4 mol/l), or the nitric oxide-dependent soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (10−5 mol/l), indicating that both nitric oxide and cyclic guanosine monophosphate (cGMP) were involved in the signaling pathway. Furthermore, CGP42112 decreased Sp1 serine phosphorylation and reduced the binding of Sp1 to AT1 receptor DNA. Stimulation with Ang II (10−11 mol/l per 30 min) enhanced Na+-K+-ATPase activity in RPT cells, which was prevented by pretreatment with CGP42112 (10−7 mol/l per 24 h) (P < 0.05). The above-mentioned results were confirmed in RPT cells from AT2 receptor knockout mice; AT1 receptor expression and Ang II-stimulated Na+-K+-ATPase activity were greater in these cells than in RPT cells from wild-type mice (P < 0.05). AT1/AT2 receptors co-localized and co-immunoprecipitated in RPT cells; short-term CGP42112 (10−7 mol/l per 30 min) treatment increased AT1/AT2 receptor co-immunoprecipitation (P < 0.05). Conclusions These results indicate that the renal AT2 receptor, via nitric oxide/cGMP/Sp1 pathway, regulates AT1 receptor

  17. Transformation, migration and outcome of residual bodies in the seminiferous tubules of the rat testis.

    PubMed

    Xiao, C-Y; Wang, Y-Q; Li, J-H; Tang, G-C; Xiao, S-S

    2017-12-01

    Experiments were performed to study the transformation, migration and outcome of residual bodies (RBs) in the seminiferous tubules of the rat testes. One part of the testes from adult Sprague-Dawley rats was used to generate paraffin sections to observe RBs and RB precursors through specific staining, and the other part of the testes was used to generate ultrathin sections to observe RBs under a transmission electron microscope. Deep blue particles of different sizes were observed in some seminiferous tubules through specific staining for RBs and RB precursors. These particles first appeared in the seminiferous tubules at stage I of the spermatogenic cycle, and after spermiation, the particles travelled rapidly towards the deeper region of the seminiferous epithelium and soon appeared close to the basement membrane of the seminiferous tubule. All of the particles in the tubules disappeared at stage IX. Using transmission electron microscopy, components of different electron densities were observed in the RBs on the surface of the seminiferous epithelium, all of which gradually formed in the cytoplasm of spermatozoon in later stages of spermiogenesis. After the spermatozoa were released, the RBs in the epithelium travelled quickly to the edge of the tube and were gradually transformed into lipid inclusions. These lipid inclusions ultimately became lipidlike particles. The lipidlike particles were discharged into the interstitial tissue. RBs initiate their own digestive process before their formation during spermiation in the rat testes. After spermiation, the RBs transform into lipid inclusions and finally into lipidlike particles. These lipidlike particles can be eliminated from the seminiferous tubules. © 2017 Blackwell Verlag GmbH.

  18. Postnatal somatic cell proliferation and seminiferous tubule maturation in pigs: A non-random event

    PubMed Central

    Avelar, Gleide F.; Oliveira, Carolina F.A.; Soares, Jaqueline M.; Silva, Israel J.; Dobrinski, Ina; Hess, Rex A.; França, Luiz R.

    2015-01-01

    Although seminiferous tubule maturation in horses begins in the central area of the testis, this process is thought to occur randomly throughout the testis in most mammals. Studies in our laboratory revealed that the establishment of spermatogenesis may not be a synchronous event in the testicular parenchyma of pigs. The objectives of the present study were to evaluate the pattern of seminiferous cord/tubule maturation and the morphological and functional characteristics of testicular somatic cells during postnatal development in three regions of the pig testis: a) near the tunica albuginea (TA); b) in the transitional area between the seminiferous tubules and mediastinum (TR); and c) in the intermediate area (ID) between the TA and TR. Based on the diameter of seminiferous cords/tubules, nucleus size of Sertoli cells and fluid secretion, mainly at 90 and 120 d of age, seminiferous tubule maturation was more advanced in the ID and TR. The mitotic activity of Sertoli cells was higher (P < 0.05) in the TR than the ID and TA at 7 and 120 d. Except for the mitotic index of the Leydig cells, which was lower (P < 0.05) in the ID at 7, 30, and 180 d than in the TA and TR, other Leydig cell ebd points, e.g., individual cell size, nuclear volume, and cytoplasmic volume, were consistently higher (P < 0.05) in the ID, suggesting that steroidogenesis was more active in this region during the period investigated. Overall, we inferred that Leydig cells in the ID may play a pivotal role in postnatal testis development in pigs and this type of cell is likely related to asynchronous testicular parenchyma development, with the transitional area providing the primary zone for growth of seminiferous tubules. PMID:20189235

  19. Sulphonylurea drugs reduce hypoxic damage in the isolated perfused rat kidney

    PubMed Central

    Engbersen, Richard; Moons, Miek M; Wouterse, Alfons C; Dijkman, Henry B; Kramers, Cees; Smits, Paul; Russel, Frans G M

    2000-01-01

    Sulphonylurea drugs have been shown to protect against hypoxic damage in isolated proximal tubules of the kidney. In the present study we investigated whether these drugs can protect against hypoxic damage in a whole kidney preparation. Tolbutamide (200 μM) and glibenclamide (10 μM) were applied to the isolated perfused rat kidney prior to changing the gassing from oxygen to nitrogen for 30 min. Hypoxic perfusions resulted in an increased fractional excretion of glucose (FE % glucose 14.3±1.5 for hypoxic perfusions vs 4.9±1.6 for normoxic perfusions, mean±s.e.mean, P<0.05), which could be completely restored by 200 μM tolbutamide (5.7±0.4 for tolbutamide vs 14.3±1.5 for untreated hypoxic kidneys, P<0.01). Furthermore, tolbutamide reduced the total amount of LDH excreted in the urine (220±100 mU for tolbutamide vs 1220±160 mU for untreated hypoxic kidneys, P<0.01). Comparable results were obtained with glibenclamide (10 μM). In agreement with the effect on functional parameters, ultrastructural analysis of proximal tubules showed increased brush border preservation in tolbutamide treated kidneys compared to untreated hypoxic kidneys. We conclude that glibenclamide and tolbutamide are both able to reduce hypoxic damage to proximal tubules in the isolated perfused rat kidney when applied in the appropriate concentrations. PMID:10928974

  20. Exposure of cultured human proximal tubular cells to cadmium, mercury, zinc and bismuth: toxicity and metallothionein induction.

    PubMed

    Rodilla, V; Miles, A T; Jenner, W; Hawksworth, G M

    1998-08-14

    The kidney, in particular the proximal convoluted tubule, is a major target site for the toxic effects of various metals. However, little is known about the early effects of these metals after acute exposure in man. In the present study we have evaluated the toxicity of several inorganic metal compounds (CdCl2, HgCl2, ZnCl2, and Bi(NO3)3) and the induction of metallothionein by these compounds in cultured human proximal tubular (HPT) cells for up to 4 days. The results showed that bismuth was not toxic even at the highest dose (100 microM) used, while zinc, cadmium and mercury exhibited varying degrees of toxicity, zinc being the least toxic and mercury the most potent. A significant degree of interindividual variation between the different isolates used in these experiments was also observed. All metals used in the present study induced MT, as revealed by immunocytochemistry. All metals showed maximal induction between 1 and 3 days after treatment. Although a certain amount of constitutive MT was present in the cultures, the intensity of the staining varied with time in culture and between the different isolates studied. No correlation could be made between the intensity of the staining in control cultures (indicating total amount of constitutive MT) and the susceptibility of a given isolate to metal toxicity. Furthermore, no correlation could be made between metal-induced MT and the susceptibility of a given isolate to that particular metal.

  1. Tubulation of Class II MHC Compartments Is Microtubule Dependent and Involves Multiple Endolysosomal Membrane Proteins in Primary Dendritic Cells1

    PubMed Central

    Vyas, Jatin M.; Kim, You-Me; Artavanis-Tsakonas, Katerina; Love, J. Christopher; Van der Veen, Annemarthe G.; Ploegh, Hidde L.

    2009-01-01

    Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP. PMID:17513769

  2. NBCe1 expression is required for normal renal ammonia metabolism

    PubMed Central

    Handlogten, Mary E.; Osis, Gunars; Lee, Hyun-Wook; Romero, Michael F.; Verlander, Jill W.

    2015-01-01

    The mechanisms regulating proximal tubule ammonia metabolism are incompletely understood. The present study addressed the role of the proximal tubule basolateral electrogenic Na+-coupled bicarbonate cotransporter (NBCe1; Slc4a4) in renal ammonia metabolism. We used mice with heterozygous and homozygous NBCe1 gene deletion and compared these mice with their wild-type littermates. Because homozygous NBCe1 gene deletion causes 100% mortality before day 25, we studied mice at day 8 (±1 day). Both heterozygous and homozygous gene deletion caused a gene dose-related decrease in serum bicarbonate. The ability to lower urinary pH was intact, and even accentuated, with NBCe1 deletion. However, in contrast to the well-known effect of metabolic acidosis to increase urinary ammonia excretion, NBCe1 deletion caused a gene dose-related decrease in ammonia excretion. There was no identifiable change in proximal tubule structure by light microscopy. Examination of proteins involved in renal ammonia metabolism showed decreased expression of phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase, key enzymes in proximal tubule ammonia generation, and increased expression of glutamine synthetase, which recycles intrarenal ammonia and regenerates glutamine. Expression of key proteins involved in ammonia transport outside of the proximal tubule (rhesus B glycoprotein and rhesus C glycoprotein) was not significantly changed by NBCe1 deletion. We conclude from these findings that NBCe1 expression is necessary for normal proximal tubule ammonia metabolism. PMID:26224717

  3. Oxidative stress induced by potassium bromate exposure results in altered tight junction protein expression in renal proximal tubule cells.

    PubMed

    Limonciel, Alice; Wilmes, Anja; Aschauer, Lydia; Radford, Robert; Bloch, Katarzyna M; McMorrow, Tara; Pfaller, Walter; van Delft, Joost H; Slattery, Craig; Ryan, Michael P; Lock, Edward A; Jennings, Paul

    2012-11-01

    Potassium bromate (KBrO(3)) is an oxidising agent that has been widely used in the food and cosmetic industries. It has shown to be both a nephrotoxin and a renal carcinogen in in vivo and in vitro models. Here, we investigated the effects of KBrO(3) in the human and rat proximal tubular cell lines RPTEC/TERT1 and NRK-52E. A genome-wide transcriptomic screen was carried out from cells exposed to a sub-lethal concentration of KBrO(3) for 6, 24 and 72 h. Pathway analysis identified "glutathione metabolism", "Nrf2-mediated oxidative stress" and "tight junction (TJ) signalling" as the most enriched pathways. TJ signalling was less impacted in the rat model, and further studies revealed low transepithelial electrical resistance (TEER) and an absence of several TJ proteins in NRK-52E cells. In RPTEC/TERT1 cells, KBrO(3) exposure caused a decrease in TEER and resulted in altered expression of several TJ proteins. N-Acetylcysteine co-incubation prevented these effects. These results demonstrate that oxidative stress has, in conjunction with the activation of the cytoprotective Nrf2 pathway, a dramatic effect on the expression of tight junction proteins. The further understanding of the cross-talk between these two pathways could have major implications for epithelial repair, carcinogenesis and metastasis.

  4. The mechanisms of renal tubule electrolyte and water absorption, 100 years after Carl Ludwig.

    PubMed

    Greger, R

    1996-01-01

    Some 154 years after Carl Ludwig's Habilitationsschrift "Contributions to the theory of the mechanism of urine secretion" renal physiology has come a long way. The mechanisms of urine formation are now understood as the result of glomerular filtration and tubule absorption of most of the filtrate. The detailed understanding of tubule transport processes has become possible with the invention of several refined techniques such as the micropuncture techniques; the microchemical analysis of nanolitre tubule fluid samples; the in vitro perfusion of isolated tubule segments of defined origin; electrophysiological analysis of electrolyte transport including micropuncture and patch-clamp techniques; transport studies in membrane vesicle preparations; recordings of intracellular electrolyte concentrations and cloning techniques of the individual membrane transport proteins. With this wealth of information we are now starting to build an integrative understanding of the function of the individual nephron segments, the regulatory processes, the integrated function of the nephron and hence the formation of the final urine. Like anatomists of previous centuries we still state that the kidney is an "organum mirable" and we recognize that basic research in this area has fertilized the analysis of the function of a large number of other organs and cells.

  5. Cloning and functional characterization of inward-rectifying potassium (Kir) channels from Malpighian tubules of the mosquito Aedes aegypti

    PubMed Central

    Piermarini, Peter M.; Rouhier, Matthew F.; Schepel, Matthew; Kosse, Christin; Beyenbach, Klaus W.

    2013-01-01

    Inward-rectifying K+ (Kir) channels play critical physiological roles in a variety of vertebrate cells/tissues, including the regulation of membrane potential in nerve and muscle, and the transepithelial transport of ions in osmoregulatory epithelia, such as kidneys and gills. It remains to be determined whether Kir channels play similar physiological roles in insects. In the present study, we sought to 1) clone the cDNAs of Kir channel subunits expressed in the renal (Malpighian) tubules of the mosquito Aedes aegypti, and 2) characterize the electrophysiological properties of the cloned Kir subunits when expressed heterologously in oocytes of Xenopus laevis. Here, we reveal that three Kir subunits are expressed abundantly in Aedes Malpighian tubules (AeKir1, AeKir2B, and AeKir3); each of their full-length cDNAs was cloned. Heterologous expression of the AeKir1 or the AeKir2B subunits in Xenopus oocytes elicits inward-rectifying K+ currents that are blocked by barium. Relative to the AeKir2B-expressing oocytes, the AeKir1-expressing oocytes 1) produce larger macroscopic currents, and 2) exhibit a modulation of their conductive properties by extracellular Na+. Attempts to functionally characterize the AeKir3 subunit in Xenopus oocytes were unsuccessful. Lastly, we show that in isolated Aedes Malpighian tubules, the cation permeability sequence of the basolateral membrane of principal cells (Tl+ > K+ > Rb+ > NH4+) is consistent with the presence of functional Kir channels. We conclude that in Aedes Malpighian tubules, Kir channels contribute to the majority of the barium-sensitive transepithelial transport of K+. PMID:23085358

  6. Rodent renal structure differs among species.

    PubMed

    Ichii, Osamu; Yabuki, Akira; Ojima, Toshimichi; Matsumoto, Mitsuharu; Suzuki, Shusaku

    2006-05-01

    In the present study, we histologically and morphometrically investigated species differences in renal structure using laboratory rodents (mice, gerbils, hamsters, rats, and guinea pigs). Morphometric parameters were as follows, 1) diameter of the cortical renal corpuscles, 2) diameter of the juxtamedullary renal corpuscles, 3) percentage of the renal corpuscles with a cuboidal parietal layer, 4) number of nuclei in proximal convoluted tubules (PCTs) per unit area of cortex, 5) semi-quantitative score of the periodic acid-Schiff (PAS) -positive granules in PCTs, and 6) semi-quantitative score of the PAS-positive granules in proximal straight tubules (PSTs). Significant species differences were detected for each parameter, and particularly severe differences were observed in the PAS-positive granules of PCTs and PSTs. Granular scores varied among species and sexes. Vacuolar structures that did not stain with PAS or hematoxylin-eosin were observed in the renal proximal tubules. The appearance and localization of these vacuolar structures differed remarkably between species and sexes.

  7. Characterization and comparison of proteins in the sperm storage tubules of female chickens to bovine epididymal fluid

    USDA-ARS?s Scientific Manuscript database

    Female birds are able to store sperm in crypts called sperm storage tubules (SSTs) in their reproductive tracts for between two and six weeks. Comparatively, sperm in a cow’s reproductive tract remain viable for between 18 and 24 hours. The objective of this experiment was to try to identify and co...

  8. Membrane permeability as a cause of transport defects in experimental Fanconi syndrome. A new hypothesis.

    PubMed Central

    Bergeron, M; Dubord, L; Hausser, C; Schwab, C

    1976-01-01

    The injection of sodium maleate (200-400 mg/kg) into rats produces aminoaciduria along with glycosuria and phosphaturia, resembling the Fanconi syndrome. This experimental model was studied by means of microinjections into proximal convoluted tubules of the kidney, stop-flow diuresis, and microperfusion of single nephrons. Our results show that, in maleate-treated rats, competition between amino acids or related structures (L-proline, L-OH-proline, and glycine) possesses the same characteristics, and net influx of amino acids appear normal at the proximal nephron. Data obtained by classical stop-flow techniques and single nephron microperfusions also indicate a normal entry of labeled amino acids (L-lysine, glycine, L-valine, L-proline, L-cystine), and 3-0-methyl-D-[3H]glucose and [32P]phosphate from the luminal side of the proximal tubule cell. However, the efflux of molecules from the cell appears enhanced throughout the proximal and distal tubule; molecules that exit at this site are excreted directly into the urine. Our results suggest that the phosphaturia, aminoaciduria, and glycosuria of the experimental Fanconi syndrome can be explained by a modification of the cell membrane permeability (increased efflux) at distal sites of the nephron rather than by a modification of the membrane transport (decreased influx) at the proximal sites, as is currently accepted. Our data also stress the importance of efflux phenomena in membrane transport. PMID:1262464

  9. The Influence of Concentration and Temperature on the Formation of γ-Oryzanol + β-Sitosterol Tubules in Edible Oil Organogels

    PubMed Central

    Venema, Paul; Bot, Arjen; Flöter, Eckhard; van der Linden, Erik

    2010-01-01

    The gelation process of mixtures of γ-oryzanol and sitosterol structurants in sunflower oil was studied using light scattering, rheology, and micro-scanning calorimetry (Micro-DSC). The relation between temperature and the critical aggregation concentration (CAC) of tubule formation of γ-oryzanol and sitosterol was determined using these techniques. The temperature dependence of the CAC was used to estimate the binding energy and enthalpic and entropic contribution to the tubular formation process. The binding energy calculated at the corresponding temperatures and CACs were relatively low, in order of 2 RT (4.5 kJ mol−1), which is in accord with the reversibility of the tubular formation process. The formation of the tubules was associated with negative (exothermic) enthalpy change (ΔH0) compared with positive entropy term (−T ΔS0 >0), indicating that the aggregation into tubules is an enthalpy-driven process. The oryzanol–sitosterol ratio affected the aggregation process; solutions with ratio of (60 oryzanol–40 sitosterol) started aggregation at higher temperature compared with other ratios. PMID:21423326

  10. The Influence of Concentration and Temperature on the Formation of γ-Oryzanol + β-Sitosterol Tubules in Edible Oil Organogels.

    PubMed

    Sawalha, Hassan; Venema, Paul; Bot, Arjen; Flöter, Eckhard; van der Linden, Erik

    2011-03-01

    The gelation process of mixtures of γ-oryzanol and sitosterol structurants in sunflower oil was studied using light scattering, rheology, and micro-scanning calorimetry (Micro-DSC). The relation between temperature and the critical aggregation concentration (CAC) of tubule formation of γ-oryzanol and sitosterol was determined using these techniques. The temperature dependence of the CAC was used to estimate the binding energy and enthalpic and entropic contribution to the tubular formation process. The binding energy calculated at the corresponding temperatures and CACs were relatively low, in order of 2 RT (4.5 kJ mol(-1)), which is in accord with the reversibility of the tubular formation process. The formation of the tubules was associated with negative (exothermic) enthalpy change (ΔH(0)) compared with positive entropy term (-T ΔS(0) >0), indicating that the aggregation into tubules is an enthalpy-driven process. The oryzanol-sitosterol ratio affected the aggregation process; solutions with ratio of (60 oryzanol-40 sitosterol) started aggregation at higher temperature compared with other ratios.

  11. HISTOCHEMICAL STUDIES ON THE UPTAKE OF HORSERADISH PEROXIDASE BY RAT KIDNEY SLICES

    PubMed Central

    Miller, A. T.; Hale, D. M.; Alexander, K. D.

    1965-01-01

    When rat kidney slices were incubated in the presence of horseradish peroxidase, there was an energy-dependent uptake of the protein by the cells of the kidney tubules. The uptake was greatest in the proximal convoluted tubules and in the thick ascending limbs of the loops of Henle; it was abolished by cold, anoxia, 2,4-dinitrophenol, and fluoroacetate, and was more readily depressed by unfavorable metabolic conditions in the proximal convoluted tubules than in the thick ascending limbs. Protein uptake was inhibited when the kidney slices were incubated in electrolyte-free media. In sodium chloride solutions, uptake was reduced as sodium was progressively replaced by choline, and ouabain inhibited uptake in the proximal convoluted tubules, but not in the thick ascending limbs. To a limited extent, lithium could replace sodium in the incubation medium with no depression of peroxidase uptake. These results suggest that a sodium-stimulated, ouabain-sensitive ATPase may be involved in the uptake of protein by cells of the kidney tubule. The intracellular transport of peroxidase in cells of the proximal convoluted tubules was abolished by cold, anoxia, and 2,4-dinitrophenol, but it was not affected by concentrations of ouabain which inhibited the uptake of the protein. PMID:5884629

  12. Segmental analysis of renal glucose transport in young female rats.

    PubMed Central

    McSherry, N R; Wen, S F

    1984-01-01

    Free-flow micropuncture studies were performed on twenty-seven young female Sprague-Dawley rats before and after 10% extracellular volume expansion to evaluate glucose reabsorption at the accessible sites of both surface and papillary nephrons. In the distal nephron segments no significant glucose reabsorption was observed for the distal tubule and papillary collecting duct but significant difference in fractional glucose delivery was demonstrated between the bend of the Henle's loop and early distal tubule and between the late distal tubule and the base of the collecting duct. Comparison of the fractional glucose delivery within the same nephron group for both superficial and juxtamedullary nephrons indicated that glucose reabsorption occurred at some sites beyond the bend of the Henle's loop. Volume expansion inhibited glucose reabsorption in the proximal convoluted tubule, enhanced it in the segment between the late proximal and early distal tubules, but had no effect on glucose transport at further distal sites. It is concluded that, in addition to the proximal tubule, the ascending loop of Henle or cortical collecting tubule may play a role in maintaining glucose-free urine under physiological conditions. PMID:6394745

  13. Identifying Functional Neighborhoods within the Cell Nucleus: Proximity Analysis of Early S-Phase Replicating Chromatin Domains to Sites of Transcription, RNA Polymerase II, HP1γ, Matrin 3 and SAF-A

    PubMed Central

    Malyavantham, Kishore S; Bhattacharya, Sambit; Barbeitos, Marcos; Mukherjee, Lopamudra; Xu, Jinhui; Fackelmayer, Frank O; Berezney, Ronald

    2009-01-01

    Higher order chromatin organization in concert with epigenetic regulation is a key process that determines gene expression at the global level. The organization of dynamic chromatin domains and their associated protein factors is intertwined with nuclear function to create higher levels of functional zones within the cell nucleus. As a step towards elucidating the organization and dynamics of these functional zones, we have investigated the spatial proximities among a constellation of functionally related sites that are found within euchromatic regions of the cell nucleus including: HP1γ, nascent transcript sites (TS), active DNA replicating sites in early S phase (PCNA) and RNA polymerase II sites. We report close associations among these different sites with proximity values specific for each combination. Analysis of matrin 3 and SAF-A sites demonstrates that these nuclear matrix proteins are highly proximal with the functionally related sites as well as to each other and display closely aligned and overlapping regions following application of the minimal spanning tree (MST) algorithm to visualize higher order network-like patterns. Our findings suggest that multiple factors within the nuclear microenvironment collectively form higher order combinatorial arrays of function. We propose a model for the organization of these functional neighborhoods which takes into account the proximity values of the individual sites and their spatial organization within the nuclear architecture. PMID:18618731

  14. Reverse shoulder arthroplasty in 3 and 4 part proximal humeral fractures in patients aged more than 65 years: Results and complications.

    PubMed

    Villodre-Jiménez, J; Estrems-Díaz, V; Diranzo-García, J; Bru-Pomer, A

    The treatment of 3and 4 part proximal humeral fractures in elderly patients is still controversial. The frequent co-existence of poor quality bone and rotator cuff abnormalities in patients with multiple clinical conditions and with difficulties for physical rehabilitation leads to disappointing clinical results, even when the radiological images are acceptable. To evaluate the clinical, radiological, and functional results in patients over 65 years old with complex proximal humerus fractures treated with reverse shoulder arthroplasty. A prospective review was carried out on 30 patients (26 women and 4 men) with proximal humeral fractures treated with reverse shoulder arthroplasty in our department. The mean age was 74.9 years (SD=6.3), and the mean follow-up was 34.5 months (SD=19.3). Clinical and functional results were acceptable, with a mean forward flexion of 124° and a mean external rotation of 13°. The mean abbreviated Constant abbreviated score was 49.1 (SD=14.1), 27 (SD=6.3) in the UCLA scale, and 32.2 (SD=19.2) in the QuickDASH questionnaire. The large majority (80%) of the patients are pain free, and they do not need medication to do daily activities. The complication rate was 13.3%. We consider that reverse shoulder arthroplasty is a valid option to treat 3and 4 part proximal humeral fractures in elderly patients. The surgical goals should include the anatomical reconstruction of the tuberosities, avoiding enlargement of the operated arm greater than 2cm. Copyright © 2016 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Selenium deficiency induced damages and altered expressions of metalloproteinases and their inhibitors (MMP1/3, TIMP1/3) in the kidneys of growing rats.

    PubMed

    Han, Jing; Liang, Hua; Yi, Jianhua; Tan, Wuhong; He, Shulan; Wu, Xiaofang; Shi, Xiaowei; Ma, Jing; Guo, Xiong

    2016-03-01

    Selenium is an essential trace element for the maintenance of structures and functions of kidney. To evaluate the effects of low selenium on the kidneys of growing rats, newborn rats were fed with selenium deficient and normal diets respectively for 109 days. As a result, rats fed with low selenium diets resulted in a decline in the body weight and the concentration of selenium in the kidney, especially the male rats from the low selenium groups. Moreover, the ultrastructure of glomerulus and tubules were damaged in low selenium group: the glomeruli were observed with hyperplasia of mesangial cells, fusion of podocyte foot processes and thickening of basement membrane; and the tubules were observed with vacuolar degenerated epithelial cells, increased edema fluid or protein solution between cells, microvilli edema, increased cell gaps and decreased cell links. Furthermore, the pathological changes in selenium deficient group included the increase of fibers around renal hilum aorta and in the renal collecting duct, and shed of cells in the proximal convoluted tubules. In addition, up-regulated expressions of matrix metalloproteinases (MMP1/3) and down-regulated expressions of their inhibitors (TIMP1/3) at the mRNA and protein levels were also appeared to be relevant to low selenium. The results suggested that low selenium in diet may cause low selenium concentration in the kidney of growing rat and lead to damages of the ultrastructure and extracellular matrix (ECM) of kidney. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis.

    PubMed

    Zhou, Dong; Fu, Haiyan; Zhang, Lu; Zhang, Ke; Min, Yali; Xiao, Liangxiang; Lin, Lin; Bastacky, Sheldon I; Liu, Youhua

    2017-08-01

    Cell-cell communication via Wnt ligands is necessary in regulating embryonic development and has been implicated in CKD. Because Wnt ligands are ubiquitously expressed, the exact cellular source of the Wnts involved in CKD remains undefined. To address this issue, we generated two conditional knockout mouse lines in which Wntless (Wls), a dedicated cargo receptor that is obligatory for Wnt secretion, was selectively ablated in tubular epithelial cells or interstitial fibroblasts. Blockade of Wnt secretion by genetic deletion of Wls in renal tubules markedly inhibited myofibroblast activation and reduced renal fibrosis after unilateral ureteral obstruction. This effect associated with decreased activation of β -catenin and downstream gene expression and preserved tubular epithelial integrity. In contrast, fibroblast-specific deletion of Wls exhibited little effect on the severity of renal fibrosis after obstructive or ischemia-reperfusion injury. In vitro , incubation of normal rat kidney fibroblasts with tubule-derived Wnts promoted fibroblast proliferation and activation. Furthermore, compared with kidney specimens from patients without CKD, biopsy specimens from patients with CKD also displayed increased expression of multiple Wnt proteins, predominantly in renal tubular epithelium. These results illustrate that tubule-derived Wnts have an essential role in promoting fibroblast activation and kidney fibrosis via epithelial-mesenchymal communication. Copyright © 2017 by the American Society of Nephrology.

  17. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans

    PubMed Central

    Grussendorf, Kelly A.; Trezza, Christopher J.; Salem, Alexander T.; Al-Hashimi, Hikmat; Mattingly, Brendan C.; Kampmeyer, Drew E.; Khan, Liakot A.; Hall, David H.; Göbel, Verena; Ackley, Brian D.; Buechner, Matthew

    2016-01-01

    Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans. In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn’s disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling. PMID:27334269

  18. 3D geometric morphometric analysis of the proximal epiphysis of the hominoid humerus

    PubMed Central

    Arias-Martorell, Julia; Potau, Josep Maria; Bello-Hellegouarch, Gaëlle; Pastor, Juan Francisco; Pérez-Pérez, Alejandro

    2012-01-01

    In this study we perform a three-dimensional geometric morphometric (3D GM) analysis of the proximal epiphysis of the humerus in extant great apes, including humans, in order to accurately describe the functional anatomical differences between these taxa. In addition, a fossil hominin specimen of Australopithecus afarensis was included in a multivariate GM analysis in order to test the potential of this methodological approach for making locomotor inferences from fossil remains. The results obtained show significant differences in proximal humeral morphology among the taxa studied, which had thus far largely remained unnoticed. Based on morphofunctional considerations, these anatomical differences can be correlated to differences in the locomotor repertoires of the taxa, thus confirming that the proximal humerus is suitable for constructing paleobiological inferences about locomotion. Modern humans display markedly divergent features, which set them apart from both the extant great apes and the fossil hominin A. afarensis. The morphology of the proximal epiphysis of the humerus of the latter more closely resembles that of the orangutans, thus suggesting that despite hindlimb adaptations to bipedalism, the forelimb of this taxon was still functionally involved in arboreal behaviors, such as climbing or suspension. PMID:22946496

  19. Magnetic field influence on the proximity effect at YB a2C u3O7/L a2 /3C a1 /3Mn O3 superconductor/half-metal interfaces

    NASA Astrophysics Data System (ADS)

    Visani, C.; Cuellar, F.; Pérez-Muñoz, A.; Sefrioui, Z.; León, C.; Santamaría, J.; Villegas, Javier E.

    2015-07-01

    We experimentally study the superconducting proximity effect in high-temperature superconductor/half-metallic ferromagnet YB a2C u3O7/L a2 /3C a1 /3Mn O3 junctions, using conductance measurements. In particular, we investigate the magnetic-field dependence of the spectroscopic signatures that evidence the long-range penetration of superconducting correlations into the half-metal. Those signatures are insensitive to the applied field when this is below the ferromagnet's saturation fields, which demonstrates that they are uncorrelated with its macroscopic magnetization. However, the application of more intense fields progressively washes away the fingerprint of long-range proximity effects. This is consistent with the fact that the well-known magnetic inhomogeneities at the c -axis YB a2C u3O7/L a2 /3C a1 /3Mn O3 interface play a role in the proximity behavior.

  20. The Pearling Transition Provides Evidence of Force-Driven Endosomal Tubulation during Salmonella Infection.

    PubMed

    Gao, Yunfeng; Spahn, Christoph; Heilemann, Mike; Kenney, Linda J

    2018-06-19

    Bacterial pathogens exploit eukaryotic pathways for their own end. Upon ingestion, Salmonella enterica serovar Typhimurium passes through the stomach and then catalyzes its uptake across the intestinal epithelium. It survives and replicates in an acidic vacuole through the action of virulence factors secreted by a type three secretion system located on Salmonella pathogenicity island 2 (SPI-2). Two secreted effectors, SifA and SseJ, are sufficient for endosomal tubule formation, which modifies the vacuole and enables Salmonella to replicate within it. Two-color, superresolution imaging of the secreted virulence factor SseJ and tubulin revealed that SseJ formed clusters of conserved size at regular, periodic intervals in the host cytoplasm. Analysis of SseJ clustering indicated the presence of a pearling effect, which is a force-driven, osmotically sensitive process. The pearling transition is an instability driven by membranes under tension; it is induced by hypotonic or hypertonic buffer exchange and leads to the formation of beadlike structures of similar size and regular spacing. Reducing the osmolality of the fixation conditions using glutaraldehyde enabled visualization of continuous and intact tubules. Correlation analysis revealed that SseJ was colocalized with the motor protein kinesin. Tubulation of the endoplasmic reticulum is driven by microtubule motors, and in the present work, we describe how Salmonella has coopted the microtubule motor kinesin to drive the force-dependent process of endosomal tubulation. Thus, endosomal tubule formation is a force-driven process catalyzed by Salmonella virulence factors secreted into the host cytoplasm during infection. IMPORTANCE This study represents the first example of using two-color, superresolution imaging to analyze the secretion of Salmonella virulence factors as they are secreted from the SPI-2 type three secretion system. Previous studies imaged effectors that were overexpressed in the host cytoplasm. The

  1. Proximity-driven enhanced magnetic order at ferromagnetic-insulator-magnetic-topological-insulator interface

    DOE PAGES

    Li, Mingda; Zhu, Yimei; Chang, Cui -Zu; ...

    2015-08-17

    Magnetic exchange driven proximity effect at a magnetic-insulator–topological-insulator (MI-TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. In this study, we report a dramatic enhancement of proximity exchange coupling in the MI/magnetic-TI EuS/Sb 2–xV xTe 3 hybrid heterostructure, where V doping is used to drive the TI (Sb 2Te 3) magnetic. We observe an artificial antiferromagneticlike structure near the MI-TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping in a hybrid heterostructure provides insights into the engineering of magneticmore » ordering.« less

  2. Protective effects of L-type fatty acid-binding protein (L-FABP) in proximal tubular cells against glomerular injury in anti-GBM antibody-mediated glomerulonephritis

    PubMed Central

    Kanaguchi, Yasuhiko; Suzuki, Yusuke; Osaki, Ken; Sugaya, Takeshi; Horikoshi, Satoshi

    2011-01-01

    Background. In glomerulonephritis (GN), an overload of free fatty acids (FFA) bound to albumin in urinary protein may induce oxidative stress in the proximal tubules. Human liver-type fatty acid-binding protein (hL-FABP) expressed in human proximal tubules, but not rodents, participates in intracellular FFA metabolism and exerts anti-oxidative effects on the progression of tubulointerstitial damage. We examined whether tubular enhancement of this anti-oxidative action modulates the progression of glomerular damage in immune-mediated GN in hL-FABP chromosomal gene transgenic (Tg) mice. Methods. Anti-glomerular basement membrane antibody-induced glomerulonephritis (anti-GBM GN) was induced in Tg and wild-type mice (WT). Proteinuria, histopathology, polymorphonuclear (PMN) influx, expression of tubulointerstitial markers for oxidative stress 4-hydroxy-2-Nonenal (HNE) and fibrosis (α-smooth muscle actin), proximal tubular damage (Kim-1), Peroxisome Proliferator-Activated Receptor γ (PPAR γ) and inflammatory cytokines [Monocyte Chemotactic Protein-1, tumor necrosis factor-alpha (TNF-α) and Transforming growth factor beta (TGF-β)] were analyzed. The mice were also treated with an angiotensin type II receptor blocker (ARB). Results. The urinary protein level in Tg mice decreased significantly during the acute phase (∼Day 5). Tg mice survived for a significantly longer time than WT mice, with an attenuation of tubulointerstitial damage score and expression of each tubulointerstitial damage marker observed at Day 7. Expression of inflammatory cytokines on Day 7 was higher in WT mice than Tg mice and correlated strongly with PPARγ expression in WT mice, but not in Tg mice. Interestingly, Tg mice showed insufficient PMN influx at 3 and 6 h, with simultaneous elevation of urinary L-FABP and reduction in HNE expression. The two strains of mice showed different types of glomerular damage, with mild mesangial proliferation in Tg mice and severe endothelial swelling with

  3. Mechanisms of connecting tubule glomerular feedback enhancement by aldosterone

    PubMed Central

    Ren, YiLin; Janic, Branislava; Kutskill, Kristopher; Peterson, Edward L.

    2016-01-01

    Connecting tubule glomerular feedback (CTGF) is a mechanism where an increase in sodium (Na) concentration in the connecting tubule (CNT) causes the afferent arteriole (Af-Art) to dilate. We recently reported that aldosterone within the CNT lumen enhances CTGF via a nongenomic effect involving GPR30 receptors and sodium/hydrogen exchanger (NHE), but the signaling pathways of this mechanism are unknown. We hypothesize that aldosterone enhances CTGF via cAMP/protein kinase A (PKA) pathway that activates protein kinase C (PKC) and stimulates superoxide (O2−) production. Rabbit Af-Arts and their adherent CNTs were microdissected and simultaneously perfused. Two consecutive CTGF curves were elicited by increasing the CNT luminal NaCl. We found that the main effect of aldosterone was to sensitize CTGF and we analyzed data by comparing NaCl concentration in the CNT perfusate needed to achieve half of the maximal response (EC50). During the control period, the NaCl concentration that elicited a half-maximal response (EC50) was 37.0 ± 2.0 mmol/l; addition of aldosterone (10−8 mol/l) to the CNT lumen decreased EC50 to 19.3 ± 1.3 mmol/l (P ≤ 0.001 vs. Control). The specific adenylyl cyclase inhibitor 2′,3′-dideoxyadenosine (ddA; 2 × 10−4 mol/l) and the PKA inhibitor H-89 dihydrochloride hydrate (H-89; 2 × 10−6 mol/l) prevented the aldosterone effect. The selective PKC inhibitor GF109203X (10−8 mol/l) also prevented EC50 reduction caused by aldosterone. CNT intraluminal addition of O2− scavenger tempol (10−4 mol/l) blocked the aldosterone effect. We conclude that aldosterone inside the CNT lumen enhances CTGF via a cAMP/PKA/PKC pathway and stimulates O2− generation and this process may contribute to renal damage by increasing glomerular capillary pressure. PMID:27413197

  4. Protein Kinase A Activity Is Necessary for Fission and Fusion of Golgi to Endoplasmic Reticulum Retrograde Tubules

    PubMed Central

    Tenorio, María J.; Luchsinger, Charlotte; Mardones, Gonzalo A.

    2015-01-01

    It is becoming increasingly accepted that together with vesicles, tubules play a major role in the transfer of cargo between different cellular compartments. In contrast to our understanding of the molecular mechanisms of vesicular transport, little is known about tubular transport. How signal transduction molecules regulate these two modes of membrane transport processes is also poorly understood. In this study we investigated whether protein kinase A (PKA) activity regulates the retrograde, tubular transport of Golgi matrix proteins from the Golgi to the endoplasmic reticulum (ER). We found that Golgi-to-ER retrograde transport of the Golgi matrix proteins giantin, GM130, GRASP55, GRASP65, and p115 was impaired in the presence of PKA inhibitors. In addition, we unexpectedly found accumulation of tubules containing both Golgi matrix proteins and resident Golgi transmembrane proteins. These tubules were still attached to the Golgi and were highly dynamic. Our data suggest that both fission and fusion of retrograde tubules are mechanisms regulated by PKA activity. PMID:26258546

  5. Isolation and Characterization of Adhesive Secretion from Cuvierian Tubules of Sea Cucumber Holothuria forskåli (Echinodermata: Holothuroidea)

    PubMed Central

    Baranowska, Malgorzata; Schloßmacher, Ute; McKenzie, J. Douglas; Müller, Werner E. G.; Schröder, Heinz C.

    2011-01-01

    The sea cucumber Holothuria forskåli possesses a specialized system called Cuvierian tubules. During mechanical stimulation white filaments (tubules) are expelled and become sticky upon contact with any object. We isolated a protein with adhesive properties from protein extracts of Cuvierian tubules from H. forskåli. This protein was identified by antibodies against recombinant precollagen D which is located in the byssal threads of the mussel Mytilus galloprovincialis. To find out the optimal procedure for extraction and purification, the identified protein was isolated by several methods, including electroelution, binding to glass beads, immunoprecipitation, and gel filtration. Antibodies raised against the isolated protein were used for localization of the adhesive protein in Cuvierian tubules. Immunostaining and immunogold electron microscopical studies revealed the strongest immunoreactivity in the mesothelium; this tissue layer is involved in adhesion. Adhesion of Cuvierian tubule extracts was measured on the surface of various materials. The extracted protein showed the strongest adhesion to Teflon surface. Increased adhesion was observed in the presence of potassium and EDTA, while cadmium caused a decrease in adhesion. Addition of antibodies and trypsin abolished the adhesive properties of the extract. PMID:22013488

  6. Sodium-Glucose Transporter-2 (SGLT2; SLC5A2) Enhances Cellular Uptake of Aminoglycosides

    PubMed Central

    Jiang, Meiyan; Wang, Qi; Karasawa, Takatoshi; Koo, Ja-Won; Li, Hongzhe; Steyger, Peter S.

    2014-01-01

    Aminoglycoside antibiotics, like gentamicin, continue to be clinically essential worldwide to treat life-threatening bacterial infections. Yet, the ototoxic and nephrotoxic side-effects of these drugs remain serious complications. A major site of gentamicin uptake and toxicity resides within kidney proximal tubules that also heavily express electrogenic sodium-glucose transporter-2 (SGLT2; SLC5A2) in vivo. We hypothesized that SGLT2 traffics gentamicin, and promotes cellular toxicity. We confirmed in vitro expression of SGLT2 in proximal tubule-derived KPT2 cells, and absence in distal tubule-derived KDT3 cells. D-glucose competitively decreased the uptake of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), a fluorescent analog of glucose, and fluorescently-tagged gentamicin (GTTR) by KPT2 cells. Phlorizin, an SGLT2 antagonist, strongly inhibited uptake of 2-NBDG and GTTR by KPT2 cells in a dose- and time-dependent manner. GTTR uptake was elevated in KDT3 cells transfected with SGLT2 (compared to controls); and this enhanced uptake was attenuated by phlorizin. Knock-down of SGLT2 expression by siRNA reduced gentamicin-induced cytotoxicity. In vivo, SGLT2 was robustly expressed in kidney proximal tubule cells of heterozygous, but not null, mice. Phlorizin decreased GTTR uptake by kidney proximal tubule cells in Sglt2+/− mice, but not in Sglt2−/− mice. However, serum GTTR levels were elevated in Sglt2−/− mice compared to Sglt2+/− mice, and in phlorizin-treated Sglt2+/− mice compared to vehicle-treated Sglt2+/− mice. Loss of SGLT2 function by antagonism or by gene deletion did not affect gentamicin cochlear loading or auditory function. Phlorizin did not protect wild-type mice from kanamycin-induced ototoxicity. We conclude that SGLT2 can traffic gentamicin and contribute to gentamicin-induced cytotoxicity. PMID:25268124

  7. Dentinal tubule occluding capability of nano-hydroxyapatite; The in-vitro evaluation.

    PubMed

    Baglar, Serdar; Erdem, Umit; Dogan, Mustafa; Turkoz, Mustafa

    2018-04-29

    In this in-vitro study, the effectiveness of experimental pure nano-hydroxyapatite (nHAP) and 1%, 2%, and 3% F¯ doped nano-HAp on dentine tubule occlusion was investigated. And also, the cytotoxicity of materials used in the experiment was evaluated. Nano-HAp types were synthesized by the precipitation method. Forty dentin specimens were randomly divided into five groups of; 1-no treatment (control), 2-specimens treated with 10% pure nano-HAp and 3, 4, 5 specimens treated with 1%, 2%, and 3% F - doped 10% nano-HAp, respectively. To evaluate the effectiveness of the materials used; pH, FTIR, and scanning electron microscopy evaluations were performed before and after degredation in simulated body fluid. To determine cytotoxicity of the materials, MTT assay was performed. Statistical evaluations were performed with F and t tests. All of the nano-HAp materials used in this study built up an effective covering layer on the dentin surfaces even with plugs in tubules. It was found that this layer had also a resistance to degradation. None of the evaluated nano-HAp types were have toxicity. Fluoride doping showed a positive effect on physical and chemical stability until a critical value of 1% F - . The all evaluated nano-HAp types may be effectively used in dentin hypersensitivity treatment. The formed nano-HAp layers were seem to resistant to hydrolic deletion. The pure and 1% F - doped nano-HAp showed the highest biocompatibility thus it was assessed that pure and 1% F - doped materials may be used as an active ingredient in dentin hypersensitivity agents. © 2018 Wiley Periodicals, Inc.

  8. SH3 Domain-Containing Protein 2 Plays a Crucial Role at the Step of Membrane Tubulation during Cell Plate Formation

    PubMed Central

    Ahn, Gyeongik; Kim, Hyeran; Kim, Dae Heon; Hanh, Hong; Yoon, Youngdae; Singaram, Indira; Wijesinghe, Kaveesha J.; Johnson, Kristen A.; Liang, Zizhen; Stahelin, Robert V.; Jiang, Liwen; Cho, Wonhwa; Kang, Byung-Ho

    2017-01-01

    During cytokinesis in plants, trans-Golgi network-derived vesicles accumulate at the center of dividing cells and undergo various structural changes to give rise to the planar cell plate. However, how this conversion occurs at the molecular level remains elusive. In this study, we report that SH3 Domain-Containing Protein 2 (SH3P2) in Arabidopsis thaliana plays a crucial role in converting vesicles to the planar cell plate. SH3P2 RNAi plants showed cytokinesis-defective phenotypes and produced aggregations of vesicles at the leading edge of the cell plate. SH3P2 localized to the leading edge of the cell plate, particularly the constricted or curved regions of the cell plate. The BAR domain of SH3P2 induced tubulation of vesicles. SH3P2 formed a complex with dynamin-related protein 1A (DRP1A) and affected DRP1A accumulation to the cell plate. Based on these results, we propose that SH3P2 functions together with DRP1A to convert the fused vesicles to tubular structures during cytokinesis. PMID:28584166

  9. Preventive effect of a high fluoride toothpaste and arginine-carbonate toothpaste on dentinal tubules exposure followed by acid challenge: a dentine permeability evaluation

    PubMed Central

    2014-01-01

    Background Considering the current high use of high fluoride toothpastes, the aim of the study was to quantify alterations in the root dentine permeability submitted to treatment with a high fluoride toothpaste and 8% arginine, calcium carbonate, sodium monofluorophosphate toothpaste as a preventive treatment for dentinal tubules exposure followed by acid challenge. Methods Thirty-third molars were sectioned below the cementoenamel. The root segments were connected to a hydraulic pressure apparatus to measure dentine permeability after the following sequential steps (n = 10 per group): I) Baseline; II) treatment with phosphoric acid for 30 s (maximum permeability); III) Toothbrushing (1 min) according to the experimental groups (G1- control; G2- 5000 ppm fluoride toothpaste; G3- 8% arginine-calcium carbonate toothpaste); IV) acid challenge for 5 min (orange juice). The data were converted into percentage, considering stage II as 100%. Results The results have shown a statistically significant decreasing on dentine permeability after treatment with toothpaste (Friedman test and Dunn’s post hoc test). Comparison among groups demonstrated a high increasing on dentine permeability when acid challenge was performed after toothbrushing with distilled water (control group) (Kruskal-Wallis and Dunn’s post hoc test). Conclusion The toothpaste treatment may provide sufficient resistance on dentine surface, preventing dentinal tubules exposure after acid challenge. PMID:24958423

  10. Modeling tunneling for the unconventional superconducting proximity effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zareapour, Parisa; Xu, Jianwei; Zhao, Shu Yang F.

    Recently there has been reinvigorated interest in the superconducting proximity effect, driven by predictions of the emergence of Majorana fermions. To help guide this search, we have developed a phenomenological model for the tunneling spectra in anisotropic superconductor-normal metal proximity devices. We combine successful approaches used in s-wave proximity and standard d-wave tunneling to reproduce tunneling spectra in d-wave proximity devices, and clarify the origin of various features. Different variations of the pair potential are considered, resulting from the proximity-induced superconductivity. Furthermore, the effective pair potential felt by the quasiparticles is momentum-dependent in contrast to s-wave superconductors. The probabilities ofmore » reflection and transmission are calculated by solving the Bogoliubov equations. Our results are consistent with experimental observations of the unconventional proximity effect and provide important experimental parameters such as the size and length scale of the proximity induced gap, as well as the conditions needed to observe the reduced and full superconducting gaps.« less

  11. Modeling tunneling for the unconventional superconducting proximity effect

    DOE PAGES

    Zareapour, Parisa; Xu, Jianwei; Zhao, Shu Yang F.; ...

    2016-10-12

    Recently there has been reinvigorated interest in the superconducting proximity effect, driven by predictions of the emergence of Majorana fermions. To help guide this search, we have developed a phenomenological model for the tunneling spectra in anisotropic superconductor-normal metal proximity devices. We combine successful approaches used in s-wave proximity and standard d-wave tunneling to reproduce tunneling spectra in d-wave proximity devices, and clarify the origin of various features. Different variations of the pair potential are considered, resulting from the proximity-induced superconductivity. Furthermore, the effective pair potential felt by the quasiparticles is momentum-dependent in contrast to s-wave superconductors. The probabilities ofmore » reflection and transmission are calculated by solving the Bogoliubov equations. Our results are consistent with experimental observations of the unconventional proximity effect and provide important experimental parameters such as the size and length scale of the proximity induced gap, as well as the conditions needed to observe the reduced and full superconducting gaps.« less

  12. The Mössbauer Parameters of the Proximal Cluster of Membrane-Bound Hydrogenase Revisited: A Density Functional Theory Study.

    PubMed

    Tabrizi, Shadan Ghassemi; Pelmenschikov, Vladimir; Noodleman, Louis; Kaupp, Martin

    2016-01-12

    An unprecedented [4Fe-3S] cluster proximal to the regular [NiFe] active site has recently been found to be responsible for the ability of membrane-bound hydrogenases (MBHs) to oxidize dihydrogen in the presence of ambient levels of oxygen. Starting from proximal cluster models of a recent DFT study on the redox-dependent structural transformation of the [4Fe-3S] cluster, (57)Fe Mössbauer parameters (electric field gradients, isomer shifts, and nuclear hyperfine couplings) were calculated using DFT. Our results revise the previously reported correspondence of Mössbauer signals and iron centers in the [4Fe-3S](3+) reduced-state proximal cluster. Similar conflicting assignments are also resolved for the [4Fe-3S](5+) superoxidized state with particular regard to spin-coupling in the broken-symmetry DFT calculations. Calculated (57)Fe hyperfine coupling (HFC) tensors expose discrepancies in the experimental set of HFC tensors and substantiate the need for additional experimental work on the magnetic properties of the MBH proximal cluster in its reduced and superoxidized redox states.

  13. Epiphany sealer penetration into dentinal tubules: Confocal laser scanning microscopic study.

    PubMed

    Ravi, S V; Nageswar, Rao; Swapna, Honwad; Sreekant, Puthalath; Ranjith, Madhavan; Mahidhar, Surabhi

    2014-03-01

    The aim of the following study was to evaluate the percentage and average depth of epiphany sealer penetration into dentinal tubules among the coronal, middle and apical thirds of the root using the confocal laser scanning microscopy (CLSM). A total of 10 maxillary central incisors were prepared and obturated with Resilon-Epiphany system. Sealer was mixed with fluorescent rhodamine B isothiyocyanate dye for visibility under confocal microscope. Teeth were cross-sectioned into coronal, middle and apical sections-2 mm thick. Sections were observed under CLSM. Images were analyzed for percentage and average depth of sealer penetration into dentinal tubules using the lasso tool in Adobe Photoshop CS3 (Adobe systems incorporated, San jose, CA) and laser scanning microscopy (LSM 5) image analyzer. One-way analysis of variance with Student Neuman Keuls post hoc tests, Kruskal-Wallis test and Wilcoxon signed-rank post hoc tests. The results showed that a higher percentage of sealer penetration in coronal section-89.23%, followed by middle section-84.19% and the apical section-64.9%. Average depth of sealer penetration for coronal section was 526.02 μm, middle-385.26 μm and apical-193.49 μm. Study concluded that there was higher epiphany sealer penetration seen in coronal followed by middle and least at apical third of the roots.

  14. Automated tubule nuclei quantification and correlation with oncotype DX risk categories in ER+ breast cancer whole slide images

    NASA Astrophysics Data System (ADS)

    Romo-Bucheli, David; Janowczyk, Andrew; Romero, Eduardo; Gilmore, Hannah; Madabhushi, Anant

    2016-03-01

    Early stage estrogen receptor positive (ER+) breast cancer (BCa) treatment is based on the presumed aggressiveness and likelihood of cancer recurrence. The primary conundrum in treatment and management of early stage ER+ BCa is identifying which of these cancers are candidates for adjuvant chemotherapy and which patients will respond to hormonal therapy alone. This decision could spare some patients the inherent toxicity associated with adjuvant chemotherapy. Oncotype DX (ODX) and other gene expression tests have allowed for distinguishing the more aggressive ER+ BCa requiring adjuvant chemotherapy from the less aggressive cancers benefiting from hormonal therapy alone. However these gene expression tests tend to be expensive, tissue destructive and require physical shipping of tissue blocks for the test to be done. Interestingly breast cancer grade in these tumors has been shown to be highly correlated with the ODX risk score. Unfortunately studies have shown that Bloom-Richardson (BR) grade determined by pathologists can be highly variable. One of the constituent categories in BR grading is the quantification of tubules. The goal of this study was to develop a deep learning neural network classifier to automatically identify tubule nuclei from whole slide images (WSI) of ER+ BCa, the hypothesis being that the ratio of tubule nuclei to overall number of nuclei would correlate with the corresponding ODX risk categories. The performance of the tubule nuclei deep learning strategy was evaluated with a set of 61 high power fields. Under a 5-fold cross-validation, the average precision and recall measures were 0:72 and 0:56 respectively. In addition, the correlation with the ODX risk score was assessed in a set of 7513 high power fields extracted from 174 WSI, each from a different patient (At most 50 high power fields per patient study were used). The ratio between the number of tubule and non-tubule nuclei was computed for each WSI. The results suggests that for BCa

  15. Sim3C: simulation of Hi-C and Meta3C proximity ligation sequencing technologies.

    PubMed

    DeMaere, Matthew Z; Darling, Aaron E

    2018-02-01

    Chromosome conformation capture (3C) and Hi-C DNA sequencing methods have rapidly advanced our understanding of the spatial organization of genomes and metagenomes. Many variants of these protocols have been developed, each with their own strengths. Currently there is no systematic means for simulating sequence data from this family of sequencing protocols, potentially hindering the advancement of algorithms to exploit this new datatype. We describe a computational simulator that, given simple parameters and reference genome sequences, will simulate Hi-C sequencing on those sequences. The simulator models the basic spatial structure in genomes that is commonly observed in Hi-C and 3C datasets, including the distance-decay relationship in proximity ligation, differences in the frequency of interaction within and across chromosomes, and the structure imposed by cells. A means to model the 3D structure of randomly generated topologically associating domains is provided. The simulator considers several sources of error common to 3C and Hi-C library preparation and sequencing methods, including spurious proximity ligation events and sequencing error. We have introduced the first comprehensive simulator for 3C and Hi-C sequencing protocols. We expect the simulator to have use in testing of Hi-C data analysis algorithms, as well as more general value for experimental design, where questions such as the required depth of sequencing, enzyme choice, and other decisions can be made in advance in order to ensure adequate statistical power with respect to experimental hypothesis testing.

  16. Structural and functional alterations in Malpighian tubules as biomarkers of environmental pollution: synopsis and prospective.

    PubMed

    Giglio, Anita; Brandmayr, Pietro

    2017-08-01

    Although a number of biomarkers of pollutant exposure have been identified in invertebrate species, little is known about the effect on Malpighian tubules playing an essential role in excretion and osmoregulation. Analyses of structural and functional alterations on this organ can be useful to predict the effects at the organism and population level in monitoring studies of environmental pollution. The aim of the present review is to provide a synthesis of existing knowledge on cellular damages induced by xenobiotics in Malpighian tubules both under laboratory and field conditions. We compared studies of exposure to pesticides and heavy metals as mainly environmental contaminants from anthropogenic activities. This report provided evidence that the exposure to xenobiotics has an effect on this organ and reinforces the need for further research integrating molecular biomarkers with analysis on Malpighian tubules. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Effects of vitamin C on pathology and caspase-3 activity of kidneys with subacute endosulfan toxicity.

    PubMed

    Ozmen, O; Mor, F

    2015-01-01

    Endosulfan is an insecticide that is composed of two stereoisomers: α- and β- endosulfan in an approximate ratio of 70:30. Owing to its widespread use, poisoning of both humans and animals is possible. We examined the toxic effects of endosulfan on New Zealand white rabbit kidneys. Rabbit kidneys were examined histopathologically and caspase-3 activity was detected using immunohistochemistry. Animals were divided into four groups: Group 1 was given a sublethal dose of endosulfan in corn oil by oral gavage daily for 6 weeks, Group 2 was given endosulfan + vitamin C during the same period, Group 3 was given corn oil daily and vitamin C on alternate days, Group 4 was given only corn oil daily throughout the experiment. By the end of experimental period, the concentration of α-endosulfan was greater than the β-endosulfan concentration in the kidneys of both of endosulfan treated groups (Groups 1 and 2). Decreased accumulation of α- and β-endosulfan was observed in Group 2, possibly because of the antioxidant effect of the vitamin C. Histopathological examination revealed hemorrhages, tubule cell necrosis, glomerular infiltration, glomerulosclerosis and proteinaceous material in the tubules, and Bowman spaces in the kidneys of Group 1. Caspase-3 reaction was stronger in Group 1 than in the other groups. Apoptotic activity was most frequent in proximal tubule cells. Endosulfan is toxic to rabbit kidneys. Vitamin C treatment reduced the accumulation of endosulfan in kidneys and reduced its toxicity.

  18. Intrachromosomal 3p insertion as a cause of reciprocal pure interstitial deletion and duplication in two siblings: further delineation of the emerging proximal 3p deletion syndrome.

    PubMed

    Lloveras, Elisabet; Vendrell, Teresa; Fernández, Asunción; Castells, Neus; Cueto, Ana; del Campo, Miguel; Hernando, Cristina; Villa, Olaya; Plaja, Alberto

    2014-01-01

    Very few cases of constitutional interstitial deletions of the proximal short arm of chromosome 3 have been reported; however, the proximal 3p deletion is emerging as a clinically recognizable syndrome. We present an intrachromosomal insertion of 3p12.3p14.1 in a phenotypic normal man (46,XY,ins(3)(p25p12.3p14.1)) which is responsible for the unbalanced karyotype in 2 affected offspring, one with a 3p12.3p14.1 interstitial deletion and the other with a reciprocal duplication. The exceptionality of these 2 reciprocal recombinants contributes to a better definition of the proximal 3p deletion syndrome and its duplication counterpart.

  19. Segmental heterogeneity in Bcl-2, Bcl-xL and Bax expression in rat tubular epithelium after ischemia-reperfusion.

    PubMed

    Valdés, Francisco; Pásaro, Eduardo; Díaz, Inmaculada; Centeno, Alberto; López, Eduardo; García-Doval, Sandra; González-Roces, Severino; Alba, Alfonso; Laffon, Blanca

    2008-06-01

    Studies in rats with bilateral clamping of renal arteries showed transient Bcl-2, Bcl-xL and Bax expression in renal tubular epithelium following ischemia-reperfusion. However, current data on the preferential localization of specific mRNAs or proteins are limited because gene expression was not analysed at segmental level. This study analyses the mRNA expression of Bcl-2, Bcl-xL and Bax in four segments of proximal and distal tubules localized in the renal cortex and outer medulla in rat kidneys with bilateral renal clamping for 30 min and seven reperfusion times versus control animals without clamp. Proximal convoluted tubule (PCT), distal convoluted tubule (DCT), proximal straight tubule (PST) and medullary thick ascending limb (MTAL) were obtained by manual microdissection. RT-PCR was used to analyse mRNA expression at segmental level. Proximal convoluted tubule and MTAL showed early, persistent and balanced up-regulation of Bcl-2, Bcl-xL and Bax, while PST and DCT revealed only Bcl-2 and Bcl-xL, when only Bax was detected in PST. DCT expressed Bcl-xL initially, and persistent Bcl-2 later. These patterns suggest a heterogeneous apoptosis regulatory response in rat renal tubules after ischemia-reperfusion, independently of cortical or medullary location. This heterogeneity of the expression patterns of Bcl-2 genes could explain the different susceptibility to undergo apoptosis, the different threshold to ischemic damage and the different adaptive capacity to injury among these tubular segments.

  20. Diabetic rats present higher urinary loss of proteins and lower renal expression of megalin, cubilin, ClC-5, and CFTR.

    PubMed

    Figueira, Miriam F; Castiglione, Raquel C; de Lemos Barbosa, Carolina M; Ornellas, Felipe M; da Silva Feltran, Geórgia; Morales, Marcelo M; da Fonseca, Rodrigo N; de Souza-Menezes, Jackson

    2017-07-01

    Diabetic nephropathy (DN) occurs in around 40% of those with diabetes. Proteinuria is the main characteristic of DN and develops as a result of increased permeability of the glomerulus capillary wall and/or decreased proximal tubule endocytosis. The goal of this work was to evaluate renal function and the expression of megalin, cubilin, CFTR (cystic fibrosis transmembrane conductance regulator), and ClC-5 in the proximal tubule and renal cortex of rats with type 1 diabetes. Male Wistar rats were randomly assigned to control (CTRL) and diabetic (DM) groups for 4 weeks. Renal function was assessed in 24-h urine sample by calculating clearance and fractional excretion of solutes. The RNA and protein contents of ClC-5, CFTR, megalin, and cubilin were determined in the renal proximal tubule and cortex using real-time polymerase chain reaction and western blotting techniques, respectively. The results showed higher creatinine clearance and higher urinary excretion of proteins, albumin, and transferrin in the DM group than in the CTRL group. Furthermore, the renal cortex and proximal tubule of diabetic animals showed downregulation of megalin, cubilin, ClC-5, and CFTR, critical components of the endocytic apparatus. These data suggest dysfunction in proximal tubule low-molecular-weight endocytosis and protein glomerulus filtration in the kidney of diabetic rats. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Impaired Albumin Uptake and Processing Promote Albuminuria in OVE26 Diabetic Mice

    PubMed Central

    Long, Y. S.; Zheng, S.; Kralik, P. M.; Benz, F. W.

    2016-01-01

    The importance of proximal tubules dysfunction to diabetic albuminuria is uncertain. OVE26 mice have the most severe albuminuria of all diabetic mouse models but it is not known if impaired tubule uptake and processing are contributing factors. In the current study fluorescent albumin was used to follow the fate of albumin in OVE26 and normal mice. Compared to normal urine, OVE26 urine contained at least 23 times more intact fluorescent albumin but only 3-fold more 70 kD fluorescent dextran. This indicated that a function other than size selective glomerular sieving contributed to OVE26 albuminuria. Imaging of albumin was similar in normal and diabetic tubules for 3 hrs after injection. However 3 days after injection a subset of OVE26 tubules retained strong albumin fluorescence, which was never observed in normal mice. OVE26 tubules with prolonged retention of injected albumin lost the capacity to take up albumin and there was a significant correlation between tubules unable to eliminate fluorescent albumin and total albuminuria. TUNEL staining revealed a 76-fold increase in cell death in OVE26 tubules that retained fluorescent albumin. These results indicate that failure to process and dispose of internalized albumin leads to impaired albumin uptake, increased albuminuria, and tubule cell apoptosis. PMID:27822483

  2. Expression of cleaved caspase-3 in renal tubular cells in Plasmodium falciparum malaria patients.

    PubMed

    Wichapoon, Benjamas; Punsawad, Chuchard; Viriyavejakul, Parnpen

    2017-01-01

    In Plasmodium falciparum malaria, the clinical manifestation of acute kidney injury (AKI) is commonly associated with acute tubular necrosis (ATN) in the kidney tissues. Renal tubular cells often exhibit various degrees of cloudy swelling, cell degeneration, and frank necrosis. To study individual cell death, this study evaluates the degree of renal tubular necrosis in association with apoptosis in malarial kidneys. Kidney tissues from P. falciparum malaria with AKI (10 cases), and without AKI (10 cases) were evaluated for tubular pathology. Normal kidney tissues from 10 cases served as controls. Tubular necrosis was assessed quantitatively in kidney tissues infected with P. falciparum malaria, based on histopathological evaluation. In addition, the occurrence of apoptosis was investigated using cleaved caspase-3 marker. Correlation between tubular necrosis and apoptosis was analyzed. Tubular necrosis was found to be highest in P. falciparum malaria patients with AKI (36.44% ± 3.21), compared to non-AKI (15.88% ± 1.63) and control groups (2.58% ± 0.39) (all p < 0.001). In the AKI group, the distal tubules showed a significantly higher degree of tubular necrosis than the proximal tubules (p = 0.021) and collecting tubules (p = 0.033). Tubular necrosis was significantly correlated with the level of serum creatinine (r = 0.596, p = 0.006), and the occurrence of apoptosis (r = 0.681, p = 0.001). In malarial AKI, the process of apoptosis occurs in ATN. © 2016 Asian Pacific Society of Nephrology.

  3. Proximal pulmonary vein stenosis detection in pediatric patients: value of multiplanar and 3-D VR imaging evaluation.

    PubMed

    Lee, Edward Y; Jenkins, Kathy J; Muneeb, Muhammad; Marshall, Audrey C; Tracy, Donald A; Zurakowski, David; Boiselle, Phillip M

    2013-08-01

    One of the important benefits of using multidetector computed tomography (MDCT) is its capability to generate high-quality two-dimensional (2-D) multiplanar (MPR) and three-dimensional (3-D) images from volumetric and isotropic axial CT data. However, to the best of our knowledge, no results have been published on the potential diagnostic role of multiplanar and 3-D volume-rendered (VR) images in detecting pulmonary vein stenosis, a condition in which MDCT has recently assumed a role as the initial noninvasive imaging modality of choice. The purpose of this study was to compare diagnostic accuracy and interpretation time of axial, multiplanar and 3-D VR images for detection of proximal pulmonary vein stenosis in children, and to assess the potential added diagnostic value of multiplanar and 3-D VR images. We used our hospital information system to identify all consecutive children (< 18 years of age) with proximal pulmonary vein stenosis who had both a thoracic MDCT angiography study and a catheter-based conventional angiography within 2 months from June 2005 to February 2012. Two experienced pediatric radiologists independently reviewed each MDCT study for the presence of proximal pulmonary vein stenosis defined as ≥ 50% of luminal narrowing on axial, multiplanar and 3-D VR images. Final diagnosis was confirmed by angiographic findings. Diagnostic accuracy was compared using the z-test. Confidence level of diagnosis (scale 1-5, 5 = highest), perceived added diagnostic value (scale 1-5, 5 = highest), and interpretation time of multiplanar or 3-D VR images were compared using paired t-tests. Interobserver agreement was measured using the chance-corrected kappa coefficient. The final study population consisted of 28 children (15 boys and 13 girls; mean age: 5.2 months). Diagnostic accuracy based on 116 individual pulmonary veins for detection of proximal pulmonary vein stenosis was 72.4% (84 of 116) for axial MDCT images, 77.5% (90 of 116 cases) for

  4. Antioxidative effects of fermented sesame sauce against hydrogen peroxide-induced oxidative damage in LLC-PK1 porcine renal tubule cells

    PubMed Central

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Kil, Jeung-Ha

    2014-01-01

    BACKGROUND/OBJECTIVES This study was performed to investigate the in vitro antioxidant and cytoprotective effects of fermented sesame sauce (FSeS) against hydrogen peroxide (H2O2)-induced oxidative damage in renal proximal tubule LLC-PK1 cells. MATERIALS/METHODS 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical (•OH), and H2O2 scavenging assay was used to evaluate the in vitro antioxidant activity of FSeS. To investigate the cytoprotective effect of FSeS against H2O2-induced oxidative damage in LLC-PK1 cells, the cellular levels of reactive oxygen species (ROS), lipid peroxidation, and endogenous antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) were measured. RESULTS The ability of FSeS to scavenge DPPH, •OH and H2O2 was greater than that of FSS and AHSS. FSeS also significantly inhibited H2O2-induced (500 µM) oxidative damage in the LLC-PK1 cells compared to FSS and AHSS (P < 0.05). Following treatment with 100 µg/mL of FSeS and FSS to prevent H2O2-induced oxidation, cell viability increased from 56.7% (control) to 83.7% and 75.6%, respectively. However, AHSS was not able to reduce H2O2-induced cell damage (viability of the AHSS-treated cells was 54.6%). FSeS more effectively suppressed H2O2-induced ROS generation and lipid peroxidation compared to FSS and AHSS (P < 0.05). Compared to the other sauces, FSeS also significantly increased cellular CAT, SOD, and GSH-px activities and mRNA expression (P < 0.05). CONCULUSIONS These results from the present study suggest that FSeS is an effective radical scavenger and protects against H2O2-induced oxidative damage in LLC-PK1 cells by reducing ROS levels, inhibiting lipid peroxidation, and stimulating antioxidant enzyme activity. PMID:24741396

  5. Phospholipase Cβ1 induces membrane tubulation and is involved in caveolae formation

    PubMed Central

    Inaba, Takehiko; Kishimoto, Takuma; Murate, Motohide; Tajima, Takuya; Sakai, Shota; Abe, Mitsuhiro; Makino, Asami; Tomishige, Nario; Ishitsuka, Reiko; Ikeda, Yasuo; Takeoka, Shinji; Kobayashi, Toshihide

    2016-01-01

    Lipid membrane curvature plays important roles in various physiological phenomena. Curvature-regulated dynamic membrane remodeling is achieved by the interaction between lipids and proteins. So far, several membrane sensing/sculpting proteins, such as Bin/amphiphysin/Rvs (BAR) proteins, are reported, but there remains the possibility of the existence of unidentified membrane-deforming proteins that have not been uncovered by sequence homology. To identify new lipid membrane deformation proteins, we applied liposome-based microscopic screening, using unbiased-darkfield microscopy. Using this method, we identified phospholipase Cβ1 (PLCβ1) as a new candidate. PLCβ1 is well characterized as an enzyme catalyzing the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2). In addition to lipase activity, our results indicate that PLCβ1 possessed the ability of membrane tubulation. Lipase domains and inositol phospholipids binding the pleckstrin homology (PH) domain of PLCβ1 were not involved, but the C-terminal sequence was responsible for this tubulation activity. Computational modeling revealed that the C terminus displays the structural homology to the BAR domains, which is well known as a membrane sensing/sculpting domain. Overexpression of PLCβ1 caused plasma membrane tubulation, whereas knockdown of the protein reduced the number of caveolae and induced the evagination of caveolin-rich membrane domains. Taken together, our results suggest a new function of PLCβ1: plasma membrane remodeling, and in particular, caveolae formation. PMID:27342861

  6. TASK-2 K₂p K⁺ channel: thoughts about gating and its fitness to physiological function.

    PubMed

    López-Cayuqueo, Karen I; Peña-Münzenmayer, Gaspar; Niemeyer, María Isabel; Sepúlveda, Francisco V; Cid, L Pablo

    2015-05-01

    TASK-2 (K2P5) was one of the earliest members of the K2P two-pore, four transmembrane domain K(+) channels to be identified. TASK-2 gating is controlled by changes in both extra- and intracellular pH through separate sensors: arginine 224 and lysine 245, located at the extra- and intracellular ends of transmembrane domain 4. TASK-2 is inhibited by a direct effect of CO2 and is regulated by and interacts with G protein subunits. TASK-2 takes part in regulatory adjustments and is a mediator in the chemoreception process in neurons of the retrotrapezoid nucleus where its pHi sensitivity could be important in regulating excitability and therefore signalling of the O2/CO2 status. Extracellular pH increases brought about by HCO3 (-) efflux from proximal tubule epithelial cells have been proposed to couple to TASK-2 activation to maintain electrochemical gradients favourable to HCO3 (-) reabsorption. We demonstrate that, as suspected previously, TASK-2 is expressed at the basolateral membrane of the same proximal tubule cells that express apical membrane Na(+)-H(+)-exchanger NHE-3 and basolateral membrane Na(+)-HCO3 (-) cotransporter NBCe1-A, the main components of the HCO3 (-) transport machinery. We also discuss critically the mechanism by which TASK-2 is modulated and impacts the process of HCO3 (-) reclaim by the proximal tubule epithelium, concluding that more than a mere shift in extracellular pH is probably involved.

  7. Early results for treatment of two- and three-part fractures of the proximal humerus using Contours PHP (proximal humeral plate).

    PubMed

    Biazzo, Alessio; Cardile, Carlo; Brunelli, Luca; Ragni, Paolo; Clementi, Daniele

    2017-04-28

    The management of displaced 2- and 3-part fractures of the proximal humerus is controversial, both in younger and in elderly patients. The purpose of this paper is to evaluate the functional results of the Contours Proximal Humerus Plate (OrthofixR, Bussolengo,Verona, Italy), for the treatment of displaced 2- and 3-part fractures of the proximal humerus. We retrospectively reviewed 55 patients with proximal humerus fractures, who underwent osteosynthesis with Contours Proximal Humerus Plate from December 2011 to March 2015. We had 21 patients with 2-part fractures and with an average age of 67.1 years and 34 patients with 3-part fractures, with average age of 63.6 years. The average union time was 3 months. The mean Constant score was 67 for 2-part fracture group and 64.9 for 3-part fracture group. The difference was not statistically significant (p = 0.18). The overall complication rate was 14.5 %. Six patients underwent additional surgery (10.9%). The most frequent major complication was secondary loss of reduction following varus collapse of the fracture (2 cases). In these patients, there was loss of medial hinge integrity due to impaction and osteoporosis. The placement of the main locking screw in the calcar area to provide inferomedial support is the rational of the Contours Proximal Humerus Plate. Osteosynthesis with Contours Proximal Humerus Plate is a safe system for treating displaced 2- and 3-part fractures of the proximal humerus, with good functional results and complication rates comparable to those reported in the literature.

  8. Inhibitory effect of selective cyclooxygenase-2 inhibitor etoricoxib on human organic anion transporter 3 (hOAT3).

    PubMed

    Honjo, Hiroaki; Uwai, Yuichi; Iwamoto, Kikuo

    2011-04-01

    It is well known that nonsteroidal anti-inflammatory drugs (NSAIDs) delay the elimination of methotrexate. One of the mechanisms is thought to be inhibition of methotrexate uptake via human organic anion transporter 3 (hOAT3, SLC22A8) in the renal proximal tubule by NSAIDs. In this study, we evaluated the inhibitory effects of selective cyclooxygenase-2 inhibitor etoricoxib on hOAT3 by uptake experiments using Xenopus laevis oocytes. The injection of hOAT3 cRNA stimulated the uptake of methotrexate into the oocytes, and its transport was inhibited by etoricoxib. Etoricoxib inhibited estrone sulfate uptake by hOAT3 dose dependently, and the 50% inhibitory concentration was estimated to be 9.8 µM. Eadie-Hofstee plot analysis showed that etoricoxib inhibited hOAT3 in a competitive manner. These findings show that etoricoxib has inhibitory effect on hOAT3, and that the potential is comparable to that of traditional NSAIDs. ©2011 Bentham Science Publishers Ltd.

  9. The Physiology Teacher, Vol. 5 No. 1.

    ERIC Educational Resources Information Center

    Reynolds, Orr E., Ed.

    Outlined in this publication is a basic laboratory exercise which characterizes tubular secretion, using an isolated renal tubule preparation from teleost fish. Background information is given showing how these tubules of teleost fish, particularly marine teleosts, correspond to the proximal tubule of mammalian kidney. Materials needed, including…

  10. Disruption of Core Planar Cell Polarity Signaling Regulates Renal Tubule Morphogenesis but Is Not Cystogenic.

    PubMed

    Kunimoto, Koshi; Bayly, Roy D; Vladar, Eszter K; Vonderfecht, Tyson; Gallagher, Anna-Rachel; Axelrod, Jeffrey D

    2017-10-23

    Oriented cell division (OCD) and convergent extension (CE) shape developing renal tubules, and their disruption has been associated with polycystic kidney disease (PKD) genes, the majority of which encode proteins that localize to primary cilia. Core planar cell polarity (PCP) signaling controls OCD and CE in other contexts, leading to the hypothesis that disruption of PCP signaling interferes with CE and/or OCD to produce PKD. Nonetheless, the contribution of PCP to tubulogenesis and cystogenesis is uncertain, and two major questions remain unanswered. Specifically, the inference that mutation of PKD genes interferes with PCP signaling is untested, and the importance of PCP signaling for cystogenic PKD phenotypes has not been examined. We show that, during proliferative stages, PCP signaling polarizes renal tubules to control OCD. However, we find that, contrary to the prevailing model, PKD mutations do not disrupt PCP signaling but instead act independently and in parallel with PCP signaling to affect OCD. Indeed, PCP signaling that is normally downregulated once development is completed is retained in cystic adult kidneys. Disrupting PCP signaling results in inaccurate control of tubule diameter, a tightly regulated parameter with important physiological ramifications. However, we show that disruption of PCP signaling is not cystogenic. Our results suggest that regulating tubule diameter is a key function of PCP signaling but that loss of this control does not induce cysts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Aldosterone sensitizes connecting tubule glomerular feedback via the aldosterone receptor GPR30

    PubMed Central

    Ren, YiLin; D'Ambrosio, Martin A.; Garvin, Jeffrey L.; Leung, Pablo; Kutskill, Kristopher; Wang, Hong; Peterson, Edward L.

    2014-01-01

    Increasing Na delivery to epithelial Na channels (ENaC) in the connecting tubule (CNT) dilates the afferent arteriole (Af-Art), a process we call connecting tubule glomerular feedback (CTGF). We hypothesize that aldosterone sensitizes CTGF via a nongenomic mechanism that stimulates CNT ENaC via the aldosterone receptor GPR30. Rabbit Af-Arts and their adherent CNTs were microdissected and simultaneously perfused. Two consecutive CTGF curves were elicited by increasing luminal NaCl in the CNT. During the control period, the concentration of NaCl that elicited a half-maximal response (EC50) was 37.0 ± 2.0 mmol/l; addition of aldosterone 10−8 mol/l to the CNT lumen caused a left-shift (decrease) in EC50 to 19.3 ± 1.3 mmol/l (P = 0.001 vs. control; n = 6). Neither the transcription inhibitor actinomycin D nor the translation inhibitor cycloheximide prevented the effect of aldosterone (control EC50 = 34.7 ± 1.9 mmol/l; aldosterone+actinomycin D EC50 = 22.6 ± 1.6 mmol/l; P < 0.001 and control EC50 = 32.4 ± 4.3 mmol/l; aldosterone+cycloheximide EC50 = 17.4 ± 3.3 mmol/l; P < 0.001). The aldosterone antagonist eplerenone prevented the sensitization of CTGF by aldosterone (control EC50 = 33.2 ± 1.7 mmol/l; aldosterone+eplerenone EC50 = 33.5 ± 1.3 mmol/l; n = 7). The GPR30 receptor blocker G-36 blocked the sensitization of CTGF by aldosterone (aldosterone EC50 = 16.5 ± 1.9 mmol/l; aldosterone+G-36 EC50 = 29.0 ± 2.1 mmol/l; n = 7; P < 0.001). Finally, we found that the sensitization of CTGF by aldosterone was mediated, at least in part, by the sodium/hydrogen exchanger (NHE). We conclude that aldosterone in the CNT lumen sensitizes CTGF via a nongenomic effect involving GPR30 receptors and NHE. Sensitized CTGF induced by aldosterone may contribute to renal damage by increasing Af-Art dilation and glomerular capillary pressure (glomerular barotrauma). PMID:24966088

  12. Dietary sodium induces a redistribution of the tubular metabolic workload

    PubMed Central

    Udwan, Khalil; Abed, Ahmed; Roth, Isabelle; Dizin, Eva; Maillard, Marc; Bettoni, Carla; Loffing, Johannes; Wagner, Carsten A.; Edwards, Aurélie

    2017-01-01

    Key points Body Na+ content is tightly controlled by regulated urinary Na+ excretion.The intrarenal mechanisms mediating adaptation to variations in dietary Na+ intake are incompletely characterized.We confirmed and expanded observations in mice that variations in dietary Na+ intake do not alter the glomerular filtration rate but alter the total and cell‐surface expression of major Na+ transporters all along the kidney tubule.Low dietary Na+ intake increased Na+ reabsorption in the proximal tubule and decreased it in more distal kidney tubule segments.High dietary Na+ intake decreased Na+ reabsorption in the proximal tubule and increased it in distal segments with lower energetic efficiency.The abundance of apical transporters and Na+ delivery are the main determinants of Na+ reabsorption along the kidney tubule.Tubular O2 consumption and the efficiency of sodium reabsorption are dependent on sodium diet. Abstract Na+ excretion by the kidney varies according to dietary Na+ intake. We undertook a systematic study of the effects of dietary salt intake on glomerular filtration rate (GFR) and tubular Na+ reabsorption. We examined the renal adaptive response in mice subjected to 7 days of a low sodium diet (LSD) containing 0.01% Na+, a normal sodium diet (NSD) containing 0.18% Na+ and a moderately high sodium diet (HSD) containing 1.25% Na+. As expected, LSD did not alter measured GFR and increased the abundance of total and cell‐surface NHE3, NKCC2, NCC, α‐ENaC and cleaved γ‐ENaC compared to NSD. Mathematical modelling predicted that tubular Na+ reabsorption increased in the proximal tubule but decreased in the distal nephron because of diminished Na+ delivery. This prediction was confirmed by the natriuretic response to diuretics targeting the thick ascending limb, the distal convoluted tubule or the collecting system. On the other hand, HSD did not alter measured GFR but decreased the abundance of the aforementioned transporters compared to NSD

  13. Direct physical contact between intercalated cells in the distal convoluted tubule and the afferent arteriole in mouse kidneys.

    PubMed

    Ren, Hao; Liu, Ning-Yu; Andreasen, Arne; Thomsen, Jesper S; Cao, Liu; Christensen, Erik I; Zhai, Xiao-Yue

    2013-01-01

    Recent physiological studies in the kidney proposed the existence of a secondary feedback mechanism termed 'crosstalk' localized after the macula densa. This newly discovered crosstalk contact between the nephron tubule and its own afferent arteriole may potentially revolutionize our understanding of renal vascular resistance and electrolyte regulation. However, the nature of such a crosstalk mechanism is still debated due to a lack of direct and comprehensive morphological evidence. Its exact location along the nephron, its prevalence among the different types of nephrons, and the type of cells involved are yet unknown. To address these issues, computer assisted 3-dimensional nephron tracing was applied in combination with direct immunohistochemistry on plastic sections and electron microscopy. 'Random' contacts in the cortex were identified by the tracing and excluded. We investigated a total of 168 nephrons from all cortical regions. The results demonstrated that the crosstalk contact existed, and that it was only present in certain nephrons (90% of the short-looped and 75% of the long-looped nephrons). The crosstalk contacts always occurred at a specific position--the last 10% of the distal convoluted tubule. Importantly, we demonstrated, for the first time, that the cells found in the tubule wall at the contact site were always type nonA-nonB intercalated cells. In conclusion, the present work confirmed the existence of a post macula densa physical crosstalk contact.

  14. Estrogen-dependent regulation of sodium/hydrogen exchanger-3 (NHE3) expression via estrogen receptor β in proximal colon of pregnant mice.

    PubMed

    Choijookhuu, Narantsog; Sato, Yoko; Nishino, Tomoya; Endo, Daisuke; Hishikawa, Yoshitaka; Koji, Takehiko

    2012-05-01

    Although constipation is very common during pregnancy, the exact mechanism is unknown. We hypothesized that the involvement of estrogen receptor (ER) in the regulation of electrolyte transporter in the colon leads to constipation. In this study, the intestines of normal female ICR mouse and pregnant mice were examined for the expression of ERα and ERβ by immunohistochemistry and in situ hybridization. ERβ, but not ERα, was expressed in surface epithelial cells of the proximal, but not distal, colon on pregnancy days 10, 15, and 18, but not day 5, and the number of ERβ-positive cells increased significantly during pregnancy. Expression of NHE3, the gene that harbors estrogen response element, examined by immunohistochemistry and western blotting, was localized in the surface epithelial cells of the proximal colon and increased in parallel with ERβ expression. In ovariectomized mice, NHE3 expression was only marginal and was up-regulated after treatment with 17β-estradiol (E(2)), but not E(2) + ICI 182,780 (estrogen receptor antagonist). Moreover, knock-down of ERβ expression by electroporetically transfected siRNA resulted in a significant reduction of NHE3 expression. These results indicate that ERβ regulates the expression of NHE3 in the proximal colon of pregnant mice through estrogen action, suggesting the involvement of increased sodium absorption by up-regulated NHE3 in constipation during pregnancy.

  15. HNF1β Is Essential for Nephron Segmentation during Nephrogenesis

    PubMed Central

    Naylor, Richard W.; Przepiorski, Aneta; Ren, Qun; Yu, Jing

    2012-01-01

    Nephrons comprise a blood filter and an epithelial tubule that is subdivided into proximal and distal segments, but what directs this patterning during kidney organogenesis is not well understood. Using zebrafish, we found that the HNF1β paralogues hnf1ba and hnf1bb, which encode homeodomain transcription factors, are essential for normal segmentation of nephrons. Embryos deficient in hnf1ba and hnf1bb did not express proximal and distal segment markers, yet still developed an epithelial tubule. Initiating hnf1ba/b expression required Pax2a and Pax8, but hnf1ba/b-deficient embryos did not exhibit the expected downregulation of pax2a and pax8 at later stages of development, suggesting complex regulatory loops involving these molecules. Embryos deficient in hnf1ba/b also did not express the irx3b transcription factor, which is responsible for differentiation of the first distal tubule segment. Reciprocally, embryos deficient in irx3b exhibited downregulation of hnf1ba/b transcripts in the distal early segment, suggesting a segment-specific regulatory circuit. Deficiency of hnf1ba/b also led to ectopic expansion of podocytes into the proximal tubule domain. Epistasis experiments showed that the formation of podocytes required wt1a, which encodes the Wilms’ tumor suppressor-1 transcription factor, and rbpj, which encodes a mediator of canonical Notch signaling, downstream or parallel to hnf1ba/b. Taken together, these results suggest that Hnf1β factors are essential for normal segmentation of nephrons during kidney organogenesis. PMID:23160512

  16. HNF1β is essential for nephron segmentation during nephrogenesis.

    PubMed

    Naylor, Richard W; Przepiorski, Aneta; Ren, Qun; Yu, Jing; Davidson, Alan J

    2013-01-01

    Nephrons comprise a blood filter and an epithelial tubule that is subdivided into proximal and distal segments, but what directs this patterning during kidney organogenesis is not well understood. Using zebrafish, we found that the HNF1β paralogues hnf1ba and hnf1bb, which encode homeodomain transcription factors, are essential for normal segmentation of nephrons. Embryos deficient in hnf1ba and hnf1bb did not express proximal and distal segment markers, yet still developed an epithelial tubule. Initiating hnf1ba/b expression required Pax2a and Pax8, but hnf1ba/b-deficient embryos did not exhibit the expected downregulation of pax2a and pax8 at later stages of development, suggesting complex regulatory loops involving these molecules. Embryos deficient in hnf1ba/b also did not express the irx3b transcription factor, which is responsible for differentiation of the first distal tubule segment. Reciprocally, embryos deficient in irx3b exhibited downregulation of hnf1ba/b transcripts in the distal early segment, suggesting a segment-specific regulatory circuit. Deficiency of hnf1ba/b also led to ectopic expansion of podocytes into the proximal tubule domain. Epistasis experiments showed that the formation of podocytes required wt1a, which encodes the Wilms' tumor suppressor-1 transcription factor, and rbpj, which encodes a mediator of canonical Notch signaling, downstream or parallel to hnf1ba/b. Taken together, these results suggest that Hnf1β factors are essential for normal segmentation of nephrons during kidney organogenesis.

  17. Caudal migration and proliferation of renal progenitors regulates early nephron segment size in zebrafish.

    PubMed

    Naylor, Richard W; Dodd, Rachel C; Davidson, Alan J

    2016-10-19

    The nephron is the functional unit of the kidney and is divided into distinct proximal and distal segments. The factors determining nephron segment size are not fully understood. In zebrafish, the embryonic kidney has long been thought to differentiate in situ into two proximal tubule segments and two distal tubule segments (distal early; DE, and distal late; DL) with little involvement of cell movement. Here, we overturn this notion by performing lineage-labelling experiments that reveal extensive caudal movement of the proximal and DE segments and a concomitant compaction of the DL segment as it fuses with the cloaca. Laser-mediated severing of the tubule, such that the DE and DL are disconnected or that the DL and cloaca do not fuse, results in a reduction in tubule cell proliferation and significantly shortens the DE segment while the caudal movement of the DL is unaffected. These results suggest that the DL mechanically pulls the more proximal segments, thereby driving both their caudal extension and their proliferation. Together, these data provide new insights into early nephron morphogenesis and demonstrate the importance of cell movement and proliferation in determining initial nephron segment size.

  18. Comparative ultrastructure of coxal glands in unfed larvae of Leptotrombidium orientale (Schluger, 1948) (Trombiculidae) and Hydryphantes ruber (de Geer, 1778) (Hydryphantidae).

    PubMed

    Shatrov, Andrey B

    2017-11-01

    Coxal glands of unfed larvae Leptotrombidium orientale (Schluger, 1948) (Trombiculidae), a terrestrial mite parasitizing vertebrates, and Hydryphantes ruber (de Geer, 1778) (Hydryphantidae), a water mite parasitizing insects were studied using transmission electron microscopy. In both species, the coxal glands are represented by a paired tubular organ extending on the sides of the brain from the mouthparts to the frontal midgut wall and are formed of the cells arranged around the central lumen. As in other Parasitengona, the coxal glands are devoid of a proximal sacculus. The excretory duct, joining with ducts of the prosomal salivary glands constitutes the common podocephalic duct, opening into the subcheliceral space. The coxal glands of L. orientale are composed of a distal tubule with a basal labyrinth, an intermediate segment without labyrinth, and a proximal tubule bearing tight microvilli on the apical cell surface and coiled around the intermediate segment. The coxal glands of H. ruber mainly consist of the uniformly organized proximal tubule with apical microvilli of the cells lacking the basal labyrinth. This tubule shows several loops running backward and forward in a vertical plane on the side of the brain. In contrast to L. orientale, larvae of H. ruber reveal a terminal cuticular sac/bladder for accumulation of secreted fluids. Organization of the coxal glands depends on the ecological conditions of mites. Larvae of terrestrial L. orientale possess distal tubule functioning in re-absorption of ions and water. Conversely, water mite larvae H. ruber need to evacuate of the water excess, so the filtrating proximal tubule is prominent. © 2017 Wiley Periodicals, Inc.

  19. New insights on stromules: stroma filled tubules extended by independent plastids.

    PubMed

    Schattat, Martin H; Klösgen, Ralf Bernd; Mathur, Jaideep

    2012-09-01

    The recognition of stromules as sporadically extended stroma filled tubules from all kinds of plastids constitutes one of the major insights that resulted from the direct application of green fluorescent protein aided imaging of living plant cells. Observations of dynamic green fluorescent stromules strongly suggested that plastids frequently interact with each other while photo-bleaching of interconnected plastids indicated that proteins can move within the stroma filled tubules. These observations readily fit into the prevailing concept of the endosymbiogenic origins of plastids and provided stromules the status of conduits for inter-plastid communication and macromolecule transfer. However, experimental evidence obtained recently through the use of photoconvertible protein labeled stromules strongly supports plastid independence rather than their interconnectivity. Additional information on stress conditions inducing stromules and observations on their alignment with other organelles suggests that the major role of stromules is to increase the interactive surface of a plastid with the rest of the cytoplasm.

  20. Protective Effect of Urtica dioica L. (Urticaceae) on Morphometric and Morphologic Alterations of Seminiferous Tubules in STZ Diabetic Rats

    PubMed Central

    Golalipour, Mohammad Jafar; Kabiri Balajadeh, Babak; Ghafari, Soraya; Azarhosh, Ramin; Khori, Vahid

    2011-01-01

    Objective(s) Urtica dioica L. has been known as a medicinal plant in the world. This study was conducted to determine the effects of the hydroalcoholic extract of Urtica dioica leaves on seminiferous tubules of diabetic rats. Materials and Methods Animals were allocated to control, diabetic and protective groups. Treated animals received extract of U. dioica (100 mg/ kg/ day) IP for the first 5 days and STZ injection on the 6th day. After 5 weeks, testes removed and stained with H&E technique. Results Tubular cell disintegration, sertoli and spermatogonia cell vacuolization, and decrease in sperm concentration observed in diabetic in comparison with control and protective groups. External seminiferous tubular diameter and seminiferous epithelial height significantly reduced (P< 0.05) in diabetic compared with controls, and these parameters increased (P< 0.05) in the treated compared with diabetics. Conclusion Hydroalcoholic extract of U. dioica, before induction of diabetes; has protective role on seminiferous tubules alterations. PMID:23493848

  1. Contraluminal bicarbonate transport in the proximal tubule of the rat kidney.

    PubMed

    Ullrich, K J; Papavassiliou, F

    1987-11-01

    In order to measure the contraluminal bicarbonate flux in situ we applied the stopped flow capillary microperfusion technique and measured the influx of 14C-bicarbonate buffer into cortical tubular cells at pH 8. It was found that the influx in percent of the starting concentration is larger at 20 mmol/l bicarbonate than at 1 mmol/l, indicating a sigmoidal type influx curve. At 20 mmol/l bicarbonate the influx was inhibited by 44%, when Na+ was replaced by choline. Replacement of gluconate by chloride or sulfate did not change H14CO3- influx. At this bicarbonate concentration, influx is inhibited by 10 mmol/l 4,4'-diisothiocyanato-2,2'-stilbenedisulfonate (DIDS) (22%), 5 mmol/l of the carbonic anhydrase blocker ethoxyzolamide (40%) as well as by 5 mmol/l of the arginine reagent 4-nitrophenylglyoxal (31%). At 1 mmol/l bicarbonate starting concentration, bicarbonate influx was inhibited when chloride in the perfusate was present or when sulphate was added. Replacement of sodium by choline did not change bicarbonate influx. Addition of DIDS and 8-anilino-naphthalene-1-sulfonate (5 mmol/l each) inhibited 1 mmol/l bicarbonate influx 39 and 49%, respectively. The para-amino-hippurate transport blocker dipropylsulfamoyl-benzoate (probenecid), the chloride channel blocker 5-nitro-2'-(3-phenylpropylamino)-benzoate (NPPB), the SH group blocker 2-(3-hydroxymercuri-2-methoxypropyl)-carbamoyl-phenoxyacetate++ + (mersalyl), and formate did not inhibit bicarbonate influx, at 20 and at 1 mmol/l H14CO3- starting concentration.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. The development of a virtual 3D model of the renal corpuscle from serial histological sections for E-learning environments.

    PubMed

    Roth, Jeremy A; Wilson, Timothy D; Sandig, Martin

    2015-01-01

    Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated with improved learning outcomes, but similar tools have not been created for histology education to visualize complex cellular structure-function relationships. This study outlines steps in creating a virtual 3D model of the renal corpuscle from serial, semi-thin, histological sections obtained from epoxy resin-embedded kidney tissue. The virtual renal corpuscle model was generated by digital segmentation to identify: Bowman's capsule, nuclei of epithelial cells in the parietal capsule, afferent arteriole, efferent arteriole, proximal convoluted tubule, distal convoluted tubule, glomerular capillaries, podocyte nuclei, nuclei of extraglomerular mesangial cells, nuclei of epithelial cells of the macula densa in the distal convoluted tubule. In addition to the imported images of the original sections the software generates, and allows for visualization of, images of virtual sections generated in any desired orientation, thus serving as a "virtual microtome". These sections can be viewed separately or with the 3D model in transparency. This approach allows for the development of interactive e-learning tools designed to enhance histology education of microscopic structures with complex cellular interrelationships. Future studies will focus on testing the efficacy of interactive virtual 3D models for histology education. © 2015 American Association of Anatomists.

  3. [Finite element analysis of lumbar pelvic and proximal femur model with simulate lumbar rotatory manipulation].

    PubMed

    Hu, Hua; Xiong, Chang-Yuan; Han, Guo-Wu

    2012-07-01

    To study the changes of displacement and stress in the model of lumbar pelvic and proximal femur during lumbar rotatory manipulation. The date of lumbar pelvic and proximal femur CT scan by Mimics 10.01 software was established a lumbar pelvic and proximal femur geometric model, then the model was modified with Geomagic 9, at last the modified model was imported into hypermesh 10 and meshed with tetrahedron, at the same time,add disc and ligaments. According to the principle of lumbar rotatory manipulation,the lumbar rotatory manipulation were decomposed. The mechanical parameters assigned into the three-dimensional finite element model. The changes of displacement and stress in the model of lunbar pelvic and proximal femur under the four conditions were calculated with Abaqus model of Hypermesh 10. 1) Under the same condition,the displacement order of lumbar was L1>L2>L3>L5 L5, anterior column > middle column > posterior column. 2) Under the different conditions, the displacement order of lumbar,case 3>case 1>case 4>case 2. 3) Under the same conditions, the displacement order of lumbar inter-vertebral disc from L1,2 to L5S1 was L1,2>L2,3>L3,4>L4,5>L5S1, as for the same inter-vertebral disc, the order was: second quadrant>third quadrant>first quadrant>fourth quadrant. 4) Under the different conditions,the displacement order of the inter-vertebral disc was L1,2>L2,3>L3,4>L4,5>L5S1, but to same inter-vertebral disc: case 3>case 4>case 1 >case 2. 5) There were apparent displacement and stress concentration in pelvis and hip during the manipulation. 1) The principles of lumbar rotation manipulation closely related to the relative displacement caused by rotation of various parts of lumbar pelvic and proximal femur model; 2) During the process of lumbar rotatory manipulation, the angle of lateral bending and flexion can not be randomly increased; 3) During the process of lumbar rotatory manipulation, all the conditions of lumbar pelvic and proximal femur must be

  4. Longitudinal Proximity Effect, Lateral Inverse Proximity Effect, and Nonequilibrium Superconductivity in Transition-edge Sensors

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.

    2010-01-01

    We have recently shown that normal-metal/superconductor (N/S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior. Our measurements were explained in terms of a longitudinal proximity effect model in which superconducting order from the higher transition temperature leads is induced into the TES bilayer plane over remarkably long distances (up to 290 micron). Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We explain our results of an effect converse to the longitudinal proximity effect (LoPE), the lateral inverse proximity effect (LaiPE), for which the order parameter in the N/S bilayer is reduced due to the neighboring N structures. We present resistance and critical current measurements as a function of temperature and magnetic field taken on square Mo/Au bilayer TESs with lengths ranging from 8 to 130 micron with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperature scale approximately as the inverse square of the in-plane N-structure separation distance, without appreciable broadening of the transition width. We find TESs with added Au structures exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 x 10(exp -10) s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition

  5. Longitudinal Proximity Effect, Lateral Inverse Proximity Effect, and Nonequilibrium Superconductivity in Transition-Edge Sensors

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.

    2010-01-01

    We have recently shown that normal-metal/superconductor (N /S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior. Our measurements were explained in terms of a longitudinal proximity effect model in which superconducting order from the higher transition temperature leads is induced into the TES bilayer plane over remarkably long distances (up to 290 micron). Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We explain our results in terms of an effect converse to the longitudinal proximity effect (LoPE), the lateral inverse proximity effect (LaiPE), for which the order parameter in the N /S bilayer is reduced due to the neighboring N structures. We present resistance and critical current measurements as a function of temperature and magnetic field taken on square Mo/Au bilayer TESs with lengths ranging from 8 to 130 micron with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperatures scale approximately as the inverse square of the in-plane N-structure separation distance, without appreciable broadening of the transition width. We find TESs with added Au structures exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 x 10(exp -10) s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition.

  6. Vitality of Enterococcus faecalis inside dentinal tubules after five root canal disinfection methods

    PubMed Central

    Vatkar, Niranjan Ashok; Hegde, Vivek; Sathe, Sucheta

    2016-01-01

    Aim: To compare the vitality of Enterococcus faecalis within dentinal tubules after subjected to five root canal disinfection methods. Materials and Methods: Dentin blocks (n = 60) were colonized with E. faecalis. After 4 weeks of incubation, the dentin blocks were divided into one control and five test groups (n = 10 each). The root canals of test groups were subjected to one of the disinfection methods, namely, normal saline (NS), sodium hypochlorite (NaOCl), chlorhexidine digluconate (CHX), neodymium-doped yttrium aluminum garnet (Nd: YAG) laser, and diode laser. The effect of disinfection methods was assessed by LIVE/DEAD BacLight stain under the confocal laser scanning microscopy to determine the “zone of dead bacteria” (ZDB). Mean values were calculated for ZDB and the difference between groups was established. Results: Penetration of E. faecalis was seen to a depth of >1000 μm. Viable bacteria were detected with NS irrigation. NaOCl and CHX showed partial ZDB. When the root canals were disinfected with Nd: YAG and diode lasers, no viable bacteria were found. Conclusion: E. faecalis has the ability to colonize inside dentinal tubules to a depth of >1000 μm. In contrast to conventional irrigants, both Nd: YAG and diode lasers were effective in eliminating the vitality of E. faecalis. NS, NaOCl, and CHX showed viable bacteria remaining in dentinal tubules. PMID:27656064

  7. Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride.

    PubMed

    Green, R; Giebisch, G

    1975-11-01

    Simultaneous perfusion of peritubular capillaries and proximal convoluted tubules was used to study the effect of varying transepithelial ionic gradients on ionic fluxes. Results show that net sodium influx and volume flux was one-third of normal when bicarbonate was absent, no chloride gradient existed, and glucose and amino acids were absent. Addition of bicarbonate to the luminal fluid did not restore the flux to normal, but peritubular bicarbonate did restore it. A chloride gradient imposed when no bicarbonate was present could only increase the fluxes slightly, but his flux was significant even after cyanide had poisoned transport. Reversing the chloride concentration gradient decreased the net sodium and volume fluxes whether bicarbonate was present or not. Glucose had no effect on fluxes, but substitution of Na by choline abolished them entirely. It is concluded that sodium is actively transported, that a chloride concentration gradient from lumen to plasma could account for up to 20% of net transport, and that peritubular bicarbonate is necessary for normal rates of sodium and fluid absorption.

  8. Proximity operations considerations affecting spacecraft design

    NASA Technical Reports Server (NTRS)

    Staas, Steven K.

    1991-01-01

    Experience from several recent spacecraft development programs, such as Space Station Freedom (SSF) and the Orbital Maneuvering Vehicle (OMV) has shown the need for factoring proximity operations considerations into the vehicle design process. Proximity operations, those orbital maneuvers and procedures which involve operation of two or more spacecraft at ranges of less than one nautical mile, are essential to the construction, servicing, and operation of complex spacecraft. Typical proximity operations considerations which drive spacecraft design may be broken into two broad categories; flight profile characteristics and concerns, and use of various spacecraft systems during proximity operations. Proximity operations flight profile concerns include the following: (1) relative approach/separation line; (2) relative orientation of the vehicles; (3) relative translational and rotational rates; (4) vehicle interaction, in the form of thruster plume impingement, mating or demating operations, or uncontrolled contact/collision; and (5) active vehicle piloting. Spacecraft systems used during proximity operations include the following: (1) sensors, such as radar, laser ranging devices, or optical ranging systems; (2) effector hardware, such as thrusters; (3) flight control software; and (4) mating hardware, needed for docking or berthing operations. A discussion of how these factors affect vehicle design follows, addressing both active and passive/cooperative vehicles.

  9. Efficacy of Modified Bioactive Glass for Dentin Remineralization and Obstruction of Dentinal Tubules.

    PubMed

    Saffarpour, Mahshid; Mohammadi, Maryam; Tahriri, Mohammadreza; Zakerzadeh, Azadeh

    2017-07-01

    This study assessed the efficacy of modified bioactive glass (MBG) for dentin remineralization and obstruction of dentinal tubules. Thirty-six dentin discs were made from 20 third molars and were stored in 12% lactic acid solution for two weeks to induce demineralization. The samples were divided into three groups (n=12): 1- BG, 2- BG modified with 5% strontium (Sr) and 3- BG modified with 10% Sr. After applying the BG, the samples were stored in artificial saliva for 7, 14 and 21 days. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Diffraction (XRD) analysis, Scanning Electron Microscopy (SEM), and Energy-Dispersive X-ray (EDX) analysis were used to assess remineralization. Also, 6 dentin discs were divided into three groups of BG, BG modified with 5% Sr and BG modified with 10% Sr, to examine tubular occlusion. The discs were etched using 0.5M of EDTA for two minutes and were stored in artificial saliva for 7 days. Changes in dentin surface morphology were evaluated under SEM. Group 3 showed high rates of remineralization at days 7 and 14, although the rate decreased at day 21. Group 2 exhibited high rates of remineralization at days 7, 14 and 21. Dentinal tubules were partially occluded by BG and BG modified with 5% Sr, while they were almost completely obstructed after the use of BG modified with 10% Sr. Strontium increases remineralization. Addition of 10% Sr to BG enhances apatite formation; however, the apatite dissolves over time. Addition of 5% Sr to BG stabilizes the apatite lattice and increases the remineralization.

  10. Carcinogens induce loss of the primary cilium in human renal proximal tubular epithelial cells independently of effects on the cell cycle

    PubMed Central

    Radford, Robert; Slattery, Craig; Jennings, Paul; Blacque, Oliver; Pfaller, Walter; Gmuender, Hans; Van Delft, Joost; Ryan, Michael P.

    2012-01-01

    The primary cilium is an immotile sensory and signaling organelle found on the majority of mammalian cell types. Of the multitude of roles that the primary cilium performs, perhaps some of the most important include maintenance of differentiation, quiescence, and cellular polarity. Given that the progression of cancer requires disruption of all of these processes, we have investigated the effects of several carcinogens on the primary cilium of the RPTEC/TERT1 human proximal tubular epithelial cell line. Using both scanning electron microscopy and immunofluorescent labeling of the ciliary markers acetylated tubulin and Arl13b, we confirmed that RPTEC/TERT1 cells express primary cilium upon reaching confluence. Treatment with the carcinogens ochratoxin A (OTA) and potassium bromate (KBrO3) caused a significant reduction in the number of ciliated cells, while exposure to nifedipine, a noncarcinogenic renal toxin, had no effect on primary cilium expression. Flow cytometric analysis of the effects of all three compounds on the cell cycle revealed that only KBrO3 resulted in an increase in the proportion of cells entering the cell cycle. Microarray analysis revealed dysregulation of multiple pathways affecting ciliogenesis and ciliary maintenance following OTA and KBrO3 exposure, which were unaffected by nifedipine exposure. The primary cilium represents a unique physical checkpoint with relevance to carcinogenesis. We have shown that the renal carcinogens OTA and KBrO3 cause significant deciliation in a model of the proximal tubule. With KBrO3, this was followed by reentry into the cell cycle; however, deciliation was not found to be associated with reentry into the cell cycle following OTA exposure. Transcriptomic analysis identified dysregulation of Wnt signaling and ciliary trafficking in response to OTA and KBrO3 exposure. PMID:22262483

  11. Dirac-electron-mediated magnetic proximity effect in topological insulator/magnetic insulator heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingda; Song, Qichen; Zhao, Weiwei

    The possible realization of dissipationless chiral edge current in a topological insulator/magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. We report a polarized neutron reflectometry observation of Dirac-electron-mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi 0.2Sb 0.8) 2Te 3/magnetic insulator EuS heterostructure. We are able to maximize the proximity-induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the Dirac point. A phenomenological model based on diamagnetic screeningmore » is developed to explain the suppressed proximity-induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator heterointerface for low-power spintronic applications.« less

  12. Dirac-electron-mediated magnetic proximity effect in topological insulator/magnetic insulator heterostructures

    DOE PAGES

    Li, Mingda; Song, Qichen; Zhao, Weiwei; ...

    2017-11-01

    The possible realization of dissipationless chiral edge current in a topological insulator/magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. We report a polarized neutron reflectometry observation of Dirac-electron-mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi 0.2Sb 0.8) 2Te 3/magnetic insulator EuS heterostructure. We are able to maximize the proximity-induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the Dirac point. A phenomenological model based on diamagnetic screeningmore » is developed to explain the suppressed proximity-induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator heterointerface for low-power spintronic applications.« less

  13. Aquatic models for the study of renal transport function and pollutant toxicity.

    PubMed Central

    Miller, D S

    1987-01-01

    Studies of renal cell transport mechanisms and their impairment by xenobiotics are often limited by technical difficulties related to renal tubule complexity. Problems include the juxtaposition of multiple tubule segments with different transport functions and severely limited access to the tubular lumen. Some limitations can be overcome by the careful selection of an appropriate aquatic experimental system. Two aquatic models for the vertebrate proximal segment are discussed here. The first is the kidney from certain marine flounder, which offers the following advantages: long-term viability, little tissue of nonproximal origin, and easy tubule isolation. Data are presented to demonstrate how studies with flounder kidney can be used to elucidate cellular mechanisms whereby different classes of toxic pollutants may interact. Results from these experiments indicate that the excretion of certain anionic xenobiotics can be delayed by other anionic xenobiotics that compete for secretory transport sites and by compounds that disrupt cellular ion gradients and energy metabolism needed to drive transport. The second system is the crustacean urinary bladder, a simple, flatsheet epithelium. Bladder morphology and transport physiology closely resemble those of vertebrate proximal segment. Electron micrographs show a brush border membrane at the luminal surface, numerous mitochondria, and an infolded serosal membrane, while in vivo and in vitro transport studies show reabsorption of NaCl, nutrients and water and secretion of organic cations; organic anions are secreted in bladders from some species and reabsorbed in others. Moreover, since bladders can be mounted as flat sheets in flux chambers, studies with this tissue avoid the problems of complex renal tubule geometry and tissue heterogeneity that limit transport studies in proximal tubule. Images FIGURE 3. FIGURE 6. PMID:3297665

  14. Effectiveness of different final irrigation techniques and placement of endodontic sealer into dentinal tubules.

    PubMed

    Oliveira, Kauhanna Vianna de; Silva, Bruno Marques da; Leonardi, Denise Piotto; Crozeta, Bruno Monguilhott; Sousa-Neto, Manoel Damião de; Baratto-Filho, Flares; Gabardo, Marilisa Carneiro Leão

    2017-12-18

    The aim of this study was to compare two irrigation techniques and four devices for endodontic sealer placement into the dentinal tubules. Ninety-nine single-rooted human teeth were instrumented and allocated to either the control (CO) (n=11) or experimental groups according to the irrigation method: syringe and NaveTip needle (NT) (n=44), and EndoActivator (EA) (n=44). These groups were subdivided according to sealer placement into K-File (KF), lentulo spiral (LS), Easy Clean (EC), and EndoActivator (EA) subgroups. Moreover, the distances of 5 mm and 2 mm from the apex were analyzed. The teeth were obturated with AH Plus and GuttaCore X3. Analyses were performed by scanning electron microscopy associated to cathodoluminescence. The percentage and maximum depth of sealer penetration were measured. Data were evaluated by three-way analysis of variance (ANOVA) and Games-Howell test (p<0.05). EA was superior to NT in percentage of sealer penetration. EC was significantly superior to EA (subgroup) for sealer penetration, and both improved the percentage of sealer penetration when compared to LS. Better sealer penetration was observed at the distance of 5 mm from the apex. Sealer penetration into the dentinal tubules was significantly improved by sonic irrigant activation.

  15. Biomechanical Comparison of 3 Inferiorly Directed Versus 3 Superiorly Directed Locking Screws on Stability in a 3-Part Proximal Humerus Fracture Model.

    PubMed

    Donohue, David M; Santoni, Brandon G; Stoops, T Kyle; Tanner, Gregory; Diaz, Miguel A; Mighell, Mark

    2018-06-01

    To quantify the stability of 3 points of inferiorly directed versus 3 points of superiorly directed locking screw fixation compared with the full contingent of 6 points of locked screw fixation in the treatment of a 3-part proximal humerus fracture. A standardized 3-part fracture was created in 10 matched pairs (experimental groups) and 10 nonmatched humeri (control group). Osteosynthesis was performed using 3 locking screws in the superior hemisphere of the humeral head (suspension), 3 locking screws in the inferior hemisphere (buttress), or the full complement of 6 locking screws (control). Specimens were tested in varus cantilever bending (7.5 Nm) to 10,000 cycles or failure. Construct survival (%) and the cycles to failure were compared. Seven of 10 controls survived the 10,000-cycle runout (70%: 8193 average cycles to failure). No experimental constructs survived the 10,000-cycle runout. Suspension and buttress screw groups failed an average of 331 and 516 cycles, respectively (P = 1.00). The average number of cycles to failure and the number of humeri surviving the 10,000-cycle runout were greater in the control group than in the experimental groups (P ≤ 0.006). Data support the use of a full contingent of 6 points of locking screw fixation over 3 superior or 3 inferior points of fixation in the treatment of a 3-part proximal humerus fracture with a locking construct. No biomechanical advantage to the 3 buttress or 3 suspension screws used in isolation was observed.

  16. Appearance of the bona fide spiral tubule of ORF virus is dependent on an intact 10-kilodalton viral protein.

    PubMed

    Spehner, D; De Carlo, S; Drillien, R; Weiland, F; Mildner, K; Hanau, D; Rziha, H-J

    2004-08-01

    Parapoxviruses can be morphologically distinguished from other poxviruses in conventional negative staining electron microscopy (EM) by their ovoid appearance and the spiral tubule surrounding the virion's surface. However, this technique may introduce artifacts. We have examined Orf virus (ORFV; the prototype species of the Parapoxvirus genus) by cryoelectron microscopy (cryo-EM) and cryo-negative staining EM. From these studies we suggest that the shape and unique spiral tubule are authentic features of the parapoxviruses. We also constructed an ORFV mutant deleted of a gene encoding a 10-kDa protein, which is an orthologue of the vaccinia virus (VACV) 14-kDa fusion protein, and investigated its ultrastructure. This mutant virus multiplied slowly in permissive cells and produced infectious but morphologically aberrant particles. Mutant virions lacked the spiral tubule but displayed short disorganized tubules similar to those observed on the surface of VACV. In addition, thin extensions or loop-like structures were appended to the ORFV mutant particles. We suggest that these appended structures arise from a failure of the mutant virus particles to properly seal and that the sealing activity is dependent on the 10-kDa protein.

  17. Expression of cell adhesion molecules in the normal and T3 blocked development of the tadpole's kidney of Bufo arenarum (Amphibian, Anuran, Bufonidae).

    PubMed

    Izaguirre, M F; García-Sancho, M N; Miranda, L A; Tomas, J; Casco, V H

    2008-08-01

    Cell adhesion molecules act as signal transducers from the extracellular environment to the cytoskeleton and the nucleus and consequently induce changes in the expression pattern of structural proteins. In this study, we showed the effect of thyroid hormone (TH) inhibition and arrest of metamorphosis on the expression of E-cadherin, beta-and alpha-catenin in the developing kidney of Bufo arenarum. Cell adhesion molecules have selective temporal and spatial expression during development suggesting a specific role in nephrogenesis. In order to study mechanisms controlling the expression of adhesion molecules during renal development, we blocked the B. arenarum metamorphosis with a goitrogenic substance that blocks TH synthesis. E-cadherin expression in the proximal tubules is independent of thyroid control. However, the blockage of TH synthesis causes up-regulation of E-cadherin in the collecting ducts, the distal tubules and the glomeruli. The expression of beta-and alpha-catenin in the collecting ducts, the distal tubules, the glomeruli and the mesonephric mesenchyme is independent of TH. TH blockage causes up-regulation of beta-and alpha-catenin in the proximal tubules. In contrast to E-cadherin, the expression of the desmosomal cadherin desmoglein 1 (Dsg-1) is absent in the control of the larvae kidney during metamorphosis and is expressed in some interstitial cells in the KClO4 treated larvae. According to this work, the Dsg-1 expression is down-regulated by TH. We demonstrated that the expression of E-cadherin, Dsg-1, beta-catenin and alpha-catenin are differentially affected by TH levels, suggesting a hormone-dependent role of these proteins in the B. arenarum renal metamorphosis.

  18. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery

    PubMed Central

    Dennis, Megan K.; Mantegazza, Adriana R.; Snir, Olivia L.; Tenza, Danièle; Acosta-Ruiz, Amanda; Delevoye, Cédric; Zorger, Richard; Sitaram, Anand; de Jesus-Rojas, Wilfredo; Ravichandran, Keerthana; Rux, John; Sviderskaya, Elena V.; Bennett, Dorothy C.; Raposo, Graça; Setty, Subba Rao Gangi

    2015-01-01

    Hermansky–Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2–deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2–deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation. PMID:26008744

  19. Changes of myoid and endothelial cells in the peritubular wall during contraction of the seminiferous tubule.

    PubMed

    Losinno, Antonella D; Sorrivas, Viviana; Ezquer, Marcelo; Ezquer, Fernando; López, Luis A; Morales, Alfonsina

    2016-08-01

    The wall of the seminiferous tubule in rodents consists of an inner layer of myoid cells covered by an outer layer of endothelial cells. Myoid cells are a type of smooth muscle cell containing α-actin filaments arranged in two independent layers that contract when stimulated by endothelin-1. The irregular surface relief of the tubular wall is often considered a hallmark of contraction induced by a variety of stimuli. We examine morphological changes of the rat seminiferous tubule wall during contraction by a combination of light, confocal, transmission and scanning electron microscopy. During ET-1-induced contraction, myoid cells changed from a flat to a conical shape, but their actin filaments remained in independent layers. As a consequence of myoid cell contraction, the basement membrane became wavy, orientation of collagen fibers in the extracellular matrix was altered and the endothelial cell layer became folded. To observe the basement of the myoid cell cone, the endothelial cell monolayer was removed by collagenase digestion prior to SEM study. In contracted tubules, it is possible to distinguish cell relief: myoid cells have large folds on the external surface oriented parallel to the tubular axis, whereas endothelial cells have numerous cytoplasmic projections facing the interstitium. The myoid cell cytoskeleton is unusual in that the actin filaments are arranged in two orthogonal layers, which adopt differing shapes during contraction with myoid cells becoming cone-shaped. This arrangement impacts on other components of the seminiferous tubule wall and affects the propulsion of the tubular contents to the rete testis.

  20. The pelvic kidney of male Ambystoma maculatum (Amphibia, urodela, ambystomatidae) with special reference to the sexual collecting ducts.

    PubMed

    Siegel, Dustin S; Sever, David M; Aldridge, Robert D

    2010-12-01

    This study details the gross and microscopic anatomy of the pelvic kidney in male Ambystoma maculatum. The nephron of male Ambystoma maculatum is divided into six distinct regions leading sequentially away from a renal corpuscle: (1) neck segment, which communicates with the coelomic cavity via a ventrally positioned pleuroperitoneal funnel, (2) proximal tubule, (3) intermediate segment, (4) distal tubule, (5) collecting tubule, and (6) collecting duct. The proximal tubule is divided into a vacuolated proximal region and a distal lysosomic region. The basal plasma membrane is modified into intertwining microvillus lamellae. The epithelium of the distal tubule varies little along its length and is demarcated by columns of mitochondria with their long axes oriented perpendicular to the basal lamina. The distal tubule possesses highly interdigitating microvillus lamellae from the lateral membranes and pronounced foot processes of the basal membrane that are not intertwined, but perpendicular to the basal lamina. The collecting tubule is lined by an epithelium with dark and light cells. Light cells are similar to those observed in the distal tuble except with less mitochondria and microvillus lamellae of the lateral and basal plasma membrane. Dark cells possess dark euchromatic nuclei and are filled with numerous small mitochondria. The epithelium of the neck segment, pleuroperitoneal funnel, and intermediate segment is composed entirely of ciliated cells with cilia protruding from only the central portion of the apical plasma membrane. The collecting duct is lined by a highly secretory epithelium that produces numerous membrane bound granules that stain positively for neutral carbohydrates and proteins. Apically positioned ciliated cells are intercalated between secretory cells. The collecting ducts anastomose caudally and unite with the Wolffian duct via a common collecting duct. The Wolffian duct is secretory, but not to the extent of the collecting duct

  1. Prenatal programming of rat cortical collecting tubule sodium transport.

    PubMed

    Cheng, Chih-Jen; Lozano, German; Baum, Michel

    2012-03-15

    Prenatal insults have been shown to lead to elevated blood pressure in offspring when they are studied as adults. Prenatal administration of dexamethasone and dietary protein deprivation have demonstrated that there is an increase in transporter abundance for a number of nephron segments but not the subunits of the epithelial sodium channel (ENaC) in the cortical collecting duct. Recent studies have shown that aldosterone is elevated in offspring of protein-deprived mothers when studied as adults, but the physiological importance of the increase in serum aldosterone is unknown. As an indirect measure of ENaC activity, we compared the natriuretic response to benzamil in offspring of mothers who ate a low-protein diet (6%) with those who ate a normal diet (20%) for the last half of pregnancy. The natriuretic response to benzamil was greater in the 6% group (821.1 ± 161.0 μmol/24 h) compared with the 20% group (279.1 ± 137.0 μmol/24 h), consistent with greater ENaC activity in vivo (P < 0.05). In this study, we also directly studied cortical collecting tubule function from adult rats using in vitro microperfusion. There was no difference in basal or vasopressin-stimulated osmotic water permeability. However, while cortical collecting ducts of adult offspring whose mothers ate a 20% protein diet had no sodium transport (-1.9 ± 3.1 pmol·mm(-1)·min(-1)), the offspring of rats that ate a 6% protein diet during the last half of pregnancy had a net sodium flux of 10.7 ± 2.6 pmol·mm(-1)·min(-1) (P = 0.01) in tubules perfused in vitro. Sodium transport was measured using ion-selective electrodes, a novel technique allowing measurement of sodium in nanoliter quantities of fluid. Thus we directly demonstrate that there is prenatal programming of cortical collecting duct sodium transport.

  2. Immortalization of canine adipose-derived mesenchymal stem cells and their seminiferous tubule transplantation.

    PubMed

    Fang, Jia; Wei, Yudong; Teng, Xin; Zhao, Shanting; Hua, Jinlian

    2018-04-01

    Adipose-derived mesenchymal stem cells (ADSCs) are proven to provide good effects in numerous tissue engineering application and other cell-based therapies. However, the difficulty in the proliferation of ADSCs, known as the "Hayflick limit" in vitro, limits their clinical application. Here, we immortalized canine ADSCs (cADSCs) with SV40 gene and transplanted them into busulfan-induced seminiferous tubules of infertile mice. The proliferation of these immortalized cells was improved significantly. Then, cellular differentiation assays showed that the immortalized cADSCs could differentiate into three-germ-layer cells, osteogenesis, chondrogenesis, adipogenesis phenotypes, and primordial germ cell-like cells (PGCLCs). In addition, the immortalized cADSCs can proliferate in the busulfan-induced seminiferous tubules of infertile mice. These findings confirmed that the immortalized cADSCs maintain the criteria of cADSCs. © 2017 Wiley Periodicals, Inc.

  3. Dysferlin, annexin A1, and mitsugumin 53 are upregulated in muscular dystrophy and localize to longitudinal tubules of the T-system with stretch.

    PubMed

    Waddell, Leigh B; Lemckert, Frances A; Zheng, Xi F; Tran, Jenny; Evesson, Frances J; Hawkes, Joanne M; Lek, Angela; Street, Neil E; Lin, Peihui; Clarke, Nigel F; Landstrom, Andrew P; Ackerman, Michael J; Weisleder, Noah; Ma, Jianjie; North, Kathryn N; Cooper, Sandra T

    2011-04-01

    Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealing: caveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex.

  4. Ultra-Wideband Time-Difference-of-Arrival High Resolution 3D Proximity Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John

    2010-01-01

    This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement.

  5. In Vitro Continuous Fermentation Model (PolyFermS) of the Swine Proximal Colon for Simultaneous Testing on the Same Gut Microbiota

    PubMed Central

    Tanner, Sabine A.; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe

    2014-01-01

    In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation. PMID:24709947

  6. In vitro continuous fermentation model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota.

    PubMed

    Tanner, Sabine A; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe

    2014-01-01

    In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation.

  7. Cellular distribution of cell cycle-related molecules in the renal tubules of rats treated with renal carcinogens for 28 days: relationship between cell cycle aberration and carcinogenesis.

    PubMed

    Taniai, Eriko; Hayashi, Hitomi; Yafune, Atsunori; Watanabe, Maiko; Akane, Hirotoshi; Suzuki, Kazuhiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2012-09-01

    Some renal carcinogens can induce karyomegaly, which reflects aberrant cell division in the renal tubules, from the early stages of exposure. To clarify the cell cycle-related changes during the early stages of renal carcinogenesis, we performed immunohistochemical analysis of tubular cells in male F344 rats treated with carcinogenic doses of representative renal carcinogens for 28 days. For this purpose, the karyomegaly-inducing carcinogens ochratoxin A (OTA), ferric nitrilotriacetic acid, and monuron, and the non-karyomegaly-inducing carcinogens tris(2-chloroethyl) phosphate and potassium bromate were examined. For comparison, a karyomegaly-inducing non-carcinogen, p-nitrobenzoic acid, and a non-carcinogenic non-karyomegaly-inducing renal toxicant, acetaminophen, were also examined. The outer stripe of the outer medulla (OSOM) and the cortex + OSOM were subjected to morphometric analysis of immunoreactive proximal tubular cells. Renal carcinogens, irrespective of their karyomegaly-inducing potential, increased proximal tubular cell proliferation accompanied by an increase in topoisomerase IIα-immunoreactive cells, suggesting a reflection of cell proliferation. Karyomegaly-inducing carcinogens increased nuclear Cdc2-, γH2AX-, and phosphorylated Chk2-immunoreactive cells in both areas, the former two acting in response to DNA damage and the latter one suggestive of sustained G₂. OTA, an OSOM-targeting carcinogen, could easily be distinguished from untreated controls and non-carcinogens by evaluation of molecules responding to DNA damage and G₂/M transition in the OSOM. Thus, all renal carcinogens examined facilitated proximal tubular proliferation by repeated short-term treatment. Among these, karyomegaly-inducing carcinogens may cause DNA damage and G₂ arrest in the target tubular cells.

  8. Renal distal tubule proliferation and increased aquaporin 2 level but decreased urine osmolality in db/db mouse: treatment with chromium picolinate.

    PubMed

    Mozaffari, Mahmood S; Abdelsayed, Rafik; Liu, Jun Yao; Zakhary, Ibrahim; Baban, Babak

    2012-02-01

    Hallmark features of type 2 diabetes mellitus include glucosuria and polyuria. Further, renal aquaporin 2 is pivotal to regulation of fluid excretion and urine osmolality. Accordingly, we tested the hypothesis that the db/db mouse displays increased glucosuria and fluid excretion but reduced urine osmolality in association with decreased renal aquaporin 2 level. In addition, we examined the effect of chromium picolinate (Cr(pic)3) which is purported to improve glycemic control. The db/db mice excreted more urine in association with marked glucose excretion but lower urine osmolality than db/m control group. Light microscopic examination of renal tissue revealed proliferation of tubular structures in db/db compared to the db/m mice, a feature validated with Ki67 immunostaining. Further, these tubules showed generally similar immunostaining intensity and pattern for aquaporin 2 indicating that proliferated tubules are of distal origin. On the other hand, renal aquaporin 2 protein level was significantly higher in the db/db than db/m group. Treatment of db/db mice with Cr(pic)3 reduced plasma glucose and hemoglobin A1c (~15-17%, p<0.05) and Ki67 positive cells but other parameters were similar to their untreated counterparts. Collectively, these findings suggest that proliferation of renal distal tubules and increased aquaporin 2 level likely represent an adaptive mechanism to regulate fluid excretion to prevent dehydration in the setting of marked glucosuria in the db/db mouse, features not affected by Cr(pic)3 treatment. These observations are of relevance to increasing interest in developing therapeutic agents that facilitate renal glucose elimination. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Renal distal tubule proliferation and increased aquaporin 2 level but decreased urine osmolality in db/db mouse: treatment with chromium picolinate

    PubMed Central

    Mozaffari, Mahmood S.; Abdelsayed, Rafik; Liu, Jun Yao; Zakhary, Ibrahim; Baban, Babak

    2011-01-01

    Hallmark features of type 2 diabetes mellitus include glucosuria and polyuria. Further, renal aquaporin 2 is pivotal to regulation of fluid excretion and urine osmolality. Accordingly, we tested the hypothesis that the db/db mouse displays increased glucosuria and fluid excretion but reduced urine osmolality in association with decreased renal aquaporin 2 level. In addition, we examined the effect of chromium picolinate (Cr(pic)3) which is purported to improve glycemic control. The db/db mice excreted more urine in association with marked glucose excretion but lower urine osmolality than db/m control group. Light microscopic examination of renal tissue revealed proliferation of tubular structures in db/db compared to the db/m mice, a feature validated with Ki67 immunostaining. Further, these tubules showed generally similar immunostaining intensity and pattern for aquaporin 2 indicating that proliferated tubules are of distal origin. On the other hand, renal aquaporin 2 protein level was significantly higher in the db/db than db/m group. Treatment of db/db mice with Cr(pic)3 reduced plasma glucose and hemoglobin A1c (~ 15–17%, p<0.05) and Ki67 positive cells but other parameters were similar to their untreated counterparts. Collectively, these findings suggest that proliferation of renal distal tubules and increased aquaporin 2 level likely represent an adaptive mechanism to regulate fluid excretion to prevent dehydration in the setting of marked glucosuria in the db/db mouse, features not affected by Cr(pic)3 treatment. These observations are of relevance to increasing interest in developing therapeutic agents that facilitate renal glucose elimination. PMID:21983138

  10. The Effects of CO2 Laser with or without Nanohydroxyapatite Paste in the Occlusion of Dentinal Tubules

    PubMed Central

    Al-maliky, Mohammed Abbood; Mahmood, Ali Shukur; Al-karadaghi, Tamara Sardar; Kurzmann, Christoph; Laky, Markus; Franz, Alexander; Moritz, Andreas

    2014-01-01

    The aim of this study was to evaluate a new treatment modality for the occlusion of dentinal tubules (DTs) via the combination of 10.6 µm carbon dioxide (CO2) laser and nanoparticle hydroxyapatite paste (n-HAp). Forty-six sound human molars were used in the current experiment. Ten of the molars were used to assess the temperature elevation during lasing. Thirty were evaluated for dentinal permeability test, subdivided into 3 groups: the control group (C), laser only (L−), and laser plus n-HAp (L+). Six samples, two per group, were used for surface and cross section morphology, evaluated through scanning electron microscope (SEM). The temperature measurement results showed that the maximum temperature increase was 3.2°C. Morphologically groups (L−) and (L+) presented narrower DTs, and almost a complete occlusion of the dentinal tubules for group (L+) was found. The Kruskal-Wallis nonparametric test for permeability test data showed statistical differences between the groups (P < 0.05). For intergroup comparison all groups were statistically different from each other, with group (L+) showing significant less dye penetration than the control group. We concluded that CO2 laser in moderate power density combined with n-HAp seems to be a good treatment modality for reducing the permeability of dentin. PMID:25386616

  11. Calcineurin inhibitor-induced complement system activation via ERK1/2 signalling is inhibited by SOCS-3 in human renal tubule cells.

    PubMed

    Loeschenberger, Beatrix; Niess, Lea; Würzner, Reinhard; Schwelberger, Hubert; Eder, Iris E; Puhr, Martin; Guenther, Julia; Troppmair, Jakob; Rudnicki, Michael; Neuwirt, Hannes

    2018-02-01

    One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Efficacy of Modified Bioactive Glass for Dentin Remineralization and Obstruction of Dentinal Tubules

    PubMed Central

    Saffarpour, Mahshid; Tahriri, Mohammadreza; Zakerzadeh, Azadeh

    2017-01-01

    Objectives: This study assessed the efficacy of modified bioactive glass (MBG) for dentin remineralization and obstruction of dentinal tubules. Materials and Methods: Thirty-six dentin discs were made from 20 third molars and were stored in 12% lactic acid solution for two weeks to induce demineralization. The samples were divided into three groups (n=12): 1- BG, 2- BG modified with 5% strontium (Sr) and 3- BG modified with 10% Sr. After applying the BG, the samples were stored in artificial saliva for 7, 14 and 21 days. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Diffraction (XRD) analysis, Scanning Electron Microscopy (SEM), and Energy-Dispersive X-ray (EDX) analysis were used to assess remineralization. Also, 6 dentin discs were divided into three groups of BG, BG modified with 5% Sr and BG modified with 10% Sr, to examine tubular occlusion. The discs were etched using 0.5M of EDTA for two minutes and were stored in artificial saliva for 7 days. Changes in dentin surface morphology were evaluated under SEM. Results: Group 3 showed high rates of remineralization at days 7 and 14, although the rate decreased at day 21. Group 2 exhibited high rates of remineralization at days 7, 14 and 21. Dentinal tubules were partially occluded by BG and BG modified with 5% Sr, while they were almost completely obstructed after the use of BG modified with 10% Sr. Conclusions: Strontium increases remineralization. Addition of 10% Sr to BG enhances apatite formation; however, the apatite dissolves over time. Addition of 5% Sr to BG stabilizes the apatite lattice and increases the remineralization. PMID:29285031

  13. Proximal opening wedge osteotomy with wedge-plate fixation compared with proximal chevron osteotomy for the treatment of hallux valgus: a prospective, randomized study.

    PubMed

    Glazebrook, Mark; Copithorne, Peter; Boyd, Gordon; Daniels, Timothy; Lalonde, Karl-André; Francis, Patricia; Hickey, Michael

    2014-10-01

    Hallux valgus with an increased intermetatarsal angle is usually treated with a proximal metatarsal osteotomy. The proximal chevron osteotomy is commonly used but is technically difficult. This study compares the proximal opening wedge osteotomy of the first metatarsal with the proximal chevron osteotomy for the treatment of hallux valgus with an increased intermetatarsal angle. This prospective, randomized multicenter (three-center) study was based on the clinical outcome scores of the Short Form-36, the American Orthopaedic Foot & Ankle Society forefoot questionnaire, and the visual analog scale for pain, activity, and patient satisfaction. Subjects were assessed prior to surgery and at three, six, and twelve months postoperatively. Surgeon preference was evaluated based on questionnaires and the operative times required for each procedure. No significant differences were found for any of the patients' clinical outcome measurements between the two procedures. The proximal opening wedge osteotomy was found to lengthen, and the proximal chevron osteotomy was found to shorten, the first metatarsal. The intermetatarsal angles improved (decreased) significantly, from 14.8° ± 3.2° to 9.1° ± 2.9 (mean and standard deviation) after a proximal opening wedge osteotomy and from 14.6° ± 3.9° to 11.3° ± 4.0° after a proximal chevron osteotomy (p < 0.05 for both). Operative time required for performing a proximal opening wedge osteotomy is similar to that required for performing a proximal chevron osteotomy (mean and standard deviation, 67.1 ± 16.5 minutes compared with 69.9 ± 18.6 minutes; p = 0.510). Opening wedge and proximal chevron osteotomies have comparable radiographic outcomes and comparable clinical outcomes for pain, satisfaction, and function. The proximal opening wedge osteotomy lengthens, and the proximal chevron osteotomy shortens, the first metatarsal. The proximal opening wedge osteotomy was subjectively less technically demanding and was

  14. The dopamine precursor L-dihydroxyphenylalanine is transported by the amino acid transporters rBAT and LAT2 in renal cortex.

    PubMed

    Quiñones, Henry; Collazo, Roberto; Moe, Orson W

    2004-07-01

    The intrarenal autocrine-paracrine dopamine (DA) system is critical for Na(+) homeostasis. l-Dihydroxyphenylalanine (l-DOPA) uptake from the glomerular filtrate and plasma provides the substrate for DA generation by the renal proximal tubule. The transporter(s) responsible for proximal tubule l-DOPA uptake has not been characterized. Renal cortical poly-A(+) RNA injected into Xenopus laevis oocytes induced l-DOPA uptake in a time- and dose-dependent fashion with biphasic K(m)s in the millimolar and micromolar range and independent of inward Na(+), K(+), or H(+) gradients, suggesting the presence of low- and high-affinity l-DOPA carriers. Complementary RNA from two amino acid transporters yielded l-DOPA uptake significantly above water-injected controls the rBAT/b(0,+)AT dimer (rBAT) and the LAT2/4F2 dimer (LAT2). In contradistinction to renal cortical poly-A(+), l-DOPA kinetics of rBAT and LAT2 showed classic Michaelis-Menton kinetics with K(m)s in the micromolar and millimolar range, respectively. Sequence-specific antisense oligonucleotides to rBAT or LAT2 (AS) caused inhibition of rBAT and LAT2 cRNA-induced l-DOPA transport and cortical poly-A(+)-induced arginine and phenylalanine transport. However, the same ASs only partially blocked poly-A(+)-induced l-DOPA transport. In cultured kidney cells, silencing inhibitory RNA (siRNA) to rBAT significantly inhibited l-DOPA uptake. We conclude that rBAT and LAT2 can mediate apical and basolateral l-DOPA uptake into the proximal tubule, respectively. Additional l-DOPA transport mechanisms exist in the renal cortex that remain to be identified.

  15. 14 CFR 135.153 - Ground proximity warning system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Ground proximity warning system. 135.153... Equipment § 135.153 Ground proximity warning system. (a) No person may operate a turbine-powered airplane... equipped with an approved ground proximity warning system. (b) [Reserved] (c) For a system required by this...

  16. 14 CFR 135.153 - Ground proximity warning system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ground proximity warning system. 135.153... Equipment § 135.153 Ground proximity warning system. (a) No person may operate a turbine-powered airplane... equipped with an approved ground proximity warning system. (b) [Reserved] (c) For a system required by this...

  17. Fabrication and characterization of dendrimer-functionalized nano-hydroxyapatite and its application in dentin tubule occlusion.

    PubMed

    Lin, Xuandong; Xie, Fangfang; Ma, Xueling; Hao, Yuhong; Qin, Hejia; Long, Jindong

    2017-06-01

    The occlusion of dentinal tubules is an effective method to alleviate the symptoms of dentin hypersensitivity. In this paper, we successfully modified nano-hydroxyapatite (n-HAP) with carboxyl-terminated polyamidoamine dendrimers by an aqueous-based chemical method and verified by fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM). Then the demineralization dentin discs were randomly divided into 4 groups, corresponding to subsequent brushing experiments: deionized water and kept in artificial saliva (AS), dendrimer-functionalized n-HAP and stored in AS, n-HAP and saved in AS, dendrimer-functionalized n-HAP and stored in deionized water. After 7 days of simulated brushing, dentin discs followed the in vitro characterization using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy and microhardness test. These data suggested that dendrimer-functionalized n-HAP could crosslink with collagen fibers and resulted in effective dentinal tubule occlusion. Moreover, the new material can induce the HAP formation with the help of superficial carboxyl and fill the spaces in dentinal tubules furtherly. The microhardness of dendrimer-functionalized n-HAP-treated specimens was significantly higher than others. In summary, dendrimer-functionalized n-HAP can be a new therapeutic material for the treatment of dentin hypersensitivity.

  18. p-aminophenol nephrotoxicity: biosynthesis of toxic glutathione conjugates.

    PubMed

    Klos, C; Koob, M; Kramer, C; Dekant, W

    1992-07-01

    p-Aminophenol causes necrosis of the pars recta of the proximal tubules in rats, and its nephrotoxicity may be due to glutathione-dependent bioactivation reactions. We have investigated the hepatic metabolism of p-aminophenol in Wistar rats and the cytotoxicity of formed glutathione S-conjugates in rat renal epithelial cells. After ip application of p-aminophenol (100 mg/kg), the following metabolites were identified in rat bile: 4-amino-2-(glutathion-S-yl)phenol, 4-amino-3-(glutathion-S-yl)-phenol, 4-amino-2,5-bis(glutathion-S-yl)phenol, 4-amino-2,3,5(or 6)-tris(glutathion-S-yl)phenol, an aminophenol conjugate (likely a sulfate or glucuronide), acetaminophen glucuronide, and 3-(glutathion-S-yl)acetaminophen. 4-Amino-3-(glutathion-S-yl)phenol, 4-amino-2,5-bis(glutathion-S-yl)phenol, and 4-amino-2,3,5(or 6)-tris(glutathion-S-yl)phenol induced a dose- and time-dependent loss of cell viability in rat kidney cortical cells. Cell killing was significantly reduced by inhibition of gamma-glutamyl transpeptidase with Acivicin. p-Aminophenol was also toxic to renal epithelial cells. Coincubation of p-aminophenol with tetraethylammonium bromide, a competitive inhibitor of the organic cation transporter, and with SKF-525A, an inhibitor of cytochrome P450, protected cells from p-aminophenol-induced toxicity. p-Aminophenol would thus be accumulated in the kidney mainly by organic cation transport systems, which are concentrated in the S-1 segment of the proximal tubule. However, p-aminophenol toxicity in vivo is directed toward the S-2 and S-3 segments, which are rich in gamma-glutamyl transpeptidase. These results and the observation that biliary cannulation and glutathione depletion reduce p-aminophenol nephrotoxicity suggest that the biosynthesis of toxic glutathione conjugates is responsible for p-aminophenol nephrotoxicity in vivo. The aminophenol glutathione S-conjugates formed induce p-aminophenol nephrotoxicity by a pathway dependent on gamma-glutamyl transpeptidase.

  19. Ultrastructural characterization of the tau-immunoreactive tubules in the oligodendroglial perikarya and their inner loop processes in progressive supranuclear palsy.

    PubMed

    Arima, K; Nakamura, M; Sunohara, N; Ogawa, M; Anno, M; Izumiyama, Y; Hirai, S; Ikeda, K

    1997-06-01

    Coiled bodies and interfascicular threads are conspicuous white matter abnormalities of brains of patients with progressive supranuclear palsy (PSP). Both structures are argyrophilic and immunoreactive for the microtubule-binding protein tau. This report concerns the ultrastructural localization of interfascicular threads and their relationship to coiled bodies in five PSP patients. We showed for the first time that abnormal tubules with a 13- to 15-nm diameter and fuzzy outer contours were the common structures of coiled bodies in the oligodendroglial perikarya and of interfascicular threads. Moreover, the tubules were immunolabeled by anti-tau antibodies. The abnormal tau-positive tubules of interfascicular threads were located in the inner loop of the myelin sheath. Our study further indicated that the thread-like structures in the white matter comprised, at least in part, oligodendroglial processes, and that they were also present in gray matter. We consider that the formation of coiled bodies in the perikarya and of interfascicular threads represents a common cytoskeletal abnormality of the oligodendroglia of PSP patients. Moreover, even though the white matter alterations of PSP resemble those of corticobasal degeneration, there are certain ultrastructural differences in the abnormal oligodendroglial tubules of the two diseases.

  20. Insights from mathematical modeling of renal tubular function.

    PubMed

    Weinstein, A M

    1998-01-01

    Mathematical models of proximal tubule have been developed which represent the important solute species within the constraints of known cytosolic concentrations, transport fluxes, and overall epithelial permeabilities. In general, model simulations have been used to assess the quantitative feasibility of what appear to be qualitatively plausible mechanisms, or alternatively, to identify incomplete rationalization of experimental observations. The examples considered include: (1) proximal water reabsorption, for which the lateral interspace is a locus for solute-solvent coupling; (2) ammonia secretion, for which the issue is prioritizing driving forces - transport on the Na+/H+ exchanger, on the Na,K-ATPase, or ammoniagenesis; (3) formate-stimulated NaCl reabsorption, for which simple addition of a luminal membrane chloride/formate exchanger fails to represent experimental observation, and (4) balancing luminal entry and peritubular exit, in which ATP-dependent peritubular K+ channels have been implicated, but appear unable to account for the bulk of proximal tubule cell volume homeostasis.

  1. Quantifying Glomerular Permeability of Fluorescent Macromolecules Using 2-Photon Microscopy in Munich Wistar Rats

    PubMed Central

    Sandoval, Ruben M.; Molitoris, Bruce A.

    2013-01-01

    Kidney diseases involving urinary loss of large essential macromolecules, such as serum albumin, have long been thought to be caused by alterations in the permeability barrier comprised of podocytes, vascular endothelial cells, and a basement membrane working in unison. Data from our laboratory using intravital 2-photon microscopy revealed a more permeable glomerular filtration barrier (GFB) than previously thought under physiologic conditions, with retrieval of filtered albumin occurring in an early subset of cells called proximal tubule cells (PTC)1,2,3. Previous techniques used to study renal filtration and establishing the characteristic of the filtration barrier involved micropuncture of the lumen of these early tubular segments with sampling of the fluid content and analysis4. These studies determined albumin concentration in the luminal fluid to be virtually non-existent; corresponding closely to what is normally detected in the urine. However, characterization of dextran polymers with defined sizes by this technique revealed those of a size similar to serum albumin had higher levels in the tubular lumen and urine; suggesting increased permeability5. Herein is a detailed outline of the technique used to directly visualize and quantify glomerular fluorescent albumin permeability in vivo. This method allows for detection of filtered albumin across the filtration barrier into Bowman's space (the initial chamber of urinary filtration); and also allows quantification of albumin reabsorption by proximal tubules and visualization of subsequent albumin transcytosis6. The absence of fluorescent albumin along later tubular segments en route to the bladder highlights the efficiency of the retrieval pathway in the earlier proximal tubule segments. Moreover, when this technique was applied to determine permeability of dextrans having a similar size to albumin virtually identical permeability values were reported2. These observations directly support the need to expand

  2. Molecular evidence for a role for K+-Cl− cotransporters in the kidney

    PubMed Central

    Melo, Zesergio; Cruz-Rangel, Silvia; Bautista, Rocio; Vázquez, Norma; Castañeda-Bueno, María; Mount, David B.; Pasantes-Morales, Herminia; Mercado, Adriana

    2013-01-01

    K+-Cl− cotransporter (KCC) isoforms 3 (KCC3) and 4 (KCC4) are expressed at the basolateral membrane of proximal convoluted tubule cells, and KCC4 is present in the basolateral membrane of the thick ascending loop of Henle's limb and α-intercalated cells of the collecting duct. Little is known, however, about the physiological roles of these transporters in the kidney. We evaluated KCC3 and KCC4 mRNA and protein expression levels and intrarenal distribution in male Wistar rats or C57 mice under five experimental conditions: hyperglycemia after a single dose of streptozotocin, a low-salt diet, metabolic acidosis induced by ammonium chloride in drinking water, and low- or high-K+ diets. Both KCC3 mRNA and protein expression were increased during hyperglycemia in the renal cortex and at the basolateral membrane of proximal tubule cells but not with a low-salt diet or acidosis. In contrast, KCC4 protein expression was increased by a low-sodium diet in the whole kidney and by metabolic acidosis in the renal outer medulla, specifically at the basolateral membrane of α-intercalated cells. The increased protein expression of KCC4 by a low-salt diet was also observed in WNK4 knockout mice, suggesting that upregulation of KCC4 in these circumstances is not WNK4 dependent. No change in KCC3 or KCC4 protein expression was observed under low- or high-K+ diets. Our data are consistent with a role for KCC3 in the proximal tubule glucose reabsorption mechanism and for KCC4 in salt reabsorption of the thick ascending loop of Henle's loop and acid secretion of the collecting duct. PMID:24089410

  3. Finite cell lines of turkey sperm storage tubule cells: ultrastructure and protein analysis

    USDA-ARS?s Scientific Manuscript database

    Cell lines of turkey sperm storage tubule (SST) epithelial cells were established. Turkey SSTs were dissected from freshly obtained uterovaginal junction (UVJ) tissue and placed in explants culture on various substrates and media. Primary cultures of SST epithelium only survived and grew from SST ex...

  4. Number and distribution of sperm-storage tubules in four strains of broiler breeders

    USDA-ARS?s Scientific Manuscript database

    Restricted to the utero-vaginal junction (UVJ) in the hen's oviduct are tubular invaginations of the surface epithelium collectively referred to as the sperm-storage tubules (SSTs). One would expect that a larger number of SSTs would be positively correlated with longer, sustained fertility. However...

  5. [Anatomy, physiology and clinical relevance of the connecting tubule].

    PubMed

    Miranda, N; Simeoni, M A; Ciriana, E; Panico, C; Cappello, E; Capasso, G B

    2009-01-01

    The cortical distal nephron is the site of fine regulation of salt and water excretion by peptide and mineralocorticoid hormones and the site for specific actions of diuretics. Some data suggest that sodium reabsorption and potassium secretion in the distal convoluted tubule and the connecting tubule (CNT) are sufficient to maintain the sodium and potassium balance, with little or no contribution of the collecting duct. The homeostatic role of the sodium and potassium transport systems in the collecting duct can be questioned, especially in conditions where dietary sodium intake is high and potassium intake is low compared with the physiological needs of the organism. The functional expression of epithelial sodium channels (ENaC) in the CNT is sufficient for furosemide-stimulated urinary acidification and identifies the CNT as a major segment in electrogenic urinary acidification. In the outer renal cortex, the CNT returns to the glomerular hilus and contacts the renal afferent arterioles (Af-Art). This morphology is compatible with a cross-talk between the CNT and Af-Art. This novel regulatory mechanism of the renal microcirculation may participate in the vasodilatation observed during high salt intake, perhaps by antagonizing tubuloglomerular feedback. In conclusion, the cortical distal nephron appears to be a complex site for several physiological mechanisms; it is mainly involved in salt and fluid homeostasis and in acid-base balance maintenance. Furthermore, the CNT segment appears to promote a CNT-Af-Art feedback loop.

  6. Ranging/tracking system for proximity operations

    NASA Technical Reports Server (NTRS)

    Nilsen, P.; Udalov, S.

    1982-01-01

    The hardware development and testing phase of a hand held radar for the ranging and tracking for Shuttle proximity operations are considered. The radar is to measure range to a 3 sigma accuracy of 1 m (3.28 ft) to a maximum range of 1850 m (6000 ft) and velocity to a 3 sigma accuracy of 0.03 m/s (0.1 ft/s). Size and weight are similar to hand held radars, frequently seen in use by motorcycle police officers. Meeting these goals for a target in free space was very difficult to obtain in the testing program; however, at a range of approximately 700 m, the 3 sigma range error was found to be 0.96 m. It is felt that much of this error is due to clutter in the test environment. As an example of the velocity accuracy, at a range of 450 m, a 3 sigma velocity error of 0.02 m/s was measured. The principles of the radar and recommended changes to its design are given. Analyses performed in support of the design process, the actual circuit diagrams, and the software listing are included.

  7. Customized Knee Prosthesis in Treatment of Giant Cell Tumors of the Proximal Tibia: Application of 3-Dimensional Printing Technology in Surgical Design.

    PubMed

    Luo, Wenbin; Huang, Lanfeng; Liu, He; Qu, Wenrui; Zhao, Xin; Wang, Chenyu; Li, Chen; Yu, Tao; Han, Qing; Wang, Jincheng; Qin, Yanguo

    2017-04-07

    BACKGROUND We explored the application of 3-dimensional (3D) printing technology in treating giant cell tumors (GCT) of the proximal tibia. A tibia block was designed and produced through 3D printing technology. We expected that this 3D-printed block would fill the bone defect after en-bloc resection. Importantly, the block, combined with a standard knee joint prosthesis, provided attachments for collateral ligaments of the knee, which can maintain knee stability. MATERIAL AND METHODS A computed tomography (CT) scan was taken of both knee joints in 4 patients with GCT of the proximal tibia. We developed a novel technique - the real-size 3D-printed proximal tibia model - to design preoperative treatment plans. Hence, with the application of 3D printing technology, a customized proximal tibia block could be designed for each patient individually, which fixed the bone defect, combined with standard knee prosthesis. RESULTS In all 4 cases, the 3D-printed block fitted the bone defect precisely. The motion range of the affected knee was 90 degrees on average, and the soft tissue balance and stability of the knee were good. After an average 7-month follow-up, the MSTS score was 19 on average. No sign of prosthesis fracture, loosening, or other relevant complications were detected. CONCLUSIONS This technique can be used to treat GCT of the proximal tibia when it is hard to achieve soft tissue balance after tumor resection. 3D printing technology simplified the design and manufacturing progress of custom-made orthopedic medical instruments. This new surgical technique could be much more widely applied because of 3D printing technology.

  8. Claudins and renal salt transport.

    PubMed

    Muto, Shigeaki; Furuse, Mikio; Kusano, Eiji

    2012-02-01

    Tight junctions (TJs) are the most apical component of junctional complexes and regulate the movement of electrolytes and solutes by the paracellular pathway across epithelia. The defining ultrastructural features of TJs are strands of transmembrane protein particles that adhere to similar strands on adjacent cells. These strands are mainly composed of linearly polymerized integral membrane proteins called claudins. Claudins comprise a multigene family consisting of more than 20 members in mammals. Recent work has shown that claudins form barriers, determined by the paracellular electrical resistance and charge selectivity, and pores in the TJ strands. The paracellular pathways in renal tubular epithelia such as the proximal tubule, which reabsorbs the largest fraction of filtered NaCl and water, are important routes for the transport of electrolytes and water. Their transport characteristics vary among different nephron segments. Multiple claudins are expressed at TJs of individual nephron segments in a nephron segment-specific manner. Among them, claudin-2 is highly expressed at TJs of proximal tubules, which are leaky epithelia. Overexpression and knockdown of claudin-2 in epithelial cell lines, and knockout of the claudin-2 gene in mice, have demonstrated that claudin-2 forms high-conductance cation-selective pores in the proximal tubule. Here, we review the renal physiology of paracellular transport and the physiological roles of claudins in kidney function, especially claudin-2 and proximal tubule paracellular NaCl transport.

  9. Autophagic clearance of mitochondria in the kidney copes with metabolic acidosis.

    PubMed

    Namba, Tomoko; Takabatake, Yoshitsugu; Kimura, Tomonori; Takahashi, Atsushi; Yamamoto, Takeshi; Matsuda, Jun; Kitamura, Harumi; Niimura, Fumio; Matsusaka, Taiji; Iwatani, Hirotsugu; Matsui, Isao; Kaimori, Junya; Kioka, Hidetaka; Isaka, Yoshitaka; Rakugi, Hiromi

    2014-10-01

    Metabolic acidosis, a common complication of CKD, causes mitochondrial stress by undefined mechanisms. Selective autophagy of impaired mitochondria, called mitophagy, contributes toward maintaining cellular homeostasis in various settings. We hypothesized that mitophagy is involved in proximal tubular cell adaptations to chronic metabolic acidosis. In transgenic mice expressing green fluorescent protein-tagged microtubule-associated protein 1 light chain 3 (GFP-LC3), NH4Cl loading increased the number of GFP puncta exclusively in the proximal tubule. In vitro, culture in acidic medium produced similar results in proximal tubular cell lines stably expressing GFP-LC3 and facilitated the degradation of SQSTM1/p62 in wild-type cells, indicating enhanced autophagic flux. Upon acid loading, proximal tubule-specific autophagy-deficient (Atg5-deficient) mice displayed significantly reduced ammonium production and severe metabolic acidosis compared with wild-type mice. In vitro and in vivo, acid loading caused Atg5-deficient proximal tubular cells to exhibit reduced mitochondrial respiratory chain activity, reduced mitochondrial membrane potential, and fragmented morphology with marked swelling in mitochondria. GFP-LC3-tagged autophagosomes colocalized with ubiquitinated mitochondria in proximal tubular cells cultured in acidic medium, suggesting that metabolic acidosis induces mitophagy. Furthermore, restoration of Atg5-intact nuclei in Atg5-deficient proximal tubular cells increased mitochondrial membrane potential and ammoniagenesis. In conclusion, metabolic acidosis induces autophagy in proximal tubular cells, which is indispensable for maintaining proper mitochondrial functions including ammoniagenesis, and thus for adapted urinary acid excretion. Our results provide a rationale for the beneficial effect of alkali supplementation in CKD, a condition in which autophagy may be reduced, and suggest a new therapeutic option for acidosis by modulating autophagy. Copyright

  10. Proximal Tibial Bone Graft

    MedlinePlus

    ... All Site Content AOFAS / FootCareMD / Treatments Proximal Tibial Bone Graft Page Content What is a bone graft? Bone grafts may be needed for various ... the proximal tibia. What is a proximal tibial bone graft? Proximal tibial bone graft (PTBG) is a ...

  11. A computational model for simulating solute transport and oxygen consumption along the nephrons

    PubMed Central

    Vallon, Volker; Edwards, Aurélie

    2016-01-01

    The goal of this study was to investigate water and solute transport, with a focus on sodium transport (TNa) and metabolism along individual nephron segments under differing physiological and pathophysiological conditions. To accomplish this goal, we developed a computational model of solute transport and oxygen consumption (QO2) along different nephron populations of a rat kidney. The model represents detailed epithelial and paracellular transport processes along both the superficial and juxtamedullary nephrons, with the loop of Henle of each model nephron extending to differing depths of the inner medulla. We used the model to assess how changes in TNa may alter QO2 in different nephron segments and how shifting the TNa sites alters overall kidney QO2. Under baseline conditions, the model predicted a whole kidney TNa/QO2, which denotes the number of moles of Na+ reabsorbed per moles of O2 consumed, of ∼15, with TNa efficiency predicted to be significantly greater in cortical nephron segments than in medullary segments. The TNa/QO2 ratio was generally similar among the superficial and juxtamedullary nephron segments, except for the proximal tubule, where TNa/QO2 was ∼20% higher in superficial nephrons, due to the larger luminal flow along the juxtamedullary proximal tubules and the resulting higher, flow-induced transcellular transport. Moreover, the model predicted that an increase in single-nephron glomerular filtration rate does not significantly affect TNa/QO2 in the proximal tubules but generally increases TNa/QO2 along downstream segments. The latter result can be attributed to the generally higher luminal [Na+], which raises paracellular TNa. Consequently, vulnerable medullary segments, such as the S3 segment and medullary thick ascending limb, may be relatively protected from flow-induced increases in QO2 under pathophysiological conditions. PMID:27707705

  12. Proximate determinants of fertility in peninsular Malaysia.

    PubMed

    Tey, Nai Peng; Ng, Sor Tho; Yew, Siew Yong

    2012-05-01

    The continuing decline in fertility despite a contraction in contraceptive use in Peninsular Malaysia since the mid-1980s has triggered considerable interest in the reasons behind this phenomenon, such as increase in abortion, sterility, and out-of-wedlock pregnancy. Fertility decline has been attributed to rapid socioeconomic development, which can only influence fertility through the intermediate variables. Application of vital statistics, population census, and survey data of Peninsular Malaysia on Bongaarts's model vindicates that marriage postponement and contraceptive use are the 2 most important proximate determinants of fertility, but the effects are not uniform across the ethnic groups. For instance, the predicted total fertility rate for Chinese and Malays are 2.9 and 1.6, respectively, compared with the observed level of 3.0 and 1.9. Postpartum infecundability and abortion also play a part in explaining ethnic fertility differentials. The fertility inhibiting effects of these proximate determinants have significant implications on reproductive health and future population growth.

  13. Comparative Evaluation of Efficacy of Iontophoresis with 0.33% Sodium Fluoride Gel and Diode Laser Alone on Occlusion of Dentinal Tubules.

    PubMed

    Patil, Anup Raghunath; Varma, Siddhartha; Suragimath, Girish; Abbayya, Keshava; Zope, Sameer Anil; Kale, Vishwajeet

    2017-08-01

    Dentinal Hypersensitivity (DH) is one of the most commonly encountered clinical problems. Literature reveals no specific therapy to satisfactorily eliminate dentinal hypersensitivity. The aim of this study was to assess and compare the efficacy of iontophoresis with 0.33% Sodium Fluoride (NaF) gel and diode laser alone in dentinal tubule occlusion. This in vitro study included 20 teeth with intact root surfaces unaltered by extraction procedure for specimen preparation. Each tooth was cleaned, air dried and cut into three sections. Total 60 sections were prepared (30 longitudinal and 30 transverse sections), which were acid etched. In control group, no treatment was carried. In iontophoresis treatment group, samples were inserted into a foam tray containing 0.33 % NaF Gel and subjected to 1.5 mA output current for three minutes. In laser treatment group, specimens were lased with 980 nm diode laser at 0.5 W/PW (62.2J /cm 2 ) in a noncontact mode for 30 seconds. Specimens were evaluated under Scanning Electron Microscope (SEM) at 10KV to 20KV under x 2000, x5000 magnification for surface characteristics and patency of dentinal tubules. Total number of tubules visible, open, completely and partially occluded were recorded in each microphotograph and compared. On comparison, laser group showed the least number of open tubules i.e., 130 (31.1%) followed by iontophoresis group, 155 (51.32%) and control group 417 (100%). Diode laser application provided better results as compared to iontophoresis on occlusion of dentinal tubules. Hence, it can be used to treat the patients with DH.

  14. Transport characteristics of L-citrulline in renal apical membrane of proximal tubular cells.

    PubMed

    Mitsuoka, Keisuke; Shirasaka, Yoshiyuki; Fukushi, Akimasa; Sato, Masanobu; Nakamura, Toshimichi; Nakanishi, Takeo; Tamai, Ikumi

    2009-04-01

    L-Citrulline has diagnostic potential for renal function, because its plasma concentration increases with the progression of renal failure. Although L-citrulline extracted by glomerular filtration in kidney is mostly reabsorbed, the mechanism involved is not clearly understood. The present study was designed to characterize L-citrulline transport across the apical membranes of renal epithelial tubular cells, using primary-cultured rat renal proximal tubular cells, as well as the human kidney proximal tubular cell line HK-2. L-Citrulline was transported in a Na(+)-dependent manner from the apical side of both cell types cultured on permeable supports with a microporous membrane. Kinetic analysis indicated that the transport involves two distinct Na(+)-dependent saturable systems and one Na(+)-independent saturable system in HK-2 cells. The uptake was competitively inhibited by neutral and cationic, but not anionic amino acids. Relatively large cationic and anionic compounds inhibited the uptake, but smaller ones did not. In HK-2 cells, mRNA expression of SLC6A19 and SLC7A9, which encode B(0)AT1 and b(0,+)AT, respectively, was detected by RT-PCR. In addition, L-citrulline transport was significantly decreased in HK-2 cells in which either SLC6A19 or SLC7A9 was silenced. Hence, these results suggest that amino acid transporters B(0)AT1 and b(0,+)AT are involved in the reabsorption of L-citrulline in the kidney, at least in part, by mediating the apical membrane transport of L-citrulline in renal tubule cells.

  15. Gross anatomical and dimensional characteristics of the proximal hamstring origin.

    PubMed

    Feucht, Matthias J; Plath, Johannes E; Seppel, Gernot; Hinterwimmer, Stefan; Imhoff, Andreas B; Brucker, Peter U

    2015-09-01

    The current study was undertaken to better define the gross anatomical and dimensional characteristics of the proximal hamstring origin. Twelve paired whole-lower extremities from six embalmed cadavers were dissected. The gross anatomy of the proximal hamstrings was studied. With the tendons attached to the ischial tuberosity, the width and thickness of each tendon was measured 1 cm distally to their origin, and the distance from the most proximal border of the common origin of the semitendinosus (ST) and long head of the biceps (LB) to their distal junction was assessed. After removal of the hamstring group, the shape, orientation, and dimension of the tendon footprints were determined. One cadaver demonstrated unique anatomy, which was considered as an anatomic variant and was therefore excluded from the study group. The ST and LB had a common origin on the posterolateral aspect of the ischial tuberosity (ST/LB), whereas the semimembranosus (SM) had a separated origin at the anterolateral aspect. The mean distance from the most proximal border of the ST/LB origin to the distal junction was 10.0 ± 1.3 cm. The shape of both footprints was longitudinal-oval, with the longitudinal axes of the SM and ST/LB footprints parallel aligned. Mean tendon width was 3.4 ± 0.5 cm for the common ST/LB complex and 4.2 ± 0.9 cm for the SM (p = 0.009). The corresponding values for tendon thickness were 1.0 ± 0.3 cm (ST/LB) and 0.8 ± 0.2 cm (SM), respectively (n.s.). Mean footprint length was 3.9 ± 0.4 cm for ST/LB and 4.5 ± 0.5 cm for SM (p = 0.002). The corresponding values for footprint height were 1.4 ± 0.5 cm (ST/LB) and 1.2 ± 0.3 cm (SM), respectively (n.s.). The ST and LB had a common origin, whereas the SM originated separately. The site of origin of both tendons was the lateral aspect of the ischial tuberosity, with the SM footprint lying directly anterior to the footprint of the ST/LB complex. The footprint of the SM was significantly wider than the footprint of

  16. Effect of a novel bioactive glass-ceramic on dentinal tubule occlusion: an in vitro study.

    PubMed

    Zhong, Y; Liu, J; Li, X; Yin, W; He, T; Hu, D; Liao, Y; Yao, X; Wang, Y

    2015-03-01

    This in vitro study aimed to assess the ability and efficacy of HX-BGC, a novel bioactive glass-ceramic (SiO2-P2 O5-CaO-Na2 O-SrO), to reduce dentine tubule permeability. Dentine discs from human third molars were etched and randomly allocated into five groups: Group 1--distilled water; Group 2--Sensodyne Repair toothpaste (containing NovaMin®); Group 3--HX-BGC toothpaste (containing 7.5% HX-BGC); Group 4--control toothpaste (without HX-BGC); and Group 5--HX-BGC powder. Specimens were treated daily by brushing with an electric toothbrush for 20 seconds. Between daily treatments (7 days total), specimens were immersed in artificial saliva for 24 hours. Dentine permeability was measured at baseline, after the first treatment, after the first 24-hour immersion in artificial saliva and at the end of day 7. Dentine morphology and surface deposits were observed by scanning electron microscopy after one day and 7 days of treatment, respectively. Sensodyne Repair and bioactive glass-ceramic toothpaste significantly and immediately lowered dentine permeability. The HX-BGC powder group showed the highest reduction in dentine permeability after 7 days of treatment. The novel bioactive glass-ceramic material HX-BGC is effective in reducing dentine permeability by occluding open dentine tubules, indicating that HX-BGC may be a potential treatment for dentine hypersensitivity. © 2015 Australian Dental Association.

  17. Somatic and germinal cells' interrelationship in the course of seminiferous tubule maturation in man.

    PubMed

    Kula, K; Romer, T E; Wlodarczyk, W P

    1980-02-01

    Certain successive phases of seminiferous tubule maturation were observed in a transsection of a Leydig cell adenoma-bearing testis of a boy with precocious puberty. Massively accumulated Leydig cells may stimulate the maturation of Sertoli cells, as indicated by progressive replacement of Sertoli cell precursors by mature Sertoli cells at a distance closer to the adenoma. On the other hand, tubules less advanced in maturation contained a higher number of somatic cells than those more advanced in maturation. Leydig-cell-dependent maturation of Sertoli cells may be in competition with Certoli cell multiplication, or numerous undifferentiated somatic cells may undergo a natural elimination in the course of tubular maturation. An inverse relation between the number of Sertoli cell precursors and the number of meiotic spermatocytes suggests that quantitative reduction of Sertoli cell precursors may be important for the intratubular milieu necessary for the onset of the first meiosis in man.

  18. Chloride secretagogues stimulate inositol phosphate formation in shark rectal gland tubules cultured in suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecay, T.W.; Valentich, J.D.

    1991-03-01

    Neuroendocrine activation of transepithelial chloride secretion by shark rectal gland cells is associated with increases in cellular cAMP, cGMP, and free calcium concentrations. We report here on the effects of several chloride secretagogues on inositol phosphate formation in cultured rectal gland tubules. Vasoactive intestinal peptide (VIP), atriopeptin (AP), and ionomycin increase the total inositol phosphate levels of cultured tubules, as measured by ion exchange chromatography. Forskolin, a potent chloride secretagogue, has no effect on inositol phosphate formation. The uptake of {sup 3}H-myo-inositol into phospholipids is very slow, preventing the detection of increased levels of inositol trisphosphate. However, significant increases inmore » inositol monophosphate (IP1) and inositol biphosphate (IP2) were measured. The time course of VIP- and AP-stimulated IP1 and IP2 formation is similar to the effects of these agents on the short-circuit current responses of rectal gland monolayer cultures. In addition, aluminum fluoride, an artificial activator of guanine nucleotide-binding proteins, stimulates IP1 and IP2 formation. We conclude that rectal gland cells contain VIP and AP receptors coupled to the activation of phospholipase C. Coupling may be mediated by G-proteins. Receptor-stimulated increases in inositol phospholipid metabolism is one mechanism leading to increased intracellular free calcium concentrations, an important regulatory event in the activation of transepithelial chloride secretion by shark rectal gland epithelial cells.« less

  19. Comparative Evaluation of Efficacy of Iontophoresis with 0.33% Sodium Fluoride Gel and Diode Laser Alone on Occlusion of Dentinal Tubules

    PubMed Central

    Varma, Siddhartha; Suragimath, Girish; Abbayya, Keshava; Zope, Sameer Anil; Kale, Vishwajeet

    2017-01-01

    Introduction Dentinal Hypersensitivity (DH) is one of the most commonly encountered clinical problems. Literature reveals no specific therapy to satisfactorily eliminate dentinal hypersensitivity. Aim The aim of this study was to assess and compare the efficacy of iontophoresis with 0.33% Sodium Fluoride (NaF) gel and diode laser alone in dentinal tubule occlusion. Materials and Methods This in vitro study included 20 teeth with intact root surfaces unaltered by extraction procedure for specimen preparation. Each tooth was cleaned, air dried and cut into three sections. Total 60 sections were prepared (30 longitudinal and 30 transverse sections), which were acid etched. In control group, no treatment was carried. In iontophoresis treatment group, samples were inserted into a foam tray containing 0.33 % NaF Gel and subjected to 1.5 mA output current for three minutes. In laser treatment group, specimens were lased with 980 nm diode laser at 0.5 W/PW (62.2J /cm2) in a noncontact mode for 30 seconds. Specimens were evaluated under Scanning Electron Microscope (SEM) at 10KV to 20KV under x 2000, x5000 magnification for surface characteristics and patency of dentinal tubules. Total number of tubules visible, open, completely and partially occluded were recorded in each microphotograph and compared. Results On comparison, laser group showed the least number of open tubules i.e., 130 (31.1%) followed by iontophoresis group, 155 (51.32%) and control group 417 (100%). Conclusion Diode laser application provided better results as compared to iontophoresis on occlusion of dentinal tubules. Hence, it can be used to treat the patients with DH. PMID:28969290

  20. Dragon enhances BMP signaling and increases transepithelial resistance in kidney epithelial cells.

    PubMed

    Xia, Yin; Babitt, Jodie L; Bouley, Richard; Zhang, Ying; Da Silva, Nicolas; Chen, Shanzhuo; Zhuang, Zhenjie; Samad, Tarek A; Brenner, Gary J; Anderson, Jennifer L; Hong, Charles C; Schneyer, Alan L; Brown, Dennis; Lin, Herbert Y

    2010-04-01

    The neuronal adhesion protein Dragon acts as a bone morphogenetic protein (BMP) coreceptor that enhances BMP signaling. Given the importance of BMP signaling in nephrogenesis and its putative role in the response to injury in the adult kidney, we studied the localization and function of Dragon in the kidney. We observed that Dragon localized predominantly to the apical surfaces of tubular epithelial cells in the thick ascending limbs, distal convoluted tubules, and collecting ducts of mice. Dragon expression was weak in the proximal tubules and glomeruli. In mouse inner medullary collecting duct (mIMCD3) cells, Dragon generated BMP signals in a ligand-dependent manner, and BMP4 is the predominant endogenous ligand for the Dragon coreceptor. In mIMCD3 cells, BMP4 normally signaled through BMPRII, but Dragon enhanced its signaling through the BMP type II receptor ActRIIA. Dragon and BMP4 increased transepithelial resistance (TER) through the Smad1/5/8 pathway. In epithelial cells isolated from the proximal tubule and intercalated cells of collecting ducts, we observed coexpression of ActRIIA, Dragon, and BMP4 but not BMPRII. Taken together, these results suggest that Dragon may enhance BMP signaling in renal tubular epithelial cells and maintain normal renal physiology.

  1. The fine structure of the terminal segment of the bovine seminiferous tubule.

    PubMed

    Wrobel, K H; Sinowatz, F; Mademann, R

    1982-01-01

    The intratesticular excurrent duct system of the bull is composed of rete testis, tubuli recti, and the terminal segment of the seminiferous tubules. Each terminal segment is surrounded by a vascular plexus and may be subdivided into a transitional region, middle portion, and terminal plug. The modified supporting cells of the middle portion and the terminal plug no longer display the typical Sertoli-Sertoli junctions seen in the transitional region and the seminiferous tubule proper. In the region of the terminal plug a distinct central lumen is generally not observed: spermatozoa and tubular fluid must pass through an intricate system of communicating clefts between the apices of the closely attached modified supporting cells. Vacuoles in the supranuclear region of the cells in the middle portion indicate strong transepithelial fluid transport. In analogy to the epithelium of rete testis and tubuli recti, the supporting cells of the terminal segment are capable of phagocytosing spermatozoa. The vascular plexus investing the terminal segment serves a dual purpose: it is a regulatory device for fluid and sperm transport, as well as an area of increased diapedesis for white blood cells.

  2. 50 Years of renal physiology from one man and the perfused tubule: Maurice B. Burg.

    PubMed

    Hamilton, Kirk L; Moore, Antoni B

    2016-08-01

    Technical advancements in research techniques in science are made in slow increments. Even so, large advances from insight and hard work of an individual with a single technique can have astonishing ramifications. Here, we examine the impact of Dr. Maurice B. Burg and the isolated perfused renal tubule technique and celebrate the 50th anniversary of the publication by Dr. Burg and his colleagues of their landmark paper in the American Journal of Physiology in 1966. In this study, we have taken a scientific visualization approach to study the scientific contributions of Dr. Burg and the isolated perfused tubule preparation as determining research impact by the number of research students, postdoctoral fellows, visiting scientists, and national and international collaborators. Additionally, we have examined the research collaborations (first and second generation scientists), established the migrational visualization of the first generation scientists who worked directly with Dr. Burg, quantified the metrics indices, identified and quantified the network of coauthorship of the first generation scientists with their second generation links, and determined the citations analyses of outputs of Dr. Burg and/or his first generation collaborators as coauthors. We also review the major advances in kidney physiology that have been made with the isolated perfused tubule technique. Finally, we are all waiting for the discoveries that the isolated perfused preparation technique will bring during the next 50 years. Copyright © 2016 the American Physiological Society.

  3. Embedded System Implementation of Sound Localization in Proximal Region

    NASA Astrophysics Data System (ADS)

    Iwanaga, Nobuyuki; Matsumura, Tomoya; Yoshida, Akihiro; Kobayashi, Wataru; Onoye, Takao

    A sound localization method in the proximal region is proposed, which is based on a low-cost 3D sound localization algorithm with the use of head-related transfer functions (HRTFs). The auditory parallax model is applied to the current algorithm so that more accurate HRTFs can be used for sound localization in the proximal region. In addition, head-shadowing effects based on rigid-sphere model are reproduced in the proximal region by means of a second-order IIR filter. A subjective listening test demonstrates the effectiveness of the proposed method. Embedded system implementation of the proposed method is also described claiming that the proposed method improves sound effects in the proximal region only with 5.1% increase of memory capacity and 8.3% of computational costs.

  4. Effect and Stability of Poly(Amido Amine)-Induced Biomineralization on Dentinal Tubule Occlusion

    PubMed Central

    Gao, Yuan; Liang, Kunneng; Li, Jianshu; Yuan, He; Liu, Hongling; Duan, Xiaolei; Li, Jiyao

    2017-01-01

    In recent years, scientists have developed various biomaterials to remineralize human teeth to treat dentine hypersensitivity. Poly(amido amine) (PAMAM) dendrimers have become a research focus in this field. It has been demonstrated that PAMAM is able to create precipitates both on the surface of and within the dentinal tubules, however, there is little information about its effect on reducing dentine permeability in vitro. This study aimed to evaluate the in vitro effectiveness and stability of the fourth generation amine-terminated PAMAM on dentinal tubule occlusion, especially on dentine permeability. Sodium fluoride (NaF), which has been widely used as a desensitizing agent, is regarded as positive control. Demineralized sensitive dentine samples were coated with PAMAM or sodium fluoride solutions and soaked in artificial saliva (AS) at 37 °C for different periods. Four weeks later, samples in each group were then equally split into two subgroups for testing using a brushing challenge and an acid challenge. Dentine permeability of each specimen was measured before and after each challenge using a fluid filtration system. Dentine morphology and surface deposits were characterized by scanning electron microscope (SEM) and analyzed with Image-Pro Plus software. Data were evaluated through multifactorial ANOVA with repeated measures and pair-wise comparisons at a level of 5%. The results showed that PAMAM and NaF significantly reduced dentine permeability to 25.1% and 20.7%. Both of them created precipitates on dentine surfaces after AS immersion for 28 days. PAMAM-induced biomineralization not only on dentine surfaces, but also deeper in dentinal tubules, significantly reduced dentine permeability. Moreover, PAMAM-induced biomineralization elicited excellent stable occlusion effects after acid challenge. In conclusion, PAMAM demonstrated a strong ability to resist acid and showed great potential to be used in the treatment of dentine hypersensitivity in future

  5. cAMP-dependent chloride secretion mediates tubule enlargement and cyst formation by cultured mammalian collecting duct cells.

    PubMed

    Montesano, Roberto; Ghzili, Hafida; Carrozzino, Fabio; Rossier, Bernard C; Féraille, Eric

    2009-02-01

    Polycystic kidney diseases result from disruption of the genetically defined program that controls the size and geometry of renal tubules. Cysts which frequently arise from the collecting duct (CD) result from cell proliferation and fluid secretion. From mCCD(cl1) cells, a differentiated mouse CD cell line, we isolated a clonal subpopulation (mCCD-N21) that retains morphogenetic capacity. When grown in three-dimensional gels, mCCD-N21 cells formed highly organized tubular structures consisting of a palisade of polarized epithelial cells surrounding a cylindrical lumen. Subsequent addition of cAMP-elevating agents (forskolin or cholera toxin) or of membrane-permeable cAMP analogs (CPT-cAMP) resulted in rapid and progressive dilatation of existing tubules, leading to the formation of cystlike structures. When grown on filters, mCCD-N21 cells exhibited a high transepithelial resistance as well as aldosterone- and/or vasopressin-induced amiloride-sensitive and -insensitive current. The latter was in part inhibited by Na(+)-K(+)-2Cl(-) cotransporter (bumetanide) and chloride channel (NPPB) inhibitors. Real-time PCR analysis confirmed the expression of NKCC1, the ubiquitous Na(+)-K(+)-2Cl(-) cotransporter and cystic fibrosis transmembrane regulator (CFTR) in mCCD-N21 cells. Tubule enlargement and cyst formation were prevented by inhibitors of Na(+)-K(+)-2Cl(-) cotransporters (bumetanide or ethacrynic acid) or CFTR (NPPB or CFTR inhibitor-172). These results further support the notion that cAMP signaling plays a key role in renal cyst formation, at least in part by promoting chloride-driven fluid secretion. This new in vitro model of tubule-to-cyst conversion affords a unique opportunity for investigating the molecular mechanisms that govern the architecture of epithelial tubes, as well as for dissecting the pathophysiological processes underlying cystic kidney diseases.

  6. Proximal Hypospadias

    PubMed Central

    Kraft, Kate H.; Shukla, Aseem R.; Canning, Douglas A.

    2011-01-01

    Hypospadias results from abnormal development of the penis that leaves the urethral meatus proximal to its normal glanular position. Meatal position may be located anywhere along the penile shaft, but more severe forms of hypospadias may have a urethral meatus located at the scrotum or perineum. The spectrum of abnormalities may also include ventral curvature of the penis, a dorsally redundant prepuce, and atrophic corpus spongiosum. Due to the severity of these abnormalities, proximal hypospadias often requires more extensive reconstruction in order to achieve an anatomically and functionally successful result. We review the spectrum of proximal hypospadias etiology, presentation, correction, and possible associated complications. PMID:21516286

  7. Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor.

    PubMed

    He, M Q; Shen, J Y; Petrović, A P; He, Q L; Liu, H C; Zheng, Y; Wong, C H; Chen, Q H; Wang, J N; Law, K T; Sou, I K; Lortz, R

    2016-09-02

    In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3.

  8. Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor

    PubMed Central

    He, M. Q.; Shen, J. Y.; Petrović, A. P.; He, Q. L.; Liu, H. C.; Zheng, Y.; Wong, C. H.; Chen, Q. H.; Wang, J. N.; Law, K. T.; Sou, I. K.; Lortz, R.

    2016-01-01

    In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3. PMID:27587000

  9. Micropower RF material proximity sensor

    DOEpatents

    McEwan, T.E.

    1998-11-10

    A level detector or proximity detector for materials capable of sensing through plastic container walls or encapsulating materials is disclosed. Thus, it can be used in corrosive environments, as well as in a wide variety of applications. An antenna has a characteristic impedance which depends on the materials in proximity to the antenna. An RF oscillator, which includes the antenna and is based on a single transistor in a Colpitt`s configuration, produces an oscillating signal. A detector is coupled to the oscillator which signals changes in the oscillating signal caused by changes in the materials in proximity to the antenna. The oscillator is turned on and off at a pulse repetition frequency with a low duty cycle to conserve power. The antenna consists of a straight monopole about one-quarter wavelength long at the nominal frequency of the oscillator. The antenna may be horizontally disposed on a container and very accurately detects the fill level within the container as the material inside the container reaches the level of the antenna. 5 figs.

  10. Zebrafish Pronephros Development.

    PubMed

    Naylor, Richard W; Qubisi, Sarah S; Davidson, Alan J

    The pronephros is the first kidney type to form in vertebrate embryos. The first step of pronephrogenesis in the zebrafish is the formation of the intermediate mesoderm during gastrulation, which occurs in response to secreted morphogens such as BMPs and Nodals. Patterning of the intermediate mesoderm into proximal and distal cell fates is induced by retinoic acid signaling with downstream transcription factors including wt1a, pax2a, pax8, hnf1b, sim1a, mecom, and irx3b. In the anterior intermediate mesoderm, progenitors of the glomerular blood filter migrate and fuse at the midline and recruit a blood supply. More posteriorly localized tubule progenitors undergo epithelialization and fuse with the cloaca. The Notch signaling pathway regulates the formation of multi-ciliated cells in the tubules and these cells help propel the filtrate to the cloaca. The lumenal sheer stress caused by flow down the tubule activates anterior collective migration of the proximal tubules and induces stretching and proliferation of the more distal segments. Ultimately these processes create a simple two-nephron kidney that is capable of reabsorbing and secreting solutes and expelling excess water-processes that are critical to the homeostasis of the body fluids. The zebrafish pronephric kidney provides a simple, yet powerful, model system to better understand the conserved molecular and cellular progresses that drive nephron formation, structure, and function.

  11. Biomechanical effects of fusion levels on the risk of proximal junctional failure and kyphosis in lumbar spinal fusion surgery.

    PubMed

    Park, Won Man; Choi, Dae Kyung; Kim, Kyungsoo; Kim, Yongjung J; Kim, Yoon Hyuk

    2015-12-01

    Spinal fusion surgery is a widely used surgical procedure for sagittal realignment. Clinical studies have reported that spinal fusion may cause proximal junctional kyphosis and failure with disc failure, vertebral fracture, and/or failure at the implant-bone interface. However, the biomechanical injury mechanisms of proximal junctional kyphosis and failure remain unclear. A finite element model of the thoracolumbar spine was used. Nine fusion models with pedicle screw systems implanted at the L2-L3, L3-L4, L4-L5, L5-S1, L2-L4, L3-L5, L4-S1, L2-L5, and L3-S1 levels were developed based on the respective surgical protocols. The developed models simulated flexion-extension using hybrid testing protocol. When spinal fusion was performed at more distal levels, particularly at the L5-S1 level, the following biomechanical properties increased during flexion-extension: range of motion, stress on the annulus fibrosus fibers and vertebra at the adjacent motion segment, and the magnitude of axial forces on the pedicle screw at the uppermost instrumented vertebra. The results of this study demonstrate that more distal fusion levels, particularly in spinal fusion including the L5-S1 level, lead to greater increases in the risk of proximal junctional kyphosis and failure, as evidenced by larger ranges of motion, higher stresses on fibers of the annulus fibrosus and vertebra at the adjacent segment, and higher axial forces on the screw at the uppermost instrumented vertebra in flexion-extension. Therefore, fusion levels should be carefully selected to avoid proximal junctional kyphosis and failure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The testicular sperm ducts and genital kidney of male Ambystoma maculatum (Amphibia, Urodela, Ambystomatidae).

    PubMed

    Siegel, Dustin S; Aldridge, Robert D; Rheubert, Justin L; Gribbins, Kevin M; Sever, David M; Trauth, Stanley E

    2013-03-01

    The ducts associated with sperm transport from the testicular lobules to the Wolffian ducts in Ambystoma maculatum were examined with transmission electron microscopy. Based on the ultrastructure and historical precedence, new terminology for this network of ducts is proposed that better represents primary hypotheses of homology. Furthermore, the terminology proposed better characterizes the distinct regions of the sperm transport ducts in salamanders based on anatomy and should, therefore, lead to more accurate comparisons in the future. While developing the above ontology, we also tested the hypothesis that nephrons from the genital kidney are modified from those of the pelvic kidney due to the fact that the former nephrons function in sperm transport. Our ultrastructural analysis of the genital kidney supports this hypothesis, as the basal plasma membrane of distinct functional regions of the nephron (proximal convoluted tubule, distal convoluted tubule, and collecting tubule) appear less folded (indicating decreased surface area and reduced reabsorption efficiency) and the proximal convoluted tubule possesses ciliated epithelial cells along its entire length. Furthermore, visible luminal filtrate is absent from the nephrons of the genital kidney throughout their entire length. Thus, it appears that the nephrons of the genital kidney have reduced reabsorptive capacity and ciliated cells of the proximal convoluted tubule may increase the movement of immature sperm through the sperm transport ducts or aid in the mixing of seminal fluids within the ducts. Copyright © 2012 Wiley Periodicals, Inc.

  13. Three-dimensional analysis of the proximal humeral and glenoid geometry using MicroScribe 3D digitizer.

    PubMed

    Owaydhah, Wejdan H; Alobaidy, Mohammad A; Alraddadi, Abdulrahman S; Soames, Roger W

    2017-07-01

    To understand the geometry of the proximal humerus and glenoid fossa to facilitate the design of components used in shoulder arthroplasty. The aim is to evaluate the geometry of the proximal humerus and glenoid fossa and their relationship using a MicroScribe 3D digitizer. Scans and measurements were obtained from 20 pairs of dry proximal humeri and scapulae [10 female and 10 male cadavers: median age 81 years (range 70-94 years)] using a MicroScribe 3D digitizer and Rhinoceros software. Means (±SD) of humeral inclination, medial wall angle of the bicipital groove, and radius of the humeral head values were 135 ± 11°, 39 ± 19°, and 14 ± 3 mm, respectively. Means (±SD) of glenoid height and width were 35 ± 4 and 26 ± 4 mm, while the means (±SD) of the angles of glenoid inclination, retroversion, and rotation were 87 ± 32°, 96 ± 10°, and 9 ± 6°, respectively. A significant difference in glenoid height (P ≤ 0.002) and width (P ≤ 0.0001) was observed between males and females, despite them having almost an identical radius of the humeral head, glenoid inclination, retroversion, and angle of rotation. There was also a significant difference (P ≤ 0.01) in the angle of glenoid retroversion between the right and left sides. Using a MicroScribe 3D digitizer, the glenoid fossa was observed to be significantly smaller in females than males; furthermore, there was a difference in glenoid retroversion between the right and left sides.

  14. Ab Initio Electronic Structure Calculation of [4Fe-3S] Cluster of Hydrogenase as Dihydrogen Dissociation/Production Catalyst

    NASA Astrophysics Data System (ADS)

    Kim, Jaehyun; Kang, Jiyoung; Nishigami, Hiroshi; Kino, Hiori; Tateno, Masaru

    2018-03-01

    Hydrogenases catalyze both the dissociation and production of dihydrogen (H2). Most hydrogenases are inactivated rapidly and reactivated slowly (in vitro), in the presence of dioxygen (O2) and H2, respectively. However, membrane-bound [NiFe] hydrogenases (MBHs) sustain their activity even together with O2, which is termed "O2 tolerance". In previous experimental analyses, an MBH was shown to include a hydroxyl ion (OH-) bound to an Fe of the super-oxidized [4Fe-3S]5+ cluster in the proximity of the [NiFe] catalytic cluster. In this study, the functional role of the OH- in the O2 tolerance was investigated by ab initio electronic structure calculation of the [4Fe-3S] proximal cluster. The analysis revealed that the OH- significantly altered the electronic structure, thereby inducing the delocalization of the lowest unoccupied molecular orbital (LUMO) toward the [NiFe] catalytic cluster, which may intermediate the electron transfer between the catalytic and proximal clusters. This can promote the O2-tolerant catalytic cycle in the hydrogenase reaction.

  15. Reconstruction of Mouse Testicular Cellular Microenvironments in Long-Term Seminiferous Tubule Culture

    PubMed Central

    Mäkelä, Juho-Antti; Toppari, Jorma; Rivero-Müller, Adolfo; Ventelä, Sami

    2014-01-01

    Research on spermatogonia is hampered by complex architecture of the seminiferous tubule, poor viability of testicular tissue ex vivo and lack of physiologically relevant long-term culture systems. Therefore there is a need for an in vitro model that would enable long term survival and propagation of spermatogonia. We aimed at the most simplified approach to enable all different cell types within the seminiferous tubules to contribute to the creation of a niche for spermatogonia. In the present study we describe the establishment of a co-culture of mouse testicular cells that is based on proliferative and migratory activity of seminiferous tubule cells and does not involve separation, purification or differential plating of individual cell populations. The co-culture is composed of the constituents of testicular stem cell niche: Sertoli cells [identified by expression of Wilm's tumour antigen 1 (WT1) and secretion of glial cell line-derived neurotrophic factor, GDNF], peritubular myoid cells (expressing alpha smooth muscle actin, αSMA) and spermatogonia [expressing MAGE-B4, PLZF (promyelocytic leukaemia zinc finger), LIN28, Gpr125 (G protein-coupled receptor 125), CD9, c-Kit and Nanog], and can be maintained for at least five weeks. GDNF was found in the medium at a sufficient concentration to support proliferating spermatogonial stem cells (SSCs) that were able to start spermatogenic differentiation after transplantation to an experimentally sterile recipient testis. Gdnf mRNA levels were elevated by follicle-stimulating hormone (FSH) which shows that the Sertoli cells in the co-culture respond to physiological stimuli. After approximately 2–4 weeks of culture a spontaneous formation of cord-like structures was monitored. These structures can be more than 10 mm in length and branch. They are formed by peritubular myoid cells, Sertoli cells, fibroblasts and spermatogonia as assessed by gene expression profiling. In conclusion, we have managed to establish in

  16. Operative treatment of 2-part surgical neck fractures of the proximal humerus (AO 11-A3) in the elderly: Cement augmented locking plate Philos™ vs. proximal humerus nail MultiLoc®.

    PubMed

    Helfen, Tobias; Siebenbürger, Georg; Mayer, Marcel; Böcker, Wolfgang; Ockert, Ben; Haasters, Florian

    2016-10-28

    Proximal humeral fractures are with an incidence of 4-5 % the third most common fractures in the elderly. In 20 % of humeral fractures there is an indication for surgical treatment according to the modified Neer-Criteria. A secondary varus dislocation of the head fragment and cutting-out are the most common complications of angle stable locking plates in AO11-A3 fractures of the elderly. One possibility to increase the stability of the screw-bone-interface is the cement augmentation of the screw tips. A second is the use of a multiplanar angle stablentramedullary nail that might provide better biomechanical properties after fixation of 2-part-fractures. A comparison of these two treatment options augmented locking plate versus multiplanar angle stable locking nail in 2-part surgical neck fractures of the proximal humerus has not been carried out up to now. Forty patients (female/male, ≥60 years or female postmenopausal) with a 2-part-fracture of the proximal humerus (AO type 11-A3) will be randomized to either to augmented plate fixation group (PhilosAugment) or to multiplanar intramedullary nail group (MultiLoc). Outcome parameters are Disabilities of the Shoulder, Arm and Hand-Score (DASH) Constant Score (CS), American Shoulder and Elbow Score (ASES), Oxford Shoulder Score (OSS), Range of motion (ROM) and Short Form 36 (SF-36) after 3 weeks, 6 weeks, 3 months, 6 months, 12 and 24 months. Because of the lack of clinical studies that compare cement augmented locking plates with multiplanar humeral nail systems after 2-part surgical neck fractures of the proximal humerus, the decision of surgical method currently depends only on surgeons preference. Because only a randomized clinical trial (RCT) can sufficiently answer the question if one treatment option provides advantages compared to the other method we are planning to perform a RCT. Clinical Trial ( NCT02609906 ), November 18, 2015, registered retrospectively.

  17. Immune changes during reproduction in sperm storage tubules of the domestic turkey Meleagris gallopavo

    USDA-ARS?s Scientific Manuscript database

    The storage of sperm in the female reproductive tract is a biological feature of numerous species including birds. The domestic turkey, Meleagris gallopavo, is unique among avian species in that sperm residing in the hen's sperm storage tubules (SST) retain fertilizing ability for up to 10 weeks af...

  18. In vitro remineralization of enamel subsurface lesions and assessment of dentine tubule occlusion from NaF dentifrices with and without calcium.

    PubMed

    Prabhakar, A R; Manojkumar, A Jaiswal; Basappa, N

    2013-01-01

    Currently, fluoride is the most effective preventive treatment for remineralization of incipient carious lesions and dentinal hypersensitivity due to wasting disorders. The products containing fluoride, calcium and phosphate are also claim to remineralize early, non-cavitated enamel demineralization. The aim of this study was to investigate and compare the efficacy of two such products, Tooth Mousse and Clinpro tooth crème on remineralization and tubule occluding ability with 5000ppm fluoride-containing toothpaste. Thirty third molar teeth were placed in demineralizing solution for 5 days such that only a window of 1mm x 5mm was exposed to the environment to produce artificial caries-like lesions and randomly assigned to three groups: Group I, 5000ppm sodium fluoride; Group II, GC MI paste plus and Group III, Clinpro tooth crème. Axial longitudinal sections of 140-160 μm of each tooth which included the artificial carious lesion taken and were photographed under polarized light microscope. The demineralized areas were then quantified with a computerized imaging system. The experimental materials were applied onto the tooth sections as a topical coating and subjected to pH-cycling for 28 days. To evaluate tubule occlusion ability, thirty dentin specimens of 2mm thickness were obtained from cervical third of sound third molars. Specimens were ultrasonicated and etched with 6% citric acid for 2 minutes to simulate the hypersensitive dentin. Specimens were randomly divided into above mentioned three groups (n=10). The test agents were brushed over the specimens with an electric toothbrush, prepared and observed under Scanning Electron Microscope for calculation of the percentage of occluded tubules. Group I showed a significantly greater percentage of remineralization than Group III and Group II. Comparison of the remineralization potential between group II and group III were not significant.In case of dentine hypersensitivity, Group I and group III showed greater

  19. Risk factors associated with the occurrence of proximal humerus fractures in patients with rheumatoid arthritis: a custom strategy for preventing proximal humerus fractures.

    PubMed

    Ochi, Kensuke; Furuya, Takefumi; Ishibashi, Mina; Watanabe, Makiko; Ikari, Katsunori; Taniguchi, Atsuo; Yamanaka, Hisashi; Momohara, Shigeki

    2016-02-01

    To our knowledge, no prior report focused on the risk factors for proximal humerus fractures in patients with rheumatoid arthritis. The purpose of this study was to evaluate the association between potential risk factors and the occurrence of proximal humerus fractures in patients with rheumatoid arthritis. A total of 11,907 patients with rheumatoid arthritis were enrolled in our observational cohort rheumatoid arthritis study between 2000 and 2012. Self-reported proximal humerus fractures were verified using the patients' medical records. Cox proportional hazard models were used to analyze the independent contribution of risk factors to the occurrence of proximal humerus fractures. During follow-up (mean 5.6 years), 92 proximal humerus fractures were verified in 91 patients. Multivariate Cox regression analyses estimated that the hazard ratios of sustaining a proximal humerus fracture were 1.37 for every 10-year increase in age [95 % confidence interval (CI) 1.10-1.70; P < 0.01], 1.95 for increases in serum C-reactive protein levels (mg/100 mL; 95 % CI 1.15-3.34; P < 0.05), 2.13 for a history of fractures (95 % CI 1.34-3.40; P < 0.01), 1.07 for the daily prednisolone dose (per mg; 95 % CI 1.01-1.13; P < 0.05), and 1.97 for oral bisphosphonate use (95 % CI 1.20-3.23; P < 0.01). Better control of rheumatoid arthritis with a smaller daily prednisolone dose in elderly patients with a history of fractures may be important for preventing proximal humerus fractures.

  20. The influence of filling technique on depth of tubule penetration by root canal sealer: a study using light microscopy and digital image processing.

    PubMed

    De Deus, Gustavo A; Gurgel-Filho, Eduardo Diogo; Maniglia-Ferreira, Cláudio; Coutinho-Filho, Tauby

    2004-04-01

    The purpose of this study was to compare the depth of sealer penetration into dentinal tubules by three root-filling techniques using light microscopy and digital image processing. Thirty-two maxillary central incisors were prepared. Two teeth were separated for the control group. The rest were divided into three equal groups and obturated as following--G1: lateral condensation; G2: warm vertical compaction of gutta-percha and G3: Thermafil system. Each sample was sectioned longitudinally and prepared for microscopic analysis. A sequence of photomicrographs with magnifications of X50, X200 and X500 were taken. Through digital image analysis and processing, measurements for each field were obtained. A non-parametric ANOVA Kruskal-Wallis analysis was used to determine whether there were significant differences among the groups. Significant differences between G2 and G1 (p = 0.034) and between G3 and G1 (p = 0.021) were identified. There were no significant differences between G2 and G3 (p > 0.05). The results of this research suggest that samples root-filled by thermoplasticised gutta-percha techniques lead to deeper penetration of the root canal sealer into the dentinal tubules.

  1. RNA-Seq Comparison of Larval and Adult Malpighian Tubules of the Yellow Fever Mosquito Aedes aegypti Reveals Life Stage-Specific Changes in Renal Function.

    PubMed

    Li, Yiyi; Piermarini, Peter M; Esquivel, Carlos J; Drumm, Hannah E; Schilkey, Faye D; Hansen, Immo A

    2017-01-01

    Introduction: The life history of Aedes aegypti presents diverse challenges to its diuretic system. During the larval and pupal life stages mosquitoes are aquatic. With the emergence of the adult they become terrestrial. This shifts the organism within minutes from an aquatic environment to a terrestrial environment where dehydration has to be avoided. In addition, female mosquitoes take large blood meals, which present an entirely new set of challenges to salt and water homeostasis. Methods: To determine differences in gene expression associated with these different life stages, we performed an RNA-seq analysis of the main diuretic tissue in A. aegypti , the Malpighian tubules. We compared transcript abundance in 4th instar larvae to that of adult females and analyzed the data with a focus on transcripts that encode proteins potentially involved in diuresis, like water and solute channels as well as ion transporters. We compared our results against the model of potassium- and sodium chloride excretion in the Malpighian tubules proposed by Hine et al. (2014), which involves at least eight ion transporters and a proton-pump. Results: We found 3,421 of a total number of 17,478 (19.6%) unique transcripts with a P < 0.05 and at least a 2.5 fold change in expression levels between the two groups. We identified two novel transporter genes that are highly expressed in the adult Malpighian tubules, which have not previously been part of the transport model in this species and may play important roles in diuresis. We also identified candidates for hypothesized sodium and chloride channels. Detoxification genes were generally higher expressed in larvae. Significance: This study represents the first comparison of Malpighian tubule transcriptomes between larval and adult A. aegypti mosquitoes, highlighting key differences in their renal systems that arise as they transform from an aquatic filter-feeding larval stage to a terrestrial, blood-feeding adult stage.

  2. Glucose dynamics and mechanistic implications of SGLT2 inhibitors in animals and humans.

    PubMed

    List, James F; Whaley, Jean M

    2011-03-01

    Glucose is freely filtered in the glomeruli before being almost entirely reabsorbed into circulation from the proximal renal tubules. The sodium-glucose cotransporter 2 (SGLT2), present in the S1 segment of the proximal tubule, is responsible for the majority of glucose reabsorption. SGLT2 inhibitors reduce glucose reabsorption and increase urinary glucose excretion. In animal models and humans with type 2 diabetes, this effect is associated with reduced fasting and postprandial blood glucose levels, and reduced hemoglobin A1c. Animal studies suggest that reduction of hyperglycemia with SGLT2 inhibitors may also improve insulin sensitivity and preserve β-cell function. Urinary excretion of excess calories with SGLT2 inhibitors is also associated with reduction in body weight. Modest reductions in blood pressure have been noted with SGLT2 inhibitors, consistent with a mild diuretic action. Some C-glucoside SGLT2 inhibitors, such as dapagliflozin, have pharmacokinetic properties that make them amenable to once-daily dosing.

  3. Hydromechanics in dentine: role of dentinal tubules and hydrostatic pressure on mechanical stress-strain distribution.

    PubMed

    Kishen, A; Vedantam, S

    2007-10-01

    This investigation is to understand the role of free water in the dentinal tubules on the mechanical integrity of bulk dentine. Three different experiments were conducted in this study. In experiment 1, three-dimensional models of dentine with gradient elastic modulus, homogenous elastic modulus, and with and without hydrostatic pressure were simulated using the finite element method. Static compressive loads of 15, 50 and 100 N were applied and the distribution of the principal stresses, von Mises stresses, and strains in loading direction were determined. In experiment 2, experimental compression testing of fully hydrated and partially dehydrated dentine (21 degrees C for 72 h) was conducted using a Universal testing machine. In experiment 3, Fourier transform infrared spectroscopic analysis of hydrated and partially dehydrated dentine was carried out. The finite element analysis revealed that the dentine model with simulated hydrostatic pressure displayed residual tensile stresses and strains in the inner region adjacent to the root canal. When external compressive loads were applied to the model, the residual stresses and strains counteracted the applied loads. Similarly the hydrated specimens subjected to experimental compression loads showed greater toughness when compared to the partially dehydrated specimens. The stress at fracture was significantly higher in partially dehydrated specimens (p=0.014), while the strain at fracture was significantly higher in hydrated dentine specimens (p=0.037). These experiments highlighted the distinct role of free water in the dentinal tubules and hydrostatic pressure on the stress-strain distribution within the bulk dentine.

  4. A bradykinin-potentiating peptide (BPP-10c) from Bothrops jararaca induces changes in seminiferous tubules.

    PubMed

    Gilio, Joyce M; Portaro, Fernanda Cv; Borella, Maria I; Lameu, Claudiana; Camargo, Antonio Cm; Alberto-Silva, Carlos

    2013-11-06

    The testis-specific isoform of angiotensin-converting enzyme (tACE) is exclusively expressed in germ cells during spermatogenesis. Although the exact role of tACE in male fertility is unknown, it clearly plays a critical function in spermatogenesis. The dipeptidase domain of tACE is identical to the C-terminal catalytic domain of somatic ACE (sACE). Bradykinin potentiating peptides (BPPs) from snake venoms are the first natural sACE inhibitors described and their structure-activity relationship studies were the basis for the development of antihypertensive drugs such as captopril. In recent years, it has been showed that a number of BPPs - including BPP-10c - are able to distinguish between the N- and C-active sites of sACE, what is not applicable to captopril. Considering the similarity between tACE and sACE (and since BPPs are able to distinguish between the two active sites of sACE), the effects of the BPP-10c and captopril on the structure and function of the seminiferous epithelium were characterized in the present study. BPP-10c and captopril were administered in male Swiss mice by intraperitoneal injection (4.7 μmol/kg for 15 days) and histological sections of testes were analyzed. Classification of seminiferous tubules and stage analysis were carried out for quantitative evaluation of germ cells of the seminiferous epithelium. The blood-testis barrier (BTB) permeability and distribution of claudin-1 in the seminiferous epithelium were analyzed by hypertonic fixative method and immunohistochemical analyses of testes, respectively. The morphology of seminiferous tubules from animals treated with BPP-10c showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and degenerated germ cells in the adluminal compartment. BPP-10c led to an increase in the number of round spermatids and total support capacity of Sertoli cell in stages I, V, VII/VIII of the seminiferous epithelium cycle, without affecting BTB permeability

  5. A bradykinin-potentiating peptide (BPP-10c) from Bothrops jararaca induces changes in seminiferous tubules

    PubMed Central

    2013-01-01

    Background The testis-specific isoform of angiotensin-converting enzyme (tACE) is exclusively expressed in germ cells during spermatogenesis. Although the exact role of tACE in male fertility is unknown, it clearly plays a critical function in spermatogenesis. The dipeptidase domain of tACE is identical to the C-terminal catalytic domain of somatic ACE (sACE). Bradykinin potentiating peptides (BPPs) from snake venoms are the first natural sACE inhibitors described and their structure–activity relationship studies were the basis for the development of antihypertensive drugs such as captopril. In recent years, it has been showed that a number of BPPs – including BPP-10c – are able to distinguish between the N- and C-active sites of sACE, what is not applicable to captopril. Considering the similarity between tACE and sACE (and since BPPs are able to distinguish between the two active sites of sACE), the effects of the BPP-10c and captopril on the structure and function of the seminiferous epithelium were characterized in the present study. BPP-10c and captopril were administered in male Swiss mice by intraperitoneal injection (4.7 μmol/kg for 15 days) and histological sections of testes were analyzed. Classification of seminiferous tubules and stage analysis were carried out for quantitative evaluation of germ cells of the seminiferous epithelium. The blood-testis barrier (BTB) permeability and distribution of claudin-1 in the seminiferous epithelium were analyzed by hypertonic fixative method and immunohistochemical analyses of testes, respectively. Results The morphology of seminiferous tubules from animals treated with BPP-10c showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and degenerated germ cells in the adluminal compartment. BPP-10c led to an increase in the number of round spermatids and total support capacity of Sertoli cell in stages I, V, VII/VIII of the seminiferous epithelium cycle, without

  6. Equivalent complex conductivities representing the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by external-electrode method

    NASA Astrophysics Data System (ADS)

    Sekine, Katsuhisa

    2017-12-01

    In order to represent the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by the external-electrode method, analytical relations for the equivalent complex conductivities of hypothetical smooth surface membranes were derived. In the relations, the effects of each tubule were represented by the admittance of a straight cable. The effects of the folding of a surface membrane were represented by the increased area of surface membranes. The equivalent complex conductivities were represented as summation of these effects, and the effects of the T-tubules were different between the transversal and longitudinal directions. The validity of the equivalent complex conductivities was supported by the results of finite-difference method (FDM) calculations made using three-dimensional models in which T-tubules and folded surface membranes were represented explicitly. FDM calculations using the equivalent complex conductivities suggested that the electrically inhomogeneous structure due to the existence of muscle cells with T-tubules was sufficient for explaining the experimental results previously obtained using the external-electrode method. Results of FDM calculations in which the structural changes caused by muscle contractions were taken into account were consistent with the reported experimental results.

  7. Neutron scattering in the proximate quantum spin liquid α-RuCl3

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A.; Stone, Matthew B.; Lumsden, Mark D.; Mandrus, David G.; Tennant, David A.; Moessner, Roderich; Nagler, Stephen E.

    2017-06-01

    The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials.

  8. Dentine Tubule Occlusion by Novel Bioactive Glass-Based Toothpastes

    PubMed Central

    Hill, Robert G.; Chen, Xiaojing

    2018-01-01

    There are numerous over-the-counter (OTC) and professionally applied (in-office) products and techniques currently available for the treatment of dentine hypersensitivity (DH), but more recently, the use of bioactive glasses in toothpaste formulations have been advocated as a possible solution to managing DH. Aim. The aim of the present study, therefore, was to compare several bioactive glass formulations to investigate their effectiveness in an established in vitro model. Materials and Methods. A 45S5 glass was synthesized in the laboratory together with several other glass formulations: (1) a mixed glass (fluoride and chloride), (2) BioMinF, (3) a chloride glass, and (4) an amorphous chloride glass. The glass powders were formulated into five different toothpaste formulations. Dentine discs were sectioned from extracted human teeth and prepared for the investigation by removing the cutting debris (smear layer) following sectioning using a 6% citric acid solution for 2 minutes. Each disc was halved to provide test and control halves for comparison following the brushing of the five toothpaste formulations onto the test halves for each toothpaste group. Following the toothpaste application, the test discs were immersed in either artificial saliva or exposed to an acid challenge. Results. The dentine samples were analyzed using scanning electron microscopy (SEM), and observation of the SEM images indicated that there was good surface coverage following artificial saliva immersion. Furthermore, although the acid challenge removed the hydroxyapatite layer on the dentine surface for most of the samples, except for the amorphous chloride glass, there was evidence of tubular occlusion in the dentine tubules. Conclusions. The conclusions from the study would suggest that the inclusion of bioactive glass into a toothpaste formulation may be an effective approach to treat DH. PMID:29849637

  9. Regulation of cyclic AMP metabolism by prostaglandins in rabbit cortical collecting tubule cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenburg, W.K.

    1987-01-01

    In the rabbit cortical collecting tubule (RCCT), prostaglandin E/sub 1/ (PGE/sub 1/) and prostaglandin E/sub 2/ (PGE/sub 2/) at 1 nM inhibit arginine-vasopressin (AVP)-induced water reabsorption, while 100 nM PGE/sub 1/ and PGE/sub 2/ alone stimulate water reabsorption. Reported here are studies designed to investigate the molecular basis for the biphasic physiological action of PGE/sub 1/ and PGE/sub 2/ in the collecting duct. In freshly isolated RCCT cells, PGE/sub 1/, PGE/sub 2/, and 16,16-dimethyl-PGE/sub 2/ (DM-PGE/sub 2/) stimulated cAMP synthesis at concentrations ranging from 0.1 to 10 M. Other prostaglandins including the synthetic PGE/sub 2/ analogue, sulprostone, failed to stimulatemore » cAMP synthesis. Moreover, sulprostone did not antagonize PGE/sub 2/-stimulated cAMP formation. In contrast, PGE/sub 2/ and sulprostone at concentrations ranging from 1 to 100 nM, inhibited AVP-induced cAMP accumulation in freshly isolated RCCT cells. PGE/sub 2/, PGE/sub 1/, DM-PGE/sub 2/ and sulprostone at 100 nM were equally effective in inhibiting AVP-induced cAMP formation. Moreover sulprostone inhibited AVP-stimulated adenylate cyclase activity. These results suggest that PGE derivatives mediate either inhibition or activation of adenylate cyclase by stimulating different PGE receptors. To further test this concept, PGE/sub 2/ binding to freshly isolated RCCT cell membranes was characterized. Two different classes of PGE/sub 2/ binding were detected. //sup 3/H/PGE/sub 2/ binding to the high affinity class of sites was increased by the GTP-analogue, GTP S, while pertussis toxin pretreatment blocked the stimulatory action. In contrast, //sup 3/H/ PGE/sub 2/ binding to the low affinity class of sites was decreased by GTP S; this inhibitory effect was not blocked by pertussis toxin pretreatment.« less

  10. THE INTRARENAL DISTRIBUTION OF TRITIATED PARA-AMINOHIPPURIC ACID DETERMINED BY A MODIFIED TECHNIQUE OF SECTION FREEZE-DRY RADIOAUTOGRAPHY

    PubMed Central

    Bordier, Betrand; Ornstein, Leonard; Wedeen, Richard P.

    1970-01-01

    Section freeze-dry radioautography has been used to examine the intrarenal distribution of a water-soluble organic acid (para-aminohippuric acid (PAH-3H)) under constant-infusion, steady-state conditions in mouse and rat kidney in vivo. The technique described here has the following advantages: (a) Sectioning and freeze-drying are accomplished in a closed cryostat at temperatures below -40°C; (b) Handling of the section is facilitated by mounting of the section-to-be on adhesive-coated Saran Wrap prior to cutting; (c) Unembedded freeze-dried sections are attached to photographic film at ambient temperature in the dark room; (d) Fixation follows completion of radioautographic exposure and precedes photographic development; (e) Permanent close contact is maintained between tissue and film. Morphologic preservation compared favorably with that obtained by optimal fixation techniques, which, however, permit diffusion. Cellular accumulation of PAH-3H during secretion was demonstrated in the proximal tubule under steady-state conditions in vivo. The cellular concentration of PAH-3H was uniform throughout the length of the proximal tubule in mouse and rat kidney. PMID:4349130

  11. There’s more to food store choice than proximity: a questionnaire development study

    PubMed Central

    2013-01-01

    Background Proximity of food stores is associated with dietary intake and obesity; however, individuals frequently shop at stores that are not the most proximal. Little is known about other factors that influence food store choice. The current research describes the development of the Food Store Selection Questionnaire (FSSQ) and describes preliminary results of field testing the questionnaire. Methods Development of the FSSQ involved a multidisciplinary literature review, qualitative analysis of focus group transcripts, and expert and community reviews. Field testing consisted of 100 primary household food shoppers (93% female, 64% African American), in rural and urban Arkansas communities, rating FSSQ items as to their importance in store choice and indicating their top two reasons. After eliminating 14 items due to low mean importance scores and high correlations with other items, the final FSSQ questionnaire consists of 49 items. Results Items rated highest in importance were: meat freshness; store maintenance; store cleanliness; meat varieties; and store safety. Items most commonly rated as top reasons were: low prices; proximity to home; fruit/vegetable freshness; fruit/vegetable variety; and store cleanliness. Conclusions The FSSQ is a comprehensive questionnaire for detailing key reasons in food store choice. Although proximity to home was a consideration for participants, there were clearly other key factors in their choice of a food store. Understanding the relative importance of these different dimensions driving food store choice in specific communities may be beneficial in informing policies and programs designed to support healthy dietary intake and obesity prevention. PMID:23773428

  12. Fracture line morphology of complex proximal humeral fractures.

    PubMed

    Hasan, Afsana P; Phadnis, Joideep; Jaarsma, Ruurd L; Bain, Gregory I

    2017-10-01

    The aim of this study was to assess proximal humeral fracture patterns using 3-dimensional computed tomography images and relate them to the normal osseous landmarks and soft-tissue attachments. Forty-eight 3-dimensional computed tomography scans of proximal humeral fractures were retrospectively collected, and the fractures were transcribed onto proximal humeral templates. We analyzed the common location and orientation of the fracture lines, with a focus on fractures of the articular surface, tuberosities, metaphysis, and proximal diaphysis. These fractures were compared with the attachments of the rotator cuff and glenohumeral capsule. Fifty-two percent of the fractures involved the articular surface. No fractures passed through the bicipital groove, and fractures were more commonly found on the posterior lesser tuberosity and on the anterior greater tuberosity, coinciding with the intervals between the rotator cuff tendon insertions. Intracapsular fractures of the calcar were more common (68%) than extracapsular fractures (32%). On the anterolateral aspect of the proximal humerus, fractures radiated from the articular margin, vertically down through the tuberosity zone between the rotator cuff footprints, meeting horizontally oriented fractures in the metaphyseal zone. On the posterior aspect, vertical fractures from the tuberosity zone continued downward to the metaphyseal zone adjacent to the infraspinatus and teres minor footprints. Fractures of the proximal humerus follow characteristic patterns. Fractures frequently split the greater tuberosity and are closely related to the intervals of the rotator cuff attachments. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  13. Combination Direct Renin Inhibition with Angiotensin Type 1 Receptor Blockade improves Aldosterone but does not improve Kidney Injury in the Transgenic Ren2 rat

    PubMed Central

    Whaley-Connell, Adam; Habibi, Javad; Nistala, Ravi; Hayden, Melvin R; Pulakat, Lakshmi; Sinak, Catherine; Locher, Bonnie; Ferrario, Carlos M; Sowers, James R

    2012-01-01

    Enhanced renin-angiotensin-aldosterone system (RAAS) activation contributes to proteinuria and chronic kidney disease by increasing glomerular and tubulointerstitial oxidative stress, promotion of fibrosis. Renin activation is the rate limiting step in angiotensin (Ang II) and aldosterone generation, and recent work suggests direct renin inhibition improves proteinuria comparable to that seen with Ang type 1 receptor (AT1R) blockade. This is important as, even with contemporary use of AT1R blockade, the burden of kidney disease remains high. Thereby, we sought to determine if combination direct renin inhibition with AT1R blockade in vivo, via greater attenuation of kidney oxidative stress, would attenuate glomerular and proximal tubule injury to a greater extent than either intervention alone. We utilized the transgenic Ren2 rat with increased tissue RAS activity and higher serum levels of aldosterone, which manifests hypertension and proteinuria. Ren2 rats were treated with renin inhibition (aliskiren), AT1R blockade (valsartan), the combination (aliskiren+valsartan), or vehicle for 21 days. Compared to Sprague-Dawley controls, Ren2 rats displayed increased systolic pressure (SBP), circulating aldosterone, proteinuria and greater urine levels of the proximal tubule protein excretory marker beta-N-acetylglucosaminidase (β-NAG). These functional and biochemical alterations were accompanied by increases in kidney tissue NADPH oxidase subunit Rac1 and 3-nitrotyrosine (3-NT) content as well as fibronectin and collagen type III. These findings occurred in conjunction with reductions in the podocyte-specific protein podocin as well as the proximal tubule-specific megalin. Further, in transgenic animals there was increased tubulointerstitial fibrosis on light microscopy as well as ultrastructural findings of glomerular podocyte foot-process effacement and reduced tubular apical endosomal/lysosomal activity. Combination therapy led to greater reductions in SBP and serum

  14. Combination of direct renin inhibition with angiotensin type 1 receptor blockade improves aldosterone but does not improve kidney injury in the transgenic Ren2 rat.

    PubMed

    Whaley-Connell, Adam; Habibi, Javad; Nistala, Ravi; Hayden, Melvin R; Pulakat, Lakshmi; Sinak, Catherine; Locher, Bonnie; Ferrario, Carlos M; Sowers, James R

    2012-06-10

    Enhanced renin-angiotensin-aldosterone system (RAAS) activation contributes to proteinuria and chronic kidney disease by increasing glomerular and tubulointerstitial oxidative stress, promotion of fibrosis. Renin activation is the rate limiting step in angiotensin (Ang II) and aldosterone generation, and recent work suggests direct renin inhibition improves proteinuria comparable to that seen with Ang type 1 receptor (AT(1)R) blockade. This is important as, even with contemporary use of AT(1)R blockade, the burden of kidney disease remains high. Thereby, we sought to determine if combination of direct renin inhibition with AT(1)R blockade in vivo, via greater attenuation of kidney oxidative stress, would attenuate glomerular and proximal tubule injury to a greater extent than either intervention alone. We utilized the transgenic Ren2 rat with increased tissue RAS activity and higher serum levels of aldosterone, which manifests hypertension and proteinuria. Ren2 rats were treated with renin inhibition (aliskiren), AT(1)R blockade (valsartan), the combination (aliskiren+valsartan), or vehicle for 21days. Compared to Sprague-Dawley controls, Ren2 rats displayed increased systolic pressure (SBP), circulating aldosterone, proteinuria and greater urine levels of the proximal tubule protein excretory marker beta-N-acetylglucosaminidase (β-NAG). These functional and biochemical alterations were accompanied by increases in kidney tissue NADPH oxidase subunit Rac1 and 3-nitrotyrosine (3-NT) content as well as fibronectin and collagen type III. These findings occurred in conjunction with reductions in the podocyte-specific protein podocin as well as the proximal tubule-specific megalin. Further, in transgenic animals there was increased tubulointerstitial fibrosis on light microscopy as well as ultrastructural findings of glomerular podocyte foot-process effacement and reduced tubular apical endosomal/lysosomal activity. Combination therapy led to greater reductions in SBP

  15. Fluoride-associated ultrastructural changes and apoptosis in human renal tubule: a pilot study.

    PubMed

    Quadri, J A; Sarwar, S; Sinha, A; Kalaivani, M; Dinda, A K; Bagga, A; Roy, T S; Das, T K; Shariff, A

    2018-01-01

    The susceptibility of the kidneys to fluoride toxicity can largely be attributed to its anatomy and function. As the filtrate moves along the complex tubular structure of each nephron, it is concentrated in the proximal and distal tubules and collecting duct. It has been frequently observed that the children suffering from renal impairments also have some symptoms of dental and skeletal fluorosis. The findings suggest that fluoride somehow interferes with renal anatomy and physiology, which may lead to renal pathogenesis. The aim of this study was to evaluate the fluoride-associated nephrotoxicity. A total of 156 patients with childhood nephrotic syndrome were screened and it was observed that 32 of them had significantly high levels ( p ≤ 0.05) of fluoride in urine (4.01 ± 1.83 ppm) and serum (0.1 ± 0.013 ppm). On the basis of urinary fluoride concentration, patients were divided into two groups, namely group 1 (G-1) ( n = 32) containing normal urine fluoride (0.61 ± 0.17 ppm) and group 2 (G-2) ( n = 32) having high urine fluoride concentration (4.01 ± 1.83 ppm). Age-matched healthy subjects ( n = 33) having normal levels of urinary fluoride (0.56 ± 0.15 ppm) were included in the study as control (group 0 (G-0)). Kidney biopsies were taken from G-1 and G-2 only, who were subjected to ultrastructural (transmission electron microscopy) and apoptotic (terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling) analysis. Various subcellular ultrastructural changes including nuclear disintegration, chromosome condensation, cytoplasmic ground substance lysis, and endoplasmic reticulum blebbing were observed. Increased levels of apoptosis were observed in high fluoride group (G-2) compared to normal fluoride group (G-1). Various degrees of fluoride-associated damages to the architecture of tubular epithelia, such as cell swelling and lysis, cytoplasmic vacuolation, nuclear condensation, apoptosis, and necrosis, were observed.

  16. Plasticity of the transverse tubules following denervation and subsequent reinnervation in rat slow and fast muscle fibres.

    PubMed

    Takekura, Hiroaki; Tamaki, Hiroyuki; Nishizawa, Tomie; Kasuga, Norikatsu

    2003-01-01

    We have studied the effects of short term denervation followed by reinnervation on the ultrastructure of the membrane systems and on the content of and distribution of key proteins involved in calcium regulation of fast-twitch (FT) extensor digitorum longus (EDL) and slow-twitch (ST) soleus (SOL) muscle fibres. Ischiadic nerve freezing resulted in total lack of neuromuscular transmission for 3 days followed by a slow recovery, but no decline in twitch force elicited by direct stimulation. The latter measurements indicate no significant atrophy within this time frame. The membrane systems of skeletal muscle fibres were visualized using Ca92+)-K3Fe(CN)6-OsO4 techniques and observed using a high voltage electron microscope. [3H]nitrendipine binding was used to detect levels of dihydropyridine receptor (DHPR) expression. The Ca2+ pumping free sarcoplasmic reticulum domains were not affected by the denervation, but the Ca2+ release domains were dramatically increased, particularly in the FT-EDL muscle fibres. The increase is evidenced by a doubling up of the areas of contacts between SR and transverse (t-) tubules, so that in place of the normal triadic arrangement, pentadic and heptadic junctions, formed by multiple interacting layers of ST and t-tubules are seen. Frequency of pentads and heptads increases and declines in parallel to the denervation and reinnervation but with a delay. Immunofluorecence and electron microscopy observations show presence of DHPR and ryanodine receptor clusters at pentads and heptads junctions. A significant (P < 0.01) positive correlation between the level of [3H]nitrendipine binding component and the frequency pentads and heptads was observed in both the FT-EDL and ST-SOL muscle fibres indicating that overexpression of DHPRs accompanies the build up extra junctional contacts. The results indicate that denervation reversibly affects the domains of the membrane systems involved in excitation-contraction coupling.

  17. Renal sodium reabsorption following induction of and recovery from volume expansion

    NASA Technical Reports Server (NTRS)

    Knight, T. F.; Weinman, E. J.

    1977-01-01

    In the rat, infusion of a volume of isotonic saline equal to 2% of body weight resulted in an 82% increase in the delivery of filtrate out of the proximal tubule but little or, in some animals, no change in the urinary excretion of sodium. By contrast, further degrees of volume expansion resulted in lesser increases in the distal delivery of filtrate, but were associated with a marked increase in the urinary excretion of sodium. Sixty minutes following completion of volume expansion, while the animals were still in positive sodium balance, the urinary excretion of sodium decreased 52% compared to a decrease of only 24% in the distal delivery of filtrate. During the course of progressive volume expansion and during the recovery phase, there was a dissociation between alterations in sodium reabsorption in the proximal convoluted tubule and in the whole kidney. These studies indicate that although the proximal tubule is more sensitive to changes in the extracellular fluid volume, distal nephron sites are ultimately responsible both for the natriuresis of volume expansion and the relative antinatriuresis of the recovery periods.

  18. Proximal and distal muscle fatigue differentially affect movement coordination

    PubMed Central

    Cowley, Jeffrey C.

    2017-01-01

    Muscle fatigue can cause people to change their movement patterns and these changes could contribute to acute or overuse injuries. However, these effects depend on which muscles are fatigued. The purpose of this study was to determine the differential effects of proximal and distal upper extremity muscle fatigue on repetitive movements. Fourteen subjects completed a repetitive ratcheting task before and after a fatigue protocol on separate days. The fatigue protocol either fatigued the proximal (shoulder flexor) or distal (finger flexor) muscles. Pre/Post changes in trunk, shoulder, elbow, and wrist kinematics were compared to determine how proximal and distal fatigue affected multi-joint movement patterns and variability. Proximal fatigue caused a significant increase (7°, p < 0.005) in trunk lean and velocity, reduced humeral elevation (11°, p < 0.005), and increased elbow flexion (4°, p < 0.01). In contrast, distal fatigue caused small but significant changes in trunk angles (2°, p < 0.05), increased velocity of wrench movement relative to the hand (17°/s, p < 0.001), and earlier wrist extension (4%, p < 0.005). Movement variability increased at proximal joints but not distal joints after both fatigue protocols (p < 0.05). Varying movements at proximal joints may help people adapt to fatigue at either proximal or distal joints. The identified differences between proximal and distal muscle fatigue adaptations could facilitate risk assessment of occupational tasks. PMID:28235005

  19. Intracellular Chloride and Scaffold Protein Mo25 Cooperatively Regulate Transepithelial Ion Transport through WNK Signaling in the Malpighian Tubule.

    PubMed

    Sun, Qifei; Wu, Yipin; Jonusaite, Sima; Pleinis, John M; Humphreys, John M; He, Haixia; Schellinger, Jeffrey N; Akella, Radha; Stenesen, Drew; Krämer, Helmut; Goldsmith, Elizabeth J; Rodan, Aylin R

    2018-05-01

    Background With No Lysine kinase (WNK) signaling regulates mammalian renal epithelial ion transport to maintain electrolyte and BP homeostasis. Our previous studies showed a conserved role for WNK in the regulation of transepithelial ion transport in the Drosophila Malpighian tubule. Methods Using in vitro assays and transgenic Drosophila lines, we examined two potential WNK regulators, chloride ion and the scaffold protein mouse protein 25 (Mo25), in the stimulation of transepithelial ion flux. Results In vitro , autophosphorylation of purified Drosophila WNK decreased as chloride concentration increased. In conditions in which tubule intracellular chloride concentration decreased from 30 to 15 mM as measured using a transgenic sensor, Drosophila WNK activity acutely increased. Drosophila WNK activity in tubules also increased or decreased when bath potassium concentration decreased or increased, respectively. However, a mutation that reduces chloride sensitivity of Drosophila WNK failed to alter transepithelial ion transport in 30 mM chloride. We, therefore, examined a role for Mo25. In in vitro kinase assays, Drosophila Mo25 enhanced the activity of the Drosophila WNK downstream kinase Fray, the fly homolog of mammalian Ste20-related proline/alanine-rich kinase (SPAK), and oxidative stress-responsive 1 protein (OSR1). Knockdown of Drosophila Mo25 in the Malpighian tubule decreased transepithelial ion flux under stimulated but not basal conditions. Finally, whereas overexpression of wild-type Drosophila WNK , with or without Drosophila Mo25 , did not affect transepithelial ion transport, Drosophila Mo25 overexpressed with chloride-insensitive Drosophila WNK increased ion flux. Conclusions Cooperative interactions between chloride and Mo25 regulate WNK signaling in a transporting renal epithelium. Copyright © 2018 by the American Society of Nephrology.

  20. Regulation of proximal tubular cell differentiation and proliferation in primary culture by matrix stiffness and ECM components.

    PubMed

    Chen, Wan-Chun; Lin, Hsi-Hui; Tang, Ming-Jer

    2014-09-15

    To explore whether matrix stiffness affects cell differentiation, proliferation, and transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in primary cultures of mouse proximal tubular epithelial cells (mPTECs), we used a soft matrix made from monomeric collagen type I-coated polyacrylamide gel or matrigel (MG). Both kinds of soft matrix benefited primary mPTECs to retain tubular-like morphology with differentiation and growth arrest and to evade TGF-β1-induced EMT. However, the potent effect of MG on mPTEC differentiation was suppressed by glutaraldehyde-induced cross-linking and subsequently stiffening MG or by an increasing ratio of collagen in the soft mixed gel. Culture media supplemented with MG also helped mPTECs to retain tubular-like morphology and a differentiated phenotype on stiff culture dishes as soft MG did. We further found that the protein level and activity of ERK were scaled with the matrix stiffness. U-0126, a MEK inhibitor, abolished the stiff matrix-induced dedifferentiation and proliferation. These data suggest that the ERK signaling pathway plays a vital role in matrix stiffness-regulated cell growth and differentiation. Taken together, both compliant property and specific MG signals from the matrix are required for the regulation of epithelial differentiation and proliferation. This study provides a basic understanding of how physical and chemical cues derived from the extracellular matrix regulate the physiological function of proximal tubules and the pathological development of renal fibrosis. Copyright © 2014 the American Physiological Society.